WO2019151072A1 - Insect-catching device and insect-catching method - Google Patents
Insect-catching device and insect-catching method Download PDFInfo
- Publication number
- WO2019151072A1 WO2019151072A1 PCT/JP2019/002034 JP2019002034W WO2019151072A1 WO 2019151072 A1 WO2019151072 A1 WO 2019151072A1 JP 2019002034 W JP2019002034 W JP 2019002034W WO 2019151072 A1 WO2019151072 A1 WO 2019151072A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- carbon dioxide
- insect
- unit
- concentration
- insect trapping
- Prior art date
Links
Images
Classifications
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01M—CATCHING, TRAPPING OR SCARING OF ANIMALS; APPARATUS FOR THE DESTRUCTION OF NOXIOUS ANIMALS OR NOXIOUS PLANTS
- A01M1/00—Stationary means for catching or killing insects
- A01M1/02—Stationary means for catching or killing insects with devices or substances, e.g. food, pheronones attracting the insects
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01M—CATCHING, TRAPPING OR SCARING OF ANIMALS; APPARATUS FOR THE DESTRUCTION OF NOXIOUS ANIMALS OR NOXIOUS PLANTS
- A01M1/00—Stationary means for catching or killing insects
- A01M1/14—Catching by adhesive surfaces
Definitions
- the present invention relates to an insect capturing apparatus and an insect capturing method.
- Patent Document 1 discloses an apparatus for capturing flying insects, which is configured to continuously burn a combustible material to generate exhaust gas containing carbon dioxide.
- an aspect of the present invention is an insect capturing apparatus that attracts insects using carbon dioxide, and provides an apparatus that does not require supplementation of consumption materials for generating carbon dioxide gas.
- One embodiment of the present invention is an insect trapping device including a carbon dioxide concentration unit that concentrates carbon dioxide in the air.
- an insect trapping device that does not require supplementation of a consumption material for generating carbon dioxide gas.
- FIG. 4A is an exploded view of the insect capture unit of FIG. 4A.
- FIG. 4A It is the figure which looked at the room
- a carbon dioxide gas is newly generated by burning a combustible material or sublimating dry ice to create a concentration gradient. Therefore, in the conventional apparatus, in order to maintain the concentration gradient of carbon dioxide gas, it is necessary to replenish the material for generating carbon dioxide gas, which takes time and cost.
- the insect trapping apparatus includes a carbon dioxide concentration unit that concentrates carbon dioxide in the air.
- This carbon dioxide concentrating unit can take in carbon dioxide in the air and release a gas containing carbon dioxide at a concentration higher than the concentration of carbon dioxide in the introduced air (also referred to as high-concentration carbon dioxide-containing gas). Means.
- Such a carbon dioxide concentration unit can locally increase the concentration of carbon dioxide in the space and form a concentration gradient of carbon dioxide for attracting insects. Since the apparatus according to the present embodiment does not require replenishment of materials, it is possible to save labor for maintaining the function of the apparatus.
- the concentration of carbon dioxide in the room increases, so that the resident may feel uncomfortable or in some cases Your health may be compromised.
- the apparatus according to the present embodiment locally forms a portion where the concentration of carbon dioxide is high in the space, the indoor carbon dioxide concentration does not increase as a whole even if the device is used indoors. Therefore, the safety when used indoors is also high.
- the conceptual diagram of the insect capture device 1 by one form of this invention is shown.
- the insect capturing apparatus 1 includes a carbon dioxide concentration unit 10.
- the carbon dioxide concentrating unit 10 has a configuration for concentrating carbon dioxide (CO 2 ) in the air, that is, a configuration for taking in air (Air) and releasing a high-concentration carbon dioxide-containing gas GH .
- the concentration of the high-concentration carbon dioxide-containing gas GH released by the carbon dioxide concentration unit 10 can be a concentration that attracts insects to be captured, preferably 1000 ppm or more, more preferably 1200 ppm or more, and still more preferably. It may be 1400 ppm or more, particularly preferably 2000 ppm or more. By setting it as such a density
- the upper limit of the carbon dioxide concentration in the high-concentration carbon dioxide-containing gas is determined by the installation location of the device, the indoor space when used indoors, the flow rate of the high-concentration carbon dioxide-containing gas released from the device, etc.
- the carbon dioxide concentration in the high-concentration carbon dioxide-containing gas to be released may be 30000 ppm or less, preferably 10000 ppm or less. Even if the carbon dioxide concentration in the high-concentration carbon dioxide-containing gas is 30000 ppm or less, that is, the same or lower than the concentration of carbon dioxide in human breath, the formation of a region where the carbon dioxide concentration is excessively high can be achieved locally. Can be prevented and safety can be further improved. Further, it is preferable that the carbon dioxide concentration unit 10 can concentrate carbon dioxide in the air 3 times or more, preferably 4 times or more, more preferably 5 times or more.
- the insect capturing apparatus 1 may include an insect capturing unit 30 adjacent to the carbon dioxide concentration unit 10.
- the insect capturing unit 30 has a configuration for capturing and collecting insects that have been attracted to the high-concentration carbon dioxide gas GH released from the carbon dioxide concentration unit 10 and have approached the insect capturing apparatus 1.
- the insect capturing unit 30 may include a filter having an eye smaller than the size of the insect to be captured, an adhesive sheet that allows fluid to permeate, an aggregate of adhesive threads as described later, and the like.
- the insect capturing apparatus 1 may include a housing 20 that houses the carbon dioxide concentration unit 10.
- the housing 20 includes a suction port 21, and air (Air) flows into the housing 20 from the suction port 21.
- the air that has flowed into the housing 20 in this way is taken into the carbon dioxide concentration unit 10.
- the insect capturing unit 30 described above may be disposed in the suction port 21.
- the insect trapping unit 30 Since the insect trapping unit 30 is disposed in the suction port 21, the insects in the air flowing into the housing 20 can be removed in advance, so that the insects enter the carbon dioxide concentration unit 10 to reduce its function. This can be prevented.
- the insect capturing unit 30 is provided inside the housing 20, but may be provided outside the housing 20. In addition, the insect capturing unit 30 can be separated from the housing 20.
- the appearance color of the housing 20 preferably includes at least one of black and brown, and more preferably the appearance color of the housing 20 is black or brown. Since small flying insects such as mosquitoes and flies are said to have a chemotaxis against black or brown, the insects are attracted to the insect trapping device 1 by setting the appearance color of the entire housing 20 to black or brown. It becomes easy and can raise the catch rate of insects.
- the carbon dioxide concentration unit 10 has a carbon dioxide concentration unit 11 having a function of concentrating carbon dioxide, a first pump 12 that sends air to the carbon dioxide concentration unit 11, and the concentration of carbon dioxide from the carbon dioxide concentration unit 11 is increased. And a second pump 13 for drawing out the gas (gas containing high concentration carbon dioxide).
- the first pump 12 and the second pump 13 can efficiently release the high-concentration carbon dioxide-containing gas.
- the carbon dioxide concentration unit 10 or the housing 20 has another configuration capable of releasing a sufficient amount of high-concentration carbon dioxide-containing gas, the first pump 12 and the second pump of the carbon dioxide concentration unit 10 At least one of them can be omitted.
- the configuration of the carbon dioxide concentrating unit 11 is to concentrate carbon dioxide in the air without newly generating carbon dioxide gas, that is, to release carbon dioxide-containing gas by taking in carbon dioxide in the air.
- the carbon dioxide concentration unit 11 may be a separation membrane having selective permeability to carbon dioxide, an adsorbent capable of reversibly adsorbing and desorbing carbon dioxide, and the like. Among these, it is preferable that the carbon dioxide concentration part 11 has a separation membrane because the concentration of the released carbon dioxide is easy to control.
- the separation membrane having selective permeability to carbon dioxide in the carbon dioxide concentrating part 11 has high carbon dioxide gas permeability relative to air permeability, and the carbon dioxide gas permeability is relatively large.
- the permeability of at least one of nitrogen and oxygen can be relatively small.
- the permeability coefficient (permeability) of carbon dioxide in the separation membrane may be, for example, 2.5 times or more, preferably 3 times or more, more preferably 5 times or more of the air permeability coefficient. Further, the permeability coefficient of carbon dioxide gas may be 2.5 times or more, preferably 3 times or more, more preferably 5 times or more, more preferably 2.5 times or more, preferably 2.5 times or more of oxygen. May be 3 times or more, more preferably 5 times or more.
- the permeation coefficient (permeability) can be expressed as a unit thickness, a unit area, a unit time, and a volume per unit partial pressure difference between both surfaces of the gas permeating the membrane.
- a membrane having selective permeability to carbon dioxide and selective permeability to water vapor is preferable.
- released gas can be raised, the gas of the component close
- a separation membrane having a water vapor permeability coefficient of 10 times or more, preferably 20 times or more, more preferably 50 times or more that of air can be used.
- the separation membrane may have a high selective permeability to components other than carbon dioxide in the air, that is, nitrogen or oxygen, or both.
- the taken-in air can be separated into a gas having a low carbon dioxide concentration that has passed through the separation membrane and a gas having a high carbon dioxide concentration that has not passed through the separation membrane.
- the separation membrane is made of a low-molecular or high-molecular organic material as long as it has a high selective permeability to carbon dioxide or a high selective permeability to nitrogen and / or oxygen.
- the separation membrane may be made of an inorganic material.
- the separation membrane preferably contains silicone, polyethylene glycol, polyvinyl alcohol, a polymer such as polyimide, a ceramic such as zeolite, or the like. More specifically, examples include a silicone resin, silicone rubber, and liquid silicone coated on a porous membrane. Among these, a separation membrane made of silicone rubber is preferable because of its high carbon dioxide and water vapor permeability and relatively high strength.
- the adsorbent may be a basic material having a primary to tertiary amine, a carbonate such as potassium carbonate or sodium carbonate, or activated carbon. , Zeolite, glass, alumina and the like can be used.
- a hollow fiber membrane module having selective permeability to carbon dioxide is used as the carbon dioxide concentrating part 11.
- the hollow fiber membrane module is a module in which many hollow fiber membranes are bundled and accommodated in a casing or the like.
- the carbon dioxide concentrating part 11 using a hollow fiber membrane is preferable because the contact area with the gas can be increased.
- the carbon dioxide concentrating unit 11 takes in the air sent from the first pump 12 from the air inlet 113, permeates the hollow fiber membrane, and discharges it from the high concentration carbon dioxide-containing gas outlets 114 a and 114 b.
- the low-concentration carbon dioxide-containing gas is discharged from the low-concentration carbon dioxide-containing gas outlet 115.
- the gas GH released from the high-concentration carbon dioxide-containing gas outlets 114a and 114b is drawn out by the second pump 13 and released from the outlet 22 to the outside.
- the flow rate of the high-concentration carbon dioxide-containing gas GH discharged from the outlet 22, that is, discharged from the insect trapping apparatus 1, can be set to, for example, 0.05 L / min or more, preferably 0.1 L / min or more.
- the low-concentration carbon oxide-containing gas GL released from the low-concentration carbon dioxide-containing gas outlet 115 of the carbon dioxide concentrating unit 11 is released to the outside through the outlet 23.
- the carbon dioxide concentration unit 10 can be provided with an insect attractant supply unit 40 that can supply an attractant attracting insects to the gas.
- the attracting substance supply unit 40 can be placed behind the low-concentration carbon dioxide-containing gas outlet 115 of the carbon dioxide concentration unit 11. Further, the attracting substance supply unit 40 can be provided at the high-concentration carbon dioxide-containing gas discharge port 22 of the casing 20, or provided independently of the carbon dioxide concentrating unit 10 and outside the casing 20. You can also.
- the attracting substance supplied by the attracting substance supply unit 40 may be anything that can attract insects to be captured. For example, when the target insect is a mosquito, an attracting substance such as lactic acid or fatty acid can be used.
- the housing 20 may be provided at the outlet 24 with a fan 28 that sends the gas inside the housing 20 to the outside. Since the fan 28 is provided, the amount of air sucked from the suction port 21 of the housing 20 can be increased, and the insect capture efficiency can be increased. Depending on the configuration of the carbon dioxide concentrating unit 10 and the housing 20, the outlet 24 and the fan 28 can be omitted.
- FIG. 2 shows an example of the insect trapping apparatus 1 according to one embodiment of the present invention more specifically.
- the insect capturing apparatus 1 shown in FIG. 2 includes a housing 20, and the carbon dioxide concentration unit 10 and the insect capturing unit 30 are disposed inside the housing 20.
- outlets 22 and 23 provided on the side surface of the housing 20 are shown.
- a high-concentration carbon dioxide-containing gas discharge pipe 18 extends from the outlet 22, and the high-concentration carbon dioxide-containing gas discharge pipe 18 is connected to the high-concentration carbon dioxide-containing gas outlet of the carbon dioxide concentration unit 11 in the housing 20.
- 114a and 114b are pipes connected to the first pump 13 (FIG. 1).
- the discharge pipe 18 extending from the outlet 22 is formed in an annular shape so as to surround the housing 20.
- a plurality of discharge holes 18 a are provided in the discharge pipe 18, and the high-concentration carbon dioxide-containing gas GH can be discharged from the discharge holes 18 a around the housing 20 in a plurality of different directions.
- a discharge pipe 19 for low-concentration carbon dioxide-containing gas extends from the outlet 23, and this low-concentration carbon dioxide-containing gas discharge pipe 19 is provided with the low-concentration carbon dioxide-containing gas in the carbon oxide concentrating part 11 in the housing 20. It is a tube that is connected to the gas outlet 115 via the attracting substance supply unit 40 (FIG. 1) and discharges the low-concentration carbon dioxide-containing gas GL containing the attracting substance.
- the discharge pipe 19 extending from the outlet 23 is annularly arranged on the housing 20.
- a plurality of discharge holes 19 a are provided in the discharge pipe 19, and a low-concentration carbon dioxide-containing gas containing an attracting substance can be discharged from the discharge holes 19 a to the outside of the housing 20.
- the suction port 21 is provided on the upper surface of the housing 20, and a heat radiating plate 25 is provided so as to cover the suction port 21.
- the heat generated by the insect trap 1 can be efficiently released to the outside by the heat radiating plate 25.
- the heat sink 25 can create a temperature gradient around the insect trapping apparatus 1, it is useful for capturing insects that are attracted by sensing the temperature gradient.
- FIG. 3 shows a state in which the upper surface and the side surface of the case 20 of the insect capturing apparatus 1 of FIG.
- each element is schematically shown, and details such as electrical connection are omitted.
- a carbon dioxide concentrating unit 10 having a carbon dioxide concentrating unit 11, a first pump 12 disposed in front of the carbon dioxide concentrating unit 11, and a second pump 13 disposed in the rear thereof. Is arranged.
- the power supply part 14 and the control part 15 for operating the 1st pump 12 and the 2nd pump 13, and the counting part 31 (after-mentioned) of the insect capture unit 30 as needed may be provided, and if needed A transformer or the like may be provided.
- a commercial power source a primary battery, a secondary battery, or the like can be used.
- a power generation device solar power generator or the like
- the insect trapping device 1 can be used for a long time even in a place where there is no commercial power source.
- FIG. 4A shows an example of the insect capturing unit 30.
- the insect capturing unit 30 shown in FIG. 4A has a configuration in which a counting unit 31 for counting insects and a capturing unit 32 for capturing insects are overlapped.
- An auxiliary capturing part 33 is provided below the capturing part 32, and a bottom part 34 is provided below the auxiliary capturing part 33.
- FIG. 4B shows an exploded view of the insect capturing unit 30 in FIG. 4A.
- the insect capturing unit 30 may be composed of a plurality of parts.
- the counting unit 31 includes a holder 31a having a passage through which gas can permeate at the center. Slits are formed on both side surfaces of the passage, and the counting sensor 35 can be provided so as to fit into the slits.
- the counting sensor 35 may be an area detection type sensor or the like that can detect insects with a light projecting unit and a light receiving unit.
- the capture unit 32 includes a holder 32a similar to the holder 31a.
- An insert 32b provided with a plurality of adhesive threads 38 for adhering and capturing insects can be inserted into the slits of the holder 32a.
- the adhesive yarn 38 may be, for example, a yarn obtained by applying an adhesive composition to natural fibers such as cotton, hemp, and hair, or chemical fibers such as acrylic, polyester, nylon, rayon, and acetate. It can arrange
- the adhesive yarns 38 may be arranged in parallel to each other or may be arranged so as to cross each other. Since the sticky element is arranged in the insert 32b, it is possible to reliably catch the insect. Further, from the viewpoint that the insect 32 can be captured and recovered without crushing, it is preferable that the insert 32b is provided with a non-adhesive element (such as a non-adhesive net or filter).
- a non-adhesive element such
- an auxiliary capture unit 33 is disposed below the capture unit 32.
- the auxiliary capture unit 33 can capture insects that could not be captured by the capture unit 32 and can capture small garbage other than insects.
- the capture unit 32 also includes a holder 33a similar to the holders 31a and 32a, and an insert 33b in which a filter is arranged can be inserted into the slit.
- the filter arranged in the insert 33b is not particularly limited as long as it can transmit gas and collect minute solids. This filter is preferably a sheet having air permeability and adhesiveness on the surface. Note that the auxiliary capture unit 33 can be omitted if the capture unit 32 can reliably capture insects and remove dust and the like.
- FIGS. 2 to 4B the configuration of the insect trapping apparatus 1 shown in FIGS. 2 to 4B is merely an example, and various modifications and changes can be made without departing from the scope of the claims.
- the insect capturing apparatus 1 of this embodiment can be used for capturing insects that have a positive chemotaxis against carbon dioxide.
- the device of this embodiment is a blood-sucking insect such as a flying insect, especially a mosquito, such as a mosquito (eg, Aedes albopictus, Aedes aegypti), mosquito (eg, mosquito), anopheles, flies, eg, Drosophila , Mites such as tsutsugamushi, ticks, and the like.
- one form of the present invention may be an insect capturing method using the insect capturing apparatus 1 described above. More specifically, this form may be an insect trapping method including a carbon dioxide concentration step for concentrating carbon dioxide in the air. According to this insect capturing method, since it is not necessary to replenish the consumption material for generating carbon dioxide, labor and cost can be saved. Further, since it is not a device that newly generates carbon dioxide, the concentration of carbon dioxide around the device does not continue to rise, and it can be used safely indoors.
- Example 1 An insect trapping device having a configuration as shown in FIGS. 2 and 3 was prepared.
- the carbon dioxide concentrating unit 11 is a hollow housing a configuration in which 38,500 silicone hollow fiber membranes having an inner diameter of 170 ⁇ m, an outer diameter of 250 ⁇ m, and an effective length of 200 mm are bundled (effective membrane area: 0.54 m 2 ).
- a thread membrane module (trade name: NAGASEP M40-05S, manufactured by Nagayanagi Kogyo Co., Ltd.) was used.
- an insect capturing unit similar to that described with reference to FIGS. 4A and 4B was disposed at the suction port of the housing.
- an insert in which adhesive yarn (made of nylon) was juxtaposed at an interval of 0.8 mm in an 80 mm ⁇ 80 mm gas passage was used.
- the color of the housing surface of the insect trapping apparatus of Example 1 shown in FIGS. 4A and 4B was black.
- Comparative Example 1 A commercially available mosquito trap was prepared as a comparative device.
- air sucked from a suction port by a blower is exhausted through a filtration filter, and an adhesive sheet is provided on the suction port side of the filtration filter.
- casing is black.
- Example 1 ⁇ Insect capture test>
- the apparatuses of Example 1 and Comparative Example 1 were installed in a sealed unmanned test chamber (equivalent to 6 tatami mats, floor area 10.2 m 2 (2.9 m ⁇ 3.5 m), height 2.2 m). Both devices were placed 30 cm away from the wall on the floor. Moreover, the container which put sugar water was arrange
- Example 1 During the test, the apparatus of Example 1 was operated so that the air volume at the suction port was 1 m 3 / min. The carbon dioxide concentration in the gas released from the high concentration carbon dioxide-containing gas discharge hole was 1400 ppm. The apparatus of Comparative Example 1 was operated in “sleep mode” (air flow 1 m 3 / min). The carbon dioxide concentration was measured with a gas detector tube.
- the same test was repeated two more times for a total of three tests.
- the number of released human mosquitoes was 95 in the second test (12-22 days after emergence) and 93 (13-23 days after emergence) in the third test.
- the ultraviolet light source is provided in the apparatus of the comparative example 1 as mentioned above, it is known that Aedes albopictus does not have the chemotaxis with respect to an ultraviolet-ray. Therefore, it is considered that the ultraviolet light source of the apparatus of Comparative Example 1 has no influence on this test.
- the capture rate (%) was the total of the number of captures of three tests with respect to the number of samples.
- Example 1 that attracts insects using carbon dioxide exhibits a better insect capture rate than the insect trapping apparatus of Comparative Example 1.
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Pest Control & Pesticides (AREA)
- Engineering & Computer Science (AREA)
- Insects & Arthropods (AREA)
- Wood Science & Technology (AREA)
- Zoology (AREA)
- Environmental Sciences (AREA)
- Catching Or Destruction (AREA)
Abstract
An insect-catching device comprises a carbon dioxide concentration unit that concentrates carbon dioxide in the air.
Description
本発明は、虫捕獲装置、及び虫捕獲方法に関する。
The present invention relates to an insect capturing apparatus and an insect capturing method.
虫を捕獲するために、その虫の走性を利用することがある。例えば、空気中に二酸化炭素ガスの濃度勾配を作り出し、その濃度勾配によって虫を誘引して虫を捕獲する技術が知られている。特許文献1には、飛翔昆虫を捕捉するための装置であって、可燃性材料を連続燃焼して、二酸化炭素を含む排気ガスを発生させる構成を備えたものが開示されている。
In order to capture insects, the insect's chemotaxis may be used. For example, a technique is known in which a concentration gradient of carbon dioxide gas is created in the air, and insects are attracted by the concentration gradient to capture the insects. Patent Document 1 discloses an apparatus for capturing flying insects, which is configured to continuously burn a combustible material to generate exhaust gas containing carbon dioxide.
しかしながら、特許文献1に開示の装置で使用される可燃性材料は、二酸化炭素発生用の消費材料であるので、装置の使用を続けるには補給が必要となる。そのような補給の作業は煩雑である。
However, since the combustible material used in the apparatus disclosed in Patent Document 1 is a consumption material for generating carbon dioxide, replenishment is required to continue using the apparatus. Such replenishment work is complicated.
上記の点に鑑みて、本発明の一形態は、二酸化炭素を用いて虫を誘引する虫捕獲装置であって、二酸化炭素ガス発生用の消費材料の補給が不要な装置を提供することを課題とする。
In view of the above points, an aspect of the present invention is an insect capturing apparatus that attracts insects using carbon dioxide, and provides an apparatus that does not require supplementation of consumption materials for generating carbon dioxide gas. And
本発明の一形態は、空気中の二酸化炭素を濃縮する二酸化炭素濃縮ユニットを備えた虫捕獲装置である。
One embodiment of the present invention is an insect trapping device including a carbon dioxide concentration unit that concentrates carbon dioxide in the air.
本発明の一形態によれば、二酸化炭素ガス発生用の消費材料の補給が不要な虫捕獲装置を提供することができる。
According to one embodiment of the present invention, it is possible to provide an insect trapping device that does not require supplementation of a consumption material for generating carbon dioxide gas.
従来の虫捕獲装置では、可燃性材料を燃焼させたり、ドライアイスを昇華させたりすることによって二酸化炭素ガスを新たに生じさせて、濃度勾配を作り出している。よって、従来の装置では、二酸化炭素ガスの濃度勾配を維持するためには、二酸化炭素ガス発生用の材料の補給を行う必要があり、手間及びコストがかかっていた。
In a conventional insect trap, a carbon dioxide gas is newly generated by burning a combustible material or sublimating dry ice to create a concentration gradient. Therefore, in the conventional apparatus, in order to maintain the concentration gradient of carbon dioxide gas, it is necessary to replenish the material for generating carbon dioxide gas, which takes time and cost.
これに対し、本発明の一形態による虫捕捉装置は、空気中の二酸化炭素を濃縮する二酸化炭素濃縮ユニットを備えている。この二酸化炭素濃縮ユニットは、空気中の二酸化炭素を取り入れ、取り入れられた空気中の二酸化炭素濃度よりも高い濃度で二酸化炭素を含むガス(高濃度二酸化炭素含有ガスともいう)を放出することができる手段である。このような二酸化炭素濃縮ユニットによって、空間内で二酸化炭素の濃度を局所的に上昇させ、虫を誘引するための二酸化炭素の濃度勾配を形成することができる。本形態による装置では材料の補給は不要であるので、装置の機能を維持するための手間を省くことができる。
On the other hand, the insect trapping apparatus according to one embodiment of the present invention includes a carbon dioxide concentration unit that concentrates carbon dioxide in the air. This carbon dioxide concentrating unit can take in carbon dioxide in the air and release a gas containing carbon dioxide at a concentration higher than the concentration of carbon dioxide in the introduced air (also referred to as high-concentration carbon dioxide-containing gas). Means. Such a carbon dioxide concentration unit can locally increase the concentration of carbon dioxide in the space and form a concentration gradient of carbon dioxide for attracting insects. Since the apparatus according to the present embodiment does not require replenishment of materials, it is possible to save labor for maintaining the function of the apparatus.
また、二酸化炭素ガスを新たに発生し続ける従来の装置を室内で使用した場合には、室内の二酸化炭素の濃度が上昇するため、在室者が不快感を覚えたり、場合によっては在室者の健康が損なわれたりする可能性がある。しかし、本形態による装置は、空間内に二酸化炭素の濃度が高い部分を局所的に形成するものであるので、室内で使用を続けても室内の二酸化炭素濃度が全体として上昇するわけではない。そのため、室内で使用した場合の安全性も高い。
In addition, when a conventional device that continuously generates carbon dioxide gas is used indoors, the concentration of carbon dioxide in the room increases, so that the resident may feel uncomfortable or in some cases Your health may be compromised. However, since the apparatus according to the present embodiment locally forms a portion where the concentration of carbon dioxide is high in the space, the indoor carbon dioxide concentration does not increase as a whole even if the device is used indoors. Therefore, the safety when used indoors is also high.
図1に、本発明の一形態による虫捕獲装置1の概念図を示す。図1に示すように、虫捕獲装置1は、二酸化炭素濃縮ユニット10を備えている。二酸化炭素濃縮ユニット10は、空気中の二酸化炭素(CO2)を濃縮する構成、すなわち空気(Air)を取り入れ、高濃度二酸化炭素含有ガスGHを放出する構成を有している。
In FIG. 1, the conceptual diagram of the insect capture device 1 by one form of this invention is shown. As shown in FIG. 1, the insect capturing apparatus 1 includes a carbon dioxide concentration unit 10. The carbon dioxide concentrating unit 10 has a configuration for concentrating carbon dioxide (CO 2 ) in the air, that is, a configuration for taking in air (Air) and releasing a high-concentration carbon dioxide-containing gas GH .
二酸化炭素濃縮ユニット10によって放出される高濃度二酸化炭素含有ガスGHの濃度は、捕獲対象となる虫が引き寄せられる濃度とすることができ、好ましくは1000ppm以上、より好ましくは1200ppm以上、さらに好ましくは1400ppm以上、特に好ましくは2000ppm以上であってよい。このような濃度とすることにより、虫、特に蚊、ハエ等の飛翔性昆虫を効果的に誘引することができる。なお、高濃度二酸化炭素含有ガス中の二酸化炭素濃度の上限は、装置の設置場所、室内で使用する場合には、室内の広さ、装置から放出される高濃度二酸化炭素含有ガスの流量等にもよるが、安全性の観点等から、放出される高濃度二酸化炭素含有ガス中の二酸化炭素濃度は、30000ppm以下、好ましくは10000ppm以下であってよい。高濃度二酸化炭素含有ガス中の二酸化炭素濃度を30000ppm以下、つまり人の呼気中の二酸化炭素濃度と同程度の濃度以下とすることで、二酸化炭素濃度が過度に高い領域の形成を局所的にでも防止し、安全性をより一層向上させることができる。また、二酸化炭素濃縮ユニット10によって、空気中の二酸化炭素を3倍以上、好ましくは4倍以上、より好ましくは5倍以上濃縮することができると好ましい。
The concentration of the high-concentration carbon dioxide-containing gas GH released by the carbon dioxide concentration unit 10 can be a concentration that attracts insects to be captured, preferably 1000 ppm or more, more preferably 1200 ppm or more, and still more preferably. It may be 1400 ppm or more, particularly preferably 2000 ppm or more. By setting it as such a density | concentration, insects, especially flying insects, such as a mosquito and a fly, can be attracted effectively. Note that the upper limit of the carbon dioxide concentration in the high-concentration carbon dioxide-containing gas is determined by the installation location of the device, the indoor space when used indoors, the flow rate of the high-concentration carbon dioxide-containing gas released from the device, etc. However, from the viewpoint of safety, the carbon dioxide concentration in the high-concentration carbon dioxide-containing gas to be released may be 30000 ppm or less, preferably 10000 ppm or less. Even if the carbon dioxide concentration in the high-concentration carbon dioxide-containing gas is 30000 ppm or less, that is, the same or lower than the concentration of carbon dioxide in human breath, the formation of a region where the carbon dioxide concentration is excessively high can be achieved locally. Can be prevented and safety can be further improved. Further, it is preferable that the carbon dioxide concentration unit 10 can concentrate carbon dioxide in the air 3 times or more, preferably 4 times or more, more preferably 5 times or more.
図1に示すように、虫捕獲装置1は、二酸化炭素濃縮ユニット10に隣接する虫捕獲ユニット30を有していてよい。虫捕獲ユニット30は、二酸化炭素濃縮ユニット10から放出される高濃度二酸化炭素ガスGHに誘引されて虫捕獲装置1に寄ってきた虫を捕獲し、回収する構成を有する。虫捕獲ユニット30は、捕獲対象となる虫の大きさよりも小さい目を有するフィルタ、流体を透過させることのできる粘着シート、或いは後述のように粘着糸の集合体等を備えていてよい。
As shown in FIG. 1, the insect capturing apparatus 1 may include an insect capturing unit 30 adjacent to the carbon dioxide concentration unit 10. The insect capturing unit 30 has a configuration for capturing and collecting insects that have been attracted to the high-concentration carbon dioxide gas GH released from the carbon dioxide concentration unit 10 and have approached the insect capturing apparatus 1. The insect capturing unit 30 may include a filter having an eye smaller than the size of the insect to be captured, an adhesive sheet that allows fluid to permeate, an aggregate of adhesive threads as described later, and the like.
また、虫捕獲装置1は、二酸化炭素濃縮ユニット10を収容する筐体20を備えてよい。図示の形態では、筐体20は吸込口21を備えており、空気(Air)はこの吸込口21から筐体20内部へと流入する。このように筐体20内に流入した空気が、二酸化炭素濃縮ユニット10に取り入れられる。吸込口21には、上述の虫捕獲ユニット30が配置されていてよい。
In addition, the insect capturing apparatus 1 may include a housing 20 that houses the carbon dioxide concentration unit 10. In the illustrated embodiment, the housing 20 includes a suction port 21, and air (Air) flows into the housing 20 from the suction port 21. The air that has flowed into the housing 20 in this way is taken into the carbon dioxide concentration unit 10. The insect capturing unit 30 described above may be disposed in the suction port 21.
吸込口21に虫捕獲ユニット30を配置したことで、筐体20内に流入する空気中の虫を予め除去することができるので、二酸化炭素濃縮ユニット10内に虫が入り込んでその機能を低下させることを防止することができる。なお、図示の形態では、虫捕獲ユニット30は、筐体20の内側に設けられているが、筐体20の外側に設けられていてもよい。また、虫捕獲ユニット30は筐体20と別体にすることもできる。
Since the insect trapping unit 30 is disposed in the suction port 21, the insects in the air flowing into the housing 20 can be removed in advance, so that the insects enter the carbon dioxide concentration unit 10 to reduce its function. This can be prevented. In the illustrated embodiment, the insect capturing unit 30 is provided inside the housing 20, but may be provided outside the housing 20. In addition, the insect capturing unit 30 can be separated from the housing 20.
筐体20の外観色には黒色及び茶色の少なくとも一方が含まれていると好ましく、筐体20の外観色が黒色又は茶色であるとより好ましい。小型飛翔性昆虫、例えば蚊やハエは黒色又は茶色に対して走性があるといわれているため、筐体20全体の外観色を黒色又は茶色とすることによって虫が虫捕獲装置1に誘引されやすくなり、虫の捕獲率を上げることができる。
The appearance color of the housing 20 preferably includes at least one of black and brown, and more preferably the appearance color of the housing 20 is black or brown. Since small flying insects such as mosquitoes and flies are said to have a chemotaxis against black or brown, the insects are attracted to the insect trapping device 1 by setting the appearance color of the entire housing 20 to black or brown. It becomes easy and can raise the catch rate of insects.
二酸化炭素濃縮ユニット10は、二酸化炭素を濃縮する機能を有する二酸化炭素濃縮部11と、空気を二酸化炭素濃縮部11に送り込む第1ポンプ12と、二酸化炭素濃縮部11から二酸化炭素の濃度が高められた気体(高濃度二酸化炭素含有ガス)を引き出す第2ポンプ13とを備えている。第1ポンプ12及び第2ポンプ13によって、高濃度二酸化炭素含有ガスを効率よく放出させることができる。しかし、二酸化炭素濃縮ユニット10又は筐体20が、十分な量の高濃度二酸化炭素含有ガスを放出できる別の構成を備えていれば、二酸化炭素濃縮ユニット10の第1ポンプ12及び第2ポンプの少なくとも一方を省くことができる。
The carbon dioxide concentration unit 10 has a carbon dioxide concentration unit 11 having a function of concentrating carbon dioxide, a first pump 12 that sends air to the carbon dioxide concentration unit 11, and the concentration of carbon dioxide from the carbon dioxide concentration unit 11 is increased. And a second pump 13 for drawing out the gas (gas containing high concentration carbon dioxide). The first pump 12 and the second pump 13 can efficiently release the high-concentration carbon dioxide-containing gas. However, if the carbon dioxide concentration unit 10 or the housing 20 has another configuration capable of releasing a sufficient amount of high-concentration carbon dioxide-containing gas, the first pump 12 and the second pump of the carbon dioxide concentration unit 10 At least one of them can be omitted.
二酸化炭素濃縮部11の構成は、二酸化炭素ガスを新たに発生させずに空気中の二酸化炭素を濃縮するもの、すなわち空気中の二酸化炭素を取り入れて高濃度二酸化炭素含有ガスを放出するものであれば、特に限定されない。二酸化炭素濃縮部11は、二酸化炭素に対する選択的透過性を有する分離膜、二酸化炭素を可逆的に吸脱着可能な吸着体等であってよい。このうち、放出される二酸化炭素の濃度の制御が容易であること等から、二酸化炭素濃縮部11が分離膜を有するものであると好ましい。
The configuration of the carbon dioxide concentrating unit 11 is to concentrate carbon dioxide in the air without newly generating carbon dioxide gas, that is, to release carbon dioxide-containing gas by taking in carbon dioxide in the air. There is no particular limitation. The carbon dioxide concentration unit 11 may be a separation membrane having selective permeability to carbon dioxide, an adsorbent capable of reversibly adsorbing and desorbing carbon dioxide, and the like. Among these, it is preferable that the carbon dioxide concentration part 11 has a separation membrane because the concentration of the released carbon dioxide is easy to control.
二酸化炭素濃縮部11における、二酸化炭素に対する選択的透過性を有する分離膜は、二酸化炭素ガスの透過性が空気の透過性に対して高いものであり、二酸化炭素ガスの透過性が比較的大きく、窒素及び酸素の少なくとも一方の透過性が比較的小さいものとすることができる。これにより、取り入れた空気を、分離膜を通過した二酸化炭素濃度が高いガスと、分離膜を通過しなかった二酸化炭素濃度が低いガスとに分離することができる。
The separation membrane having selective permeability to carbon dioxide in the carbon dioxide concentrating part 11 has high carbon dioxide gas permeability relative to air permeability, and the carbon dioxide gas permeability is relatively large. The permeability of at least one of nitrogen and oxygen can be relatively small. Thereby, the taken-in air can be separated into a gas having a high carbon dioxide concentration that has passed through the separation membrane and a gas having a low carbon dioxide concentration that has not passed through the separation membrane.
分離膜における二酸化炭素の透過係数(透過率)は、例えば、空気の透過係数の2.5倍以上、好ましくは3倍以上、より好ましくは5倍以上であってよい。また、二酸化炭素ガスの透過係数は、窒素の透過係数の2.5倍以上、好ましくは3倍以上、より好ましくは5倍以上であってよく、酸素の透過係数の2.5倍以上、好ましくは3倍以上、より好ましくは5倍以上であってよい。なお、透過係数(透過率)は、膜を透過するガスの、単位厚さ、単位面積、単位時間、及び材料両面間の単位分圧差当たりの体積で表したものとすることができる。
The permeability coefficient (permeability) of carbon dioxide in the separation membrane may be, for example, 2.5 times or more, preferably 3 times or more, more preferably 5 times or more of the air permeability coefficient. Further, the permeability coefficient of carbon dioxide gas may be 2.5 times or more, preferably 3 times or more, more preferably 5 times or more, more preferably 2.5 times or more, preferably 2.5 times or more of oxygen. May be 3 times or more, more preferably 5 times or more. The permeation coefficient (permeability) can be expressed as a unit thickness, a unit area, a unit time, and a volume per unit partial pressure difference between both surfaces of the gas permeating the membrane.
分離膜としては、二酸化炭素に対する選択的透過性を有するとともに、水蒸気に対する選択的透過性を有するものが好ましい。これにより、放出されるガスに含まれる水蒸気の濃度を高めることができるので、動物の呼気に近い成分のガスを放出することができる。そのため、動物の呼気に反応してその位置を探知するタイプの虫(例えば蚊等)の誘引に有用である。水蒸気の濃度を高める観点からは、水蒸気の透過係数が空気の透過係数の10倍以上、好ましくは20倍以上、より好ましくは50倍以上の分離膜を用いることができる。
As the separation membrane, a membrane having selective permeability to carbon dioxide and selective permeability to water vapor is preferable. Thereby, since the density | concentration of the water vapor | steam contained in the discharge | released gas can be raised, the gas of the component close | similar to the expiration | expired_air of an animal can be discharge | released. Therefore, it is useful for attracting a type of insect (such as a mosquito) that detects the position in response to the breath of the animal. From the viewpoint of increasing the concentration of water vapor, a separation membrane having a water vapor permeability coefficient of 10 times or more, preferably 20 times or more, more preferably 50 times or more that of air can be used.
なお、分離膜は、空気中の二酸化炭素以外の成分、つまり窒素若しくは酸素又はその両方に対する選択的透過性が高いものであってもよい。このような分離膜により、取り入れた空気を、分離膜を通過した二酸化炭素濃度が低いガスと、分離膜を通過しなかった二酸化炭素濃度が高いガスとに分離することができる。
Note that the separation membrane may have a high selective permeability to components other than carbon dioxide in the air, that is, nitrogen or oxygen, or both. With such a separation membrane, the taken-in air can be separated into a gas having a low carbon dioxide concentration that has passed through the separation membrane and a gas having a high carbon dioxide concentration that has not passed through the separation membrane.
分離膜は、上述のように二酸化炭素に対する高い選択的透過性、或いは窒素若しくは酸素又はその両方に対する高い選択的透過性を有するものであれば、低分子又は高分子の有機材料からなるものであっても無機材料からなるものであってよい。分離膜は、シリコーン、ポリエチレングリコール、ポリビニルアルコール、ポリイミドなどの高分子、ゼオライトなどのセラミック等を含むものであると好ましい。より具体的には、シリコーン樹脂、シリコーンゴム、液状のシリコーンを多孔性膜に塗布したもの等が挙げられる。このうち、シリコーンゴム製の分離膜は、二酸化炭素及び水蒸気の透過率が高く、強度も比較的高いことから好ましい。
As described above, the separation membrane is made of a low-molecular or high-molecular organic material as long as it has a high selective permeability to carbon dioxide or a high selective permeability to nitrogen and / or oxygen. However, it may be made of an inorganic material. The separation membrane preferably contains silicone, polyethylene glycol, polyvinyl alcohol, a polymer such as polyimide, a ceramic such as zeolite, or the like. More specifically, examples include a silicone resin, silicone rubber, and liquid silicone coated on a porous membrane. Among these, a separation membrane made of silicone rubber is preferable because of its high carbon dioxide and water vapor permeability and relatively high strength.
二酸化炭素濃縮部11が、二酸化炭素を吸脱着可能な吸着体を利用する場合には、吸着体としては、1~3級アミンを有する塩基性材料、炭酸カリウムや炭酸ナトリウム等の炭酸塩、活性炭、ゼオライト、ガラス、アルミナ等を用いることができる。
When the carbon dioxide concentration unit 11 uses an adsorbent capable of adsorbing and desorbing carbon dioxide, the adsorbent may be a basic material having a primary to tertiary amine, a carbonate such as potassium carbonate or sodium carbonate, or activated carbon. , Zeolite, glass, alumina and the like can be used.
図示の形態では、二酸化炭素濃縮部11として、二酸化炭素に対する選択的透過性を有する中空糸膜モジュールを用いている。中空糸膜モジュールは、多数の中空糸膜が束ねられ、ケーシング等に収容されたモジュールである。中空糸膜を用いた二酸化炭素濃縮部11は、ガスとの接触面積を大きくできるため、好ましい。図示の形態では、二酸化炭素濃縮部11は、第1ポンプ12から送られた空気を空気入口113から取り入れて、中空糸膜を透過させ、高濃度二酸化炭素含有ガス出口114a、114bから放出する。また、低濃度二酸化炭素含有ガスは、低濃度二酸化炭素含有ガス出口115から放出される。高濃度二酸化炭素含有ガス出口114a、114bから放出されたガスGHは第2ポンプ13によって引き出され、出口22から外部へと放出される。出口22から放出される、すなわち虫捕獲装置1から放出される高濃度二酸化炭素含有ガスGHの流量は、例えば0.05L/min以上、好ましくは0.1L/min以上とすることができる。
In the illustrated form, a hollow fiber membrane module having selective permeability to carbon dioxide is used as the carbon dioxide concentrating part 11. The hollow fiber membrane module is a module in which many hollow fiber membranes are bundled and accommodated in a casing or the like. The carbon dioxide concentrating part 11 using a hollow fiber membrane is preferable because the contact area with the gas can be increased. In the illustrated form, the carbon dioxide concentrating unit 11 takes in the air sent from the first pump 12 from the air inlet 113, permeates the hollow fiber membrane, and discharges it from the high concentration carbon dioxide-containing gas outlets 114 a and 114 b. The low-concentration carbon dioxide-containing gas is discharged from the low-concentration carbon dioxide-containing gas outlet 115. The gas GH released from the high-concentration carbon dioxide-containing gas outlets 114a and 114b is drawn out by the second pump 13 and released from the outlet 22 to the outside. The flow rate of the high-concentration carbon dioxide-containing gas GH discharged from the outlet 22, that is, discharged from the insect trapping apparatus 1, can be set to, for example, 0.05 L / min or more, preferably 0.1 L / min or more.
また、二酸化炭素濃縮部11の低濃度二酸化炭素含有ガス出口115から放出される低濃度酸化炭素含有ガスGLは、出口23を通って外部へと放出される。
Further, the low-concentration carbon oxide-containing gas GL released from the low-concentration carbon dioxide-containing gas outlet 115 of the carbon dioxide concentrating unit 11 is released to the outside through the outlet 23.
二酸化炭素濃縮ユニット10には、虫を引き寄せる誘引物質をガスに供給することのできる虫誘引物質供給部40を設けることができる。誘引物質供給部40は、図1に示すように、二酸化炭素濃縮部11の低濃度二酸化炭素含有ガス出口115に後置することができる。また、この誘引物質供給部40は、筐体20の高濃度二酸化炭素含有ガス放出口22に設けることもできるし、二酸化炭素濃縮ユニット10とは別個に、筐体20の外部に独立して設けることもできる。誘引物質供給部40で供給される誘引物質としては、捕獲対象となる虫を誘引できるものであればよい。例えば、捕獲対象虫が蚊である場合には、乳酸、脂肪酸等の誘引物質を用いることができる。
The carbon dioxide concentration unit 10 can be provided with an insect attractant supply unit 40 that can supply an attractant attracting insects to the gas. As shown in FIG. 1, the attracting substance supply unit 40 can be placed behind the low-concentration carbon dioxide-containing gas outlet 115 of the carbon dioxide concentration unit 11. Further, the attracting substance supply unit 40 can be provided at the high-concentration carbon dioxide-containing gas discharge port 22 of the casing 20, or provided independently of the carbon dioxide concentrating unit 10 and outside the casing 20. You can also. The attracting substance supplied by the attracting substance supply unit 40 may be anything that can attract insects to be captured. For example, when the target insect is a mosquito, an attracting substance such as lactic acid or fatty acid can be used.
筐体20は、出口24に、筐体20内部の気体を外部へと送り出すファン28が設けられていてもよい。ファン28が設けられていることで、筐体20の吸込口21から吸い込まれる空気の量を増加させることができ、虫の捕獲効率を上げることができる。二酸化炭素濃縮ユニット10及び筐体20の構成によっては、出口24及びファン28を省くことができる。
The housing 20 may be provided at the outlet 24 with a fan 28 that sends the gas inside the housing 20 to the outside. Since the fan 28 is provided, the amount of air sucked from the suction port 21 of the housing 20 can be increased, and the insect capture efficiency can be increased. Depending on the configuration of the carbon dioxide concentrating unit 10 and the housing 20, the outlet 24 and the fan 28 can be omitted.
図2に、本発明の一形態による虫捕獲装置1の一例をより具体的に示す。図2に示す虫捕獲装置1は筐体20を備えており、この筐体20の内部に二酸化炭素濃縮ユニット10及び虫捕獲ユニット30が配置されている。図2には、筐体20の側面に設けられた出口22、23が示されている。出口22からは高濃度二酸化炭素含有ガス用放出管18が延びており、この高濃度二酸化炭素含有ガス用放出管18は、筐体20内の二酸化炭素濃縮部11の高濃度二酸化炭素含有ガス出口114a、114bに第1ポンプ13を介して(図1)接続された管である。出口22から延びる放出管18は、筐体20を囲むように環状に形成されている。放出管18には複数の放出孔18aが設けられており、この放出孔18aから高濃度二酸化炭素含有ガスGHを筐体20の周囲へ複数の異なる方向へと放出することができる。
FIG. 2 shows an example of the insect trapping apparatus 1 according to one embodiment of the present invention more specifically. The insect capturing apparatus 1 shown in FIG. 2 includes a housing 20, and the carbon dioxide concentration unit 10 and the insect capturing unit 30 are disposed inside the housing 20. In FIG. 2, outlets 22 and 23 provided on the side surface of the housing 20 are shown. A high-concentration carbon dioxide-containing gas discharge pipe 18 extends from the outlet 22, and the high-concentration carbon dioxide-containing gas discharge pipe 18 is connected to the high-concentration carbon dioxide-containing gas outlet of the carbon dioxide concentration unit 11 in the housing 20. 114a and 114b are pipes connected to the first pump 13 (FIG. 1). The discharge pipe 18 extending from the outlet 22 is formed in an annular shape so as to surround the housing 20. A plurality of discharge holes 18 a are provided in the discharge pipe 18, and the high-concentration carbon dioxide-containing gas GH can be discharged from the discharge holes 18 a around the housing 20 in a plurality of different directions.
また、出口23からは低濃度二酸化炭素含有ガス用放出管19が延びており、この低濃度二酸化炭素含有ガス用放出管19は、筐体20内の酸化炭素濃縮部11の低濃度二酸化炭素含有ガス出口115に誘引物質供給部40を介して(図1)接続され、誘引物質を含む低濃度二酸化炭素含有ガスGLを放出する管である。出口23から延びる放出管19は、筐体20上に環状に配置されている。放出管19には複数の放出孔19aが設けられており、この放出孔19aから、誘引物質を含む低濃度二酸化炭素含有ガスを筐体20外部へ放出することができる。
A discharge pipe 19 for low-concentration carbon dioxide-containing gas extends from the outlet 23, and this low-concentration carbon dioxide-containing gas discharge pipe 19 is provided with the low-concentration carbon dioxide-containing gas in the carbon oxide concentrating part 11 in the housing 20. It is a tube that is connected to the gas outlet 115 via the attracting substance supply unit 40 (FIG. 1) and discharges the low-concentration carbon dioxide-containing gas GL containing the attracting substance. The discharge pipe 19 extending from the outlet 23 is annularly arranged on the housing 20. A plurality of discharge holes 19 a are provided in the discharge pipe 19, and a low-concentration carbon dioxide-containing gas containing an attracting substance can be discharged from the discharge holes 19 a to the outside of the housing 20.
吸込口21は、筐体20の上面に設けられており、この吸込口21を覆うように放熱板25が設けられている。放熱板25によって、虫捕獲装置1で発生した熱を外部に効率よく逃がすことができる。また、放熱板25は、虫捕獲装置1の周囲に温度勾配を作り出すことができるので、温度勾配を感知して引き寄せられる虫の捕獲に有用である。
The suction port 21 is provided on the upper surface of the housing 20, and a heat radiating plate 25 is provided so as to cover the suction port 21. The heat generated by the insect trap 1 can be efficiently released to the outside by the heat radiating plate 25. Moreover, since the heat sink 25 can create a temperature gradient around the insect trapping apparatus 1, it is useful for capturing insects that are attracted by sensing the temperature gradient.
図3に、図2の虫捕獲装置1の筐体20の上面及び側面を、虫捕獲ユニット30とともに取り外した状態を示す。図3では、各要素は模式的に示されており、電気的な接続等の詳細は省略する。図3に示すように、筐体20の底部には、二酸化炭素濃縮部11と、これに前置された第1ポンプ12と、後置された第2ポンプ13とを有する二酸化炭素濃縮ユニット10が配置されている。また、第1ポンプ12及び第2ポンプ13、並びに必要に応じて虫捕獲ユニット30の計数部31(後述)を作動させるための電源部14及び制御部15が設けられていてよく、必要に応じて変圧器等が設けられていてもよい。虫捕獲装置1の電源としては、商用電源、一次電池、二次電池等を用いることができる。また、再生可能エネルギーを利用した発電装置(太陽光発電機等)を用いた場合には、商用電源がない場所でも虫捕獲装置1を長期的に利用することができる。
FIG. 3 shows a state in which the upper surface and the side surface of the case 20 of the insect capturing apparatus 1 of FIG. In FIG. 3, each element is schematically shown, and details such as electrical connection are omitted. As shown in FIG. 3, a carbon dioxide concentrating unit 10 having a carbon dioxide concentrating unit 11, a first pump 12 disposed in front of the carbon dioxide concentrating unit 11, and a second pump 13 disposed in the rear thereof. Is arranged. Moreover, the power supply part 14 and the control part 15 for operating the 1st pump 12 and the 2nd pump 13, and the counting part 31 (after-mentioned) of the insect capture unit 30 as needed may be provided, and if needed A transformer or the like may be provided. As a power source for the insect trapping apparatus 1, a commercial power source, a primary battery, a secondary battery, or the like can be used. In addition, when a power generation device (solar power generator or the like) using renewable energy is used, the insect trapping device 1 can be used for a long time even in a place where there is no commercial power source.
図4Aに、虫捕獲ユニット30の一例を示す。図4Aに示す虫捕獲ユニット30は、虫を数えるための計数部31と、虫を捕獲するための捕獲部32とが重ねられた構成を有している。また、捕獲部32の下に補助捕獲部33が設けられ、さらに、補助捕獲部33の下には底部34が設けられている。
FIG. 4A shows an example of the insect capturing unit 30. The insect capturing unit 30 shown in FIG. 4A has a configuration in which a counting unit 31 for counting insects and a capturing unit 32 for capturing insects are overlapped. An auxiliary capturing part 33 is provided below the capturing part 32, and a bottom part 34 is provided below the auxiliary capturing part 33.
図4Bに、図4Aの虫捕獲ユニット30の分解図を示す。図4Bに示すように、虫捕獲ユニット30は複数の部分から構成されていてよい。計数部31は、中央部に気体を透過できる通路を有するホルダ31aを備えている。この通路の両側面にはスリットが形成されており、このスリットに嵌めこむように計数センサ35を設けることができる。計数センサ35は、投光部と受光部とによって虫を検出できるエリア検出型センサ等であってよい。
FIG. 4B shows an exploded view of the insect capturing unit 30 in FIG. 4A. As shown in FIG. 4B, the insect capturing unit 30 may be composed of a plurality of parts. The counting unit 31 includes a holder 31a having a passage through which gas can permeate at the center. Slits are formed on both side surfaces of the passage, and the counting sensor 35 can be provided so as to fit into the slits. The counting sensor 35 may be an area detection type sensor or the like that can detect insects with a light projecting unit and a light receiving unit.
また、捕獲部32も、ホルダ31aと同様のホルダ32aを備えている。このホルダ32aのスリットには、虫を粘着して捕獲するための粘着糸38が複数設けられたインサート32bを差し込むことができるようになっている。粘着糸38は、例えば、綿、麻、毛などの天然繊維、アクリル、ポリエステル、ナイロン、レーヨン、アセテート等の化学繊維等に、粘着性の組成物を塗布してなる糸であってよく、捕獲対象の虫の、大きさに応じた間隔で配置することができる。粘着糸38は、互いに平行に配置してもよいし交差するように配置してもよい。インサート32bに粘着性の要素が配置されていることで、虫を確実に捕獲することができる。また、虫を潰さないで捕獲して回収できるという観点からは、インサート32bが、粘着性を有さない要素(粘着性のない網やフィルタ等)を備えていると好ましい。
Also, the capture unit 32 includes a holder 32a similar to the holder 31a. An insert 32b provided with a plurality of adhesive threads 38 for adhering and capturing insects can be inserted into the slits of the holder 32a. The adhesive yarn 38 may be, for example, a yarn obtained by applying an adhesive composition to natural fibers such as cotton, hemp, and hair, or chemical fibers such as acrylic, polyester, nylon, rayon, and acetate. It can arrange | position with the space | interval according to the magnitude | size of the target insect. The adhesive yarns 38 may be arranged in parallel to each other or may be arranged so as to cross each other. Since the sticky element is arranged in the insert 32b, it is possible to reliably catch the insect. Further, from the viewpoint that the insect 32 can be captured and recovered without crushing, it is preferable that the insert 32b is provided with a non-adhesive element (such as a non-adhesive net or filter).
図4Bに示すように、捕獲部32の下側には、補助捕獲部33が配置されている。補助捕獲部33は、捕獲部32で捕獲できなかった虫を捕獲する他、虫以外の小さいゴミ等を捕獲することができる。捕獲部32も、ホルダ31a、32aと同様のホルダ33aを備えており、そのスリットに、フィルタが配置されたインサート33bを差し込むことができるようになっている。インサート33bに配置されるフィルタは、気体を透過させることができ、微小の固体を収集することができるものであれば、特に限定されない。このフィルタは、通気性があり表面に粘着性のあるシートであると好ましい。なお、捕獲部32にて虫を確実に捕獲し、且つゴミ等も除去できるのであれば、補助捕獲部33は省くことが出来る。
As shown in FIG. 4B, an auxiliary capture unit 33 is disposed below the capture unit 32. The auxiliary capture unit 33 can capture insects that could not be captured by the capture unit 32 and can capture small garbage other than insects. The capture unit 32 also includes a holder 33a similar to the holders 31a and 32a, and an insert 33b in which a filter is arranged can be inserted into the slit. The filter arranged in the insert 33b is not particularly limited as long as it can transmit gas and collect minute solids. This filter is preferably a sheet having air permeability and adhesiveness on the surface. Note that the auxiliary capture unit 33 can be omitted if the capture unit 32 can reliably capture insects and remove dust and the like.
なお、上記の図2~図4Bに示した虫捕獲装置1の構成は一例にすぎず、特許請求の範囲を逸脱しない範囲で様々な変形、変更を加えることができる。
It should be noted that the configuration of the insect trapping apparatus 1 shown in FIGS. 2 to 4B is merely an example, and various modifications and changes can be made without departing from the scope of the claims.
本形態の虫捕獲装置1は、二酸化炭素に対して正の走性を有する虫の捕獲に利用することができる。本形態の装置は、飛翔性昆虫、特に蚊、例えばヤブカ類(ヒトスジシマカ、ネッタイシマカ等)、イエカ類(アカイエカ等)、ハマダラカ類、ハエ、例えばショウジョウバエ類、アブ、ヌカカ、ブユ、南京虫等の吸血昆虫、ツツガムシ、マダニなどのダニ類等に好適に利用できる。
The insect capturing apparatus 1 of this embodiment can be used for capturing insects that have a positive chemotaxis against carbon dioxide. The device of this embodiment is a blood-sucking insect such as a flying insect, especially a mosquito, such as a mosquito (eg, Aedes albopictus, Aedes aegypti), mosquito (eg, mosquito), anopheles, flies, eg, Drosophila , Mites such as tsutsugamushi, ticks, and the like.
また、本発明の一形態は、上述の虫捕獲装置1を用いた虫捕獲方法であってよい。より具体的には、本形態は、空気中の二酸化炭素を濃縮する二酸化炭素濃縮工程を含む、虫捕獲方法であってよい。この虫捕獲方法によれば、二酸化炭素発生用の消費材料を補給する必要がないため、手間及びコストを省くことができる。また、二酸化炭素を新たに発生する装置ではないので、装置周囲の二酸化炭素濃度が上昇し続けることはなく、室内でも安全に使用することができる。
Moreover, one form of the present invention may be an insect capturing method using the insect capturing apparatus 1 described above. More specifically, this form may be an insect trapping method including a carbon dioxide concentration step for concentrating carbon dioxide in the air. According to this insect capturing method, since it is not necessary to replenish the consumption material for generating carbon dioxide, labor and cost can be saved. Further, since it is not a device that newly generates carbon dioxide, the concentration of carbon dioxide around the device does not continue to rise, and it can be used safely indoors.
(実施例1)
図2及び図3に示したような構成を有する虫捕獲装置を準備した。二酸化炭素濃縮部11としては、内径が170μm、外径が250μm、有効長さが200mmのシリコーン製中空糸膜を38,500本束ねた構成(有効膜面積:0.54m2)を収容した中空糸膜モジュール(商品名:NAGASEP M40-05S、永柳工業社製)を用いた。 (Example 1)
An insect trapping device having a configuration as shown in FIGS. 2 and 3 was prepared. The carbondioxide concentrating unit 11 is a hollow housing a configuration in which 38,500 silicone hollow fiber membranes having an inner diameter of 170 μm, an outer diameter of 250 μm, and an effective length of 200 mm are bundled (effective membrane area: 0.54 m 2 ). A thread membrane module (trade name: NAGASEP M40-05S, manufactured by Nagayanagi Kogyo Co., Ltd.) was used.
図2及び図3に示したような構成を有する虫捕獲装置を準備した。二酸化炭素濃縮部11としては、内径が170μm、外径が250μm、有効長さが200mmのシリコーン製中空糸膜を38,500本束ねた構成(有効膜面積:0.54m2)を収容した中空糸膜モジュール(商品名:NAGASEP M40-05S、永柳工業社製)を用いた。 (Example 1)
An insect trapping device having a configuration as shown in FIGS. 2 and 3 was prepared. The carbon
また、筐体の吸込口に、図4A及び図4Bで説明したものと同様の虫捕獲ユニットを配置した。虫捕獲ユニットに含まれる捕獲部には、80mm×80mmのガス通路に、粘着糸(ナイロン製)を、0.8mm間隔で並置したインサートを用いた。
In addition, an insect capturing unit similar to that described with reference to FIGS. 4A and 4B was disposed at the suction port of the housing. For the trapping part included in the insect trapping unit, an insert in which adhesive yarn (made of nylon) was juxtaposed at an interval of 0.8 mm in an 80 mm × 80 mm gas passage was used.
図4A及び図4Bに示した実施例1の虫捕獲装置の筐体表面の色は黒色であった。
The color of the housing surface of the insect trapping apparatus of Example 1 shown in FIGS. 4A and 4B was black.
(比較例1)
比較例の装置として、市販の蚊捕獲装置を準備した。当該装置は、送風機によって吸込口から吸気された空気が濾過フィルタを通って排気されるようになっており、濾過フィルタの吸込口側には粘着シートが設けられている。また、筐体の外観は黒色である。 (Comparative Example 1)
A commercially available mosquito trap was prepared as a comparative device. In the apparatus, air sucked from a suction port by a blower is exhausted through a filtration filter, and an adhesive sheet is provided on the suction port side of the filtration filter. Moreover, the external appearance of a housing | casing is black.
比較例の装置として、市販の蚊捕獲装置を準備した。当該装置は、送風機によって吸込口から吸気された空気が濾過フィルタを通って排気されるようになっており、濾過フィルタの吸込口側には粘着シートが設けられている。また、筐体の外観は黒色である。 (Comparative Example 1)
A commercially available mosquito trap was prepared as a comparative device. In the apparatus, air sucked from a suction port by a blower is exhausted through a filtration filter, and an adhesive sheet is provided on the suction port side of the filtration filter. Moreover, the external appearance of a housing | casing is black.
<虫捕獲試験>
実施例1及び比較例1の装置を、密閉された無人の試験室(6畳相当、床面積10.2m2(2.9m×3.5m)、高さ2.2m)内に設置した。両装置は、床上に壁面から30cm離して配置した。また、室内の隅の2箇所に砂糖水を入れた容器を配置した(図5)。 <Insect capture test>
The apparatuses of Example 1 and Comparative Example 1 were installed in a sealed unmanned test chamber (equivalent to 6 tatami mats, floor area 10.2 m 2 (2.9 m × 3.5 m), height 2.2 m). Both devices were placed 30 cm away from the wall on the floor. Moreover, the container which put sugar water was arrange | positioned in two places of the corner of a room (FIG. 5).
実施例1及び比較例1の装置を、密閉された無人の試験室(6畳相当、床面積10.2m2(2.9m×3.5m)、高さ2.2m)内に設置した。両装置は、床上に壁面から30cm離して配置した。また、室内の隅の2箇所に砂糖水を入れた容器を配置した(図5)。 <Insect capture test>
The apparatuses of Example 1 and Comparative Example 1 were installed in a sealed unmanned test chamber (equivalent to 6 tatami mats, floor area 10.2 m 2 (2.9 m × 3.5 m), height 2.2 m). Both devices were placed 30 cm away from the wall on the floor. Moreover, the container which put sugar water was arrange | positioned in two places of the corner of a room (FIG. 5).
試験室の中央より、100匹のヒトスジシマカ(Aedes albopictus)(羽化後日数11~21日)の雌を放出した。そして、試験開始から3時間、室内の天井に設置された室内灯を点灯して室内を明るく保った。その後、消灯して、8時間室内が暗い状態を保った。さらに、再び室内灯を点灯して、11時間にわたり室内を明るく保った。このように計22時間の試験時間後、虫捕捉装置内に捕捉された虫数を計測した。
From the center of the test room, 100 Aedes albopictus (11 to 21 days after emergence) females were released. Then, for 3 hours from the start of the test, an indoor lamp installed on the ceiling of the room was turned on to keep the room bright. Thereafter, the light was turned off and the room was kept dark for 8 hours. Furthermore, the room light was turned on again to keep the room bright for 11 hours. Thus, after the test time of 22 hours in total, the number of insects trapped in the insect trapping device was measured.
試験中は、実施例1の装置は、吸込口での風量が1m3/minとなるように作動させた。また、高濃度二酸化炭素含有ガス放出孔から放出されるガス中の二酸化炭素濃度は1400ppmであった。比較例1の装置は、「おやすみモード」(風量1m3/min)で作動させた。なお、二酸化炭素濃度はガス検知管にて測定した。
During the test, the apparatus of Example 1 was operated so that the air volume at the suction port was 1 m 3 / min. The carbon dioxide concentration in the gas released from the high concentration carbon dioxide-containing gas discharge hole was 1400 ppm. The apparatus of Comparative Example 1 was operated in “sleep mode” (air flow 1 m 3 / min). The carbon dioxide concentration was measured with a gas detector tube.
同様の試験をさらに2回繰り返し、合計3回の試験を行った。放出されたヒトスジシマカは、2回目の試験では95匹(羽化後日数12~22日)、3回目の試験では93匹(羽化後日数13~23日)であった。
The same test was repeated two more times for a total of three tests. The number of released human mosquitoes was 95 in the second test (12-22 days after emergence) and 93 (13-23 days after emergence) in the third test.
なお、上述のように比較例1の装置には紫外線光源が設けられているが、ヒトスジシマカは紫外線に対する走性を有さないことが知られている。そのため、比較例1の装置の紫外線光源は本試験に影響はないと考えられる。
In addition, although the ultraviolet light source is provided in the apparatus of the comparative example 1 as mentioned above, it is known that Aedes albopictus does not have the chemotaxis with respect to an ultraviolet-ray. Therefore, it is considered that the ultraviolet light source of the apparatus of Comparative Example 1 has no influence on this test.
<虫の計数>
試験後、実施例1の装置については、捕獲部を取り出し、フィルタ(粘着糸)に付着した虫の数を目視にて数えた。また、フィルタに付着していないが装置内に入り込んだ虫の数も数えた。比較例1の装置については、濾過フィルタを備えた部分を外して、粘着シートに付着した虫の数を目視にて数えた。また、粘着シートに付着していないが装置内に入り込んだ虫の数も数えた。また、いずれの装置にも捕獲されず、室内に残った虫数も数えた。 <Insect counting>
About the apparatus of Example 1 after the test, the capture part was taken out, and the number of insects attached to the filter (adhesive yarn) was visually counted. The number of insects that did not adhere to the filter but entered the device was also counted. About the apparatus of the comparative example 1, the part provided with the filtration filter was removed and the number of the insects adhering to the adhesive sheet was counted visually. The number of insects that did not adhere to the adhesive sheet but entered the device was also counted. Also, the number of insects that were not captured by any device and remained in the room was counted.
試験後、実施例1の装置については、捕獲部を取り出し、フィルタ(粘着糸)に付着した虫の数を目視にて数えた。また、フィルタに付着していないが装置内に入り込んだ虫の数も数えた。比較例1の装置については、濾過フィルタを備えた部分を外して、粘着シートに付着した虫の数を目視にて数えた。また、粘着シートに付着していないが装置内に入り込んだ虫の数も数えた。また、いずれの装置にも捕獲されず、室内に残った虫数も数えた。 <Insect counting>
About the apparatus of Example 1 after the test, the capture part was taken out, and the number of insects attached to the filter (adhesive yarn) was visually counted. The number of insects that did not adhere to the filter but entered the device was also counted. About the apparatus of the comparative example 1, the part provided with the filtration filter was removed and the number of the insects adhering to the adhesive sheet was counted visually. The number of insects that did not adhere to the adhesive sheet but entered the device was also counted. Also, the number of insects that were not captured by any device and remained in the room was counted.
表1に結果を示す。なお、捕獲率(%)は、供試数に対する、3回の試験の捕獲数の合計とした。
Table 1 shows the results. The capture rate (%) was the total of the number of captures of three tests with respect to the number of samples.
表1より、二酸化炭素を用いて虫を誘引する実施例1の虫捕獲装置が、比較例1の虫捕獲装置より優れた虫捕獲率を示すことが確認できた。
From Table 1, it was confirmed that the insect trapping apparatus of Example 1 that attracts insects using carbon dioxide exhibits a better insect capture rate than the insect trapping apparatus of Comparative Example 1.
本出願は、2018年2月1日に日本国特許庁に出願された特願2018-016383号に基づく優先権を主張するものであり、その全内容は参照をもってここに援用される。
This application claims priority based on Japanese Patent Application No. 2018-016383 filed with the Japan Patent Office on February 1, 2018, the entire contents of which are incorporated herein by reference.
1 虫捕獲装置
10 二酸化炭素濃縮ユニット
11 二酸化炭素濃縮部(中空糸膜モジュール)
12 第1ポンプ
13 第2ポンプ
14 電源部
15 トランス
16 制御部
18 高濃度CO2含有ガス用放出管
18a 高濃度CO2含有ガス放出孔
19 低濃度CO2含有ガス用放出管
19a 低濃度CO2含有ガス用放出孔
20 筐体
21 吸込口
22 出口(高濃度CO2含有ガス出口)
23 出口(低濃度CO2含有ガス出口)
24 出口
25 放熱板
28 ファン
30 虫捕獲ユニット
31 計数部
31a ホルダ
32 捕獲部
32a ホルダ
32b インサート
33 補助捕獲部
33a ホルダ
33b インサート
34 底部
35 計数センサ
38 粘着糸
39 通気性膜
40 誘引物質供給部
113 空気入口
114a、114b 高濃度CO2含有ガス出口
115 低濃度CO2含有ガス出口
GH 高濃度CO2含有ガス
GL 低濃度CO2含有ガス DESCRIPTION OFSYMBOLS 1 Insect capture apparatus 10 Carbon dioxide concentration unit 11 Carbon dioxide concentration part (hollow fiber membrane module)
12First Pump 13 Second Pump 14 Power Supply Unit 15 Transformer 16 Control Unit 18 High Concentration CO 2 Containing Gas Release Pipe 18a High Concentration CO 2 Containing Gas Release Hole 19 Low Concentration CO 2 Containing Gas Release Pipe 19a Low Concentration CO 2 Contained gas discharge hole 20 Housing 21 Suction port 22 Outlet (high concentration CO 2 containing gas outlet)
23 Exit (Low concentration CO 2 containing gas exit)
24outlet 25 heat radiating plate 28 fan 30 insect capturing unit 31 counting unit 31a holder 32 capturing unit 32a holder 32b insert 33 auxiliary capturing unit 33a holder 33b insert 34 bottom 35 counting sensor 38 adhesive yarn 39 breathable membrane 40 attracting substance supply unit 113 air Inlet 114a, 114b High concentration CO 2 containing gas outlet 115 Low concentration CO 2 containing gas outlet GH High concentration CO 2 containing gas GL Low concentration CO 2 containing gas
10 二酸化炭素濃縮ユニット
11 二酸化炭素濃縮部(中空糸膜モジュール)
12 第1ポンプ
13 第2ポンプ
14 電源部
15 トランス
16 制御部
18 高濃度CO2含有ガス用放出管
18a 高濃度CO2含有ガス放出孔
19 低濃度CO2含有ガス用放出管
19a 低濃度CO2含有ガス用放出孔
20 筐体
21 吸込口
22 出口(高濃度CO2含有ガス出口)
23 出口(低濃度CO2含有ガス出口)
24 出口
25 放熱板
28 ファン
30 虫捕獲ユニット
31 計数部
31a ホルダ
32 捕獲部
32a ホルダ
32b インサート
33 補助捕獲部
33a ホルダ
33b インサート
34 底部
35 計数センサ
38 粘着糸
39 通気性膜
40 誘引物質供給部
113 空気入口
114a、114b 高濃度CO2含有ガス出口
115 低濃度CO2含有ガス出口
GH 高濃度CO2含有ガス
GL 低濃度CO2含有ガス DESCRIPTION OF
12
23 Exit (Low concentration CO 2 containing gas exit)
24
Claims (10)
- 空気中の二酸化炭素を濃縮する二酸化炭素濃縮ユニットを備えた、虫捕獲装置。 An insect trap equipped with a carbon dioxide concentration unit that concentrates carbon dioxide in the air.
- 前記二酸化炭素濃縮ユニットは、空気を取り入れ、二酸化炭素の濃度が1000ppm以上である前記空気を放出する、請求項1に記載の虫捕獲装置。 The insect trapping apparatus according to claim 1, wherein the carbon dioxide concentration unit takes in air and releases the air having a carbon dioxide concentration of 1000 ppm or more.
- 前記二酸化炭素濃縮ユニットに隣接した虫捕獲ユニットを備えた、請求項1に記載の虫捕獲装置。 The insect trapping device according to claim 1, comprising an insect trapping unit adjacent to the carbon dioxide concentration unit.
- 前記二酸化炭素濃縮ユニットを収容し、吸込口を有する筐体をさらに備え、
前記吸込口に、前記虫捕獲ユニットが配置されている、請求項3に記載の虫捕獲装置。 Containing the carbon dioxide concentration unit, further comprising a housing having a suction port;
The insect trapping device according to claim 3, wherein the insect trapping unit is disposed in the suction port. - 前記筐体の外観色が黒色又は茶色である、請求項4に記載の虫捕獲装置。 The insect trapping device according to claim 4, wherein the appearance color of the housing is black or brown.
- 前記二酸化炭素濃縮ユニットは、
二酸化炭素濃縮部と、
空気を前記二酸化炭素濃縮部に送り込む第1ポンプと、
前記二酸化炭素濃縮部から、二酸化炭素の濃度が高められた気体を引き出す第2ポンプとをさらに有する、請求項1に記載の虫捕獲装置。 The carbon dioxide enrichment unit is
A carbon dioxide enrichment section;
A first pump for sending air to the carbon dioxide concentrating section;
The insect trapping device according to claim 1, further comprising a second pump for drawing a gas having an increased carbon dioxide concentration from the carbon dioxide concentrating unit. - 前記二酸化炭素濃縮部は分離膜を有する、請求項6に記載の虫捕獲装置。 The insect trapping apparatus according to claim 6, wherein the carbon dioxide concentrating part has a separation membrane.
- 前記分離膜は、シリコーンを含む、請求項7に記載の虫捕獲装置。 The insect trapping device according to claim 7, wherein the separation membrane contains silicone.
- 虫誘引物質供給部をさらに備えた、請求項1に記載の虫捕獲装置。 The insect trapping device according to claim 1, further comprising an insect attracting substance supply unit.
- 空気中の二酸化炭素を濃縮する二酸化炭素濃縮工程を含む、虫捕獲方法。 An insect trapping method including a carbon dioxide concentration step for concentrating carbon dioxide in the air.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018-016383 | 2018-02-01 | ||
JP2018016383A JP2019129786A (en) | 2018-02-01 | 2018-02-01 | Insect trapping device and insect trapping method |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019151072A1 true WO2019151072A1 (en) | 2019-08-08 |
Family
ID=67479027
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2019/002034 WO2019151072A1 (en) | 2018-02-01 | 2019-01-23 | Insect-catching device and insect-catching method |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP2019129786A (en) |
WO (1) | WO2019151072A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11330812B2 (en) * | 2019-08-16 | 2022-05-17 | Foshan Greenyellow Electric Technology Co., Ltd. | Mosquito trapping device |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61280217A (en) * | 1985-06-01 | 1986-12-10 | 株式会社トクヤマ | Greenhouse culture method |
JP2001333639A (en) * | 2000-05-25 | 2001-12-04 | Natl Inst Of Advanced Industrial Science & Technology Meti | Carbon dioxide fertilizing to plant using highly selectable separation membrane of carbon dioxide |
JP2006517800A (en) * | 2003-02-07 | 2006-08-03 | ザ・コールマン・カンパニー・インコーポレイテッド | Mosquito trapping device using cooled carbon dioxide |
US20090232861A1 (en) * | 2008-02-19 | 2009-09-17 | Wright Allen B | Extraction and sequestration of carbon dioxide |
US20160128314A1 (en) * | 2013-06-17 | 2016-05-12 | Hbm Distribution | Method for capturing mosquitoes by producing a carbon dioxide from the ambient air |
JP2017140045A (en) * | 2014-01-23 | 2017-08-17 | シャープ株式会社 | Blower |
-
2018
- 2018-02-01 JP JP2018016383A patent/JP2019129786A/en active Pending
-
2019
- 2019-01-23 WO PCT/JP2019/002034 patent/WO2019151072A1/en active Application Filing
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61280217A (en) * | 1985-06-01 | 1986-12-10 | 株式会社トクヤマ | Greenhouse culture method |
JP2001333639A (en) * | 2000-05-25 | 2001-12-04 | Natl Inst Of Advanced Industrial Science & Technology Meti | Carbon dioxide fertilizing to plant using highly selectable separation membrane of carbon dioxide |
JP2006517800A (en) * | 2003-02-07 | 2006-08-03 | ザ・コールマン・カンパニー・インコーポレイテッド | Mosquito trapping device using cooled carbon dioxide |
US20090232861A1 (en) * | 2008-02-19 | 2009-09-17 | Wright Allen B | Extraction and sequestration of carbon dioxide |
US20160128314A1 (en) * | 2013-06-17 | 2016-05-12 | Hbm Distribution | Method for capturing mosquitoes by producing a carbon dioxide from the ambient air |
JP2017140045A (en) * | 2014-01-23 | 2017-08-17 | シャープ株式会社 | Blower |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11330812B2 (en) * | 2019-08-16 | 2022-05-17 | Foshan Greenyellow Electric Technology Co., Ltd. | Mosquito trapping device |
Also Published As
Publication number | Publication date |
---|---|
JP2019129786A (en) | 2019-08-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5941932B2 (en) | Insect attracting trap | |
US20190150516A1 (en) | Low emissions electronic smoking device and emissions filtering device | |
TWI625097B (en) | Air supply device | |
TWI654023B (en) | Air supply device and insect catching method | |
BR112016025055B1 (en) | insect trap | |
BR112017014922B1 (en) | INSECT TRAP | |
KR102123794B1 (en) | Air purifier using moss plants | |
WO2018025426A1 (en) | Insect trap and air treatment device | |
US11330812B2 (en) | Mosquito trapping device | |
CN205040480U (en) | Pest trapping device with air purification function | |
JP4630245B2 (en) | Humidifier | |
WO2019151072A1 (en) | Insect-catching device and insect-catching method | |
US7658785B2 (en) | System with canopy and electrode for air cleaning | |
ES2649087T3 (en) | Procedure to capture mosquitoes producing carbon dioxide from ambient air | |
JP2019162051A (en) | Insect collection device and insect collection method | |
JP2006051016A (en) | Device for capturing insects | |
KR101276388B1 (en) | Push-fan and Pull-fan Type Air Humidification and Cleaning Device | |
JP2004069290A (en) | Desktop air cleaner | |
CN109114704B (en) | Indoor air purifying device | |
JP2009250463A (en) | Air cleaner | |
KR20150125219A (en) | Electric fan for air cleaning and insect capturing | |
WO2020021892A1 (en) | Insect trap | |
US20070157817A1 (en) | Air purifying device | |
KR20180060922A (en) | Insect trap | |
US20120199002A1 (en) | Filter with odor suppression layer |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19747814 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 19747814 Country of ref document: EP Kind code of ref document: A1 |