WO2019151095A1 - 放射線顕微鏡装置 - Google Patents

放射線顕微鏡装置 Download PDF

Info

Publication number
WO2019151095A1
WO2019151095A1 PCT/JP2019/002169 JP2019002169W WO2019151095A1 WO 2019151095 A1 WO2019151095 A1 WO 2019151095A1 JP 2019002169 W JP2019002169 W JP 2019002169W WO 2019151095 A1 WO2019151095 A1 WO 2019151095A1
Authority
WO
WIPO (PCT)
Prior art keywords
radiation
image
sample
lattice
region
Prior art date
Application number
PCT/JP2019/002169
Other languages
English (en)
French (fr)
Inventor
高野 秀和
敦 百生
Original Assignee
国立大学法人東北大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人東北大学 filed Critical 国立大学法人東北大学
Priority to JP2019569053A priority Critical patent/JPWO2019151095A1/ja
Publication of WO2019151095A1 publication Critical patent/WO2019151095A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21KTECHNIQUES FOR HANDLING PARTICLES OR IONISING RADIATION NOT OTHERWISE PROVIDED FOR; IRRADIATION DEVICES; GAMMA RAY OR X-RAY MICROSCOPES
    • G21K1/00Arrangements for handling particles or ionising radiation, e.g. focusing or moderating
    • G21K1/06Arrangements for handling particles or ionising radiation, e.g. focusing or moderating using diffraction, refraction or reflection, e.g. monochromators
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21KTECHNIQUES FOR HANDLING PARTICLES OR IONISING RADIATION NOT OTHERWISE PROVIDED FOR; IRRADIATION DEVICES; GAMMA RAY OR X-RAY MICROSCOPES
    • G21K7/00Gamma- or X-ray microscopes

Definitions

  • the present invention relates to a radiation microscope apparatus.
  • Non-Patent Document 1 an X-ray microscope capable of magnifying and observing the inside of a sample using X-rays is known. If the tomography method is used, three-dimensional observation of a sample is also possible. However, since X-rays have strong transmission power, there arises a problem that it becomes difficult to observe the fine structure of the sample in the transmission intensity distribution image as the resolution increases. Therefore, it has been proposed to use an image (phase quantitative image) in which the phase change is quantified instead of the X-ray intensity distribution image. If this is combined with the tomography method, a three-dimensional image (phase CT image) showing the refractive index distribution of the substance can be obtained.
  • Non-patent Documents 2 and 3 An optical system combining an X-ray microscope optical system and a phase grating or a Lau interferometer is known as a technique capable of obtaining a phase quantitative image.
  • These technologies have the feature that two phase images with positive and negative signs are generated by being overlapped with a certain distance, and this calculation process eliminates this and obtains the desired phase quantitative image. Is required. In many cases, the image tends to be deteriorated by this processing, and there is a problem that application to three-dimensional measurement is difficult.
  • Non-Patent Document 4 An optical system combining a microscope optical system and a Talbot interferometer is also known (Non-Patent Document 4 below). This technique has been tried to be applied to three-dimensional measurement using a differential phase image (a spatial differential of a phase quantitative image), but has a problem that the spatial resolution is inferior.
  • Non-patent Documents 5 and 6 There are reports of construction of a two-beam interferometer using an X-ray imaging microscope and phase quantitative imaging (Non-patent Documents 5 and 6 below), but an X-ray imaging element and prism for forming reference light are required. In addition, since the structure is complicated, there is a problem that a high degree of mechanical stability is required for the optical system, and there is a problem that interference fringes that are too fine are generated.
  • Patent Document 1 detects X-ray phase changes by combining an X-ray microscope and an interferometer, but does not include means for acquiring a phase quantitative image, and the apparatus configuration is complicated. There is a problem that
  • the present invention has been made in view of the above circumstances.
  • the main objects of the present invention are simple in construction, easy to be incorporated in a conventional radiation microscope, relatively low demands on mechanical stability, and capable of directly obtaining a phase quantitative image. Is to provide technology.
  • the present invention can be expressed as an invention described in the following items.
  • the radiation source is configured to emit radiation that passes through the sample toward the image detector, On the radiation path, a sample region where the sample is to be arranged and a reference region close to the sample region are provided, The reference region is spaced apart from the sample region in a direction intersecting the radiation direction of the radiation;
  • the objective element is disposed on the radiation path and forms an image of the radiation toward the main lattice part.
  • the main lattice part is disposed on the radiation path.
  • the main grating unit is configured to diffract the radiation that has passed through the sample region and the radiation that has passed through the reference region, Further, the main grating unit superimposes an m-order diffraction image of the radiation transmitted through the sample region and an n-order diffraction image of the radiation transmitted through the reference region on the image detector. It is configured to form, Here, m and n are integers, and m ⁇ n.
  • the sub-lattice portion is disposed on the radiation path and closer to the radiation source than the main lattice portion,
  • the radiation microscope apparatus according to item 1 wherein the sub-lattice unit is configured to impart spatial coherence to the radiation incident on the image detector.
  • Item 3 The radiation microscope apparatus according to Item 1 or 2, wherein the radiation is X-rays.
  • the radiation microscope apparatus Placing a sample in the sample region; Emitting radiation from the source toward the image detector so as to pass through the sample region and the reference region; Translating the main grating portion relative to the image detector in the direction of the grating pitch by 1 / N of the grating pitch; Using a radiation intensity image detected by the image detector for each translation, generating a radiation phase image, and N is an integer greater than or equal to 3, The radiation phase image generation method characterized by the above-mentioned.
  • the radiation microscope apparatus Placing a sample in the sample region; Emitting radiation from the source toward the image detector so as to pass through the sample region and the reference region; Translating the main lattice portion relative to the sub-lattice portion relative to the lattice pitch by 1 / N of the lattice pitch; and Using a radiation intensity image detected by the image detector for each translation, generating a radiation phase image, and N is an integer greater than or equal to 3, The radiation phase image generation method characterized by the above-mentioned.
  • FIG. 1 is an optical path diagram for illustrating a schematic configuration of a radiation microscope apparatus according to a first embodiment of the present invention. It is an optical path figure for showing a schematic structure of the radiation microscope apparatus which concerns on 2nd Embodiment of this invention. It is an optical path figure for showing a schematic structure of the radiation microscope apparatus which concerns on 3rd Embodiment of this invention.
  • the apparatus of the present embodiment includes a radiation source 1, an objective element 2, a main lattice unit 3, and an image detector 4 as basic components.
  • this apparatus includes a sub-lattice unit 5 and a converging element 6 as additional elements.
  • the radiation source 1 is configured to emit radiation 10 that passes through the sample toward the image detector 4.
  • X-rays are used as the radiation 10.
  • a non-coherent one that can emit cone beam X-rays is used.
  • omitted since the thing similar to what was used for the conventional X-ray imaging device or X-ray microscope can be used, further detailed description is abbreviate
  • a sample region 8 where a sample is to be placed and a reference region 9 close to the sample region 8 are provided on the path of the radiation 10.
  • the reference region 9 is separated from the sample region 8 in a direction intersecting the radiation direction of the radiation 10.
  • the objective element 2 is disposed on the path of the radiation 10.
  • the objective element 2 is configured to form an image on the image detector 4 with the radiation 10 directed toward the main lattice portion 3.
  • the objective element 2 is configured to form an image 7 of the sub-grating part 5 on the side of the radiation source 1 with respect to the main grating part 3.
  • an element having an appropriate configuration capable of imaging the radiation 10 to be used can be used.
  • a Fresnel zone plate can be used, but is not limited thereto.
  • the main lattice unit 3 is disposed on the path of the radiation 10 and is configured to diffract the radiation 10 that has passed through the sample region 8 and the radiation that has passed through the reference region 9.
  • the main grating part 3 of the present embodiment displays an m-order diffraction image of the radiation 10 transmitted through the sample region 8 and an n-order diffraction image of the radiation 10 transmitted through the reference region on the image detector 4. It is configured to be overlapped.
  • the main grid part 3 of the present embodiment can be translated relatively by a minute distance with respect to the sub-grating part 5 by an appropriate driving means (not shown) such as a piezo element.
  • the direction of translation is perpendicular to the X-ray traveling direction and parallel to the direction in which the periodic structure of the main lattice portion 3 is formed.
  • the movement distance for one step in translation is 1 / N of the period of the periodic structure in the main lattice part 3 (so-called lattice pitch).
  • N is an integer of 3 or more.
  • the main lattice portion 3 is translated, but a configuration in which the sub lattice portion 5 is translated is also possible. In this case, the movement distance for one step in translation of the sub-lattice portion 5 is 1 / N of the lattice pitch of the sub-lattice portion 5.
  • the sub-lattice portion 5 is disposed on the radiation source 10 side of the radiation 10 and on the radiation source 1 side of the main lattice portion 3.
  • the sub-lattice unit 5 of the present embodiment is configured to impart spatial coherence to the radiation 10 incident on the image detector 4. The operation of the sub-lattice unit 5 will be described later.
  • the focusing element 6 is disposed on the path of the radiation 10.
  • the converging element 6 is configured to collect the radiation 10 from the radiation source 1 toward the sub-lattice unit 5.
  • the converging element 6 an element having an appropriate configuration capable of condensing the used radiation 10 can be used.
  • a total reflection mirror can be used, but is not limited thereto.
  • s sample size (or sample region size)
  • wavelength of radiation to be used
  • R 1 distance from the image of the sub-grating part to the main grating part
  • R 2 distance from the image of the sub-grating part to the image detector or the image plane of the sample d 1 : main grating part
  • the pitch M of the periodic structure formed in: is the magnification of the optical system.
  • Magnification M of the optical system can be expressed as follows.
  • b Distance from the objective element to the image of the sub-grating part
  • f Focal length of the objective element.
  • a Distance from sub-lattice part to objective element ⁇ : Opening width of sub-grating part.
  • the opening width ⁇ of the sub-lattice portion 5 is obtained as follows.
  • the conditions for exerting the Talbot effect by the main lattice portion 3 and the sub lattice portion 5 are as follows. However, exhibiting the Talbot effect is not essential in the present embodiment.
  • d 0 The pitch of the periodic structure formed in the sub-lattice part.
  • sample placement First, in photographing, a sample to be photographed is arranged in the sample region 8. When the sample has a shape that protrudes from the sample region 8, the portion in the sample region 8 may be grasped as the sample in the present embodiment. It is assumed that no sample exists in the reference area 9.
  • radiation 10 is emitted from the radiation source 1 toward the image detector 4 so as to pass through the sample region 8 and the reference region 9.
  • the emitted radiation 10 is collected by the converging element 6 and then passes through the slit formed in the sub-lattice portion 5.
  • One slit in the sub-lattice unit 5 can be considered to constitute one point light source that emits coherent light.
  • reference numeral 11 is given to the light beam from one of the virtual point light sources.
  • the main lattice unit 3 of the present embodiment superimposes on the image detector 4 an m-order diffraction image of the radiation that has passed through the sample region 8 and an n-order diffraction image of the radiation that has passed through the reference region 9.
  • the image detector 4 captures an image formed by superimposing the mth order diffraction image and the nth order diffraction image. Thereby, in this embodiment, the same interference pattern as what is called a two-beam interferometer can be observed. Furthermore, in the present embodiment, the following fringe scanning method is performed in order to obtain a phase quantitative image.
  • each time one photographing is completed one of the main lattice portion 3 and the sub lattice portion 5 is translated relative to the other in the lattice pitch direction.
  • the step of translating is 1 / N of the grating pitch of the grating to be actually moved.
  • N is an integer of 3 or more.
  • the main lattice portion 3 is moved with respect to the sub lattice portion 5.
  • the image detector 4 captures a radiation intensity image detected by the image detector 4 every time it is translated.
  • a fringe scanning method can be performed using the obtained radiation intensity image to generate a phase quantitative image. Since the method for generating a phase quantitative image using the fringe scanning method may be the same as a conventionally known method, detailed description thereof is omitted.
  • the apparatus of this embodiment there is an advantage that a phase quantitative image can be obtained directly from a radiation intensity image without using a phase differential image.
  • the present embodiment has an advantage that the configuration is simple, it can be easily incorporated into a conventional radiation microscope, and the demand for mechanical stability is relatively loose.
  • the image 7 of the sub-lattice portion 5 is formed on the source 1 side of the main lattice portion 3.
  • the sub-lattice unit 5 is installed at the position of the image 7. That is, in the second embodiment, the image 7 is not formed.
  • Equation (6) is obtained by multiplying the right side by (b ⁇ f) / f.
  • a coherent light source is realized by the sub-lattice unit 5.
  • coherent light is used as the radiation 10.
  • Such coherent light can be realized by using, for example, synchrotron radiation. Therefore, the radiation source in the third embodiment may be a light source that emits coherent light such as synchrotron radiation, or may be a window that extracts coherent light from such a light source.
  • an X-ray source is used as the radiation source 1, but other radiation that is transmissive to the sample, such as a neutron source, can be used.
  • a detector capable of detecting the radiation to be used is used.
  • the phase quantitative image is generated using the fringe scanning method, but the moire image itself due to interference can also be used as a radiation image.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)

Abstract

本発明は、構成が簡易であり、従来の放射線顕微鏡に組み込むことが容易であり、かつ、位相定量像を直接に得ることが可能な技術を提供するものである。線源1は、画像検出器4に向けて、試料を透過する放射線10を放射する。放射線10の経路上には、試料を配置すべき試料領域8と、この試料領域8に近接した参照領域9とが備えられている。参照領域9は、試料領域8に対して、放射線10の放射方向に交差する方向に離間させられている。対物素子2は、放射線10の経路上に配置されている。また、対物素子2は、主格子部3に向かう放射線10を結像させる。主格子部3は、試料領域8を透過した放射線についてのm次回折像と、参照領域9を透過した前記放射線についてのn次回折像とを、画像検出器4上に重畳して形成する。

Description

放射線顕微鏡装置
 本発明は、放射線顕微鏡装置に関するものである。
 下記非特許文献1に示されるように、X線を使って試料内部を拡大観察できるX線顕微鏡が知られている。トモグラフィ法を用いれば、試料の3次元観察も可能になる。しかしながら、X線は透過力が強いため、分解能が高くなるに従い、透過強度分布画像では試料の微細構造を観察することが難しくなるという問題を生じる。そこで、X線の強度分布画像に代えて、位相変化を定量した画像(位相定量像)を用いることが提案されている。これをトモグラフィ法と組み合わせれば、物質の屈折率の分布を示す三次元画像(位相CT像)が得られる。
 位相定量像を得ることができる技術として、X線顕微鏡光学系と位相格子またはLau干渉計を組み合わせた光学系が知られている(下記非特許文献2及び3)。これらの技術では、正負の符号を持つ二つの位相像がある特定の距離だけずれて重なり合って生成されるという特徴があり、これを解消して、目的とする位相定量像を得るための計算処理が必要となる。多くの場合、この処理により画像が劣化する傾向があり、3次元計測への応用が難しいという問題がある。
 顕微鏡光学系とTalbot干渉計を組み合わせた光学系も知られている(下記非特許文献4)。この技術では、微分位相像(位相定量像の空間微分)を用いた3次元計測への応用が試みられているが、空間分解能に劣るという問題がある。
 X線結像顕微鏡を用いた二光束干渉計の構築と位相定量像撮影の報告(下記非特許文献5及び6)もあるが、参照光形成のためのX線結像素子やプリズムを必要としており、構成が複雑であるために光学系に高度の機械的安定性を求められるという問題や、細かすぎる干渉縞が生じるという問題がある。
 下記特許文献1の技術は、X線顕微鏡と干渉計とを組み合わせることでX線の位相変化を検出するものであるが、位相定量画像の取得手段を含んでおらず、また、装置構成が複雑であるという問題がある
Kaulich B, Thibault P, Gianoncelli A, Kiskinova M (2011)Transmission and emission X-ray microscopy: operation modes, contrast mechanisms and applications. J. Phys. Condens. Matter 23: 083002. W. Yashiro et al., Phys. Rev. A 82, 043822 (2010). H. Kuwabara et al., Appl. Phys. Express 4, 062502 (2011). Y. Takeda et al., Appl. Phys. Express 1, 117002 (2008). T. Koyama et.al., Jpn. J. Appl. Phys. 45, L1159 (2006). Y. Suzuki et.al., Jpn. J. Appl. Phys. 53, 122501 (2014).
特開2000-206300号公報
 本発明は、前記した事情に鑑みてなされたものである。本発明の主な目的は、構成が簡易であり、従来の放射線顕微鏡に組み込むことが容易であり、機械的安定性に関する要請が比較的緩く、かつ、位相定量像を直接に得ることが可能な技術を提供することである。
 本発明は、以下の項目に記載の発明として表現することができる。
 (項目1)
 線源と、対物素子と、主格子部と、画像検出器とを備えており、
 前記線源は、前記画像検出器に向けて、試料を透過する放射線を放射する構成となっており、
 前記放射線の経路上には、試料を配置すべき試料領域と、この試料領域に近接した参照領域とが備えられており、
 前記参照領域は、前記試料領域に対して、前記放射線の放射方向に交差する方向に離間させられており、
 前記対物素子は、前記放射線の経路上に配置されており、かつ、前記主格子部に向かう前記放射線を結像させる構成となっており
 前記主格子部は、前記放射線の経路上に配置されて、前記試料領域を通過した前記放射線と前記参照領域を通過した前記放射線とをそれぞれ回折する構成となっており、
 さらに、前記主格子部は、前記試料領域を透過した前記放射線についてのm次回折像と、前記参照領域を透過した前記放射線についてのn次回折像とを、前記画像検出器上に重畳して形成する構成とされており、
 ここで、mおよびnは整数であり、かつ、m≠nである
 ことを特徴とする放射線顕微鏡装置。
 (項目2)
 さらに副格子部を備えており、
 前記副格子部は、前記放射線の経路上であって、かつ、前記主格子部よりも前記線源の側に配置されており、
 かつ、前記副格子部は、前記画像検出器に入射する前記放射線に空間コヒーレンス性を付与する構成となっている
 項目1に記載の放射線顕微鏡装置。
 (項目3)
 前記放射線はX線である
 項目1又は2に記載の放射線顕微鏡装置。
 (項目4)
 項目1~3のいずれか1項に記載の放射線顕微鏡装置を用いており、
 前記試料領域に試料を配置するステップと、
 前記試料領域と前記参照領域とを通過するように、前記線源から前記画像検出器に向けて放射線を放射するステップと、
 前記主格子部を、前記画像検出器に対して、格子ピッチの方向に、前記格子ピッチの1/Nずつ相対的に並進させるステップと、
 前記並進のたびに前記画像検出器で検出した放射線強度画像を用いて、放射線位相像を生成するステップと
 を備えており、
 ここでNは3以上の整数である
ことを特徴とする放射線位相像生成方法。
 (項目5)
 項目2に記載の放射線顕微鏡装置を用いており、
 前記試料領域に試料を配置するステップと、
 前記試料領域と前記参照領域とを通過するように、前記線源から前記画像検出器に向けて放射線を放射するステップと、
 前記主格子部を、前記副格子部に対して、格子ピッチの方向に、前記格子ピッチの1/Nずつ相対的に並進させるステップと、
 前記並進のたびに前記画像検出器で検出した放射線強度画像を用いて、放射線位相像を生成するステップと
 を備えており、
 ここでNは3以上の整数である
ことを特徴とする放射線位相像生成方法。
 本発明によれば、構成が簡易であり、従来の放射線顕微鏡に組み込むことが容易であり、機械的安定性に関する要請が比較的緩く、かつ、位相定量像を直接に得ることが可能な技術を提供することができる。
本発明の第1実施形態に係る放射線顕微鏡装置の概略的な構成を示すための光路図である。 本発明の第2実施形態に係る放射線顕微鏡装置の概略的な構成を示すための光路図である。 本発明の第3実施形態に係る放射線顕微鏡装置の概略的な構成を示すための光路図である。
 (第1実施形態の構成)
 以下、本発明の第1実施形態に係る放射線顕微鏡装置(以下単に「装置」と略称することがある)を、添付の図面を参照しながら説明する。
 本実施形態の装置は、線源1と、対物素子2と、主格子部3と、画像検出器4とを基本的な構成要素として備えている。また、この装置は、副格子部5と、収束素子6とを追加的な要素として備えている。
 (線源)
 線源1は、画像検出器4に向けて、試料を透過する放射線10を放射する構成となっている。本実施形態では、放射線10としてX線が用いられている。この実施形態における線源1としては、非コヒーレントでありかつコーンビームのX線を放射できるものが用いられている。このような線源1としては、従来のX線撮像装置あるいはX線顕微鏡に用いられていたものと同様のものを用いることができるので、これ以上詳しい説明は省略する。
 放射線10の経路上には、試料を配置すべき試料領域8と、この試料領域8に近接した参照領域9とが備えられている。参照領域9は、試料領域8に対して、放射線10の放射方向に交差する方向に離間させられている。
 (対物素子)
 対物素子2は、放射線10の経路上に配置されている。この対物素子2は、主格子部3に向かう放射線10を画像検出器4上において結像させる構成となっている。
 対物素子2は、副格子部5の像7を主格子部3よりも線源1の側に形成するようになっている。
 対物素子2としては、用いられる放射線10を結像できる適宜の構成のものを用いることができる。例えば、X線については、フレネルゾーンプレートを用いることができるが、これには制約されない。
 (主格子部)
 主格子部3は、放射線10の経路上に配置されており、試料領域8を通過した放射線10と参照領域9を通過した放射線とをそれぞれ回折する構成となっている。
 さらに、本実施形態の主格子部3は、試料領域8を透過した放射線10についてのm次回折像と、参照領域を透過した放射線10についてのn次回折像とを、画像検出器4上に重畳して形成する構成とされている。
 ここで、mおよびnは整数であり、かつ、m≠nである。より具体的には、本例では、m=1でかつn=0とされている。ただし、この次数は単なる一例であり、これには制約されない。また、次数としては負数も可能である。
 本実施形態の主格子部3は、ピエゾ素子などの適宜の駆動手段(図示せず)により、副格子部5に対して、微小距離ずつ相対的に並進することが可能となっている。並進の方向は、X線の進行方向に対して垂直で、かつ、主格子部3の周期構造が形成されている方向に平行である。並進における1ステップ分の移動距離としては、主格子部3における周期的構造の周期(いわゆる格子ピッチ)の1/Nとされている。ここでNは3以上の整数である。本実施形態では、主格子部3が並進することとしているが、副格子部5が並進する構成も可能である。この場合、副格子部5の並進における1ステップ分の移動距離は、副格子部5の格子ピッチの1/Nとされる。
 (副格子部)
 副格子部5は、放射線10の経路上であって、かつ、主格子部3よりも線源1の側に配置されている。本実施形態の副格子部5は、画像検出器4に入射する放射線10に空間コヒーレンス性を付与する構成となっている。副格子部5の動作については後述する。
 (収束素子)
 収束素子6は、放射線10の経路上に配置されている。この収束素子6は、線源1から副格子部5に向かう放射線10を集光する構成となっている。
 収束素子6としては、用いられる放射線10を集光できる適宜の構成のものを用いることができる。例えば、X線については、全反射鏡を用いることができるが、これには制約されない。
 (設計条件)
 ここで、主格子部3及び副格子部5を実装するための設計条件について説明する。
 (主格子部の設計条件)
 試料の大きさは、ピッチdを持つ主格子部3での回折による拡がりを倍率Mで除したものなので、
Figure JPOXMLDOC01-appb-I000001
となる。
 ここで、
s:試料のサイズ(あるいは試料領域のサイズ)
λ:使用する放射線の波長
:副格子部の結像から主格子部までの距離
:副格子部の結像から画像検出器あるいは試料の像面までの距離
:主格子部に形成された周期的構造のピッチ
M:光学系の倍率
である。
 光学系の倍率Mは以下のように表せる。
Figure JPOXMLDOC01-appb-I000002
 ここで、
b:対物素子から副格子部の結像までの距離
f:対物素子の焦点距離
である。
 したがって、式(1)及び(2)より
Figure JPOXMLDOC01-appb-I000003
となる。この式(3)の右辺における
Figure JPOXMLDOC01-appb-I000004
は、1より少し小さい程度であり、1に近似できる。すると以下の関係が得られる。
Figure JPOXMLDOC01-appb-I000005
 (副格子部の設計条件)
 副格子部5が放射線10に空間コヒーレンス性を付与するための条件は下記のようになる。
Figure JPOXMLDOC01-appb-I000006
 ここで、
a:副格子部から対物素子までの距離
σ:副格子部の開口幅
である。
 式(5)から、副格子部5の開口幅σは以下のように求まる。
Figure JPOXMLDOC01-appb-I000007
 また、主格子部3と副格子部5とによりタルボ効果を発揮するための条件は下記の通りとなる。ただし、タルボ効果を発揮することは、本実施形態において必須ではない。
Figure JPOXMLDOC01-appb-I000008
ここで、
:副格子部に形成された周期的構造のピッチ
である。
 なお、前記した関係は、あくまで理想的な条件であって、実際の撮影に支障の無い限り、前記の条件を若干逸脱することは可能である。つまり、本実施形態においては、前記した条件を数学的に厳密な意味で満たす必要はない。
 (本実施形態の動作)
 次に、本実施形態に係る装置の動作について説明する。
 (試料を配置)
 まず、撮影においては、試料領域8に、撮影対象となる試料を配置する。試料が試料領域8からはみ出す形状であった場合、試料領域8内にある部分を、本実施形態における試料と把握すればよい。なお、参照領域9内には、試料は存在しないものとする。
 (放射線を放射)
 ついで、試料領域8と参照領域9とを通過するように、線源1から画像検出器4に向けて放射線10を放射する。
 放射された放射線10は、収束素子6により集光された後、副格子部5に形成されたスリットを透過する。副格子部5における一つのスリットは、コヒーレント光を放射する一つの点光源を構成すると考えることができる。図1においては、仮想的な点光源の一つからの光束に符号11を付した。
 副格子部5を通過した放射線10の一部は試料領域8を通過し、他の一部は参照領域9を通過する。これらの放射線10は、対物素子2を通り、主格子部3に達する。すると、本実施形態の主格子部3は、試料領域8を透過した放射線についてのm次回折像と、参照領域9を透過した放射線についてのn次回折像とを、画像検出器4上に重畳して形成する。なお、この例ではm=1でn=0である。
 (撮影)
 ついで、画像検出器4により、m次回折像とn次回折像とが重畳して形成された像を撮影する。これにより、本実施形態では、いわゆる二光束干渉計と同様の干渉模様を観察することができる。さらに本実施形態では、位相定量像を得るため、以下の縞走査法を実施する。
 (縞走査法の実施)
 本実施形態では、一回の撮影完了の度に、主格子部3及び副格子部5の一方を、他方に対して相対的に、格子ピッチの方向に並進させる。並進させるステップは、実際に移動させる格子の格子ピッチの1/Nずつである。ここでNは3以上の整数である。具体的には、本例では、主格子部3を副格子部5に対して移動させる。
 画像検出器4は、並進のたびに、画像検出器4で検出した放射線強度画像を撮影する。得られた放射線強度画像を用いて縞走査法を実施して、位相定量像を生成することができる。縞走査法を用いた位相定量像の生成手法は、従来から知られている手法と同様でよいので、詳しい説明は省略する。
 本実施形態の装置によれば、位相微分像を介さずに、位相定量像を放射線強度画像から直接に得ることができるという利点がある。また、本実施形態では、構成が簡易であり、従来の放射線顕微鏡に組み込むことが容易であり、かつ、機械的安定性に関する要請が比較的緩いという利点もある。
 (第2実施形態)
 つぎに、図2を参照して、本発明の第2実施形態に係る装置について説明する。なお、この第2実施形態の説明においては、前記した第1実施形態と基本的に共通する構成要素については、同一符号を付すことにより、説明の煩雑を避ける。
 前記した第1実施形態の装置では、主格子部3よりも線源1の側に、副格子部5の像7が形成されていた。第2実施形態の装置においては、副格子部5を、像7の位置に設置する。つまり、この第2実施形態では、像7は形成されない。
 第2実施形態の装置においても、第1実施形態と同様の動作を行うことができる。ここで、主格子部3の条件としては、前記した式(4)を使うことができる。一方、副格子部5の条件である式(5)と式(7)については、パラメータa,bを省いたものとなる。式(6)は、右辺に (b-f)/f を乗算したものになる。
 第2実施形態における他の構成及び利点は、前記した第1実施形態と基本的に同様なので、これ以上詳しい説明は省略する。
 (第3実施形態)
 つぎに、図3を参照して、本発明の第3実施形態に係る装置について説明する。なお、この第3実施形態の説明においては、前記した第1実施形態と基本的に共通する構成要素については、同一符号を付すことにより、説明の煩雑を避ける。
 前記した各実施形態においては、副格子部5によりコヒーレント光源を実現していた。これに対して、この第3実施形態では、放射線10としてコヒーレント光を用いることを前提としている。このようなコヒーレント光は、例えばシンクロトロン放射光の利用により実現可能である。したがって、第3実施形態における線源は、シンクロトロン放射光のようなコヒーレント光を発する光源であってもよいし、あるいは、このような光源からコヒーレント光を取り出す窓であってもよい。
 この第3実施形態では、放射線としてコヒーレント光を用いているので、副格子部5を省略している。このため、この第3実施形態において縞走査法を実施する場合は、画像検出器4に対して主格子部3を相対的に並進移動させることになる。ただし、この第3実施形態では、b = fとなるため、前記した式(3)の右辺の右側の項が(R2-R1)/R2になる。条件式(4)はそのまま適用可能である。
 第3実施形態における他の構成及び利点は、前記した第1実施形態と基本的に同様なので、これ以上詳しい説明は省略する。
 なお、前記実施形態および実施例の記載は単なる一例に過ぎず、本発明に必須の構成を示したものではない。各部の構成は、本発明の趣旨を達成できるものであれば、上記に限らない。
 例えば、前記各実施形態では、線源1としてX線源を用いたが、試料に対して透過性のある他の放射線、例えば中性子線源を用いることができる。もちろん、この場合、検出器としては、用いる放射線を検出できるものが用いられる。
 さらに、前記した各実施形態では、縞走査法を用いて位相定量像を生成することとしたが、干渉によるモアレ画像そのものを放射線画像として利用することもできる。
 1 線源
 2 対物素子
 3 主格子部
 4 画像検出器
 5 副格子部
 6 収束素子
 7 像
 8 試料領域
 9 参照領域
 10 放射線
 11 点光源からの光束

Claims (5)

  1.  線源と、対物素子と、主格子部と、画像検出器とを備えており、
     前記線源は、前記画像検出器に向けて、試料を透過する放射線を放射する構成となっており、
     前記放射線の経路上には、試料を配置すべき試料領域と、この試料領域に近接した参照領域とが備えられており、
     前記参照領域は、前記試料領域に対して、前記放射線の放射方向に交差する方向に離間させられており、
     前記対物素子は、前記放射線の経路上に配置されており、かつ、前記主格子部に向かう前記放射線を結像させる構成となっており
     前記主格子部は、前記放射線の経路上に配置されて、前記試料領域を通過した前記放射線と前記参照領域を通過した前記放射線とをそれぞれ回折する構成となっており、
     さらに、前記主格子部は、前記試料領域を透過した前記放射線についてのm次回折像と、前記参照領域を透過した前記放射線についてのn次回折像とを、前記画像検出器上に重畳して形成する構成とされており、
     ここで、mおよびnは整数であり、かつ、m≠nである
     ことを特徴とする放射線顕微鏡装置。
  2.  さらに副格子部を備えており、
     前記副格子部は、前記放射線の経路上であって、かつ、前記主格子部よりも前記線源の側に配置されており、
     かつ、前記副格子部は、前記画像検出器に入射する前記放射線に空間コヒーレンス性を付与する構成となっている
     請求項1に記載の放射線顕微鏡装置。
  3.  前記放射線はX線である
     請求項1又は2に記載の放射線顕微鏡装置。
  4.  請求項1~3のいずれか1項に記載の放射線顕微鏡装置を用いており、
     前記試料領域に試料を配置するステップと、
     前記試料領域と前記参照領域とを通過するように、前記線源から前記画像検出器に向けて放射線を放射するステップと、
     前記主格子部を、前記画像検出器に対して、格子ピッチの方向に、前記格子ピッチの1/Nずつ相対的に並進させるステップと、
     前記並進のたびに前記画像検出器で検出した放射線強度画像を用いて、放射線位相像を生成するステップと
     を備えており、
     ここでNは3以上の整数である
    ことを特徴とする放射線位相像生成方法。
  5.  請求項2に記載の放射線顕微鏡装置を用いており、
     前記試料領域に試料を配置するステップと、
     前記試料領域と前記参照領域とを通過するように、前記線源から前記画像検出器に向けて放射線を放射するステップと、
     前記主格子部を、前記副格子部に対して、格子ピッチの方向に、前記格子ピッチの1/Nずつ相対的に並進させるステップと、
     前記並進のたびに前記画像検出器で検出した放射線強度画像を用いて、放射線位相像を生成するステップと
     を備えており、
     ここでNは3以上の整数である
    ことを特徴とする放射線位相像生成方法。
PCT/JP2019/002169 2018-01-30 2019-01-24 放射線顕微鏡装置 WO2019151095A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019569053A JPWO2019151095A1 (ja) 2018-01-30 2019-01-24 放射線顕微鏡装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018013256 2018-01-30
JP2018-013256 2018-01-30

Publications (1)

Publication Number Publication Date
WO2019151095A1 true WO2019151095A1 (ja) 2019-08-08

Family

ID=67479009

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/002169 WO2019151095A1 (ja) 2018-01-30 2019-01-24 放射線顕微鏡装置

Country Status (2)

Country Link
JP (1) JPWO2019151095A1 (ja)
WO (1) WO2019151095A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61186900A (ja) * 1985-02-14 1986-08-20 日本電子株式会社 X線顕微鏡
JPH04264300A (ja) * 1991-02-19 1992-09-21 Nikon Corp 結像型軟x線顕微鏡装置
JP2005513489A (ja) * 2001-12-21 2005-05-12 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ サンプル上に複数のx線プローブを同時形成する走査型x線顕微鏡

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61186900A (ja) * 1985-02-14 1986-08-20 日本電子株式会社 X線顕微鏡
JPH04264300A (ja) * 1991-02-19 1992-09-21 Nikon Corp 結像型軟x線顕微鏡装置
JP2005513489A (ja) * 2001-12-21 2005-05-12 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ サンプル上に複数のx線プローブを同時形成する走査型x線顕微鏡

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
W. YASHIRO ET AL.: "Hard-X-Ray Phase-Difference Microscopy Using a Fresnel Zone Plate and a Transmission Grating", PHYS. REV. LETT., vol. 103, no. 180801, 28 October 2009 (2009-10-28), pages 1 - 4, XP055628078 *
YASHIRO WATARU ET AL.: "High-sensitive x-ray imaging microscopes with transmission gratings", THE REVIEW OF HIGH PRESSURE SCIENCE AND TECHNOLOGY, vol. 23, no. 3, 9 July 2013 (2013-07-09), pages 227 - 236 *

Also Published As

Publication number Publication date
JPWO2019151095A1 (ja) 2020-10-22

Similar Documents

Publication Publication Date Title
JP6232603B2 (ja) X線撮像装置及びx線撮像方法
JP6422123B2 (ja) 放射線画像生成装置
JP6256941B2 (ja) X線撮像方法及びx線撮像装置
JP5158699B2 (ja) X線撮像装置、及び、これに用いるx線源
JP5601909B2 (ja) X線撮像装置及びこれを用いるx線撮像方法
JP2007203066A (ja) X線装置の焦点‐検出器装置のx線光学透過格子
JP2012187341A (ja) X線撮像装置
JP5714861B2 (ja) X線画像撮影方法およびx線画像撮影装置
JP2011174715A (ja) X線撮像装置
US20160035450A1 (en) Talbot interferometer, talbot interference system, and fringe scanning method
Valdivia et al. Moire deflectometry using the Talbot-Lau interferometer as refraction diagnostic for high energy density plasmas at energies below 10 keV
RU2556712C2 (ru) Устройство рентгеновского формирования изобретений
JP2012020107A (ja) 放射線位相画像撮影装置
WO2019151095A1 (ja) 放射線顕微鏡装置
JP6604772B2 (ja) X線トールボット干渉計
EP3139156A1 (en) Dual phase grating interferometer for x-ray phase contrast imaging
Momose et al. Recent advance in grating-based X-ray phase tomography
WO2013038881A1 (ja) 放射線撮影装置及び画像処理方法
WO2017159229A1 (ja) 放射線画像生成装置
JP2012024554A (ja) 放射線位相画像撮影装置
WO2018168621A1 (ja) 放射線画像生成装置
JP5787597B2 (ja) 撮像装置
Olbinado et al. X-ray Talbot-Lau interferometer for high-speed phase imaging and tomography using white synchrotron radiation
US10325692B2 (en) X-ray diffractive grating and X-ray Talbot interferometer
JP7281829B2 (ja) 放射線画像生成装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19747936

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019569053

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19747936

Country of ref document: EP

Kind code of ref document: A1