JP2019129979A - Tubular artificial organ - Google Patents

Tubular artificial organ Download PDF

Info

Publication number
JP2019129979A
JP2019129979A JP2018014172A JP2018014172A JP2019129979A JP 2019129979 A JP2019129979 A JP 2019129979A JP 2018014172 A JP2018014172 A JP 2018014172A JP 2018014172 A JP2018014172 A JP 2018014172A JP 2019129979 A JP2019129979 A JP 2019129979A
Authority
JP
Japan
Prior art keywords
tubular
artificial organ
tissue
biodegradable
reinforcement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2018014172A
Other languages
Japanese (ja)
Inventor
中山 泰秀
Yasuhide Nakayama
泰秀 中山
宏臣 奥山
Hiromi Okuyama
宏臣 奥山
勇一 ▲高▼間
勇一 ▲高▼間
Yuichi TAKAMA
聡 梅田
Satoshi Umeda
聡 梅田
勝平 樋渡
Shohei Hiwatari
勝平 樋渡
敬史 山本
Takashi Yamamoto
敬史 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JMS Co Ltd
Osaka University NUC
National Cerebral and Cardiovascular Center
Original Assignee
JMS Co Ltd
Osaka University NUC
National Cerebral and Cardiovascular Center
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JMS Co Ltd, Osaka University NUC, National Cerebral and Cardiovascular Center filed Critical JMS Co Ltd
Priority to JP2018014172A priority Critical patent/JP2019129979A/en
Priority to PCT/JP2019/003213 priority patent/WO2019151338A1/en
Publication of JP2019129979A publication Critical patent/JP2019129979A/en
Pending legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/04Hollow or tubular parts of organs, e.g. bladders, tracheae, bronchi or bile ducts
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/04Hollow or tubular parts of organs, e.g. bladders, tracheae, bronchi or bile ducts
    • A61F2/06Blood vessels

Landscapes

  • Health & Medical Sciences (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Pulmonology (AREA)
  • Cardiology (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Transplantation (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Vascular Medicine (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Prostheses (AREA)

Abstract

To provide a tubular artificial organ having predetermined strength to hold a lumen without increasing a wall thickness of a tube wall, which is excellent in biocompatibility and growth properties.SOLUTION: A tubular artificial organ 1A includes a tubular tissue body 10 composed of fibrotic tissues, which is formed under an environment where a biological tissue material exists, and a tubular reinforcement body 20A composed of a biodegradable material, which is included in the tubular tissue body 10. The tubular tissue body 10 is formed into a tubular shape by implanting a mold in a living body, and the tubular reinforcement body 20A is included over the entire length. The tubular tissue body 10 is composed of a biodegradable material into a mesh shape.SELECTED DRAWING: Figure 1

Description

本発明は、生体適合性に優れ、内腔が潰れない高強度の管状人工臓器とその作製に用いられる基材に関する。   The present invention relates to a high-strength tubular artificial organ that is excellent in biocompatibility and does not collapse the lumen, and a substrate used for the production thereof.

先天性の疾患の治療や病気や事故で失われた組織や器官の働きを再生させるため、人工素材や細胞により形成された人工臓器を移植する再生医療や脱細胞化臓器を組織再生足場材料として利用する研究が数多くなされている。   Regenerative medicine for transplanting artificial materials and artificial organs formed by cells and treatment of congenital diseases and regeneration of tissues and organs lost in diseases and accidents as tissue regeneration scaffold materials Many studies have been used.

従来、生体の自己防衛機能の一つとしてカプセル化という生体反応が知られている。カプセル化とは、例えば、体内の深い位置に異物が侵入した場合に、その異物の周りに線維芽細胞が集まって、主に線維芽細胞と線維芽細胞が産生するコラーゲンからなる線維性組織体のカプセルを形成して異物を覆うことにより、体内において異物を隔離する生体反応である。   Conventionally, a biological reaction called encapsulation is known as one of the self-defense functions of a living body. Encapsulation is a fibrous tissue composed mainly of fibroblasts and collagen produced by fibroblasts when, for example, a foreign body enters a deep position in the body and fibroblasts gather around the foreign body. This is a biological reaction that isolates foreign matter in the body by forming a capsule and covering the foreign matter.

このカプセル化を利用した再生医療技術として、特許文献1には、シリコン樹脂や塩化ビニル樹脂等の非吸収性、非分解性の材料で構成される芯棒を生体内に一定期間埋植し、カプセル化された芯棒を取り出して、芯棒を取り除くことにより、線維性組織で構成される人工血管を得る技術が提案されている。この人工血管は、生体由来の組織のみで構成されるため生体適合性に優れる。また、この人工血管は、移植後に周囲組織から細胞が浸潤して自己組織化が進み、線維性組織がレシピエントの血管組織に置き換わっていくため、成長過程の小児に適用された場合、管径の増大に追随可能であるという成長性も備える。   As regenerative medical technology using this encapsulation, Patent Document 1 discloses that a core rod made of a non-absorbable and non-degradable material such as silicon resin or vinyl chloride resin is implanted in a living body for a certain period of time. There has been proposed a technique for obtaining an artificial blood vessel composed of fibrous tissue by taking out an encapsulated core rod and removing the core rod. Since this artificial blood vessel is composed of only living tissue, it has excellent biocompatibility. In addition, since this artificial blood vessel is infiltrated from surrounding tissues after transplantation, self-organization proceeds, and the fibrous tissue is replaced by the recipient's vascular tissue. It also has the growth potential of being able to follow the increase.

ところで、上述の人工血管は線維性組織により構成されるため保形性に乏しく、血管との吻合が困難である。これを解決するため、特許文献2では、カプセル化を利用して得られる人工血管において、スポンジ状の熱可塑性樹脂により両端部を補強することにより血管との吻合を容易にした人工血管が提案されている。   By the way, since the above-mentioned artificial blood vessel is composed of a fibrous tissue, shape retention is poor, and anastomosis with the blood vessel is difficult. In order to solve this, Patent Document 2 proposes an artificial blood vessel in which an anastomosis with a blood vessel is facilitated by reinforcing both ends with a sponge-like thermoplastic resin in an artificial blood vessel obtained by utilizing encapsulation. ing.

また、特許文献3には、スリットが形成された筒状部材及び該筒状部材に内挿される芯棒で構成される鋳型を生体の皮下に埋植することにより、筒状部材と芯棒の間隙に線維性組織を侵入させて、任意の肉厚を有する管状の線維性組織体(管状人工臓器)を得る技術が提案されている。   Further, Patent Document 3 discloses that a cylindrical member and a core rod are embedded by implanting a mold composed of a cylindrical member having a slit and a core rod inserted into the cylindrical member under the skin of a living body. There has been proposed a technique for obtaining a tubular fibrous tissue body (tubular artificial organ) having an arbitrary thickness by infiltrating a fibrous tissue into a gap.

特開2004−261260号公報JP 2004-261260 A 特許第4483545号公報Japanese Patent No. 4484545 特開2017−113051号公報JP 2017-113051 A

上述したように、線維性組織体により構成される管状の人工臓器は物理的強度に乏しいため、内腔を保持するためには何らかの手段で補強が必要な場合がある。特許文献2に記載されているように、人工血管の両端部のみを補強しただけでは、両端部以外において内腔を保持することが困難である。また、特許文献3に記載の技術を用いて、全長にわたって管壁の肉厚を厚くする方法も考えられる。しかしながら、内腔を保持可能な所定の強度を得るために肉厚を厚くすると、患者の管状臓器の管壁の肉厚よりも大きくなってしまい、吻合部の不整合により移植できない場合が考えられる。   As described above, since a tubular artificial organ composed of a fibrous tissue body has poor physical strength, reinforcement may be required by some means in order to retain the lumen. As described in Patent Document 2, it is difficult to hold the lumen outside the both ends only by reinforcing both ends of the artificial blood vessel. Moreover, the method of increasing the wall thickness of a pipe wall over the full length using the technique of patent document 3 is also considered. However, if the wall thickness is increased in order to obtain a predetermined strength capable of holding the lumen, it may be larger than the wall thickness of the tube wall of the patient's tubular organ, and may not be transplanted due to anastomosis mismatch. .

従って、本発明は、管壁の肉厚を厚くしなくても内腔を保持可能な所定の強度を有し、生体適合性や成長性に優れた管状人工臓器及び当該管状人工臓器の作成に用いられる基材を提供することを目的とする。   Therefore, the present invention provides a tubular artificial organ having a predetermined strength capable of holding a lumen without increasing the wall thickness of the tube wall and excellent in biocompatibility and growth and a tubular artificial organ. It aims at providing the base material used.

本発明者らは、鋳型となる棒状の芯材に生分解性材料で構成される管状補強体を被せ、これを生体に埋植して一定期間後に取り出すことによって、生分解性の管状補強体を内包した線維性組織で構成される管状人工臓器が作製されることを見出し、本発明に至った。   The present inventors put a tubular reinforcing body made of a biodegradable material on a rod-shaped core material used as a mold, implant it in a living body, and take it out after a certain period of time, thereby removing the biodegradable tubular reinforcing body. The present inventors have found that a tubular artificial organ composed of a fibrous tissue encapsulating can be produced.

本発明は、生体組織材料が存在する環境下で形成され、線維性組織で構成される管状組織体と、生分解性の材料で構成され前記管状組織体に内包される管状補強体と、を備える管状人工臓器に関する。   The present invention includes a tubular tissue body that is formed in an environment where a biological tissue material exists and is composed of a fibrous tissue, and a tubular reinforcement body that is composed of a biodegradable material and is included in the tubular tissue body. The present invention relates to a tubular artificial organ provided.

また、前記生分解性の材料で構成される管状補強体は、生体内で繊維性の結合組織が浸潤するように、管の側面はメッシュ状で貫通孔を有する。結合組織が管状補強体と一体化して高強度の管状人工臓器を得るためには、メッシュの開口率は大きい事が好ましく、生分解性のファイバーで網目状に形成されることがより好ましい。   Moreover, the tubular reinforcement body made of the biodegradable material has a mesh-like side surface and a through-hole so that a fibrous connective tissue infiltrates in vivo. In order to obtain a high-strength tubular artificial organ by integrating the connective tissue with the tubular reinforcing body, the mesh preferably has a large aperture ratio, and more preferably is formed in a mesh shape with biodegradable fibers.

また、前記管状組織体は、生体内に鋳型を埋植することにより管状に形成され、前記管状補強体が全長に亘って内包されることが好ましい。   Moreover, it is preferable that the said tubular structure | tissue is formed in a tubular shape by implanting a casting_mold | template in the living body, and the said tubular reinforcement body is included over the full length.

また、前記管状人工臓器の円周方向の管腔保持力が2.0[N・mm]以上であることが好ましい。   Moreover, it is preferable that the lumen holding force in the circumferential direction of the tubular artificial organ is 2.0 [N · mm] or more.

また、前記管状補強体は、軸方向の収縮が規制されていることが好ましい。   Further, it is preferable that the tubular reinforcing body is restricted from contracting in the axial direction.

また、前記管状補強体は、複数の生分解性の線材を用いて組編みにより形成され、前記生分解性の線材同士の交差部が接合されることにより軸方向の収縮が規制されることが好ましい。   Further, the tubular reinforcing body is formed by braiding using a plurality of biodegradable wires, and the contraction in the axial direction is restricted by joining the intersecting portions of the biodegradable wires. preferable.

また、前記管状補強体は、生分解性の線材を用いてニット編みにより形成されることにより軸方向の収縮が規制されることが好ましい。   In addition, it is preferable that the tubular reinforcement body is formed by knit knitting using a biodegradable wire to restrict axial contraction.

また、本発明は、生体内に埋め込むことで周囲に結合組織を形成させて人工管状臓器を作製する基材であって、棒状の芯材と、複数のスリットを有し前記芯材を収納する外筒と、前記芯材と前記外筒との間の空間に配置される円筒状のメッシュ部材と、を備え、前記芯材及び前記外筒は非生分解性の材料で構成され、前記メッシュ部材は生分解性の材料で構成される管状人工臓器作製用の基材に関する。   The present invention also provides a base material for producing an artificial tubular organ by forming a connective tissue around the body by being embedded in a living body, and has a rod-shaped core material and a plurality of slits, and stores the core material. An outer cylinder, and a cylindrical mesh member disposed in a space between the core material and the outer cylinder, wherein the core material and the outer cylinder are made of a non-biodegradable material, and the mesh The member relates to a base material for producing a tubular artificial organ composed of a biodegradable material.

本発明によれば、線維性組織で構成される管状組織体の管壁内に生分解性の管状補強体を備えるので、管壁の肉厚を厚くしなくても内腔を保持可能な所定の強度を有し、生体適合性や成長性に優れた管状人工臓器を得ることができる。   According to the present invention, since the biodegradable tubular reinforcing body is provided in the tube wall of the tubular tissue body constituted by the fibrous tissue, the predetermined lumen capable of holding the lumen without increasing the wall thickness of the tube wall. It is possible to obtain a tubular artificial organ having a high strength and excellent biocompatibility and growth.

本発明の第1実施形態に係る管状人工臓器を模式的に示す斜視図である。1 is a perspective view schematically showing a tubular artificial organ according to a first embodiment of the present invention. 第1実施形態における管状補強体を示す側面図である。It is a side view which shows the tubular reinforcement body in 1st Embodiment. 管状人工臓器の製造に用いられる鋳型を示す分解斜視図である。It is a disassembled perspective view which shows the casting_mold | template used for manufacture of a tubular artificial organ. 本発明の第2実施形態に係る管状補強体の例を示す側面図である。It is a side view which shows the example of the tubular reinforcement body which concerns on 2nd Embodiment of this invention. 管腔保持力及びヤング率(圧縮弾性率)の測定方法を説明するための図である。It is a figure for demonstrating the measuring method of lumen retention force and Young's modulus (compression elastic modulus). 実施例1の管状人工臓器の写真である。2 is a photograph of the tubular artificial organ of Example 1. 実施例2の管状人工臓器の写真及び移植された状態の写真である。It is the photograph of the tubular artificial organ of Example 2, and the photograph of the transplanted state. 実施例2における移植から13週経過後の組織の内側及び外側からの観察写真である。It is an observation photograph from the inside and the outside of the tissue 13 weeks after the transplantation in Example 2. 実施例2における移植から13週経過後に摘出された組織の観察写真である。2 is an observation photograph of a tissue extracted after 13 weeks from transplantation in Example 2. FIG. 比較例1における管状人工臓器の移植時の観察写真及び移植から25日経過後の観察写真である。It is the observation photograph at the time of the transplantation of the tubular artificial organ in the comparative example 1, and the observation photograph 25 days after the transplantation.

本明細書及び特許請求の範囲において、「管状人工臓器」とは、気管、食道、胃、十二指腸、小腸、大腸、胆管、尿管、卵管、血管といった管腔状の臓器、器官の代替物として人工的に作製され、移植に用いられるものである。   In the present specification and claims, the term “tubular artificial organ” refers to a luminal organ or organ substitute such as trachea, esophagus, stomach, duodenum, small intestine, large intestine, bile duct, ureter, oviduct, and blood vessel. Are artificially produced and used for transplantation.

また、「生体組織材料」とは、所望の生体由来組織を形成するうえで必要な物質のことであり、例えば、体細胞(線維芽細胞、平滑筋細胞、内皮細胞等)や多能性幹細胞(ES細胞、iPS細胞等)等のヒト細胞、各種たんぱく質類(コラーゲン、エラスチン)やヒアルロン酸等の糖類等の栄養、その他、細胞の成長や分化を促進する細胞成長因子、サイトカイン等の生体内に存在する各種の生理活性物質が挙げられる。この「生体組織材料」には、ヒト、イヌ、ウシ、ブタ、ヤギ、ヒツジ等の哺乳類動物、鳥類、魚類、その他の動物に由来するもの、又はこれと同等の人工材料が含まれる。   In addition, “biological tissue material” is a substance necessary for forming a desired biological tissue, for example, somatic cells (fibroblasts, smooth muscle cells, endothelial cells, etc.) and pluripotent stem cells. Human cells such as ES cells, iPS cells, etc., nutrients such as various proteins (collagen, elastin) and saccharides such as hyaluronic acid, and other in vivo organisms such as cell growth factors and cytokines that promote cell growth and differentiation And various physiologically active substances present in The “biological tissue material” includes materials derived from mammals such as humans, dogs, cows, pigs, goats and sheep, birds, fish and other animals, or artificial materials equivalent thereto.

また、鋳型を埋植する「生体」とは、動物(ヒト、イヌ、ウシ、ブタ、ヤギ、ヒツジ等の哺乳類動物、鳥類、魚類、その他の動物)の生体内(例えば、四肢部、肩部、背部又は腹部等の皮下、もしくは腹腔内への埋入)のことをいう。   In addition, the “living body” in which the template is implanted refers to the living body (eg, extremities, shoulders) of animals (mammals such as humans, dogs, cows, pigs, goats, sheep, birds, fish, and other animals). , Subcutaneous in the back or abdomen, or embedding in the abdominal cavity).

また、「線維性組織」とは、線維芽細胞が産生するコラーゲンを主成分とする線維性の組織であって、生体内において異物のカプセル化により形成されるものをいう。   The “fibrous tissue” refers to a fibrous tissue mainly composed of collagen produced by fibroblasts and formed by encapsulating a foreign substance in a living body.

また、「カプセル化」とは、生体内において異物の周りに線維芽細胞が集まり、主に線維芽細胞と線維芽細胞が産生するコラーゲンからなる線維性組織体が異物を覆うことにより生体内において異物を隔離する生体反応をいう。
このカプセル化を利用して、シリコン樹脂や塩化ビニル樹脂やステンレス等の非吸収性、非分解性の材料で構成される所定の形状の鋳型を、無菌状態が維持される生体内に一定期間埋植し、カプセル化された鋳型を取り出して、鋳型を取り除くことにより、所定の形状に形成された線維性組織を得ることができる。このような組織形成術を以下、「生体内組織形成術」と呼ぶものとする。生体組織形成術は、無菌状態が維持され、栄養や酸素の供給が確保されている生体内で人工臓器として線維性組織を形成することができる。また、自己の体内で線維性組織を形成した場合、免疫拒絶が生じないため、生体適合性の高い人工臓器を得ることができる。
In addition, “encapsulation” means that fibroblasts gather around a foreign substance in a living body, and a fibrous tissue body mainly composed of fibroblasts and collagen produced by fibroblasts covers the foreign substance in the living body. A biological reaction that isolates foreign matter.
Using this encapsulation, molds of a predetermined shape made of non-absorbable and non-degradable materials such as silicon resin, vinyl chloride resin, and stainless steel are embedded in a living body that maintains sterility for a certain period of time. The fibrous tissue formed in a predetermined shape can be obtained by removing the template after planting and encapsulating the template. Hereinafter, such a tissue shaping technique is referred to as “in vivo tissue shaping technique”. Biological tissue formation can form a fibrous tissue as an artificial organ in a living body in which aseptic conditions are maintained and supply of nutrients and oxygen is ensured. In addition, when a fibrous tissue is formed in the body, immune rejection does not occur, and thus an artificial organ with high biocompatibility can be obtained.

一方、生体外の人工環境において培養により線維性組織を形成する場合は、一連の細胞操作(例えば、細胞の採取、分離、必要に応じて分化、増殖、足場への播種、力学的負荷等の適切な条件下での生着化等)を無菌状態で行う必要があり、生体内組織形成術による場合に比べて、手間やコストがかかる。
従って、以下に説明する各実施形態では、生体内組織形成術を利用して形成される人工臓器について説明する。
On the other hand, when forming a fibrous tissue by culturing in an in vitro artificial environment, a series of cell manipulations (for example, cell collection, separation, differentiation, proliferation, seeding on a scaffold, mechanical load, etc. as necessary) Engraftment under appropriate conditions, etc.) must be performed under aseptic conditions, which is more laborious and costly than in the case of in vivo histogenesis.
Accordingly, in each of the embodiments described below, an artificial organ formed using in vivo tissue formation will be described.

以下、本発明の各実施形態について、図面を参照しながら説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

<第1実施形態>
図1〜図3を参照して、第1実施形態に係る管状人工臓器1Aについて説明する。
図1に示すように、管状人工臓器1Aは、管状組織体10と、管状補強体20Aと、を含んで構成される。
<First Embodiment>
The tubular artificial organ 1A according to the first embodiment will be described with reference to FIGS.
As shown in FIG. 1, the tubular artificial organ 1A includes a tubular tissue body 10 and a tubular reinforcing body 20A.

管状組織体10は、主にコラーゲンからなる線維性組織で円筒形状に構成されており、この線維性組織は、生体組織形成術を用いて、生体内に所定の形状の鋳型(基材)を埋植することにより、鋳型に対応した形状に形成される。鋳型の構成については、後に詳細に説明する。   The tubular tissue body 10 is composed of a fibrous tissue mainly made of collagen and is formed into a cylindrical shape. This fibrous tissue is formed with a template (base material) having a predetermined shape in a living body by using a biopsy technique. By embedding, a shape corresponding to the mold is formed. The configuration of the mold will be described in detail later.

管状補強体20Aは、管状組織体10と同一の円筒形状に形成されて、管状組織体10の管壁に内包されるように設けられる(図1参照)。管状補強体20Aは、外圧や陰圧により管状組織体10の内腔が潰れないように、内腔を保持可能な程度の所定の強度を備えている。   20 A of tubular reinforcement bodies are formed in the same cylindrical shape as the tubular tissue body 10, and are provided so that it may be included in the tube wall of the tubular tissue body 10 (refer FIG. 1). The tubular reinforcing body 20A has a predetermined strength enough to hold the lumen so that the lumen of the tubular tissue body 10 is not crushed by external pressure or negative pressure.

管状補強体20Aは、図2に示すように網目状(メッシュ状)に構成されており、管状組織体10の線維性組織が網目状構造に入り込むことができる。よって、管状組織体10と管状補強体20Aとを密着させて一体化することができ、管状組織体10に強度を付与することができる。   As shown in FIG. 2, the tubular reinforcement body 20 </ b> A is configured in a mesh shape (mesh shape), and the fibrous tissue of the tubular tissue body 10 can enter the mesh structure. Therefore, the tubular tissue body 10 and the tubular reinforcing body 20A can be brought into close contact with each other, and the strength can be imparted to the tubular tissue body 10.

また、管状補強体20Aは、体内で分解、吸収される生分解性の材料で構成されるので、管状人工臓器1Aを移植して所定期間が経過した後は、体内に異物として残りにくい。よって、組織再生を阻害する等の悪影響が低減され、管状人工臓器1Aの成長性も妨げない。
ここで、所定期間とは、管状組織体10を構成する線維性組織が自己組織に置換して組織再生が完了するまでの間であり、管状補強体20Aの材料としては、組織再生が完了するまでは補強体としての機能を保つように、体内での分解、吸収が遅い生分解性の材料であることが好ましい。一例として、管状人工臓器1Aが気管に移植される場合、移植後6ヶ月から12ヶ月の期間は形状を保ち、その後ゆっくりと分解、吸収されることが好ましい。移植後6ヶ月から12ヶ月の期間は、気管を構成する軟骨等の再生速度が遅い組織形成に必要な期間であり、その後ゆっくりと、分解、吸収されることで、過剰な炎症の発生を抑えることができる。
Further, since the tubular reinforcing body 20A is composed of a biodegradable material that is decomposed and absorbed in the body, it is difficult for the tubular reinforcing body to remain as a foreign substance in the body after the tubular artificial organ 1A has been transplanted and a predetermined period has elapsed. Therefore, adverse effects such as inhibiting tissue regeneration are reduced, and the growth of the tubular artificial organ 1A is not hindered.
Here, the predetermined period is a period until the fibrous tissue constituting the tubular tissue body 10 is replaced with the self tissue and the tissue regeneration is completed, and the tissue regeneration is completed as a material of the tubular reinforcing body 20A. Until then, a biodegradable material that is slow to decompose and absorb in the body is preferable so as to maintain the function as a reinforcing body. As an example, when the tubular artificial organ 1A is transplanted into the trachea, it is preferable that the shape is maintained for 6 to 12 months after the transplantation, and then slowly decomposed and absorbed. The period from 6 to 12 months after transplantation is a period necessary for tissue formation with a slow regeneration rate such as cartilage constituting the trachea, and then slowly decomposes and absorbs to suppress the occurrence of excessive inflammation. be able to.

管状補強体20Aの形成方法の一例として、図2に示すように、複数本の生分解性の線材21を用いて組編みにより形成する方法が挙げられる。生分解性の線材21の種類、径及び編みピッチPを適宜変更することで、管状補強体20Aの強度や生体内における分解速度を調整することができる。ここで、編みピッチPとは、図2に示すように、軸方向における網目の大きさ、即ち、生分解性の線材21の交差により形成される交点間の距離を表すものとする。   As an example of a method for forming the tubular reinforcing body 20A, as shown in FIG. 2, a method of forming by braiding using a plurality of biodegradable wires 21 can be mentioned. By appropriately changing the type, diameter and knitting pitch P of the biodegradable wire 21, the strength of the tubular reinforcing body 20 </ b> A and the decomposition rate in the living body can be adjusted. Here, the knitting pitch P represents the size of the mesh in the axial direction, that is, the distance between the intersections formed by the intersection of the biodegradable wires 21 as shown in FIG.

生分解性の材料としては、生体適合性に優れるポリエステルが好ましく、ポリ乳酸、ポリグリコール酸、ポリ(ε−カプロラクトン)、ポリジオキサノン(トリメチレンカーボネートの重合体)やこれらの共重合体を使用することができる。そして、これらの材料からなる繊維を生分解性の線材21として用いることができる。   As the biodegradable material, polyester excellent in biocompatibility is preferable, and polylactic acid, polyglycolic acid, poly (ε-caprolactone), polydioxanone (polymer of trimethylene carbonate) or a copolymer thereof should be used. Can do. A fiber made of these materials can be used as the biodegradable wire 21.

また、これらの生分解性の材料には、人工臓器として埋植された後に組織再生を促進させたり、炎症反応を抑制させたりすることを目的に、成長因子や抗炎症剤等の生理活性を有する薬剤を含侵させてもよい。成長因子として例えば、血小板由来増殖因子(PDGF)、トランスフォーミング成長因子−α(TGF−α)、トランスフォーミング成長因子−β(TGF−β)、インスリン様増殖因子(IGF)、コロニー刺激因子(CSF)、線維芽細胞成長因子(FGF)、上皮細胞成長因子(EGF)、インスリン、血小板由来創傷治癒因子(PDWHF)、血管内皮細胞増殖因子(VEGF)、神経成長因子(NGF)、肝細胞増殖因子(HGF)及び骨形成タンパク質(BMP)が挙げられる。
抗炎症剤として例えばコルチゾール、デキサメタゾン、ベタメタゾン、プレドニゾロン、トリアムシノロン、アセチルサリチル酸、エテンザミド、ジフルニサル、ロキソブロフェン、イブプロフェン、インドメタシン、ジクロフェナク、メロキシカム、フェルデン、アセトアミノフェンが挙げられる。
In addition, these biodegradable materials have physiological activities such as growth factors and anti-inflammatory agents for the purpose of promoting tissue regeneration and suppressing inflammatory reactions after being implanted as an artificial organ. You may impregnate the medicine which has. Examples of growth factors include platelet-derived growth factor (PDGF), transforming growth factor-α (TGF-α), transforming growth factor-β (TGF-β), insulin-like growth factor (IGF), colony stimulating factor (CSF). ), Fibroblast growth factor (FGF), epidermal growth factor (EGF), insulin, platelet-derived wound healing factor (PDWHF), vascular endothelial growth factor (VEGF), nerve growth factor (NGF), hepatocyte growth factor (HGF) and bone morphogenetic protein (BMP).
Examples of anti-inflammatory agents include cortisol, dexamethasone, betamethasone, prednisolone, triamcinolone, acetylsalicylic acid, etenzamide, diflunisal, loxobrofen, ibuprofen, indomethacin, diclofenac, meloxicam, ferden, and acetaminophen.

次に、図3を参照して、生体組織形成術により管状人工臓器1Aを作製する方法について説明する。   Next, with reference to FIG. 3, a method for producing the tubular artificial organ 1 </ b> A by living tissue shaping will be described.

図3に示す鋳型100は、所定の外径を有するシリコン樹脂製の芯棒110及び所定の内径を有し芯棒110が内側に固定可能に設けられる外筒としてのステンレス製の円筒120で構成される。ステンレス製の円筒120は、本体部121と、蓋部122と、を備えており、本体部121には、芯棒110と円筒120との間隙に生体組織材料が侵入可能なように複数のスリット123が形成される。
芯棒110と円筒120との間に管状補強体20Aを配置した状態で、鋳型100を皮下や腹腔等の生体内に1〜2ヶ月程度の所定の期間、埋植する。
鋳型100が生体内に埋植されている間に、円筒120に形成されたスリット123から芯棒110と円筒120の間隙にカプセル化による線維性組織が形成されていく。この際、線維性組織が、管状補強体20Aの網目状構造に入り込んだ状態で芯棒110と円筒120の間隙を満たしていく。
所定の期間経過後、鋳型100を生体内から取り出して、芯棒110及び円筒120を取り除くことにより、外径を円筒120の内径とし、内径を芯棒110の外径とする管状組織体10の管壁に管状補強体20Aが内包された管状人工臓器1Aを得ることができる。つまり、本実施形態では、芯棒110と、円筒120と、これら芯棒110と円筒120との間の空間に配置される管状補強体20Aと、を基材として管状人工臓器1Aが作製される。
A mold 100 shown in FIG. 3 includes a silicon resin core rod 110 having a predetermined outer diameter and a stainless steel cylinder 120 as an outer cylinder having a predetermined inner diameter and provided with the core rod 110 fixed inside. Is done. The stainless steel cylinder 120 includes a main body portion 121 and a lid portion 122, and a plurality of slits are provided in the main body portion 121 so that a living tissue material can enter the gap between the core rod 110 and the cylinder 120. 123 is formed.
With the tubular reinforcing body 20A disposed between the core rod 110 and the cylinder 120, the mold 100 is implanted in a living body such as subcutaneous or abdominal cavity for a predetermined period of about 1 to 2 months.
While the mold 100 is implanted in the living body, a fibrous tissue by encapsulation is formed in the gap between the core rod 110 and the cylinder 120 from the slit 123 formed in the cylinder 120. At this time, the fibrous tissue fills the gap between the core rod 110 and the cylinder 120 in a state of entering the network structure of the tubular reinforcing body 20A.
After elapse of a predetermined period, the mold 100 is taken out from the living body, and the core rod 110 and the cylinder 120 are removed, whereby the tubular tissue body 10 having the outer diameter as the inner diameter of the cylinder 120 and the inner diameter as the outer diameter of the core rod 110 is obtained. A tubular artificial organ 1A in which a tubular reinforcement body 20A is included in the tube wall can be obtained. That is, in this embodiment, the tubular artificial organ 1A is manufactured using the core rod 110, the cylinder 120, and the tubular reinforcing body 20A disposed in the space between the core rod 110 and the cylinder 120 as a base material. .

以上説明した第1実施形態に係る管状人工臓器1Aは、移植後、管状組織体10を構成する線維性組織が体内で細胞が生着するための足場となると共に、自己組織と徐々に置き変わっていくため、成長途中の臓器に適用された場合、管径の増大に追随可能であるという成長性を備える。また、径方向に陰圧や外圧がかかる管状臓器に適用しても内腔を維持することができる。   In the tubular artificial organ 1A according to the first embodiment described above, the fibrous tissue constituting the tubular tissue body 10 becomes a scaffold for engraftment of cells in the body after transplantation, and gradually replaces the self tissue. Therefore, when applied to an organ in the middle of growth, it has the growth ability of being able to follow the increase in tube diameter. In addition, the lumen can be maintained even when applied to a tubular organ in which negative pressure or external pressure is applied in the radial direction.

第1実施形態に係る管状人工臓器1Aによれば、以下の効果を奏する。   The tubular artificial organ 1A according to the first embodiment has the following effects.

(1)管状人工臓器1Aは、生体組織材料が存在する環境下で所定の形状の鋳型100を用いて形成される線維性組織で構成される管状組織体10と、生分解性の線材21で構成され管状組織体10に内包される管状補強体20Aと、を備えるものとした。これにより、管状人工臓器1Aを、管状組織体10の管壁の肉厚を厚くしなくても内腔を保持可能な所定の強度を有するように形成できる。よって、例えば、管壁の肉厚が薄い血管等、管壁の肉厚の厚さにかかわらず様々な管状臓器に管状人工臓器1Aを適用することができる。また、管状組織体10が高い生体適合性と成長性を備える線維性組織により構成され、管状補強体20Aが移植後に分解、吸収されて管状組織体10の成長性を妨げないので、管状人工臓器1Aは、高い生体適合性と成長性を備える。よって、小児の臓器移植への適用も期待できる。   (1) A tubular artificial organ 1A is composed of a tubular tissue body 10 composed of a fibrous tissue formed using a template 100 having a predetermined shape in an environment where a biological tissue material exists, and a biodegradable wire 21. And a tubular reinforcement body 20 </ b> A configured and enclosed in the tubular tissue body 10. Accordingly, the tubular artificial organ 1A can be formed to have a predetermined strength capable of holding the lumen without increasing the wall thickness of the tube wall of the tubular tissue body 10. Therefore, for example, the tubular artificial organ 1A can be applied to various tubular organs, such as a blood vessel having a thin tube wall, regardless of the thickness of the tube wall. Further, the tubular tissue body 10 is composed of a fibrous tissue having high biocompatibility and growth, and the tubular reinforcing body 20A is decomposed and absorbed after transplantation so that the growth of the tubular tissue body 10 is not hindered. 1A has high biocompatibility and growth. Therefore, application to organ transplantation in children can be expected.

(2)管状補強体20Aを網目状に構成することで、管状組織体10の線維性組織を管状補強体20Aの網目状構造に入り込ませることができるので、管状組織体10と管状補強体20Aとを密着させて一体化することができる。   (2) Since the fibrous tissue of the tubular tissue body 10 can enter the network structure of the tubular reinforcement body 20A by configuring the tubular reinforcement body 20A in a mesh shape, the tubular tissue body 10 and the tubular reinforcement body 20A And can be integrated.

<第2実施形態>
図4を参照して、第2実施形態に係る管状人工臓器1Bについて説明する。第2実施形態の管状人工臓器1Bは、管状補強体20Bの構成が第1実施形態におけるものと異なる。尚、第2実施形態の説明にあたって、同一構成要件については同一符号を付し、その説明を省略もしくは簡略化する。
<Second Embodiment>
A tubular artificial organ 1B according to the second embodiment will be described with reference to FIG. The tubular artificial organ 1B of the second embodiment is different from that of the first embodiment in the configuration of the tubular reinforcing body 20B. In the description of the second embodiment, the same components are denoted by the same reference numerals, and the description thereof is omitted or simplified.

管状人工臓器1Bは、管状組織体10と、管状補強体20Bと、を含んで構成される。
管状補強体20Bは、第1実施形態の場合と同様に、生分解性の材料で網目状に構成され管状組織体10と略同等の円筒形状に形成されて管状組織体10の管壁に設けられ、管状組織体10の内腔を保持可能な所定の強度を有するように構成される。第2実施形態に係る管状補強体20Bは、軸方向の収縮が規制されている点で第1実施形態に係る管状補強体20Aと異なる。
The tubular artificial organ 1B includes a tubular tissue body 10 and a tubular reinforcing body 20B.
As in the case of the first embodiment, the tubular reinforcing body 20B is formed in a mesh shape with a biodegradable material, is formed in a cylindrical shape substantially equivalent to the tubular tissue body 10, and is provided on the tube wall of the tubular tissue body 10. And having a predetermined strength capable of holding the lumen of the tubular tissue body 10. The tubular reinforcement body 20B according to the second embodiment is different from the tubular reinforcement body 20A according to the first embodiment in that axial contraction is restricted.

図4に、軸方向の収縮が規制された管状補強体20Bの構成例である管状補強体201B,202B,203Bを示す。   FIG. 4 shows tubular reinforcement bodies 201B, 202B, and 203B, which are examples of the configuration of the tubular reinforcement body 20B in which axial contraction is restricted.

図4(a)に示す管状補強体201Bは、複数の生分解性の線材21を用いて組編みすることにより網目状の円筒形状に構成され、生分解性の線材21同士の交差部が超音波溶着により接合された複数の接合部23を備える。生分解性の線材21同士が接合部23において接合されているので、管状補強体201Bの軸方向の収縮が規制される。尚、接合の方法については、超音波溶着の他、熱溶着や接着剤等を用いてもよい。   A tubular reinforcing body 201B shown in FIG. 4A is formed into a mesh-like cylindrical shape by braiding using a plurality of biodegradable wire rods 21, and the intersecting portion between the biodegradable wire rods 21 is super-long. A plurality of joints 23 joined by sonic welding are provided. Since the biodegradable wires 21 are joined at the joint 23, contraction in the axial direction of the tubular reinforcement 201B is restricted. In addition, about the joining method, you may use heat welding, an adhesive agent, etc. other than ultrasonic welding.

図4(b)に示す管状補強体202Bは、1本の生分解性の線材21をニット編み(リリアン編みともいう)することにより網目状の円筒形状に形成される。管状補強体202Bをニット編みにより、複数のループが連結した構造とすることにより、軸方向の圧縮に対して強度を付与することができる。よって、管状補強体202Bの軸方向の収縮が規制される。尚、ニット編みとは、編み針への1回の糸かけ操作によって1個の編目を形成する動作を表す。   The tubular reinforcing body 202B shown in FIG. 4 (b) is formed into a mesh-like cylindrical shape by knit-knitting (also called Lilian knitting) one biodegradable wire 21. By making the tubular reinforcing body 202B into a structure in which a plurality of loops are connected by knitting, strength can be imparted against compression in the axial direction. Therefore, contraction in the axial direction of the tubular reinforcement 202B is restricted. The knit knitting represents an operation of forming one stitch by a single threading operation on a knitting needle.

図4(c)に示す管状補強体203Bは、生分解性の材料で構成される軸方向に収縮性を有さない円筒を、レーザーや水流により網目構造を有するようにカットすることにより形成される。よって、管状補強体203Bの軸方向の収縮が規制される。尚、生分解性の材料としては、前述の生分解性の材料を用いることができる。   The tubular reinforcing body 203B shown in FIG. 4 (c) is formed by cutting an axially contractible cylinder made of a biodegradable material so as to have a network structure by laser or water flow. The Therefore, the axial contraction of the tubular reinforcing body 203B is restricted. As the biodegradable material, the aforementioned biodegradable material can be used.

図4で例示した他、熱可塑性の生分解性樹脂を射出成型することにより、網目構造を有し、軸方向の収縮が規制された管状補強体20Bを作製してもよい。   In addition to the example illustrated in FIG. 4, a tubular reinforcing body 20 </ b> B having a network structure and restricted in axial shrinkage may be manufactured by injection molding a thermoplastic biodegradable resin.

以上説明した管状人工臓器1Bは、軸方向の収縮が規制されるので、例えば、軸方向に外圧がかかる気管等の管状臓器の移植に好適に適用される。   Since the tubular artificial organ 1B described above is restricted in contraction in the axial direction, it is suitably applied to transplantation of a tubular organ such as a trachea in which external pressure is applied in the axial direction.

第2実施形態に係る管状人工臓器1Bによれば、上述の(1)及び(2)の効果に加えて、以下の効果を奏する。
(3)管状人工臓器1Bを、軸方向の収縮が規制されている管状補強体20Bを含んで構成した。これにより、管状人工臓器1Bが軸方向に収縮することを規制できるので、より良好に内腔を維持させられる。
The tubular artificial organ 1B according to the second embodiment has the following effects in addition to the effects (1) and (2) described above.
(3) The tubular artificial organ 1B includes the tubular reinforcing body 20B in which axial contraction is restricted. Thereby, since it can control that tubular artificial organ 1B contracts in the direction of an axis, a lumen can be maintained better.

(4)管状補強体201Bを、複数の生分解性の線材21を用いて組編みにより形成され、生分解性の線材21同士の交差部が接合された複数の接合部23を含んで構成した。これにより、管状補強体201Bの軸方向の収縮を好適に規制できるので、管状人工臓器1Bの軸方向の収縮を好適に規制できる。   (4) The tubular reinforcing body 201B is formed by braiding using a plurality of biodegradable wire rods 21 and includes a plurality of joint portions 23 in which crossing portions of the biodegradable wire rods 21 are joined. . Thereby, since shrinkage | contraction of the axial direction of the tubular reinforcement body 201B can be controlled suitably, shrinkage | contraction of the axial direction of the tubular artificial organ 1B can be controlled suitably.

(5)管状補強体202Bを、生分解性の線材21を用いてニット編みにより形成されることにより軸方向の収縮が規制されるものとした。これにより、管状人工臓器1Bの軸方向の収縮を規制することができる。   (5) The tubular reinforcement 202B is formed by knit knitting using the biodegradable wire 21, so that axial contraction is restricted. Thereby, contraction of the axial direction of the tubular artificial organ 1B can be regulated.

<実施例>
次に、本発明の各実施形態に係る管状人工臓器の構成を人工血管等よりも高い強度が要求される人工気管をビーグル犬に移植適用した実施例について、詳細に説明する。
<Example>
Next, an example in which the configuration of the tubular artificial organ according to each embodiment of the present invention is applied to a beagle dog with an artificial trachea that requires higher strength than an artificial blood vessel or the like will be described in detail.

表1に実施例1〜5の管状補強体の構成を示す。   Table 1 shows the configurations of the tubular reinforcing bodies of Examples 1 to 5.

(管状補強体の構成)
表1を参照しながら、実施例1〜5の管状補強体の構成について説明する。
生分解性の線材21として、ポリL−乳酸(重量平均分子量450,000、融点195℃)を紡糸延伸して形成されたモノフィラメントを用いて、いずれも内径15mm、長さ40mmの円筒形状をした実施例1〜5の管状補強体を作製した。生分解性の線材21の直径は、実施例1〜4は0.3mmで、実施例5のみ0.4mmである。
実施例1及び2に示す管状補強体は、複数本の生分解性の線材21を組編みすることにより形成されたものであり、第1実施形態に係る管状補強体20Aの構成に対応する実施例である(図2参照)。実施例3〜5に示す管状補強体は、軸方向の収縮が規制されるように形成されたものであり、第2実施形態に係る管状補強体20Bの構成(実施例3は、図4(a)に示す管状補強体201Bの構成、実施例4及び5は、図4(b)に示す管状補強体202Bの構成)に対応する実施例である。
(Configuration of tubular reinforcement)
The structure of the tubular reinforcement body of Examples 1-5 is demonstrated referring Table 1. FIG.
As the biodegradable wire 21, a monofilament formed by spinning and drawing poly L-lactic acid (weight average molecular weight 450,000, melting point 195 ° C.) was used, and each of them had a cylindrical shape with an inner diameter of 15 mm and a length of 40 mm. The tubular reinforcement body of Examples 1-5 was produced. The diameter of the biodegradable wire 21 is 0.3 mm in Examples 1 to 4, and 0.4 mm only in Example 5.
The tubular reinforcing bodies shown in Examples 1 and 2 are formed by braiding a plurality of biodegradable wire rods 21, and an implementation corresponding to the configuration of the tubular reinforcing body 20A according to the first embodiment. It is an example (refer FIG. 2). The tubular reinforcing bodies shown in Examples 3 to 5 are formed so that axial contraction is restricted, and the configuration of the tubular reinforcing body 20B according to the second embodiment (Example 3 is shown in FIG. The configuration of the tubular reinforcing body 201B shown in a), Examples 4 and 5 are examples corresponding to the configuration of the tubular reinforcing body 202B shown in FIG. 4B.

(強度の測定方法)
管状補強体の物性は、径方向の強度の指標となる「管腔保持力」と長軸方向の強度として「ヤング率(圧縮弾性率)」で評価した。これら物性の測定には圧縮試験機(オートグラフAG−X Plus、島津製作所製)を用いた。
管腔保持力の測定は、図5(a)に示すように、軸方向の動きを規制する冶具J(管状補強体の長さに調整)に管状補強体を配置して、管状補強体を、外径が30%になるまで上部から押し子PLで押圧して圧縮強度を測定した。管腔保持力[N・mm]は、圧縮強度[N]×(管状補強体の直径)[mm]/管状補強体の軸方向の長さ[mm]により求められる。
また、軸方向のヤング率は、図5(b)に示すように、管状補強体を垂直に配置して、管状補強体を長さが90%になるまで上部から押し子PLで押圧して圧縮強度を測定した。得られた0〜10%ひずみ領域における応力ひずみ曲線の傾きから最大ばね定数[N/mm]を求めた。ヤング率E(MPa)は、E=ばね定数[N/mm]×初期長[mm]/管状補強体の断面積[mm]により求められる。
(Measurement method of strength)
The physical properties of the tubular reinforcement were evaluated by “Young's modulus (compression elastic modulus)” as “luminal retention strength” which is an index of strength in the radial direction and strength in the long axis direction. A compression tester (Autograph AG-X Plus, manufactured by Shimadzu Corporation) was used to measure these physical properties.
As shown in FIG. 5 (a), the lumen holding force is measured by placing the tubular reinforcement on a jig J (adjusted to the length of the tubular reinforcement) that regulates the movement in the axial direction. The compression strength was measured by pressing from above with the pusher PL until the outer diameter reached 30%. The lumen holding force [N · mm] is determined by compressive strength [N] × (diameter of tubular reinforcement) 2 [mm 2 ] / axial length [mm] of the tubular reinforcement.
Further, as shown in FIG. 5 (b), the axial Young's modulus is determined by placing the tubular reinforcement body vertically and pressing the tubular reinforcement body from above with a pusher PL until the length reaches 90%. The compressive strength was measured. The maximum spring constant [N / mm] was determined from the slope of the obtained stress strain curve in the 0-10% strain region. The Young's modulus E (MPa) is obtained by E = spring constant [N / mm] × initial length [mm] / cross-sectional area [mm 2 ] of the tubular reinforcement.

(強度の測定結果)
実施例1〜5の管状補強体の管腔保持力、圧縮弾性率、及び、比較例1の管状人工臓器の管腔保持力について測定した結果について詳細に説明する。
(Measurement result of strength)
The results of measuring the lumen holding force and compression elastic modulus of the tubular reinforcements of Examples 1 to 5 and the lumen holding force of the tubular artificial organ of Comparative Example 1 will be described in detail.

表1に示すように、実施例1〜5の管状補強体は、いずれも2.0[N・mm]以上の管腔保持力を有していた。
管腔保持力について、編み方が同じ組編みであり、編みピッチが大きい実施例1と小さい実施例2とを比較すると、実施例2の方が大きい管腔保持力を有していた。よって、編みピッチを小さくすることで、管腔保持力を大きくできることが確認できた。
軸方向の圧縮弾性率について、編み方が同じ組編みであり、編みピッチも同じで、生分解性の線材21の交差部が接合されていない実施例2と、接合されている実施例3とを比較すると、実施例3の方が大きいヤング率を有していた。よって、生分解性の線材21の交差部を接合して軸方向の収縮を規制することにより、ヤング率を大きくできることが確認できた。また、軸方向の収縮を規制する手段が異なる実施例3と実施例4とを比較すると、管状補強体を組編みにより形成して生分解性の線材21の交差部を接合する実施例3に比べ、ニット編みにより形成する実施例4の方が、ヤング率を大きく向上できることが確認できた。
また、編み方が同じニット編みであり、生分解性の線材21の径だけが異なる実施例4と実施例5とを比較すると、生分解性の線材21の径を太くすることで、管腔保持力及びヤング率を向上できることが確認できた。
As shown in Table 1, the tubular reinforcing bodies of Examples 1 to 5 all had a lumen holding force of 2.0 [N · mm] or more.
Regarding the lumen holding force, the braiding method is the same braiding, and when Example 1 having a large knitting pitch is compared with Example 2 having a small knitting pitch, Example 2 has a larger lumen holding force. Therefore, it was confirmed that the lumen retention force can be increased by reducing the knitting pitch.
Example 2 in which the knitting method is the same, the knitting pitch is the same, and the intersecting portion of the biodegradable wire 21 is not joined, and the joined Example 3 in the axial compression elastic modulus. When compared, Example 3 had a larger Young's modulus. Therefore, it was confirmed that the Young's modulus can be increased by joining the intersecting portions of the biodegradable wire rods 21 to restrict axial contraction. In addition, when Example 3 and Example 4 having different means for restricting axial contraction are compared, Example 3 in which a tubular reinforcing body is formed by braiding and the intersecting portion of the biodegradable wire 21 is joined. In comparison, it was confirmed that Example 4 formed by knit knitting can greatly improve the Young's modulus.
Further, when Example 4 and Example 5 in which the knitting method is the same knitting and only the diameter of the biodegradable wire 21 is compared, the lumen of the biodegradable wire 21 is increased by increasing the diameter. It was confirmed that the holding force and Young's modulus can be improved.

(鋳型の構成)
鋳型として、外径15mm、長さ40mmのシリコン樹脂製の丸棒形状の芯棒110と、複数のスリット123が形成された内径17mmの本体部121及び蓋部122を有するステンレス製の円筒120と、を備える鋳型100を用意した(図3参照)。
(Mold structure)
As a mold, a round rod-shaped core rod 110 made of silicon resin having an outer diameter of 15 mm and a length of 40 mm, and a stainless steel cylinder 120 having a main body portion 121 having a plurality of slits 123 and an inner diameter of 17 mm and a lid portion 122, and (See FIG. 3).

(管状人工臓器の作製)
上述の鋳型100に、表1に示す条件で作製された実施例1の管状補強体20Aを挿入した。
このようにして得られた鋳型100をビーグル犬の背部皮下に埋植して生体内組織形成術を行った。鋳型100の埋植手術は、一般的な手技によりビーグル犬に麻酔を施した後、消毒した皮膚を約30mm切開して、滅菌した鋳型100を皮下に配置した後、皮膚を縫合した。埋植手術後、水は自由摂取させ、飼料は体重に応じて与え、通常環境でビーグル犬を飼育した。
鋳型100を埋植してから2カ月後に、麻酔下でカプセル化された鋳型100を摘出して、鋳型100を取り除き、内径15mm、外径17mm、長さ40mmの円筒形状を有する実施例1の管状人工臓器1Aを得た(図6参照)。この管状人工臓器1Aの管腔保持力を測定したところ、2.5N・mmであった。この結果により、管状人工臓器1Aの管腔保持力は、少なくとも管状補強体20Aが有する2.1N・mmよりも大きいことが示された。得られた管状人工臓器1Aを、移植前に室温で24時間以上、エタノールに浸漬して脱細胞処理を行った。
(Production of tubular artificial organs)
The tubular reinforcing body 20A of Example 1 manufactured under the conditions shown in Table 1 was inserted into the mold 100 described above.
The template 100 obtained in this way was implanted under the back of a beagle dog to perform in vivo tissue formation. In implanting the mold 100, the beagle dog was anesthetized by a general procedure, then the disinfected skin was incised about 30 mm, the sterilized mold 100 was placed subcutaneously, and the skin was sutured. After the implantation operation, water was freely given, food was given according to body weight, and beagle dogs were raised in a normal environment.
Two months after the implantation of the mold 100, the encapsulated mold 100 was removed under anesthesia, the mold 100 was removed, and the cylindrical shape of Example 1 having an inner diameter of 15 mm, an outer diameter of 17 mm, and a length of 40 mm was obtained. A tubular artificial organ 1A was obtained (see FIG. 6). The lumen holding force of the tubular artificial organ 1A was measured and found to be 2.5 N · mm. From this result, it was shown that the lumen holding force of the tubular artificial organ 1A is larger than at least 2.1 N · mm of the tubular reinforcing body 20A. The obtained tubular artificial organ 1A was decellularized by being immersed in ethanol for 24 hours or more at room temperature before transplantation.

また、実施例1と同様の方法により、実施例2の管状補強体20Aを備える実施例2の管状人工臓器1Aを得た(図7(a)参照)。得られた管状人工臓器1Aを、移植前に室温で24時間以上、エタノールに浸漬して脱細胞処理を行った。   Moreover, the tubular artificial organ 1A of Example 2 provided with 20 A of tubular reinforcement bodies of Example 2 was obtained by the method similar to Example 1 (refer Fig.7 (a)). The obtained tubular artificial organ 1A was decellularized by being immersed in ethanol for 24 hours or more at room temperature before transplantation.

また、上述の鋳型100を用いて、管状補強体を挿入しない他は実施例1及び2と同様の方法により、管状補強体を有しない比較例1の管状人工臓器300を得た。この管状人工臓器300の管腔保持力を測定したところ、0.1N・mmであり、実施例1の管状人工臓器1Aの管腔保持力と比較して低強度であった。   Moreover, the tubular artificial organ 300 of the comparative example 1 which does not have a tubular reinforcement body was obtained by the method similar to Example 1 and 2 except not inserting a tubular reinforcement body using the above-mentioned casting_mold | template 100. When the lumen holding force of the tubular artificial organ 300 was measured, it was 0.1 N · mm, which was lower than the lumen holding force of the tubular artificial organ 1A of Example 1.

(管状人工臓器の気管移植試験)
実施例1、2及び比較例1の管状人工臓器をビーグル犬の気管に移植する試験を行った結果について説明する。
(Tracheal transplantation test for tubular artificial organs)
The results of a test of transplanting the tubular artificial organs of Examples 1 and 2 and Comparative Example 1 into the trachea of a beagle dog will be described.

まず、実施例1の管状人工臓器1Aの気管移植試験の内容及び移植後の経過について詳細に説明する。
全身麻酔下でビーグル犬の気管を1cm切除し、1cm長にカットした実施例1の管状人工臓器1Aを端々吻合で繋いだ。移植後は通常の方法で飼育した。飼育中に異常所見は認められず、呼吸の状態も良好であった。
移植19週後に内視鏡で移植部の気管を観察した結果、内腔の開存性は保たれていたが内腔径は5.5mmであったため、外径15mmのバルーンカテーテルで拡張を行うと共に、0.1%リンデロン(ステロイド剤)1mL〜2mLの噴霧を実施した。
移植24週目に再度内視鏡で観察した結果、前回の観察時と同様に内腔の開存性は保たれていたが、内腔径は6.5mmであったため、15mmのバルーンカテーテルで拡張を行うと共に、0.1%リンデロン(ステロイド剤)1mL〜2mLの噴霧を実施した。
移植25週目、及び、27週目に内視鏡検査を行った結果、気管の内腔径はいずれも7mmを維持しており、開存性が保たれていた。
First, the contents of the tracheal transplantation test of the tubular artificial organ 1A of Example 1 and the course after the transplantation will be described in detail.
Under general anesthesia, 1 cm of the trachea of the beagle dog was excised, and the tubular artificial organ 1A of Example 1 cut to 1 cm length was connected by end-to-end anastomosis. After transplantation, the animals were reared in the usual manner. No abnormal findings were observed during the breeding, and the respiratory condition was good.
As a result of observing the trachea of the transplanted portion with an endoscope 19 weeks after the transplantation, the patency of the lumen was maintained, but the lumen diameter was 5.5 mm. Therefore, the balloon catheter was expanded with a balloon catheter having an outer diameter of 15 mm. In addition, spraying of 1% to 2 mL of 0.1% Linderon (steroid) was performed.
As a result of observation with an endoscope again at 24 weeks after transplantation, the patency of the lumen was maintained as in the previous observation, but the lumen diameter was 6.5 mm. While expanding, spraying of 1% to 2 mL of 0.1% Linderon (steroid) was performed.
As a result of endoscopy at the 25th and 27th weeks after transplantation, the lumen diameter of the trachea was maintained at 7 mm, and the patency was maintained.

次に、実施例2の管状人工臓器1Aの気管移植試験の内容及び移植後の経過について詳細に説明する。
全身麻酔下でビーグル犬の気管を2cm切除し、2cm長にカットした実施例2の管状人工臓器1Aを端々吻合で繋いだ(図7(b)参照)。移植後は通常の方法で飼育した。
移植4週後に移植部の気管の内腔径が5mmと狭くなったため、外径10mmのバルーンカテーテルで拡張を行った。
その後、5、6、7週目に15mmのバルーンカテーテルで拡張を行うと共に、0.1%リンデロン(ステロイド剤)1mL〜2mLの噴霧を実施した。
8週頃から移植部の気管の内腔径は安定したため、これ以降はバルーンカテーテルの拡張とステロイド剤の噴霧は実施しなかった。8週で移植された管状人工臓器1Aの自己組織化が進み、強度が安定したものと考えられる。飼育中にその他の異常所見は認められず、呼吸の状態も良好であった。
移植から13週後に安楽死させて、移植された管状人工臓器1Aを内視鏡にて観察した結果を図8(a)に示し、切開により気管を露出させて観察した結果を図8(b)に示す。また、吻合部を内側から観察するため、図9(a)に、管状人工臓器1Aを含む気管を切開した状態の写真を示し、図9(b)に図9(a)の拡大写真を示す。
管状人工臓器1Aは生体気管に生着しており、図8(a)及び(b)に示すように吻合部に異常はなかった。また、図8(a)の矢印部分で示される移植部の内腔径は10mmで管腔構造が維持されていた。更に図9(a)及び(b)に示すように内腔面には白色の気管粘膜が形成されており、気管組織の再構築が進んでいた。
Next, the contents of the tracheal transplantation test of the tubular artificial organ 1A of Example 2 and the course after the transplantation will be described in detail.
Under general anesthesia, 2 cm of the trachea of the beagle dog was excised, and the tubular artificial organ 1A of Example 2 cut to a length of 2 cm was connected by end-to-end anastomosis (see FIG. 7B). After transplantation, the animals were reared in the usual manner.
Four weeks after transplantation, the lumen diameter of the trachea in the transplanted portion was narrowed to 5 mm, and therefore, the balloon catheter was expanded with a balloon catheter having an outer diameter of 10 mm.
Thereafter, expansion was performed with a 15 mm balloon catheter at 5, 6, and 7 weeks, and spraying of 1 mL to 2 mL of 0.1% Linderon (steroid) was performed.
Since the lumen diameter of the trachea in the transplanted portion was stable from about 8 weeks, the balloon catheter was not expanded and the steroid agent was not sprayed thereafter. It is thought that the self-organization of the tubular artificial organ 1A transplanted at 8 weeks progressed and the strength was stabilized. No other abnormal findings were observed during the breeding, and the respiratory condition was good.
The results of euthanizing 13 weeks after transplantation and observing the transplanted tubular artificial organ 1A with an endoscope are shown in FIG. 8 (a), and the results of observation with the trachea exposed through incision are shown in FIG. 8 (b). ). Further, in order to observe the anastomosis from the inside, FIG. 9A shows a photograph of a state in which a trachea including the tubular artificial organ 1A is incised, and FIG. 9B shows an enlarged photograph of FIG. 9A. .
The tubular artificial organ 1A was engrafted in the living trachea, and there was no abnormality in the anastomosis as shown in FIGS. 8 (a) and 8 (b). Further, the lumen diameter of the transplanted portion indicated by the arrow in FIG. 8A was 10 mm, and the lumen structure was maintained. Further, as shown in FIGS. 9A and 9B, a white tracheal mucosa was formed on the inner surface of the lumen, and reconstruction of the tracheal tissue was proceeding.

最後に、比較例1の管状人工臓器300の気管移植試験の内容及び移植後の経過について詳細に説明する。
全身麻酔下でビーグル犬の気管を1cm切除し、図10(a)に示すように1cm長にカットした比較例1の管状人工臓器300を端々吻合で繋いだ。移植後は通常の方法で飼育した。
移植後、健康状態に異常はなかったが25日目に急死した。剖検の結果、図10(b)に示すように移植組織が内腔側に潰れて気管閉塞を来していた。このように、管状補強体を有さない管状人工臓器300は管腔保持力が小さく、人工気管としての十分な機能を持たないことが示された。
Finally, the contents of the tracheal transplantation test of the tubular artificial organ 300 of Comparative Example 1 and the course after the transplantation will be described in detail.
Under general anesthesia, 1 cm of the trachea of the beagle dog was excised, and the tubular artificial organ 300 of Comparative Example 1 cut to 1 cm length as shown in FIG. After transplantation, the animals were reared in the usual manner.
After transplantation, there was no abnormality in the health condition, but he died suddenly on the 25th day. As a result of necropsy, the transplanted tissue was crushed toward the lumen as shown in FIG. Thus, it was shown that the tubular artificial organ 300 that does not have the tubular reinforcement has a small lumen holding force and does not have a sufficient function as an artificial trachea.

以上、本発明の管状人工臓器の好ましい各実施形態及び実施例につき説明したが、本発明は、上述の各実施形態及び実施例に制限されるものではなく、適宜変更が可能である。
本実施形態は、生体内組織形成術によって、管状の生分解性材料を内包する管状組織体を形成させる技術である。本技術はあらゆる大きさや形状をデザインすることができ、体格や病変部に応じた組織形成が可能である。また、生体との高い親和性に加えて、力学的に高い管腔保持力を有することから、気管の様に吸気時に陰圧がかかる臓器や食道や横隔膜の臓器再生足場としても使用することができる。埋植後は周囲組織から細胞が浸潤して自己組織化(組織再生)が進み、最終的には生分解性の骨格が分解吸収されて正常な組織体が形成され成長性を有する臓器・器官となる。従って、移植後も臓器の成長が必要な小児においても使用できる。
上述の実施例では、管状人工臓器の一例として気管に適用した場合について説明したが、気管の他、食道、胃、十二指腸、小腸、大腸、胆管、尿管、卵管、血管といった管腔状の臓器に適用してもよい。
The preferred embodiments and examples of the tubular artificial organ of the present invention have been described above, but the present invention is not limited to the above-described embodiments and examples, and can be modified as appropriate.
The present embodiment is a technique for forming a tubular tissue body that encloses a tubular biodegradable material by in vivo tissue formation. This technology can design all sizes and shapes, and enables tissue formation according to the physique and lesion. In addition to its high affinity with the living body, it has a mechanically high lumen retention, so it can also be used as an organ regeneration scaffold for organs that apply negative pressure during inspiration, such as the trachea, and for the esophagus and diaphragm. it can. After implantation, cells infiltrate from surrounding tissues and self-organization (tissue regeneration) progresses. Finally, a biodegradable skeleton is decomposed and absorbed to form a normal tissue body and have growth potential. It becomes. Therefore, it can also be used in children who need organ growth after transplantation.
In the above-described embodiments, the case where the present invention is applied to the trachea as an example of a tubular artificial organ has been described. It may be applied to organs.

1A、1B 管状人工臓器
10 管状組織体
20A、20B 管状補強体
21 生分解性の線材
100 鋳型
110 芯棒
120 円筒
121 本体部
122 蓋部
123 スリット
J 冶具
P 編みピッチ
PL 押し子
DESCRIPTION OF SYMBOLS 1A, 1B Tubular artificial organ 10 Tubular structure | tissue 20A, 20B Tubular reinforcement 21 Biodegradable wire 100 Mold 110 Core rod 120 Cylinder 121 Body part 122 Cover part 123 Slit J Jig P P Knitting pitch PL Pusher

Claims (8)

生体組織材料が存在する環境下で形成され、線維性組織で構成される管状組織体と、
生分解性の材料で構成され前記管状組織体に内包される管状補強体と、を備える管状人工臓器。
A tubular tissue body formed in an environment in which a biological tissue material exists and composed of fibrous tissue;
A tubular prosthesis comprising a tubular reinforcement body made of a biodegradable material and enclosed in the tubular tissue body.
前記管状組織体は、生体内に鋳型を埋植することにより管状に形成され、前記管状補強体が全長に亘って内包される請求項1に記載の管状人工臓器。   2. The tubular artificial organ according to claim 1, wherein the tubular tissue body is formed into a tubular shape by implanting a template in a living body, and the tubular reinforcing body is included over the entire length. 前記管状人工臓器の円周方向の管腔保持力が2.0[N・mm]以上である請求項1又は2に記載の管状人工臓器。   The tubular artificial organ according to claim 1 or 2, wherein a lumen holding force in a circumferential direction of the tubular artificial organ is 2.0 [N · mm] or more. 前記管状補強体は、生分解性の材料で網目状に構成される請求項1〜3のいずれかに記載の管状人工臓器。   The tubular artificial organ according to any one of claims 1 to 3, wherein the tubular reinforcing body is configured by a biodegradable material in a mesh shape. 前記管状補強体は、軸方向の収縮が規制されている請求項1〜4のいずれかに記載の管状人工臓器。   The tubular artificial organ according to any one of claims 1 to 4, wherein the tubular reinforcing body is restricted from contracting in an axial direction. 前記管状補強体は、複数の生分解性の線材を用いて組編みにより形成され、
前記生分解性の線材同士の交差部が接合されることにより軸方向の収縮が規制される請求項5に記載の管状人工臓器。
The tubular reinforcement is formed by braiding using a plurality of biodegradable wires,
The tubular artificial organ according to claim 5, wherein contraction in the axial direction is regulated by joining crossing portions of the biodegradable wires.
前記管状補強体は、生分解性の線材を用いてニット編みにより形成されることにより軸方向の収縮が規制される請求項5に記載の管状人工臓器。   The tubular artificial organ according to claim 5, wherein the tubular reinforcement body is formed by knit knitting using a biodegradable wire, thereby restricting axial contraction. 生体内に埋め込むことで周囲に結合組織を形成させて人工管状臓器を作製する基材であって、
棒状の芯材と、
複数のスリットを有し前記芯材を収納する外筒と、
前記芯材と前記外筒との間の空間に配置される円筒状のメッシュ部材と、を備え、
前記芯材及び前記外筒は非生分解性の材料で構成され、
前記メッシュ部材は生分解性の材料で構成される管状人工臓器作製用の基材。
A base material for producing an artificial tubular organ by forming a connective tissue around it by being embedded in a living body,
A rod-shaped core material;
An outer cylinder having a plurality of slits and storing the core material;
A cylindrical mesh member disposed in a space between the core material and the outer cylinder,
The core material and the outer cylinder are made of a non-biodegradable material,
The mesh member is a base material for producing a tubular artificial organ composed of a biodegradable material.
JP2018014172A 2018-01-30 2018-01-30 Tubular artificial organ Pending JP2019129979A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2018014172A JP2019129979A (en) 2018-01-30 2018-01-30 Tubular artificial organ
PCT/JP2019/003213 WO2019151338A1 (en) 2018-01-30 2019-01-30 Tubular artificial organ

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018014172A JP2019129979A (en) 2018-01-30 2018-01-30 Tubular artificial organ

Publications (1)

Publication Number Publication Date
JP2019129979A true JP2019129979A (en) 2019-08-08

Family

ID=67478991

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018014172A Pending JP2019129979A (en) 2018-01-30 2018-01-30 Tubular artificial organ

Country Status (2)

Country Link
JP (1) JP2019129979A (en)
WO (1) WO2019151338A1 (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998024385A1 (en) * 1996-12-06 1998-06-11 Tapic International Co., Ltd. Artificial blood vessel
JP2001509702A (en) * 1997-01-13 2001-07-24 ゴア エンタープライズ ホールディングス,インコーポレイティド Self-expanding vascular stent with low profile
JP2004049804A (en) * 2002-07-24 2004-02-19 Piolax Medical Device:Kk Stent and stent graft
JP2004141301A (en) * 2002-10-23 2004-05-20 Techno Network Shikoku Co Ltd Biomaterial, cell culture apparatus, artificial tissue, and artificial organ
JP2008237896A (en) * 2007-02-26 2008-10-09 National Cardiovascular Center Connective tissue forming base material, and manufacturing method for connective tissue using it
JP2009522022A (en) * 2005-12-30 2009-06-11 シー・アール・バード・インコーポレーテッド Stent with bioabsorbable connector and stent placement method
JP2009178545A (en) * 2008-01-29 2009-08-13 Taewoong Medical Co Ltd In-vivo degradable double-structure stent
JP2017518102A (en) * 2014-06-19 2017-07-06 リムフロウ・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング Apparatus and method for treating lower limb vasculature
JP2017169778A (en) * 2016-03-23 2017-09-28 国立研究開発法人国立循環器病研究センター Connective tisse body forming substrate

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998024385A1 (en) * 1996-12-06 1998-06-11 Tapic International Co., Ltd. Artificial blood vessel
JP2001509702A (en) * 1997-01-13 2001-07-24 ゴア エンタープライズ ホールディングス,インコーポレイティド Self-expanding vascular stent with low profile
JP2004049804A (en) * 2002-07-24 2004-02-19 Piolax Medical Device:Kk Stent and stent graft
JP2004141301A (en) * 2002-10-23 2004-05-20 Techno Network Shikoku Co Ltd Biomaterial, cell culture apparatus, artificial tissue, and artificial organ
JP2009522022A (en) * 2005-12-30 2009-06-11 シー・アール・バード・インコーポレーテッド Stent with bioabsorbable connector and stent placement method
JP2008237896A (en) * 2007-02-26 2008-10-09 National Cardiovascular Center Connective tissue forming base material, and manufacturing method for connective tissue using it
JP2009178545A (en) * 2008-01-29 2009-08-13 Taewoong Medical Co Ltd In-vivo degradable double-structure stent
JP2017518102A (en) * 2014-06-19 2017-07-06 リムフロウ・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング Apparatus and method for treating lower limb vasculature
JP2017169778A (en) * 2016-03-23 2017-09-28 国立研究開発法人国立循環器病研究センター Connective tisse body forming substrate

Also Published As

Publication number Publication date
WO2019151338A1 (en) 2019-08-08

Similar Documents

Publication Publication Date Title
US20220054255A1 (en) Biomaterial based on aligned fibers, arranged in a gradient interface, with mechanical reinforcement for tracheal regeneration and repair
Beier et al. Axial vascularization of a large volume calcium phosphate ceramic bone substitute in the sheep AV loop model
CN104921841B (en) A kind of preparation method of double-decker artificial blood vessel
US8388692B2 (en) Thin film multilocular structure made of collagen, member for tissue regeneration containing the same, and method for producing the same
US11638640B2 (en) In vivo tissue engineering devices, methods and regenerative and cellular medicine employing scaffolds made of absorbable material
US11759306B2 (en) In vivo tissue engineering devices, methods and regenerative and cellular medicine employing scaffolds made of absorbable material
US11759307B2 (en) In vivo tissue engineering devices, methods and regenerative and cellular medicine employing scaffolds made of absorbable material
US11883275B2 (en) In vivo tissue engineering devices, methods and regenerative and cellular medicine employing scaffolds made of absorbable material
US20240016981A1 (en) Regenerative tissue manufacturing process
CN104473706B (en) Biodegradable composite type tubular urethral stent and preparation method
Nakayama et al. Feasibility of in-body tissue architecture in pediatric cardiovascular surgery: development of regenerative autologous tissues with growth potential
WO2019151338A1 (en) Tubular artificial organ
JPWO2005089823A1 (en) Regenerative luminal organ adherent, reproducible regenerative luminal organ, method for producing reproducible regenerative luminal organ, and regenerative engraftment method for luminal organ
CN116096311A (en) Bridging peripheral nerve gap with catheter to enhance nerve regeneration
JP2020120944A (en) Tubular reinforcement body and tubular artificial organ
Atari et al. Preclinical in vivo assessment of a cell-free multi-layered scaffold prepared by 3D printing and electrospinning for small-diameter blood vessel tissue engineering in a canine model
US11969337B2 (en) In vivo tissue engineering devices, methods and regenerative and cellular medicine employing scaffolds made of absorbable material
WO2023196787A2 (en) Improved constructed tissue
WO2003045277A1 (en) Bio-artificial trachea implant and a method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210107

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211130

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220131

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20220308