WO2019151413A1 - Element quenching method, quenching equipment - Google Patents

Element quenching method, quenching equipment Download PDF

Info

Publication number
WO2019151413A1
WO2019151413A1 PCT/JP2019/003424 JP2019003424W WO2019151413A1 WO 2019151413 A1 WO2019151413 A1 WO 2019151413A1 JP 2019003424 W JP2019003424 W JP 2019003424W WO 2019151413 A1 WO2019151413 A1 WO 2019151413A1
Authority
WO
WIPO (PCT)
Prior art keywords
conveyor
quenching
body portion
elements
cooling
Prior art date
Application number
PCT/JP2019/003424
Other languages
French (fr)
Japanese (ja)
Inventor
徹 朝見
邦之 橋本
辰徳 北野
Original Assignee
アイシン・エィ・ダブリュ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by アイシン・エィ・ダブリュ株式会社 filed Critical アイシン・エィ・ダブリュ株式会社
Publication of WO2019151413A1 publication Critical patent/WO2019151413A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/62Quenching devices
    • C21D1/63Quenching devices for bath quenching
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16GBELTS, CABLES, OR ROPES, PREDOMINANTLY USED FOR DRIVING PURPOSES; CHAINS; FITTINGS PREDOMINANTLY USED THEREFOR
    • F16G5/00V-belts, i.e. belts of tapered cross-section
    • F16G5/16V-belts, i.e. belts of tapered cross-section consisting of several parts

Definitions

  • This disclosure relates to a quenching method and quenching equipment for elements constituting a belt of a continuously variable transmission.
  • a quenching jig used for quenching the elements constituting the belt of a continuously variable transmission it mainly includes molybdenum as a constituent material, and has a comb tooth portion capable of standing many elements continuously.
  • molybdenum as a constituent material
  • a comb tooth portion capable of standing many elements continuously.
  • each tooth portion of the comb tooth portion is inclined at an angle of 1.5 ° to 8 ° with respect to the vertical direction, and the element is a recess formed between the adjacent tooth portions. Inserted into.
  • the quenching jig into which a large number of elements are inserted is placed in a heat treatment furnace for a certain period of time, whereby a large number of elements are heated.
  • an inert gas is uniformly sprayed from above to the substantially vertical downward direction on the quenching jig in which a large number of elements are inserted. Thereby, many elements are cooled and a hardening process is completed.
  • the main object of the invention of the present disclosure is to enable quenching of a large number of elements at a low cost while suppressing the occurrence of distortion of the elements.
  • the element quenching method of the present disclosure is an element that constitutes a belt of a continuously variable transmission, and the element including a pair of side surfaces formed at both ends in the width direction is heated and cooled by a coolant in a cooling tank.
  • a plurality of the elements are placed on a conveyor so that one of the side faces is located on the cooling tank side, heated while being conveyed by the conveyor, and the plurality of heated elements are One of the side faces is dropped from the end of the conveyor to the cooling tank one by one so as to enter the liquid level of the cooling liquid.
  • a plurality of elements are placed on a conveyor such that one side surface is located on the cooling tank side, and heated while being conveyed by the conveyor. Are dropped one by one from the end of the conveyor into the cooling bath. Thereby, it becomes possible to quench many elements at low cost without using a jig to be heated and cooled.
  • the cooling liquid flowing along one surface of the element in the cooling tank by causing the element falling from the end of the conveyor to the cooling tank to enter the liquid level of the cooling liquid from the end on one side surface Since the difference in flow rate with the coolant flowing along the other surface is reduced, the difference in cooling rate between the front and back surfaces of the element can be reduced to suppress the occurrence of distortion of the element accompanying quenching. As a result, according to the quenching method of the present disclosure, it is possible to quench many elements at low cost while suppressing the occurrence of distortion of the elements.
  • An element quenching facility is an element constituting a belt of a continuously variable transmission, and includes an element quenching facility including a pair of side surfaces formed at both ends in a width direction.
  • a conveyor disposed within, a cooling bath disposed below a terminal end of the conveyor and filled with a coolant, and the element outside the heating chamber such that one of the side faces the cooling bath.
  • a transfer machine that is placed on the end of the conveyor protruding into the conveyor, and guides the elements conveyed by the conveyor so that the posture is maintained, and from the terminal end of the conveyor to the cooling bath And a guide member that guides the falling element so as to enter the liquid surface of the cooling liquid from the end portion on the one side surface side.
  • the quenching equipment of the present disclosure it is possible to quench many elements at low cost while suppressing the occurrence of distortion of the elements.
  • FIG. 1 and 2 are schematic configuration diagrams showing a quenching facility 1 according to the present disclosure
  • FIG. 3 is a schematic configuration diagram of a transmission belt 10 including an element 20 that is quenched by the quenching facility 1.
  • the transmission belt 10 is wound around a primary pulley and a secondary pulley of a continuously variable transmission (not shown) mounted on the vehicle, and in addition to a plurality (for example, several hundreds) of elements 20, a plurality of elastically deformable plurals.
  • 9 pieces includes one laminated ring 12 and one retainer ring 15 formed by laminating ring materials 11 in the thickness direction (ring radial direction).
  • the plurality of elements 20 are arranged (bound) in an annular shape along the inner peripheral surface of the laminated ring 12.
  • the plurality of ring members 11 constituting the laminated ring 12 are elastically deformable cut out from a drum made of a metal plate, respectively, and have substantially the same thickness and different perimeters predetermined for each. Has been processed.
  • the retainer ring 15 is elastically deformable, for example, cut out from a drum made of a metal plate, and has a thickness substantially equal to or thinner than that of the ring material 11.
  • the retainer ring 15 has an inner peripheral length that is longer than the outer peripheral length of the outermost ring member 11 of the laminated ring 12.
  • Each element 20 is stamped from a metal plate (steel plate) by pressing, and as shown in FIG. 3, a body portion 21 that extends horizontally in the drawing and projects in the same direction from both ends of the body portion 21. And a single ring housing portion (concave portion) 23 defined between the pair of pillar portions 22 so as to open to the free end side of each pillar portion 22.
  • the body portion 21 of the element 20 functions as a flank surface (torque transmission surface) formed so as to be separated from the inner peripheral side of the transmission belt 10 or the like toward the outer peripheral side (outside in the radial direction of the transmission belt 10 or the like).
  • a pair of side surfaces 21f are examples of side surfaces 21f.
  • each side surface 21f On the surface of each side surface 21f, irregularities (a plurality of grooves) (not shown) that hold hydraulic oil for lubricating and cooling the contact portions between the elements 20 and the primary pulley and the secondary pulley are formed.
  • drum 21 may contain a recessed part so that it may show in figure, and may be formed flat.
  • the pair of pillar portions 22 is formed from the both sides in the width direction of the saddle surface 23a formed on the body portion 21 as the bottom surface of the ring housing portion 23 to the outside in the radial direction of the transmission belt 10 (from the inner peripheral side to the outer peripheral side of the transmission belt 10). It extends in the direction toward it, that is, upward in the figure. Further, a hook portion 22f protruding in the width direction of the saddle surface 23a is formed at the free end portion of each pillar portion 22. The pair of hook portions 22 f are opposed to each other with an interval slightly longer than the width of the laminated ring 12 (ring material 11) and shorter than the width of the retainer ring 15.
  • the laminated ring 12 is disposed in the ring accommodating portion 23, and the saddle surface 23 a of the ring accommodating portion 23 is in contact with the inner peripheral surface of the innermost ring material 11 i constituting the laminated ring 12.
  • the saddle surface 23a has a left and right symmetrical convex curved surface shape (crowning shape) that gently slopes downward in the figure as it goes outward in the width direction with the central portion in the width direction as a top portion T. Accordingly, it is possible to center the laminated ring 12 by applying a centripetal force toward the top T to the laminated ring 12 by friction with the saddle surface 23a.
  • the saddle surface 23 a may include a plurality of convex curved surfaces that curve outward in the radial direction of the laminated ring 12.
  • the elastically deformed retainer ring 15 is fitted into the ring accommodating portion 23 through a pair of hook portions 22f.
  • the retainer ring 15 is disposed between the outer peripheral surface of the outermost ring material 11 of the laminated ring 12 and the hook portion 22f of each element 20 to surround the laminated ring 12, and each element 20 is separated from the laminated ring 12. Regulate dropping out. Thereby, the plurality of elements 20 are bound (arranged) in an annular shape along the inner peripheral surface of the laminated ring 12.
  • a pair of rocking edge portions (contact regions) 25, non-contact portions 27, tapered surfaces (inclined surfaces) 21s, and one protrusion (dimple) ) 21p is formed on the front surface (one surface) of the element 20 .
  • the pair of locking edge portions 25 are formed on the front surface of the element 20 at intervals in the width direction of the saddle surface 23 a so as to straddle the corresponding pillar portions 22 and the trunk portions 21. Further, the non-contact portion 27 is formed between the pair of rocking edge portions 25 in the width direction.
  • the tapered surface 21s extends from the non-contact portion 27 and the pair of locking edge portions 25 to the opposite side to the protruding direction of each pillar portion 22, that is, the belt inner peripheral side (the lower side in FIG. 3). 21 is formed.
  • the protrusion 21p protrudes from the tapered surface 21s at the center portion in the width direction of the front surface of the body portion 21.
  • the front surface of the element 20 (mainly the front surface of the pillar portion 22) located on the belt outer peripheral side with respect to each rocking edge portion 25 and the non-contact portion 27 and the back surface (the other surface) of the element 20 are: Each is formed flat, and the pillar portion 22 of the element 20 has a certain thickness te. Further, the taper surface 21s located on the belt inner peripheral side (lower side in FIG. 3) with respect to each of the locking edge portions 25 and the non-contact portion 27 is the rear surface as the distance from the pillar portion 22 increases (toward the belt inner peripheral side). Proximity to.
  • a recessed portion 21r is formed on the back surface of the element 20 (body portion 21) so as to be positioned behind the protrusion 21p.
  • Each rocking edge portion 25 is a short belt-like convex curved surface, and in this embodiment is a cylindrical surface having a predetermined radius of curvature.
  • Each locking edge portion 25 includes a contact line that makes adjacent elements 20 contact each other and serves as a fulcrum of rotation of both elements, and the position of the contact line is locked according to the speed ratio ⁇ of the continuously variable transmission. It fluctuates within the range of the edge portion 25.
  • the non-contact portion 27 is a belt-like recess formed on the front surface of the body portion 21 so as to extend in the width direction along the saddle surface 23 a and divide the pair of locking edge portions 25. The surface (bottom surface) of the non-contact portion 27 is recessed to the back side with respect to the surface of each rocking edge portion 25, whereby the saddle surface 23 a has a thickness te of the pillar portion 22 as shown in FIG. 3. Smaller than.
  • the quenching equipment 1 for quenching the element 20 as described above includes a heating chamber 2 for heating the plurality of elements 20, and a conveyor 3 for transporting the plurality of elements 20.
  • the heating chamber 2 includes a housing 2h and a plurality of heaters (not shown) disposed inside the housing 2h.
  • the interior of the housing 2h is filled with an inert gas such as nitrogen gas and heated to, for example, about 900 ° C. by a plurality of heaters.
  • a chute portion 2c that is an opening for sending the element 20 heated in the housing 2h to the cooling tank 4 is formed in the lower portion of the housing 2h.
  • the housing 2h is installed such that the chute 2c enters the inside of the cooling tank 4.
  • the conveyor 3 includes a pair of rotating drums 3d, at least one of which is rotationally driven by a driving device (not shown), and an endless mesh belt 3b wound around the pair of rotating drums 3d.
  • a driving device not shown
  • an endless mesh belt 3b wound around the pair of rotating drums 3d.
  • approximately half of the end portion 3 e side in the transport direction is located inside the heating chamber 2 (housing 2 h), and approximately half of the start end side in the transport direction protrudes from the heating chamber 2 (housing 2 h) to the outside. Installed.
  • the terminal end 3e of the conveyor 3 is located above the chute 2c and the cooling tank 4 in the heating chamber 2, as shown in FIGS.
  • the mesh belt 3 b is made of a metal having high thermal conductivity and is heated by a plurality of heaters disposed in the heating chamber 2.
  • a plurality of guide members 30 are arranged on the conveyor 3 at intervals in the width direction of the mesh belt 3b.
  • Each guide member 30 is formed so as to extend along the mesh belt 3 b of the conveyor 3 by a metal plate and to extend from the terminal end portion 3 e of the conveyor 3 toward the cooling tank 4.
  • a plurality of transport lanes 3L arranged in the width direction of the mesh belt 3b are formed on the conveyor 3 by the plurality of guide members 30 (see FIG. 2).
  • FIG. 2 As shown in FIG.
  • each guide member 30 is the upper end portion (the upper surface of the hook portion 22f) of the element 20 in a state where the bottom surface 21b of the trunk portion 21 is in contact with the conveying surface (upper surface) of the mesh belt 3b.
  • the distance between the guide members 30 adjacent to each other is slightly larger than the thickness (te) of the element 20, and the element 20 is in a state where the bottom surface 21b of the trunk portion 21 is in contact with the conveying surface (upper surface) of the mesh belt 3b. It is determined that the front surface or the back surface of the element 20 abuts against the guide member 30 when it falls down.
  • an end guide 35 that covers each transfer lane 3L from above, below, and from the side is fixed to the upper edge of each guide member 30 in the range from the vicinity of the end 3e of the conveyor 3 to the end on the cooling tank 4 side. Has been.
  • the cooling tank 4 stores the cooling liquid CL such as water or cooling oil, and the heating chamber 2 and the end portion 3e of the conveyor 3 so that the tip of the chute 2c of the housing 2h is immersed in the cooling liquid CL. It is arranged below.
  • a heater for heating the coolant CL to about 100 to 150 ° C. is disposed in the cooling tank 4.
  • the cooling liquid CL is circulated and supplied to the cooling tank 4 by a circulation pump (not shown).
  • a collection device 4c for collecting the element 20 cooled by the cooling liquid CL is detachably disposed.
  • the feeder 5 includes an alignment stage 5s arranged adjacent to the starting end of the conveyor 3, and an alignment jig 5j (see FIG. 2) arranged on the alignment stage 5s.
  • the alignment jig 5j includes a comb-shaped alignment portion having a plurality of concave portions, and the feeder 5 aligns and repairs the plurality of elements 20 sent from the previous process equipment (cleaning equipment) one by one by vibration. It arranges in the recessed part of the tool 5j.
  • the alignment jig 5j is disposed on the alignment stage 5s so as to align the plurality of elements 20 with a certain interval in the width direction of the mesh belt 3b.
  • the elements 20 inserted into the recesses of the alignment jig 5j are positioned so that one side surface 21f (flank surface) in the width direction is positioned on the conveyor 3 side and each pillar portion 22 is positioned upward. . Since the periphery of the alignment stage 5s on which the alignment jig 5j is disposed is an environment at a significantly lower temperature (approximately room temperature) than in the heating chamber 2, the alignment jig 5j is described in Patent Document 1. Compared to a jig containing molybdenum as a constituent material, it can be formed at a much lower cost.
  • the transfer device 6 collectively chucks the plurality of elements 20 aligned by the alignment jig 5j, and the bottom surface 21b (see FIG. 3) of the body portion 21 is a chucking surface of the mesh belt 3b. It is placed on the end of the conveyor 3 protruding out of the heating chamber 2 so as to come into contact with the (upper surface).
  • the transfer machine 6 is operated once, one element 20 is transferred to each transfer lane 3L of the conveyor 3 one by one.
  • the elements 20 are transferred one by one to each transfer lane 3L of the conveyor 3 by the transfer device 6.
  • the bottom surface 21b (see FIG. 3) of the body portion 21 of each element 20 abuts on the conveyance surface (upper surface) of the mesh belt 3b, and one side surface 21f ( The flank surface is located on the cooling tank 4 side.
  • the transfer device 6 transfers the plurality of elements 20 collectively onto the mesh belt 3b of the conveyor 3 every time the plurality of elements 20 are aligned on the alignment jig 5j by the feeder 5.
  • the plurality of elements 20 conveyed into the heating chamber 2 by the conveyor 3 are heated so that the metal structure becomes an austenitic structure inside the housing 2h. While being conveyed in the heating chamber 2, each element 20 is guided by the guide members 30 on both sides so as to maintain the posture when being transferred onto the mesh belt 3b. Thereby, each element 20 can be heated without unevenness. Further, each element 20 that is conveyed by the conveyor 3 while being heated and reaches the end portion 3e is guided by the inner surface of the corresponding guide member 30 or the end guide 35, and the end on one side 21f side is directed downward. It falls to the cooling tank 4. Thereby, each element 20 can be rapidly cooled to transform the metal structure into a martensite structure.
  • the flow of the cooling liquid CL as shown in FIG. 4A is performed on the back side of the element 20 in the cooling liquid CL.
  • the flow of the coolant CL stagnates on the front side (upper surface in the drawing) of the element 20.
  • the cooling speed of the element 20 on the back surface side and the front surface side are increased.
  • the cooling rate of the element 20 is different, and the distortion of the element 20 due to quenching becomes large. The same applies to the case where the element 20 is allowed to enter the liquid level of the coolant CL in the cooling tank 4 from the front (projection 21p) side.
  • the element 20 when the element 20 is made to enter the liquid level of the coolant CL in the cooling tank 4 from the bottom surface 21b side of the body portion 21, as shown in FIG. 4B, the flat back side of the element 20 in the coolant CL And the flow velocity difference with the coolant CL becomes large between the front side including the protrusion 21p and the tapered surface 21s.
  • the cooling rate of the element 20 on the back side and the cooling rate of the element 20 on the front side there is a difference between the cooling rate of the element 20 on the back side and the cooling rate of the element 20 on the front side, and the distortion of the element 20 accompanying quenching increases.
  • the element 20 is caused to enter the liquid surface of the coolant CL in the cooling tank 4 from the upper end side, that is, the upper end surface side of the pillar portion 22.
  • the element 20 that falls from the terminal end 3e of the conveyor 3 to the cooling tank 4 enters the liquid surface of the coolant CL from the end on the side surface 21f (flank surface). 4C, the flow rate difference between the cooling liquid CL flowing along the front surface including the protrusion 21p of the element 20 and the cooling liquid CL flowing along the back surface in the cooling tank 4 becomes small. Thereby, the difference in the cooling rate between the front surface and the back surface of the element 20 can be reduced, and the occurrence of distortion of the element 20 due to quenching can be satisfactorily suppressed.
  • tool heated and cooled by dropping the several element 20 heated while conveying with the conveyor 3 one by one from the terminal part 3e of the said conveyor 3 to the cooling tank 4 (patent document 1). It is possible to quench many elements 20 at low cost without using a reference).
  • the element 20 that has fallen into the coolant CL of the cooling tank 4 falls into the recovery device 4c.
  • the collector 4c is taken out from the cooling tank 4 when the quenching of the predetermined number of elements 20 is completed, and the plurality of elements 20 taken out from the cooling tank 4 are cooled in a normal temperature environment. Thereafter, processes such as cooling, cleaning, tempering, barrel polishing, and cleaning are performed, and the manufacture of the element 20 is completed.
  • a plurality of guide members 30 and end guides 35 extend along the mesh belt 3 b and extend from the end portion 3 e of the conveyor 3 toward the cooling tank 4 on the conveyor 3 of the quenching equipment 1.
  • the plurality of elements 20 are conveyed by the conveyor 3 while being guided by the corresponding guide members 30 and terminal guides 35 so as to maintain their postures, and fall into the cooling tank 4.
  • the element 20 falling from the terminal end portion 3e of the conveyor 3 to the cooling tank 4 is more surely plunged into the liquid surface of the coolant CL from the end on the side surface 21f (flank surface) side, and accompanying the quenching. Generation of distortion of the element 20 can be suppressed extremely well.
  • the element 20 may be inserted obliquely with respect to the liquid level of the cooling liquid CL, or may be dropped in the vertical direction with respect to the liquid level of the cooling liquid CL.
  • each element 20 is placed on the conveyor 3 so that the bottom surface 21b of the body portion 21 is in contact with the conveying surface of the mesh belt 3b.
  • each element 20 may be placed on the conveyor 3 such that the flat back surface of the body portion 21 abuts against the conveyance surface of the mesh belt 3 b.
  • the quenching equipment 1 targets the element 20 including the pair of pillar portions 22 extending from the barrel portion 21 so as to be positioned on both sides in the width direction of the saddle surface 23a formed on the barrel portion 21.
  • the quenching equipment 1 can also be applied to quenching of the element 20B as shown in FIG.
  • An element 20B shown in FIG. 5 extends to the outer peripheral side of the transmission belt from a barrel portion 21B having a pair of side surfaces 21f that extend horizontally in the drawing and function as flank surfaces, and a central portion in the width direction of the barrel portion 21B. And a head portion 28 having a pair of ear portions 28a extending from the neck portion 26 to both sides in the width direction of the body portion 21B so as to be separated from the body portion 21B.
  • the width of the body portion 21B is the same as or larger than the width of the head portion 28, and the body portion 21B, the neck portion 26, and the ear portions 28a of the head portion 28 each include a saddle surface 23a.
  • Two ring accommodating portions (concave portions) 23B are defined.
  • a locking edge portion 25B and a tapered surface 21s are formed on the front surface (one surface) of the body portion 21B, and one piece is provided at the center portion in the width direction of the front surface (one surface) of the head portion 28. Projections (dimples) 28p are formed. Further, the back surface (the other surface) of the head portion 28 is formed flat, and a recess 28r is formed on the back surface so as to be positioned on the back side of the protrusion 28p.
  • the element quenching method of the present disclosure is the elements (20, 20B) constituting the belt (10) of the continuously variable transmission, and a pair of side surfaces ( 21f) is a method of quenching an element in which the element (20, 20B) is heated and cooled by the coolant (CL) in the cooling bath (4), and a plurality of the elements (20, 20B) are A plurality of the heated elements (20, 20B) are heated on the conveyor (3) so that the side surface (21f) is positioned on the cooling tank (4) side and transported by the conveyor (3). ) From the end of the one side surface (21f) to the liquid level of the cooling liquid (CL) from the terminal end (3e) of the conveyor (3) to the cooling tank (4). Drop one by one It is.
  • a plurality of elements are placed on the conveyor so that the end of one flank surface is positioned on the cooling tank side and conveyed by the conveyor.
  • a plurality of elements heated at a time are dropped one by one from the end of the conveyor to the cooling bath.
  • the coolant that flows along the surface of the element in the cooling tank and the back surface are made to enter the cooling liquid from the end on the one side of the flank to the element that falls from the end of the conveyor to the cooling tank.
  • the difference in the cooling rate between the front and back surfaces of the element can be reduced and the distortion of the element accompanying quenching can be suppressed.
  • the quenching method of the present disclosure it is possible to quench many elements at low cost while suppressing the occurrence of distortion of the elements.
  • the guide member (30) is disposed so as to extend along the conveyor (3) and extend from the terminal end (3e) of the conveyor (3) toward the cooling bath (4).
  • the plurality of elements (20, 20B) conveyed by the conveyor (3) are guided by the guide member (30) so that the posture is maintained, and the guide member (30, 35) You may guide an element (20, 20B) so that it may penetrate into the said liquid level of the said cooling fluid (CL) from the edge part of said one said side surface (21f) side.
  • the element falling from the terminal end of the conveyor to the cooling tank is more surely plunged into the liquid level of the coolant from the end on the one flank surface side, and the occurrence of distortion of the element due to quenching is extremely good. It becomes possible to suppress.
  • the element (20, 20B) may have a body part (21, 21B) including the pair of side surfaces (21f), and the bottom surface (21b) of the body part (21, 21B) You may mount the said element (20, 20B) on this conveyor (3) so that it may contact
  • the element (20, 20B) may have a body part (21, 21B) including the pair of side surfaces (21f), and the surface of the body part (21, 21B) is the conveyor (3
  • the element (20, 20B) may be placed on the conveyor (3) so as to be in contact with the conveyance surface of the conveyor (3).
  • a pair of extended pillar portions (22) may be included, and a tapered surface (21s) may be formed on one surface of the body portion (21), and the other surface of the body portion (21) may be formed.
  • the surface may be formed flat.
  • the element (20B) is separated from the neck portion (26) extending from the center portion in the width direction of the body portion (21B) to the outer peripheral side of the belt and the body portion (21B).
  • a head portion (28) extending from the neck portion (26) to both sides in the width direction, and a body portion (21B) so as to be positioned on both sides in the width direction of the neck portion (26).
  • a pair of saddle surfaces (23a), and a tapered surface (21s) and a protrusion (21b) may be formed on one surface of the body portion (21B), and the body portion (21B). The other surface of may be formed flat.
  • the element quenching equipment of the present disclosure is an element (20, 20B) constituting a belt (10) of a continuously variable transmission, and includes an element (a pair of side surfaces (21f) formed at both ends in the width direction ( 20, 20B) in the quenching facility (1), below the heating chamber (2), the conveyor (3) arranged in the heating chamber (2), and the end portion (3e) of the conveyor (3).
  • the cooling chamber (4) disposed and filled with the cooling liquid (CL), and the heating chamber such that one of the side surfaces (21f) is positioned on the cooling bath (4) side of the element (20, 20B).
  • the quenching equipment of the present disclosure it is possible to quench many elements at low cost while suppressing the occurrence of distortion of the elements.
  • the invention of the present disclosure can be used in the manufacturing industry of continuously variable transmissions.

Abstract

This element quenching method is for quenching an element by heating the element and then cooling the same using a cooling liquid in a cooling tank. The element forms the belt of a continuously variable transmission and includes a pair of lateral surfaces formed on both end sections in the horizontal direction. A plurality of the elements are placed on a conveyor so that one of the lateral surfaces is positioned on the cooling tank side, and the elements are heated while being conveyed by the conveyor. One by one, the plurality of heated elements are caused to drop from the terminus of the conveyor so that the elements plunge into the surface of the cooling liquid from the end section on the one lateral surface-side.

Description

エレメントの焼入れ方法および焼入れ設備Element quenching method and quenching equipment
 本開示は、無段変速機のベルトを構成するエレメントの焼入れ方法および焼入れ設備に関する。 This disclosure relates to a quenching method and quenching equipment for elements constituting a belt of a continuously variable transmission.
 従来、無段変速機のベルトを構成するエレメントの焼入れに用いられる焼入れ用治具として、主にモリブデンを構成材料に含むと共に、多数のエレメントを連続的に立て掛けることが可能な櫛歯部を備えたものが知られている(例えば、特許文献1参照)。この焼入れ用治具において、櫛歯部の各歯部は、鉛直方向に対して1.5°から8°の角度で傾いており、エレメントは、隣り合う各歯部の間に形成された凹部に挿入される。多数のエレメントが挿入された焼入れ用治具は、熱処理炉内に一定時間だけ載置され、それにより多数のエレメントが加熱される。加熱処理の完了後、多数のエレメントが挿入された焼入れ用治具に対して、上方から略鉛直下方に向けて不活性ガスが均一に吹きかけられる。これにより、多数のエレメントが冷却されて焼入れ処理が完了する。 Conventionally, as a quenching jig used for quenching the elements constituting the belt of a continuously variable transmission, it mainly includes molybdenum as a constituent material, and has a comb tooth portion capable of standing many elements continuously. Are known (for example, see Patent Document 1). In this quenching jig, each tooth portion of the comb tooth portion is inclined at an angle of 1.5 ° to 8 ° with respect to the vertical direction, and the element is a recess formed between the adjacent tooth portions. Inserted into. The quenching jig into which a large number of elements are inserted is placed in a heat treatment furnace for a certain period of time, whereby a large number of elements are heated. After the heat treatment is completed, an inert gas is uniformly sprayed from above to the substantially vertical downward direction on the quenching jig in which a large number of elements are inserted. Thereby, many elements are cooled and a hardening process is completed.
特開2010-280966号公報JP 2010-280966 A
 上述のような焼入れ用治具を用いてエレメントに焼入れを施すことで、焼入れに伴って生じるエレメントの歪みを低減させることができるであろう。しかしながら、モリブデンは高価であり、焼入れ用治具をモリブデンにより形成したとしても、加熱と冷却とが繰り返される焼入れ用治具の長寿命化を図るのは容易ではない。このため、エレメントの歪みの発生を抑制しつつ、上述のように加熱・冷却される治具を用いることなく多数のエレメントを低コストで焼入れ可能な技術へのニーズが存在している。 It is possible to reduce the distortion of the element caused by quenching by quenching the element using the quenching jig as described above. However, molybdenum is expensive, and even if the quenching jig is formed of molybdenum, it is not easy to extend the life of the quenching jig in which heating and cooling are repeated. For this reason, there exists a need for a technique capable of quenching a large number of elements at a low cost without using a jig that is heated and cooled as described above, while suppressing the occurrence of distortion of the elements.
 そこで、本開示の発明は、エレメントの歪みの発生を抑制しつつ、多数のエレメントを低コストで焼入れ可能にすることを主目的とする。 Accordingly, the main object of the invention of the present disclosure is to enable quenching of a large number of elements at a low cost while suppressing the occurrence of distortion of the elements.
 本開示のエレメントの焼入れ方法は、無段変速機のベルトを構成するエレメントであって、幅方向の両端部に形成された一対の側面を含むエレメントを加熱して冷却槽内の冷却液により冷却するエレメントの焼入れ方法において、複数の前記エレメントを一方の前記側面が前記冷却槽側に位置するようにコンベヤ上に載置して前記コンベヤにより搬送しながら加熱し、加熱された複数の前記エレメントを前記一方の前記側面側の端部から前記冷却液の液面に突入するように前記コンベヤの終端部から前記冷却槽へと1つずつ落下させるものである。 The element quenching method of the present disclosure is an element that constitutes a belt of a continuously variable transmission, and the element including a pair of side surfaces formed at both ends in the width direction is heated and cooled by a coolant in a cooling tank. In the element quenching method, a plurality of the elements are placed on a conveyor so that one of the side faces is located on the cooling tank side, heated while being conveyed by the conveyor, and the plurality of heated elements are One of the side faces is dropped from the end of the conveyor to the cooling tank one by one so as to enter the liquid level of the cooling liquid.
 本開示の焼入れ方法によりエレメントに焼き入れを施す際には、複数のエレメントを一方の側面が冷却槽側に位置するようにコンベヤ上に載置し、コンベヤにより搬送される間に加熱された複数のエレメントを当該コンベヤの終端部から冷却槽へと1つずつ落下させる。これにより、加熱・冷却される治具を用いることなく多数のエレメントに低コストで焼入れを施すことが可能となる。更に、コンベヤの終端部から冷却槽へと落下するエレメントを一方の側面側の端部から冷却液の液面に突入させることで、冷却槽内でエレメントの一方の表面に沿って流れる冷却液と他方の表面に沿って流れる冷却液との流速差が小さくなることから、当該エレメントの表裏面間における冷却速度の差を小さくして焼入れに伴うエレメントの歪みの発生を抑制することができる。この結果、本開示の焼入れ方法によれば、エレメントの歪みの発生を抑制しつつ、多数のエレメントに低コストで焼入れを施すことが可能となる。 When quenching an element by the quenching method of the present disclosure, a plurality of elements are placed on a conveyor such that one side surface is located on the cooling tank side, and heated while being conveyed by the conveyor. Are dropped one by one from the end of the conveyor into the cooling bath. Thereby, it becomes possible to quench many elements at low cost without using a jig to be heated and cooled. Furthermore, the cooling liquid flowing along one surface of the element in the cooling tank by causing the element falling from the end of the conveyor to the cooling tank to enter the liquid level of the cooling liquid from the end on one side surface Since the difference in flow rate with the coolant flowing along the other surface is reduced, the difference in cooling rate between the front and back surfaces of the element can be reduced to suppress the occurrence of distortion of the element accompanying quenching. As a result, according to the quenching method of the present disclosure, it is possible to quench many elements at low cost while suppressing the occurrence of distortion of the elements.
 本開示のエレメントの焼入れ設備は、無段変速機のベルトを構成するエレメントであって、幅方向の両端部に形成された一対の側面を含むエレメントの焼入れ設備において、加熱チャンバと、前記加熱チャンバ内に配置されるコンベヤと、前記コンベヤの終端部の下方に配置されると共に冷却液で満たされる冷却槽と、前記エレメントを一方の前記側面が前記冷却槽側に位置するように前記加熱チャンバ外に突出した前記コンベヤの端部上に載置する移載機と、前記コンベヤにより搬送される前記エレメントを姿勢が維持されるようにガイドすると共に、前記コンベヤの前記終端部から前記冷却槽へと落下する前記エレメントを前記一方の前記側面側の端部から前記冷却液の液面に突入するようにガイドするガイド部材とを含むものである。 An element quenching facility according to the present disclosure is an element constituting a belt of a continuously variable transmission, and includes an element quenching facility including a pair of side surfaces formed at both ends in a width direction. A conveyor disposed within, a cooling bath disposed below a terminal end of the conveyor and filled with a coolant, and the element outside the heating chamber such that one of the side faces the cooling bath. A transfer machine that is placed on the end of the conveyor protruding into the conveyor, and guides the elements conveyed by the conveyor so that the posture is maintained, and from the terminal end of the conveyor to the cooling bath And a guide member that guides the falling element so as to enter the liquid surface of the cooling liquid from the end portion on the one side surface side.
 本開示の焼入れ設備によれば、エレメントの歪みの発生を抑制しつつ、多数のエレメントに低コストで焼入れを施すことが可能となる。 According to the quenching equipment of the present disclosure, it is possible to quench many elements at low cost while suppressing the occurrence of distortion of the elements.
本開示のエレメントの焼入れ設備を示す概略構成図である。It is a schematic block diagram which shows the hardening equipment of the element of this indication. 本開示のエレメントの焼入れ設備を示す概略構成図である。It is a schematic block diagram which shows the hardening equipment of the element of this indication. 本開示の焼入れ設備により焼入れが施されたエレメントを含む伝動ベルトの概略構成図である。It is a schematic block diagram of the power transmission belt containing the element quenched by the quenching equipment of this indication. 図4A,図4Bおよび図4Cは、冷却槽内に落下したエレメント周辺における冷却液の流れの状態を例示する説明図である。4A, 4B, and 4C are explanatory views illustrating the state of the coolant flow around the element that has dropped into the cooling tank. 本開示の焼入れ設備による焼入れが施される他のエレメントを示す概略構成図である。It is a schematic block diagram which shows the other element in which hardening by the hardening equipment of this indication is given.
 次に、図面を参照しながら、本開示の発明を実施するための形態について説明する。 Next, an embodiment for carrying out the invention of the present disclosure will be described with reference to the drawings.
 図1および図2は、本開示の焼入れ設備1を示す概略構成図であり、図3は、焼入れ設備1により焼入れが施されるエレメント20を含む伝動ベルト10の概略構成図である。伝動ベルト10は、車両に搭載される図示しない無段変速機のプライマリプーリおよびセカンダリプーリに巻き掛けられるものであり、複数(例えば、数百個)のエレメント20に加えて、弾性変形可能な複数(本実施形態では、例えば9個)のリング材11を厚み方向(リング径方向)に積層することにより構成された1個の積層リング12と、1個のリテーナリング15とを含む。複数のエレメント20は、積層リング12の内周面に沿って環状に配列(結束)される。 1 and 2 are schematic configuration diagrams showing a quenching facility 1 according to the present disclosure, and FIG. 3 is a schematic configuration diagram of a transmission belt 10 including an element 20 that is quenched by the quenching facility 1. The transmission belt 10 is wound around a primary pulley and a secondary pulley of a continuously variable transmission (not shown) mounted on the vehicle, and in addition to a plurality (for example, several hundreds) of elements 20, a plurality of elastically deformable plurals. (In the present embodiment, for example, 9 pieces) includes one laminated ring 12 and one retainer ring 15 formed by laminating ring materials 11 in the thickness direction (ring radial direction). The plurality of elements 20 are arranged (bound) in an annular shape along the inner peripheral surface of the laminated ring 12.
 積層リング12を構成する複数のリング材11は、それぞれ金属板製のドラムから切り出された弾性変形可能なものであって、概ね同一の厚みおよびそれぞれについて予め定められた異なる周長を有するように加工されている。リテーナリング15は、例えば金属板製のドラムから切り出された弾性変形可能なものであり、リング材11と概ね同一若しくはそれよりも薄い厚みを有する。また、リテーナリング15は、積層リング12の最外層のリング材11の外周長よりも長い内周長を有する。これにより、積層リング12とリテーナリング15とが同心円状に配置された状態(張力が作用しない無負荷状態)では、図3に示すように、最外層のリング材11の外周面とリテーナリング15の内周面との間に、環状のクリアランスが形成される。 The plurality of ring members 11 constituting the laminated ring 12 are elastically deformable cut out from a drum made of a metal plate, respectively, and have substantially the same thickness and different perimeters predetermined for each. Has been processed. The retainer ring 15 is elastically deformable, for example, cut out from a drum made of a metal plate, and has a thickness substantially equal to or thinner than that of the ring material 11. The retainer ring 15 has an inner peripheral length that is longer than the outer peripheral length of the outermost ring member 11 of the laminated ring 12. As a result, in a state where the laminated ring 12 and the retainer ring 15 are arranged concentrically (no-load state where no tension acts), as shown in FIG. 3, the outer peripheral surface of the outermost ring member 11 and the retainer ring 15 An annular clearance is formed between the inner circumferential surface and the inner circumferential surface.
 各エレメント20は、プレス加工により金属板(鋼板)から打ち抜かれたものであり、図3に示すように、図中水平に延びる胴部21と、当該胴部21の両端部から同方向に突出する一対のピラー部22と、各ピラー部22の遊端側に開口するように一対のピラー部22の間に画成された単一のリング収容部(凹部)23とを有する。エレメント20の胴部21は、伝動ベルト10等の内周側から外周側(伝動ベルト10等の径方向における外側)に向かうにつれて互いに離間するように形成されたフランク面(トルク伝達面)として機能する一対の側面21fを有する。各側面21fの表面には、各エレメント20とプライマリプーリやセカンダリプーリとの接触部を潤滑・冷却するための作動油を保持する図示しない凹凸(複数の溝)が形成されている。なお、胴部21の底面21bは、図示するように凹部を含んでもよく、平坦に形成されてもよい。 Each element 20 is stamped from a metal plate (steel plate) by pressing, and as shown in FIG. 3, a body portion 21 that extends horizontally in the drawing and projects in the same direction from both ends of the body portion 21. And a single ring housing portion (concave portion) 23 defined between the pair of pillar portions 22 so as to open to the free end side of each pillar portion 22. The body portion 21 of the element 20 functions as a flank surface (torque transmission surface) formed so as to be separated from the inner peripheral side of the transmission belt 10 or the like toward the outer peripheral side (outside in the radial direction of the transmission belt 10 or the like). A pair of side surfaces 21f. On the surface of each side surface 21f, irregularities (a plurality of grooves) (not shown) that hold hydraulic oil for lubricating and cooling the contact portions between the elements 20 and the primary pulley and the secondary pulley are formed. In addition, the bottom surface 21b of the trunk | drum 21 may contain a recessed part so that it may show in figure, and may be formed flat.
 一対のピラー部22は、リング収容部23の底面として胴部21に形成されたサドル面23aの幅方向における両側から伝動ベルト10の径方向における外側(伝動ベルト10の内周側から外周側に向かう方向、すなわち図中上方)に延出されている。また、各ピラー部22の遊端部には、サドル面23aの幅方向に突出するフック部22fが形成されている。一対のフック部22fは、積層リング12(リング材11)の幅よりも若干長く、かつリテーナリング15の幅よりも短い間隔をおいて互いに対向する。 The pair of pillar portions 22 is formed from the both sides in the width direction of the saddle surface 23a formed on the body portion 21 as the bottom surface of the ring housing portion 23 to the outside in the radial direction of the transmission belt 10 (from the inner peripheral side to the outer peripheral side of the transmission belt 10). It extends in the direction toward it, that is, upward in the figure. Further, a hook portion 22f protruding in the width direction of the saddle surface 23a is formed at the free end portion of each pillar portion 22. The pair of hook portions 22 f are opposed to each other with an interval slightly longer than the width of the laminated ring 12 (ring material 11) and shorter than the width of the retainer ring 15.
 リング収容部23内には、図3に示すように、積層リング12が配置され、当該リング収容部23のサドル面23aは、積層リング12を構成する最内層リング材11iの内周面と接触する。サドル面23aは、幅方向における中央部を頂部Tとして幅方向外側に向かうにつれて図中下方に緩やかに傾斜した左右対称の凸曲面形状(クラウニング形状)を有する。これにより、サドル面23aとの摩擦により積層リング12に頂部Tに向かう求心力を付与して、当該積層リング12をセンタリングすることが可能となる。ただし、サドル面23aは、積層リング12の径方向における外側に湾曲する凸曲面を複数含むものであってもよい。 As shown in FIG. 3, the laminated ring 12 is disposed in the ring accommodating portion 23, and the saddle surface 23 a of the ring accommodating portion 23 is in contact with the inner peripheral surface of the innermost ring material 11 i constituting the laminated ring 12. To do. The saddle surface 23a has a left and right symmetrical convex curved surface shape (crowning shape) that gently slopes downward in the figure as it goes outward in the width direction with the central portion in the width direction as a top portion T. Accordingly, it is possible to center the laminated ring 12 by applying a centripetal force toward the top T to the laminated ring 12 by friction with the saddle surface 23a. However, the saddle surface 23 a may include a plurality of convex curved surfaces that curve outward in the radial direction of the laminated ring 12.
 また、リング収容部23には、弾性変形させられたリテーナリング15が一対のフック部22fの間を介して嵌め込まれる。そして、リテーナリング15は、積層リング12の最外層のリング材11の外周面と各エレメント20のフック部22fとの間に配置されて積層リング12を包囲し、各エレメント20が積層リング12から脱落するのを規制する。これにより、複数のエレメント20は、積層リング12の内周面に沿って環状に結束(配列)される。 Further, the elastically deformed retainer ring 15 is fitted into the ring accommodating portion 23 through a pair of hook portions 22f. The retainer ring 15 is disposed between the outer peripheral surface of the outermost ring material 11 of the laminated ring 12 and the hook portion 22f of each element 20 to surround the laminated ring 12, and each element 20 is separated from the laminated ring 12. Regulate dropping out. Thereby, the plurality of elements 20 are bound (arranged) in an annular shape along the inner peripheral surface of the laminated ring 12.
 図3に示すように、エレメント20の正面(一方の表面)には、一対のロッキングエッジ部(接触領域)25、非接触部27、テーパ面(傾斜面)21s、および1個の突起(ディンプル)21pが形成されている。一対のロッキングエッジ部25は、それぞれ対応するピラー部22と胴部21とに跨がるようにサドル面23aの幅方向に間隔をおいてエレメント20の正面に形成されている。また、非接触部27は、一対のロッキングエッジ部25の上記幅方向における間に形成されている。更に、テーパ面21sは、非接触部27および一対のロッキングエッジ部25から各ピラー部22の突出方向と反対側、すなわちベルト内周側(図3における下側)に延在するように胴部21に形成されている。突起21pは、胴部21の正面の幅方向における中央部でテーパ面21sから突出する。 As shown in FIG. 3, on the front surface (one surface) of the element 20, a pair of rocking edge portions (contact regions) 25, non-contact portions 27, tapered surfaces (inclined surfaces) 21s, and one protrusion (dimple) ) 21p is formed. The pair of locking edge portions 25 are formed on the front surface of the element 20 at intervals in the width direction of the saddle surface 23 a so as to straddle the corresponding pillar portions 22 and the trunk portions 21. Further, the non-contact portion 27 is formed between the pair of rocking edge portions 25 in the width direction. Further, the tapered surface 21s extends from the non-contact portion 27 and the pair of locking edge portions 25 to the opposite side to the protruding direction of each pillar portion 22, that is, the belt inner peripheral side (the lower side in FIG. 3). 21 is formed. The protrusion 21p protrudes from the tapered surface 21s at the center portion in the width direction of the front surface of the body portion 21.
 本実施形態において、各ロッキングエッジ部25および非接触部27よりもベルト外周側に位置するエレメント20の正面(主にピラー部22の正面)と、エレメント20の背面(他方の表面)とは、それぞれ平坦に形成されており、エレメント20のピラー部22は、一定の厚みteを有する。また、各ロッキングエッジ部25および非接触部27よりもベルト内周側(図3における下側)に位置するテーパ面21sは、ピラー部22から離間するにつれて(ベルト内周側に向かうにつれて)背面に近接する。更に、エレメント20(胴部21)の背面には、突起21pの裏側に位置するように窪み部21rが形成されている。伝動ベルト10が組み立てられた際、当該窪み21rには、隣り合うエレメント20の突起21pが遊嵌される。 In the present embodiment, the front surface of the element 20 (mainly the front surface of the pillar portion 22) located on the belt outer peripheral side with respect to each rocking edge portion 25 and the non-contact portion 27 and the back surface (the other surface) of the element 20 are: Each is formed flat, and the pillar portion 22 of the element 20 has a certain thickness te. Further, the taper surface 21s located on the belt inner peripheral side (lower side in FIG. 3) with respect to each of the locking edge portions 25 and the non-contact portion 27 is the rear surface as the distance from the pillar portion 22 increases (toward the belt inner peripheral side). Proximity to. Further, a recessed portion 21r is formed on the back surface of the element 20 (body portion 21) so as to be positioned behind the protrusion 21p. When the transmission belt 10 is assembled, the protrusion 21p of the adjacent element 20 is loosely fitted in the recess 21r.
 各ロッキングエッジ部25は、短尺帯状の凸曲面であり、本実施形態では、予め定められた曲率半径を有する円柱面とされている。各ロッキングエッジ部25は、隣り合うエレメント20同士を接触させて両者の回動の支点となる接触線を含むものであり、接触線の位置は、無段変速機の変速比γに応じてロッキングエッジ部25の範囲内で変動する。また、非接触部27は、サドル面23aに沿って幅方向に延在して一対のロッキングエッジ部25を分断するように胴部21の正面に形成された帯状の凹部である。非接触部27の表面(底面)は、各ロッキングエッジ部25の表面よりも背面側に窪んでおり、これにより、サドル面23aの厚みは、図3に示すように、ピラー部22の厚みteよりも小さくなる。 Each rocking edge portion 25 is a short belt-like convex curved surface, and in this embodiment is a cylindrical surface having a predetermined radius of curvature. Each locking edge portion 25 includes a contact line that makes adjacent elements 20 contact each other and serves as a fulcrum of rotation of both elements, and the position of the contact line is locked according to the speed ratio γ of the continuously variable transmission. It fluctuates within the range of the edge portion 25. Further, the non-contact portion 27 is a belt-like recess formed on the front surface of the body portion 21 so as to extend in the width direction along the saddle surface 23 a and divide the pair of locking edge portions 25. The surface (bottom surface) of the non-contact portion 27 is recessed to the back side with respect to the surface of each rocking edge portion 25, whereby the saddle surface 23 a has a thickness te of the pillar portion 22 as shown in FIG. 3. Smaller than.
 上述のようなエレメント20に焼き入れを施す焼入れ設備1は、図1および図2に示すように、複数のエレメント20を加熱するための加熱チャンバ2と、複数のエレメント20を搬送するコンベヤ3と、加熱チャンバ2で加熱されたエレメント20を冷却するための冷却槽4と、プレス加工後に洗浄された複数のエレメント20を順次送り出して整列させるフィーダー5と、複数のエレメント20を一括してコンベヤ3上に載置する移載機6とを含む。 As shown in FIGS. 1 and 2, the quenching equipment 1 for quenching the element 20 as described above includes a heating chamber 2 for heating the plurality of elements 20, and a conveyor 3 for transporting the plurality of elements 20. The cooling tank 4 for cooling the elements 20 heated in the heating chamber 2, the feeder 5 for sequentially sending and aligning the plurality of elements 20 cleaned after the press working, and the plurality of elements 20 in a batch. And a transfer machine 6 to be placed thereon.
 加熱チャンバ2は、ハウジング2hと、当該ハウジング2hの内部に配設される複数の図示しないヒータとを含む。ハウジング2hの内部は、窒素ガス等の不活性ガスで満たされ、複数のヒータにより例えば900℃程度に加熱される。また、ハウジング2hの下部には、当該ハウジング2h内で加熱されたエレメント20を冷却槽4へと送り出すための開口部であるシュート部2cが形成されている。ハウジング2hは、シュート部2cが冷却槽4の内部に入り込むように設置される。 The heating chamber 2 includes a housing 2h and a plurality of heaters (not shown) disposed inside the housing 2h. The interior of the housing 2h is filled with an inert gas such as nitrogen gas and heated to, for example, about 900 ° C. by a plurality of heaters. In addition, a chute portion 2c that is an opening for sending the element 20 heated in the housing 2h to the cooling tank 4 is formed in the lower portion of the housing 2h. The housing 2h is installed such that the chute 2c enters the inside of the cooling tank 4.
 コンベヤ3は、図示しない駆動装置により少なくとも何れか一方が回転駆動される一対の回転ドラム3dと、当該一対の回転ドラム3dに巻き掛けられる無端状のメッシュベルト3bとを含む。コンベヤ3は、搬送方向における終端部3e側の概ね半分が加熱チャンバ2(ハウジング2h)の内部に位置すると共に、搬送方向における始端側の概ね半分が加熱チャンバ2(ハウジング2h)から外部に突出するように設置される。また、コンベヤ3の終端部3eは、図1および図2に示すように、加熱チャンバ2内でシュート部2cおよび冷却槽4の上方に位置する。更に、メッシュベルト3bは、熱伝導性の高い金属により形成されており、加熱チャンバ2内に配設された複数のヒータにより加熱される。 The conveyor 3 includes a pair of rotating drums 3d, at least one of which is rotationally driven by a driving device (not shown), and an endless mesh belt 3b wound around the pair of rotating drums 3d. In the conveyor 3, approximately half of the end portion 3 e side in the transport direction is located inside the heating chamber 2 (housing 2 h), and approximately half of the start end side in the transport direction protrudes from the heating chamber 2 (housing 2 h) to the outside. Installed. Moreover, the terminal end 3e of the conveyor 3 is located above the chute 2c and the cooling tank 4 in the heating chamber 2, as shown in FIGS. Further, the mesh belt 3 b is made of a metal having high thermal conductivity and is heated by a plurality of heaters disposed in the heating chamber 2.
 また、コンベヤ3に対しては、図1および図2に示すように、複数のガイド部材30がメッシュベルト3bの幅方向に間隔をおいて配設されている。各ガイド部材30は、金属製の板材によりコンベヤ3のメッシュベルト3bに沿って延在すると共に当該コンベヤ3の終端部3eから冷却槽4に向けて延在するように形成されている。これにより、コンベヤ3には、複数のガイド部材30によってメッシュベルト3bの幅方向に並ぶ複数の搬送レーン3Lが形成される(図2参照)。図1に示すように、各ガイド部材30の上縁部は、胴部21の底面21bがメッシュベルト3bの搬送面(上面)に当接する状態にあるエレメント20の上端部(フック部22fの上面)よりも上方に位置する。また、互いに隣り合うガイド部材30同士の間隔は、エレメント20の厚み(te)よりも若干大きく、かつ胴部21の底面21bがメッシュベルト3bの搬送面(上面)に当接する状態からエレメント20が倒れた際に当該エレメント20の正面または背面がガイド部材30に当接するように定められている。更に、各ガイド部材30の上縁部には、コンベヤ3の終端部3e付近から冷却槽4側の端部までの範囲で各搬送レーン3Lを上方、下方および側方から覆う終端ガイド35が固定されている。 Further, as shown in FIG. 1 and FIG. 2, a plurality of guide members 30 are arranged on the conveyor 3 at intervals in the width direction of the mesh belt 3b. Each guide member 30 is formed so as to extend along the mesh belt 3 b of the conveyor 3 by a metal plate and to extend from the terminal end portion 3 e of the conveyor 3 toward the cooling tank 4. Thereby, a plurality of transport lanes 3L arranged in the width direction of the mesh belt 3b are formed on the conveyor 3 by the plurality of guide members 30 (see FIG. 2). As shown in FIG. 1, the upper edge portion of each guide member 30 is the upper end portion (the upper surface of the hook portion 22f) of the element 20 in a state where the bottom surface 21b of the trunk portion 21 is in contact with the conveying surface (upper surface) of the mesh belt 3b. ) Above. The distance between the guide members 30 adjacent to each other is slightly larger than the thickness (te) of the element 20, and the element 20 is in a state where the bottom surface 21b of the trunk portion 21 is in contact with the conveying surface (upper surface) of the mesh belt 3b. It is determined that the front surface or the back surface of the element 20 abuts against the guide member 30 when it falls down. Further, an end guide 35 that covers each transfer lane 3L from above, below, and from the side is fixed to the upper edge of each guide member 30 in the range from the vicinity of the end 3e of the conveyor 3 to the end on the cooling tank 4 side. Has been.
 冷却槽4は、水あるいは冷却油といった冷却液CLを貯留するものであり、ハウジング2hのシュート部2cの先端部が冷却液CLに浸漬されるように加熱チャンバ2およびコンベヤ3の終端部3eの下方に配置される。また、冷却槽4内には、冷却液CLを100~150℃程度に加熱するヒータが配置されている。本実施形態では、冷却液CLの温度を均一にするために、冷却槽4に図示しない循環ポンプにより冷却液CLが循環供給される。更に、冷却槽4内には、冷却液CLにより冷却されたエレメント20を回収するための回収器4cが着脱自在に配置される。 The cooling tank 4 stores the cooling liquid CL such as water or cooling oil, and the heating chamber 2 and the end portion 3e of the conveyor 3 so that the tip of the chute 2c of the housing 2h is immersed in the cooling liquid CL. It is arranged below. In addition, a heater for heating the coolant CL to about 100 to 150 ° C. is disposed in the cooling tank 4. In the present embodiment, in order to make the temperature of the cooling liquid CL uniform, the cooling liquid CL is circulated and supplied to the cooling tank 4 by a circulation pump (not shown). Furthermore, in the cooling tank 4, a collection device 4c for collecting the element 20 cooled by the cooling liquid CL is detachably disposed.
 フィーダー5は、コンベヤ3の始端に隣り合うように配置された整列ステージ5sと、当該整列ステージ5s上に配置された整列治具5j(図2参照)とを含む。整列治具5jは、複数の凹部を有する櫛歯状の整列部を含むものであり、フィーダー5は、前工程の設備(洗浄設備)から送り出される複数のエレメント20を振動により1つずつ整列治具5jの凹部に配列させる。本実施形態において、整列治具5jは、複数のエレメント20をメッシュベルト3bの幅方向に一定の間隔をおいて整列させるように整列ステージ5sに配置される。そして、整列治具5jの凹部に挿入された各エレメント20は、幅方向における一方の側面21f(フランク面)がコンベヤ3側に位置すると共に各ピラー部22が上方に位置するように位置決めされる。かかる整列治具5jが配置される整列ステージ5sの周辺は、加熱チャンバ2内に比べて大幅に低温(概ね常温)の環境であることから、整列治具5jは、特許文献1に記載されたようなモリブデンを構成材料に含む治具に比べて大幅に安価に形成可能である。 The feeder 5 includes an alignment stage 5s arranged adjacent to the starting end of the conveyor 3, and an alignment jig 5j (see FIG. 2) arranged on the alignment stage 5s. The alignment jig 5j includes a comb-shaped alignment portion having a plurality of concave portions, and the feeder 5 aligns and repairs the plurality of elements 20 sent from the previous process equipment (cleaning equipment) one by one by vibration. It arranges in the recessed part of the tool 5j. In the present embodiment, the alignment jig 5j is disposed on the alignment stage 5s so as to align the plurality of elements 20 with a certain interval in the width direction of the mesh belt 3b. The elements 20 inserted into the recesses of the alignment jig 5j are positioned so that one side surface 21f (flank surface) in the width direction is positioned on the conveyor 3 side and each pillar portion 22 is positioned upward. . Since the periphery of the alignment stage 5s on which the alignment jig 5j is disposed is an environment at a significantly lower temperature (approximately room temperature) than in the heating chamber 2, the alignment jig 5j is described in Patent Document 1. Compared to a jig containing molybdenum as a constituent material, it can be formed at a much lower cost.
 移載機6は、整列治具5jにより整列させられた複数のエレメント20を一括してチャックし、当該複数のエレメント20を胴部21の底面21b(図3参照)がメッシュベルト3bの搬送面(上面)に当接するように加熱チャンバ2外に突出したコンベヤ3の端部に載置するものである。移載機6が1回作動すると、コンベヤ3の各搬送レーン3Lにエレメント20が1つずつ移載されることになる。 The transfer device 6 collectively chucks the plurality of elements 20 aligned by the alignment jig 5j, and the bottom surface 21b (see FIG. 3) of the body portion 21 is a chucking surface of the mesh belt 3b. It is placed on the end of the conveyor 3 protruding out of the heating chamber 2 so as to come into contact with the (upper surface). When the transfer machine 6 is operated once, one element 20 is transferred to each transfer lane 3L of the conveyor 3 one by one.
 次に、上述の焼入れ設備1におけるエレメント20の焼入れ手順について説明する。 Next, the quenching procedure for the element 20 in the quenching equipment 1 will be described.
 上述のように、フィーダー5により複数のエレメント20が整列治具5j上で整列させられると、移載機6によりコンベヤ3の各搬送レーン3Lにエレメント20が1つずつ移載される。対応する搬送レーン3Lに移載された際、各エレメント20の胴部21の底面21b(図3参照)はメッシュベルト3bの搬送面(上面)に当接し、各エレメント20の一方の側面21f(フランク面)は、冷却槽4側に位置する。このようにコンベヤ3のメッシュベルト3b上に載置された複数のエレメント20は、当該コンベヤ3により加熱チャンバ2内へと搬送される。また、移載機6は、フィーダー5により複数のエレメント20が整列治具5j上で整列させられるたびに、複数のエレメント20を一括してコンベヤ3のメッシュベルト3b上に移載していく。 As described above, when the plurality of elements 20 are aligned on the alignment jig 5j by the feeder 5, the elements 20 are transferred one by one to each transfer lane 3L of the conveyor 3 by the transfer device 6. When transferred to the corresponding conveyance lane 3L, the bottom surface 21b (see FIG. 3) of the body portion 21 of each element 20 abuts on the conveyance surface (upper surface) of the mesh belt 3b, and one side surface 21f ( The flank surface is located on the cooling tank 4 side. Thus, the plurality of elements 20 placed on the mesh belt 3 b of the conveyor 3 are conveyed into the heating chamber 2 by the conveyor 3. In addition, the transfer device 6 transfers the plurality of elements 20 collectively onto the mesh belt 3b of the conveyor 3 every time the plurality of elements 20 are aligned on the alignment jig 5j by the feeder 5.
 コンベヤ3により加熱チャンバ2内に搬送された複数のエレメント20は、ハウジング2hの内部で金属組織がオーステナイト組織になるように加熱される。加熱チャンバ2内を搬送される間、各エレメント20は、メッシュベルト3b上に移載された際の姿勢が維持されるように両側のガイド部材30によりガイドされる。これにより、各エレメント20をムラ無く加熱することが可能となる。また、加熱されながらコンベヤ3により搬送されて終端部3eに達した各エレメント20は、対応するガイド部材30や終端ガイド35の内面によりガイドされながら、一方の側面21f側の端部を下にして冷却槽4へと落下していく。これにより、各エレメント20を急冷して金属組織をマルテンサイト組織に変態させることができる。 The plurality of elements 20 conveyed into the heating chamber 2 by the conveyor 3 are heated so that the metal structure becomes an austenitic structure inside the housing 2h. While being conveyed in the heating chamber 2, each element 20 is guided by the guide members 30 on both sides so as to maintain the posture when being transferred onto the mesh belt 3b. Thereby, each element 20 can be heated without unevenness. Further, each element 20 that is conveyed by the conveyor 3 while being heated and reaches the end portion 3e is guided by the inner surface of the corresponding guide member 30 or the end guide 35, and the end on one side 21f side is directed downward. It falls to the cooling tank 4. Thereby, each element 20 can be rapidly cooled to transform the metal structure into a martensite structure.
 ここで、例えばエレメント20を背面側から冷却槽4内の冷却液CLの液面に突入させた場合、冷却液CL内のエレメント20の背面側で図4Aに示すような冷却液CLの流れが生じる一方、当該エレメント20の正面(図中上面)側では、冷却液CLの流れが淀む。このため、冷却槽4内でエレメント20の背面に沿って流れる冷却液CLと正面に沿って流れる冷却液CLとの流速差が大きくなることから、当該背面側におけるエレメント20の冷却速度と正面側におけるエレメント20の冷却速度とに差を生じ、焼入れに伴うエレメント20の歪みが大きくなってしまう。これは、エレメント20を正面(突起21p)側から冷却槽4内の冷却液CLの液面に突入させた場合も同様である。 Here, for example, when the element 20 is made to enter the liquid level of the cooling liquid CL in the cooling tank 4 from the back side, the flow of the cooling liquid CL as shown in FIG. 4A is performed on the back side of the element 20 in the cooling liquid CL. On the other hand, the flow of the coolant CL stagnates on the front side (upper surface in the drawing) of the element 20. For this reason, since the flow rate difference between the coolant CL flowing along the back surface of the element 20 and the coolant CL flowing along the front surface in the cooling tank 4 increases, the cooling speed of the element 20 on the back surface side and the front surface side are increased. And the cooling rate of the element 20 is different, and the distortion of the element 20 due to quenching becomes large. The same applies to the case where the element 20 is allowed to enter the liquid level of the coolant CL in the cooling tank 4 from the front (projection 21p) side.
 また、例えばエレメント20を胴部21の底面21b側から冷却槽4内の冷却液CLの液面に突入させた場合、図4Bからわかるように、冷却液CL内のエレメント20の平坦な背面側と、突起21pやテーパ面21sを含む正面側とで冷却液CLとの流速差が大きくなる。この場合も、当該背面側におけるエレメント20の冷却速度と正面側におけるエレメント20の冷却速度とに差を生じ、焼入れに伴うエレメント20の歪みが大きくなってしまう。これは、エレメント20を上端部側すなわちピラー部22の上端面側から冷却槽4内の冷却液CLの液面に突入させた場合も同様である。 Further, for example, when the element 20 is made to enter the liquid level of the coolant CL in the cooling tank 4 from the bottom surface 21b side of the body portion 21, as shown in FIG. 4B, the flat back side of the element 20 in the coolant CL And the flow velocity difference with the coolant CL becomes large between the front side including the protrusion 21p and the tapered surface 21s. In this case as well, there is a difference between the cooling rate of the element 20 on the back side and the cooling rate of the element 20 on the front side, and the distortion of the element 20 accompanying quenching increases. The same applies to the case where the element 20 is caused to enter the liquid surface of the coolant CL in the cooling tank 4 from the upper end side, that is, the upper end surface side of the pillar portion 22.
 これに対して、図1に示すように、コンベヤ3の終端部3eから冷却槽4へと落下するエレメント20を一方の側面21f(フランク面)側の端部から冷却液CLの液面に突入させた場合、図4Cからわかるように、冷却槽4内でエレメント20の突起21pを含む正面に沿って流れる冷却液CLと背面に沿って流れる冷却液CLとの流速差が小さくなる。これにより、エレメント20の正面と背面との間における冷却速度の差を小さくして焼入れに伴うエレメント20の歪みの発生を良好に抑制することができる。 On the other hand, as shown in FIG. 1, the element 20 that falls from the terminal end 3e of the conveyor 3 to the cooling tank 4 enters the liquid surface of the coolant CL from the end on the side surface 21f (flank surface). 4C, the flow rate difference between the cooling liquid CL flowing along the front surface including the protrusion 21p of the element 20 and the cooling liquid CL flowing along the back surface in the cooling tank 4 becomes small. Thereby, the difference in the cooling rate between the front surface and the back surface of the element 20 can be reduced, and the occurrence of distortion of the element 20 due to quenching can be satisfactorily suppressed.
 そして、コンベヤ3により搬送される間に加熱された複数のエレメント20を当該コンベヤ3の終端部3eから冷却槽4へと1つずつ落下させることで、加熱・冷却される治具(特許文献1参照)を用いることなく多数のエレメント20に低コストで焼入れを施すことが可能となる。冷却槽4の冷却液CL中に落下したエレメント20は、回収器4c内に落下していく。回収器4cは、所定数のエレメント20に対する焼入れが完了した段階で冷却槽4から取り出され、冷却槽4から取り出された複数のエレメント20は常温環境下で冷却される。その後、冷却、洗浄、焼き戻し、バレル研磨、洗浄といった処理が施され、エレメント20の製造が完了する。 And the jig | tool heated and cooled by dropping the several element 20 heated while conveying with the conveyor 3 one by one from the terminal part 3e of the said conveyor 3 to the cooling tank 4 (patent document 1). It is possible to quench many elements 20 at low cost without using a reference). The element 20 that has fallen into the coolant CL of the cooling tank 4 falls into the recovery device 4c. The collector 4c is taken out from the cooling tank 4 when the quenching of the predetermined number of elements 20 is completed, and the plurality of elements 20 taken out from the cooling tank 4 are cooled in a normal temperature environment. Thereafter, processes such as cooling, cleaning, tempering, barrel polishing, and cleaning are performed, and the manufacture of the element 20 is completed.
 上述のように、焼入れ設備1によれば、エレメント20の歪みの発生を抑制しつつ、多数のエレメント20に低コストで焼入れを施すことが可能となる。また、焼入れ設備1のコンベヤ3には、メッシュベルト3bに沿って延在すると共に当該コンベヤ3の終端部3eから冷却槽4に向けて延在するように複数のガイド部材30や終端ガイド35が配設され、複数のエレメント20は、それぞれ対応するガイド部材30や終端ガイド35により姿勢が維持されるようにガイドされながらコンベヤ3により搬送されると共に冷却槽4内へと落下していく。これにより、コンベヤ3の終端部3eから冷却槽4へと落下するエレメント20をより確実に一方の側面21f(フランク面)側の端部から冷却液CLの液面に突入させて、焼入れに伴うエレメント20の歪みの発生を極めて良好に抑制することが可能となる。なお、図1に示すように、エレメント20を冷却液CLの液面に対して斜めに突入させてもよく、冷却液CLの液面に対して鉛直方向に落下させてもよい。 As described above, according to the quenching equipment 1, it is possible to quench many elements 20 at low cost while suppressing the occurrence of distortion of the elements 20. In addition, a plurality of guide members 30 and end guides 35 extend along the mesh belt 3 b and extend from the end portion 3 e of the conveyor 3 toward the cooling tank 4 on the conveyor 3 of the quenching equipment 1. The plurality of elements 20 are conveyed by the conveyor 3 while being guided by the corresponding guide members 30 and terminal guides 35 so as to maintain their postures, and fall into the cooling tank 4. As a result, the element 20 falling from the terminal end portion 3e of the conveyor 3 to the cooling tank 4 is more surely plunged into the liquid surface of the coolant CL from the end on the side surface 21f (flank surface) side, and accompanying the quenching. Generation of distortion of the element 20 can be suppressed extremely well. As shown in FIG. 1, the element 20 may be inserted obliquely with respect to the liquid level of the cooling liquid CL, or may be dropped in the vertical direction with respect to the liquid level of the cooling liquid CL.
 更に、焼入れ設備1において、各エレメント20は、胴部21の底面21bがメッシュベルト3bの搬送面に当接するようにコンベヤ3上に載置される。これにより、コンベヤ3により多くのエレメント20を載置することができるので、生産性をより向上させると共に、焼入れ設備1の設置面積の増加を抑制することが可能となる。ただし、図2において二点鎖線で示すように、例えば胴部21の平坦な背面がメッシュベルト3bの搬送面に当接するように各エレメント20をコンベヤ3上に載置してもよい。 Furthermore, in the quenching facility 1, each element 20 is placed on the conveyor 3 so that the bottom surface 21b of the body portion 21 is in contact with the conveying surface of the mesh belt 3b. Thereby, since many elements 20 can be mounted on the conveyor 3, it becomes possible to improve productivity more and to suppress the increase in the installation area of the quenching equipment 1. FIG. However, as indicated by a two-dot chain line in FIG. 2, each element 20 may be placed on the conveyor 3 such that the flat back surface of the body portion 21 abuts against the conveyance surface of the mesh belt 3 b.
 また、焼入れ設備1は、胴部21に形成されたサドル面23aの幅方向における両側に位置するように当該胴部21から延出された一対のピラー部22を含むエレメント20を取り扱い対象とするものであるが、焼入れ設備1は、図5に示すようなエレメント20Bの焼入れにも適用することができる。 Further, the quenching equipment 1 targets the element 20 including the pair of pillar portions 22 extending from the barrel portion 21 so as to be positioned on both sides in the width direction of the saddle surface 23a formed on the barrel portion 21. However, the quenching equipment 1 can also be applied to quenching of the element 20B as shown in FIG.
 図5に示すエレメント20Bは、図中水平に延びると共にフランク面として機能する一対の側面21fを有する胴部21Bと、当該胴部21Bの幅方向における中央部から伝動ベルトの外周側に延出されたネック部26と、胴部21Bから離間するようにネック部26から当該胴部21Bの幅方向における両側に延出された一対のイヤー部28aを有するヘッド部28とを含む。図示するように、胴部21Bの幅は、ヘッド部28の幅と同一若しくはそれよりも大きく、胴部21B、ネック部26およびヘッド部28の各イヤー部28aによって、それぞれサドル面23aを含む2つのリング収容部(凹部)23Bが画成される。また、胴部21Bの正面(一方の表面)には、ロッキングエッジ部25Bやテーパ面21sが形成されており、ヘッド部28の正面(一方の表面)の幅方向における中央部には、1個の突起(ディンプル)28pが形成されている。更に、ヘッド部28の背面(他方の表面)は、平坦に形成されており、当該背面には、突起28pの裏側に位置するように窪み28rが形成されている。焼入れ設備1によりエレメント20Bに焼入れを施す際には、エレメント20を胴部21Bの底面21bがメッシュベルト3bの搬送面に当接するようにコンベヤ3上に載置してもよく、例えば胴部21の平坦な背面がメッシュベルト3bの搬送面に当接するように各エレメント20をコンベヤ3上に載置してもよい。 An element 20B shown in FIG. 5 extends to the outer peripheral side of the transmission belt from a barrel portion 21B having a pair of side surfaces 21f that extend horizontally in the drawing and function as flank surfaces, and a central portion in the width direction of the barrel portion 21B. And a head portion 28 having a pair of ear portions 28a extending from the neck portion 26 to both sides in the width direction of the body portion 21B so as to be separated from the body portion 21B. As shown in the figure, the width of the body portion 21B is the same as or larger than the width of the head portion 28, and the body portion 21B, the neck portion 26, and the ear portions 28a of the head portion 28 each include a saddle surface 23a. Two ring accommodating portions (concave portions) 23B are defined. Further, a locking edge portion 25B and a tapered surface 21s are formed on the front surface (one surface) of the body portion 21B, and one piece is provided at the center portion in the width direction of the front surface (one surface) of the head portion 28. Projections (dimples) 28p are formed. Further, the back surface (the other surface) of the head portion 28 is formed flat, and a recess 28r is formed on the back surface so as to be positioned on the back side of the protrusion 28p. When quenching the element 20B by the quenching equipment 1, the element 20 may be placed on the conveyor 3 so that the bottom surface 21b of the body 21B abuts on the conveying surface of the mesh belt 3b. Each of the elements 20 may be placed on the conveyor 3 so that the flat back surface is in contact with the conveying surface of the mesh belt 3b.
 以上説明したように、本開示のエレメントの焼入れ方法は、無段変速機のベルト(10)を構成するエレメント(20,20B)であって、幅方向の両端部に形成された一対の側面(21f)を含むエレメント(20,20B)を加熱して冷却槽(4)内の冷却液(CL)により冷却するエレメントの焼入れ方法であって、複数の前記エレメント(20,20B)を一方の前記側面(21f)が前記冷却槽(4)側に位置するようにコンベヤ(3)上に載置して前記コンベヤ(3)により搬送しながら加熱し、加熱された複数の前記エレメント(20,20B)を前記一方の前記側面(21f)側の端部から前記冷却液(CL)の液面に突入するように前記コンベヤ(3)の終端部(3e)から前記冷却槽(4)へと1つずつ落下させるものである。 As described above, the element quenching method of the present disclosure is the elements (20, 20B) constituting the belt (10) of the continuously variable transmission, and a pair of side surfaces ( 21f) is a method of quenching an element in which the element (20, 20B) is heated and cooled by the coolant (CL) in the cooling bath (4), and a plurality of the elements (20, 20B) are A plurality of the heated elements (20, 20B) are heated on the conveyor (3) so that the side surface (21f) is positioned on the cooling tank (4) side and transported by the conveyor (3). ) From the end of the one side surface (21f) to the liquid level of the cooling liquid (CL) from the terminal end (3e) of the conveyor (3) to the cooling tank (4). Drop one by one It is.
 本開示の焼入れ方法によりエレメントに焼き入れを施す際には、複数のエレメントを一方のフランク面側の端部が冷却槽側に位置するようにコンベヤ上に載置し、コンベヤにより搬送される間に加熱された複数のエレメントを当該コンベヤの終端部から冷却槽へと1つずつ落下させる。これにより、加熱・冷却される治具を用いることなく多数のエレメントに低コストで焼入れを施すことが可能となる。更に、コンベヤの終端部から冷却槽へと落下するエレメントを一方のフランク面側の端部から冷却液の液面に突入させることで、冷却槽内でエレメントの表面に沿って流れる冷却液と裏面に沿って流れる冷却液との流速差が小さくなることから、当該エレメントの表裏面間における冷却速度の差を小さくして焼入れに伴うエレメントの歪みの発生を抑制することができる。この結果、本開示の焼入れ方法によれば、エレメントの歪みの発生を抑制しつつ、多数のエレメントに低コストで焼入れを施すことが可能となる。 When quenching an element by the quenching method of the present disclosure, a plurality of elements are placed on the conveyor so that the end of one flank surface is positioned on the cooling tank side and conveyed by the conveyor. A plurality of elements heated at a time are dropped one by one from the end of the conveyor to the cooling bath. Thereby, it becomes possible to quench many elements at low cost without using a jig to be heated and cooled. Furthermore, the coolant that flows along the surface of the element in the cooling tank and the back surface are made to enter the cooling liquid from the end on the one side of the flank to the element that falls from the end of the conveyor to the cooling tank. Therefore, the difference in the cooling rate between the front and back surfaces of the element can be reduced and the distortion of the element accompanying quenching can be suppressed. As a result, according to the quenching method of the present disclosure, it is possible to quench many elements at low cost while suppressing the occurrence of distortion of the elements.
 また、前記コンベヤ(3)に沿って延在すると共に該コンベヤ(3)の前記終端部(3e)から前記冷却槽(4)に向けて延在するようにガイド部材(30)を配置してもよく、前記コンベヤ(3)により搬送される複数の前記エレメント(20,20B)を前記ガイド部材(30)により姿勢が維持されるようにガイドすると共に、前記ガイド部材(30,35)により前記エレメント(20,20B)を前記一方の前記側面(21f)側の端部から前記冷却液(CL)の前記液面に突入するようにガイドしてもよい。これにより、コンベヤの終端部から冷却槽へと落下するエレメントをより確実に一方のフランク面側の端部から冷却液の液面に突入させて、焼入れに伴うエレメントの歪みの発生を極めて良好に抑制することが可能となる。 Further, the guide member (30) is disposed so as to extend along the conveyor (3) and extend from the terminal end (3e) of the conveyor (3) toward the cooling bath (4). The plurality of elements (20, 20B) conveyed by the conveyor (3) are guided by the guide member (30) so that the posture is maintained, and the guide member (30, 35) You may guide an element (20, 20B) so that it may penetrate into the said liquid level of the said cooling fluid (CL) from the edge part of said one said side surface (21f) side. As a result, the element falling from the terminal end of the conveyor to the cooling tank is more surely plunged into the liquid level of the coolant from the end on the one flank surface side, and the occurrence of distortion of the element due to quenching is extremely good. It becomes possible to suppress.
 更に、前記エレメント(20,20B)は、前記一対の前記側面(21f)を含む胴部(21,21B)を有してもよく、前記胴部(21,21B)の底面(21b)が前記コンベヤ(3)の搬送面に当接するように前記エレメント(20,20B)を該コンベヤ(3)上に載置してもよい。これにより、コンベヤにより多くのエレメントを載置することができるので、生産性をより向上させると共に、焼入れ設備の設置面積の増加を抑制することが可能となる。 Furthermore, the element (20, 20B) may have a body part (21, 21B) including the pair of side surfaces (21f), and the bottom surface (21b) of the body part (21, 21B) You may mount the said element (20, 20B) on this conveyor (3) so that it may contact | abut to the conveyance surface of a conveyor (3). Thereby, since many elements can be mounted on the conveyor, it is possible to further improve productivity and suppress an increase in the installation area of the quenching equipment.
 また、前記エレメント(20,20B)は、前記一対の前記側面(21f)を含む胴部(21,21B)を有してもよく、前記胴部(21,21B)の表面が前記コンベヤ(3)の搬送面に当接するように前記エレメント(20,20B)を該コンベヤ(3)上に載置してもよい。 The element (20, 20B) may have a body part (21, 21B) including the pair of side surfaces (21f), and the surface of the body part (21, 21B) is the conveyor (3 The element (20, 20B) may be placed on the conveyor (3) so as to be in contact with the conveyance surface of the conveyor (3).
 更に、前記エレメント(20)、前記胴部(21)に形成されたサドル面(23a)の前記幅方向における両側に位置するように該胴部(21)から前記ベルト(10)の外周側に延出された一対のピラー部(22)を含んでもよく、前記胴部(21)の一方の表面には、テーパ面(21s)が形成されてもよく、前記胴部(21)の他方の表面は、平坦に形成されてもよい。 Furthermore, from the body (21) to the outer peripheral side of the belt (10) so as to be positioned on both sides in the width direction of the saddle surface (23a) formed on the element (20) and the body (21). A pair of extended pillar portions (22) may be included, and a tapered surface (21s) may be formed on one surface of the body portion (21), and the other surface of the body portion (21) may be formed. The surface may be formed flat.
 また、前記エレメント(20B)は、前記胴部(21B)の幅方向における中央部から前記ベルトの外周側に延出されたネック部(26)と、前記胴部(21B)から離間するように前記ネック部(26)から前記幅方向における両側に延出されたヘッド部(28)と、前記ネック部(26)の前記幅方向における両側に位置するように前記胴部(21B)に形成された一対のサドル面(23a)とを含んでもよく、前記胴部(21B)の一方の表面には、テーパ面(21s)および突起(21b)が形成されてもよく、前記胴部(21B)の他方の表面は、平坦に形成されてもよい。 Further, the element (20B) is separated from the neck portion (26) extending from the center portion in the width direction of the body portion (21B) to the outer peripheral side of the belt and the body portion (21B). A head portion (28) extending from the neck portion (26) to both sides in the width direction, and a body portion (21B) so as to be positioned on both sides in the width direction of the neck portion (26). A pair of saddle surfaces (23a), and a tapered surface (21s) and a protrusion (21b) may be formed on one surface of the body portion (21B), and the body portion (21B). The other surface of may be formed flat.
 本開示のエレメントの焼入れ設備は、無段変速機のベルト(10)を構成するエレメント(20,20B)であって、幅方向の両端部に形成された一対の側面(21f)を含むエレメント(20,20B)の焼入れ設備(1)において、加熱チャンバ(2)と、前記加熱チャンバ(2)内に配置されるコンベヤ(3)と、前記コンベヤ(3)の終端部(3e)の下方に配置されると共に冷却液(CL)で満たされる冷却槽(4)と、前記エレメント(20,20B)を一方の前記側面(21f)が前記冷却槽(4)側に位置するように前記加熱チャンバ(2)外に突出した前記コンベヤ(3)の端部上に載置する移載機(6)と、前記コンベヤ(3)により搬送される前記エレメント(20,20B)を姿勢が維持されるようにガイドすると共に、前記コンベヤ(3)の前記終端部(3e)から前記冷却槽(4)へと落下する前記エレメント(20,20B)を前記一方の前記側面(21f)側の端部から前記冷却液(CL)の液面に突入するようにガイドするガイド部材(30,35)とを含むものである。 The element quenching equipment of the present disclosure is an element (20, 20B) constituting a belt (10) of a continuously variable transmission, and includes an element (a pair of side surfaces (21f) formed at both ends in the width direction ( 20, 20B) in the quenching facility (1), below the heating chamber (2), the conveyor (3) arranged in the heating chamber (2), and the end portion (3e) of the conveyor (3). The cooling chamber (4) disposed and filled with the cooling liquid (CL), and the heating chamber such that one of the side surfaces (21f) is positioned on the cooling bath (4) side of the element (20, 20B). (2) The posture of the transfer machine (6) placed on the end of the conveyor (3) protruding outward and the elements (20, 20B) conveyed by the conveyor (3) are maintained. To guide Both of the elements (20, 20B) falling from the terminal end (3e) of the conveyor (3) to the cooling tank (4) are moved from the end on the one side (21f) side to the coolant ( CL) and a guide member (30, 35) for guiding so as to enter the liquid surface.
 本開示の焼入れ設備によれば、エレメントの歪みの発生を抑制しつつ、多数のエレメントに低コストで焼入れを施すことが可能となる。 According to the quenching equipment of the present disclosure, it is possible to quench many elements at low cost while suppressing the occurrence of distortion of the elements.
 なお、本開示の発明は上記実施形態に何ら限定されるものではなく、本開示の外延の範囲内において様々な変更をなし得ることはいうまでもない。更に、上記実施形態は、あくまで発明の概要の欄に記載された発明の具体的な一形態に過ぎず、発明の概要の欄に記載された発明の要素を限定するものではない。 It should be noted that the invention of the present disclosure is not limited to the above-described embodiment, and it goes without saying that various changes can be made within the scope of the extension of the present disclosure. Furthermore, the above-described embodiment is merely a specific form of the invention described in the Summary of Invention column, and does not limit the elements of the invention described in the Summary of Invention column.
 本開示の発明は、無段変速機の製造産業等において利用可能である。 The invention of the present disclosure can be used in the manufacturing industry of continuously variable transmissions.

Claims (7)

  1.  無段変速機のベルトを構成するエレメントであって、幅方向の両端部に形成された一対の側面を含むエレメントを加熱して冷却槽内の冷却液により冷却するエレメントの焼入れ方法において、
     複数の前記エレメントを一方の前記側面が前記冷却槽側に位置するようにコンベヤ上に載置して前記コンベヤにより搬送しながら加熱し、加熱された複数の前記エレメントを前記一方の前記側面側の端部から前記冷却液の液面に突入するように前記コンベヤの終端部から前記冷却槽へと1つずつ落下させるエレメントの焼入れ方法。
    In the element quenching method of heating the element including a pair of side surfaces formed at both ends in the width direction and cooling with the coolant in the cooling tank, the element constituting the belt of the continuously variable transmission,
    A plurality of the elements are placed on a conveyor so that one of the side surfaces is located on the cooling tank side and heated while being conveyed by the conveyor, and the plurality of heated elements are placed on the one side surface side. A quenching method for an element that drops one by one from an end portion of the conveyor to the cooling tank so as to enter the liquid level of the cooling liquid from an end portion.
  2.  請求項1に記載のエレメントの焼入れ方法において、
     前記コンベヤに沿って延在すると共に該コンベヤの前記終端部から前記冷却槽に向けて延在するようにガイド部材を配置し、
     前記コンベヤにより搬送される複数の前記エレメントを前記ガイド部材により姿勢が維持されるようにガイドすると共に、前記ガイド部材により前記エレメントを前記一方の前記側面側の端部から前記冷却液の前記液面に突入するようにガイドするエレメントの焼入れ方法。
    The element quenching method according to claim 1,
    A guide member extending along the conveyor and extending from the end of the conveyor toward the cooling bath;
    The plurality of elements conveyed by the conveyor are guided by the guide member so that the posture thereof is maintained, and the element is moved by the guide member from the one end on the side surface side. The quenching method of the element that guides to rush into.
  3.  請求項2に記載のエレメントの焼入れ方法において、
     前記エレメントは、前記一対の前記側面を含む胴部を有し、
     前記胴部の底面が前記コンベヤの搬送面に当接するように前記エレメントを該コンベヤ上に載置するエレメントの焼入れ方法。
    The element quenching method according to claim 2,
    The element has a body including the pair of side surfaces,
    A quenching method for an element, wherein the element is placed on the conveyor such that a bottom surface of the body portion is in contact with a conveying surface of the conveyor.
  4.  請求項2に記載のエレメントの焼入れ方法において、
     前記エレメントは、前記一対の前記側面を含む胴部を有し、
     前記胴部の表面が前記コンベヤの搬送面に当接するように前記エレメントを該コンベヤ上に載置するエレメントの焼入れ方法。
    The element quenching method according to claim 2,
    The element has a body including the pair of side surfaces,
    A method for quenching an element, wherein the element is placed on the conveyor such that a surface of the body portion is in contact with a conveying surface of the conveyor.
  5.  請求項3または4に記載のエレメントの焼入れ方法において、
     前記エレメントは、前記胴部に形成されたサドル面の前記幅方向における両側に位置するように該胴部から前記ベルトの外周側に延出された一対のピラー部を含み、
     前記胴部の一方の表面には、テーパ面および突起が形成され、前記胴部の他方の表面は、平坦に形成されているエレメントの焼入れ方法。
    The element quenching method according to claim 3 or 4,
    The element includes a pair of pillar portions extending from the body portion to the outer peripheral side of the belt so as to be located on both sides of the saddle surface formed in the body portion in the width direction,
    A method of quenching an element in which a tapered surface and a protrusion are formed on one surface of the body portion, and the other surface of the body portion is formed flat.
  6.  請求項3または4に記載のエレメントの焼入れ方法において、
     前記エレメントは、前記胴部の幅方向における中央部から前記ベルトの外周側に延出されたネック部と、前記胴部から離間するように前記ネック部から前記幅方向における両側に延出されたヘッド部と、前記ネック部の前記幅方向における両側に位置するように前記胴部に形成された一対のサドル面とを含み、
     前記胴部の一方の表面には、テーパ面が形成され、前記胴部の他方の表面は、平坦に形成されているエレメントの焼入れ方法。
    The element quenching method according to claim 3 or 4,
    The element extends from the center portion in the width direction of the body portion to the outer peripheral side of the belt, and extends from the neck portion to both sides in the width direction so as to be separated from the body portion. A head portion, and a pair of saddle surfaces formed on the body portion so as to be located on both sides of the neck portion in the width direction,
    A method of quenching an element in which a tapered surface is formed on one surface of the body portion, and the other surface of the body portion is formed flat.
  7.  無段変速機のベルトを構成するエレメントであって、幅方向の両端部に形成された一対の側面を含むエレメントの焼入れ設備において、
     加熱チャンバと、
     前記加熱チャンバ内に配置されるコンベヤと、
     前記コンベヤの終端部の下方に配置されると共に冷却液で満たされる冷却槽と、
     前記エレメントを一方の前記側面が前記冷却槽側に位置するように前記加熱チャンバ外に突出した前記コンベヤの端部上に載置する移載機と、
     前記コンベヤにより搬送される前記エレメントを姿勢が維持されるようにガイドすると共に、前記コンベヤの前記終端部から前記冷却槽へと落下する前記エレメントを前記一方の前記側面側の端部から前記冷却液の液面に突入するようにガイドするガイド部材と、
     を備えるエレメントの焼入れ設備。
    In an element quenching equipment comprising a pair of side surfaces formed at both ends in the width direction, which constitutes a belt of a continuously variable transmission,
    A heating chamber;
    A conveyor disposed within the heating chamber;
    A cooling bath disposed below the end of the conveyor and filled with a coolant;
    A transfer machine for mounting the element on the end of the conveyor protruding out of the heating chamber such that one of the side surfaces is located on the cooling tank side;
    The element transported by the conveyor is guided so as to maintain the posture, and the element that falls from the terminal end of the conveyor to the cooling tank is moved from the one side end to the coolant. A guide member for guiding so as to enter the liquid level of
    Element quenching equipment with
PCT/JP2019/003424 2018-01-31 2019-01-31 Element quenching method, quenching equipment WO2019151413A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018015720A JP2019131864A (en) 2018-01-31 2018-01-31 Quenching method of elements and quenching system
JP2018-015720 2018-01-31

Publications (1)

Publication Number Publication Date
WO2019151413A1 true WO2019151413A1 (en) 2019-08-08

Family

ID=67478246

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/003424 WO2019151413A1 (en) 2018-01-31 2019-01-31 Element quenching method, quenching equipment

Country Status (2)

Country Link
JP (1) JP2019131864A (en)
WO (1) WO2019151413A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0225754U (en) * 1988-08-08 1990-02-20
JP2002054691A (en) * 2000-08-08 2002-02-20 Nissan Motor Co Ltd Belt for belt type cvt
JP2010280966A (en) * 2009-06-05 2010-12-16 Toyota Motor Corp Hardening tool

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0225754U (en) * 1988-08-08 1990-02-20
JP2002054691A (en) * 2000-08-08 2002-02-20 Nissan Motor Co Ltd Belt for belt type cvt
JP2010280966A (en) * 2009-06-05 2010-12-16 Toyota Motor Corp Hardening tool

Also Published As

Publication number Publication date
JP2019131864A (en) 2019-08-08

Similar Documents

Publication Publication Date Title
US6539700B2 (en) Chain belt for continuously variable transmission
KR20060065710A (en) Metallic belt and push block used therefor
US7168279B2 (en) Method of manufacturing metal ring for endless metal belt
CN104603499A (en) Method for manufacturing endless metal belt, endless metal belt, and belt-type continuously variable transmission
WO2019151413A1 (en) Element quenching method, quenching equipment
JP2014162933A (en) Method and device for heat treatment of shaft parts
JP2016011446A (en) Heat treatment system and heat treatment method
JP2009155685A (en) Quenching method
JP2017183097A (en) Heat treatment apparatus and heat treatment method
US20120000265A1 (en) Automatic heat treatment method for metal ring
WO2018221646A1 (en) Endless ring production method
WO2013111482A1 (en) High-frequency induction continuous heating method and high-frequency induction continuous heating device
JP2004285386A (en) Holder for heat treatment
WO2005035802A1 (en) Heat treatment system
JP4223995B2 (en) Heat treatment method for iron-based sintered workpieces
JP5535762B2 (en) Metal ring conveyor
JP2001003118A (en) Apparatus for hardening rolling member
JP5828394B2 (en) Workpiece quenching equipment
JP2010215943A (en) Heat treatment method, heat treatment apparatus, and heat-treated component
JP5629125B2 (en) Metal ring pushing device
JPS6128724B2 (en)
KR100331488B1 (en) Quenching Device for Heat Treatment
JPH0913120A (en) Jig for heat treatment
JP2008116013A (en) Cvt element
JP2019070181A (en) Manufacturing method of annular member

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19747414

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19747414

Country of ref document: EP

Kind code of ref document: A1