WO2019151338A1 - Tubular artificial organ - Google Patents

Tubular artificial organ Download PDF

Info

Publication number
WO2019151338A1
WO2019151338A1 PCT/JP2019/003213 JP2019003213W WO2019151338A1 WO 2019151338 A1 WO2019151338 A1 WO 2019151338A1 JP 2019003213 W JP2019003213 W JP 2019003213W WO 2019151338 A1 WO2019151338 A1 WO 2019151338A1
Authority
WO
WIPO (PCT)
Prior art keywords
tubular
artificial organ
tissue
reinforcing body
wire
Prior art date
Application number
PCT/JP2019/003213
Other languages
French (fr)
Japanese (ja)
Inventor
中山 泰秀
武 寺澤
宏臣 奥山
勇一 ▲高▼間
聡 梅田
勝平 樋渡
敬史 山本
修司 福瀧
井手 純一
彩佳 山本
Original Assignee
株式会社ジェイ・エム・エス
国立研究開発法人国立循環器病研究センター
国立大学法人大阪大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ジェイ・エム・エス, 国立研究開発法人国立循環器病研究センター, 国立大学法人大阪大学 filed Critical 株式会社ジェイ・エム・エス
Publication of WO2019151338A1 publication Critical patent/WO2019151338A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/04Hollow or tubular parts of organs, e.g. bladders, tracheae, bronchi or bile ducts
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/04Hollow or tubular parts of organs, e.g. bladders, tracheae, bronchi or bile ducts
    • A61F2/06Blood vessels

Definitions

  • the present invention relates to a high-strength tubular artificial organ that is excellent in biocompatibility and does not collapse the lumen, and a substrate used for the production thereof.
  • Encapsulation is a fibrous tissue composed mainly of fibroblasts and collagen produced by fibroblasts when, for example, a foreign body enters a deep position in the body and fibroblasts gather around the foreign body. This is a biological reaction that isolates foreign matter in the body by forming a capsule and covering the foreign matter.
  • Patent Document 1 discloses that a core rod made of a non-absorbable and non-degradable material such as silicon resin or vinyl chloride resin is implanted in a living body for a certain period of time.
  • a technique for obtaining an artificial blood vessel composed of fibrous tissue by taking out an encapsulated core rod and removing the core rod. Since this artificial blood vessel is composed of only living tissue, it has excellent biocompatibility.
  • this artificial blood vessel is infiltrated from surrounding tissues after transplantation, self-organization proceeds, and the fibrous tissue is replaced by the recipient's vascular tissue. It also has the growth potential of being able to follow the increase.
  • Patent Document 2 proposes an artificial blood vessel in which an anastomosis with a blood vessel is facilitated by reinforcing both ends with a sponge-like thermoplastic resin in an artificial blood vessel obtained by utilizing encapsulation. ing.
  • Patent Document 3 discloses that a cylindrical member and a core rod are embedded by implanting a mold composed of a cylindrical member having a slit and a core rod inserted into the cylindrical member under the skin of a living body. There has been proposed a technique for obtaining a tubular fibrous tissue body (tubular artificial organ) having an arbitrary thickness by infiltrating a fibrous tissue into a gap.
  • tubular fibrous tissue body tubular artificial organ
  • JP 2004-261260 A Japanese Patent No. 4484545 Japanese Unexamined Patent Publication No. 2017-1113051
  • the present invention provides a tubular artificial organ having a predetermined strength capable of holding a lumen without increasing the wall thickness of the tube wall and excellent in biocompatibility and growth, and the production of the tubular artificial organ. It aims at providing the base material used and the tubular reinforcement used in order to produce a tubular artificial organ.
  • the present invention includes a tubular tissue body that is formed in an environment where a biological tissue material exists and is composed of a fibrous tissue, and a tubular reinforcement body that is composed of a biodegradable material and is included in the tubular tissue body.
  • the present invention relates to a tubular artificial organ provided.
  • the tubular reinforcement body made of the biodegradable material has a mesh-like side surface and a through-hole so that the fibrous connective tissue infiltrates in vivo.
  • the mesh preferably has a large aperture ratio, and more preferably is formed in a mesh shape with biodegradable fibers.
  • tubular tissue body is formed into a tubular shape by implanting a template in a living body, and the tubular reinforcing body is included over the entire length.
  • the lumen holding force in the circumferential direction of the tubular artificial organ is 2.0 [N ⁇ mm] or more.
  • tubular reinforcement body is restricted from contracting in the axial direction.
  • tubular reinforcing body is formed by braiding using a plurality of biodegradable wires, and the contraction in the axial direction is restricted by joining the intersecting portions of the biodegradable wires. preferable.
  • the tubular reinforcement body is formed by knit knitting using a biodegradable wire to restrict axial contraction.
  • the present invention also provides a base material for producing an artificial tubular organ by forming a connective tissue around the body by being embedded in a living body, and has a rod-shaped core material and a plurality of slits, and stores the core material.
  • the member relates to a base material for producing a tubular artificial organ composed of a biodegradable material.
  • the present invention also relates to a tubular reinforcing body used for producing a tubular artificial organ by forming a connective tissue around it, and has a predetermined axial compressive strength and a predetermined radial strength, and is configured in a tubular shape A plurality of first structures and a second structure having an axial compressive strength smaller than the predetermined axial compressive strength, wherein the first structure is the second structure
  • the present invention relates to a tubular reinforcing body connected through a body.
  • tubular reinforcing body includes three or more first structures including the two first structures disposed at one end and the other end, and the two first structures disposed adjacent to each other. It is preferable to provide two or more second structures disposed between the structures.
  • the first structure is configured in a mesh shape with a wire.
  • the second structure is constituted by a wire connecting the first structure.
  • the first structure is configured in a mesh shape with a wire, and the diameter of the wire constituting the second structure is smaller than the diameter of the wire constituting the first structure. Is preferred.
  • the first structure is configured in a mesh shape with a wire, and the number of the wire constituting the second structure is smaller than the number of the wire constituting the first structure. Is preferred.
  • the cross-sectional area of the second structure is smaller than the cross-sectional area of the first structure.
  • the tubular reinforcing body has a predetermined length in the axial direction and has a plurality of annular structures configured in a mesh shape with a wire, and a length corresponding to the entire length of the tubular reinforcing body in the axial direction.
  • a plurality of annular structures that are arranged so as to overlap the outer side or the inner side of the tubular structure at predetermined intervals in the axial direction.
  • the tubular structure is fixed to the tubular structure, and the first structure is constituted by a portion where the plurality of annular structures and the tubular structure are overlapped, and the second structure is the tubular structure.
  • the plurality of annular structures are configured by portions that do not overlap.
  • the present invention also provides a tubular artificial organ comprising a tubular tissue body formed in an environment where a biological tissue material is present and composed of a fibrous tissue, and the above-described tubular reinforcement body included in the tubular tissue body. About.
  • tubular tissue body is formed into a tubular shape by implanting a template in a living body, and the tubular reinforcing body is included over the entire length.
  • a tubular artificial organ having a predetermined strength capable of holding a lumen without increasing the wall thickness of the tube wall and excellent in biocompatibility and growth and the production of the tubular artificial organ
  • the base material used and the tubular reinforcement used for producing the tubular artificial organ can be obtained.
  • FIG. 1 is a perspective view schematically showing a tubular artificial organ according to a first embodiment of the present invention. It is a side view which shows the tubular reinforcement body in 1st Embodiment. It is a disassembled perspective view which shows the casting_mold
  • 2 is a photograph of the tubular artificial organ of Example 1. It is the photograph of the tubular artificial organ of Example 2, and the photograph of the transplanted state.
  • FIG. It is an observation photograph from the inside and the outside of the tissue 13 weeks after the transplantation in Example 2.
  • 2 is an observation photograph of a tissue extracted after 13 weeks from transplantation in Example 2.
  • FIG. It is the observation photograph at the time of the transplantation of the tubular artificial organ in the comparative example 1, and the observation photograph 25 days after the transplantation.
  • It is a figure which shows typically the tubular reinforcement body which concerns on 3rd Embodiment of this invention.
  • It is a figure which shows typically the other example of the tubular reinforcement body which concerns on 3rd Embodiment.
  • FIG. 12 is a tubular reinforcing body of Example 3.
  • FIG. 4 is a tubular reinforcing body of Example 4.
  • FIG. 10 is a tubular reinforcing body of Example 5.
  • FIG. It is a figure for demonstrating the measuring method of lumen retention force and compressive strength. It is a graph which shows the measurement result of compressive strength.
  • tubular artificial organ refers to a luminal organ or organ substitute such as trachea, esophagus, stomach, duodenum, small intestine, large intestine, bile duct, ureter, oviduct, and blood vessel. Are artificially produced and used for transplantation.
  • biological tissue material is a substance necessary for forming a desired biological tissue, for example, somatic cells (fibroblasts, smooth muscle cells, endothelial cells, etc.) and pluripotent stem cells.
  • Human cells such as ES cells, iPS cells, etc., nutrients such as various proteins (collagen, elastin) and saccharides such as hyaluronic acid, and other in vivo organisms such as cell growth factors and cytokines that promote cell growth and differentiation
  • biological tissue material includes materials derived from mammals such as humans, dogs, cows, pigs, goats and sheep, birds, fish and other animals, or artificial materials equivalent thereto.
  • the “living body” in which the template is implanted refers to the living body (eg, extremities, shoulders) of animals (mammals such as humans, dogs, cows, pigs, goats, sheep, birds, fish, and other animals). , Subcutaneous in the back or abdomen, or embedding in the abdominal cavity).
  • fibrous tissue refers to a fibrous tissue mainly composed of collagen produced by fibroblasts, which is formed by encapsulation of a foreign substance in a living body.
  • encapsulation means that fibroblasts gather around a foreign substance in a living body, and a fibrous tissue body mainly composed of fibroblasts and collagen produced by fibroblasts covers the foreign substance in the living body. A biological reaction that isolates foreign matter.
  • molds of a predetermined shape made of non-absorbable and non-degradable materials such as silicon resin, vinyl chloride resin, and stainless steel are embedded in a living body that maintains sterility for a certain period of time.
  • tissue shaping technique such a tissue shaping technique is referred to as “in vivo tissue shaping technique”.
  • Biological tissue formation can form a fibrous tissue as an artificial organ in a living body in which aseptic conditions are maintained and supply of nutrients and oxygen is ensured.
  • immune rejection does not occur, and thus an artificial organ with high biocompatibility can be obtained.
  • the tubular reinforcing body of the present invention is arranged in the above-described mold, and is encapsulated over the entire length of the tubular artificial organ by forming a fibrous tissue (connective tissue) around by encapsulation. It gives desired mechanical properties to a tubular artificial organ.
  • the tubular artificial organ 1A includes a tubular tissue body 10 and a tubular reinforcing body 20A.
  • the tubular tissue body 10 is composed of a fibrous tissue mainly made of collagen and is formed into a cylindrical shape.
  • This fibrous tissue is formed with a template (base material) having a predetermined shape in a living body by using a biopsy technique. By embedding, a shape corresponding to the mold is formed. The configuration of the mold will be described in detail later.
  • the tubular reinforcing body 20A is formed in the same cylindrical shape as the tubular tissue body 10, and is provided so as to be included in the tube wall of the tubular tissue body 10 (see FIG. 1).
  • the tubular reinforcing body 20A has a predetermined strength enough to hold the lumen so that the lumen of the tubular tissue body 10 is not crushed by external pressure or negative pressure.
  • the tubular reinforcing body 20 ⁇ / b> A has a mesh shape (mesh shape), and the fibrous tissue of the tubular tissue body 10 can enter the mesh structure. Therefore, the tubular tissue body 10 and the tubular reinforcing body 20A can be brought into close contact with each other, and the strength can be imparted to the tubular tissue body 10.
  • the tubular reinforcing body 20A is composed of a biodegradable material that is decomposed and absorbed in the body, it is difficult for the tubular reinforcing body to remain as a foreign substance in the body after the tubular artificial organ 1A has been transplanted and a predetermined period has elapsed. Therefore, adverse effects such as inhibiting tissue regeneration are reduced, and the growth of the tubular artificial organ 1A is not hindered.
  • the predetermined period is a period until the fibrous tissue constituting the tubular tissue body 10 is replaced with the self tissue and the tissue regeneration is completed, and the tissue regeneration is completed as a material of the tubular reinforcing body 20A.
  • a biodegradable material that is slow to decompose and absorb in the body is preferable so as to maintain the function as a reinforcing body.
  • the shape is maintained for 6 to 12 months after the transplantation, and then slowly decomposed and absorbed.
  • the period from 6 to 12 months after transplantation is a period necessary for tissue formation with a slow regeneration rate such as cartilage constituting the trachea, and then slowly decomposes and absorbs to suppress the occurrence of excessive inflammation. be able to.
  • the tubular reinforcing body 20A As an example of a method of forming the tubular reinforcing body 20A, a method of forming by braiding using a plurality of biodegradable wires 21 as shown in FIG.
  • the strength of the tubular reinforcing body 20 ⁇ / b> A and the decomposition rate in the living body can be adjusted.
  • the knitting pitch P represents the size of the mesh in the axial direction, that is, the distance between the intersections formed by the intersection of the biodegradable wires 21 as shown in FIG.
  • polyester excellent in biocompatibility is preferable, and polylactic acid, polyglycolic acid, poly ( ⁇ -caprolactone), polydioxanone (polymer of trimethylene carbonate) or a copolymer thereof should be used. Can do. A fiber made of these materials can be used as the biodegradable wire 21.
  • these biodegradable materials have physiological activities such as growth factors and anti-inflammatory agents for the purpose of promoting tissue regeneration and suppressing inflammatory reactions after being implanted as an artificial organ. You may impregnate the medicine which has.
  • growth factors include platelet-derived growth factor (PDGF), transforming growth factor- ⁇ (TGF- ⁇ ), transforming growth factor- ⁇ (TGF- ⁇ ), insulin-like growth factor (IGF), colony stimulating factor (CSF). ), Fibroblast growth factor (FGF), epidermal growth factor (EGF), insulin, platelet-derived wound healing factor (PDWHF), vascular endothelial growth factor (VEGF), nerve growth factor (NGF), hepatocyte growth factor (HGF) and bone morphogenetic protein (BMP).
  • PDGF platelet-derived growth factor
  • TGF- ⁇ transforming growth factor- ⁇
  • TGF- ⁇ transforming growth factor- ⁇
  • IGF insulin-like growth factor
  • CSF colony stimulating factor
  • FGF Fibroblast growth factor
  • EGF epidermal growth
  • anti-inflammatory agents examples include cortisol, dexamethasone, betamethasone, prednisolone, triamcinolone, acetylsalicylic acid, etenzamide, diflunisal, loxobrofen, ibuprofen, indomethacin, diclofenac, meloxicam, ferden, and acetaminophen.
  • a mold 100 shown in FIG. 3 includes a silicon resin core rod 110 having a predetermined outer diameter and a stainless steel cylinder 120 as an outer cylinder having a predetermined inner diameter and provided with the core rod 110 fixed inside. Is done.
  • the stainless steel cylinder 120 includes a main body portion 121 and a lid portion 122, and a plurality of slits are provided in the main body portion 121 so that a living tissue material can enter the gap between the core rod 110 and the cylinder 120. 123 is formed. With the tubular reinforcing body 20A disposed between the core rod 110 and the cylinder 120, the mold 100 is implanted in a living body such as subcutaneous or abdominal cavity for a predetermined period of about 1 to 2 months.
  • a fibrous tissue by encapsulation is formed in the gap between the core rod 110 and the cylinder 120 from the slit 123 formed in the cylinder 120.
  • the fibrous tissue fills the gap between the core rod 110 and the cylinder 120 in a state of entering the network structure of the tubular reinforcing body 20A.
  • the mold 100 is taken out from the living body, and the core rod 110 and the cylinder 120 are removed, whereby the tubular tissue body 10 having the outer diameter as the inner diameter of the cylinder 120 and the inner diameter as the outer diameter of the core rod 110 is obtained.
  • a tubular artificial organ 1A in which a tubular reinforcement body 20A is included in the tube wall can be obtained. That is, in this embodiment, the tubular artificial organ 1A is manufactured using the core rod 110, the cylinder 120, and the tubular reinforcing body 20A disposed in the space between the core rod 110 and the cylinder 120 as a base material. .
  • the fibrous tissue constituting the tubular tissue body 10 becomes a scaffold for engraftment of cells in the body after transplantation, and gradually replaces the self tissue. Therefore, when applied to an organ in the middle of growth, it has the growth ability of being able to follow the increase in tube diameter. In addition, the lumen can be maintained even when applied to a tubular organ in which negative pressure or external pressure is applied in the radial direction.
  • the tubular artificial organ 1A according to the first embodiment has the following effects.
  • a tubular artificial organ 1A is composed of a tubular tissue body 10 composed of a fibrous tissue formed using a template 100 having a predetermined shape in an environment where a biological tissue material exists, and a biodegradable wire 21. And a tubular reinforcement body 20 ⁇ / b> A configured and enclosed in the tubular tissue body 10. Accordingly, the tubular artificial organ 1A can be formed to have a predetermined strength capable of holding the lumen without increasing the wall thickness of the tube wall of the tubular tissue body 10. Therefore, for example, the tubular artificial organ 1A can be applied to various tubular organs, such as a blood vessel having a thin tube wall, regardless of the thickness of the tube wall.
  • tubular tissue body 10 is composed of a fibrous tissue having high biocompatibility and growth, and the tubular reinforcing body 20A is decomposed and absorbed after transplantation so that the growth of the tubular tissue body 10 is not hindered.
  • 1A has high biocompatibility and growth. Therefore, application to organ transplantation in children can be expected.
  • the fibrous tissue of the tubular tissue body 10 can enter the network structure of the tubular reinforcement body 20A by configuring the tubular reinforcement body 20A in a mesh shape, the tubular tissue body 10 and the tubular reinforcement body 20A And can be integrated.
  • a tubular artificial organ 1B according to the second embodiment will be described with reference to FIG.
  • the tubular artificial organ 1B of the second embodiment is different from that of the first embodiment in the configuration of the tubular reinforcing body 20B.
  • the same components are denoted by the same reference numerals, and the description thereof is omitted or simplified.
  • the tubular artificial organ 1B includes a tubular tissue body 10 and a tubular reinforcing body 20B.
  • the tubular reinforcing body 20B is formed in a mesh shape with a biodegradable material, is formed in a cylindrical shape substantially equivalent to the tubular tissue body 10, and is provided on the tube wall of the tubular tissue body 10. And having a predetermined strength capable of holding the lumen of the tubular tissue body 10.
  • the tubular reinforcement body 20B according to the second embodiment is different from the tubular reinforcement body 20A according to the first embodiment in that axial contraction is restricted.
  • FIG. 4 shows tubular reinforcements 201B, 202B, and 203B, which are structural examples of the tubular reinforcement 20B in which axial contraction is restricted.
  • a tubular reinforcing body 201B shown in FIG. 4A is formed into a mesh-like cylindrical shape by braiding using a plurality of biodegradable wire rods 21, and the intersecting portion between the biodegradable wire rods 21 is super-long.
  • a plurality of joints 23 joined by sonic welding are provided. Since the biodegradable wires 21 are joined at the joint 23, contraction in the axial direction of the tubular reinforcement 201B is restricted.
  • the tubular reinforcing body 202B shown in FIG. 4 (b) is formed into a mesh-like cylindrical shape by knit-knitting (also called Lilian knitting) one biodegradable wire 21.
  • knit-knitting also called Lilian knitting
  • the knit knitting represents an operation of forming one stitch by a single threading operation on a knitting needle.
  • the tubular reinforcing body 203B shown in FIG. 4 (c) is formed by cutting an axially contractible cylinder made of a biodegradable material so as to have a network structure by laser or water flow. The Therefore, the axial contraction of the tubular reinforcing body 203B is restricted.
  • the biodegradable material the aforementioned biodegradable material can be used.
  • a tubular reinforcement body 20 ⁇ / b> B having a network structure and restricted in axial contraction may be manufactured by injection molding a thermoplastic biodegradable resin.
  • tubular artificial organ 1B described above is restricted from contraction in the axial direction, it is preferably applied to transplantation of a tubular organ such as a trachea in which external pressure is applied in the axial direction.
  • the tubular artificial organ 1B according to the second embodiment has the following effects in addition to the effects (1) and (2) described above.
  • the tubular artificial organ 1B includes the tubular reinforcing body 20B in which axial contraction is restricted. Thereby, since it can control that tubular artificial organ 1B contracts in the direction of an axis, a lumen can be maintained better.
  • the tubular reinforcing body 201B is formed by braiding using a plurality of biodegradable wire rods 21 and includes a plurality of joint portions 23 in which crossing portions of the biodegradable wire rods 21 are joined. .
  • contraction of the axial direction of the tubular reinforcement body 201B can be controlled suitably, shrinkage
  • the tubular reinforcement 202B is formed by knit knitting using the biodegradable wire 21, so that axial shrinkage is restricted. Thereby, contraction of the axial direction of the tubular artificial organ 1B can be regulated.
  • Table 1 shows the configurations of the tubular reinforcing bodies of Examples 1 to 5.
  • the tubular reinforcing bodies shown in Examples 1 and 2 are formed by braiding a plurality of biodegradable wire rods 21, and an implementation corresponding to the configuration of the tubular reinforcing body 20A according to the first embodiment. It is an example (refer FIG. 2).
  • the tubular reinforcing bodies shown in Examples 3 to 5 are formed so that axial contraction is restricted, and the configuration of the tubular reinforcing body 20B according to the second embodiment (Example 3 is shown in FIG.
  • Examples 4 and 5 are examples corresponding to the configuration of the tubular reinforcing body 202B shown in FIG. 4B.
  • the physical properties of the tubular reinforcement were evaluated by “Young's modulus (compression elastic modulus)” as “luminal retention strength” which is an index of strength in the radial direction and strength in the long axis direction.
  • a compression tester Autograph AG-X Plus, manufactured by Shimadzu Corporation was used to measure these physical properties. As shown in FIG. 5 (a), the lumen holding force is measured by placing the tubular reinforcement on a jig J (adjusted to the length of the tubular reinforcement) that regulates the movement in the axial direction.
  • the compression strength was measured by pressing from above with the pusher PL until the outer diameter reached 30%.
  • the lumen holding force [N ⁇ mm] is determined by compressive strength [N] ⁇ (diameter of tubular reinforcement) 2 [mm 2 ] / axial length [mm] of the tubular reinforcement.
  • the axial Young's modulus is determined by placing the tubular reinforcement body vertically and pressing the tubular reinforcement body from above with a pusher PL until the length reaches 90%. The compressive strength was measured.
  • the maximum spring constant [N / mm] was determined from the slope of the obtained stress-strain curve in the 0-10% strain region.
  • each of the tubular reinforcing bodies of Examples 1 to 5 had a lumen holding force of 2.0 [N ⁇ mm] or more.
  • the braiding method is the same braiding, and when Example 1 having a large knitting pitch is compared with Example 2 having a small knitting pitch, Example 2 has a larger lumen holding force. Therefore, it was confirmed that the lumen retention force can be increased by reducing the knitting pitch.
  • Example 3 in which a tubular reinforcing body is formed by braiding and the intersecting portion of the biodegradable wire 21 is joined.
  • Example 4 formed by knit knitting can greatly improve the Young's modulus.
  • Example 4 and Example 5 in which the knitting method is the same knitting and only the diameter of the biodegradable wire 21 is compared, the lumen of the biodegradable wire 21 is increased by increasing the diameter. It was confirmed that the holding force and Young's modulus can be improved.
  • the tubular reinforcing body 20A of Example 1 manufactured under the conditions shown in Table 1 was inserted into the mold 100 described above.
  • the template 100 obtained in this way was implanted under the back of a beagle dog to perform in vivo tissue formation.
  • the beagle dog was anesthetized by a general procedure, then the disinfected skin was incised about 30 mm, the sterilized mold 100 was placed subcutaneously, and the skin was sutured. After the implantation operation, water was freely given, food was given according to body weight, and beagle dogs were raised in a normal environment.
  • Example 1 Two months after the implantation of the mold 100, the encapsulated mold 100 was removed under anesthesia, the mold 100 was removed, and the cylindrical shape of Example 1 having an inner diameter of 15 mm, an outer diameter of 17 mm, and a length of 40 mm was obtained.
  • a tubular artificial organ 1A was obtained (see FIG. 6).
  • the lumen holding force of the tubular artificial organ 1A was measured and found to be 2.5 N ⁇ mm. From this result, it was shown that the lumen holding force of the tubular artificial organ 1A is larger than at least 2.1 N ⁇ mm of the tubular reinforcing body 20A.
  • the obtained tubular artificial organ 1A was decellularized by being immersed in ethanol for 24 hours or more at room temperature before transplantation.
  • tubular artificial organ 1A of Example 2 provided with the tubular reinforcement body 20A of Example 2 was obtained by the same method as Example 1 (see FIG. 7A).
  • the obtained tubular artificial organ 1A was decellularized by being immersed in ethanol for 24 hours or more at room temperature before transplantation.
  • a tubular artificial organ 300 of Comparative Example 1 having no tubular reinforcement was obtained by the same method as in Examples 1 and 2 except that the tubular reinforcement was not inserted.
  • the lumen holding force of the tubular artificial organ 300 was measured, it was 0.1 N ⁇ mm, which was lower than the lumen holding force of the tubular artificial organ 1A of Example 1.
  • the balloon catheter was expanded with a balloon catheter having an outer diameter of 15 mm.
  • spraying of 1 to 2 mL of 0.1% Linderon (steroid) was performed.
  • the patency of the lumen was maintained as in the previous observation, but the lumen diameter was 6.5 mm.
  • spraying of 1 mL to 2 mL of 0.1% Linderone (steroid) was performed.
  • the lumen diameter of the trachea was maintained at 7 mm, and the patency was maintained.
  • FIG. 9A shows a photograph of a state in which a trachea including the tubular artificial organ 1A is incised
  • FIG. 9B shows an enlarged photograph of FIG. 9A.
  • the tubular artificial organ 1A was engrafted in the living trachea, and there was no abnormality in the anastomosis as shown in FIGS. 8 (a) and 8 (b).
  • the lumen diameter of the transplanted portion indicated by the arrow in FIG. 8A was 10 mm, and the lumen structure was maintained.
  • FIGS. 9A and 9B a white tracheal mucosa was formed on the inner surface of the lumen, and reconstruction of the tracheal tissue was proceeding.
  • the present embodiment is a technique for forming a tubular tissue body that encloses a tubular biodegradable material by in vivo tissue formation.
  • This technology can design all sizes and shapes, and enables tissue formation according to the physique and lesion.
  • it has a mechanically high lumen retention, so it can also be used as an organ regeneration scaffold for organs that apply negative pressure during inspiration, such as the trachea, and for the esophagus and diaphragm. it can.
  • the tubular reinforcing body 20C is formed in a cylindrical shape and includes a plurality of first structures 101 and second structures 201C.
  • the plurality of first structures 101 are connected via the second structure 201C.
  • the tubular reinforcing body 20C is configured to have a predetermined radial strength enough to hold the lumen so that the lumen of the tubular artificial organ is not crushed by external pressure or negative pressure. It is configured to have a predetermined compressive strength so as to maintain shape retention without contracting more than necessary in the axial direction even when external pressure is applied.
  • the first structure 101 is formed in a tubular shape, and in the first embodiment, the first structure 101 is formed by an annular structure 15 having a predetermined length in the axial direction.
  • the first structure 101 has predetermined compressive strength and radial strength necessary for a tubular artificial organ.
  • the first structure 101 is configured in a mesh shape (mesh shape), and when forming a tubular artificial organ, the fibrous tissue (connective tissue) has a mesh structure. I can get in. Therefore, the tubular reinforcing body 20C can be brought into close contact with and integrated with the tubular artificial organ, and strength can be imparted to the tubular artificial organ.
  • the first structure 101 is configured in a mesh shape with a wire, for example.
  • a method of forming the first structure 101 a method of forming a plurality of wires 111 by braiding may be used.
  • the strength of the first structure 101 can be adjusted.
  • the knitting pitch P represents the size of the mesh in the axial direction, that is, the distance between the intersections formed by the intersection of the wires 111, as shown in FIG. 11A.
  • the axial contraction of the first structure 101 can be restricted, and the compressive strength in the axial direction can be improved.
  • Directional strength can also be improved.
  • the second structure 201C has an axial compressive strength smaller than a predetermined axial compressive strength of the first structure 101, and imparts flexibility and axial flexibility to the tubular reinforcing body 20C. belongs to.
  • the second structure 201 ⁇ / b> C is configured by a wire 211 that is disposed between the plurality of first structures 101 and connects the first structures 101.
  • the second structure 201C may connect the first structures 101 with at least one wire 211 as shown in FIG. 11A. Further, a plurality of wires 211 may be connected in a ring shape, as in the second structure 201D in the tubular reinforcement 20D shown in FIG. 11B and the second structure 201E in the tubular reinforcement 20E shown in FIG. 11C.
  • the joining of the wire 111 constituting the first structure 101 and the wire 211 constituting the second structure is performed by ultrasonic welding or an adhesive.
  • the crossing portion is joined by ultrasonic welding or an adhesive, thereby improving the axial compressive strength as in the case of the first structure 101.
  • the radial strength can also be improved.
  • the second structures 201C, 201D, and 201D are configured so that the compressive strength in the axial direction of the second structures 201C, 201D, and 201D is smaller than the strength of the first structure 101.
  • the ratio of the length of the second structural body to the axial length of the tubular reinforcing body is, for example, in the range of 5% to 50% when the tubular artificial organ is used as an artificial trachea. Preferably, it is about 10%. This is because the structure in the axial direction of the trachea is about 90% for high-strength cartilage and about 10% for low-strength ligaments. By making the structure similar to the trachea, the mechanical properties similar to those of the trachea are tubular. This is because it can be applied to the reinforcing body.
  • the material of the wire 111 and the wire 211 is preferably a polyester excellent in biocompatibility, such as polylactic acid, polyglycolic acid, poly ( ⁇ -caprolactone), polydioxanone (trimethylene carbonate polymer), and respective monomers and copolymers. Etc. can be used. And the fiber which consists of these materials can be used as the wire 111 and the wire 211.
  • FIG. 1 A block diagram 111 and the wire 211.
  • growth factors include platelet-derived growth factor (PDGF), transforming growth factor- ⁇ (TGF- ⁇ ), transforming growth factor- ⁇ (TGF- ⁇ ), insulin-like growth factor (IGF), colony stimulating factor (CSF). ), Fibroblast growth factor (FGF), epidermal growth factor (EGF), insulin, platelet-derived wound healing factor (PDWHF), vascular endothelial growth factor (VEGF), nerve growth factor (NGF), hepatocyte growth factor (HGF) and bone morphogenetic protein (BMP).
  • PDGF platelet-derived growth factor
  • TGF- ⁇ transforming growth factor- ⁇
  • TGF- ⁇ transforming growth factor- ⁇
  • IGF insulin-like growth factor
  • CSF colony stimulating factor
  • FGF Fibroblast growth factor
  • EGF epidermal growth factor
  • PWHF platelet-derived wound healing factor
  • VEGF vascular endothelial growth factor
  • NGF nerve growth factor
  • HGF hepatocyte growth factor
  • BMP bone morphogenetic protein
  • anti-inflammatory agents examples include cortisol, dexamethasone, betamethasone, prednisolone, triamcinolone, acetylsalicylic acid, etenzamide, diflunisal, loxobrofen, ibuprofen, indomethacin, diclofenac, meloxicam, ferden, and acetaminophen.
  • these anti-inflammatory agents are not released slowly at the encapsulation stage.
  • a method of forming a first structural body 101 by braiding the wire 111 and connecting the second structural bodies 201C, 201D, or 201E made of the wire 211 to obtain a tubular reinforcing body is not limited to this. If the relationship between the compressive strengths in the axial direction between the first structure and the second structure is satisfied, the tubular reinforcing body is produced by a method such as cutting, injection molding, laser processing, or lamination molding using a 3D printer. May be.
  • a material of the tubular reinforcing body in addition to the plastic materials such as polyester and polylactic acid mentioned above, stainless steel and titanium excellent in biocompatibility, or metal materials such as magnesium having biodegradability may be used. Good.
  • a method of making the second structure 201 weaker than the first structure 101 with respect to the compressive strength in the axial direction will be described with reference to FIG.
  • the diameter of the wire 211 of the second structure 201 is made smaller than the diameter of the wire 111 of the first structure 101 (FIG. 12 ( a) and (b)), a method of making the wall thickness of the second structure 201 thinner than the wall thickness of the first structure 101 (see FIG. 12C), and the like are conceivable.
  • the radial cross-sectional area of the second structure body 201 is larger than the cross-sectional area of the first structure body 101 in the longitudinal direction.
  • the compressive strength in the axial direction of the second structure 201 can be made weaker than the compressive strength in the axial direction of the first structure 101.
  • the second structure body has a second number greater than the number of the wire members 111 constituting the first structure body 101.
  • the compressive strength in the axial direction of the second structure 201 can be weakened.
  • the axial strength of the second structure 201 may be reduced by combining the method of making the diameter of the wire 211 of the second structure 201 thinner than that of the first structure 101. Good.
  • the compressive strength in the axial direction of the second structure 201 can be weakened. .
  • the tubular reinforcing body As an example of the tubular reinforcing body, an example constituted by three first structures and two second structures is shown, but the present invention is not limited to this.
  • the tubular reinforcement may be constituted by at least two first structures and at least one second structure. If the tubular reinforcing bodies have the same length ratio in the axial direction, the bending performance can be improved by being constituted by a large number of first structures and second structures. Further, when the tubular reinforcing body is configured using the plurality of first structures and the plurality of second structures, the physical properties of the plurality of first structures and the physical properties of the plurality of second structures are different. It may be allowed. For example, when two first structures are used, one first structure may have a length of 10 mm, and the other first structure may have a length of 8 mm.
  • the tubular reinforcement bodies 20C to 20E according to the third embodiment have the following effects.
  • a tubular reinforcing body 20C (20D, 20E) used for producing a tubular artificial organ by forming a connective tissue around it has a predetermined compressive strength and a predetermined radial strength, and is configured in a tubular shape.
  • the structure body 101 is connected via the second structure body 201C (201D, 201E).
  • the first structure 101 imparts shape retention and lumen retention to the tubular artificial organ, while the second structure 201C (201D, 201E) provides flexibility and axial flexibility.
  • a tubular reinforcement that can be applied to an organ can be obtained.
  • the ratio of the length of the second structural body 201C (201D, 201E) to the axial length of the tubular reinforcing body 20C (20D, 20E) is 5% or more and 50% or less.
  • the first structure 101 is constituted by a plurality of braided wires 111, and the diameter of the wire 211 constituting the second structure 201 is made smaller than the diameter of the wire 111. did. Thereby, the compressive strength in the axial direction of the second structure 201 can be made weaker than the compressive strength in the axial direction of the first structure 101.
  • the first structure 101 is configured by a predetermined number of the plurality of wires 111, and the number of the wires 211 that configure the second structure 201 is the number of the wires that configure the first structure 101. The number was less than 111. Thereby, the compressive strength in the axial direction of the second structure 201 can be made weaker than the compressive strength in the axial direction of the first structure 101.
  • tubular reinforcement body 20F which concerns on 4th Embodiment is demonstrated.
  • the tubular reinforcing body 20F of the fourth embodiment is different from that of the third embodiment in the configuration of the first structure and the second structure.
  • the same constituent elements are denoted by the same reference numerals, and the description thereof is omitted or simplified.
  • the tubular reinforcement body 20F is formed in a cylindrical shape as in the case of the third embodiment, and has a length corresponding to the total axial length of the plurality of annular structures 15 and the tubular reinforcement body 20F. And a tubular structure 30 having the structure.
  • the plurality of annular structures 15 are arranged so as to overlap the outside of the tubular structure 30 with a predetermined interval in the axial direction, and are fixed to the tubular structure 30.
  • the plurality of annular structures 15 may be arranged so as to overlap the inside of the tubular structure 30.
  • the tubular structure 30 can be formed by braiding using a plurality of wires 311 in the same manner as the annular structure 15, and includes methods such as cutting, injection molding, laser processing, and lamination molding using a 3D printer. You may produce by.
  • a metal material such as stainless steel or titanium excellent in biocompatibility may be used in addition to the plastic materials such as polyester and polylactic acid mentioned above.
  • a portion that overlaps the annular structure 15 is a first tubular structure portion 32, and a portion that does not overlap is a second tubular structure portion 33.
  • the thin wire 411 is wound and fixed so as to be looped at a portion where the crossing portions of the wire rods of the annular structure 15 and the first tubular structure portion 32 overlap each other.
  • the portions where the intersecting portions of the wires overlap each other may be joined by ultrasonic welding or an adhesive.
  • the knitting pitch P in the cyclic structure 15 and the tubular structure 30 became the same was shown, when the knitting pitch P differs, the crossing parts of the wire arrange
  • the first structure 101F is constituted by the annular structure 15 and the first tubular structure portion 32, and the second structure 201F is constituted by the second tubular structure portion 33. Since the tubular structure 30 has a length corresponding to the entire axial length of the tubular reinforcement body 20F, when the tubular artificial organ returns to its original shape by receiving an external force that bends, it is compared with the configuration of the fourth embodiment. Thus, the first structural body 101F can return to its original shape without being displaced from the axial center of the tubular reinforcing body 20F.
  • the tubular reinforcement body 20F has a predetermined length in the axial direction, and corresponds to the total length of the plurality of annular structures 15 formed by braiding using the plurality of wires 111, and the tubular reinforcement body 20F.
  • a tubular structure 30 having a length and formed by braiding using a plurality of wires 311, and the plurality of annular structures 15 are tubular structures with predetermined intervals in the axial direction.
  • the first tubular structure portion is arranged so as to overlap the outer side or the inner side of 30 and fixed to the tubular structure 30, and the first structure 101 ⁇ / b> F is formed by overlapping the plurality of annular structures 15 and the tubular structure 30. 32, and the second structure 201 ⁇ / b> F is configured by the second tubular structure portion 33 that does not overlap the plurality of annular structures 15 in the tubular structure 30.
  • the tubular structure 30 has a length corresponding to the entire axial length of the tubular reinforcing body 20F, when the tubular artificial organ returns to its original shape by receiving an external force that causes the tubular artificial organ to bend, the tubular structure 30 of FIG.
  • the first structural body 101F can return to the original shape without being displaced from the axial center of the tubular reinforcing body 20F.
  • Example 3 A tubular reinforcing body 20D was produced as an example corresponding to the tubular reinforcing body 20D shown in FIG. 11B described in the third embodiment.
  • PLA fiber a monofilament formed by spinning and drawing poly L-lactic acid (weight average molecular weight 450,000, melting point 195 ° C.) as a wire
  • a tube as shown in the schematic diagram of FIG.
  • the diameter of the wire 111 in the first structure 101 is 0.5 mm
  • the diameter of the wire 211 in the second structure 201D is 0.2 mm.
  • the number of wire rods knitted in a spiral shape (number of knitting) is 16 in total, 8 each for right-handed and left-handed.
  • the total number (number of stages) of lattices formed in one row in the axial direction is preferably about 6 to 10 in total for the first structural body 101, and in Example 3, it was set to 8.
  • the tubular reinforcing body 20D of the third embodiment is formed by joining a wire rod having a diameter of 0.5 mm and a wire rod having a diameter of 0.2 mm, and second structures 201D are provided at three locations.
  • the length of each second structure 201D is preferably about 1 to 2 mm.
  • a tubular reinforcing body 20C was produced as an example corresponding to the structure of the tubular reinforcing body 20C shown in FIG. 11A described in the third embodiment.
  • a wire rod a PLA fiber with a diameter of 0.5 mm is used, and there are a total of 16 right-handed and left-handed eight each, a tube diameter of 15 mm, a length of 8 mm, and a number of grids (number of stages) of 2
  • Four structural bodies were produced, and the annular structural bodies 15 were joined and joined by ultrasonic welding with the wire material 211 having the same diameter and the same material to produce a tubular reinforcing body 20C as shown in FIG.
  • a tubular reinforcing body 20F was produced as an example corresponding to the structure of the tubular reinforcing body 20F shown in FIG. 13 described in the fourth embodiment.
  • a wire rod a PLA fiber having a diameter of 0.5 mm is used.
  • the right-handed and left-handed eight are each 16 in total, the tube diameter is 16 mm, the length is 10 mm, and the number of lattices (stages) is 2 Four structures 15 were produced.
  • one tubular structure 30 having a tube diameter of 15 mm and a length of 37.5 mm was produced using a PLA fiber having a diameter of 0.2 mm. All the intersecting portions of the wires constituting the annular structure 15 and the tubular structure 30 were fixed.
  • the annular structure 15 is fixed on the tubular structure 30 with a space of 1.25 mm.
  • a thin wire rod 411 of a PLA fiber having a diameter of 0.2 mm is inserted in the circumferential direction, and around the point where the crossing portions of the wire rods of the annular structure 15 and the tubular structure 30 overlap each other.
  • the aforementioned thin wire 411 was wound and fixed so as to loop (see FIG. 14).
  • a tubular reinforcing body having a total length of 37.5 mm was obtained.
  • the tubular reinforcing body 20F of Example 5 produced in this way was bent, it had sufficient flexibility.
  • the physical properties of the tubular reinforcing body 20F were evaluated by “lumen retention force” that is an index of strength in the radial direction and “Young's modulus (compression elastic modulus)” that is an index of compressive strength in the axial direction.
  • a compression tester Autograph AG-X Plus, manufactured by Shimadzu Corporation was used to measure these physical properties.
  • the lumen holding force is measured by placing the tubular reinforcing body 20F on a jig J (adjusted to the length of the tubular reinforcing body 20F) that restricts the movement in the axial direction.
  • the body 20F was pressed from above with a pusher PL until the outer diameter became 25%, and the compressive strength was measured.
  • the lumen retention force [N ⁇ mm] is obtained by compressive strength [N] ⁇ (diameter of tubular reinforcing body) 2 [mm 2 ] / axial length [mm] of the tubular reinforcing body 20F.
  • the axial Young's modulus is determined by pressing the tubular reinforcement body 20F vertically from the top until the length reaches a predetermined value (for example, 80% to 90%). It calculated by pressing with PL and measuring compressive strength.
  • the maximum spring constant [N / mm] was determined from the slope of the obtained stress-strain curve in the strain range of 0% to 20%.
  • the measurement results of lumen holding force for the trachea of the beagle dog and the tubular reinforcing body 20F of Example 5 are shown in Table 2, and the measurement result of the compressive strength in the axial direction is shown in FIG.
  • the two tubular reinforcement bodies 20F were produced on the conditions demonstrated in Example 5, and were measured.
  • the lumen retention force of the trachea of the beagle dog was 6.13 [N ⁇ mm]
  • the tubular reinforcing body 20F of Example 5 was 6.00 [N ⁇ mm]. It was confirmed that it has the same lumen retention force. Therefore, it is considered that the tubular reinforcing body of the present invention has sufficient radial strength to hold the lumen.
  • the Young's modulus in the axial direction of the trachea of a beagle dog is 0.375 [N in a low strain region up to 10% compression. / Mm] and 3.5 [N / mm] in the high strain region of 10% or more compression.
  • the elasticity changes in the middle of this.
  • the soft part (ligament) of the trachea is compressed in the low strain region, and then the hard part (cartilage) of the trachea is compressed and the Young's modulus increases in the high strain region. it is conceivable that.
  • the tubular reinforcing body of the present invention has the same flexibility as the beagle's trachea in the axial direction.
  • the compressive strength can be changed in the low strain region and the high strain region.
  • the axial compression characteristic of the tubular reinforcing body 20C (20D, 20E, 20F) can be approximated to the compression characteristic of the trachea.
  • the present invention is not limited to the above-described embodiments and examples, and can be modified as appropriate.
  • the case where the present invention is applied to the trachea as an example of a tubular artificial organ has been described. It may be applied to organs.
  • the example in which the intersecting portions of the wire members constituting the first structure and the second structure are joined is shown. You don't have to.
  • the wire constituting the second structural body is shorter than the total length in the axial direction of the tubular reinforcement body. However, it is about the same as the total length in the axial direction of the tubular reinforcement body. It is good also as a structure which connects a 1st structure body with the 1 or several wire which has the length of.

Abstract

The purpose of the present invention is to provide a tubular artificial organ that has a predetermined strength to be able to retain a lumen without increasing the thickness of the cylinder wall, and that has excellent biocompatibility and growth. This tubular artificial organ 1A is provided with: a tubular tissue body 10 that is formed in an environment in which a biotissue material is present, and is configured with fibrous tissue; and a tubular reinforcement body 20A that is configured with a biodegradable material and is enclosed inside the tubular tissue body 10. The tubular tissue body 10 is formed in a tubular shape by implanting a mold inside an organism and the tubular reinforcement body 20A is preferably enclosed across the entire length. In addition, the tubular tissue body 10 is preferably configured to have a mesh shape by using a biodegradable material.

Description

管状人工臓器Tubular artificial organ
 本発明は、生体適合性に優れ、内腔が潰れない高強度の管状人工臓器とその作製に用いられる基材に関する。 The present invention relates to a high-strength tubular artificial organ that is excellent in biocompatibility and does not collapse the lumen, and a substrate used for the production thereof.
 先天性の疾患の治療や病気や事故で失われた組織や器官の働きを再生させるため、人工素材や細胞により形成された人工臓器を移植する再生医療や脱細胞化臓器を組織再生足場材料として利用する研究が数多くなされている。 Regenerative medicine for transplanting artificial materials and artificial organs formed by cells and treatment of congenital diseases and regeneration of tissues and organs lost in diseases and accidents as tissue regeneration scaffold materials Many studies have been used.
 従来、生体の自己防衛機能の一つとしてカプセル化という生体反応が知られている。カプセル化とは、例えば、体内の深い位置に異物が侵入した場合に、その異物の周りに線維芽細胞が集まって、主に線維芽細胞と線維芽細胞が産生するコラーゲンからなる線維性組織体のカプセルを形成して異物を覆うことにより、体内において異物を隔離する生体反応である。 Conventionally, a biological reaction called encapsulation is known as one of the self-defense functions of a living body. Encapsulation is a fibrous tissue composed mainly of fibroblasts and collagen produced by fibroblasts when, for example, a foreign body enters a deep position in the body and fibroblasts gather around the foreign body. This is a biological reaction that isolates foreign matter in the body by forming a capsule and covering the foreign matter.
 このカプセル化を利用した再生医療技術として、特許文献1には、シリコン樹脂や塩化ビニル樹脂等の非吸収性、非分解性の材料で構成される芯棒を生体内に一定期間埋植し、カプセル化された芯棒を取り出して、芯棒を取り除くことにより、線維性組織で構成される人工血管を得る技術が提案されている。この人工血管は、生体由来の組織のみで構成されるため生体適合性に優れる。また、この人工血管は、移植後に周囲組織から細胞が浸潤して自己組織化が進み、線維性組織がレシピエントの血管組織に置き換わっていくため、成長過程の小児に適用された場合、管径の増大に追随可能であるという成長性も備える。 As regenerative medical technology using this encapsulation, Patent Document 1 discloses that a core rod made of a non-absorbable and non-degradable material such as silicon resin or vinyl chloride resin is implanted in a living body for a certain period of time There has been proposed a technique for obtaining an artificial blood vessel composed of fibrous tissue by taking out an encapsulated core rod and removing the core rod. Since this artificial blood vessel is composed of only living tissue, it has excellent biocompatibility. In addition, since this artificial blood vessel is infiltrated from surrounding tissues after transplantation, self-organization proceeds, and the fibrous tissue is replaced by the recipient's vascular tissue. It also has the growth potential of being able to follow the increase.
 ところで、上述の人工血管は線維性組織により構成されるため保形性に乏しく、血管との吻合が困難である。これを解決するため、特許文献2では、カプセル化を利用して得られる人工血管において、スポンジ状の熱可塑性樹脂により両端部を補強することにより血管との吻合を容易にした人工血管が提案されている。 By the way, since the artificial blood vessel described above is composed of fibrous tissue, it has poor shape retention and is difficult to anastomosis with the blood vessel. In order to solve this, Patent Document 2 proposes an artificial blood vessel in which an anastomosis with a blood vessel is facilitated by reinforcing both ends with a sponge-like thermoplastic resin in an artificial blood vessel obtained by utilizing encapsulation. ing.
 また、特許文献3には、スリットが形成された筒状部材及び該筒状部材に内挿される芯棒で構成される鋳型を生体の皮下に埋植することにより、筒状部材と芯棒の間隙に線維性組織を侵入させて、任意の肉厚を有する管状の線維性組織体(管状人工臓器)を得る技術が提案されている。 Further, Patent Document 3 discloses that a cylindrical member and a core rod are embedded by implanting a mold composed of a cylindrical member having a slit and a core rod inserted into the cylindrical member under the skin of a living body. There has been proposed a technique for obtaining a tubular fibrous tissue body (tubular artificial organ) having an arbitrary thickness by infiltrating a fibrous tissue into a gap.
特開2004-261260号公報JP 2004-261260 A 特許第4483545号公報Japanese Patent No. 4484545 特開2017-113051号公報Japanese Unexamined Patent Publication No. 2017-1113051
 上述したように、線維性組織体により構成される管状の人工臓器は物理的強度に乏しいため、内腔を保持するためには何らかの手段で補強が必要な場合がある。特許文献2に記載されているように、人工血管の両端部のみを補強しただけでは、両端部以外において内腔を保持することが困難である。また、特許文献3に記載の技術を用いて、全長にわたって管壁の肉厚を厚くする方法も考えられる。しかしながら、内腔を保持可能な所定の強度を得るために肉厚を厚くすると、患者の管状臓器の管壁の肉厚よりも大きくなってしまい、吻合部の不整合により移植できない場合が考えられる。 As described above, since a tubular artificial organ composed of a fibrous tissue body has poor physical strength, reinforcement may be necessary by some means in order to retain the lumen. As described in Patent Document 2, it is difficult to hold the lumen outside the both ends only by reinforcing both ends of the artificial blood vessel. Moreover, the method of increasing the wall thickness of a pipe wall over the full length using the technique of patent document 3 is also considered. However, if the wall thickness is increased in order to obtain a predetermined strength capable of holding the lumen, it may be larger than the wall thickness of the tube wall of the patient's tubular organ, and may not be transplanted due to anastomosis mismatch. .
 従って、本発明は、管壁の肉厚を厚くしなくても内腔を保持可能な所定の強度を有し、生体適合性や成長性に優れた管状人工臓器、当該管状人工臓器の作成に用いられる基材、及び管状人工臓器を作製するために用いられる管状補強体を提供することを目的とする。 Therefore, the present invention provides a tubular artificial organ having a predetermined strength capable of holding a lumen without increasing the wall thickness of the tube wall and excellent in biocompatibility and growth, and the production of the tubular artificial organ. It aims at providing the base material used and the tubular reinforcement used in order to produce a tubular artificial organ.
 本発明は、生体組織材料が存在する環境下で形成され、線維性組織で構成される管状組織体と、生分解性の材料で構成され前記管状組織体に内包される管状補強体と、を備える管状人工臓器に関する。 The present invention includes a tubular tissue body that is formed in an environment where a biological tissue material exists and is composed of a fibrous tissue, and a tubular reinforcement body that is composed of a biodegradable material and is included in the tubular tissue body. The present invention relates to a tubular artificial organ provided.
 また、前記生分解性の材料で構成される管状補強体は、生体内で繊維性の結合組織が浸潤するように、管の側面はメッシュ状で貫通孔を有する。結合組織が管状補強体と一体化して高強度の管状人工臓器を得るためには、メッシュの開口率は大きい事が好ましく、生分解性のファイバーで網目状に形成されることがより好ましい。 Further, the tubular reinforcement body made of the biodegradable material has a mesh-like side surface and a through-hole so that the fibrous connective tissue infiltrates in vivo. In order to obtain a high-strength tubular artificial organ by integrating the connective tissue with the tubular reinforcing body, the mesh preferably has a large aperture ratio, and more preferably is formed in a mesh shape with biodegradable fibers.
 また、前記管状組織体は、生体内に鋳型を埋植することにより管状に形成され、前記管状補強体が全長に亘って内包されることが好ましい。 Further, it is preferable that the tubular tissue body is formed into a tubular shape by implanting a template in a living body, and the tubular reinforcing body is included over the entire length.
 また、前記管状人工臓器の円周方向の管腔保持力が2.0[N・mm]以上であることが好ましい。 Further, it is preferable that the lumen holding force in the circumferential direction of the tubular artificial organ is 2.0 [N · mm] or more.
 また、前記管状補強体は、軸方向の収縮が規制されていることが好ましい。 Further, it is preferable that the tubular reinforcement body is restricted from contracting in the axial direction.
 また、前記管状補強体は、複数の生分解性の線材を用いて組編みにより形成され、前記生分解性の線材同士の交差部が接合されることにより軸方向の収縮が規制されることが好ましい。 Further, the tubular reinforcing body is formed by braiding using a plurality of biodegradable wires, and the contraction in the axial direction is restricted by joining the intersecting portions of the biodegradable wires. preferable.
 また、前記管状補強体は、生分解性の線材を用いてニット編みにより形成されることにより軸方向の収縮が規制されることが好ましい。 In addition, it is preferable that the tubular reinforcement body is formed by knit knitting using a biodegradable wire to restrict axial contraction.
 また、本発明は、生体内に埋め込むことで周囲に結合組織を形成させて人工管状臓器を作製する基材であって、棒状の芯材と、複数のスリットを有し前記芯材を収納する外筒と、前記芯材と前記外筒との間の空間に配置される円筒状のメッシュ部材と、を備え、前記芯材及び前記外筒は非生分解性の材料で構成され、前記メッシュ部材は生分解性の材料で構成される管状人工臓器作製用の基材に関する。 The present invention also provides a base material for producing an artificial tubular organ by forming a connective tissue around the body by being embedded in a living body, and has a rod-shaped core material and a plurality of slits, and stores the core material. An outer cylinder, and a cylindrical mesh member disposed in a space between the core material and the outer cylinder, wherein the core material and the outer cylinder are made of a non-biodegradable material, and the mesh The member relates to a base material for producing a tubular artificial organ composed of a biodegradable material.
 また、本発明は、周囲に結合組織を形成させて管状人工臓器を作製するために用いられる管状補強体であって、所定の軸方向圧縮強度及び所定の径方向強度を有し、管状に構成される複数の第1の構造体と、前記所定の軸方向圧縮強度よりも小さい軸方向圧縮強度を有する第2の構造体と、を備え、前記第1の構造体は、前記第2の構造体を介して繋がっている管状補強体に関する。 The present invention also relates to a tubular reinforcing body used for producing a tubular artificial organ by forming a connective tissue around it, and has a predetermined axial compressive strength and a predetermined radial strength, and is configured in a tubular shape A plurality of first structures and a second structure having an axial compressive strength smaller than the predetermined axial compressive strength, wherein the first structure is the second structure The present invention relates to a tubular reinforcing body connected through a body.
 また、管状補強体は、一端部及び他端部に配置される2つの前記第1の構造体を含む3以上の前記第1の構造体と、隣り合って配置される2つの前記第1の構造体の間に配置される2以上の前記第2の構造体と、を備えることが好ましい。 Further, the tubular reinforcing body includes three or more first structures including the two first structures disposed at one end and the other end, and the two first structures disposed adjacent to each other. It is preferable to provide two or more second structures disposed between the structures.
 また、前記第1の構造体は、線材によりメッシュ状に構成されることが好ましい。 Moreover, it is preferable that the first structure is configured in a mesh shape with a wire.
 また、前記第2の構造体は、前記第1の構造体を繋ぐ線材により構成されることが好ましい。 Further, it is preferable that the second structure is constituted by a wire connecting the first structure.
 また、前記第1の構造体は、線材によりメッシュ状に構成され、前記第2の構造体を構成する前記線材の径は、前記第1の構造体を構成する前記線材の径よりも細いことが好ましい。 In addition, the first structure is configured in a mesh shape with a wire, and the diameter of the wire constituting the second structure is smaller than the diameter of the wire constituting the first structure. Is preferred.
 また、前記第1の構造体は、線材によりメッシュ状に構成され、前記第2の構造体を構成する前記線材の本数は、前記第1の構造体を構成する前記線材の本数よりも少ないことが好ましい。 Further, the first structure is configured in a mesh shape with a wire, and the number of the wire constituting the second structure is smaller than the number of the wire constituting the first structure. Is preferred.
 また、前記第2の構造体の断面積は第1の構造体断面積よりも小さいことが好ましい。 Moreover, it is preferable that the cross-sectional area of the second structure is smaller than the cross-sectional area of the first structure.
 また、前記管状補強体は、軸方向に所定の長さを有し、線材によりメッシュ状に構成される複数の環状構造体と、軸方向に前記管状補強体の全長に対応する長さを有し、線材によりメッシュ状に構成される管状構造体と、を備え、前記複数の環状構造体は、軸方向に所定の間隔を空けて前記管状構造体の外側又は内側に重なるように配置されて前記管状構造体に対して固定され、前記第1の構造体は、前記複数の環状構造体と前記管状構造体とが重なった部分により構成され、前記第2の構造体は、前記管状構造体のうち、前記複数の環状構造体と重なっていない部分により構成されることが好ましい。 The tubular reinforcing body has a predetermined length in the axial direction and has a plurality of annular structures configured in a mesh shape with a wire, and a length corresponding to the entire length of the tubular reinforcing body in the axial direction. A plurality of annular structures that are arranged so as to overlap the outer side or the inner side of the tubular structure at predetermined intervals in the axial direction. The tubular structure is fixed to the tubular structure, and the first structure is constituted by a portion where the plurality of annular structures and the tubular structure are overlapped, and the second structure is the tubular structure. Among these, it is preferable that the plurality of annular structures are configured by portions that do not overlap.
 また、本発明は、生体組織材料が存在する環境下で形成され、線維性組織で構成される管状組織体と、前記管状組織体に内包される上記の管状補強体と、を備える管状人工臓器に関する。 The present invention also provides a tubular artificial organ comprising a tubular tissue body formed in an environment where a biological tissue material is present and composed of a fibrous tissue, and the above-described tubular reinforcement body included in the tubular tissue body. About.
 また、前記管状組織体は、生体内に鋳型を埋植することにより管状に形成され、前記管状補強体が全長に亘って内包されることが好ましい。 Further, it is preferable that the tubular tissue body is formed into a tubular shape by implanting a template in a living body, and the tubular reinforcing body is included over the entire length.
 本発明によれば、管壁の肉厚を厚くしなくても内腔を保持可能な所定の強度を有し、生体適合性や成長性に優れた管状人工臓器、当該管状人工臓器の作成に用いられる基材、及び管状人工臓器を作製するために用いられる管状補強体を得ることができる。 According to the present invention, a tubular artificial organ having a predetermined strength capable of holding a lumen without increasing the wall thickness of the tube wall and excellent in biocompatibility and growth, and the production of the tubular artificial organ The base material used and the tubular reinforcement used for producing the tubular artificial organ can be obtained.
本発明の第1実施形態に係る管状人工臓器を模式的に示す斜視図である。1 is a perspective view schematically showing a tubular artificial organ according to a first embodiment of the present invention. 第1実施形態における管状補強体を示す側面図である。It is a side view which shows the tubular reinforcement body in 1st Embodiment. 管状人工臓器の製造に用いられる鋳型を示す分解斜視図である。It is a disassembled perspective view which shows the casting_mold | template used for manufacture of a tubular artificial organ. 本発明の第2実施形態に係る管状補強体の例を示す側面図である。It is a side view which shows the example of the tubular reinforcement body which concerns on 2nd Embodiment of this invention. 管腔保持力及びヤング率(圧縮弾性率)の測定方法を説明するための図である。It is a figure for demonstrating the measuring method of lumen retention force and Young's modulus (compression elastic modulus). 実施例1の管状人工臓器の写真である。2 is a photograph of the tubular artificial organ of Example 1. 実施例2の管状人工臓器の写真及び移植された状態の写真である。It is the photograph of the tubular artificial organ of Example 2, and the photograph of the transplanted state. 実施例2における移植から13週経過後の組織の内側及び外側からの観察写真である。It is an observation photograph from the inside and the outside of the tissue 13 weeks after the transplantation in Example 2. 実施例2における移植から13週経過後に摘出された組織の観察写真である。2 is an observation photograph of a tissue extracted after 13 weeks from transplantation in Example 2. FIG. 比較例1における管状人工臓器の移植時の観察写真及び移植から25日経過後の観察写真である。It is the observation photograph at the time of the transplantation of the tubular artificial organ in the comparative example 1, and the observation photograph 25 days after the transplantation. 本発明の第3実施形態に係る管状補強体を模式的に示す図である。It is a figure which shows typically the tubular reinforcement body which concerns on 3rd Embodiment of this invention. 第3実施形態に係る管状補強体の他の例を模式的に示す図である。It is a figure which shows typically the other example of the tubular reinforcement body which concerns on 3rd Embodiment. 第3実施形態に係る管状補強体の他の例を模式的に示す図である。It is a figure which shows typically the other example of the tubular reinforcement body which concerns on 3rd Embodiment. 第2の構造体における軸方向の圧縮強度を低下させる方法についての説明図である。It is explanatory drawing about the method of reducing the axial compressive strength in a 2nd structure. 本発明の第4実施形態に係る管状補強体を模式的に示す図である。It is a figure which shows typically the tubular reinforcement body which concerns on 4th Embodiment of this invention. 図12に示す管状補強体における環状構造体を管状構造体に固定する方法についての説明図である。It is explanatory drawing about the method of fixing the annular structure in the tubular reinforcement shown in FIG. 12 to a tubular structure. 実施例3の管状補強体である。3 is a tubular reinforcing body of Example 3. FIG. 実施例4の管状補強体である。4 is a tubular reinforcing body of Example 4. FIG. 実施例5の管状補強体である。10 is a tubular reinforcing body of Example 5. FIG. 管腔保持力及び圧縮強度の測定方法を説明するための図である。It is a figure for demonstrating the measuring method of lumen retention force and compressive strength. 圧縮強度の測定結果を示すグラフである。It is a graph which shows the measurement result of compressive strength.
 本明細書及び特許請求の範囲において、「管状人工臓器」とは、気管、食道、胃、十二指腸、小腸、大腸、胆管、尿管、卵管、血管といった管腔状の臓器、器官の代替物として人工的に作製され、移植に用いられるものである。 In the present specification and claims, the term “tubular artificial organ” refers to a luminal organ or organ substitute such as trachea, esophagus, stomach, duodenum, small intestine, large intestine, bile duct, ureter, oviduct, and blood vessel. Are artificially produced and used for transplantation.
 また、「生体組織材料」とは、所望の生体由来組織を形成するうえで必要な物質のことであり、例えば、体細胞(線維芽細胞、平滑筋細胞、内皮細胞等)や多能性幹細胞(ES細胞、iPS細胞等)等のヒト細胞、各種たんぱく質類(コラーゲン、エラスチン)やヒアルロン酸等の糖類等の栄養、その他、細胞の成長や分化を促進する細胞成長因子、サイトカイン等の生体内に存在する各種の生理活性物質が挙げられる。この「生体組織材料」には、ヒト、イヌ、ウシ、ブタ、ヤギ、ヒツジ等の哺乳類動物、鳥類、魚類、その他の動物に由来するもの、又はこれと同等の人工材料が含まれる。 In addition, “biological tissue material” is a substance necessary for forming a desired biological tissue, for example, somatic cells (fibroblasts, smooth muscle cells, endothelial cells, etc.) and pluripotent stem cells. Human cells such as ES cells, iPS cells, etc., nutrients such as various proteins (collagen, elastin) and saccharides such as hyaluronic acid, and other in vivo organisms such as cell growth factors and cytokines that promote cell growth and differentiation And various physiologically active substances present in The “biological tissue material” includes materials derived from mammals such as humans, dogs, cows, pigs, goats and sheep, birds, fish and other animals, or artificial materials equivalent thereto.
 また、鋳型を埋植する「生体」とは、動物(ヒト、イヌ、ウシ、ブタ、ヤギ、ヒツジ等の哺乳類動物、鳥類、魚類、その他の動物)の生体内(例えば、四肢部、肩部、背部又は腹部等の皮下、もしくは腹腔内への埋入)のことをいう。 In addition, the “living body” in which the template is implanted refers to the living body (eg, extremities, shoulders) of animals (mammals such as humans, dogs, cows, pigs, goats, sheep, birds, fish, and other animals). , Subcutaneous in the back or abdomen, or embedding in the abdominal cavity).
 また、「線維性組織」とは、線維芽細胞が産生するコラーゲンを主成分とする線維性の組織であって、生体内において異物のカプセル化により形成されるものをいう。 Further, “fibrous tissue” refers to a fibrous tissue mainly composed of collagen produced by fibroblasts, which is formed by encapsulation of a foreign substance in a living body.
 また、「カプセル化」とは、生体内において異物の周りに線維芽細胞が集まり、主に線維芽細胞と線維芽細胞が産生するコラーゲンからなる線維性組織体が異物を覆うことにより生体内において異物を隔離する生体反応をいう。
 このカプセル化を利用して、シリコン樹脂や塩化ビニル樹脂やステンレス等の非吸収性、非分解性の材料で構成される所定の形状の鋳型を、無菌状態が維持される生体内に一定期間埋植し、カプセル化された鋳型を取り出して、鋳型を取り除くことにより、所定の形状に形成された線維性組織(結合組織)を得ることができる。このような組織形成術を以下、「生体内組織形成術」と呼ぶものとする。生体組織形成術は、無菌状態が維持され、栄養や酸素の供給が確保されている生体内で人工臓器として線維性組織を形成することができる。また、自己の体内で線維性組織を形成した場合、免疫拒絶が生じないため、生体適合性の高い人工臓器を得ることができる。
In addition, “encapsulation” means that fibroblasts gather around a foreign substance in a living body, and a fibrous tissue body mainly composed of fibroblasts and collagen produced by fibroblasts covers the foreign substance in the living body. A biological reaction that isolates foreign matter.
Using this encapsulation, molds of a predetermined shape made of non-absorbable and non-degradable materials such as silicon resin, vinyl chloride resin, and stainless steel are embedded in a living body that maintains sterility for a certain period of time. By implanting and removing the encapsulated template and removing the template, a fibrous tissue (connective tissue) formed in a predetermined shape can be obtained. Hereinafter, such a tissue shaping technique is referred to as “in vivo tissue shaping technique”. Biological tissue formation can form a fibrous tissue as an artificial organ in a living body in which aseptic conditions are maintained and supply of nutrients and oxygen is ensured. In addition, when a fibrous tissue is formed in the body, immune rejection does not occur, and thus an artificial organ with high biocompatibility can be obtained.
 一方、生体外の人工環境において培養により線維性組織を形成する場合は、一連の細胞操作(例えば、細胞の採取、分離、必要に応じて分化、増殖、足場への播種、力学的負荷等の適切な条件下での生着化等)を無菌状態で行う必要があり、生体内組織形成術による場合に比べて、手間やコストがかかる。
 従って、以下に説明する各実施形態では、生体内組織形成術を利用して形成される人工臓器、及び人工臓器の作製に用いられる管状補強体について説明する。本発明の管状補強体は、上述の鋳型内に配置されるものであり、カプセル化により周囲に線維性組織(結合組織)が形成されることにより管状人工臓器の全長に亘りに内包されて、管状人工臓器に所望の機械的特性を与えるものである。
On the other hand, when forming a fibrous tissue by culturing in an in vitro artificial environment, a series of cell manipulations (for example, cell collection, separation, differentiation, proliferation, seeding on a scaffold, mechanical load, etc. as necessary) Engraftment under appropriate conditions, etc.) must be performed under aseptic conditions, which is more laborious and costly than in the case of in vivo histogenesis.
Therefore, in each embodiment described below, an artificial organ formed by using in vivo tissue forming technique and a tubular reinforcing body used for producing the artificial organ will be described. The tubular reinforcing body of the present invention is arranged in the above-described mold, and is encapsulated over the entire length of the tubular artificial organ by forming a fibrous tissue (connective tissue) around by encapsulation. It gives desired mechanical properties to a tubular artificial organ.
 以下、本発明の各実施形態について、図面を参照しながら説明する。 Hereinafter, each embodiment of the present invention will be described with reference to the drawings.
<第1実施形態>
 図1~図3を参照して、第1実施形態に係る管状人工臓器1Aについて説明する。
 図1に示すように、管状人工臓器1Aは、管状組織体10と、管状補強体20Aと、を含んで構成される。
<First Embodiment>
A tubular artificial organ 1A according to the first embodiment will be described with reference to FIGS.
As shown in FIG. 1, the tubular artificial organ 1A includes a tubular tissue body 10 and a tubular reinforcing body 20A.
 管状組織体10は、主にコラーゲンからなる線維性組織で円筒形状に構成されており、この線維性組織は、生体組織形成術を用いて、生体内に所定の形状の鋳型(基材)を埋植することにより、鋳型に対応した形状に形成される。鋳型の構成については、後に詳細に説明する。 The tubular tissue body 10 is composed of a fibrous tissue mainly made of collagen and is formed into a cylindrical shape. This fibrous tissue is formed with a template (base material) having a predetermined shape in a living body by using a biopsy technique. By embedding, a shape corresponding to the mold is formed. The configuration of the mold will be described in detail later.
 管状補強体20Aは、管状組織体10と同一の円筒形状に形成されて、管状組織体10の管壁に内包されるように設けられる(図1参照)。管状補強体20Aは、外圧や陰圧により管状組織体10の内腔が潰れないように、内腔を保持可能な程度の所定の強度を備えている。 The tubular reinforcing body 20A is formed in the same cylindrical shape as the tubular tissue body 10, and is provided so as to be included in the tube wall of the tubular tissue body 10 (see FIG. 1). The tubular reinforcing body 20A has a predetermined strength enough to hold the lumen so that the lumen of the tubular tissue body 10 is not crushed by external pressure or negative pressure.
 管状補強体20Aは、図2に示すように網目状(メッシュ状)に構成されており、管状組織体10の線維性組織が網目状構造に入り込むことができる。よって、管状組織体10と管状補強体20Aとを密着させて一体化することができ、管状組織体10に強度を付与することができる。 As shown in FIG. 2, the tubular reinforcing body 20 </ b> A has a mesh shape (mesh shape), and the fibrous tissue of the tubular tissue body 10 can enter the mesh structure. Therefore, the tubular tissue body 10 and the tubular reinforcing body 20A can be brought into close contact with each other, and the strength can be imparted to the tubular tissue body 10.
 また、管状補強体20Aは、体内で分解、吸収される生分解性の材料で構成されるので、管状人工臓器1Aを移植して所定期間が経過した後は、体内に異物として残りにくい。よって、組織再生を阻害する等の悪影響が低減され、管状人工臓器1Aの成長性も妨げない。
 ここで、所定期間とは、管状組織体10を構成する線維性組織が自己組織に置換して組織再生が完了するまでの間であり、管状補強体20Aの材料としては、組織再生が完了するまでは補強体としての機能を保つように、体内での分解、吸収が遅い生分解性の材料であることが好ましい。一例として、管状人工臓器1Aが気管に移植される場合、移植後6ヶ月から12ヶ月の期間は形状を保ち、その後ゆっくりと分解、吸収されることが好ましい。移植後6ヶ月から12ヶ月の期間は、気管を構成する軟骨等の再生速度が遅い組織形成に必要な期間であり、その後ゆっくりと、分解、吸収されることで、過剰な炎症の発生を抑えることができる。
Further, since the tubular reinforcing body 20A is composed of a biodegradable material that is decomposed and absorbed in the body, it is difficult for the tubular reinforcing body to remain as a foreign substance in the body after the tubular artificial organ 1A has been transplanted and a predetermined period has elapsed. Therefore, adverse effects such as inhibiting tissue regeneration are reduced, and the growth of the tubular artificial organ 1A is not hindered.
Here, the predetermined period is a period until the fibrous tissue constituting the tubular tissue body 10 is replaced with the self tissue and the tissue regeneration is completed, and the tissue regeneration is completed as a material of the tubular reinforcing body 20A. Until then, a biodegradable material that is slow to decompose and absorb in the body is preferable so as to maintain the function as a reinforcing body. As an example, when the tubular artificial organ 1A is transplanted into the trachea, it is preferable that the shape is maintained for 6 to 12 months after the transplantation, and then slowly decomposed and absorbed. The period from 6 to 12 months after transplantation is a period necessary for tissue formation with a slow regeneration rate such as cartilage constituting the trachea, and then slowly decomposes and absorbs to suppress the occurrence of excessive inflammation. be able to.
 管状補強体20Aの形成方法の一例として、図2に示すように、複数本の生分解性の線材21を用いて組編みにより形成する方法が挙げられる。生分解性の線材21の種類、径及び編みピッチPを適宜変更することで、管状補強体20Aの強度や生体内における分解速度を調整することができる。ここで、編みピッチPとは、図2に示すように、軸方向における網目の大きさ、即ち、生分解性の線材21の交差により形成される交点間の距離を表すものとする。 As an example of a method of forming the tubular reinforcing body 20A, a method of forming by braiding using a plurality of biodegradable wires 21 as shown in FIG. By appropriately changing the type, diameter and knitting pitch P of the biodegradable wire 21, the strength of the tubular reinforcing body 20 </ b> A and the decomposition rate in the living body can be adjusted. Here, the knitting pitch P represents the size of the mesh in the axial direction, that is, the distance between the intersections formed by the intersection of the biodegradable wires 21 as shown in FIG.
 生分解性の材料としては、生体適合性に優れるポリエステルが好ましく、ポリ乳酸、ポリグリコール酸、ポリ(ε-カプロラクトン)、ポリジオキサノン(トリメチレンカーボネートの重合体)やこれらの共重合体を使用することができる。そして、これらの材料からなる繊維を生分解性の線材21として用いることができる。 As the biodegradable material, polyester excellent in biocompatibility is preferable, and polylactic acid, polyglycolic acid, poly (ε-caprolactone), polydioxanone (polymer of trimethylene carbonate) or a copolymer thereof should be used. Can do. A fiber made of these materials can be used as the biodegradable wire 21.
 また、これらの生分解性の材料には、人工臓器として埋植された後に組織再生を促進させたり、炎症反応を抑制させたりすることを目的に、成長因子や抗炎症剤等の生理活性を有する薬剤を含侵させてもよい。成長因子として例えば、血小板由来増殖因子(PDGF)、トランスフォーミング成長因子-α(TGF-α)、トランスフォーミング成長因子-β(TGF-β)、インスリン様増殖因子(IGF)、コロニー刺激因子(CSF)、線維芽細胞成長因子(FGF)、上皮細胞成長因子(EGF)、インスリン、血小板由来創傷治癒因子(PDWHF)、血管内皮細胞増殖因子(VEGF)、神経成長因子(NGF)、肝細胞増殖因子(HGF)及び骨形成タンパク質(BMP)が挙げられる。
 抗炎症剤として例えばコルチゾール、デキサメタゾン、ベタメタゾン、プレドニゾロン、トリアムシノロン、アセチルサリチル酸、エテンザミド、ジフルニサル、ロキソブロフェン、イブプロフェン、インドメタシン、ジクロフェナク、メロキシカム、フェルデン、アセトアミノフェンが挙げられる。
In addition, these biodegradable materials have physiological activities such as growth factors and anti-inflammatory agents for the purpose of promoting tissue regeneration and suppressing inflammatory reactions after being implanted as an artificial organ. You may impregnate the medicine which has. Examples of growth factors include platelet-derived growth factor (PDGF), transforming growth factor-α (TGF-α), transforming growth factor-β (TGF-β), insulin-like growth factor (IGF), colony stimulating factor (CSF). ), Fibroblast growth factor (FGF), epidermal growth factor (EGF), insulin, platelet-derived wound healing factor (PDWHF), vascular endothelial growth factor (VEGF), nerve growth factor (NGF), hepatocyte growth factor (HGF) and bone morphogenetic protein (BMP).
Examples of anti-inflammatory agents include cortisol, dexamethasone, betamethasone, prednisolone, triamcinolone, acetylsalicylic acid, etenzamide, diflunisal, loxobrofen, ibuprofen, indomethacin, diclofenac, meloxicam, ferden, and acetaminophen.
 次に、図3を参照して、生体組織形成術により管状人工臓器1Aを作製する方法について説明する。 Next, with reference to FIG. 3, a method for producing the tubular artificial organ 1A by the biopsy will be described.
 図3に示す鋳型100は、所定の外径を有するシリコン樹脂製の芯棒110及び所定の内径を有し芯棒110が内側に固定可能に設けられる外筒としてのステンレス製の円筒120で構成される。ステンレス製の円筒120は、本体部121と、蓋部122と、を備えており、本体部121には、芯棒110と円筒120との間隙に生体組織材料が侵入可能なように複数のスリット123が形成される。
 芯棒110と円筒120との間に管状補強体20Aを配置した状態で、鋳型100を皮下や腹腔等の生体内に1~2ヶ月程度の所定の期間、埋植する。
 鋳型100が生体内に埋植されている間に、円筒120に形成されたスリット123から芯棒110と円筒120の間隙にカプセル化による線維性組織が形成されていく。この際、線維性組織が、管状補強体20Aの網目状構造に入り込んだ状態で芯棒110と円筒120の間隙を満たしていく。
 所定の期間経過後、鋳型100を生体内から取り出して、芯棒110及び円筒120を取り除くことにより、外径を円筒120の内径とし、内径を芯棒110の外径とする管状組織体10の管壁に管状補強体20Aが内包された管状人工臓器1Aを得ることができる。つまり、本実施形態では、芯棒110と、円筒120と、これら芯棒110と円筒120との間の空間に配置される管状補強体20Aと、を基材として管状人工臓器1Aが作製される。
A mold 100 shown in FIG. 3 includes a silicon resin core rod 110 having a predetermined outer diameter and a stainless steel cylinder 120 as an outer cylinder having a predetermined inner diameter and provided with the core rod 110 fixed inside. Is done. The stainless steel cylinder 120 includes a main body portion 121 and a lid portion 122, and a plurality of slits are provided in the main body portion 121 so that a living tissue material can enter the gap between the core rod 110 and the cylinder 120. 123 is formed.
With the tubular reinforcing body 20A disposed between the core rod 110 and the cylinder 120, the mold 100 is implanted in a living body such as subcutaneous or abdominal cavity for a predetermined period of about 1 to 2 months.
While the mold 100 is implanted in the living body, a fibrous tissue by encapsulation is formed in the gap between the core rod 110 and the cylinder 120 from the slit 123 formed in the cylinder 120. At this time, the fibrous tissue fills the gap between the core rod 110 and the cylinder 120 in a state of entering the network structure of the tubular reinforcing body 20A.
After elapse of a predetermined period, the mold 100 is taken out from the living body, and the core rod 110 and the cylinder 120 are removed, whereby the tubular tissue body 10 having the outer diameter as the inner diameter of the cylinder 120 and the inner diameter as the outer diameter of the core rod 110 is obtained. A tubular artificial organ 1A in which a tubular reinforcement body 20A is included in the tube wall can be obtained. That is, in this embodiment, the tubular artificial organ 1A is manufactured using the core rod 110, the cylinder 120, and the tubular reinforcing body 20A disposed in the space between the core rod 110 and the cylinder 120 as a base material. .
 以上説明した第1実施形態に係る管状人工臓器1Aは、移植後、管状組織体10を構成する線維性組織が体内で細胞が生着するための足場となると共に、自己組織と徐々に置き変わっていくため、成長途中の臓器に適用された場合、管径の増大に追随可能であるという成長性を備える。また、径方向に陰圧や外圧がかかる管状臓器に適用しても内腔を維持することができる。 In the tubular artificial organ 1A according to the first embodiment described above, the fibrous tissue constituting the tubular tissue body 10 becomes a scaffold for engraftment of cells in the body after transplantation, and gradually replaces the self tissue. Therefore, when applied to an organ in the middle of growth, it has the growth ability of being able to follow the increase in tube diameter. In addition, the lumen can be maintained even when applied to a tubular organ in which negative pressure or external pressure is applied in the radial direction.
 第1実施形態に係る管状人工臓器1Aによれば、以下の効果を奏する。 The tubular artificial organ 1A according to the first embodiment has the following effects.
 (1)管状人工臓器1Aは、生体組織材料が存在する環境下で所定の形状の鋳型100を用いて形成される線維性組織で構成される管状組織体10と、生分解性の線材21で構成され管状組織体10に内包される管状補強体20Aと、を備えるものとした。これにより、管状人工臓器1Aを、管状組織体10の管壁の肉厚を厚くしなくても内腔を保持可能な所定の強度を有するように形成できる。よって、例えば、管壁の肉厚が薄い血管等、管壁の肉厚の厚さにかかわらず様々な管状臓器に管状人工臓器1Aを適用することができる。また、管状組織体10が高い生体適合性と成長性を備える線維性組織により構成され、管状補強体20Aが移植後に分解、吸収されて管状組織体10の成長性を妨げないので、管状人工臓器1Aは、高い生体適合性と成長性を備える。よって、小児の臓器移植への適用も期待できる。 (1) A tubular artificial organ 1A is composed of a tubular tissue body 10 composed of a fibrous tissue formed using a template 100 having a predetermined shape in an environment where a biological tissue material exists, and a biodegradable wire 21. And a tubular reinforcement body 20 </ b> A configured and enclosed in the tubular tissue body 10. Accordingly, the tubular artificial organ 1A can be formed to have a predetermined strength capable of holding the lumen without increasing the wall thickness of the tube wall of the tubular tissue body 10. Therefore, for example, the tubular artificial organ 1A can be applied to various tubular organs, such as a blood vessel having a thin tube wall, regardless of the thickness of the tube wall. Further, the tubular tissue body 10 is composed of a fibrous tissue having high biocompatibility and growth, and the tubular reinforcing body 20A is decomposed and absorbed after transplantation so that the growth of the tubular tissue body 10 is not hindered. 1A has high biocompatibility and growth. Therefore, application to organ transplantation in children can be expected.
 (2)管状補強体20Aを網目状に構成することで、管状組織体10の線維性組織を管状補強体20Aの網目状構造に入り込ませることができるので、管状組織体10と管状補強体20Aとを密着させて一体化することができる。 (2) Since the fibrous tissue of the tubular tissue body 10 can enter the network structure of the tubular reinforcement body 20A by configuring the tubular reinforcement body 20A in a mesh shape, the tubular tissue body 10 and the tubular reinforcement body 20A And can be integrated.
<第2実施形態>
 図4を参照して、第2実施形態に係る管状人工臓器1Bについて説明する。第2実施形態の管状人工臓器1Bは、管状補強体20Bの構成が第1実施形態におけるものと異なる。尚、第2実施形態の説明にあたって、同一構成要件については同一符号を付し、その説明を省略もしくは簡略化する。
<Second Embodiment>
A tubular artificial organ 1B according to the second embodiment will be described with reference to FIG. The tubular artificial organ 1B of the second embodiment is different from that of the first embodiment in the configuration of the tubular reinforcing body 20B. In the description of the second embodiment, the same components are denoted by the same reference numerals, and the description thereof is omitted or simplified.
 管状人工臓器1Bは、管状組織体10と、管状補強体20Bと、を含んで構成される。
 管状補強体20Bは、第1実施形態の場合と同様に、生分解性の材料で網目状に構成され管状組織体10と略同等の円筒形状に形成されて管状組織体10の管壁に設けられ、管状組織体10の内腔を保持可能な所定の強度を有するように構成される。第2実施形態に係る管状補強体20Bは、軸方向の収縮が規制されている点で第1実施形態に係る管状補強体20Aと異なる。
The tubular artificial organ 1B includes a tubular tissue body 10 and a tubular reinforcing body 20B.
As in the case of the first embodiment, the tubular reinforcing body 20B is formed in a mesh shape with a biodegradable material, is formed in a cylindrical shape substantially equivalent to the tubular tissue body 10, and is provided on the tube wall of the tubular tissue body 10. And having a predetermined strength capable of holding the lumen of the tubular tissue body 10. The tubular reinforcement body 20B according to the second embodiment is different from the tubular reinforcement body 20A according to the first embodiment in that axial contraction is restricted.
 図4に、軸方向の収縮が規制された管状補強体20Bの構成例である管状補強体201B,202B,203Bを示す。 FIG. 4 shows tubular reinforcements 201B, 202B, and 203B, which are structural examples of the tubular reinforcement 20B in which axial contraction is restricted.
 図4(a)に示す管状補強体201Bは、複数の生分解性の線材21を用いて組編みすることにより網目状の円筒形状に構成され、生分解性の線材21同士の交差部が超音波溶着により接合された複数の接合部23を備える。生分解性の線材21同士が接合部23において接合されているので、管状補強体201Bの軸方向の収縮が規制される。尚、接合の方法については、超音波溶着の他、熱溶着や接着剤等を用いてもよい。 A tubular reinforcing body 201B shown in FIG. 4A is formed into a mesh-like cylindrical shape by braiding using a plurality of biodegradable wire rods 21, and the intersecting portion between the biodegradable wire rods 21 is super-long. A plurality of joints 23 joined by sonic welding are provided. Since the biodegradable wires 21 are joined at the joint 23, contraction in the axial direction of the tubular reinforcement 201B is restricted. In addition, about the joining method, you may use heat welding, an adhesive agent, etc. other than ultrasonic welding.
 図4(b)に示す管状補強体202Bは、1本の生分解性の線材21をニット編み(リリアン編みともいう)することにより網目状の円筒形状に形成される。管状補強体202Bをニット編みにより、複数のループが連結した構造とすることにより、軸方向の圧縮に対して強度を付与することができる。よって、管状補強体202Bの軸方向の収縮が規制される。尚、ニット編みとは、編み針への1回の糸かけ操作によって1個の編目を形成する動作を表す。 The tubular reinforcing body 202B shown in FIG. 4 (b) is formed into a mesh-like cylindrical shape by knit-knitting (also called Lilian knitting) one biodegradable wire 21. By making the tubular reinforcing body 202B into a structure in which a plurality of loops are connected by knitting, strength can be imparted against compression in the axial direction. Therefore, contraction in the axial direction of the tubular reinforcement 202B is restricted. The knit knitting represents an operation of forming one stitch by a single threading operation on a knitting needle.
 図4(c)に示す管状補強体203Bは、生分解性の材料で構成される軸方向に収縮性を有さない円筒を、レーザーや水流により網目構造を有するようにカットすることにより形成される。よって、管状補強体203Bの軸方向の収縮が規制される。尚、生分解性の材料としては、前述の生分解性の材料を用いることができる。 The tubular reinforcing body 203B shown in FIG. 4 (c) is formed by cutting an axially contractible cylinder made of a biodegradable material so as to have a network structure by laser or water flow. The Therefore, the axial contraction of the tubular reinforcing body 203B is restricted. As the biodegradable material, the aforementioned biodegradable material can be used.
 図4で例示した他、熱可塑性の生分解性樹脂を射出成型することにより、網目構造を有し、軸方向の収縮が規制された管状補強体20Bを作製してもよい。 In addition to the example illustrated in FIG. 4, a tubular reinforcement body 20 </ b> B having a network structure and restricted in axial contraction may be manufactured by injection molding a thermoplastic biodegradable resin.
 以上説明した管状人工臓器1Bは、軸方向の収縮が規制されるので、例えば、軸方向に外圧がかかる気管等の管状臓器の移植に好適に適用される。 Since the tubular artificial organ 1B described above is restricted from contraction in the axial direction, it is preferably applied to transplantation of a tubular organ such as a trachea in which external pressure is applied in the axial direction.
 第2実施形態に係る管状人工臓器1Bによれば、上述の(1)及び(2)の効果に加えて、以下の効果を奏する。
 (3)管状人工臓器1Bを、軸方向の収縮が規制されている管状補強体20Bを含んで構成した。これにより、管状人工臓器1Bが軸方向に収縮することを規制できるので、より良好に内腔を維持させられる。
The tubular artificial organ 1B according to the second embodiment has the following effects in addition to the effects (1) and (2) described above.
(3) The tubular artificial organ 1B includes the tubular reinforcing body 20B in which axial contraction is restricted. Thereby, since it can control that tubular artificial organ 1B contracts in the direction of an axis, a lumen can be maintained better.
 (4)管状補強体201Bを、複数の生分解性の線材21を用いて組編みにより形成され、生分解性の線材21同士の交差部が接合された複数の接合部23を含んで構成した。これにより、管状補強体201Bの軸方向の収縮を好適に規制できるので、管状人工臓器1Bの軸方向の収縮を好適に規制できる。 (4) The tubular reinforcing body 201B is formed by braiding using a plurality of biodegradable wire rods 21 and includes a plurality of joint portions 23 in which crossing portions of the biodegradable wire rods 21 are joined. . Thereby, since shrinkage | contraction of the axial direction of the tubular reinforcement body 201B can be controlled suitably, shrinkage | contraction of the axial direction of the tubular artificial organ 1B can be controlled suitably.
 (5)管状補強体202Bを、生分解性の線材21を用いてニット編みにより形成されることにより軸方向の収縮が規制されるものとした。これにより、管状人工臓器1Bの軸方向の収縮を規制することができる。 (5) The tubular reinforcement 202B is formed by knit knitting using the biodegradable wire 21, so that axial shrinkage is restricted. Thereby, contraction of the axial direction of the tubular artificial organ 1B can be regulated.
 <実施例>
 次に、本発明の各実施形態に係る管状人工臓器の構成を人工血管等よりも高い強度が要求される人工気管をビーグル犬に移植適用した実施例について、詳細に説明する。
<Example>
Next, an example in which the configuration of the tubular artificial organ according to each embodiment of the present invention is applied to a beagle dog with an artificial trachea that requires higher strength than an artificial blood vessel or the like will be described in detail.
 表1に実施例1~5の管状補強体の構成を示す。 Table 1 shows the configurations of the tubular reinforcing bodies of Examples 1 to 5.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 (管状補強体の構成)
 表1を参照しながら、実施例1~5の管状補強体の構成について説明する。
 生分解性の線材21として、ポリL-乳酸(重量平均分子量450,000、融点195℃)を紡糸延伸して形成されたモノフィラメントを用いて、いずれも内径15mm、長さ40mmの円筒形状をした実施例1~5の管状補強体を作製した。生分解性の線材21の直径は、実施例1~4は0.3mmで、実施例5のみ0.4mmである。
 実施例1及び2に示す管状補強体は、複数本の生分解性の線材21を組編みすることにより形成されたものであり、第1実施形態に係る管状補強体20Aの構成に対応する実施例である(図2参照)。実施例3~5に示す管状補強体は、軸方向の収縮が規制されるように形成されたものであり、第2実施形態に係る管状補強体20Bの構成(実施例3は、図4(a)に示す管状補強体201Bの構成、実施例4及び5は、図4(b)に示す管状補強体202Bの構成)に対応する実施例である。
(Configuration of tubular reinforcement)
With reference to Table 1, the configuration of the tubular reinforcements of Examples 1 to 5 will be described.
As the biodegradable wire 21, a monofilament formed by spinning and drawing poly L-lactic acid (weight average molecular weight 450,000, melting point 195 ° C.) was used, and each of them had a cylindrical shape with an inner diameter of 15 mm and a length of 40 mm. Tubular reinforcements of Examples 1 to 5 were produced. The diameter of the biodegradable wire 21 is 0.3 mm in Examples 1 to 4, and 0.4 mm only in Example 5.
The tubular reinforcing bodies shown in Examples 1 and 2 are formed by braiding a plurality of biodegradable wire rods 21, and an implementation corresponding to the configuration of the tubular reinforcing body 20A according to the first embodiment. It is an example (refer FIG. 2). The tubular reinforcing bodies shown in Examples 3 to 5 are formed so that axial contraction is restricted, and the configuration of the tubular reinforcing body 20B according to the second embodiment (Example 3 is shown in FIG. The configuration of the tubular reinforcing body 201B shown in a), Examples 4 and 5 are examples corresponding to the configuration of the tubular reinforcing body 202B shown in FIG. 4B.
 (強度の測定方法)
 管状補強体の物性は、径方向の強度の指標となる「管腔保持力」と長軸方向の強度として「ヤング率(圧縮弾性率)」で評価した。これら物性の測定には圧縮試験機(オートグラフAG-X Plus、島津製作所製)を用いた。
 管腔保持力の測定は、図5(a)に示すように、軸方向の動きを規制する冶具J(管状補強体の長さに調整)に管状補強体を配置して、管状補強体を、外径が30%になるまで上部から押し子PLで押圧して圧縮強度を測定した。管腔保持力[N・mm]は、圧縮強度[N]×(管状補強体の直径)[mm]/管状補強体の軸方向の長さ[mm]により求められる。
 また、軸方向のヤング率は、図5(b)に示すように、管状補強体を垂直に配置して、管状補強体を長さが90%になるまで上部から押し子PLで押圧して圧縮強度を測定した。得られた0~10%ひずみ領域における応力ひずみ曲線の傾きから最大ばね定数[N/mm]を求めた。ヤング率E(MPa)は、E=ばね定数[N/mm]×初期長[mm]/管状補強体の断面積[mm]により求められる。
(Measurement method of strength)
The physical properties of the tubular reinforcement were evaluated by “Young's modulus (compression elastic modulus)” as “luminal retention strength” which is an index of strength in the radial direction and strength in the long axis direction. A compression tester (Autograph AG-X Plus, manufactured by Shimadzu Corporation) was used to measure these physical properties.
As shown in FIG. 5 (a), the lumen holding force is measured by placing the tubular reinforcement on a jig J (adjusted to the length of the tubular reinforcement) that regulates the movement in the axial direction. The compression strength was measured by pressing from above with the pusher PL until the outer diameter reached 30%. The lumen holding force [N · mm] is determined by compressive strength [N] × (diameter of tubular reinforcement) 2 [mm 2 ] / axial length [mm] of the tubular reinforcement.
Further, as shown in FIG. 5 (b), the axial Young's modulus is determined by placing the tubular reinforcement body vertically and pressing the tubular reinforcement body from above with a pusher PL until the length reaches 90%. The compressive strength was measured. The maximum spring constant [N / mm] was determined from the slope of the obtained stress-strain curve in the 0-10% strain region. The Young's modulus E (MPa) is obtained by E = spring constant [N / mm] × initial length [mm] / cross-sectional area [mm 2 ] of the tubular reinforcement.
 (強度の測定結果)
 実施例1~5の管状補強体の管腔保持力、圧縮弾性率、及び、比較例1の管状人工臓器の管腔保持力について測定した結果について詳細に説明する。
(Measurement result of strength)
The results of measuring the lumen holding force and compression elastic modulus of the tubular reinforcements of Examples 1 to 5 and the lumen holding force of the tubular artificial organ of Comparative Example 1 will be described in detail.
 表1に示すように、実施例1~5の管状補強体は、いずれも2.0[N・mm]以上の管腔保持力を有していた。
 管腔保持力について、編み方が同じ組編みであり、編みピッチが大きい実施例1と小さい実施例2とを比較すると、実施例2の方が大きい管腔保持力を有していた。よって、編みピッチを小さくすることで、管腔保持力を大きくできることが確認できた。
 軸方向の圧縮弾性率について、編み方が同じ組編みであり、編みピッチも同じで、生分解性の線材21の交差部が接合されていない実施例2と、接合されている実施例3とを比較すると、実施例3の方が大きいヤング率を有していた。よって、生分解性の線材21の交差部を接合して軸方向の収縮を規制することにより、ヤング率を大きくできることが確認できた。また、軸方向の収縮を規制する手段が異なる実施例3と実施例4とを比較すると、管状補強体を組編みにより形成して生分解性の線材21の交差部を接合する実施例3に比べ、ニット編みにより形成する実施例4の方が、ヤング率を大きく向上できることが確認できた。
 また、編み方が同じニット編みであり、生分解性の線材21の径だけが異なる実施例4と実施例5とを比較すると、生分解性の線材21の径を太くすることで、管腔保持力及びヤング率を向上できることが確認できた。
As shown in Table 1, each of the tubular reinforcing bodies of Examples 1 to 5 had a lumen holding force of 2.0 [N · mm] or more.
Regarding the lumen holding force, the braiding method is the same braiding, and when Example 1 having a large knitting pitch is compared with Example 2 having a small knitting pitch, Example 2 has a larger lumen holding force. Therefore, it was confirmed that the lumen retention force can be increased by reducing the knitting pitch.
Example 2 in which the knitting method is the same, the knitting pitch is the same, and the intersecting portion of the biodegradable wire 21 is not joined, and the joined Example 3 in the axial compression elastic modulus. When compared, Example 3 had a larger Young's modulus. Therefore, it was confirmed that the Young's modulus can be increased by joining the intersecting portions of the biodegradable wire rods 21 to restrict axial contraction. In addition, when Example 3 and Example 4 having different means for restricting axial contraction are compared, Example 3 in which a tubular reinforcing body is formed by braiding and the intersecting portion of the biodegradable wire 21 is joined. In comparison, it was confirmed that Example 4 formed by knit knitting can greatly improve the Young's modulus.
Further, when Example 4 and Example 5 in which the knitting method is the same knitting and only the diameter of the biodegradable wire 21 is compared, the lumen of the biodegradable wire 21 is increased by increasing the diameter. It was confirmed that the holding force and Young's modulus can be improved.
 (鋳型の構成)
 鋳型として、外径15mm、長さ40mmのシリコン樹脂製の丸棒形状の芯棒110と、複数のスリット123が形成された内径17mmの本体部121及び蓋部122を有するステンレス製の円筒120と、を備える鋳型100を用意した(図3参照)。
(Mold structure)
As a mold, a round rod-shaped core rod 110 made of silicon resin having an outer diameter of 15 mm and a length of 40 mm, and a stainless steel cylinder 120 having a main body portion 121 having a plurality of slits 123 and an inner diameter of 17 mm and a lid portion 122, and (See FIG. 3).
 (管状人工臓器の作製)
 上述の鋳型100に、表1に示す条件で作製された実施例1の管状補強体20Aを挿入した。
 このようにして得られた鋳型100をビーグル犬の背部皮下に埋植して生体内組織形成術を行った。鋳型100の埋植手術は、一般的な手技によりビーグル犬に麻酔を施した後、消毒した皮膚を約30mm切開して、滅菌した鋳型100を皮下に配置した後、皮膚を縫合した。埋植手術後、水は自由摂取させ、飼料は体重に応じて与え、通常環境でビーグル犬を飼育した。
 鋳型100を埋植してから2カ月後に、麻酔下でカプセル化された鋳型100を摘出して、鋳型100を取り除き、内径15mm、外径17mm、長さ40mmの円筒形状を有する実施例1の管状人工臓器1Aを得た(図6参照)。この管状人工臓器1Aの管腔保持力を測定したところ、2.5N・mmであった。この結果により、管状人工臓器1Aの管腔保持力は、少なくとも管状補強体20Aが有する2.1N・mmよりも大きいことが示された。得られた管状人工臓器1Aを、移植前に室温で24時間以上、エタノールに浸漬して脱細胞処理を行った。
(Production of tubular artificial organs)
The tubular reinforcing body 20A of Example 1 manufactured under the conditions shown in Table 1 was inserted into the mold 100 described above.
The template 100 obtained in this way was implanted under the back of a beagle dog to perform in vivo tissue formation. In implanting the mold 100, the beagle dog was anesthetized by a general procedure, then the disinfected skin was incised about 30 mm, the sterilized mold 100 was placed subcutaneously, and the skin was sutured. After the implantation operation, water was freely given, food was given according to body weight, and beagle dogs were raised in a normal environment.
Two months after the implantation of the mold 100, the encapsulated mold 100 was removed under anesthesia, the mold 100 was removed, and the cylindrical shape of Example 1 having an inner diameter of 15 mm, an outer diameter of 17 mm, and a length of 40 mm was obtained. A tubular artificial organ 1A was obtained (see FIG. 6). The lumen holding force of the tubular artificial organ 1A was measured and found to be 2.5 N · mm. From this result, it was shown that the lumen holding force of the tubular artificial organ 1A is larger than at least 2.1 N · mm of the tubular reinforcing body 20A. The obtained tubular artificial organ 1A was decellularized by being immersed in ethanol for 24 hours or more at room temperature before transplantation.
 また、実施例1と同様の方法により、実施例2の管状補強体20Aを備える実施例2の管状人工臓器1Aを得た(図7(a)参照)。得られた管状人工臓器1Aを、移植前に室温で24時間以上、エタノールに浸漬して脱細胞処理を行った。 Moreover, the tubular artificial organ 1A of Example 2 provided with the tubular reinforcement body 20A of Example 2 was obtained by the same method as Example 1 (see FIG. 7A). The obtained tubular artificial organ 1A was decellularized by being immersed in ethanol for 24 hours or more at room temperature before transplantation.
 また、上述の鋳型100を用いて、管状補強体を挿入しない他は実施例1及び2と同様の方法により、管状補強体を有しない比較例1の管状人工臓器300を得た。この管状人工臓器300の管腔保持力を測定したところ、0.1N・mmであり、実施例1の管状人工臓器1Aの管腔保持力と比較して低強度であった。 Further, using the mold 100 described above, a tubular artificial organ 300 of Comparative Example 1 having no tubular reinforcement was obtained by the same method as in Examples 1 and 2 except that the tubular reinforcement was not inserted. When the lumen holding force of the tubular artificial organ 300 was measured, it was 0.1 N · mm, which was lower than the lumen holding force of the tubular artificial organ 1A of Example 1.
 (管状人工臓器の気管移植試験)
 実施例1、2及び比較例1の管状人工臓器をビーグル犬の気管に移植する試験を行った結果について説明する。
(Tracheal transplantation test for tubular artificial organs)
The results of a test of transplanting the tubular artificial organs of Examples 1 and 2 and Comparative Example 1 into the trachea of a beagle dog will be described.
 まず、実施例1の管状人工臓器1Aの気管移植試験の内容及び移植後の経過について詳細に説明する。
 全身麻酔下でビーグル犬の気管を1cm切除し、1cm長にカットした実施例1の管状人工臓器1Aを端々吻合で繋いだ。移植後は通常の方法で飼育した。飼育中に異常所見は認められず、呼吸の状態も良好であった。
 移植19週後に内視鏡で移植部の気管を観察した結果、内腔の開存性は保たれていたが内腔径は5.5mmであったため、外径15mmのバルーンカテーテルで拡張を行うと共に、0.1%リンデロン(ステロイド剤)1mL~2mLの噴霧を実施した。
 移植24週目に再度内視鏡で観察した結果、前回の観察時と同様に内腔の開存性は保たれていたが、内腔径は6.5mmであったため、15mmのバルーンカテーテルで拡張を行うと共に、0.1%リンデロン(ステロイド剤)1mL~2mLの噴霧を実施した。
 移植25週目、及び、27週目に内視鏡検査を行った結果、気管の内腔径はいずれも7mmを維持しており、開存性が保たれていた。
First, the contents of the tracheal transplantation test of the tubular artificial organ 1A of Example 1 and the course after the transplantation will be described in detail.
Under general anesthesia, 1 cm of the trachea of the beagle dog was excised, and the tubular artificial organ 1A of Example 1 cut to 1 cm length was connected by end-to-end anastomosis. After transplantation, the animals were reared in the usual manner. No abnormal findings were observed during the breeding, and the respiratory condition was good.
As a result of observing the trachea of the transplanted portion with an endoscope 19 weeks after the transplantation, the patency of the lumen was maintained, but the lumen diameter was 5.5 mm. Therefore, the balloon catheter was expanded with a balloon catheter having an outer diameter of 15 mm. At the same time, spraying of 1 to 2 mL of 0.1% Linderon (steroid) was performed.
As a result of observation with an endoscope again at 24 weeks after transplantation, the patency of the lumen was maintained as in the previous observation, but the lumen diameter was 6.5 mm. In addition to expansion, spraying of 1 mL to 2 mL of 0.1% Linderone (steroid) was performed.
As a result of endoscopy at the 25th and 27th weeks after transplantation, the lumen diameter of the trachea was maintained at 7 mm, and the patency was maintained.
 次に、実施例2の管状人工臓器1Aの気管移植試験の内容及び移植後の経過について詳細に説明する。
 全身麻酔下でビーグル犬の気管を2cm切除し、2cm長にカットした実施例2の管状人工臓器1Aを端々吻合で繋いだ(図7(b)参照)。移植後は通常の方法で飼育した。
 移植4週後に移植部の気管の内腔径が5mmと狭くなったため、外径10mmのバルーンカテーテルで拡張を行った。
 その後、5、6、7週目に15mmのバルーンカテーテルで拡張を行うと共に、0.1%リンデロン(ステロイド剤)1mL~2mLの噴霧を実施した。
 8週頃から移植部の気管の内腔径は安定したため、これ以降はバルーンカテーテルの拡張とステロイド剤の噴霧は実施しなかった。8週で移植された管状人工臓器1Aの自己組織化が進み、強度が安定したものと考えられる。飼育中にその他の異常所見は認められず、呼吸の状態も良好であった。
 移植から13週後に安楽死させて、移植された管状人工臓器1Aを内視鏡にて観察した結果を図8(a)に示し、切開により気管を露出させて観察した結果を図8(b)に示す。また、吻合部を内側から観察するため、図9(a)に、管状人工臓器1Aを含む気管を切開した状態の写真を示し、図9(b)に図9(a)の拡大写真を示す。
 管状人工臓器1Aは生体気管に生着しており、図8(a)及び(b)に示すように吻合部に異常はなかった。また、図8(a)の矢印部分で示される移植部の内腔径は10mmで管腔構造が維持されていた。更に図9(a)及び(b)に示すように内腔面には白色の気管粘膜が形成されており、気管組織の再構築が進んでいた。
Next, the contents of the tracheal transplantation test of the tubular artificial organ 1A of Example 2 and the course after the transplantation will be described in detail.
Under general anesthesia, 2 cm of the trachea of the beagle dog was excised, and the tubular artificial organ 1A of Example 2 cut to a length of 2 cm was connected by end-to-end anastomosis (see FIG. 7B). After transplantation, the animals were reared in the usual manner.
Four weeks after transplantation, the lumen diameter of the trachea in the transplanted portion was narrowed to 5 mm, and therefore, the balloon catheter was expanded with a balloon catheter having an outer diameter of 10 mm.
Thereafter, expansion was performed with a 15 mm balloon catheter at 5, 6, and 7 weeks, and spraying of 1 mL to 2 mL of 0.1% Linderon (steroid) was performed.
Since the lumen diameter of the trachea in the transplanted portion was stable from about 8 weeks, the balloon catheter was not expanded and the steroid agent was not sprayed thereafter. It is thought that the self-organization of the tubular artificial organ 1A transplanted at 8 weeks progressed and the strength was stabilized. No other abnormal findings were observed during the breeding, and the respiratory condition was good.
The results of euthanizing 13 weeks after transplantation and observing the transplanted tubular artificial organ 1A with an endoscope are shown in FIG. 8 (a), and the results of observation with the trachea exposed through incision are shown in FIG. 8 (b). ). Further, in order to observe the anastomosis from the inside, FIG. 9A shows a photograph of a state in which a trachea including the tubular artificial organ 1A is incised, and FIG. 9B shows an enlarged photograph of FIG. 9A. .
The tubular artificial organ 1A was engrafted in the living trachea, and there was no abnormality in the anastomosis as shown in FIGS. 8 (a) and 8 (b). Further, the lumen diameter of the transplanted portion indicated by the arrow in FIG. 8A was 10 mm, and the lumen structure was maintained. Further, as shown in FIGS. 9A and 9B, a white tracheal mucosa was formed on the inner surface of the lumen, and reconstruction of the tracheal tissue was proceeding.
 最後に、比較例1の管状人工臓器300の気管移植試験の内容及び移植後の経過について詳細に説明する。
 全身麻酔下でビーグル犬の気管を1cm切除し、図10(a)に示すように1cm長にカットした比較例1の管状人工臓器300を端々吻合で繋いだ。移植後は通常の方法で飼育した。
 移植後、健康状態に異常はなかったが25日目に急死した。剖検の結果、図10(b)に示すように移植組織が内腔側に潰れて気管閉塞を来していた。このように、管状補強体を有さない管状人工臓器300は管腔保持力が小さく、人工気管としての十分な機能を持たないことが示された。
Finally, the contents of the tracheal transplantation test of the tubular artificial organ 300 of Comparative Example 1 and the course after the transplantation will be described in detail.
Under general anesthesia, 1 cm of the trachea of the beagle dog was excised, and the tubular artificial organ 300 of Comparative Example 1 cut to 1 cm length as shown in FIG. After transplantation, the animals were reared in the usual manner.
After transplantation, there was no abnormality in the health condition, but he died suddenly on the 25th day. As a result of necropsy, the transplanted tissue was crushed toward the lumen as shown in FIG. Thus, it was shown that the tubular artificial organ 300 that does not have the tubular reinforcement has a small lumen holding force and does not have a sufficient function as an artificial trachea.
 以上、本発明の管状人工臓器の好ましい各実施形態及び実施例につき説明したが、本発明は、上述の各実施形態及び実施例に制限されるものではなく、適宜変更が可能である。
 本実施形態は、生体内組織形成術によって、管状の生分解性材料を内包する管状組織体を形成させる技術である。本技術はあらゆる大きさや形状をデザインすることができ、体格や病変部に応じた組織形成が可能である。また、生体との高い親和性に加えて、力学的に高い管腔保持力を有することから、気管の様に吸気時に陰圧がかかる臓器や食道や横隔膜の臓器再生足場としても使用することができる。埋植後は周囲組織から細胞が浸潤して自己組織化(組織再生)が進み、最終的には生分解性の骨格が分解吸収されて正常な組織体が形成され成長性を有する臓器・器官となる。従って、移植後も臓器の成長が必要な小児においても使用できる。
 上述の実施例では、管状人工臓器の一例として気管に適用した場合について説明したが、気管の他、食道、胃、十二指腸、小腸、大腸、胆管、尿管、卵管、血管といった管腔状の臓器に適用してもよい。
The preferred embodiments and examples of the tubular artificial organ of the present invention have been described above, but the present invention is not limited to the above-described embodiments and examples, and can be modified as appropriate.
The present embodiment is a technique for forming a tubular tissue body that encloses a tubular biodegradable material by in vivo tissue formation. This technology can design all sizes and shapes, and enables tissue formation according to the physique and lesion. In addition to its high affinity with the living body, it has a mechanically high lumen retention, so it can also be used as an organ regeneration scaffold for organs that apply negative pressure during inspiration, such as the trachea, and for the esophagus and diaphragm. it can. After implantation, cells infiltrate from surrounding tissues and self-organization (tissue regeneration) progresses. Finally, a biodegradable skeleton is decomposed and absorbed to form a normal tissue body and have growth potential. It becomes. Therefore, it can also be used in children who need organ growth after transplantation.
In the above-described embodiments, the case where the present invention is applied to the trachea as an example of a tubular artificial organ has been described. It may be applied to organs.
<第3実施形態>
 次に、本発明の第3実施形態に係る管状補強体1Cについて、図11A~図11Cを参照しながら説明する。
 図1Aに示すように、管状補強体20Cは、円筒形状に形成され、複数の第1の構造体101と第2の構造体201Cとを含んで構成される。複数の第1の構造体101は、第2の構造体201Cを介して繋がっている。
 管状補強体20Cは、管状人工臓器の内腔が外圧や陰圧により潰れないように、内腔を保持可能な程度の所定の径方向強度を備えるよう構成され、また管状人工臓器に軸方向に外圧がかかっても軸方向に必要以上に収縮しないで保形性を保つように、所定の圧縮強度を備えるように構成される。
<Third Embodiment>
Next, a tubular reinforcing body 1C according to a third embodiment of the present invention will be described with reference to FIGS. 11A to 11C.
As shown in FIG. 1A, the tubular reinforcing body 20C is formed in a cylindrical shape and includes a plurality of first structures 101 and second structures 201C. The plurality of first structures 101 are connected via the second structure 201C.
The tubular reinforcing body 20C is configured to have a predetermined radial strength enough to hold the lumen so that the lumen of the tubular artificial organ is not crushed by external pressure or negative pressure. It is configured to have a predetermined compressive strength so as to maintain shape retention without contracting more than necessary in the axial direction even when external pressure is applied.
 第1の構造体101は、管状に構成され、第1実施形態では、軸方向に所定の長さを有する環状構造体15により形成される。第1の構造体101は、管状人工臓器に必要な所定の圧縮強度及び径方向強度を備える。また、図11Aに示すように、第1の構造体101は、網目状(メッシュ状)に構成されており、管状人工臓器を形成する際に、線維性組織(結合組織)が網目状構造に入り込むことができる。よって、管状人工臓器に管状補強体20Cを密着させて一体化することができ、管状人工臓器に強度を付与することができる。 The first structure 101 is formed in a tubular shape, and in the first embodiment, the first structure 101 is formed by an annular structure 15 having a predetermined length in the axial direction. The first structure 101 has predetermined compressive strength and radial strength necessary for a tubular artificial organ. Further, as shown in FIG. 11A, the first structure 101 is configured in a mesh shape (mesh shape), and when forming a tubular artificial organ, the fibrous tissue (connective tissue) has a mesh structure. I can get in. Therefore, the tubular reinforcing body 20C can be brought into close contact with and integrated with the tubular artificial organ, and strength can be imparted to the tubular artificial organ.
 第1の構造体101は、例えば、線材によりメッシュ状に構成される。第1の構造体101の形成方法の一例として、複数本の線材111を用いて組編みにより形成する方法が挙げられる。線材111の種類、径及び編みピッチPを適宜変更することで、第1の構造体101の強度を調整することができる。ここで、編みピッチPとは、図11Aに示すように、軸方向における網目の大きさ、即ち、線材111の交差により形成される交点間の距離を表すものとする。
 また、線材111同士の交差部を超音波溶着や接着剤により接合することで、第1の構造体101の軸方向の収縮を規制して、軸方向の圧縮強度を向上させることができ、径方向の強度も向上させることができる。
The first structure 101 is configured in a mesh shape with a wire, for example. As an example of a method of forming the first structure 101, a method of forming a plurality of wires 111 by braiding may be used. By appropriately changing the type, diameter, and knitting pitch P of the wire 111, the strength of the first structure 101 can be adjusted. Here, the knitting pitch P represents the size of the mesh in the axial direction, that is, the distance between the intersections formed by the intersection of the wires 111, as shown in FIG. 11A.
In addition, by joining the intersections of the wires 111 by ultrasonic welding or an adhesive, the axial contraction of the first structure 101 can be restricted, and the compressive strength in the axial direction can be improved. Directional strength can also be improved.
 第2の構造体201Cは、第1の構造体101が有する所定の軸方向圧縮強度よりも小さい軸方向圧縮強度を有し、管状補強体20Cに屈曲性及び軸方向の柔軟性を付与するためのものである。第2の構造体201Cは、複数の第1の構造体101間に配置されて第1の構造体101同士を繋ぐ線材211により構成される。
 第2の構造体201Cは、図11Aに示すように、少なくとも1本の線材211で第1の構造体101同士を繋いでもよい。また、図11Bに示す管状補強体20Dにおける第2の構造体201D、及び図11Cに示す管状補強体20Eにおける第2の構造体201Eのように、複数本の線材211で環状に繋いでもよい。
 また、第1の構造体101を構成する線材111と第2の構造体を構成する線材211との接合は、超音波溶着や接着剤により行う。また、図11Bに示すように、線材211同士が交差する場合、その交差部を超音波溶着や接着剤により接合することで、第1の構造体101の場合と同様に軸方向圧縮強度を向上させることができ、径方向の強度も向上させることができる。但し、第2の構造体201C、201D及び201Dの軸方向圧縮強度が、第1の構造体101の強度よりも小さくなるように第2の構造体201C、201D及び201Dを構成するものとする。
The second structure 201C has an axial compressive strength smaller than a predetermined axial compressive strength of the first structure 101, and imparts flexibility and axial flexibility to the tubular reinforcing body 20C. belongs to. The second structure 201 </ b> C is configured by a wire 211 that is disposed between the plurality of first structures 101 and connects the first structures 101.
The second structure 201C may connect the first structures 101 with at least one wire 211 as shown in FIG. 11A. Further, a plurality of wires 211 may be connected in a ring shape, as in the second structure 201D in the tubular reinforcement 20D shown in FIG. 11B and the second structure 201E in the tubular reinforcement 20E shown in FIG. 11C.
Further, the joining of the wire 111 constituting the first structure 101 and the wire 211 constituting the second structure is performed by ultrasonic welding or an adhesive. Moreover, as shown in FIG. 11B, when the wires 211 cross each other, the crossing portion is joined by ultrasonic welding or an adhesive, thereby improving the axial compressive strength as in the case of the first structure 101. The radial strength can also be improved. However, the second structures 201C, 201D, and 201D are configured so that the compressive strength in the axial direction of the second structures 201C, 201D, and 201D is smaller than the strength of the first structure 101.
 また、管状補強体の軸方向の長さに対する第2の構造体の長さの割合は、例えば、管状人工臓器を人工気管として用いる場合には、5%以上50%以下の範囲であることが好ましく、10%程度であることがより好ましい。これは、気管の軸方向についての構造が高強度の軟骨が約90%、低強度の靭帯が約10%であり、気管と同様の構造にすることにより、気管と同様の機械的特性を管状補強体に付与できるためである。 Further, the ratio of the length of the second structural body to the axial length of the tubular reinforcing body is, for example, in the range of 5% to 50% when the tubular artificial organ is used as an artificial trachea. Preferably, it is about 10%. This is because the structure in the axial direction of the trachea is about 90% for high-strength cartilage and about 10% for low-strength ligaments. By making the structure similar to the trachea, the mechanical properties similar to those of the trachea are tubular. This is because it can be applied to the reinforcing body.
 線材111及び線材211の材料としては、ポリプロピレン、ポリエチレン、ポリエチレンテレフタレート等の各種プラスチック材料を用いることができる。その中でも線材111及び線材211の材料としては、生体適合性に優れるポリエステルが好ましく、ポリ乳酸、ポリグリコール酸、ポリ(ε-カプロラクトン)、ポリジオキサノン(トリメチレンカーボネートの重合体)やそれぞれのモノマー、コポリマー等の共重合体を使用することができる。そして、これらの材料からなる繊維を線材111及び線材211として用いることができる。 As materials for the wire 111 and the wire 211, various plastic materials such as polypropylene, polyethylene, polyethylene terephthalate, and the like can be used. Among them, the material of the wire 111 and the wire 211 is preferably a polyester excellent in biocompatibility, such as polylactic acid, polyglycolic acid, poly (ε-caprolactone), polydioxanone (trimethylene carbonate polymer), and respective monomers and copolymers. Etc. can be used. And the fiber which consists of these materials can be used as the wire 111 and the wire 211. FIG.
 また、これらの材料には、人工臓器として埋植された後に組織再生を促進させたり、炎症反応を抑制させたりすることを目的に、成長因子や抗炎症剤等の生理活性を有する薬剤を含侵させてもよい。成長因子として例えば、血小板由来増殖因子(PDGF)、トランスフォーミング成長因子-α(TGF-α)、トランスフォーミング成長因子-β(TGF-β)、インスリン様増殖因子(IGF)、コロニー刺激因子(CSF)、線維芽細胞成長因子(FGF)、上皮細胞成長因子(EGF)、インスリン、血小板由来創傷治癒因子(PDWHF)、血管内皮細胞増殖因子(VEGF)、神経成長因子(NGF)、肝細胞増殖因子(HGF)及び骨形成タンパク質(BMP)が挙げられる。
 抗炎症剤として例えばコルチゾール、デキサメタゾン、ベタメタゾン、プレドニゾロン、トリアムシノロン、アセチルサリチル酸、エテンザミド、ジフルニサル、ロキソブロフェン、イブプロフェン、インドメタシン、ジクロフェナク、メロキシカム、フェルデン、アセトアミノフェンが挙げられる。尚、カプセル化は、体内の拒絶反応、炎症反応を利用して行われるため、カプセル化の段階では、これらの抗炎症剤は徐放されないことが好ましい。
These materials also contain physiologically active agents such as growth factors and anti-inflammatory agents for the purpose of promoting tissue regeneration after implantation as an artificial organ or suppressing inflammatory reactions. You may invade. Examples of growth factors include platelet-derived growth factor (PDGF), transforming growth factor-α (TGF-α), transforming growth factor-β (TGF-β), insulin-like growth factor (IGF), colony stimulating factor (CSF). ), Fibroblast growth factor (FGF), epidermal growth factor (EGF), insulin, platelet-derived wound healing factor (PDWHF), vascular endothelial growth factor (VEGF), nerve growth factor (NGF), hepatocyte growth factor (HGF) and bone morphogenetic protein (BMP).
Examples of anti-inflammatory agents include cortisol, dexamethasone, betamethasone, prednisolone, triamcinolone, acetylsalicylic acid, etenzamide, diflunisal, loxobrofen, ibuprofen, indomethacin, diclofenac, meloxicam, ferden, and acetaminophen. In addition, since the encapsulation is performed using a rejection reaction and an inflammatory reaction in the body, it is preferable that these anti-inflammatory agents are not released slowly at the encapsulation stage.
 第1実施形態では、線材111を組編みすることにより第1の構造体101を形成し、線材211で構成される第2の構造体201C,201D又は201Eで繋いで管状補強体を得る方法を示したがこれに限らない。第1の構造体と第2の構造体との軸方向の圧縮強度の関係を満たしていれば、管状補強体を切削加工や射出成型、レーザー加工、3Dプリンタによる積層成型等の方法で作製してもよい。また、管状補強体の素材としては、先に挙げたポリエステル、ポリ乳酸等のプラスチック材料の他、生体適合性に優れるステンレスやチタン、また、生分解性を有するマグネシウム等の金属材料を用いてもよい。 In the first embodiment, a method of forming a first structural body 101 by braiding the wire 111 and connecting the second structural bodies 201C, 201D, or 201E made of the wire 211 to obtain a tubular reinforcing body. Although shown, it is not limited to this. If the relationship between the compressive strengths in the axial direction between the first structure and the second structure is satisfied, the tubular reinforcing body is produced by a method such as cutting, injection molding, laser processing, or lamination molding using a 3D printer. May be. Moreover, as a material of the tubular reinforcing body, in addition to the plastic materials such as polyester and polylactic acid mentioned above, stainless steel and titanium excellent in biocompatibility, or metal materials such as magnesium having biodegradability may be used. Good.
 図12を参照して、軸方向の圧縮強度について、第1の構造体101よりも第2の構造体201を弱くする方法について説明する。
 第2の構造体201の軸方向の圧縮強度を弱くするためには、第2の構造体201の線材211の径を第1の構造体101の線材111の径よりも細くする(図12(a)、(b)参照)、第2の構造体201の壁厚を第1の構造体101の壁厚よりも薄くする(図12(c)参照)方法等が考えられる。即ち、第1の構造体101と第2の構造体201を同じ材料により構成した場合、第2の構造体201の径方向の断面積を第1の構造体101の経方向の断面積よりも小さくすることで、第2の構造体201の軸方向の圧縮強度を第1の構造体101の軸方向の圧縮強度よりも弱くできる。
 線材の径の太さを調整する場合には、図12(a)に示すように、径の異なる線材同士を接合する、また、図12(b)に示すように引き伸ばす等の方法により調整することができる。また、金属材料の線材の場合には、切削加工により線材の径を細くすることもできる。
A method of making the second structure 201 weaker than the first structure 101 with respect to the compressive strength in the axial direction will be described with reference to FIG.
In order to weaken the compressive strength in the axial direction of the second structure 201, the diameter of the wire 211 of the second structure 201 is made smaller than the diameter of the wire 111 of the first structure 101 (FIG. 12 ( a) and (b)), a method of making the wall thickness of the second structure 201 thinner than the wall thickness of the first structure 101 (see FIG. 12C), and the like are conceivable. That is, when the first structure body 101 and the second structure body 201 are made of the same material, the radial cross-sectional area of the second structure body 201 is larger than the cross-sectional area of the first structure body 101 in the longitudinal direction. By making it smaller, the compressive strength in the axial direction of the second structure 201 can be made weaker than the compressive strength in the axial direction of the first structure 101.
When adjusting the diameter of the wire rod, the wire rods having different diameters are joined to each other as shown in FIG. 12A, or the wire rod is stretched as shown in FIG. 12B. be able to. Further, in the case of a metal wire, the diameter of the wire can be reduced by cutting.
 また、第1の構造体101と第2の構造体201とで、構成する線材の径が同じである場合には、第1の構造体101を構成する線材111の本数よりも、第2の構造体201を構成する線材211の本数を少なくすることで、第2の構造体201の軸方向の圧縮強度を弱めることができる。更に、第2の構造体201の線材211の径を第1の構造体101のものよりも細くする方法を組み合わせて、第2の構造体201の軸方向の圧縮強度を弱めるよう構成してもよい。また、第1の構造体101を構成する線材11と第2の構造体201を構成する線材211の材質を異ならせることで、第2の構造体201の軸方向の圧縮強度を弱めることができる。 Further, in the case where the diameters of the wire members constituting the first structure body 101 and the second structure body 201 are the same, the second structure body has a second number greater than the number of the wire members 111 constituting the first structure body 101. By reducing the number of the wires 211 constituting the structure 201, the compressive strength in the axial direction of the second structure 201 can be weakened. Further, the axial strength of the second structure 201 may be reduced by combining the method of making the diameter of the wire 211 of the second structure 201 thinner than that of the first structure 101. Good. Further, by making the materials of the wire 11 constituting the first structure 101 and the wire 211 constituting the second structure 201 different, the compressive strength in the axial direction of the second structure 201 can be weakened. .
 尚、第3実施形態では、管状補強体の例として3つの第1の構造体及び2つの第2の構造体により構成される例を示したが、これに限らない。管状補強体は、少なくとも2つの第1の構造体及び少なくとも一つの第2の構造体により構成されていてもよい。軸方向の長さの比率が同じ管状補強体であれば、多数の第1の構造体及び第2の構造体により構成される方が、屈曲性能を向上させることができる。また、複数の第1の構造体及び複数の第2の構造体を用いて管状補強体を構成する場合、複数の第1の構造体の物性、及び複数の第2の構造体の物性を異ならせてもよい。例えば、2つの第1の構造体を用いる場合、1つの第1の構造体を長さ10mmとし、もう1つの第1の構造体の長さを8mmとしてもよい。 In the third embodiment, as an example of the tubular reinforcing body, an example constituted by three first structures and two second structures is shown, but the present invention is not limited to this. The tubular reinforcement may be constituted by at least two first structures and at least one second structure. If the tubular reinforcing bodies have the same length ratio in the axial direction, the bending performance can be improved by being constituted by a large number of first structures and second structures. Further, when the tubular reinforcing body is configured using the plurality of first structures and the plurality of second structures, the physical properties of the plurality of first structures and the physical properties of the plurality of second structures are different. It may be allowed. For example, when two first structures are used, one first structure may have a length of 10 mm, and the other first structure may have a length of 8 mm.
 第3実施形態に係る管状補強体20C~20Eによれば、以下の効果を奏する。 The tubular reinforcement bodies 20C to 20E according to the third embodiment have the following effects.
 (6)周囲に結合組織を形成させて管状人工臓器を作製するために用いられる管状補強体20C(20D、20E)を、所定の圧縮強度及び所定の径方向強度を有し、管状に構成される複数の第1の構造体101と、第1の構造体101の所定の圧縮強度よりも小さい圧縮強度を有する第2の構造体201C(201D、201E)と、を備えるものとし、第1の構造体101を、第2の構造体201C(201D、201E)を介して繋がっているものとした。これにより、第1の構造体101により保形性及び内腔保持力を管状人工臓器に付与する共に、第2の構造体201C(201D、201E)により屈曲性及び軸方向の柔軟性を管状人工臓器に付与できる管状補強体を得ることができる。 (6) A tubular reinforcing body 20C (20D, 20E) used for producing a tubular artificial organ by forming a connective tissue around it has a predetermined compressive strength and a predetermined radial strength, and is configured in a tubular shape. A plurality of first structures 101 and second structures 201C (201D, 201E) having a compressive strength smaller than a predetermined compressive strength of the first structures 101, The structure body 101 is connected via the second structure body 201C (201D, 201E). As a result, the first structure 101 imparts shape retention and lumen retention to the tubular artificial organ, while the second structure 201C (201D, 201E) provides flexibility and axial flexibility. A tubular reinforcement that can be applied to an organ can be obtained.
 (7)管状補強体20C(20D、20E)の軸方向の長さに対する第2の構造体201C(201D、201E)の長さの割合を、5%以上50%以下であるものとした。これにより、管状人工臓器を人工気管として用いる場合に、気管と同様の機械的特性を管状補強体に付与できる。 (7) The ratio of the length of the second structural body 201C (201D, 201E) to the axial length of the tubular reinforcing body 20C (20D, 20E) is 5% or more and 50% or less. Thereby, when using a tubular artificial organ as an artificial trachea, the same mechanical characteristics as the trachea can be imparted to the tubular reinforcement.
 (8)第1の構造体101を、組編みされた複数の線材111により構成するものとし、第2の構造体201を構成する線材211の径は、線材111の径よりも細くするものとした。これにより、第2の構造体201の軸方向の圧縮強度を第1の構造体101の軸方向の圧縮強度より弱めることができる。 (8) The first structure 101 is constituted by a plurality of braided wires 111, and the diameter of the wire 211 constituting the second structure 201 is made smaller than the diameter of the wire 111. did. Thereby, the compressive strength in the axial direction of the second structure 201 can be made weaker than the compressive strength in the axial direction of the first structure 101.
 (9)第1の構造体101を、所定の本数の複数の線材111により構成するものとし、第2の構造体201を構成する線材211の本数を、第1の構造体101を構成する線材111の本数よりも少なくするものとした。これにより、第2の構造体201の軸方向の圧縮強度を第1の構造体101の軸方向の圧縮強度より弱めることができる。 (9) The first structure 101 is configured by a predetermined number of the plurality of wires 111, and the number of the wires 211 that configure the second structure 201 is the number of the wires that configure the first structure 101. The number was less than 111. Thereby, the compressive strength in the axial direction of the second structure 201 can be made weaker than the compressive strength in the axial direction of the first structure 101.
<第4実施形態>
 図13及び図14を参照して、第4実施形態に係る管状補強体20Fについて説明する。第4実施形態の管状補強体20Fは、第1の構造体及び第2の構造体の構成が第3実施形態におけるものと異なる。尚、第4実施形態の説明にあたって、同一構成要件については同一符号を付し、その説明を省略もしくは簡略化する。
<Fourth embodiment>
With reference to FIG.13 and FIG.14, the tubular reinforcement body 20F which concerns on 4th Embodiment is demonstrated. The tubular reinforcing body 20F of the fourth embodiment is different from that of the third embodiment in the configuration of the first structure and the second structure. In the description of the fourth embodiment, the same constituent elements are denoted by the same reference numerals, and the description thereof is omitted or simplified.
 図13に示すように、管状補強体20Fは、第3実施形態の場合と同様に円筒形状に形成されており複数の環状構造体15と管状補強体20Fの軸方向の全長に対応する長さを有する管状構造体30とを備える。
 複数の環状構造体15は、一例として軸方向に所定の間隔を空けて管状構造体30の外側に重なるように配置されて管状構造体30に対して固定されている。尚、複数の環状構造体15は、管状構造体30の内側に重なるように配置してもよい。
As shown in FIG. 13, the tubular reinforcement body 20F is formed in a cylindrical shape as in the case of the third embodiment, and has a length corresponding to the total axial length of the plurality of annular structures 15 and the tubular reinforcement body 20F. And a tubular structure 30 having the structure.
As an example, the plurality of annular structures 15 are arranged so as to overlap the outside of the tubular structure 30 with a predetermined interval in the axial direction, and are fixed to the tubular structure 30. The plurality of annular structures 15 may be arranged so as to overlap the inside of the tubular structure 30.
 管状構造体30は、環状構造体15と同様の方法で、複数本の線材311を用いて組編みにより形成することができ、切削加工や射出成型、レーザー加工、3Dプリンタによる積層成型等の方法で作製してもよい。また、管状構造体30の素材としては、先に挙げたポリエステル、ポリ乳酸等のプラスチック材料の他、生体適合性に優れるステンレスやチタン等の金属材料を用いてもよい。
 図13に示すように、管状構造体30のうち、環状構造体15と重なる部分を第1管状構造部32、重ならない部分を第2管状構造部33とする。
The tubular structure 30 can be formed by braiding using a plurality of wires 311 in the same manner as the annular structure 15, and includes methods such as cutting, injection molding, laser processing, and lamination molding using a 3D printer. You may produce by. Moreover, as a raw material of the tubular structure 30, a metal material such as stainless steel or titanium excellent in biocompatibility may be used in addition to the plastic materials such as polyester and polylactic acid mentioned above.
As shown in FIG. 13, in the tubular structure 30, a portion that overlaps the annular structure 15 is a first tubular structure portion 32, and a portion that does not overlap is a second tubular structure portion 33.
 図14を参照して、環状構造体15を管状構造体30に固定する方法の一例について説明する。
 図14に示すように、環状構造体15及び第1管状構造部32の線材の交差部がそれぞれ重なる部分において、細径の線材411をループさせるように巻き付けて固定する。他に、線材の交差部がそれぞれ重なる部分を超音波溶着や接着剤により接合してもよい。また、第4実施形態では、環状構造体15と管状構造体30における編みピッチPが同じとなる場合を示したが、編みピッチPが異なる場合には、近傍に配置される線材の交差部同士で固定すればよい。
An example of a method for fixing the annular structure 15 to the tubular structure 30 will be described with reference to FIG.
As shown in FIG. 14, the thin wire 411 is wound and fixed so as to be looped at a portion where the crossing portions of the wire rods of the annular structure 15 and the first tubular structure portion 32 overlap each other. In addition, the portions where the intersecting portions of the wires overlap each other may be joined by ultrasonic welding or an adhesive. Moreover, in 4th Embodiment, although the case where the knitting pitch P in the cyclic structure 15 and the tubular structure 30 became the same was shown, when the knitting pitch P differs, the crossing parts of the wire arrange | positioned in the vicinity are mutually. Fix it with.
 第4実施形態においては、第1の構造体101Fは、環状構造体15及び第1管状構造部32により構成され、第2の構造体201Fは、第2管状構造部33により構成される。管状構造体30が管状補強体20Fの軸方向の全長に対応する長さを有するので、管状人工臓器が屈曲するような外力を受けて元の形状に戻る際、第4実施形態の構成に比べて、第1の構造体101Fの管状補強体20Fの軸中心からのずれが生じずに元の形状に戻ることができる。 In the fourth embodiment, the first structure 101F is constituted by the annular structure 15 and the first tubular structure portion 32, and the second structure 201F is constituted by the second tubular structure portion 33. Since the tubular structure 30 has a length corresponding to the entire axial length of the tubular reinforcement body 20F, when the tubular artificial organ returns to its original shape by receiving an external force that bends, it is compared with the configuration of the fourth embodiment. Thus, the first structural body 101F can return to its original shape without being displaced from the axial center of the tubular reinforcing body 20F.
 第4実施形態に係る管状補強体20Fによれば、上述の(6)~(9)の効果に加えて、以下の効果を奏する。
 (10)管状補強体20Fを、軸方向に所定の長さを有し、複数の線材111を用いて組編みにより形成される複数の環状構造体15と、管状補強体20Fの全長に対応する長さを有し、複数の線材311を用いて組編みにより形成される管状構造体30と、を備えるものとし、複数の環状構造体15は、軸方向に所定の間隔を空けて管状構造体30の外側又は内側に重なるように配置されて管状構造体30に対して固定され、第1の構造体101Fを、複数の環状構造体15と管状構造体30とが重なった第1管状構造部32により構成し、第2の構造体201Fを、管状構造体30のうち、複数の環状構造体15と重なっていない第2管状構造部33により構成するものとした。これにより、管状構造体30が管状補強体20Fの軸方向の全長に対応する長さを有するので、管状人工臓器が屈曲するような外力を受けて元の形状に戻る際、第3実施形態の構成に比べて、第1の構造体101Fの管状補強体20Fの軸中心からのずれが生じずに元の形状に戻ることができる。
According to the tubular reinforcing body 20F according to the fourth embodiment, in addition to the effects (6) to (9) described above, the following effects can be obtained.
(10) The tubular reinforcement body 20F has a predetermined length in the axial direction, and corresponds to the total length of the plurality of annular structures 15 formed by braiding using the plurality of wires 111, and the tubular reinforcement body 20F. A tubular structure 30 having a length and formed by braiding using a plurality of wires 311, and the plurality of annular structures 15 are tubular structures with predetermined intervals in the axial direction. The first tubular structure portion is arranged so as to overlap the outer side or the inner side of 30 and fixed to the tubular structure 30, and the first structure 101 </ b> F is formed by overlapping the plurality of annular structures 15 and the tubular structure 30. 32, and the second structure 201 </ b> F is configured by the second tubular structure portion 33 that does not overlap the plurality of annular structures 15 in the tubular structure 30. Thereby, since the tubular structure 30 has a length corresponding to the entire axial length of the tubular reinforcing body 20F, when the tubular artificial organ returns to its original shape by receiving an external force that causes the tubular artificial organ to bend, the tubular structure 30 of FIG. Compared to the configuration, the first structural body 101F can return to the original shape without being displaced from the axial center of the tubular reinforcing body 20F.
 次に、本発明の第3実施形態及び第4実施形態に係る管状補強体の構成を適用した実施例について、詳細に説明する。 Next, an example in which the configuration of the tubular reinforcement body according to the third and fourth embodiments of the present invention is applied will be described in detail.
 (管状補強体の構成)
 図15~図17を参照しながら、実施例1~3の管状補強体の構成について説明する。
<実施例3>
 第3実施形態で説明した図11Bに示す管状補強体20Dに対応する実施例として管状補強体20Dを作製した。
 線材として、ポリL-乳酸(重量平均分子量450,000、融点195℃)を紡糸延伸して形成されたモノフィラメント(以下、PLAファイバーとする)を用いて、図15の模式図に示すような管径15mm、長さ40mmの円筒形状をした実施例3の管状補強体20Dを作製した。第1の構造体101における線材111の直径は、0.5mmであり、第2の構造体201Dにおける線材211の直径は、0.2mmである。螺旋状に編み込まれる線材の数(編み本数)は、右巻と左巻がそれぞれ8本ずつの合計16本である。軸方向の1列に形成される格子の数(段数)は、第1の構造体101の合計で6~10個程度が好ましく、実施例3では8個とした。
 この実施例3の管状補強体20Dは、直径0.5mmの線材と直径0.2mmの線材とが接合されて形成され、3か所に第2の構造体201Dが設けられている。それぞれの第2の構造体201Dの長さは、1~2mm程度であることが好ましい。
 このようにして作製した実施例3の管状補強体20Dを屈曲させたところ、十分な屈曲性を有した。
(Configuration of tubular reinforcement)
With reference to FIGS. 15 to 17, the configurations of the tubular reinforcing bodies of Examples 1 to 3 will be described.
<Example 3>
A tubular reinforcing body 20D was produced as an example corresponding to the tubular reinforcing body 20D shown in FIG. 11B described in the third embodiment.
Using a monofilament (hereinafter referred to as PLA fiber) formed by spinning and drawing poly L-lactic acid (weight average molecular weight 450,000, melting point 195 ° C.) as a wire, a tube as shown in the schematic diagram of FIG. A tubular reinforcing body 20D of Example 3 having a cylindrical shape with a diameter of 15 mm and a length of 40 mm was produced. The diameter of the wire 111 in the first structure 101 is 0.5 mm, and the diameter of the wire 211 in the second structure 201D is 0.2 mm. The number of wire rods knitted in a spiral shape (number of knitting) is 16 in total, 8 each for right-handed and left-handed. The total number (number of stages) of lattices formed in one row in the axial direction is preferably about 6 to 10 in total for the first structural body 101, and in Example 3, it was set to 8.
The tubular reinforcing body 20D of the third embodiment is formed by joining a wire rod having a diameter of 0.5 mm and a wire rod having a diameter of 0.2 mm, and second structures 201D are provided at three locations. The length of each second structure 201D is preferably about 1 to 2 mm.
When the tubular reinforcing body 20D of Example 3 produced in this way was bent, it had sufficient flexibility.
 <実施例4>
 第3実施形態で説明した図11Aに示す管状補強体20Cの構造に対応する実施例として管状補強体20Cを作製した。
 線材として、直径が0.5mmのPLAファイバーを用いて、右巻と左巻がそれぞれ8本ずつの合計16本で、管径15mm、長さ8mm、格子の数(段数)が2個の環状構造体を4つ作製し、環状構造体15同士を同じ径及び同じ素材の線材211で超音波溶着により接合して繋ぎ、図16に示すような管状補強体20Cを作製した。実施例4における環状構造体15を構成する線材111の交差部は、全て固定した。このようにして軸方向の長さが36mmの管状補強体を得た。
 このようにして作製した実施例4の管状補強体20Cを屈曲させたところ、十分な屈曲性を有した。
<Example 4>
A tubular reinforcing body 20C was produced as an example corresponding to the structure of the tubular reinforcing body 20C shown in FIG. 11A described in the third embodiment.
As a wire rod, a PLA fiber with a diameter of 0.5 mm is used, and there are a total of 16 right-handed and left-handed eight each, a tube diameter of 15 mm, a length of 8 mm, and a number of grids (number of stages) of 2 Four structural bodies were produced, and the annular structural bodies 15 were joined and joined by ultrasonic welding with the wire material 211 having the same diameter and the same material to produce a tubular reinforcing body 20C as shown in FIG. All the intersecting portions of the wire 111 constituting the annular structure 15 in Example 4 were fixed. In this way, a tubular reinforcing body having an axial length of 36 mm was obtained.
When the tubular reinforcing body 20C of Example 4 produced in this way was bent, it had sufficient flexibility.
<実施例5>
 第4実施形態で説明した図13に示す管状補強体20Fの構造に対応する実施例として管状補強体20Fを作製した。
 線材として、直径が0.5mmのPLAファイバーを用いて、右巻と左巻がそれぞれ8本ずつの合計16本で、管径16mm、長さ10mm、格子の数(段数)が2個の環状構造体15を4つ作製した。更に、直径が0.2mmのPLAファイバーを用いて、管径15mm、長さ37.5mmの管状構造体30を一つ作製した。環状構造体15及び管状構造体30を構成する線材同士の交差部は、全て固定した。図17に示すように、環状構造体15を管状構造体30に1.25mmの間隔を空けながら被せて、固定する。固定方法は、円周方向に1本の直径0.2mmのPLAファイバーの細径の線材411を挿通させて、環状構造体15及び管状構造体30それぞれの線材の交差部が重なる点の周りを、前述の細径の線材411をループさせるように巻き付けて固定した(図14参照)。これにより全長37.5mmの管状補強体を得た。
 このようにして作製した実施例5の管状補強体20Fを屈曲させたところ、十分な屈曲性を有した。
<Example 5>
A tubular reinforcing body 20F was produced as an example corresponding to the structure of the tubular reinforcing body 20F shown in FIG. 13 described in the fourth embodiment.
As a wire rod, a PLA fiber having a diameter of 0.5 mm is used. The right-handed and left-handed eight are each 16 in total, the tube diameter is 16 mm, the length is 10 mm, and the number of lattices (stages) is 2 Four structures 15 were produced. Further, one tubular structure 30 having a tube diameter of 15 mm and a length of 37.5 mm was produced using a PLA fiber having a diameter of 0.2 mm. All the intersecting portions of the wires constituting the annular structure 15 and the tubular structure 30 were fixed. As shown in FIG. 17, the annular structure 15 is fixed on the tubular structure 30 with a space of 1.25 mm. In the fixing method, a thin wire rod 411 of a PLA fiber having a diameter of 0.2 mm is inserted in the circumferential direction, and around the point where the crossing portions of the wire rods of the annular structure 15 and the tubular structure 30 overlap each other. The aforementioned thin wire 411 was wound and fixed so as to loop (see FIG. 14). As a result, a tubular reinforcing body having a total length of 37.5 mm was obtained.
When the tubular reinforcing body 20F of Example 5 produced in this way was bent, it had sufficient flexibility.
 (強度の測定)
 実施例5の管状補強体20Fの管腔保持力及び圧縮強度について測定した結果について詳細に説明する。
(Measurement of strength)
The results of measuring the lumen holding force and compressive strength of the tubular reinforcing body 20F of Example 5 will be described in detail.
 管状補強体20Fの物性は、径方向の強度の指標となる「管腔保持力」、及び、軸方向の圧縮強度の指標となる「ヤング率(圧縮弾性率)」で評価した。これら物性の測定には圧縮試験機(オートグラフAG-X Plus、島津製作所製)を用いた。
 管腔保持力の測定は、図18(a)に示すように、軸方向の動きを規制する冶具J(管状補強体20Fの長さに調整)に管状補強体20Fを配置して、管状補強体20Fを、外径が25%になるまで上部から押し子PLで押圧して圧縮強度を測定した。管腔保持力[N・mm]は、圧縮強度[N]×(管状補強体の直径)[mm]/管状補強体20Fの軸方向の長さ[mm]により求められる。
 また、軸方向のヤング率は、図18(b)に示すように、管状補強体20Fを垂直に配置して長さが所定の値(例えば80%~90%)になるまで上部から押し子PLで押圧して圧縮強度を測定して算出した。得られた0%~20%のひずみ領域における応力-ひずみ曲線の傾きから最大ばね定数[N/mm]を求めた。ヤング率E(MPa)は、E=ばね定数[N/mm]×初期長[mm]/管状補強体の断面積[mm]により求められる。
The physical properties of the tubular reinforcing body 20F were evaluated by “lumen retention force” that is an index of strength in the radial direction and “Young's modulus (compression elastic modulus)” that is an index of compressive strength in the axial direction. A compression tester (Autograph AG-X Plus, manufactured by Shimadzu Corporation) was used to measure these physical properties.
As shown in FIG. 18A, the lumen holding force is measured by placing the tubular reinforcing body 20F on a jig J (adjusted to the length of the tubular reinforcing body 20F) that restricts the movement in the axial direction. The body 20F was pressed from above with a pusher PL until the outer diameter became 25%, and the compressive strength was measured. The lumen retention force [N · mm] is obtained by compressive strength [N] × (diameter of tubular reinforcing body) 2 [mm 2 ] / axial length [mm] of the tubular reinforcing body 20F.
Further, as shown in FIG. 18 (b), the axial Young's modulus is determined by pressing the tubular reinforcement body 20F vertically from the top until the length reaches a predetermined value (for example, 80% to 90%). It calculated by pressing with PL and measuring compressive strength. The maximum spring constant [N / mm] was determined from the slope of the obtained stress-strain curve in the strain range of 0% to 20%. The Young's modulus E (MPa) is obtained by E = spring constant [N / mm] × initial length [mm] / cross-sectional area [mm 2 ] of the tubular reinforcement.
 ビーグル犬の気管及び実施例5の管状補強体20Fについての管腔保持力の測定結果を表2に示し、軸方向の圧縮強度の測定結果を図19に示した。尚、軸方向の圧縮強度については、実施例5で説明した条件で管状補強体20Fを2つ作製して測定した。 The measurement results of lumen holding force for the trachea of the beagle dog and the tubular reinforcing body 20F of Example 5 are shown in Table 2, and the measurement result of the compressive strength in the axial direction is shown in FIG. In addition, about the compressive strength of the axial direction, the two tubular reinforcement bodies 20F were produced on the conditions demonstrated in Example 5, and were measured.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表2に示すように、ビーグル犬の気管の管腔保持力は6.13[N・mm]であったのに対して、実施例5の管状補強体20Fは6.00[N・mm]であり、同等の管腔保持力を有していることが確認された。よって、本発明の管状補強体は内腔を保持するのに十分な径方向強度を有していると考えられる。 As shown in Table 2, the lumen retention force of the trachea of the beagle dog was 6.13 [N · mm], whereas the tubular reinforcing body 20F of Example 5 was 6.00 [N · mm]. It was confirmed that it has the same lumen retention force. Therefore, it is considered that the tubular reinforcing body of the present invention has sufficient radial strength to hold the lumen.
 図19に示すグラフにおける軸方向の圧縮強度の傾きから軸方向のヤング率を測定した結果、ビーグル犬の気管の軸方向のヤング率は、10%圧縮までの低ひずみ領域では0.375[N/mm]となり、10%以上圧縮の高ひずみ領域では、3.5[N/mm]となった。このように弾性が途中で変化するのは、まず、低ひずみ領域では気管の軟らかい部分(靭帯)が圧縮され、その後、高ひずみ領域になると気管の硬い部分(軟骨)が圧縮されヤング率が上がると考えられる。
 一方、実施例5の2つの管状補強材を同様に測定した結果、平均で低ひずみ領域では0.28[N/mm]となり、高ひずみ領域では3.9[N/mm]となった。ビーグル犬の気管の結果と比較すると近い値であり、また、ビーグル犬の気管と同様にひずみが10%以上の領域でヤング率が変化する挙動がみられた。よって、本発明の管状補強体は軸方向について、ビーグル犬の気管と同等の柔軟性を有していると考えられる。
 このように、本実施形態によれば、管状補強体20C(20D,20E,20F)を軸方向に圧縮した場合に、低ひずみ領域と高ひずみ領域とにおいて圧縮強度を変化させられる。これにより、管状補強体20C(20D,20E,20F)の軸方向の圧縮特性を、気管の圧縮特性に近似させられる。
As a result of measuring the axial Young's modulus from the inclination of the compressive strength in the axial direction in the graph shown in FIG. 19, the Young's modulus in the axial direction of the trachea of a beagle dog is 0.375 [N in a low strain region up to 10% compression. / Mm] and 3.5 [N / mm] in the high strain region of 10% or more compression. The elasticity changes in the middle of this. First, the soft part (ligament) of the trachea is compressed in the low strain region, and then the hard part (cartilage) of the trachea is compressed and the Young's modulus increases in the high strain region. it is conceivable that.
On the other hand, as a result of measuring the two tubular reinforcing materials of Example 5 in the same manner, the average was 0.28 [N / mm] in the low strain region, and 3.9 [N / mm] in the high strain region. Compared with the results of the trachea of the beagle dog, the values were close to each other. Similar to the trachea of the beagle dog, a behavior in which the Young's modulus changed in a region where the strain was 10% or more was observed. Therefore, it is considered that the tubular reinforcing body of the present invention has the same flexibility as the beagle's trachea in the axial direction.
Thus, according to this embodiment, when the tubular reinforcing body 20C (20D, 20E, 20F) is compressed in the axial direction, the compressive strength can be changed in the low strain region and the high strain region. Thereby, the axial compression characteristic of the tubular reinforcing body 20C (20D, 20E, 20F) can be approximated to the compression characteristic of the trachea.
 以上、本発明の管状補強体の好ましい各実施形態及び実施例につき説明したが、本発明は、上述の各実施形態及び実施例に制限されるものではなく、適宜変更が可能である。
 上述の実施例では、管状人工臓器の一例として気管に適用した場合について説明したが、気管の他、食道、胃、十二指腸、小腸、大腸、胆管、尿管、卵管、血管といった管腔状の臓器に適用してもよい。
 また、上述の各実施形態及び実施例では、第1の構造体及び第2の構造体を構成する線材同士の交差部を接合する例を示したが、所望の強度を得られる場合は、接合しなくてもよい。
 また、上述の第1実施形態では、第2の構造体を構成する線材は、管状補強体の軸方向の全長に比べて短い例を示したが、管状補強体の軸方向の全長と同等程度の長さを有する1本又は複数本の線材により、第1の構造体を繋げる構成としてもよい。
The preferred embodiments and examples of the tubular reinforcing body of the present invention have been described above, but the present invention is not limited to the above-described embodiments and examples, and can be modified as appropriate.
In the above-described embodiments, the case where the present invention is applied to the trachea as an example of a tubular artificial organ has been described. It may be applied to organs.
In each of the above-described embodiments and examples, the example in which the intersecting portions of the wire members constituting the first structure and the second structure are joined is shown. You don't have to.
In the first embodiment described above, the wire constituting the second structural body is shorter than the total length in the axial direction of the tubular reinforcement body. However, it is about the same as the total length in the axial direction of the tubular reinforcement body. It is good also as a structure which connects a 1st structure body with the 1 or several wire which has the length of.
 1A、1B 管状人工臓器
 10 管状組織体
 20A、20B 管状補強体
 21 生分解性の線材
 100 鋳型
 110 芯棒
 120 円筒
 121 本体部
 122 蓋部
 123 スリット
 J 冶具
 P 編みピッチ
 PL 押し子
 20C、20D、20E、20F 管状補強体
 15 環状構造体
 101、101D 第1の構造体
 201、201C、201D、201E、201F 第2の構造体
 30 管状構造体
 J 冶具
 P 編みピッチ
 PL 押し子
DESCRIPTION OF SYMBOLS 1A, 1B Tubular artificial organ 10 Tubular structure | tissue 20A, 20B Tubular reinforcement 21 Biodegradable wire 100 Mold 110 Core rod 120 Cylinder 121 Body part 122 Cover part 123 Slit J Jig P P Knitting pitch PL Presser 20C, 20D, 20E , 20F Tubular reinforcement 15 Ring structure 101, 101D First structure 201, 201C, 201D, 201E, 201F Second structure 30 Tubular structure J Jig P P Knitting pitch PL Pusher

Claims (18)

  1.  生体組織材料が存在する環境下で形成され、線維性組織で構成される管状組織体と、
     生分解性の材料で構成され前記管状組織体に内包される管状補強体と、を備える管状人工臓器。
    A tubular tissue body formed in an environment in which a biological tissue material exists and composed of fibrous tissue;
    A tubular prosthesis comprising a tubular reinforcement body made of a biodegradable material and enclosed in the tubular tissue body.
  2.  前記管状組織体は、生体内に鋳型を埋植することにより管状に形成され、前記管状補強体が全長に亘って内包される請求項1に記載の管状人工臓器。 The tubular artificial organ according to claim 1, wherein the tubular tissue body is formed into a tubular shape by implanting a template in a living body, and the tubular reinforcing body is included over the entire length.
  3.  前記管状人工臓器の円周方向の管腔保持力が2.0[N・mm]以上である請求項1又は2に記載の管状人工臓器。 The tubular artificial organ according to claim 1 or 2, wherein a lumen holding force in a circumferential direction of the tubular artificial organ is 2.0 [N · mm] or more.
  4.  前記管状補強体は、生分解性の材料で網目状に構成される請求項1~3のいずれかに記載の管状人工臓器。 The tubular artificial organ according to any one of claims 1 to 3, wherein the tubular reinforcing body is configured in a mesh shape with a biodegradable material.
  5.  前記管状補強体は、軸方向の収縮が規制されている請求項1~4のいずれかに記載の管状人工臓器。 The tubular artificial organ according to any one of claims 1 to 4, wherein the tubular reinforcing body is restricted from contraction in an axial direction.
  6.  前記管状補強体は、複数の生分解性の線材を用いて組編みにより形成され、
     前記生分解性の線材同士の交差部が接合されることにより軸方向の収縮が規制される請求項5に記載の管状人工臓器。
    The tubular reinforcement is formed by braiding using a plurality of biodegradable wires,
    The tubular artificial organ according to claim 5, wherein contraction in the axial direction is regulated by joining crossing portions of the biodegradable wires.
  7.  前記管状補強体は、生分解性の線材を用いてニット編みにより形成されることにより軸方向の収縮が規制される請求項5に記載の管状人工臓器。 6. The tubular artificial organ according to claim 5, wherein the tubular reinforcement body is formed by knit knitting using a biodegradable wire rod, whereby axial contraction is restricted.
  8.  生体内に埋め込むことで周囲に結合組織を形成させて人工管状臓器を作製する基材であって、
     棒状の芯材と、
     複数のスリットを有し前記芯材を収納する外筒と、
     前記芯材と前記外筒との間の空間に配置される円筒状のメッシュ部材と、を備え、
     前記芯材及び前記外筒は非生分解性の材料で構成され、
     前記メッシュ部材は生分解性の材料で構成される管状人工臓器作製用の基材。
    A base material for producing an artificial tubular organ by forming a connective tissue around it by being embedded in a living body,
    A rod-shaped core material;
    An outer cylinder having a plurality of slits and storing the core material;
    A cylindrical mesh member disposed in a space between the core material and the outer cylinder,
    The core material and the outer cylinder are made of a non-biodegradable material,
    The mesh member is a base material for producing a tubular artificial organ composed of a biodegradable material.
  9.  周囲に結合組織を形成させて管状人工臓器を作製するために用いられる管状補強体であって、
     所定の軸方向圧縮強度及び所定の径方向強度を有し、管状に構成される複数の第1の構造体と、
     前記所定の軸方向圧縮強度よりも小さい軸方向圧縮強度を有する第2の構造体と、
    を備え、
     前記第1の構造体は、前記第2の構造体を介して繋がっている管状補強体。
    A tubular reinforcing body used for producing a tubular artificial organ by forming a connective tissue around it,
    A plurality of first structures having a predetermined axial compressive strength and a predetermined radial strength and configured in a tubular shape;
    A second structure having an axial compressive strength less than the predetermined axial compressive strength;
    With
    The first structural body is a tubular reinforcing body connected via the second structural body.
  10.  一端部及び他端部に配置される2つの前記第1の構造体を含む3以上の前記第1の構造体と、隣り合って配置される2つの前記第1の構造体の間に配置される2以上の前記第2の構造体と、を備える請求項9に記載の管状補強体。 Three or more first structures including two first structures disposed at one end and the other end, and two first structures disposed adjacent to each other. The tubular reinforcement body according to claim 9, further comprising two or more second structures.
  11.  前記第1の構造体は、線材によりメッシュ状に構成される請求項9又は10に記載の管状補強体。 The tubular reinforcing body according to claim 9 or 10, wherein the first structure is configured in a mesh shape with a wire.
  12.  前記第2の構造体は、前記第1の構造体を繋ぐ線材により構成される請求項9~11のいずれかに記載の管状補強体。 The tubular reinforcing body according to any one of claims 9 to 11, wherein the second structural body is formed of a wire rod that connects the first structural bodies.
  13.  前記第1の構造体は、線材によりメッシュ状に構成され、
     前記第2の構造体を構成する前記線材の径は、前記第1の構造体を構成する前記線材の径よりも細い請求項12に記載の管状補強体。
    The first structure is configured in a mesh shape with a wire,
    The tubular reinforcing body according to claim 12, wherein a diameter of the wire constituting the second structure is smaller than a diameter of the wire constituting the first structure.
  14.  前記第1の構造体は、線材によりメッシュ状に構成され、
     前記第2の構造体を構成する前記線材の本数は、前記第1の構造体を構成する前記線材の本数よりも少ない請求項12又は13に記載の管状補強体。
    The first structure is configured in a mesh shape with a wire,
    The tubular reinforcing body according to claim 12 or 13, wherein the number of the wires constituting the second structure is smaller than the number of the wires constituting the first structure.
  15.  前記第2の構造体の断面積は第1の構造体断面積よりも小さい請求項9又は10に記載の管状補強体。 The tubular reinforcing body according to claim 9 or 10, wherein a cross-sectional area of the second structure is smaller than a cross-sectional area of the first structure.
  16.  前記管状補強体は、
      軸方向に所定の長さを有し、線材によりメッシュ状に構成される複数の環状構造体と、
      軸方向に前記管状補強体の全長に対応する長さを有し、線材によりメッシュ状に構成される管状構造体と、を備え、
     前記複数の環状構造体は、軸方向に所定の間隔を空けて前記管状構造体の外側又は内側に重なるように配置されて前記管状構造体に対して固定され、
     前記第1の構造体は、前記複数の環状構造体と前記管状構造体とが重なった部分により構成され、
     前記第2の構造体は、前記管状構造体のうち、前記複数の環状構造体と重なっていない部分により構成される請求項9~14のいずれかに記載の管状補強体。
    The tubular reinforcement is
    A plurality of annular structures having a predetermined length in the axial direction and configured in a mesh shape with a wire;
    A tubular structure having a length corresponding to the entire length of the tubular reinforcing body in the axial direction and configured in a mesh shape with a wire;
    The plurality of annular structures are arranged so as to overlap the outer side or the inner side of the tubular structure with a predetermined interval in the axial direction, and are fixed to the tubular structure,
    The first structure is constituted by a portion where the plurality of annular structures and the tubular structure are overlapped,
    The tubular reinforcing body according to any one of claims 9 to 14, wherein the second structure is configured by a portion of the tubular structure that does not overlap the plurality of annular structures.
  17.  生体組織材料が存在する環境下で形成され、線維性組織で構成される管状組織体と、
     前記管状組織体に内包される請求項9~16のいずれかに記載の管状補強体と、を備える管状人工臓器。
    A tubular tissue body formed in an environment in which a biological tissue material exists and composed of fibrous tissue;
    A tubular artificial organ comprising: the tubular reinforcing body according to any one of claims 9 to 16 enclosed in the tubular tissue body.
  18.  前記管状組織体は、生体内に鋳型を埋植することにより管状に形成され、前記管状補強体が全長に亘って内包される請求項17に記載の管状人工臓器。 The tubular artificial organ according to claim 17, wherein the tubular tissue body is formed into a tubular shape by implanting a template in a living body, and the tubular reinforcing body is included over the entire length.
PCT/JP2019/003213 2018-01-30 2019-01-30 Tubular artificial organ WO2019151338A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-014172 2018-01-30
JP2018014172A JP2019129979A (en) 2018-01-30 2018-01-30 Tubular artificial organ

Publications (1)

Publication Number Publication Date
WO2019151338A1 true WO2019151338A1 (en) 2019-08-08

Family

ID=67478991

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/003213 WO2019151338A1 (en) 2018-01-30 2019-01-30 Tubular artificial organ

Country Status (2)

Country Link
JP (1) JP2019129979A (en)
WO (1) WO2019151338A1 (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998024385A1 (en) * 1996-12-06 1998-06-11 Tapic International Co., Ltd. Artificial blood vessel
JP2001509702A (en) * 1997-01-13 2001-07-24 ゴア エンタープライズ ホールディングス,インコーポレイティド Self-expanding vascular stent with low profile
JP2004049804A (en) * 2002-07-24 2004-02-19 Piolax Medical Device:Kk Stent and stent graft
JP2004141301A (en) * 2002-10-23 2004-05-20 Techno Network Shikoku Co Ltd Biomaterial, cell culture apparatus, artificial tissue, and artificial organ
JP2008237896A (en) * 2007-02-26 2008-10-09 National Cardiovascular Center Connective tissue forming base material, and manufacturing method for connective tissue using it
JP2009522022A (en) * 2005-12-30 2009-06-11 シー・アール・バード・インコーポレーテッド Stent with bioabsorbable connector and stent placement method
JP2009178545A (en) * 2008-01-29 2009-08-13 Taewoong Medical Co Ltd In-vivo degradable double-structure stent
JP2017518102A (en) * 2014-06-19 2017-07-06 リムフロウ・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング Apparatus and method for treating lower limb vasculature
JP2017169778A (en) * 2016-03-23 2017-09-28 国立研究開発法人国立循環器病研究センター Connective tisse body forming substrate

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998024385A1 (en) * 1996-12-06 1998-06-11 Tapic International Co., Ltd. Artificial blood vessel
JP2001509702A (en) * 1997-01-13 2001-07-24 ゴア エンタープライズ ホールディングス,インコーポレイティド Self-expanding vascular stent with low profile
JP2004049804A (en) * 2002-07-24 2004-02-19 Piolax Medical Device:Kk Stent and stent graft
JP2004141301A (en) * 2002-10-23 2004-05-20 Techno Network Shikoku Co Ltd Biomaterial, cell culture apparatus, artificial tissue, and artificial organ
JP2009522022A (en) * 2005-12-30 2009-06-11 シー・アール・バード・インコーポレーテッド Stent with bioabsorbable connector and stent placement method
JP2008237896A (en) * 2007-02-26 2008-10-09 National Cardiovascular Center Connective tissue forming base material, and manufacturing method for connective tissue using it
JP2009178545A (en) * 2008-01-29 2009-08-13 Taewoong Medical Co Ltd In-vivo degradable double-structure stent
JP2017518102A (en) * 2014-06-19 2017-07-06 リムフロウ・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング Apparatus and method for treating lower limb vasculature
JP2017169778A (en) * 2016-03-23 2017-09-28 国立研究開発法人国立循環器病研究センター Connective tisse body forming substrate

Also Published As

Publication number Publication date
JP2019129979A (en) 2019-08-08

Similar Documents

Publication Publication Date Title
US11432922B2 (en) Biomaterial based on aligned fibers, arranged in a gradient interface, with mechanical reinforcement for tracheal regeneration and repair
CN104921841B (en) A kind of preparation method of double-decker artificial blood vessel
US11638640B2 (en) In vivo tissue engineering devices, methods and regenerative and cellular medicine employing scaffolds made of absorbable material
US8388692B2 (en) Thin film multilocular structure made of collagen, member for tissue regeneration containing the same, and method for producing the same
US11759306B2 (en) In vivo tissue engineering devices, methods and regenerative and cellular medicine employing scaffolds made of absorbable material
US20140107803A1 (en) Engineered tissue scaffolds and supports therefor
US20080281418A1 (en) Breast implant articles of multi-layered sheets of extracellular matrix or balled strips and pieces of extracellular matrix
US11759307B2 (en) In vivo tissue engineering devices, methods and regenerative and cellular medicine employing scaffolds made of absorbable material
Kim et al. Tissue-engineered esophagus via bioreactor cultivation for circumferential esophageal reconstruction
US11883275B2 (en) In vivo tissue engineering devices, methods and regenerative and cellular medicine employing scaffolds made of absorbable material
JPWO2007074896A1 (en) Composite scaffold for tissue regeneration
US20180289864A1 (en) Medical base material
WO2019151338A1 (en) Tubular artificial organ
JP2020120944A (en) Tubular reinforcement body and tubular artificial organ
You et al. Construction of small-caliber, polydiaxanone cyclohexanone vascular stents
CN116096311A (en) Bridging peripheral nerve gap with catheter to enhance nerve regeneration
Atari et al. Preclinical in vivo assessment of a cell-free multi-layered scaffold prepared by 3D printing and electrospinning for small-diameter blood vessel tissue engineering in a canine model
US11969337B2 (en) In vivo tissue engineering devices, methods and regenerative and cellular medicine employing scaffolds made of absorbable material
JP2016534779A (en) PGA tubular patch and tubular support made of absorbent material that may be added in connection therewith for the reconstruction of tissue at the removed site of the urethra and / or ureter
Kim Penile Girth Enhancement with Xenograft

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19747885

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19747885

Country of ref document: EP

Kind code of ref document: A1