WO2019150597A1 - Electric power converting device - Google Patents

Electric power converting device Download PDF

Info

Publication number
WO2019150597A1
WO2019150597A1 PCT/JP2018/025261 JP2018025261W WO2019150597A1 WO 2019150597 A1 WO2019150597 A1 WO 2019150597A1 JP 2018025261 W JP2018025261 W JP 2018025261W WO 2019150597 A1 WO2019150597 A1 WO 2019150597A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage
power conversion
circuit
power
conversion circuit
Prior art date
Application number
PCT/JP2018/025261
Other languages
French (fr)
Japanese (ja)
Inventor
大斗 水谷
岩蕗 寛康
友一 坂下
優介 檜垣
貴昭 ▲高▼原
卓哉 藪本
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2018556506A priority Critical patent/JP6497489B1/en
Publication of WO2019150597A1 publication Critical patent/WO2019150597A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/10Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode

Definitions

  • the present invention relates to a power conversion device having a power supply function by a wired method (contact power supply method) and a power supply function by a wireless method (contactless power supply method).
  • a power conversion device using wireless power feeding has been developed because of its usefulness, and application to a charger used in, for example, an electric vehicle is being studied.
  • a power conversion device having both a power supply function using wired and a power supply function using wireless has been studied (see, for example, Patent Document 1).
  • an AC supply source, a main EMI (Electro-Magnetic Interference) filter and a rectifier, and a PFC (Power-Factor-Correction) circuit are connected to the vehicle-side wired path.
  • the vehicle side wireless path consisting of vehicle pad, vehicle tuning, vehicle pad decoupling rectifier, and output filter is coupled with in-vehicle bulk capacitance and charges the battery via an isolated DC-DC converter It was the composition to do.
  • the present invention has been made in order to solve the above-described problems.
  • a power converter having a power supply function using a wired (contact power supply method) and a power supply function using a wireless (non-contact power supply method) It is an object of the present invention to obtain a power conversion device that can supply power simultaneously without stopping any power supply function even when the power reception voltage on the contact power feeding method side is low.
  • a power converter has a first converter circuit, one end of which is connected to an AC power supply and converts an input voltage from the AC power supply to a DC voltage, and the DC voltage converted by the first converter circuit is converted to an AC voltage.
  • Inverter circuit to convert, first converter circuit and DC link capacitor connected to inverter circuit, insulation transformer that insulates voltage input from inverter circuit and supplies power to secondary side, AC voltage input from insulation transformer
  • a first power conversion circuit having a second converter circuit that converts to a DC voltage and outputs from the other end; and a second power conversion that is connected to a load at one end and controls a DC voltage or a DC current supplied to the load Magnetically coupled to a circuit and a non-contact power transmission / reception circuit, the power is received by a power transmission / reception coil that transmits and receives power in a non-contact manner.
  • a third power converter circuit having a third converter circuit for converting an AC voltage into a DC voltage, and one for integration, one end connected to the positive side of the DC bus for integration and the other side connected to the negative side of the DC bus for integration
  • a third power conversion circuit is connected to the integration DC bus.
  • the output unit on the contact power supply method side and the output unit on the contactless power supply method side are connected to the main circuit via the capacitor, the received voltage on the contactless power supply method side is low. However, it is possible to simultaneously supply power without stopping any of the power supply functions.
  • Embodiment 1 of this invention It is a block diagram of the power converter device shown in Embodiment 1 of this invention. It is an example of a structure of the 2nd power converter circuit shown in Embodiment 1 of this invention. It is an example of a structure of the 2nd power converter circuit shown in Embodiment 1 of this invention. It is a flowchart for switching the operation mode shown in Embodiment 1 of this invention. It is simple explanatory drawing of the electric power flow of the power converter device shown in Embodiment 1 of this invention. It is simple explanatory drawing of the electric power flow of the power converter device shown in Embodiment 1 of this invention. It is simple explanatory drawing of the electric power flow of the power converter device shown in Embodiment 1 of this invention. It is simple explanatory drawing of the electric power flow of the power converter device shown in Embodiment 1 of this invention.
  • Embodiment 1 of this invention It is a control block diagram of the power converter device shown in Embodiment 1 of this invention. It is a control block diagram of the power converter device shown in Embodiment 1 of this invention. It is a control block diagram of the power converter device shown in Embodiment 1 of this invention. It is a control block diagram of the power converter device shown in Embodiment 1 of this invention. It is a control block diagram of the power converter device shown in Embodiment 1 of this invention. It is a control block diagram of the power converter device shown in Embodiment 1 of this invention. It is a control block diagram of the power converter device shown in Embodiment 1 of this invention. It is a control block diagram of the power converter device shown in Embodiment 1 of this invention. It is a control block diagram of the power converter device shown in Embodiment 1 of this invention. It is a control block diagram of the power converter device shown in Embodiment 1 of this invention. It is a control block diagram of the power converter device shown in Embod
  • Embodiment 1 of this invention It is a control block diagram of the power converter device shown in Embodiment 1 of this invention. It is a control block diagram of the power converter device shown in Embodiment 1 of this invention. It is a control block diagram of the power converter device shown in Embodiment 1 of this invention. It is a control block diagram of the power converter device shown in Embodiment 1 of this invention. It is a control block diagram of the power converter device shown in Embodiment 1 of this invention. It is a control block diagram of the power converter device shown in Embodiment 1 of this invention. It is a control block diagram of the power converter device shown in Embodiment 1 of this invention. It is a control block diagram of the power converter device shown in Embodiment 1 of this invention. It is a control block diagram of the power converter device shown in Embodiment 1 of this invention. It is a control block diagram of the power converter device shown in Embodiment 1 of this invention. It is a control block diagram of the power converter device shown in Embod
  • Embodiment 1 of this invention It is a control block diagram of the power converter device shown in Embodiment 1 of this invention. It is a control block diagram of the power converter device shown in Embodiment 1 of this invention. It is a control block diagram of the power converter device shown in Embodiment 1 of this invention. It is a control block diagram of the power converter device shown in Embodiment 1 of this invention. It is a control block diagram of the power converter device shown in Embodiment 1 of this invention. It is a control block diagram of the power converter device shown in Embodiment 1 of this invention. It is a control block diagram of the power converter device shown in Embodiment 1 of this invention. It is a control block diagram of the power converter device shown in Embodiment 1 of this invention. It is a control block diagram of the power converter device shown in Embodiment 1 of this invention. It is a control block diagram of the power converter device shown in Embodiment 1 of this invention. It is a control block diagram of the power converter device shown in Embod
  • Embodiment 1 of this invention It is a control block diagram of the power converter device shown in Embodiment 2 of this invention. It is a control block diagram of the power converter device shown in Embodiment 2 of this invention. It is a control block diagram of the power converter device shown in Embodiment 2 of this invention. It is a control block diagram of the power converter device shown in Embodiment 2 of this invention. It is a control block diagram of the power converter device shown in Embodiment 2 of this invention. It is a control block diagram of the power converter device shown in Embodiment 2 of this invention. It is a control block diagram of the power converter device shown in Embodiment 2 of this invention. It is a control block diagram of the power converter device shown in Embodiment 2 of this invention.
  • FIG. 1 is a circuit diagram showing a configuration of a power supply system including a power conversion device according to Embodiment 1 of the present invention.
  • the same or similar components are denoted by the same reference numerals.
  • the power supply system shown in Embodiment 1 of the present invention includes an AC power supply 1, a power conversion device 2, a non-contact power transmission / reception circuit 3, and a load 4.
  • the AC power source 1 is connected to the power converter 2 and the non-contact power transmission / reception circuit 3, and the load 4 is connected to the power converter 2.
  • the power conversion device 2 is connected to the AC power supply 1 by a wired method (contact power supply method), while the non-contact power transmission / reception circuit 3 is a power conversion device 2 by a wireless method (non-contact power supply method). And is configured to be able to supply power in both directions.
  • This power supply system is applied to, for example, a power supply system centered on a charger of an electric vehicle.
  • the AC power supply 1 is a commercial AC system, a private generator, etc., and a load 4 is a high-voltage battery for vehicle travel.
  • a lead battery which is a power source for vehicle electrical components can be applied.
  • the AC power supply 1 and the load 4 are not limited to those described above.
  • the power conversion device 2 includes a first power conversion circuit 20 having one end connected to the AC power source 1, a DC capacitor for integration 21, a second power conversion circuit 22 having one end connected to the load 4, and a non-contact power transmission / reception circuit 3 includes a third power conversion circuit 23 that can be magnetically coupled to the control circuit 3 and a control circuit 25 that controls the first to third power conversion circuits.
  • the first power conversion circuit 20 and the second power conversion circuit 22 are connected via an integration DC bus 24, and the integration DC capacitor 21 and the third power conversion circuit 23 are also integrated DC bus. 24.
  • the direction in which power is supplied from the AC power source 1 or the non-contact power transmission / reception circuit 3 to the load 4 is referred to as the forward direction, and the direction in which power is supplied from the load side to the AC power source 1 or the non-contact power transmission / reception circuit 3 side is reversed. It shall be called a direction.
  • connection position of the third power conversion circuit 23 and the integration DC capacitor 21 with the integration DC bus 24 is not limited to that shown in FIG. That is, in the power conversion device 2 shown in FIG. 1, the output terminal of the third power conversion circuit 23 is connected to the AC power supply 1 side from the connection point between the integration DC capacitor 21 and the integration DC bus 24. The output terminal of the third power conversion circuit 23 may be connected to the load 4 side.
  • the first power conversion circuit 20 includes a first converter circuit 201, a DC link capacitor 202, an inverter circuit 203, an insulating transformer 204, and a second converter circuit 205.
  • the first power conversion circuit 20 has one end connected to the AC power source 1 and the other end connected to the second power conversion circuit 22 via the integration DC bus 24, and receives an input voltage input from the AC power source 1. The power is converted into a predetermined DC voltage and output to the integration DC bus 24.
  • the first power conversion circuit 20 is physically connected to the AC power supply 1 by a cable, a connector, or the like, and power is supplied to the AC power supply 1 by a wired method (contact power supply method).
  • the first converter circuit 201 includes switching elements 201a to 201d and AC reactors 201e and 201f, and the switching elements 201a to 201d are connected in a full bridge type.
  • One end of the AC reactor 201e is connected to the AC power source 1, and the other end is connected to a connection point between the switching element 201a and the switching element 201b.
  • One end of the AC reactor 201f is connected to the AC power source 1, and the other end is connected to a connection point between the switching element 201c and the switching element 201d.
  • the first converter circuit 201 controls the duty ratios (ON time) of the switching elements 201a to 201d so that the AC input current i ac follows the target sine wave current i ac * based on a command from the control circuit 25. It has the function to do. Further, based on a command from the control circuit 25, a function of controlling the duty ratios (ON time) of the switching elements 201a to 201d so that the DC voltage V link of the DC link capacitor 202 follows the target DC voltage V link *. Have In addition to controlling the duty ratio of the switching element, the phase shift amount and the switching frequency may be controlled.
  • the AC reactors 201e and 201f are connected to the AC bipolar side, respectively, but may be connected to only one side. In other words, only one of AC reactors 201e and 201f may be used.
  • the switching elements 201a to 201d are not limited to IGBT (Insulated Gate Bipolar Transistor) or MOSFET (Metal Oxide Semiconductor Semiconductor Field Effect Transistor), but also SiC (Silicon Carbon) -MOSFET, GaN (Gallium Nitride) -FET (Field Effect). Transistor) or GaN-HEMT (High-Electron-Mobility-Transistor) may be used.
  • the DC link capacitor 202 is provided between the first converter circuit 201 and the inverter circuit 203. One end of the DC link capacitor 202 is connected to the positive side of the DC bus connecting the first converter circuit 201 and the inverter circuit 203, and the other end is connected to the negative side of the DC bus. Yes.
  • the inverter circuit 203 includes switching elements 203a to 203d, and the switching elements 203a to 203d are configured as a full bridge type. Further, the DC side terminal of the inverter circuit 203 is connected to the first converter circuit 201 and the DC link capacitor 202 by a DC bus, and the AC side terminal is connected to the insulating transformer 204. That is, the connection point between the switching element 203a and the switching element 203b connected in series is connected to the first end of the isolation transformer 204, and the connection point of the switching element 203c and the switching element 203d connected in series is connected to the isolation transformer 204. Connected to the second end.
  • the insulating transformer 204 includes two windings that are magnetically coupled to each other, and a winding connected to the first end and the second end is referred to as a primary side winding. The winding connected to the third end and the fourth end is referred to as a secondary winding.
  • the second converter circuit 205 includes switching elements 205a to 205d configured as a full bridge type and a first DC capacitor 205e.
  • a connection point between the switching element 205a and the switching element 205b connected in series is connected to the third end of the isolation transformer 204, and a connection point between the switching element 205c and the switching element 205d connected in series is a fourth point of the isolation transformer 204. Connected to the end.
  • the inverter circuit 203, the insulating transformer 204, and the second converter circuit 205 may be collectively referred to as an insulating converter circuit.
  • the isolated converter circuit Based on a command from the control circuit 25, the isolated converter circuit causes the switching elements 203a to 203d and the switching elements 205a to 205d to follow the DC voltage V link of the DC link capacitor 202 to the target DC voltage V link *. It has a function of controlling the duty ratio (ON time).
  • the isolated converter circuit based on a command from the control circuit 25, switches the switching elements 203a to 203d and the switching element 205a so that the DC voltage V int of the integrating DC capacitor 21 follows the target DC voltage V int *. It has a function of controlling a duty ratio (ON time) of .about.205d.
  • the phase shift amount and the switching frequency may be controlled.
  • a low-loss soft switching operation is possible by connecting an inductor or a capacitor in series or in parallel to the primary side or secondary side winding of the isolated converter circuit of FIG.
  • the inductor may be externally attached, or the leakage inductance or exciting inductance of the insulating transformer 204 may be used.
  • the switching elements 203a to 203d and the switching elements 205a to 205d are not limited to IGBTs and MOSFETs, and SiC-MOSFETs, GaN-FETs, and GaN-HEMTs may be used.
  • the power conversion device uses an isolated converter circuit for the first power conversion circuit 20, compared with the case where a non-insulated converter circuit that does not include an insulation transformer is used, Reliability can be increased. That is, while the first power conversion circuit 20, the second power conversion circuit 22, and the third power conversion circuit 23 operate simultaneously to supply power to the load, the second converter circuit 205 Even if any of the third converter circuit 230 and the second power conversion circuit 22 fails, the power conversion apparatus is provided with the insulating transformer 204 of the first power conversion circuit 20 and the third power conversion circuit 23. Since the AC input side and the load side are electrically insulated by the non-contact power transmission / reception coil 231, the AC input side is not affected.
  • the AC input side and the load side are electrically insulated by the insulating transformer 204 and the non-contact power transmission / reception coil 231. Therefore, the possibility of battery failure can be reduced.
  • the second power conversion circuit 22 is connected to the first power conversion circuit 20, the third power conversion circuit 23, and the integration DC capacitor 21 by the positive and negative electrodes of the integration DC bus 24.
  • the second power conversion circuit 22 includes switching elements 220a to 220b, a DC reactor 220c, and a DC output capacitor 220d, and has a step-down chopper configuration.
  • the switching element 220a has one end connected to the positive side of the integration DC bus and the other end connected to the DC reactor 220c.
  • the switching element 220b has one end connected to a connection point between the switching element 220a and the DC reactor 220c, and the other end connected to the negative electrode side of the integration DC bus.
  • the DC output capacitor 220d has one end connected between the DC reactor 220c and the output terminal, and the other end connected to the negative electrode side of the integration DC bus.
  • the second power conversion circuit 22 sets the duty ratios of the switching elements 220a to 220b so that the DC voltage V int of the integrating DC capacitor 21 follows the target DC voltage V int *. On-time).
  • the control circuit 25 controls the duty ratio (ON time) of the switching elements 220a to 220b so that the DC output current Iout follows the target output current Iout *.
  • the phase shift amount and the switching frequency may be controlled.
  • the switching elements 220a to 220b are not limited to IGBTs and MOSFETs, but may be SiC-MOSFETs, GaN-FETs, or GaN-HEMTs.
  • the second power conversion circuit 22 shown in FIG. 1 has a step-down chopper configuration, it may have a step-up chopper configuration, a step-up / step-down chopper configuration, or an isolated converter configuration.
  • the configuration of the second power conversion circuit 22 is not limited to the configuration of FIG. 1 alone, and a multi-layer interleaved configuration in which a plurality of legs and reactors composed of two switching elements are connected as shown in FIG. Therefore, a simple multi-parallel configuration may be used. Multi-phase interleaved configuration reduces the amount of current flowing into each switching element and DC reactor, reducing conduction loss and reducing the current ripple on the output capacitor, extending the life of the capacitor. And downsizing can be realized.
  • the third power conversion circuit 23 includes a third converter circuit 230, a second DC capacitor 232, and a non-contact power transmission / reception coil 231.
  • the third converter circuit 230 includes switching elements 230a to 230d configured in a full bridge type. A connection point where the switching element 230a and the switching element 230b are connected in series is connected to a first end of the non-contact power transmission and reception coil 231, and a connection point where the switching element 230c and the switching element 230d are connected in series. It is connected to the second end of the non-contact power transmission / reception coil 231.
  • the non-contact power transmission / reception coil 231 receives power in a non-contact manner by being magnetically coupled to a non-contact power transmission / reception circuit.
  • the third power conversion circuit 23 uses the control circuit 25 to control the duty ratio (on time) of the switching elements 230a to 230d instead of the isolated converter circuit or the second power conversion circuit.
  • 21 has a function of causing the DC voltage V int of 21 to follow the target DC voltage V int *.
  • the switching elements 230a to 230d are not limited to IGBTs and MOSFETs, but may be SiC-MOSFETs, GaN-FETs, or GaN-HEMTs. Further, a capacitor may be connected in series or in parallel to the non-contact power transmission / reception coil 231.
  • the integration DC capacitor 21 is a DC capacitor having one end connected to the positive electrode side of the integration DC bus 24 and the other end connected to the negative electrode side of the integration DC bus 24.
  • the input power from the first power conversion circuit that supplies power by the contact power supply method and the input power from the third power conversion circuit that supplies power by the non-contact power supply method are integrated DC. It is configured to integrate with a capacitor.
  • the integration DC capacitor 21 is shown as a single capacitor, but a multi-parallel multi-series configuration may be used by using a plurality of capacitors.
  • FIG. 3 when two capacitors 21a and 21b having the same capacity are connected in series to operate as an integration DC capacitor 21, it is connected to the load 4 and is connected to the capacitor 21a and 21b (neutral point).
  • a half-bridge configuration using a point potential may be used.
  • the power conversion apparatus 2 of the present invention includes first to fourth voltage detectors 26a to 26d and first to second current detectors 27a to 27b.
  • the first voltage detector 26 a detects the AC input voltage vac input from the AC power supply 1 to the first power conversion circuit 20, and the second voltage detector 26 b detects the DC voltage V of the DC link capacitor 202. Link is detected.
  • the third voltage detector 26 c detects the DC voltage V int of the integration DC capacitor 21, and the fourth voltage detector 26 d detects the DC output voltage output to the load 4.
  • the fourth voltage detector 26 d detects the DC output voltage V out of the DC output capacitor 220 d that is a component of the second power conversion circuit 22.
  • the first current detector 27a detects an AC input current i ac input from the AC power source 1 to the first power conversion circuit. In the example illustrated in FIG. 1, the first current detector 27 a detects a current flowing through the AC reactor 201 e that is a component of the first power conversion circuit 20.
  • the second current detector 27 b detects the DC output current I out output to the load 4. In the example illustrated in FIG. 1, the second current detector 27 b detects the current i out of the DC reactor 220 c that is a component of the second power conversion circuit 22.
  • Each detector inputs the detected value of each voltage and current to the control circuit 25, and the control circuit 25 performs an operation based on these detected values.
  • the control circuit 25 can control the first to third power conversion circuits and controls the switching elements included in each power conversion circuit. That is, the control circuit 25 performs the first to fourth voltage detectors 26a to 26d and the first to fourth voltage detectors 26a to 26d and the first to second current detectors 27a to 27b based on part or all of the detection results. A drive signal is transmitted to each switching element included in the power conversion circuit 3 and a desired operation can be performed by controlling on / off of the switching element. The role of the control circuit 25 during forward operation and reverse operation will be described below.
  • the control circuit 25 calculates the duty ratio of each switching element for controlling the AC input current i ac so that the value of the power factor becomes 1. Specifically, a sinusoidal predetermined current command (target sine wave current) i ac * synchronized with the AC input voltage v ac and the AC input current i ac detected by the first current detector. Calculate the current difference. The output is calculated by PI control using the calculated current difference as a feedback amount. Regarding the DC voltage V link of the DC link capacitor 202, a predetermined voltage command (target DC voltage of the DC link capacitor) V link * and the DC voltage of the DC link capacitor 202 obtained from the second voltage detector 26b. The voltage difference from V link is calculated. The output is calculated by PI control using the calculated voltage difference as a feedback amount.
  • the control circuit 25 controls the DC voltage V int and the DC output voltage V out of the integration DC capacitor. Specifically, the control circuit 25 determines a predetermined voltage command (target DC voltage of the integration DC capacitor) V int * and the DC voltage of the integration DC capacitor 21 obtained from the third voltage detector 26c. A voltage difference from V int is calculated, and the output is calculated by PI control using the calculated voltage difference as a feedback amount. For the DC output voltage Vout , the control circuit 25 calculates a voltage difference between a predetermined voltage command (target output voltage) Vout * and the DC output voltage Vout obtained from the fourth voltage detector 26d. calculate. The output is calculated by PI control using the calculated voltage difference as a feedback amount. The DC output current I out, is calculated with a predetermined current command (target output current) I out *, the voltage difference between the DC output current I out obtained from the second current detector 27b. The output is calculated by PI control using the calculated voltage difference as a feedback amount.
  • a predetermined voltage command target DC voltage of the integration DC capacitor
  • a predetermined voltage command target DC voltage of the integration DC capacitor
  • V int * and the integration DC capacitor 21 obtained from the third voltage detector 26c are used.
  • a voltage difference from the DC voltage V int is calculated.
  • the output is calculated by PI control using the calculated voltage difference as a feedback amount.
  • a predetermined voltage command target DC voltage of the DC link capacitor
  • V link * and the DC voltage of the DC link capacitor 202 obtained from the second voltage detector 26b The voltage difference from V link is calculated.
  • the output is calculated by PI control using the calculated voltage difference as a feedback amount.
  • the duty ratio for controlling the AC input voltage vac is calculated so that the AC voltage obtained from the first voltage detector 26a is sinusoidal. Specifically, a target sine wave voltage v ac * obtained by multiplying a predetermined AC voltage effective value command value (target effective voltage value) V ac, rms * by a sine wave having an amplitude of ⁇ 2, A voltage difference from the AC input voltage vac detected by the first voltage detector 26a is calculated. The output is calculated by PI control using the calculated voltage difference as a feedback amount.
  • the non-contact power transmission / reception circuit 3 is a circuit outside the power conversion device 2 shown in the present embodiment, and includes switching elements 300a to 300d, a DC link capacitor 300e, switching elements 300f to 300i, AC reactors 300j to 300k, and A non-contact power transmission / reception coil 301 is provided.
  • the switching elements 300a to 300d and the switching elements 300f to 300i are each connected in a full bridge type.
  • the non-contact power transmission / reception circuit 3 is connected to the AC power source 1 at one end of the AC reactor 300k and the AC reactor 300j, and the other end of the AC reactor 300j is switched to the switching element 300a. It is connected to a connection point with the element 300b.
  • the other end of AC reactor 300k is connected to a connection point between switching element 300c and switching element 300d.
  • the DC link capacitor 300e is connected to the positive and negative electrodes of a DC bus connecting the switching elements 300a to 300d and the switching elements 300f to 300i.
  • the switching elements 300f to 300i are connected to the non-contact power transmission / reception coil 301, and the connection point between the switching element 300f and the switching element 300g connected in series is connected to the first end of the non-contact power transmission / reception coil 301.
  • the contact point between the switching element 300h and the switching element 300i to be connected is connected to the second end of the non-contact power transmission / reception coil 301.
  • the non-contact power transmission / reception circuit 3 is configured to contactlessly generate power by magnetically coupling the input voltage from the AC power source 1 to the non-contact power transmission / reception coil 231 based on a command from a control circuit not shown in FIG. Supply. That is, the input power from the AC power source 1 is converted into power and supplied to the non-contact power transmission / reception coil 231 via the non-contact power transmission / reception coil 301.
  • the non-contact power transmission / reception circuit 3 may be any one as long as it can supply electric power in a non-contact manner by being magnetically coupled to the non-contact power transmission / reception coil 231. It is not limited at all.
  • the non-contact power transmission / reception circuit 3 shown in the present embodiment is connected to the AC power source 1 similarly to the first power conversion circuit 20 and is configured to receive an AC voltage from the AC power source 1. It is not limited to this, The structure connected with a different power supply may be sufficient.
  • FIG. 4 shows an example of a flowchart for switching the operation mode.
  • the AC input voltage v ac detected by the first voltage detector 26a, the DC output voltage V out detected by the fourth voltage detector 26d, and the second current detector 27b are obtained.
  • the load 4 is described as a DC battery.
  • control signal for non-contact power supply refers to a signal indicating whether power can be supplied from the non-contact power transmission / reception circuit 3 to the third power conversion circuit 23 by the non-contact power supply method, for example, a non-contact power transmission / reception coil 301, or a voltage detection signal generated when a voltage in the non-contact power transmission / reception coil 231 is detected, and exchange between the non-contact power transmission / reception circuit 3 and the third power conversion circuit 23 to determine whether power supply is possible.
  • the operation mode switching method in the present embodiment will be described with reference to FIG. 4 as an example, but the switching method is not limited to the means shown in FIG.
  • the load 4 is described as an example of a DC battery for driving a vehicle.
  • the present invention is not limited to this.
  • a DC voltage power supply, an electric double layer capacitor (EDLC), an electric double layer capacitor, It may be a fixed resistance load.
  • step S100 power is transferred between the first power conversion circuit 20 and the third power conversion circuit 23 without first charging and discharging the load (DC battery) 4.
  • step S100 As a selection method in step S100, for example, there is a method in which a changeover switch is provided in the vehicle and the switch is selected according to the intended use desired by the user. Note that the switching method is not limited to this.
  • step S200 the detection result of the DC output voltage V out resulting from the fourth voltage detector 26 d, from the detection result of the obtained I out from the second current detector 27b, the charging state of the load 4 is determined in advance
  • the ECU or an engine control unit (ECU) in the vehicle determines whether the threshold is equal to or greater than the threshold.
  • the threshold value of the state of charge is a value that serves as a reference for performing the forward operation or the reverse operation, and changes depending on the vehicle and a predetermined condition.
  • step S200 If it is determined in step S200 that the charge state of the load 4 is less than the threshold value, that is, if it is determined that the load 4 needs to be charged, the process proceeds to step S210.
  • step S210 it is determined whether or not there is an AC input voltage vac detected by the first voltage detector 26a and a non-contact power supply control signal.
  • step S210 when both the AC input voltage vac and the non-contact power supply control signal are detected, the operation mode M1 is entered.
  • This operation mode is referred to as a first operation mode.
  • the first operation mode the first to third power conversion circuits are operated simultaneously.
  • FIG. 5 is a simplified diagram showing a case where the first power conversion circuit 20, the second power conversion circuit 22, and the third power conversion circuit 23 are operating.
  • the first operation mode is a mode in which power is supplied from both the contact power supply method and the non-contact power supply method and is output to the load 4.
  • the first operation mode is divided into a CP control mode (constant power control mode) and a CC control mode (constant current control mode) according to the control method.
  • the control circuit 25 calculates an output so that the AC input current i ac obtained from the first current detector 27a follows the target sine wave current i ac *. On / off control of the switching elements 201a to 201d of the first converter circuit 201 is performed based on this output value. Further, the control circuit 25 calculates the output so that the DC voltage V link of the DC link capacitor obtained from the second voltage detector 26b follows the target DC voltage V link * of the DC link capacitor. Based on this output value, on / off control of the switching elements 203a to 203d of the inverter circuit 203 and the switching elements 205a to 205d of the second converter circuit 205 is performed.
  • the non-contact power transmission / reception coil 231 receives power supplied from the non-contact power transmission / reception circuit 3 outside the apparatus.
  • the control circuit 25 calculates the output so that the DC voltage V int of the integration DC capacitor detected by the third voltage detector 26c follows the target DC voltage V int *.
  • On / off control of the switching elements 230a to 230d of the third power conversion circuit 23 is performed based on the calculated output value.
  • the second power conversion circuit 22 in the subsequent stage has a fixed duty ratio when the load 4 is a DC voltage source.
  • the control circuit 25 calculates the output so that the DC output voltage Vout obtained from the fourth voltage detector 26d follows the target output voltage Vout *.
  • On / off control of the switching elements 220a to 220b of the second power conversion circuit 22 is performed based on the output value.
  • the second power conversion circuit 22 may be controlled so that the DC voltage V int of the integration DC capacitor follows the target DC voltage V int *.
  • the switching element of the third power conversion circuit 23 is switched with a fixed duty ratio so that the second power conversion circuit 22 can obtain the DC voltage V of the integration DC capacitor obtained from the third voltage detector 26c.
  • On / off control of the switching elements 220a to 220b is performed based on the output value calculated by the control circuit 25 so that int follows the target DC voltage Vint *.
  • the control circuit 25 calculates the output so that the DC voltage V link of the DC link capacitor obtained from the second voltage detector 26b follows the target DC voltage V link *. On / off control of the switching elements 201a to 201d of the first converter circuit 201 is performed based on this output value. Further, the control circuit 25 calculates an output so that the DC voltage V int of the integrating DC capacitor obtained from the third voltage detector 26c follows the target DC voltage V int *. Based on this output value, on / off control of the switching elements 203a to 203d of the inverter circuit 203 and the switching elements 205a to 205d of the second converter circuit 205 is performed.
  • the non-contact power transmission / reception coil 231 receives the power supplied from the non-contact power transmission / reception circuit 3 outside the apparatus.
  • the control circuit 25 outputs a fixed duty ratio to switch the switching elements 230a to 230d of the third power conversion circuit 23.
  • the third power conversion circuit 23 may be controlled such that the DC voltage V int of the integration DC capacitor follows the target DC voltage V int *.
  • the switching elements 203a to 203d of the inverter circuit 203 and the switching elements 205a to 205d of the second converter circuit 205 are respectively switched with a fixed duty ratio, and the control circuit 25 obtains from the third voltage detector 26c.
  • the output is calculated so that the DC voltage V int of the integrated DC capacitor to follow the target DC voltage V int *.
  • On / off control of the switching elements 230a to 230d of the third power conversion circuit 23 is performed based on this output value.
  • control circuit 25 so as to follow the DC output current I out obtained from the second current detector 27b to the target output current I out *, calculates the output. On / off control of the switching elements 220a to 220b of the second power conversion circuit 22 is performed based on the output value.
  • the power supply is performed by simultaneously operating the contact power supply method and the non-contact power supply method, so that the sum of the rated powers (total input power) can be supplied to the load. For this reason, when the load is a battery, double speed charging is possible by setting the rated power of each method to the same value.
  • the load is a battery
  • double speed charging is possible by setting the rated power of each method to the same value.
  • each system is integrated with the DC capacitor for integration, stable simultaneous power supply can be performed without being limited to the voltage of any system. The above is the description of the first operation mode.
  • the second operation mode When only the AC input voltage vac obtained from the first voltage detector 26a is detected in step S210 of FIG. 4, the operation mode M2 is entered. In the second operation mode, the first power conversion circuit 20 and the second power conversion circuit 22 are operated simultaneously.
  • FIG. 6 is a simplified diagram showing a case where only the contact power feeding method, that is, only the first power conversion circuit 20 and the second power conversion circuit 22 are used. Details of the second operation mode will be described.
  • the second operation mode is a forward operation in which power is supplied from the AC power source to the load side, and there is a constant power (CP) control mode and a constant current (CC) mode for the load side as in the first operation mode. .
  • the control circuit 25 calculates an output so that the AC input current i ac obtained from the first current detector follows the target sine wave current i ac *. Based on this output value, on / off control of the switching elements 201a to 201d of the first converter circuit 201 in the first power conversion circuit 20 is performed. Further, the control circuit 25 calculates an output so that the DC voltage V link of the DC link capacitor obtained from the second voltage detector 26b follows the target DC voltage V link *. Based on this output value, on / off control of the switching elements 203a to 203d of the inverter circuit 203 and the switching elements 205a to 205d of the second converter circuit 205 is performed.
  • control circuit 25 calculates the output so that the DC voltage V int of the integrating DC capacitor obtained from the third voltage detector 26c follows the target DC voltage V int *. On / off control of the switching elements 220a to 220b of the second power conversion circuit 22 is performed based on the output value.
  • the control circuit 25 calculates the output so that the DC voltage V link of the DC link capacitor obtained from the second voltage detector 26b follows the target DC voltage V link *. Based on this output value, on / off control of the switching elements 201a to 201d of the first converter circuit 201 in the first power conversion circuit 20 is performed. Further, the control circuit 25 calculates an output so that the DC voltage V int of the integrating DC capacitor obtained from the third voltage detector 26c follows the target DC voltage V int *. Based on this output value, on / off control of the switching elements 203a to 203d of the inverter circuit 203 and the switching elements 205a to 205d of the second converter circuit 205 is performed.
  • control circuit 25 so as to follow the DC output current I out obtained from the second current detector 27b to the target output current I out *, calculates the output. On / off control of the switching elements 220a to 220b of the second power conversion circuit 22 is performed based on the output value.
  • FIG. 7 is a simplified diagram showing a case where only the non-contact power feeding method, that is, only the third power conversion circuit 23 and the second power conversion circuit 22 are used.
  • the third operation mode is a forward operation in which power is supplied from the non-contact power transmission / reception unit to the load side. Similar to the first operation mode, the constant power (CP) control mode and the constant current (CC) mode for the load side are used. Exists.
  • the non-contact power transmission / reception coil 231 receives power supplied from the non-contact power transmission / reception circuit 3 outside the apparatus.
  • the control circuit 25 calculates the output so that the DC voltage V int of the integrating DC capacitor obtained from the third voltage detector 26c follows the target DC voltage V int *.
  • On / off control of the switching elements 230a to 230d of the third power conversion circuit 23 is performed based on this output value.
  • the second power conversion circuit 22 in the subsequent stage has a fixed duty ratio when the load is a DC voltage source.
  • control circuit 25 calculates the output so that the DC output voltage Vout obtained from the fourth voltage detector 26d follows the target output voltage Vout *. On / off control of the switching elements 220a to 220b of the second power conversion circuit 22 is performed based on the output value.
  • the second power conversion circuit 22 may be controlled so that the DC voltage V int of the integration DC capacitor follows the target DC voltage V int *.
  • the switching elements 230a to 230d of the third power conversion circuit 23 are switched with a fixed duty ratio, and the DC voltage V int of the integration DC capacitor obtained from the third voltage detector 26c is set to the target DC voltage V Based on the output value calculated by the control circuit 25, on / off control of the switching elements 220a to 220b of the second power conversion circuit 22 is performed so as to follow int *.
  • the non-contact power transmission / reception coil 231 receives power supplied from the non-contact power transmission / reception circuit 3 outside the apparatus.
  • the control circuit 25 calculates the output so that the DC voltage V int of the integrating DC capacitor obtained from the third voltage detector 26c follows the target DC voltage V int *.
  • On / off control of the switching elements 230a to 230d of the third power conversion circuit 23 is performed based on this output value.
  • the control circuit 25, so as to follow the DC output current I out obtained from the second current detector 27b to the target output current I out * calculates the output.
  • On / off control of the switching elements 220a to 220b of the second power conversion circuit 22 is performed based on the output value.
  • the operation mode M1 to the operation mode M3 is the forward operation mode.
  • step S300 it is selected whether to supply power from the first power conversion circuit 20 side to the non-contact power transmission / reception coil 231 side.
  • a selection method for example, as in step S100, there is a method in which a changeover switch is provided in the vehicle and the switch is selected according to the intended use desired by the user. Note that the selection method is an example, and the present invention is not limited to this.
  • step S300 when it is selected to supply power from the first power conversion circuit 20 side to the third power conversion circuit 23 side, the operation mode M4 is entered.
  • This operation mode is referred to as a fourth operation mode.
  • the fourth operation mode the first power conversion circuit 20 and the third power conversion circuit 23 are operated simultaneously.
  • FIG. 8 is a simplified diagram showing a case where only the contact power feeding method and the non-contact power feeding method, that is, only the first power conversion circuit 20 and the third power conversion circuit 23 are used.
  • the fourth operation mode can be selected, for example, when the power device of the present invention is applied to a charger for charging a DC battery of an electric vehicle as shown in FIG. It is conceivable to charge a direct current battery of an electric vehicle that supports only non-contact charging in a place where it is not. In other words, the power obtained by the contact power supply method from the AC power supply is transmitted in a non-contact manner from the non-contact power transmission / reception coil of the electric vehicle equipped with this apparatus to the power reception coil of the electric vehicle that supports only the non-contact power supply method. Also, it becomes possible to charge a DC battery of an electric vehicle that supports only non-contact charging.
  • the fourth operation mode is a mode in which power is supplied from the AC power source to the non-contact power transmission / reception circuit 3 outside the apparatus via the third power conversion circuit 23, and a constant power (CP) control mode for the non-contact power reception side. And there is a constant voltage (CV: Constant Voltage) mode for the DC capacitor side for integration.
  • CP constant power
  • CV constant Voltage
  • the control circuit 25 calculates an output so that the AC input current i ac obtained from the first current detector 27a follows the target sine wave current i ac *. Based on this output value, on / off control of the switching elements 201a to 201d of the first converter circuit 201 in the first power conversion circuit 20 is performed. Further, the control circuit 25 calculates an output so that the DC voltage V link of the DC link capacitor obtained from the second voltage detector 26b follows the target DC voltage V link *. Based on this output value, on / off control of the switching elements 203a to 203d of the inverter circuit 203 and the switching elements 205a to 205d of the second converter circuit 205 is performed.
  • control circuit 25 calculates the output so that the DC voltage V int of the integrating DC capacitor obtained from the third voltage detector 26c follows the target DC voltage V int *. On / off control of the switching elements 230a to 230d of the third power conversion circuit 23 is performed based on this output value. From these things, it becomes possible to supply electric power to the non-contact power transmission / reception circuit 3 outside the apparatus via the non-contact power transmission / reception coil 231.
  • the control circuit 25 calculates an output so that the DC voltage V link of the DC link capacitor obtained from the second voltage detector 26b follows the target DC voltage V link *. Based on this output value, on / off control of the switching elements 201a to 201d of the first converter circuit 201 in the first power conversion circuit 20 is performed. In addition, the control circuit 25 calculates the output so that the DC voltage V int of the integrating DC capacitor obtained from the third voltage detector 26c follows the target DC voltage V int *. Based on this output value, on / off control of the switching elements 203a to 203d of the inverter circuit 203 and the switching elements 205a to 205d of the second converter circuit 205 is performed.
  • the switching elements 230a to 230d which are components of the third power conversion circuit 23, are switched at a fixed duty ratio. From these things, it becomes possible to supply electric power to the non-contact power transmission / reception circuit 3 outside the apparatus via the non-contact power transmission / reception coil 301.
  • the above is the description of the fourth operation mode.
  • step S300 of FIG. 4 when it is not selected to supply power from the first power conversion circuit 20 side to the third power conversion circuit 23 side, that is, from the third power conversion circuit 23 side to the first power conversion circuit 23 side.
  • the operation mode M5 is entered. This operation mode is referred to as a fifth operation mode.
  • the fifth operation mode the first power conversion circuit 20 and the third power conversion circuit 23 are operated simultaneously.
  • FIG. 9 is a simplified diagram illustrating a case where only the contact power feeding method and the non-contact power feeding method, that is, only the first power conversion circuit 20 and the third power conversion circuit 23 are used, as in FIG. 8.
  • the fifth operation mode can be selected, for example, when the apparatus of the present invention is applied to a charger of an electric vehicle, the battery power of the electric vehicle corresponding to only another non-contact power feeding method is not used. It is conceivable that AC power is output as AC power by the contact power supply method via this power conversion device by the contact power supply method, and AC power can be supplied as an alternative to an AC power source such as a commercial system.
  • the power received by the third power conversion circuit 23 from the non-contact power transmission / reception circuit 3 by the non-contact power feeding method is supplied to the outside of the apparatus via the first power conversion circuit of the contact power feeding method.
  • the control circuit 25 calculates the output so that the DC voltage V int of the integrating DC capacitor obtained from the third voltage detector 26c follows the target DC voltage V int *. On / off control of the switching elements 230a to 230d of the third power conversion circuit 23 is performed based on this output value. Further, the control circuit 25 calculates an output so that the DC voltage V link of the DC link capacitor obtained from the second voltage detector 26b follows the target DC voltage V link *.
  • the control circuit 25 Based on this output value, on / off control of the switching elements 203a to 203d of the inverter circuit 203 in the first power conversion circuit 20 and the switching elements 205a to 205d of the second converter circuit 205 is performed. Further, the control circuit 25 outputs the AC input voltage v ac obtained from the first voltage detector 26a so as to follow the target sine wave voltage v ac * calculated from the target effective voltage value V ac, rms *. Is calculated. Based on this output value, on / off control of the switching elements 201a to 201d of the first converter circuit is performed to supply AC power.
  • the operation mode M4 to the operation mode M5 is a mode in which power is supplied between the first power conversion circuit 20 and the third power conversion circuit 23.
  • step S200 of FIG. 4 If it is determined in step S200 of FIG. 4 that the state of charge of the load (DC battery) 4 is equal to or greater than the threshold value, that is, if it is determined that the energy of the DC battery can be discharged, the process proceeds to step S220.
  • step S220 as in step S210, the AC input voltage vac obtained from the first voltage detector 26a and the presence / absence of the contactless power supply control signal are determined.
  • the operation mode M6 is entered.
  • This operation mode is referred to as a sixth operation mode.
  • the first to third power conversion circuits are operated simultaneously.
  • FIG. 10 shows that the contact power feeding method and the non-contact power feeding method operate simultaneously during reverse operation, that is, the first power conversion circuit 20, the third power conversion circuit 23, and the second power conversion circuit 22 are simultaneously operated. It is the simple figure which showed the case where it is operate
  • the sixth operation mode is a reverse operation in which power is supplied from the load 4 side to the AC power source 1 and the non-contact power transmission / reception circuit 3 outside the apparatus, and there is a CV control mode for the integration DC capacitor side.
  • the control circuit 25 calculates the output so that the DC voltage V int of the integrating DC capacitor obtained from the third voltage detector 26c follows the target DC voltage V int *. On / off control of the switching elements 220a to 220b of the second power conversion circuit 22 is performed based on the output value. Further, the control circuit 25 calculates an output so that the DC voltage V link of the DC link capacitor obtained from the second voltage detector 26b follows the target DC voltage V link *. Based on this output value, on / off control of the switching elements 203a to 203d of the inverter circuit 203 and the switching elements 205a to 205d of the second converter circuit 205 is performed.
  • control circuit 25 outputs the AC input voltage v ac obtained from the first voltage detector 26a so as to follow the target sine wave voltage v ac * calculated from the target effective voltage value V ac, rms *. Is calculated. Based on this output value, on / off control of the switching elements 201a to 201d of the first converter circuit 201 is performed to supply AC power.
  • control circuit 25 outputs a fixed duty ratio and switches the switching elements 230a to 230d of the third power conversion circuit 23, so that the non-contact outside the apparatus via the non-contact power transmission / reception coil 231. Power is supplied to the power transmission / reception circuit 3.
  • the switching elements 230a to 230d of the third power conversion circuit 23 are on / off controlled at a fixed duty ratio
  • the switching elements 220a to 220b of the second power conversion circuit 22 are turned on / off at a fixed duty ratio. It may be controlled.
  • the control circuit 25 calculates the output so that the DC voltage V int of the integrating DC capacitor obtained from the third voltage detector 26c follows the target DC voltage V int *. On / off control of the switching elements 230a to 230d of the third power conversion circuit 23 is performed based on this output value.
  • the contact power supply method and the non-contact power supply method can be operated simultaneously to discharge from the load 4 side, and each method is integrated by the integration DC capacitor 21. It is possible to discharge stably and simultaneously without being limited to the voltage of the system. The above is the description of the sixth operation mode.
  • FIG. 11 is a simplified diagram showing a case where only the contact power feeding method, that is, only the first power conversion circuit 20 and the second power conversion circuit 22 are used.
  • the seventh operation mode is a reverse operation in which power is supplied from the load 4 side to the AC power supply 1, and there is a CV control mode for the integration DC capacitor side as in the sixth operation mode.
  • the control circuit 25 calculates the output so that the DC voltage V int of the integrating DC capacitor obtained from the third voltage detector 26c follows the target DC voltage V int *. On / off control of the switching elements 220a to 220b of the second power conversion circuit 22 is performed based on the output value. Further, the control circuit 25 calculates an output so that the DC voltage V link of the DC link capacitor obtained from the second voltage detector 26b follows the target DC voltage V link *. Based on this output value, on / off control of the switching elements 203a to 203d of the inverter circuit 203 in the first power conversion circuit 20 and the switching elements 205a to 205d of the second converter circuit 205 is performed.
  • control circuit 25 outputs the AC input voltage v ac obtained from the first voltage detector 26a so as to follow the target sine wave voltage v ac * calculated from the target effective voltage value V ac, rms *. Is calculated. Based on this output value, the on / off control of the switching elements 201a to 201d of the first converter circuit 201 is performed, and AC power can be supplied as an alternative to AC power supply such as a commercial system.
  • the above is the description of the seventh operation mode.
  • FIG. 12 is a simplified diagram showing a case where only the non-contact power supply method, that is, only the third power conversion circuit 23 and the second power conversion circuit 22 are used.
  • the eighth operation mode is a reverse operation in which power is supplied from the load 4 side to the non-contact power transmission / reception circuit 3 via the non-contact power transmission / reception coil 231. Similar to the sixth operation mode, the CV for the integration DC capacitor side is provided. A control mode exists.
  • the control circuit 25 calculates the output so that the DC voltage V int of the integrating DC capacitor obtained from the third voltage detector 26c follows the target DC voltage V int *. On / off control of the switching elements 220a to 220b of the second power conversion circuit 22 is performed based on the output value. In addition, the control circuit 25 outputs a fixed duty ratio and switches the switching elements 230a to 230d of the third power conversion circuit 23, so that the non-contact outside the apparatus via the non-contact power transmission / reception coil 231. Power is supplied to the power transmission / reception circuit 3.
  • the switching elements 230a to 230d of the third power conversion circuit 23 are on / off controlled at a fixed duty ratio
  • the switching elements 220a to 220b of the second power conversion circuit 22 are turned on / off at a fixed duty ratio. It may be controlled.
  • the control circuit 25 calculates the output so that the DC voltage V int of the integrating DC capacitor obtained from the third voltage detector 26c follows the target DC voltage V int *.
  • On / off control of the switching elements 230a to 230d of the third power conversion circuit 23 is performed based on this output value.
  • the above is the description of the eighth operation mode, and the operation mode M6 to the operation mode M8 is the reverse operation mode.
  • FIG. 13 shows a list of control methods in each control mode of the power conversion device shown in the present embodiment.
  • FIG. 13 shows that the control circuit 25 controls the value described in “Control Value” by controlling the circuit described in “Control Circuit”. Note that what is described as “fixed” in the control value column indicates that the circuit to be controlled is on / off controlled with a fixed duty ratio. Even when the second power conversion circuit 22 controls the DC output voltage Vout , if the DC output voltage Vout does not need to be controlled, the second power conversion circuit 22 is set at a fixed duty ratio. Will work.
  • FIG. 14 is a control block diagram relating to the calculation of the duty ratio of the switching element of the first converter circuit 201 in the control circuit 25.
  • a subtractor 2501 calculates a current difference between a predetermined absolute value of the target sine wave current i ac * and an absolute value of the AC input current i ac detected by the first current detector 27a. To do. This calculated value is input to the proportional controller 2502, and the obtained output value is divided by the DC voltage V link of the DC link capacitor.
  • the adder 2504 adds the feedforward term 2503 expressed by Equation (1) to this division value, thereby outputting the duty ratio 2505 (Duty_201) of the switching element of the first converter circuit.
  • the proportional controller 2502 is described here, it is needless to say that an integral controller or a proportional integral controller may be used and the control method is not limited.
  • FIG. 15 is a control block diagram relating to generation of a gate signal for driving the switching element of the first converter circuit 201 based on the duty ratio calculated in FIG.
  • the duty ratio 2505 of the switching element of the first converter circuit obtained in FIG. 14 is smaller than the carrier wave 2506 (V car )
  • the output value 2508 (Sig — 201a) of the comparator 2507 becomes High
  • the output of the comparator 2509 The value 2510 (Sig_201b) is Low.
  • the duty ratio 2505 of the switching element of the first converter circuit is larger than the carrier wave 2506 (V car )
  • the output value 2508 (Sig_201a) of the comparator 2507 is Low and the output value 2510 (Sig_201b) of the comparator 2509 is low.
  • FIG. 16 is a control block diagram relating to control for switching the gate signal of the switching element of the first converter circuit in accordance with the polarity of the AC input voltage.
  • the comparator 2511 when the AC input voltage vac is positive, the comparator 2511 outputs High.
  • the multiplexer (MUX) 2512 outputs Sig_201b (2510) as the gate signal Gate_201a (2513) of the switching element 201a of the first converter circuit.
  • the multiplexer (MUX) 2514 outputs Sig_201a (2508) as the gate signal Gate_201b (2515) of the switching element 201b of the first converter circuit.
  • the multiplexer (MUX) 2516 outputs Low as the gate signal Gate_201c (2517) of the switching element 201c of the first converter circuit, and the multiplexer (MUX) 2518 outputs High to the gate signal of the switching element 201d of the first converter circuit. Output as Gate_201d (2519).
  • the comparator 2511 when the AC input voltage vac is negative, the comparator 2511 outputs Low.
  • the multiplexer (MUX) 2512 outputs Sig_201a (2508) as the gate signal Gate_201a (2513) of the switching element 201a of the first converter circuit.
  • the multiplexer (MUX) 2514 outputs Sig_201b (2510) as the gate signal Gate_201b (2515) of the switching element 201b of the first converter circuit.
  • the multiplexer (MUX) 2516 outputs High as the gate signal Gate_201c (2517) of the switching element 201c of the first converter circuit.
  • the multiplexer (MUX) 2518 outputs Low as the gate signal Gate_201d (2519) of the switching element 201d of the first converter circuit.
  • FIG. 17 is a control block diagram relating to control for generating a phase shift amount of the gate signal of the second converter circuit 205 with respect to the gate signal of the inverter circuit 203.
  • the control circuit 25 the pre-target DC voltage of the DC link capacitor 202 defined V link *, the subtractor 2520 the voltage difference between the DC voltage V link of the DC link capacitor which is detected by the second voltage detector 26b calculate.
  • the first phase shift amount Trig_N 2522
  • a second phase shift amount Trig_P 2524
  • the description is given using the proportional-plus-integral controller 2521.
  • a proportional controller or an integral controller may be used and the control method is not limited.
  • FIG. 18 is a control block diagram relating to generation of the gate signal of the inverter circuit 203.
  • the control circuit 25 when the carrier wave 2506 (V car ) is larger than the constant 0.5, the output value 2526 of the comparator 2525 becomes High. At this time, by inputting the output value 2526 of the comparator 2525 to the negation circuit 2527, the output value 2528 of the negation circuit becomes Low.
  • the output value 2526 of the comparator 2525 is Low.
  • the output value 2528 of the negation circuit becomes High.
  • the output value 2526 of the comparator 2525 is output as the gate signal Gate_203ad of the switching elements 203a and 203d of the inverter circuit.
  • the output value 2528 of the negative circuit 2527 is output as the gate signal Gate_203bc of the switching elements 203b and 203c of the inverter circuit.
  • FIG. 19 is a control block diagram relating to the generation of the gate signal of the second converter circuit 205.
  • the comparator 2529 When the first phase shift amount Trig_N (2522) obtained in FIG. 17 is smaller than the carrier wave 2506 (V car ), the comparator 2529 outputs High. Further, at this time, if the second phase shift amount Trig_P (2524) is larger than the carrier wave 2506 (V car ), the comparator 2530 outputs High.
  • the comparator 2529 outputs Low. Further, at this time, when the second phase shift amount Trig_P (2524) is smaller than the carrier wave 2506 (V car ), the comparator 2530 outputs Low.
  • An output value 2532 obtained by inputting the outputs of the two comparators (2529, 2530) to the AND circuit 2531 is output as the gate signal Gate_205ad of the switching element 205a and the switching element 205d of the second converter circuit. Further, the output value 2534 obtained by inputting the output value 2532 of the logical product circuit 2531 to the negative circuit 2533 is output as the gate signal Gate_205bc of the switching element 205b and the switching element 205c of the second converter circuit.
  • the control includes a CP control mode of the first operation mode, a CC control mode of the first operation mode, a CP control mode of the third operation mode, a CC control mode of the third operation mode, a CP control mode of the fourth operation mode, It is used in the CV control mode of the fifth operation mode, the CV control mode of the sixth operation mode, and the CV control mode of the eighth operation mode.
  • FIG. 20 is a control block diagram relating to the calculation of the duty ratio of the switching element of the third converter circuit 230 in the control circuit 25.
  • the control circuit 25 subtracts a voltage difference between a predetermined target DC voltage V int * of the integration DC capacitor and a DC voltage V int of the integration DC capacitor detected by the third voltage detector 26c. Calculated by By inputting this calculated value to the proportional-plus-integral controller 2536, the duty ratio 2537 (Duty_230) of the switching element of the third converter circuit is obtained.
  • the proportional-integral controller 2536 has been described here, it is needless to say that a proportional controller or an integral controller may be used and the control method is not limited.
  • FIG. 21 is a control block diagram relating to generation of the gate signal of the switching element of the third converter circuit 230 in the control circuit 25.
  • the duty ratio 2537 (Duty_230) of the switching element of the third converter circuit obtained in FIG. 20 is smaller than the carrier wave 2506 (V car )
  • the output value 2539 of the comparator 2538 is High.
  • the output value 2541 of the comparator 2540 is Low.
  • the output value 2539 of the comparator 2538 is Low. At this time, the output value 2541 of the comparator 2540 becomes High.
  • the output value 2539 of the comparator 2538 is output as the gate signal Gate_230ad of the switching elements 230a and 230d of the third converter circuit. Further, the output value 2541 of the comparator 2540 is output as the gate signal Gate_230bc of the switching element 230b and the switching element 230c of the third converter circuit.
  • a control method of the second power conversion circuit 22 when the second power conversion circuit 22 is controlled with a fixed duty ratio will be described with reference to a control block diagram shown in FIG. This control is used in the CP control mode of the first operation mode, the CP control mode of the third operation mode, the CV control mode of the sixth operation mode, and the CV control mode of the eighth operation mode.
  • the second power conversion circuit 22 is on / off controlled at a fixed duty ratio when the load 4 is a DC voltage source.
  • FIG. 22 is a control block diagram for generating the gate signal of the switching element of the second power conversion circuit 22 with a fixed value in the control circuit 25.
  • the fixed duty ratio 2542 obtained by substituting the predetermined target DC voltage V int * of the DC capacitor for integration and the DC output voltage V out to the load 4 into Equation (2) is a carrier wave 2506 (V car ). Is smaller than the output value 2544 of the comparator 2543, it becomes High. At this time, the output value 2546 of the comparator 2545 is Low.
  • the output value 2544 of the comparator 2543 is Low. At this time, the output value 2546 of the comparator 2545 becomes High.
  • the output value 2544 of the comparator 2543 is output as the gate signal Gate_220a of the switching element 220a of the second power conversion circuit. Further, the output value 2546 of the comparator 2545 is output as the gate signal Gate_220b of the switching element 220b of the second power conversion circuit.
  • FIG. 23 and FIG. 24 show the control method of the second power conversion circuit 22 when the second power conversion circuit 22 is controlled so that the DC output voltage V out follows the target output voltage V out *.
  • This control is used in the CP control mode of the first operation mode and the CP control mode of the third operation mode.
  • the second power is set so that the DC output voltage Vout obtained from the fourth voltage detector 26d follows the target output voltage Vout *.
  • the conversion circuit 22 is controlled.
  • FIG. 23 is a control block diagram related to generation of the duty ratio of the switching element of the second power conversion circuit 22 in the control circuit 25.
  • a subtractor 2547 calculates a voltage difference between a predetermined target output voltage V out * of the load 4 and the DC output voltage V out of the load 4 detected by the fourth voltage detector 26d. . By inputting this calculated value to the proportional-plus-integral controller 2548, the duty ratio 2549 (Duty_220) of the switching element of the second power conversion circuit 22 is obtained. Note that although the proportional-plus-integral controller 2548 is described here, it is needless to say that a proportional controller or an integral controller may be used and the control method is not limited.
  • FIG. 24 is a control block diagram relating to the generation of the gate signal of the switching element of the second power conversion circuit 22 in the control circuit 25.
  • the duty ratio 2549 (Duty_220) of the switching element of the second power conversion circuit 22 obtained in FIG. 23 is smaller than the carrier wave 2506 (V car )
  • the output value 2544 of the comparator 2550 becomes High.
  • the output value 2546 of the comparator 2551 is Low.
  • the output value 2544 of the comparator 2550 is Low.
  • the output value 2546 of the comparator 2551 becomes High.
  • the output value 2544 of the comparator 2543 is output as the gate signal Gate_220a of the switching element 220a of the second power conversion circuit.
  • the output value 2546 of the comparator 2545 is output as the gate signal Gate_220b of the switching element 220b of the second power conversion circuit.
  • a control method of the third power conversion circuit when the switching element of the third power conversion circuit 23 is switched at a fixed duty ratio will be described with reference to FIG.
  • This control includes a CP control mode of the first operation mode, a CC control mode of the first operation mode, a CP control mode of the third operation mode, a CV control mode of the fourth operation mode, a CV control mode of the sixth operation mode, It is used in the CV control mode of 8 operation modes.
  • FIG. 25 is a control block diagram relating to the generation of the gate signal of the switching element of the third power conversion circuit 23 using the fixed duty ratio in the control circuit 25.
  • the fixed duty ratio 2552 is smaller than the carrier wave 2506 (V car )
  • the output value 2539 of the comparator 2553 becomes High.
  • the output value 2541 of the comparator 2554 is Low.
  • the output value 2539 of the comparator 2553 is Low. At this time, the output value 2541 of the comparator 2554 becomes High.
  • the output value 2539 of the comparator 2553 is output as the gate signal Gate_230ad of the switching elements 230a and 230d of the third converter circuit.
  • the output value 2541 of the comparator 2554 is output as the gate signal Gate_230bc of the switching elements 230b and 230c of the third converter circuit.
  • FIG. 26 and FIG. 26 show a control method of the second power conversion circuit 22 in the case of controlling the second power conversion circuit 22 so that the DC voltage V int of the integration DC capacitor follows the target DC voltage V int *.
  • This control is used in the CP control mode of the first operation mode, the CP control mode of the second operation mode, and the CP control mode of the third operation mode.
  • FIG. 26 is a control block diagram relating to the generation of the duty ratio of the switching element of the second power conversion circuit 22 in the control circuit 25.
  • the control circuit 25 subtracts the voltage difference between the predetermined target DC voltage V int * of the integration DC capacitor 21 and the DC voltage V int of the integration DC capacitor 21 detected by the third voltage detector 26c.
  • the device 2555 It is calculated by the device 2555. By inputting this calculated value to the proportional-plus-integral controller 2556, the duty ratio 2549 (Duty_220) of the switching element of the second power conversion circuit 22 is obtained. Note that although the proportional-plus-integral controller 2556 is described here, it is needless to say that a proportional controller or an integral controller may be used and the control method is not limited.
  • the duty ratio 2549 (Duty_220) of the switching element of the second power conversion circuit 22 and the carrier wave 2506 (V car ) obtained in FIG. 26 are compared using the control block diagram shown in FIG. The operation is the same as that described above, and a description thereof will be omitted. Thereby, as described above, the gate signals Gate_220a and Gate_220b of the switching element 220a and the switching element 220b of the second power conversion circuit are generated.
  • FIG. 27 is a control block diagram relating to the generation of the duty ratio of the switching element of the first converter circuit 201 in the control circuit 25.
  • a target DC voltage V link * of the DC link capacitor 202 with a predetermined, subtractor a voltage difference between the DC voltage V link of the DC link capacitor 202 detected by the second voltage detector 26b 2557 Calculated by By inputting the calculated value calculated by the subtracter 2557 to the proportional-plus-integral controller 2558, the duty ratio 2505 (Duty_201) of the switching element of the first converter circuit 201 is obtained.
  • the proportional-plus-integral controller 2558 is described here, it is needless to say that a proportional controller or an integral controller may be used and the control method is not limited.
  • the duty ratio 2505 (Duty_201) of the switching element of the first converter circuit 201 obtained in FIG. 27 and the carrier wave 2506 (V car ) are compared using the control block diagram shown in FIG.
  • the operation of the control block diagram shown in FIG. 15 is the same as that described above, and a description thereof will be omitted.
  • gate signals Sig_201a (2508) and Sig_201b (2510) for driving the switching elements of the first converter circuit are obtained as described above.
  • the gate signals sGate_201a (2513) to Gate_201d (2519) of the switching elements of the first converter circuit are generated as described above. .
  • FIG. 28 is a control block diagram relating to generation of the phase shift amount of the gate signal of the second converter circuit 205 with respect to the gate signal of the inverter circuit 203 in the control circuit 25.
  • the control circuit 25 subtracts a voltage difference between a predetermined target DC voltage V int * of the integration DC capacitor and the DC voltage V int of the integration DC capacitor 21 detected by the third voltage detector 26c. 2559. By inputting the calculated value calculated by the subtracter 2559 to the proportional-plus-integral controller 2560, the first phase shift amount Trig_N (2522) is obtained. Further, by adding a constant 0.5 to the first phase shift amount Trig_N by the adder 2561, the second phase shift amount Trig_P (2524) is obtained.
  • the gate signals Gate_203ad of the switching elements 203a and 203d of the inverter circuit 203 and the gate signals Gate_203bc of the switching elements 203b and 203c are obtained as described above.
  • the operation of the control block diagram shown in FIG. Also, the two phase shift amounts obtained in FIG. 28 and the carrier wave 2506 (V car ) are compared using the control block diagram shown in FIG.
  • gate signals Gate_205ad (2532) and Gate_205bc (2534) for driving the switching elements of the second converter circuit are generated as described above.
  • a method for controlling the inverter circuit 203 and the second converter circuit 205 when the isolated converter circuit is controlled with a fixed duty ratio will be described.
  • This control is used in the CC control mode of the first operation mode.
  • the gate signals Gate_203ad of the switching elements 203a and 203d of the inverter circuit 203 and the gate signals Gate_203bc of the switching elements 203b and 203c are obtained from the control block diagram shown in FIG.
  • the second converter circuit 205 is generated using the control block diagram shown in FIG. Specifically, when the carrier wave 2506 (V car ) is larger than the constant 0.5, the output value 2532 of the comparator 2562 becomes High. At this time, by inputting the output value 2532 of the comparator 2562 to the negation circuit 2563, the output value 2534 of the negation circuit becomes Low.
  • the output value 2532 of the comparator 2562 is Low.
  • the output value 2534 of the negation circuit becomes High.
  • the output value 2532 of the comparator 2562 is output as the gate signal Gate_205ad of the switching elements 205a and 205d of the inverter circuit.
  • the output value 2534 of the negative circuit 2563 is output as the gate signal Gate_205bc of the switching elements 205b and 205c of the inverter circuit.
  • FIG. 30 is a control block diagram relating to generation of the duty ratio of the switching element of the second power conversion circuit 22 in the control circuit 25.
  • the DC output current I out * that is determined in advance, and calculated by the subtractor 2564 the current difference between the DC output current I out that is detected by the second current detector 27b.
  • the duty ratio 2549 (Duty_220) of the switching element of the second power conversion circuit 22 is obtained.
  • the description is made using the proportional-plus-integral controller 2565, but it is needless to say that a proportional controller or an integral controller may be used and the control method is not limited.
  • the duty ratio 2549 (Duty_220) obtained in FIG. 30 and the carrier wave 2506 (V car ) are compared using the control block diagram of FIG. Thereby, as described above, the gate signals Gate_220a (2544) and Gate_220b (2546) for driving the switching elements of the second power conversion circuit 220 are generated.
  • FIG. 31 is a control block diagram for generating a phase shift amount of the gate signal of the inverter circuit 203 with respect to the gate signal of the second converter circuit 205 in the control circuit 25 when the isolated converter circuit operates in the reverse direction.
  • a subtracter 2566 calculates a voltage difference between a predetermined target DC voltage V link * of the DC link capacitor and a DC voltage V link of the DC link capacitor detected by the second voltage detector 26b. To do. By inputting this calculated value to the proportional-plus-integral controller 2567, the first phase shift amount Trig_N_inv (2568) is obtained. Further, by adding a constant 0.5 to the first phase shift amount Trig_N_inv by the adder 2569, the second phase shift amount Trig_P_inv (2570) is obtained. Note that although the proportional-plus-integral controller 2567 is described here, it is needless to say that a proportional controller or an integral controller may be used and the control method is not limited.
  • FIG. 32 is a control block diagram for generating the gate signal of the second converter circuit 205 when the control circuit 25 operates in the reverse direction of the isolated converter circuit.
  • the control circuit 25 when the carrier wave 2506 (V car ) is larger than the constant 0.5, the output value 2572 of the comparator 2571 becomes High. At this time, by inputting the output value 2572 of the comparator 2571 to the negation circuit 2573, the output value 2574 of the negation circuit becomes Low.
  • the carrier wave 2506 (V car ) is smaller than the constant 0.5, the output value 2572 of the comparator 2571 becomes Low. At this time, by inputting the output value 2572 of the comparator 2571 to the negation circuit 2573, the output value 2574 of the negation circuit becomes High.
  • the output value 2572 of the comparator 2571 is output as the gate signal Gate_205bc_inv of the switching elements 205b and 205c of the second converter circuit. Further, the output value 2574 of the negation circuit 2573 is output as the gate signal Gate_205ad_inv of the switching elements 205a and 205d of the second converter circuit.
  • FIG. 33 is a control block diagram for generating the gate signal of the inverter circuit 203 when the control circuit 25 operates in the reverse direction of the isolated converter circuit.
  • the comparator 2575 When the first phase shift amount Trig_N_inv (2568) obtained in FIG. 31 is smaller than the carrier wave 2506 (V car ), the comparator 2575 outputs High. Further, at this time, when the second phase shift amount Trig_P_inv (2570) is larger than the carrier wave 2506 (V car ), the comparator 2576 outputs High. On the other hand, when the first phase shift amount Trig_N_inv (2568) is larger than the carrier wave 2506 (V car ), the comparator 2575 outputs Low.
  • the comparator 2576 outputs Low.
  • An output value 2578 obtained by inputting the outputs of the two comparators (2575 and 2576) to the logical product circuit 2577 is output as the gate signal Gate_203bc_inv of the switching elements 203b and 203c of the inverter circuit.
  • the output value 2580 obtained by inputting the output value 2578 of the AND circuit 2577 to the negation circuit 2579 is output as the gate signal Gate_203ad_inv of the switching elements 203a and 203d of the inverter circuit.
  • FIG. 34 is a control block diagram for generating the duty ratio of the switching element of the first converter circuit when the control circuit 25 operates in the reverse direction of the first converter circuit.
  • the control circuit 25 multiplies a predetermined target effective voltage value V ac, rms * and a sine wave sin ( ⁇ t) having an amplitude value of ⁇ 2 to obtain a target sine wave voltage v ac * (2581) of the AC voltage. ) Is generated.
  • ⁇ in the sine wave sin ( ⁇ t) is an angular frequency having a frequency component of the AC voltage.
  • a subtractor 2582 calculates a voltage difference between the generated target sine wave voltage v ac * of the AC voltage and the AC input voltage v ac detected by the first voltage detector 26a.
  • the duty ratio 2584 (Duty_201_inv) of the switching element of the first converter circuit is output.
  • FIG. 35 is a control block diagram for generating a gate signal for driving the switching element of the first converter circuit when the control circuit 25 operates in the reverse direction of the first converter circuit.
  • the duty ratio 2584 of the switching element of the first converter circuit obtained in FIG. 34 is larger than the carrier wave 2506 (V car )
  • the output 2586 (Sig — 201_inv) of the comparator 2585 becomes High.
  • the duty ratio 2584 of the switching element of the first converter circuit is smaller than the carrier wave 2506 (V car )
  • the output 2586 (Sig — 201_inv) of the comparator 2585 becomes Low.
  • FIG. 36 is a control block diagram for switching the gate signal of the switching element of the first converter circuit in accordance with the polarity of the AC input voltage vac when the control circuit 25 operates in the reverse direction of the first converter circuit.
  • the comparator 2587 When the AC input voltage vac is positive, the comparator 2587 outputs High.
  • the multiplexer (MUX) 2588 outputs Sig_201_inv (2586) as the gate signals Gate_201a_inv (2589) and Gate_201d_inv (2590) of the switching elements 201a and 201d of the first converter circuit.
  • the multiplexer (MUX) 2591 outputs a Low signal as the gate signals Gate_201b_inv (2592) and Gate_201c_inv (2593) of the switching elements 201b and 201c of the first converter circuit.
  • the comparator 2587 outputs Low.
  • the multiplexer (MUX) 2588 outputs the Low signal as the gate signals Gate_201a_inv (2589) and Gate_201d_inv (2590) of the switching elements 201a and 201d of the first converter circuit.
  • the multiplexer (MUX) 2593 outputs Sig_201_inv (2586) as the gate signals Gate_201b_inv (2592) and Gate_201c_inv (2593) of the switching elements 201b and 201c of the first converter circuit.
  • FIG. 37 is a control block diagram for generating the duty ratio of the switching element of the second power conversion circuit 22 in the control circuit 25 when the second power conversion circuit 22 operates in the reverse direction.
  • the control circuit 25 subtracts a voltage difference between a predetermined target DC voltage V int * of the integration DC capacitor and a DC voltage V int of the integration DC capacitor detected by the third voltage detector 26c.
  • the duty ratio 2596 (Duty_220_inv) of the switching element of the second power conversion circuit 22 is obtained.
  • the description is given here using the proportional-plus-integral controller 2595, it is needless to say that a proportional controller or an integral controller may be used and the control method is not limited.
  • FIG. 38 is a control block diagram for generating the gate signal of the switching element of the second power conversion circuit 22 in the control circuit 25 when the second power conversion circuit 22 operates in the reverse direction.
  • the duty ratio 2596 (Duty_220_inv) of the switching element of the second power conversion circuit 22 obtained in FIG. 37 is smaller than the carrier wave 2506 (V car )
  • the output value 2598 of the comparator 2597 becomes High.
  • the output value 25100 of the comparator 2599 is Low.
  • the duty ratio 2596 (Duty_220_inv) is larger than the carrier wave 2506 (V car )
  • the output value 2598 of the comparator 2597 is Low.
  • the output value 25100 of the comparator 2599 becomes High.
  • the output value 2598 of the comparator 2597 is output as the gate signal Gate_220a_inv of the switching element 220a of the second power conversion circuit. Further, the output value 25100 of the comparator 2599 is output as the gate signal Gate_220b_inv of the switching element 220b of the second power conversion circuit. The above is the control method of each circuit.
  • the power conversion device has the above-described configuration, and the output unit on the contact power feeding method side and the output unit on the non-contact power feeding method side are integrated via a DC capacitor for integration. Even when the AC power supply voltage is high, the DC voltage of the DC capacitor for integration is controlled by the isolated converter circuit or the second power conversion circuit 22, so that even if the power reception voltage on the non-contact power supply side is low Thus, it is possible to supply power at the same time without stopping any of the power supply functions.
  • FIG. A power conversion apparatus according to Embodiment 2 of the present invention will be described.
  • the power conversion device according to Embodiment 2 of the present invention differs from the power conversion device shown in Embodiment 1 in the control method in some operation modes. Here, a different part from Embodiment 1 is demonstrated.
  • the circuit configuration of the power conversion device according to the second embodiment of the present invention is the same as that of the power conversion device shown in FIG.
  • the power conversion device according to the present embodiment is classified into eight operation modes as shown in FIG. 4 by combining the operation patterns of the respective power conversion circuits as constituent elements, as in the first embodiment. be able to. Since the operation mode switching method is the same as that in the first embodiment, the description of the switching method is omitted.
  • the output is calculated so that the DC voltage V link of the link capacitor follows the target DC voltage V link *, and on / off control of the switching elements 201a to 201d of the first converter circuit 201 is performed based on this output value. .
  • the DC link capacitor obtained from the second voltage detector 26b during the CC control mode of the first operation mode and the second operation mode and during the CV control mode operation of the fourth operation mode is generated from the calculated value calculated so that the DC voltage V link of the current follows the target DC voltage V link *. Further, the output is calculated so that the AC input current i ac obtained from the first current detector 27a follows the generated target sine wave current i ac *. On / off control of the switching elements 201a to 201d of the first converter circuit 201 is performed based on this output value. The details will be described below.
  • control method in the CC operation mode of the first operation mode and the second operation mode and the CV control mode of the fourth operation mode in the present embodiment will be described using control blocks.
  • FIG. 39 is a control block diagram for generating the duty ratio of the switching element of the first converter circuit in the control circuit 25.
  • a subtractor 25101 calculates a voltage difference between a predetermined target DC voltage V link * of the DC link capacitor and a DC voltage V link of the DC link capacitor detected by the second voltage detector 26b. To do.
  • the target effective value I ac, rms * (25103) of the AC input current is obtained.
  • a sine wave (25104) having an amplitude value ⁇ 2 synchronized with the phase of the AC input voltage v ac. ) Is obtained.
  • the method of generating the sine wave (25,104) in synchronization with the phase of the AC input voltage v ac is not limited thereto.
  • the target sine wave current i ac * (25105) of the AC input current is obtained.
  • a subtractor 25106 calculates a current difference between the absolute value of the target sine wave current i ac * (25105) and the absolute value of the AC input current i ac detected by the first current detector 27a.
  • the calculated value is input to the proportional controller 25107, and the obtained output value is divided by the DC voltage V link of the DC link capacitor.
  • the adder 25108 adds the feedforward term 2503 of Equation 1 above to this division value, thereby outputting the duty ratio 25109 (Duty '— 201) of the switching element of the first converter circuit.
  • a proportional controller or integral controller may be used instead of the proportional-integral controller 25102, and an integral controller or proportional-integral controller may be used instead of the proportional controller 25107.
  • FIG. 40 is a control block diagram in which the control circuit 25 generates a gate signal for driving the switching element of the first converter circuit.
  • the duty ratio 25109 of the switching element of the first converter circuit obtained in FIG. 39 is smaller than the carrier wave 2506 (V car )
  • the output 25111 (Sig′_201a) of the comparator 25110 becomes High
  • the comparator 25112 The output 25113 (Sig′_201b) becomes Low.
  • the duty ratio 25109 of the switching element of the first converter circuit is larger than the carrier wave 2506 (V car )
  • the output 25111 (Sig ′ — 201a) of the comparator 25110 becomes Low
  • the output 25113 of the comparator 25112 (Sig ′ — 201b) becomes High.
  • FIG. 41 is a control block diagram for switching the gate signal of the switching element of the first converter circuit in the control circuit 25 in accordance with the polarity of the AC input voltage. If the AC input voltage v ac is positive polarity, the comparator 25114 outputs High. At this time, the multiplexer (MUX) 25115 outputs Sig′_201b (25113) as the gate signal Gate_201a (2513) of the switching element 201a of the first converter circuit. Also, the multiplexer (MUX) 25116 outputs Sig′_201a (25111) as the gate signal Gate_201b (2515) of the switching element 201b of the first converter circuit.
  • the multiplexer (MUX) 25117 outputs Low as the gate signal Gate_201c (2517) of the switching element 201c of the first converter circuit. Further, the multiplexer (MUX) 25118 outputs High as the gate signal Gate_201d (2519) of the switching element 201d of the first converter circuit.
  • the comparator 25114 When the AC input voltage v ac is negative, the comparator 25114 outputs Low. At this time, the multiplexer (MUX) 25115 outputs Sig′_201a (25111) as the gate signal Gate_201a (2513) of the switching element 201a of the first converter circuit. Further, the multiplexer (MUX) 25116 outputs Sig′_201b (25113) as the gate signal Gate_201b (2515) of the switching element 201b of the first converter circuit. Further, the multiplexer (MUX) 25117 outputs High as the gate signal Gate_201c (2517) of the switching element 201c of the first converter circuit.
  • the multiplexer (MUX) 25118 outputs Low as the gate signal Gate_201d (2519) of the switching element 201d of the first converter circuit. Thereby, compared with the case of Embodiment 1, it becomes possible to further improve the power factor of alternating current input, a harmonic is also suppressed, and noise reduction is attained.
  • the CC control mode in the second operation mode and the CV control mode in the fourth operation mode are the same as the CC control mode in the first operation mode of the present embodiment, and a description thereof will be omitted.
  • the second power conversion circuit 22 receives the fixed duty ratio or the fourth voltage detector 26d. generated output value to the DC output voltage V out resulting follow the target output voltage V out *, or the target DC voltage a DC voltage V int integrated DC capacitor obtained from the third voltage detector 26c
  • the on / off control of the switching elements 220a and 220b is performed based on any one of the output values generated so as to follow V int *.
  • the second power conversion circuit 22 receives the fixed duty ratio or the fourth voltage detector 26d.
  • a target output current I out * of the DC output current is generated from a calculated value calculated so that the obtained DC output voltage V out follows the target output voltage V out *, and obtained from the second current detector 27b.
  • the output value generated so that the DC output current I out follows the target output current I out * or the DC voltage V int of the DC capacitor for integration obtained from the third voltage detector 26c is the target DC voltage V int.
  • a control method for the CP control mode in the first operation mode in the present embodiment will be described.
  • the method for generating gate signals of the switching elements of the first converter circuit 201, the inverter circuit 203, the second converter circuit 205, and the third converter circuit 230 is the same as that in Embodiment 1, and therefore will be omitted.
  • a method for controlling the second power conversion circuit 22 will be described.
  • the third power conversion circuit 23 performs on / off control of the switching elements 230a to 230d so that the DC voltage V int of the integration DC capacitor follows the target DC voltage V int *, the second power conversion circuit 22
  • the switching element switches at a fixed duty ratio.
  • the method for generating the gate signal at this time is also the same as that in the first embodiment, and thus description thereof is omitted.
  • the control circuit 25 when controlling the voltage of the load 4, the control circuit 25 generates the duty ratio of the switching element of the second power conversion circuit 22 using the control block diagram of FIG.
  • a subtractor 25119 calculates a voltage difference between a predetermined target output voltage V out * of the load 4 and the DC output voltage V out of the load 4 detected by the fourth voltage detector 26d.
  • the target output current I out * (25121) is obtained.
  • a subtractor 25122 calculates a current difference between the obtained target output current I out * (25121) and the DC output current I out detected by the second current detector 27b.
  • the duty ratio 25124 (Duty'_220) of the switching element of the second power conversion circuit 22 is output.
  • a proportional controller or an integral controller may be used instead of the proportional-plus-integral controller 25120, and an integral controller or a proportional-integral controller may be used instead of the proportional controller 25123.
  • the control circuit 25 uses the control block diagram of FIG. 43 to determine the duty ratio of the switching element of the second power conversion circuit 22. Is generated.
  • the control circuit 25 subtracts a voltage difference between a predetermined target DC voltage V int * of the integration DC capacitor and a DC voltage V int of the integration DC capacitor detected by the third voltage detector 26c. Calculated by By inputting this calculated value to the proportional-plus-integral controller 25126, the target output current I out * (25127) is obtained. Further, a subtractor 25128 calculates a current difference between the obtained target output current I out * (25127) and the DC output current I out detected by the second current detector 27b.
  • the duty ratio 25124 (Duty'_220) of the switching element of the second power conversion circuit 22 is output.
  • a proportional controller or integral controller may be used instead of the proportional-integral controller 25126, and an integral controller or proportional-integral controller may be used instead of the proportional controller 25129.
  • FIG. 44 is a control block diagram for generating the gate signal of the switching element of the second power conversion circuit 22 in the control circuit 25.
  • the duty ratio 25124 (Duty'_220) of the switching element of the second power conversion circuit 22 obtained in FIG. 42 or FIG. 43 is smaller than the carrier wave 2506 (V car )
  • the output value 2544 of the comparator 25130 is High.
  • the output value 2546 of the comparator 25131 becomes Low.
  • the duty ratio 25124 (Duty '— 220) is larger than the carrier wave 2506 (V car )
  • the output value 2544 of the comparator 25130 is Low.
  • the output value 2546 of the comparator 25131 becomes High.
  • the output value 2544 of the comparator 25130 is output as the gate signal Gate_220a of the switching element 220a of the second power conversion circuit. Further, the output value 2546 of the comparator 25131 is output as the gate signal Gate_220b of the switching element 220b of the second power conversion circuit. This makes it possible to output a stable DC output current I out to the load side as compared with the case of the first embodiment.
  • the above is the control method in the CP control mode of the first operation mode according to the present embodiment. Further, the control method of the second power conversion circuit 22 in the CP control mode of the third operation mode according to the present embodiment is the same as the control method in the CP control mode of the first operation mode, and the description thereof is omitted.
  • the second power conversion circuit 22 uses the DC voltage V int of the integration DC capacitor obtained from the third voltage detector 26c as the target DC voltage. On / off control of the switching elements 220a and 220b is performed based on an output value generated so as to follow V int *.
  • the second power conversion circuit 22 uses the DC voltage V int of the integration DC capacitor obtained from the third voltage detector 26c as the target DC.
  • a target output current I out * is generated from the calculated value calculated to follow the voltage V int *, and the DC output current I out obtained from the second current detector 27b follows the target output current I out *.
  • On / off control of the switching elements 220a and 220b is performed based on the output value generated as described above.
  • a control method for the CP control mode in the second operation mode in the present embodiment will be described.
  • the method for generating the gate signals of the switching elements of the first converter circuit 201, the inverter circuit 203, and the second converter circuit 205 is the same as that in the first embodiment, and thus will be omitted.
  • a method for controlling the second power conversion circuit 22 will be described. 42, a predetermined target DC voltage V int * of the integration DC capacitor and a DC voltage V int of the integration DC capacitor detected by the third voltage detector 26c are determined. From the relationship, as described above, the target output current I out * (25127) is obtained. Furthermore, from the relationship between the obtained target output current I out * (25127) and the DC output current I out detected by the second current detector 27b, as described above, the switching of the second power conversion circuit 22 is performed. An element duty ratio 25124 (Duty'_220) is generated. Also, the duty ratio 25124 (Duty'_220) obtained in FIG. 42 and the carrier wave 2506 (Vcar) are compared using the control block diagram of FIG.
  • the gate signals Gate_220a (2544) and Gate_220b (2546) for driving the switching elements of the second power conversion circuit 220 are generated. This makes it possible to output a stable DC output current I out to the load side as compared with the case of the first embodiment.
  • the above is the control method in the CP control mode in the second operation mode according to the present embodiment.
  • the CC control mode in the third operation mode, the CP control mode in the fourth operation mode, and the CV control mode control methods in the fifth to eighth operation modes are the same as in the first embodiment. Description is omitted. The above is the description of the operation mode of the power conversion device according to the second embodiment. Note that the operation modes described in the first embodiment and the operation modes described in the second embodiment may be combined as appropriate.
  • the power conversion device according to the second embodiment of the present invention has the above-described configuration and operation, similarly to the power conversion device according to the first embodiment, the power reception device on the non-contact power feeding method side is low. Even if it exists, it becomes possible to supply electric power simultaneously without stopping any one of the electric power supply functions. Further, during the CC control mode operation in the first operation mode and the second operation mode, and in the CV control mode operation in the fourth operation mode, the DC voltage V link of the DC link capacitor obtained from the second voltage detector 26b is targeted. An AC input target sine wave current i ac * is generated from a calculated value calculated to follow the DC voltage V link *, and an AC input current i ac obtained from the first current detector 27a is generated. Since the first converter circuit 201 is controlled so as to follow the target sine wave current i ac *, the power factor of the AC input can be further improved as compared with the first embodiment. The harmonics are also suppressed, and noise can be reduced.
  • the second power conversion circuit 22 has a fixed duty ratio or an integration obtained from the third voltage detector 26c.
  • the target output current I out * is generated from the calculated value calculated so that the DC voltage V int of the DC capacitor follows the target DC voltage V int *, and the DC output current obtained from the second current detector 27b generated output value so as to follow the I out to the target output current I out *, based on the value of one of, performs on-off control of the switching elements 220a and 220b. This makes it possible to output a stable DC output current Iout to the load side.

Abstract

This electric power converting device is provided with a first electric power converting circuit which converts an alternating current voltage input from an alternating-current power source into a direct current voltage and outputs the same from another end, a second electric power converting circuit which controls a direct current voltage or a direct current supplied to a load, a third electric power converting circuit which receives electric power in a non-contact manner and converts the received alternating current voltage into a direct current voltage, an integrating direct current capacitor having one end connected to a positive electrode side of an integrating direct current bus bar and another end connected to a negative electrode side of the integrating direct current bus bar, and a control circuit which controls the first to third electric power converting circuits, wherein said other end of the first electric power converting circuit and the other end of the second electric power converting circuit are connected to the integrating direct current bus bar, and the third electric power converting circuit is connected to the integrating direct current bus bar, thereby achieving the objective of providing an electric power converting device with which it is possible for power to be supplied using either one or both of a contact power supply method and a non-contact power supply method.

Description

電力変換装置Power converter
 この発明は、有線方式(接触給電方式)による電力供給機能およびワイヤレス方式(非接触給電方式)による電力供給機能を有する電力変換装置に関する。 The present invention relates to a power conversion device having a power supply function by a wired method (contact power supply method) and a power supply function by a wireless method (contactless power supply method).
 近年、その有用性からワイヤレス給電を用いた電力変換装置が開発されており、例えば、電動車両に用いられる充電器への適用が検討されている。また、有線を用いた電力供給機能およびワイヤレスによる電力供給機能の両方を備える電力変換装置が検討されている(例えば、特許文献1参照)。この2つの機能を統合した従来の電力変換装置では、AC供給源から、主EMI(Electro-Magnetic Interference)フィルタおよび整流器と、PFC(Power Factor Correction)回路と、から構成される車両側有線経路と、車両パッドと、車両同調と、車両パッド減結合整流器と、出力フィルタと、から構成される車両側ワイヤレス経路と、が車載バルクキャパシタンスで結合され、絶縁DC-DC変換器を介してバッテリを充電する構成であった。 In recent years, a power conversion device using wireless power feeding has been developed because of its usefulness, and application to a charger used in, for example, an electric vehicle is being studied. In addition, a power conversion device having both a power supply function using wired and a power supply function using wireless has been studied (see, for example, Patent Document 1). In a conventional power conversion device that integrates these two functions, an AC supply source, a main EMI (Electro-Magnetic Interference) filter and a rectifier, and a PFC (Power-Factor-Correction) circuit are connected to the vehicle-side wired path. The vehicle side wireless path consisting of vehicle pad, vehicle tuning, vehicle pad decoupling rectifier, and output filter is coupled with in-vehicle bulk capacitance and charges the battery via an isolated DC-DC converter It was the composition to do.
特表2016-524890号公報Special table 2016-524890
 上記の特許文献1に記載される従来装置の構成は、AC供給源電圧が高い場合、接触給電方式側のPFCもしくは絶縁DC-DC変換器により、車載バルクキャパシタンス電圧を高電圧にする必要がある。このため、AC供給源電圧が高く、かつ非接触給電方式側の受電電圧が低い場合、接触給電方式側の電力供給機能を停止しなければならないという課題があった。 In the configuration of the conventional device described in Patent Document 1 described above, when the AC supply source voltage is high, the in-vehicle bulk capacitance voltage needs to be increased by a PFC or an insulating DC-DC converter on the contact power feeding method side. . For this reason, when the AC supply source voltage is high and the power reception voltage on the non-contact power supply method side is low, there is a problem that the power supply function on the contact power supply method side must be stopped.
 この発明は、上記のような課題を解決するためになされたものであり、有線(接触給電方式)による電力供給機能およびワイヤレス(非接触給電方式)による電力供給機能を有する電力変換装置において、非接触給電方式側の受電電圧が低い場合であっても、いずれかの電力供給機能を停止することなく、同時に電力供給を行うことが可能となる電力変換装置を得ることを目的とする。 The present invention has been made in order to solve the above-described problems. In a power converter having a power supply function using a wired (contact power supply method) and a power supply function using a wireless (non-contact power supply method), It is an object of the present invention to obtain a power conversion device that can supply power simultaneously without stopping any power supply function even when the power reception voltage on the contact power feeding method side is low.
 この発明に係る電力変換装置は、一端が交流電源に接続され、交流電源からの入力電圧を直流電圧へ変換する第1のコンバータ回路、第1のコンバータ回路により変換された直流電圧を交流電圧へ変換するインバータ回路、第1のコンバータ回路およびインバータ回路に接続された直流リンクコンデンサ、インバータ回路から入力される電圧を絶縁して2次側へ給電する絶縁トランス、絶縁トランスから入力される交流電圧を直流電圧へ変換し他端より出力する第2のコンバータ回路、を有する第1の電力変換回路と、一端が負荷に接続され、負荷に供給する直流電圧または直流電流を制御する第2の電力変換回路と、非接触送受電回路と磁気的に結合することにより、非接触で電力を送受電する送受電コイル、送受電コイルにより受電した交流電圧を直流電圧へ変換する第3のコンバータ回路、を有する第3の電力変換回路と、一端が統合用直流母線の正極側、他端が統合用直流母線の負極側に接続された統合用直流コンデンサと、第1~第3の電力変換回路を制御する制御回路と、を備え、第1の電力変換回路の他端および第2の電力変換回路の他端が統合用直流母線に接続されるとともに、第3の電力変換回路が統合用直流母線に接続されること、を特徴とする。 A power converter according to the present invention has a first converter circuit, one end of which is connected to an AC power supply and converts an input voltage from the AC power supply to a DC voltage, and the DC voltage converted by the first converter circuit is converted to an AC voltage. Inverter circuit to convert, first converter circuit and DC link capacitor connected to inverter circuit, insulation transformer that insulates voltage input from inverter circuit and supplies power to secondary side, AC voltage input from insulation transformer A first power conversion circuit having a second converter circuit that converts to a DC voltage and outputs from the other end; and a second power conversion that is connected to a load at one end and controls a DC voltage or a DC current supplied to the load Magnetically coupled to a circuit and a non-contact power transmission / reception circuit, the power is received by a power transmission / reception coil that transmits and receives power in a non-contact manner. A third power converter circuit having a third converter circuit for converting an AC voltage into a DC voltage, and one for integration, one end connected to the positive side of the DC bus for integration and the other side connected to the negative side of the DC bus for integration A DC capacitor and a control circuit for controlling the first to third power conversion circuits, wherein the other end of the first power conversion circuit and the other end of the second power conversion circuit are connected to the DC bus for integration. And a third power conversion circuit is connected to the integration DC bus.
 本発明によれば、接触給電方式側の出力部および非接触給電方式側の出力部を、コンデンサを介して主回路と接続しているため、非接触給電方式側の受電電圧が低い場合であっても、いずれかの電力供給機能を停止することなく、同時に電力供給を行うことが可能となる。 According to the present invention, since the output unit on the contact power supply method side and the output unit on the contactless power supply method side are connected to the main circuit via the capacitor, the received voltage on the contactless power supply method side is low. However, it is possible to simultaneously supply power without stopping any of the power supply functions.
この発明の実施の形態1に示す電力変換装置の構成図である。It is a block diagram of the power converter device shown in Embodiment 1 of this invention. この発明の実施の形態1に示す第2の電力変換回路の構成例である。It is an example of a structure of the 2nd power converter circuit shown in Embodiment 1 of this invention. この発明の実施の形態1に示す第2の電力変換回路の構成例である。It is an example of a structure of the 2nd power converter circuit shown in Embodiment 1 of this invention. この発明の実施の形態1に示す動作モードを切り替える為のフローチャートである。It is a flowchart for switching the operation mode shown in Embodiment 1 of this invention. この発明の実施の形態1に示す電力変換装置の電力フローの簡易説明図である。It is simple explanatory drawing of the electric power flow of the power converter device shown in Embodiment 1 of this invention. この発明の実施の形態1に示す電力変換装置の電力フローの簡易説明図である。It is simple explanatory drawing of the electric power flow of the power converter device shown in Embodiment 1 of this invention. この発明の実施の形態1に示す電力変換装置の電力フローの簡易説明図である。It is simple explanatory drawing of the electric power flow of the power converter device shown in Embodiment 1 of this invention. この発明の実施の形態1に示す電力変換装置の電力フローの簡易説明図である。It is simple explanatory drawing of the electric power flow of the power converter device shown in Embodiment 1 of this invention. この発明の実施の形態1に示す電力変換装置の電力フローの簡易説明図である。It is simple explanatory drawing of the electric power flow of the power converter device shown in Embodiment 1 of this invention. この発明の実施の形態1に示す電力変換装置の電力フローの簡易説明図である。It is simple explanatory drawing of the electric power flow of the power converter device shown in Embodiment 1 of this invention. この発明の実施の形態1に示す電力変換装置の電力フローの簡易説明図である。It is simple explanatory drawing of the electric power flow of the power converter device shown in Embodiment 1 of this invention. この発明の実施の形態1に示す電力変換装置の電力フローの簡易説明図である。It is simple explanatory drawing of the electric power flow of the power converter device shown in Embodiment 1 of this invention. この発明の実施の形態1に示す電力変換装置の各回路の制御方法をまとめた表である。It is the table | surface which put together the control method of each circuit of the power converter device shown in Embodiment 1 of this invention. この発明の実施の形態1に示す電力変換装置の制御ブロック図である。It is a control block diagram of the power converter device shown in Embodiment 1 of this invention. この発明の実施の形態1に示す電力変換装置の制御ブロック図である。It is a control block diagram of the power converter device shown in Embodiment 1 of this invention. この発明の実施の形態1に示す電力変換装置の制御ブロック図である。It is a control block diagram of the power converter device shown in Embodiment 1 of this invention. この発明の実施の形態1に示す電力変換装置の制御ブロック図である。It is a control block diagram of the power converter device shown in Embodiment 1 of this invention. この発明の実施の形態1に示す電力変換装置の制御ブロック図である。It is a control block diagram of the power converter device shown in Embodiment 1 of this invention. この発明の実施の形態1に示す電力変換装置の制御ブロック図である。It is a control block diagram of the power converter device shown in Embodiment 1 of this invention. この発明の実施の形態1に示す電力変換装置の制御ブロック図である。It is a control block diagram of the power converter device shown in Embodiment 1 of this invention. この発明の実施の形態1に示す電力変換装置の制御ブロック図である。It is a control block diagram of the power converter device shown in Embodiment 1 of this invention. この発明の実施の形態1に示す電力変換装置の制御ブロック図である。It is a control block diagram of the power converter device shown in Embodiment 1 of this invention. この発明の実施の形態1に示す電力変換装置の制御ブロック図である。It is a control block diagram of the power converter device shown in Embodiment 1 of this invention. この発明の実施の形態1に示す電力変換装置の制御ブロック図である。It is a control block diagram of the power converter device shown in Embodiment 1 of this invention. この発明の実施の形態1に示す電力変換装置の制御ブロック図である。It is a control block diagram of the power converter device shown in Embodiment 1 of this invention. この発明の実施の形態1に示す電力変換装置の制御ブロック図である。It is a control block diagram of the power converter device shown in Embodiment 1 of this invention. この発明の実施の形態1に示す電力変換装置の制御ブロック図である。It is a control block diagram of the power converter device shown in Embodiment 1 of this invention. この発明の実施の形態1に示す電力変換装置の制御ブロック図である。It is a control block diagram of the power converter device shown in Embodiment 1 of this invention. この発明の実施の形態1に示す電力変換装置の制御ブロック図である。It is a control block diagram of the power converter device shown in Embodiment 1 of this invention. この発明の実施の形態1に示す電力変換装置の制御ブロック図である。It is a control block diagram of the power converter device shown in Embodiment 1 of this invention. この発明の実施の形態1に示す電力変換装置の制御ブロック図である。It is a control block diagram of the power converter device shown in Embodiment 1 of this invention. この発明の実施の形態1に示す電力変換装置の制御ブロック図である。It is a control block diagram of the power converter device shown in Embodiment 1 of this invention. この発明の実施の形態1に示す電力変換装置の制御ブロック図である。It is a control block diagram of the power converter device shown in Embodiment 1 of this invention. この発明の実施の形態1に示す電力変換装置の制御ブロック図である。It is a control block diagram of the power converter device shown in Embodiment 1 of this invention. この発明の実施の形態1に示す電力変換装置の制御ブロック図である。It is a control block diagram of the power converter device shown in Embodiment 1 of this invention. この発明の実施の形態1に示す電力変換装置の制御ブロック図である。It is a control block diagram of the power converter device shown in Embodiment 1 of this invention. この発明の実施の形態1に示す電力変換装置の制御ブロック図である。It is a control block diagram of the power converter device shown in Embodiment 1 of this invention. この発明の実施の形態1に示す電力変換装置の制御ブロック図である。It is a control block diagram of the power converter device shown in Embodiment 1 of this invention. この発明の実施の形態2に示す電力変換装置の制御ブロック図である。It is a control block diagram of the power converter device shown in Embodiment 2 of this invention. この発明の実施の形態2に示す電力変換装置の制御ブロック図である。It is a control block diagram of the power converter device shown in Embodiment 2 of this invention. この発明の実施の形態2に示す電力変換装置の制御ブロック図である。It is a control block diagram of the power converter device shown in Embodiment 2 of this invention. この発明の実施の形態2に示す電力変換装置の制御ブロック図である。It is a control block diagram of the power converter device shown in Embodiment 2 of this invention. この発明の実施の形態2に示す電力変換装置の制御ブロック図である。It is a control block diagram of the power converter device shown in Embodiment 2 of this invention. この発明の実施の形態2に示す電力変換装置の制御ブロック図である。It is a control block diagram of the power converter device shown in Embodiment 2 of this invention.
実施の形態1.
 本発明の実施の形態1に係る電力変換装置について図面を参照して説明する。図1は、本発明の実施の形態1に係る電力変換装置を含む電源システムの構成を示す回路図である。図面および以下の説明において、同一または同様の構成要素を示す場合には同一の符号を付すものとする。
Embodiment 1 FIG.
A power converter according to Embodiment 1 of the present invention will be described with reference to the drawings. FIG. 1 is a circuit diagram showing a configuration of a power supply system including a power conversion device according to Embodiment 1 of the present invention. In the drawings and the following description, the same or similar components are denoted by the same reference numerals.
 本発明の実施の形態1に示す電源システムは、交流電源1、電力変換装置2、非接触送受電回路3、および負荷4を備えている。交流電源1は、電力変換装置2および非接触送受電回路3に接続されており、負荷4は、電力変換装置2と接続されている。また、電力変換装置2は、有線方式(接触給電方式)で交流電源1と接続されているのに対し、非接触送受電回路3とは、ワイヤレス方式(非接触給電方式)により電力変換装置2に接続され、双方向に電力供給可能な構成となっている。本電源システムは、例えば、電動車両の充電器を中心とした電源システムに適用されるもので、交流電源1は商用交流系統や自家発電機などであり、負荷4には車両走行用の高圧バッテリや、車両電装品の電源である鉛バッテリを適用可能である。なお、交流電源1や負荷4が上記のものに限定されるものでないことはいうまでもない。 The power supply system shown in Embodiment 1 of the present invention includes an AC power supply 1, a power conversion device 2, a non-contact power transmission / reception circuit 3, and a load 4. The AC power source 1 is connected to the power converter 2 and the non-contact power transmission / reception circuit 3, and the load 4 is connected to the power converter 2. The power conversion device 2 is connected to the AC power supply 1 by a wired method (contact power supply method), while the non-contact power transmission / reception circuit 3 is a power conversion device 2 by a wireless method (non-contact power supply method). And is configured to be able to supply power in both directions. This power supply system is applied to, for example, a power supply system centered on a charger of an electric vehicle. The AC power supply 1 is a commercial AC system, a private generator, etc., and a load 4 is a high-voltage battery for vehicle travel. In addition, a lead battery which is a power source for vehicle electrical components can be applied. Needless to say, the AC power supply 1 and the load 4 are not limited to those described above.
 電力変換装置2は、一端が交流電源1に接続された第1の電力変換回路20、統合用直流コンデンサ21、一端が負荷4に接続された第2の電力変換回路22、非接触送受電回路3と磁気的に結合可能な第3の電力変換回路23、および第1~第3の電力変換回路を制御する制御回路25を備えている。第1の電力変換回路20および第2の電力変換回路22は、統合用直流母線24を介して接続されており、統合用直流コンデンサ21および第3の電力変換回路23も、この統合用直流母線24に接続されている。なお、ここでは、交流電源1または非接触送受電回路3から負荷4へ電力供給する方向を順方向と称し、負荷側から交流電源1または非接触送受電回路3側に電力供給する方向を逆方向と称することとする。 The power conversion device 2 includes a first power conversion circuit 20 having one end connected to the AC power source 1, a DC capacitor for integration 21, a second power conversion circuit 22 having one end connected to the load 4, and a non-contact power transmission / reception circuit 3 includes a third power conversion circuit 23 that can be magnetically coupled to the control circuit 3 and a control circuit 25 that controls the first to third power conversion circuits. The first power conversion circuit 20 and the second power conversion circuit 22 are connected via an integration DC bus 24, and the integration DC capacitor 21 and the third power conversion circuit 23 are also integrated DC bus. 24. Here, the direction in which power is supplied from the AC power source 1 or the non-contact power transmission / reception circuit 3 to the load 4 is referred to as the forward direction, and the direction in which power is supplied from the load side to the AC power source 1 or the non-contact power transmission / reception circuit 3 side is reversed. It shall be called a direction.
 なお、第3の電力変換回路23および統合用直流コンデンサ21の統合用直流母線24との接続位置は、図1に示すものに限定されない。すなわち、図1に示す電力変換装置2では、第3の電力変換回路23の出力端子は、統合用直流コンデンサ21と統合用直流母線24との接続点より交流電源1側に接続されているが、第3の電力変換回路23の出力端子が負荷4側に接続されていてもよい。 The connection position of the third power conversion circuit 23 and the integration DC capacitor 21 with the integration DC bus 24 is not limited to that shown in FIG. That is, in the power conversion device 2 shown in FIG. 1, the output terminal of the third power conversion circuit 23 is connected to the AC power supply 1 side from the connection point between the integration DC capacitor 21 and the integration DC bus 24. The output terminal of the third power conversion circuit 23 may be connected to the load 4 side.
 第1の電力変換回路20は、第1のコンバータ回路201、直流リンクコンデンサ202、インバータ回路203、絶縁トランス204および第2のコンバータ回路205を備えている。また、第1の電力変換回路20は、一端が交流電源1に、他端が統合用直流母線24を介して第2の電力変換回路22に接続され、交流電源1から入力される入力電圧を所定の直流電圧に電力変換し、統合用直流母線24に出力する。第1の電力変換回路20は、交流電源1とケーブルやコネクタ等で物理的に接続されており、有線方式(接触給電方式)により交流電源1との電力供給が行われる。 The first power conversion circuit 20 includes a first converter circuit 201, a DC link capacitor 202, an inverter circuit 203, an insulating transformer 204, and a second converter circuit 205. The first power conversion circuit 20 has one end connected to the AC power source 1 and the other end connected to the second power conversion circuit 22 via the integration DC bus 24, and receives an input voltage input from the AC power source 1. The power is converted into a predetermined DC voltage and output to the integration DC bus 24. The first power conversion circuit 20 is physically connected to the AC power supply 1 by a cable, a connector, or the like, and power is supplied to the AC power supply 1 by a wired method (contact power supply method).
 第1のコンバータ回路201は、スイッチング素子201a~201dおよび交流リアクトル201e、201fを備えており、スイッチング素子201a~201dはフルブリッジ型に接続されている。交流リアクトル201eの一端は交流電源1と接続されており、他端はスイッチング素子201aとスイッチング素子201bとの接続点に接続されている。また、交流リアクトル201fの一端は交流電源1と接続されており、他端はスイッチング素子201cとスイッチング素子201dとの接続点に接続されている。 The first converter circuit 201 includes switching elements 201a to 201d and AC reactors 201e and 201f, and the switching elements 201a to 201d are connected in a full bridge type. One end of the AC reactor 201e is connected to the AC power source 1, and the other end is connected to a connection point between the switching element 201a and the switching element 201b. One end of the AC reactor 201f is connected to the AC power source 1, and the other end is connected to a connection point between the switching element 201c and the switching element 201d.
 第1のコンバータ回路201は、制御回路25からの指令に基づいて、交流入力電流iacが目標正弦波電流iac*に追従するよう、スイッチング素子201a~201dのデューティ比(オン時間)を制御する機能を有する。また、制御回路25からの指令に基づいて、直流リンクコンデンサ202の直流電圧Vlinkを目標直流電圧Vlink*に追従するように、スイッチング素子201a~201dのデューティ比(オン時間)を制御する機能を有する。なお、スイッチング素子のデューティ比を制御する他、位相シフト量やスイッチング周波数を制御しても良い。 The first converter circuit 201 controls the duty ratios (ON time) of the switching elements 201a to 201d so that the AC input current i ac follows the target sine wave current i ac * based on a command from the control circuit 25. It has the function to do. Further, based on a command from the control circuit 25, a function of controlling the duty ratios (ON time) of the switching elements 201a to 201d so that the DC voltage V link of the DC link capacitor 202 follows the target DC voltage V link *. Have In addition to controlling the duty ratio of the switching element, the phase shift amount and the switching frequency may be controlled.
 図1に示す電力変換装置では、交流リアクトル201e,201fを交流両極側にそれぞれ接続しているが、片極側のみに接続しても良い。すなわち、交流リアクトル201e,201fのいずれか一方のみを用いる構成としてもよい。また、スイッチング素子201a~201dは、IGBT(Insulated Gate Bipolar Transistor)や、MOSFET(Metal Oxide Semiconductor Field Effect Transistor)に限らず、SiC(Silicon Carbide)-MOSFETや、GaN(Gallium Nitride)-FET(Field Effect Transistor)、GaN-HEMT(High Electron Mobility Transistor)を用いてもよい。 In the power conversion device shown in FIG. 1, the AC reactors 201e and 201f are connected to the AC bipolar side, respectively, but may be connected to only one side. In other words, only one of AC reactors 201e and 201f may be used. The switching elements 201a to 201d are not limited to IGBT (Insulated Gate Bipolar Transistor) or MOSFET (Metal Oxide Semiconductor Semiconductor Field Effect Transistor), but also SiC (Silicon Carbon) -MOSFET, GaN (Gallium Nitride) -FET (Field Effect). Transistor) or GaN-HEMT (High-Electron-Mobility-Transistor) may be used.
 直流リンクコンデンサ202は、第1のコンバータ回路201とインバータ回路203との間に設けられている。直流リンクコンデンサ202の一端は、第1のコンバータ回路201とインバータ回路203とを接続する直流母線の正極側に接続されており、他端はこの直流母線の負極側に接続される構成となっている。 The DC link capacitor 202 is provided between the first converter circuit 201 and the inverter circuit 203. One end of the DC link capacitor 202 is connected to the positive side of the DC bus connecting the first converter circuit 201 and the inverter circuit 203, and the other end is connected to the negative side of the DC bus. Yes.
 インバータ回路203は、スイッチング素子203a~203dを備えており、スイッチング素子203a~203dはフルブリッジ型に構成されている。また、インバータ回路203の直流側の端子は、第1のコンバータ回路201および直流リンクコンデンサ202と、直流母線で接続されており、交流側の端子は絶縁トランス204と接続されている。すなわち、直列接続されるスイッチング素子203aとスイッチング素子203bとの接続点が絶縁トランス204の第1端に接続され、直列接続されるスイッチング素子203cと、スイッチング素子203dとの接続点に絶縁トランス204の第2端に接続される。 The inverter circuit 203 includes switching elements 203a to 203d, and the switching elements 203a to 203d are configured as a full bridge type. Further, the DC side terminal of the inverter circuit 203 is connected to the first converter circuit 201 and the DC link capacitor 202 by a DC bus, and the AC side terminal is connected to the insulating transformer 204. That is, the connection point between the switching element 203a and the switching element 203b connected in series is connected to the first end of the isolation transformer 204, and the connection point of the switching element 203c and the switching element 203d connected in series is connected to the isolation transformer 204. Connected to the second end.
 絶縁トランス204は、互いに磁気的に結合する2つの巻線を備えており、第1端および第2端に接続される巻線を1次側巻線と称する。また、第3端および第4端に接続される巻線を2次側巻線と称する。 The insulating transformer 204 includes two windings that are magnetically coupled to each other, and a winding connected to the first end and the second end is referred to as a primary side winding. The winding connected to the third end and the fourth end is referred to as a secondary winding.
 第2のコンバータ回路205は、フルブリッジ型に構成されたスイッチング素子205a~205dと、第1の直流コンデンサ205eから構成される。直列接続されたスイッチング素子205aとスイッチング素子205bとの接続点が、絶縁トランス204の第3端に接続され、直列接続されたスイッチング素子205cとスイッチング素子205dとの接続点が絶縁トランス204の第4端に接続される。 The second converter circuit 205 includes switching elements 205a to 205d configured as a full bridge type and a first DC capacitor 205e. A connection point between the switching element 205a and the switching element 205b connected in series is connected to the third end of the isolation transformer 204, and a connection point between the switching element 205c and the switching element 205d connected in series is a fourth point of the isolation transformer 204. Connected to the end.
 また、以下の説明において、インバータ回路203と、絶縁トランス204と、第2のコンバータ回路205と、を総じて絶縁型コンバータ回路と称する場合がある。絶縁型コンバータ回路は、制御回路25からの指令に基づいて、直流リンクコンデンサ202の直流電圧Vlinkを目標直流電圧Vlink*に追従させるように、スイッチング素子203a~203dおよびスイッチング素子205a~205dのデューティ比(オン時間)を制御する機能を有する。また、絶縁型コンバータ回路は、制御回路25からの指令に基づいて、統合用直流コンデンサ21の直流電圧Vintを目標直流電圧Vint*に追従するように、スイッチング素子203a~203dおよびスイッチング素子205a~205dのデューティ比(オン時間)を制御する機能を有する。なお、スイッチング素子のデューティ比を制御する他、位相シフト量やスイッチング周波数を制御しても良い。 In the following description, the inverter circuit 203, the insulating transformer 204, and the second converter circuit 205 may be collectively referred to as an insulating converter circuit. Based on a command from the control circuit 25, the isolated converter circuit causes the switching elements 203a to 203d and the switching elements 205a to 205d to follow the DC voltage V link of the DC link capacitor 202 to the target DC voltage V link *. It has a function of controlling the duty ratio (ON time). Further, the isolated converter circuit, based on a command from the control circuit 25, switches the switching elements 203a to 203d and the switching element 205a so that the DC voltage V int of the integrating DC capacitor 21 follows the target DC voltage V int *. It has a function of controlling a duty ratio (ON time) of .about.205d. In addition to controlling the duty ratio of the switching element, the phase shift amount and the switching frequency may be controlled.
 また、図1の絶縁型コンバータ回路の1次側もしくは2次側巻線に対して、直列もしくは並列にインダクタやコンデンサを接続することで、低損失なソフトスイッチング動作も可能である。このとき、インダクタは外付けでも良いし、絶縁トランス204の漏洩インダクタンスや励磁インダクタンスを用いても良い。スイッチング素子203a~203dおよび、スイッチング素子205a~205dは、IGBTや、MOSFETに限らず、SiC-MOSFETや、GaN-FET、GaN-HEMTを用いても良い。 Also, a low-loss soft switching operation is possible by connecting an inductor or a capacitor in series or in parallel to the primary side or secondary side winding of the isolated converter circuit of FIG. At this time, the inductor may be externally attached, or the leakage inductance or exciting inductance of the insulating transformer 204 may be used. The switching elements 203a to 203d and the switching elements 205a to 205d are not limited to IGBTs and MOSFETs, and SiC-MOSFETs, GaN-FETs, and GaN-HEMTs may be used.
 本実施の形態に係る電力変換装置は、第1の電力変換回路20に絶縁型コンバータ回路を用いているため、絶縁トランスを構成要素としない非絶縁型コンバータ回路を用いた場合と比べ、装置の信頼性を高めることができる。すなわち、第1の電力変換回路20と、第2の電力変換回路22と、第3の電力変換回路23が同時に動作して負荷に電力供給を行っている間に、第2のコンバータ回路205と、第3のコンバータ回路230と、第2の電力変換回路22のいずれかが故障しても、本電力変換装置は第1の電力変換回路20の絶縁トランス204と、第3の電力変換回路23の非接触送受電コイル231により、交流入力側と負荷側が電気的に絶縁されているため、交流入力側に影響を与えることがない。また、第1のコンバータ回路201と、インバータ回路203とのいずれかが故障した場合においても同様に、絶縁トランス204と非接触送受電コイル231により、交流入力側と負荷側が電気的に絶縁されているため、バッテリの故障する可能性を小さくすることができる。 Since the power conversion device according to the present embodiment uses an isolated converter circuit for the first power conversion circuit 20, compared with the case where a non-insulated converter circuit that does not include an insulation transformer is used, Reliability can be increased. That is, while the first power conversion circuit 20, the second power conversion circuit 22, and the third power conversion circuit 23 operate simultaneously to supply power to the load, the second converter circuit 205 Even if any of the third converter circuit 230 and the second power conversion circuit 22 fails, the power conversion apparatus is provided with the insulating transformer 204 of the first power conversion circuit 20 and the third power conversion circuit 23. Since the AC input side and the load side are electrically insulated by the non-contact power transmission / reception coil 231, the AC input side is not affected. Similarly, when either the first converter circuit 201 or the inverter circuit 203 fails, the AC input side and the load side are electrically insulated by the insulating transformer 204 and the non-contact power transmission / reception coil 231. Therefore, the possibility of battery failure can be reduced.
 第2の電力変換回路22は、第1の電力変換回路20、第3の電力変換回路23、および統合用直流コンデンサ21と、統合用直流母線24の正極、負極により接続されている。また、第2の電力変換回路22は、スイッチング素子220a~220bと、直流リアクトル220cと、直流出力コンデンサ220dを備え、降圧型チョッパ構成となっている。スイッチング素子220aは、一端が統合用直流母線の正極側に接続され、他端が直流リアクトル220cと接続されている。スイッチング素子220bは一端が、スイッチング素子220aと直流リアクトル220cとの接続点に接続され、他端が統合用直流母線の負極側に接続されている。また、直流出力コンデンサ220dは、一端が直流リアクトル220cと出力端子との間に接続され、他端が統合用直流母線の負極側に接続されている。 The second power conversion circuit 22 is connected to the first power conversion circuit 20, the third power conversion circuit 23, and the integration DC capacitor 21 by the positive and negative electrodes of the integration DC bus 24. The second power conversion circuit 22 includes switching elements 220a to 220b, a DC reactor 220c, and a DC output capacitor 220d, and has a step-down chopper configuration. The switching element 220a has one end connected to the positive side of the integration DC bus and the other end connected to the DC reactor 220c. The switching element 220b has one end connected to a connection point between the switching element 220a and the DC reactor 220c, and the other end connected to the negative electrode side of the integration DC bus. The DC output capacitor 220d has one end connected between the DC reactor 220c and the output terminal, and the other end connected to the negative electrode side of the integration DC bus.
 第2の電力変換回路22は、制御回路25からの指令に基づいて、統合用直流コンデンサ21の直流電圧Vintを目標直流電圧Vint*に追従するようにスイッチング素子220a~220bのデューティ比(オン時間)を制御する機能を有する。また、直流出力電流Ioutを目標出力電流Iout*に追従するようにスイッチング素子220a~220bのデューティ比(オン時間)を制御回路25により制御する機能を有する。なお、スイッチング素子のデューティ比を制御する他、位相シフト量やスイッチング周波数を制御しても良い。また、スイッチング素子220a~220bは、IGBTや、MOSFETに限らず、SiC-MOSFETや、GaN-FET、GaN-HEMTを用いても良い。 Based on a command from the control circuit 25, the second power conversion circuit 22 sets the duty ratios of the switching elements 220a to 220b so that the DC voltage V int of the integrating DC capacitor 21 follows the target DC voltage V int *. On-time). In addition, the control circuit 25 controls the duty ratio (ON time) of the switching elements 220a to 220b so that the DC output current Iout follows the target output current Iout *. In addition to controlling the duty ratio of the switching element, the phase shift amount and the switching frequency may be controlled. The switching elements 220a to 220b are not limited to IGBTs and MOSFETs, but may be SiC-MOSFETs, GaN-FETs, or GaN-HEMTs.
 図1に記載している第2の電力変換回路22は降圧型チョッパ構成としているが、昇圧型チョッパ構成や昇降圧型チョッパ構成、もしくは絶縁型コンバータ構成としても良い。さらに、第2の電力変換回路22の構成は図1のみの構成に限らず、図2に示すように2つのスイッチング素子から構成されるレグとリアクトルを複数接続した多層インターリーブ構成にすることも可能であり、単純な多並列構成にしても良い。多相インターリーブ構成にすると、スイッチング素子や直流リアクトルの1つ当たりに流入する電流量が低減することで導通損失が軽減できることに加え、出力側コンデンサの電流リプルが低減するため、コンデンサの長寿命化や小型化を実現できる。 Although the second power conversion circuit 22 shown in FIG. 1 has a step-down chopper configuration, it may have a step-up chopper configuration, a step-up / step-down chopper configuration, or an isolated converter configuration. Further, the configuration of the second power conversion circuit 22 is not limited to the configuration of FIG. 1 alone, and a multi-layer interleaved configuration in which a plurality of legs and reactors composed of two switching elements are connected as shown in FIG. Therefore, a simple multi-parallel configuration may be used. Multi-phase interleaved configuration reduces the amount of current flowing into each switching element and DC reactor, reducing conduction loss and reducing the current ripple on the output capacitor, extending the life of the capacitor. And downsizing can be realized.
 第3の電力変換回路23は、第3のコンバータ回路230と、第2の直流コンデンサ232と、非接触送受電コイル231と、を備えている。第3のコンバータ回路230は、フルブリッジ型に構成されたスイッチング素子230a~230dを備えている。スイッチング素子230aと、スイッチング素子230bと、が直列接続される接続点が非接触送受電コイル231の第1端に接続され、スイッチング素子230cと、スイッチング素子230dと、が直列接続される接続点に非接触送受電コイル231の第2端に接続される。非接触送受電コイル231は、非接触送受電回路と磁気的に結合することにより、非接触で電力を受電する。第3の電力変換回路23は、絶縁型コンバータ回路もしくは第2の電力変換回路の代わりに、スイッチング素子230a~230dのデューティ比(オン時間)を制御回路25により制御することで、統合用直流コンデンサ21の直流電圧Vintを目標直流電圧Vint*に追従させる機能を有する。なお、スイッチング素子230a~230dは、IGBTや、MOSFETに限らず、SiC-MOSFETや、GaN-FET、GaN-HEMTを用いても良い。また、非接触送受電コイル231に対して直列、もしくは並列にコンデンサを接続しても良い。 The third power conversion circuit 23 includes a third converter circuit 230, a second DC capacitor 232, and a non-contact power transmission / reception coil 231. The third converter circuit 230 includes switching elements 230a to 230d configured in a full bridge type. A connection point where the switching element 230a and the switching element 230b are connected in series is connected to a first end of the non-contact power transmission and reception coil 231, and a connection point where the switching element 230c and the switching element 230d are connected in series. It is connected to the second end of the non-contact power transmission / reception coil 231. The non-contact power transmission / reception coil 231 receives power in a non-contact manner by being magnetically coupled to a non-contact power transmission / reception circuit. The third power conversion circuit 23 uses the control circuit 25 to control the duty ratio (on time) of the switching elements 230a to 230d instead of the isolated converter circuit or the second power conversion circuit. 21 has a function of causing the DC voltage V int of 21 to follow the target DC voltage V int *. The switching elements 230a to 230d are not limited to IGBTs and MOSFETs, but may be SiC-MOSFETs, GaN-FETs, or GaN-HEMTs. Further, a capacitor may be connected in series or in parallel to the non-contact power transmission / reception coil 231.
 統合用直流コンデンサ21は、一端が統合用直流母線24の正極側、他端が統合用直流母線24の負極側に接続された直流コンデンサである。図1に示すように、接触給電方式により電力供給を行う第1の電力変換回路からの入力電力と、非接触給電方式により電力供給を行う第3の電力変換回路からの入力電力を統合用直流コンデンサで統合するような構成となっている。なお、図1に示す電源システムでは、統合用直流コンデンサ21は1つのコンデンサを用いた場合について示したが、複数のコンデンサを用いて多並列多直列構成としてもよい。例えば、図3のように、同容量の2つコンデンサ21a,21bを直列接続することにより統合用直流コンデンサ21として動作させる場合、負荷4と接続され、コンデンサ21aと21bとの接続点(中性点電位)を用いたハーフブリッジ構成にしても良い。 The integration DC capacitor 21 is a DC capacitor having one end connected to the positive electrode side of the integration DC bus 24 and the other end connected to the negative electrode side of the integration DC bus 24. As shown in FIG. 1, the input power from the first power conversion circuit that supplies power by the contact power supply method and the input power from the third power conversion circuit that supplies power by the non-contact power supply method are integrated DC. It is configured to integrate with a capacitor. In the power supply system shown in FIG. 1, the integration DC capacitor 21 is shown as a single capacitor, but a multi-parallel multi-series configuration may be used by using a plurality of capacitors. For example, as shown in FIG. 3, when two capacitors 21a and 21b having the same capacity are connected in series to operate as an integration DC capacitor 21, it is connected to the load 4 and is connected to the capacitor 21a and 21b (neutral point). A half-bridge configuration using a point potential may be used.
 本発明の電力変換装置2は、第1~第4の電圧検出器26a~26dと、第1~第2の電流検出器27a~27bと、を備えている。第1の電圧検出器26aは、交流電源1より第1の電力変換回路20に入力される交流入力電圧vacを検出し、第2の電圧検出器26bは、直流リンクコンデンサ202の直流電圧Vlinkを検出する。また、第3の電圧検出器26cは、統合用直流コンデンサ21の直流電圧Vintを検出し、第4の電圧検出器26dは、負荷4へ出力する直流出力電圧を検出する。図1に示す例においては、第4の電圧検出器26dは、第2の電力変換回路22の構成要素である直流出力コンデンサ220dの直流出力電圧Voutを検出する。 The power conversion apparatus 2 of the present invention includes first to fourth voltage detectors 26a to 26d and first to second current detectors 27a to 27b. The first voltage detector 26 a detects the AC input voltage vac input from the AC power supply 1 to the first power conversion circuit 20, and the second voltage detector 26 b detects the DC voltage V of the DC link capacitor 202. Link is detected. The third voltage detector 26 c detects the DC voltage V int of the integration DC capacitor 21, and the fourth voltage detector 26 d detects the DC output voltage output to the load 4. In the example illustrated in FIG. 1, the fourth voltage detector 26 d detects the DC output voltage V out of the DC output capacitor 220 d that is a component of the second power conversion circuit 22.
 第1の電流検出器27aは、交流電源1より第1の電力変換回路に入力される交流入力電流iacを検出する。図1に示す例では、第1の電流検出器27aは、第1の電力変換回路20の構成要素である交流リアクトル201eに流れる電流を検出する。第2の電流検出器27bは、負荷4へ出力する直流出力電流Ioutを検出する。図1に示す例では、第2の電流検出器27bは、第2の電力変換回路22の構成要素である直流リアクトル220cの電流ioutを検出する。各検出器は、それぞれの電圧と電流の検出値を制御回路25へ入力し、制御回路25においてこれらの検出値に基づいて演算を行う。これらの演算結果を、スイッチング素子201a~201d、スイッチング素子203a~203d、スイッチング素子205a~205d、スイッチング素子220a~220b、スイッチング素子230a~230dのゲート端子へそれぞれ出力する。 The first current detector 27a detects an AC input current i ac input from the AC power source 1 to the first power conversion circuit. In the example illustrated in FIG. 1, the first current detector 27 a detects a current flowing through the AC reactor 201 e that is a component of the first power conversion circuit 20. The second current detector 27 b detects the DC output current I out output to the load 4. In the example illustrated in FIG. 1, the second current detector 27 b detects the current i out of the DC reactor 220 c that is a component of the second power conversion circuit 22. Each detector inputs the detected value of each voltage and current to the control circuit 25, and the control circuit 25 performs an operation based on these detected values. These calculation results are output to the gate terminals of the switching elements 201a to 201d, the switching elements 203a to 203d, the switching elements 205a to 205d, the switching elements 220a to 220b, and the switching elements 230a to 230d, respectively.
 制御回路25は、第1~第3の電力変換回路を制御可能であり、各電力変換回路が備えるスイッチング素子の制御を行う。すなわち、制御回路25は、第1~第4の電圧検出器26a~26d、および、第1~第2の電流検出器27a~27bの検出結果の一部または全部に基づいて、第1~第3の電力変換回路が有する各スイッチング素子に対して駆動信号を送信し、スイッチング素子のオンオフを制御することにより所望の動作を行うことができる。以下に、順方向動作時と逆方向動作時の制御回路25の役割について説明する。 The control circuit 25 can control the first to third power conversion circuits and controls the switching elements included in each power conversion circuit. That is, the control circuit 25 performs the first to fourth voltage detectors 26a to 26d and the first to fourth voltage detectors 26a to 26d and the first to second current detectors 27a to 27b based on part or all of the detection results. A drive signal is transmitted to each switching element included in the power conversion circuit 3 and a desired operation can be performed by controlling on / off of the switching element. The role of the control circuit 25 during forward operation and reverse operation will be described below.
 順方向動作時における制御回路25の役割を説明する。順方向動作時において、制御回路25は、力率の値が1となるように、交流入力電流iacを制御するための各スイッチング素子のデューティ比を演算する。具体的には、交流入力電圧vacと同期した正弦波状の予め定められた電流指令(目標正弦波電流)iac*と、第1の電流検出器により検出された交流入力電流iacとの電流差を算出する。算出した電流差をフィードバック量として、PI制御により出力を演算する。直流リンクコンデンサ202の直流電圧Vlinkについては、予め定められた電圧指令(直流リンクコンデンサの目標直流電圧)Vlink*と、第2の電圧検出器26bから得られた直流リンクコンデンサ202の直流電圧Vlinkとの電圧差を算出する。算出した電圧差をフィードバック量として、PI制御により出力を演算する。 The role of the control circuit 25 during forward operation will be described. During forward operation, the control circuit 25 calculates the duty ratio of each switching element for controlling the AC input current i ac so that the value of the power factor becomes 1. Specifically, a sinusoidal predetermined current command (target sine wave current) i ac * synchronized with the AC input voltage v ac and the AC input current i ac detected by the first current detector. Calculate the current difference. The output is calculated by PI control using the calculated current difference as a feedback amount. Regarding the DC voltage V link of the DC link capacitor 202, a predetermined voltage command (target DC voltage of the DC link capacitor) V link * and the DC voltage of the DC link capacitor 202 obtained from the second voltage detector 26b. The voltage difference from V link is calculated. The output is calculated by PI control using the calculated voltage difference as a feedback amount.
 また、順方向動作時において、制御回路25は、統合用直流コンデンサの直流電圧Vintおよび直流出力電圧Voutの制御を行う。具体的には、制御回路25は、予め定められた電圧指令(統合用直流コンデンサの目標直流電圧)Vint*と、第3の電圧検出器26cから得られた統合用直流コンデンサ21の直流電圧Vintとの電圧差を算出し、算出した電圧差をフィードバック量として、PI制御により出力を演算する。直流出力電圧Voutについては、制御回路25は、予め定められた電圧指令(目標出力電圧)Vout*と、第4の電圧検出器26dから得られた直流出力電圧Voutとの電圧差を算出する。算出した電圧差をフィードバック量として、PI制御により出力を演算する。直流出力電流Ioutについては、予め定められた電流指令(目標出力電流)Iout*と、第2の電流検出器27bから得られた直流出力電流Ioutとの電圧差を算出する。算出した電圧差をフィードバック量として、PI制御により出力を演算する。 During forward operation, the control circuit 25 controls the DC voltage V int and the DC output voltage V out of the integration DC capacitor. Specifically, the control circuit 25 determines a predetermined voltage command (target DC voltage of the integration DC capacitor) V int * and the DC voltage of the integration DC capacitor 21 obtained from the third voltage detector 26c. A voltage difference from V int is calculated, and the output is calculated by PI control using the calculated voltage difference as a feedback amount. For the DC output voltage Vout , the control circuit 25 calculates a voltage difference between a predetermined voltage command (target output voltage) Vout * and the DC output voltage Vout obtained from the fourth voltage detector 26d. calculate. The output is calculated by PI control using the calculated voltage difference as a feedback amount. The DC output current I out, is calculated with a predetermined current command (target output current) I out *, the voltage difference between the DC output current I out obtained from the second current detector 27b. The output is calculated by PI control using the calculated voltage difference as a feedback amount.
 次に、逆方向動作時の制御回路25の役割を説明する。統合用直流コンデンサの直流電圧Vintについては、予め定められた電圧指令(統合用直流コンデンサの目標直流電圧)Vint*と、第3の電圧検出器26cから得られた統合用直流コンデンサ21の直流電圧Vintとの電圧差を算出する。算出した電圧差をフィードバック量として、PI制御により出力を演算する。直流リンクコンデンサ202の直流電圧Vlinkについては、予め定められた電圧指令(直流リンクコンデンサの目標直流電圧)Vlink*と、第2の電圧検出器26bから得られた直流リンクコンデンサ202の直流電圧Vlinkとの電圧差を算出する。算出した電圧差をフィードバック量として、PI制御により出力を演算する。交流入力電圧vacについては、第1の電圧検出器26aから得られる交流電圧が正弦波状となるように、交流入力電圧vacを制御するためのデューティ比を演算する。具体的には、予め定められた交流電圧実効値の指令値(目標実効電圧値)Vac,rms*に振幅が√2の正弦波を乗じることで得られる目標正弦波電圧vac*と、第1の電圧検出器26aにより検出された交流入力電圧vacとの電圧差を算出する。算出した電圧差をフィードバック量として、PI制御により出力を演算する。 Next, the role of the control circuit 25 during reverse operation will be described. Regarding the DC voltage V int of the integration DC capacitor, a predetermined voltage command (target DC voltage of the integration DC capacitor) V int * and the integration DC capacitor 21 obtained from the third voltage detector 26c are used. A voltage difference from the DC voltage V int is calculated. The output is calculated by PI control using the calculated voltage difference as a feedback amount. Regarding the DC voltage V link of the DC link capacitor 202, a predetermined voltage command (target DC voltage of the DC link capacitor) V link * and the DC voltage of the DC link capacitor 202 obtained from the second voltage detector 26b. The voltage difference from V link is calculated. The output is calculated by PI control using the calculated voltage difference as a feedback amount. For the AC input voltage vac , the duty ratio for controlling the AC input voltage vac is calculated so that the AC voltage obtained from the first voltage detector 26a is sinusoidal. Specifically, a target sine wave voltage v ac * obtained by multiplying a predetermined AC voltage effective value command value (target effective voltage value) V ac, rms * by a sine wave having an amplitude of √2, A voltage difference from the AC input voltage vac detected by the first voltage detector 26a is calculated. The output is calculated by PI control using the calculated voltage difference as a feedback amount.
 非接触送受電回路3は、本実施の形態に示す電力変換装置2の装置外の回路であり、スイッチング素子300a~300d、直流リンクコンデンサ300e、スイッチング素子300f~300i、交流リアクトル300j~300k、および非接触送受電コイル301を備えている。スイッチング素子300a~300dおよびスイッチング素子300f~300iは、それぞれフルブリッジ型に接続されている。非接触送受電回路3は、第1のコンバータ回路201と同様に、交流リアクトル300kおよび交流リアクトル300jの一端は交流電源1と接続されており、交流リアクトル300jの他端は、スイッチング素子300aとスイッチング素子300bとの接続点に接続されている。また、交流リアクトル300kの他端はスイッチング素子300cとスイッチング素子300dとの接続点に接続されている。 The non-contact power transmission / reception circuit 3 is a circuit outside the power conversion device 2 shown in the present embodiment, and includes switching elements 300a to 300d, a DC link capacitor 300e, switching elements 300f to 300i, AC reactors 300j to 300k, and A non-contact power transmission / reception coil 301 is provided. The switching elements 300a to 300d and the switching elements 300f to 300i are each connected in a full bridge type. As in the first converter circuit 201, the non-contact power transmission / reception circuit 3 is connected to the AC power source 1 at one end of the AC reactor 300k and the AC reactor 300j, and the other end of the AC reactor 300j is switched to the switching element 300a. It is connected to a connection point with the element 300b. The other end of AC reactor 300k is connected to a connection point between switching element 300c and switching element 300d.
 直流リンクコンデンサ300eは、スイッチング素子300a~300dとスイッチング素子300f~300iとを接続する直流母線の正極、負極に接続されている。スイッチング素子300f~300iは、非接触送受電コイル301と接続されており、直列接続されるスイッチング素子300fとスイッチング素子300gとの接続点が非接触送受電コイル301の第1端に接続され、直列接続されるスイッチング素子300hとスイッチング素子300iとの接続点に非接触送受電コイル301の第2端に接続される。 The DC link capacitor 300e is connected to the positive and negative electrodes of a DC bus connecting the switching elements 300a to 300d and the switching elements 300f to 300i. The switching elements 300f to 300i are connected to the non-contact power transmission / reception coil 301, and the connection point between the switching element 300f and the switching element 300g connected in series is connected to the first end of the non-contact power transmission / reception coil 301. The contact point between the switching element 300h and the switching element 300i to be connected is connected to the second end of the non-contact power transmission / reception coil 301.
 非接触送受電回路3は、図1においては図示しない制御回路からの指令に基づいて、交流電源1からの入力電圧を、非接触送受電コイル231と磁気的に結合することにより非接触で電力を供給する。すなわち、交流電源1からの入力電力を電力変換し、非接触送受電コイル301を介して非接触送受電コイル231に対して供給する。なお、非接触送受電回路3は、非接触送受電コイル231と磁気的に結合することにより非接触で電力を供給可能なものであればどのようなものでもよく、その制御方法や回路構成をなんら限定するものではない。また、本実施の形態に示す非接触送受電回路3は、第1の電力変換回路20と同様に交流電源1に接続され、交流電源1から交流電圧が入力される構成となっているが、これに限定されるものではなく、異なる電源と接続される構成であってもよい。 The non-contact power transmission / reception circuit 3 is configured to contactlessly generate power by magnetically coupling the input voltage from the AC power source 1 to the non-contact power transmission / reception coil 231 based on a command from a control circuit not shown in FIG. Supply. That is, the input power from the AC power source 1 is converted into power and supplied to the non-contact power transmission / reception coil 231 via the non-contact power transmission / reception coil 301. The non-contact power transmission / reception circuit 3 may be any one as long as it can supply electric power in a non-contact manner by being magnetically coupled to the non-contact power transmission / reception coil 231. It is not limited at all. In addition, the non-contact power transmission / reception circuit 3 shown in the present embodiment is connected to the AC power source 1 similarly to the first power conversion circuit 20 and is configured to receive an AC voltage from the AC power source 1. It is not limited to this, The structure connected with a different power supply may be sufficient.
 次に動作について説明する。
 本実施の形態に係る電力変換装置は、構成要素である各電力変換回路の動作パターンを組み合わせることで、複数の動作モードで動作することができる。図4に、動作モードを切替える為のフローチャートの一例を示す。図4に示すように、第1の電圧検出器26aにより検出される交流入力電圧vac、第4の電圧検出器26dにより検出される直流出力電圧Vout、第2の電流検出器27bから得られる直流リアクトル220cの直流出力電流Iout、および以下で詳述する非接触給電用制御信号に基づいて、動作モードを切替え、第1~第3の電力変換回路の内から動作させる電力変換回路を選択することが可能となる。なお、以下では便宜的に負荷4を直流バッテリとして説明するものとする。
Next, the operation will be described.
The power conversion device according to the present embodiment can operate in a plurality of operation modes by combining the operation patterns of the power conversion circuits that are constituent elements. FIG. 4 shows an example of a flowchart for switching the operation mode. As shown in FIG. 4, the AC input voltage v ac detected by the first voltage detector 26a, the DC output voltage V out detected by the fourth voltage detector 26d, and the second current detector 27b are obtained. A power conversion circuit that switches the operation mode and operates from the first to third power conversion circuits based on the DC output current I out of the DC reactor 220c to be generated and the non-contact power supply control signal described in detail below. It becomes possible to select. Hereinafter, for convenience, the load 4 is described as a DC battery.
 ここで、非接触給電用制御信号とは、非接触送受電回路3から第3の電力変換回路23へ非接触給電方式によって給電可能であるかを表す信号を指し、例えば、非接触送受電コイル301、または非接触送受電コイル231における電圧を検出した場合に発生させる電圧検出信号や、給電可能か否かを判断するために非接触送受電回路3と第3の電力変換回路23間でやり取りを行う通信信号などである。なお、ここでいう非接触給電用制御信号は、この用語や具体的手段を限定するものではない。 Here, the control signal for non-contact power supply refers to a signal indicating whether power can be supplied from the non-contact power transmission / reception circuit 3 to the third power conversion circuit 23 by the non-contact power supply method, for example, a non-contact power transmission / reception coil 301, or a voltage detection signal generated when a voltage in the non-contact power transmission / reception coil 231 is detected, and exchange between the non-contact power transmission / reception circuit 3 and the third power conversion circuit 23 to determine whether power supply is possible. A communication signal for performing. Note that the contactless power supply control signal here does not limit this term or specific means.
 本実施の形態における動作モードの切替え方法については、図4を例として説明するが、切替え方法は図4に示す手段に限定されない。また、図4では、負荷4を車両走行用の直流バッテリを例として説明するが、これに限定するものではなく、例えば、直流電圧電源や、電気二重層キャパシタ(EDLC:Electric Double Layer Capacitor)や、固定抵抗負荷などでも良い。 The operation mode switching method in the present embodiment will be described with reference to FIG. 4 as an example, but the switching method is not limited to the means shown in FIG. In FIG. 4, the load 4 is described as an example of a DC battery for driving a vehicle. However, the present invention is not limited to this. For example, a DC voltage power supply, an electric double layer capacitor (EDLC), an electric double layer capacitor, It may be a fixed resistance load.
 本実施の形態に係る電力変換装置を動作させるに当たり、まず負荷(直流バッテリ)4を充放電させず、第1の電力変換回路20と第3の電力変換回路23との間で電力授受を行うか否か判断する(ステップS100)。ステップS100における選択の方法としては、例えば、車両に切替スイッチを設け、ユーザが希望する使用用途に応じてスイッチを選択する方法がある。なお、切替の方法においては、これに限定されるものではない。 In operating the power conversion device according to the present embodiment, power is transferred between the first power conversion circuit 20 and the third power conversion circuit 23 without first charging and discharging the load (DC battery) 4. Is determined (step S100). As a selection method in step S100, for example, there is a method in which a changeover switch is provided in the vehicle and the switch is selected according to the intended use desired by the user. Note that the switching method is not limited to this.
 ステップS100において、第1の電力変換回路20と第3の電力変換回路23との間で電力授受を行わないと選択した場合、ステップS200へ移行する。ステップS200において、第4の電圧検出器26dから得られる直流出力電圧Voutの検出結果と、第2の電流検出器27bから得られるIoutの検出結果から、負荷4の充電状態が予め定められた閾値以上かどうかを、本装置や車両内のECU(Engine Control Unit)が判定する。ここで、充電状態の閾値は、順方向動作を行うか逆方向動作を行うかの基準になる値であり、車両や予め定められた条件に応じて変化するものである。 When it is selected in step S100 that power is not transferred between the first power conversion circuit 20 and the third power conversion circuit 23, the process proceeds to step S200. In step S200, the detection result of the DC output voltage V out resulting from the fourth voltage detector 26 d, from the detection result of the obtained I out from the second current detector 27b, the charging state of the load 4 is determined in advance The ECU or an engine control unit (ECU) in the vehicle determines whether the threshold is equal to or greater than the threshold. Here, the threshold value of the state of charge is a value that serves as a reference for performing the forward operation or the reverse operation, and changes depending on the vehicle and a predetermined condition.
 ステップS200において、負荷4の充電状態が閾値未満であると判断した場合に、すなわち、負荷4を充電する必要があると判断した場合に、ステップS210へ移行する。ステップS210では、第1の電圧検出器26aによって検出される交流入力電圧vacと、非接触給電用制御信号の有無を判定する。 If it is determined in step S200 that the charge state of the load 4 is less than the threshold value, that is, if it is determined that the load 4 needs to be charged, the process proceeds to step S210. In step S210, it is determined whether or not there is an AC input voltage vac detected by the first voltage detector 26a and a non-contact power supply control signal.
 ステップS210の結果、交流入力電圧vacと非接触給電用制御信号の両方が検出された場合、動作モードM1へ移行する。本動作モードを、第1動作モードと称する。第1動作モードでは、第1~第3の電力変換回路を同時に動作させる。図5は、第1の電力変換回路20、第2の電力変換回路22、および第3の電力変換回路23がそれぞれ動作している場合を示した簡易図である。第1動作モードは、接触給電方式および非接触給電方式の双方から電力供給を受け、負荷4に対して出力するモードである。第1動作モードは、制御方法に応じてCP制御モード(定電力制御モード)とCC制御モード(定電流制御モード)とに分けられる。 As a result of step S210, when both the AC input voltage vac and the non-contact power supply control signal are detected, the operation mode M1 is entered. This operation mode is referred to as a first operation mode. In the first operation mode, the first to third power conversion circuits are operated simultaneously. FIG. 5 is a simplified diagram showing a case where the first power conversion circuit 20, the second power conversion circuit 22, and the third power conversion circuit 23 are operating. The first operation mode is a mode in which power is supplied from both the contact power supply method and the non-contact power supply method and is output to the load 4. The first operation mode is divided into a CP control mode (constant power control mode) and a CC control mode (constant current control mode) according to the control method.
 まず、CP制御モード(定電力制御モード)について説明する。CP制御モードでは、制御回路25は、第1の電流検出器27aから得られる交流入力電流iacを目標正弦波電流iac*に追従するように、出力を演算する。この出力値に基づいて、第1のコンバータ回路201のスイッチング素子201a~201dのオンオフ制御を行う。さらに、制御回路25は、第2の電圧検出器26bから得られる直流リンクコンデンサの直流電圧Vlinkを直流リンクコンデンサの目標直流電圧Vlink*に追従するように、出力を演算する。この出力値に基づいて、インバータ回路203のスイッチング素子203a~203d、および第2のコンバータ回路205のスイッチング素子205a~205dのオンオフ制御を行う。 First, the CP control mode (constant power control mode) will be described. In the CP control mode, the control circuit 25 calculates an output so that the AC input current i ac obtained from the first current detector 27a follows the target sine wave current i ac *. On / off control of the switching elements 201a to 201d of the first converter circuit 201 is performed based on this output value. Further, the control circuit 25 calculates the output so that the DC voltage V link of the DC link capacitor obtained from the second voltage detector 26b follows the target DC voltage V link * of the DC link capacitor. Based on this output value, on / off control of the switching elements 203a to 203d of the inverter circuit 203 and the switching elements 205a to 205d of the second converter circuit 205 is performed.
 また、非接触送受電コイル231は、装置外の非接触送受電回路3から給電された電力を受電する。制御回路25は、第3の電圧検出器26cにより検出される統合用直流コンデンサの直流電圧Vintを目標直流電圧Vint*に追従するように、出力を演算する。演算した出力値に基づいて、第3の電力変換回路23のスイッチング素子230a~230dのオンオフ制御を行う。このとき、後段の第2の電力変換回路22は、負荷4が直流電圧源である場合、固定のデューティ比となる。負荷4の電圧を制御する必要がある場合は、第4の電圧検出器26dから得られる直流出力電圧Voutを目標出力電圧Vout*に追従するように、制御回路25が出力を演算する。この出力値に基づいて、第2の電力変換回路22のスイッチング素子220a~220bのオンオフ制御を行う。 The non-contact power transmission / reception coil 231 receives power supplied from the non-contact power transmission / reception circuit 3 outside the apparatus. The control circuit 25 calculates the output so that the DC voltage V int of the integration DC capacitor detected by the third voltage detector 26c follows the target DC voltage V int *. On / off control of the switching elements 230a to 230d of the third power conversion circuit 23 is performed based on the calculated output value. At this time, the second power conversion circuit 22 in the subsequent stage has a fixed duty ratio when the load 4 is a DC voltage source. When it is necessary to control the voltage of the load 4, the control circuit 25 calculates the output so that the DC output voltage Vout obtained from the fourth voltage detector 26d follows the target output voltage Vout *. On / off control of the switching elements 220a to 220b of the second power conversion circuit 22 is performed based on the output value.
 なお、統合用直流コンデンサの直流電圧Vintを目標直流電圧Vint*に追従するように第2の電力変換回路22を制御させるようにしてもよい。この場合、第3の電力変換回路23のスイッチング素子を固定値のデューティ比でスイッチングさせ、第2の電力変換回路22が、第3の電圧検出器26cから得られる統合用直流コンデンサの直流電圧Vintを目標直流電圧Vint*に追従するように、制御回路25で演算された出力値に基づいてスイッチング素子220a~220bのオンオフ制御を行う。 Note that the second power conversion circuit 22 may be controlled so that the DC voltage V int of the integration DC capacitor follows the target DC voltage V int *. In this case, the switching element of the third power conversion circuit 23 is switched with a fixed duty ratio so that the second power conversion circuit 22 can obtain the DC voltage V of the integration DC capacitor obtained from the third voltage detector 26c. On / off control of the switching elements 220a to 220b is performed based on the output value calculated by the control circuit 25 so that int follows the target DC voltage Vint *.
 次に、CC制御モード(定電流制御モード)について説明する。CC制御モードでは、制御回路25は、第2の電圧検出器26bから得られる直流リンクコンデンサの直流電圧Vlinkを目標直流電圧Vlink*に追従するように、出力を演算する。この出力値に基づいて、第1のコンバータ回路201のスイッチング素子201a~201dのオンオフ制御を行う。さらに、制御回路25は、第3の電圧検出器26cから得られる統合用直流コンデンサの直流電圧Vintを目標直流電圧Vint*に追従するように、出力を演算する。この出力値に基づいて、インバータ回路203のスイッチング素子203a~203d、および第2のコンバータ回路205のスイッチング素子205a~205dのオンオフ制御を行う。 Next, the CC control mode (constant current control mode) will be described. In the CC control mode, the control circuit 25 calculates the output so that the DC voltage V link of the DC link capacitor obtained from the second voltage detector 26b follows the target DC voltage V link *. On / off control of the switching elements 201a to 201d of the first converter circuit 201 is performed based on this output value. Further, the control circuit 25 calculates an output so that the DC voltage V int of the integrating DC capacitor obtained from the third voltage detector 26c follows the target DC voltage V int *. Based on this output value, on / off control of the switching elements 203a to 203d of the inverter circuit 203 and the switching elements 205a to 205d of the second converter circuit 205 is performed.
 このとき、非接触送受電コイル231は、装置外の非接触送受電回路3から給電された電力を受電する。制御回路25は、固定値のデューティ比を出力し、第3の電力変換回路23のスイッチング素子230a~230dをスイッチングさせる。 At this time, the non-contact power transmission / reception coil 231 receives the power supplied from the non-contact power transmission / reception circuit 3 outside the apparatus. The control circuit 25 outputs a fixed duty ratio to switch the switching elements 230a to 230d of the third power conversion circuit 23.
 なお、統合用直流コンデンサの直流電圧Vintを目標直流電圧Vint*に追従するように第3の電力変換回路23を制御するようにしてもよい。この場合、インバータ回路203のスイッチング素子203a~203dおよび第2のコンバータ回路205のスイッチング素子205a~205dを固定値のデューティ比でそれぞれスイッチングさせ、制御回路25が、第3の電圧検出器26cから得られる統合用直流コンデンサの直流電圧Vintを目標直流電圧Vint*に追従するように、出力を演算する。この出力値に基づいて、第3の電力変換回路23のスイッチング素子230a~230dのオンオフ制御を行う。また、制御回路25は、第2の電流検出器27bから得られる直流出力電流Ioutを目標出力電流Iout*に追従するように、出力を演算する。この出力値に基づいて、第2の電力変換回路22のスイッチング素子220a~220bのオンオフ制御を行う。 Note that the third power conversion circuit 23 may be controlled such that the DC voltage V int of the integration DC capacitor follows the target DC voltage V int *. In this case, the switching elements 203a to 203d of the inverter circuit 203 and the switching elements 205a to 205d of the second converter circuit 205 are respectively switched with a fixed duty ratio, and the control circuit 25 obtains from the third voltage detector 26c. The output is calculated so that the DC voltage V int of the integrated DC capacitor to follow the target DC voltage V int *. On / off control of the switching elements 230a to 230d of the third power conversion circuit 23 is performed based on this output value. Further, the control circuit 25, so as to follow the DC output current I out obtained from the second current detector 27b to the target output current I out *, calculates the output. On / off control of the switching elements 220a to 220b of the second power conversion circuit 22 is performed based on the output value.
 第1動作モードでは、接触給電方式と非接触給電方式を同時に動作させて電力供給を行うため、それぞれの定格電力の和(合計入力電力)を負荷へ供給することができる。このため、負荷がバッテリの場合、各方式の定格電力を同値に設定すると、倍速充電が可能となる。ここで、統合用直流コンデンサで各方式を統合している為、いずれかの方式の電圧に制限されることなく安定した同時電力供給を行うことができる。以上が、第1動作モードの説明である。 In the first operation mode, the power supply is performed by simultaneously operating the contact power supply method and the non-contact power supply method, so that the sum of the rated powers (total input power) can be supplied to the load. For this reason, when the load is a battery, double speed charging is possible by setting the rated power of each method to the same value. Here, since each system is integrated with the DC capacitor for integration, stable simultaneous power supply can be performed without being limited to the voltage of any system. The above is the description of the first operation mode.
 次に、第2動作モードについて説明する。図4のステップS210で、第1の電圧検出器26aから得られる交流入力電圧vacのみ検出された場合、動作モードM2へ移行する。第2動作モードでは、第1の電力変換回路20および第2の電力変換回路22を同時に動作させる。図6は、接触給電方式のみ、つまり、第1の電力変換回路20と、第2の電力変換回路22のみを利用した場合を示した簡易図である。第2動作モードの詳細を説明する。第2動作モードは、交流電源から負荷側に電力を供給する順方向動作であり、第1動作モードと同様に負荷側に対する定電力(CP)制御モードと、定電流(CC)モードが存在する。 Next, the second operation mode will be described. When only the AC input voltage vac obtained from the first voltage detector 26a is detected in step S210 of FIG. 4, the operation mode M2 is entered. In the second operation mode, the first power conversion circuit 20 and the second power conversion circuit 22 are operated simultaneously. FIG. 6 is a simplified diagram showing a case where only the contact power feeding method, that is, only the first power conversion circuit 20 and the second power conversion circuit 22 are used. Details of the second operation mode will be described. The second operation mode is a forward operation in which power is supplied from the AC power source to the load side, and there is a constant power (CP) control mode and a constant current (CC) mode for the load side as in the first operation mode. .
 まず、CP制御モードについて説明する。CP制御モードでは、制御回路25は、第1の電流検出器から得られる交流入力電流iacを目標正弦波電流iac*に追従するように、出力を演算する。この出力値に基づいて、第1の電力変換回路20内の第1のコンバータ回路201のスイッチング素子201a~201dのオンオフ制御を行う。さらに、制御回路25は、第2の電圧検出器26bから得られる直流リンクコンデンサの直流電圧Vlinkを目標直流電圧Vlink*に追従するように、出力を演算する。この出力値に基づいて、インバータ回路203のスイッチング素子203a~203d、および第2のコンバータ回路205のスイッチング素子205a~205dのオンオフ制御を行う。また、制御回路25は、第3の電圧検出器26cから得られる統合用直流コンデンサの直流電圧Vintを目標直流電圧Vint*に追従するように、出力を演算する。この出力値に基づいて、第2の電力変換回路22のスイッチング素子220a~220bのオンオフ制御を行う。 First, the CP control mode will be described. In the CP control mode, the control circuit 25 calculates an output so that the AC input current i ac obtained from the first current detector follows the target sine wave current i ac *. Based on this output value, on / off control of the switching elements 201a to 201d of the first converter circuit 201 in the first power conversion circuit 20 is performed. Further, the control circuit 25 calculates an output so that the DC voltage V link of the DC link capacitor obtained from the second voltage detector 26b follows the target DC voltage V link *. Based on this output value, on / off control of the switching elements 203a to 203d of the inverter circuit 203 and the switching elements 205a to 205d of the second converter circuit 205 is performed. In addition, the control circuit 25 calculates the output so that the DC voltage V int of the integrating DC capacitor obtained from the third voltage detector 26c follows the target DC voltage V int *. On / off control of the switching elements 220a to 220b of the second power conversion circuit 22 is performed based on the output value.
 次に、CC制御モードについて説明する。CC制御モードでは、制御回路25は、第2の電圧検出器26bから得られる直流リンクコンデンサの直流電圧Vlinkを目標直流電圧Vlink*に追従するように、出力を演算する。この出力値に基づいて、第1の電力変換回路20内の第1のコンバータ回路201のスイッチング素子201a~201dのオンオフ制御を行う。さらに、制御回路25は、第3の電圧検出器26cから得られる統合用直流コンデンサの直流電圧Vintを目標直流電圧Vint*に追従するように、出力を演算する。この出力値に基づいて、インバータ回路203のスイッチング素子203a~203d、および第2のコンバータ回路205のスイッチング素子205a~205dのオンオフ制御を行う。また、制御回路25は、第2の電流検出器27bから得られる直流出力電流Ioutを目標出力電流Iout*に追従するように、出力を演算する。この出力値に基づいて、第2の電力変換回路22のスイッチング素子220a~220bのオンオフ制御を行う。 Next, the CC control mode will be described. In the CC control mode, the control circuit 25 calculates the output so that the DC voltage V link of the DC link capacitor obtained from the second voltage detector 26b follows the target DC voltage V link *. Based on this output value, on / off control of the switching elements 201a to 201d of the first converter circuit 201 in the first power conversion circuit 20 is performed. Further, the control circuit 25 calculates an output so that the DC voltage V int of the integrating DC capacitor obtained from the third voltage detector 26c follows the target DC voltage V int *. Based on this output value, on / off control of the switching elements 203a to 203d of the inverter circuit 203 and the switching elements 205a to 205d of the second converter circuit 205 is performed. Further, the control circuit 25, so as to follow the DC output current I out obtained from the second current detector 27b to the target output current I out *, calculates the output. On / off control of the switching elements 220a to 220b of the second power conversion circuit 22 is performed based on the output value.
 図4のステップS210で、非接触給電用制御信号のみ検出された場合、動作モードM3へ移行する。本動作モードを、第3動作モードと称する。第3動作モードでは、第2の電力変換回路22および第3の電力変換回路を同時に動作させる。図7は、非接触給電方式のみ、つまり、第3の電力変換回路23と、第2の電力変換回路22のみを利用した場合を示した簡易図である。 When only the contactless power supply control signal is detected in step S210 of FIG. 4, the process proceeds to the operation mode M3. This operation mode is referred to as a third operation mode. In the third operation mode, the second power conversion circuit 22 and the third power conversion circuit are operated simultaneously. FIG. 7 is a simplified diagram showing a case where only the non-contact power feeding method, that is, only the third power conversion circuit 23 and the second power conversion circuit 22 are used.
 第3動作モードの詳細を説明する。第3動作モードは、非接触送受電部から負荷側に電力を供給する順方向動作であり、第1動作モードと同様に負荷側に対する定電力(CP)制御モードと、定電流(CC)モードが存在する。 Details of the third operation mode will be described. The third operation mode is a forward operation in which power is supplied from the non-contact power transmission / reception unit to the load side. Similar to the first operation mode, the constant power (CP) control mode and the constant current (CC) mode for the load side are used. Exists.
 まず、CP制御モードについて説明する。CP制御モードでは、非接触送受電コイル231は、装置外の非接触送受電回路3から給電された電力を受電する。制御回路25は、第3の電圧検出器26cから得られる統合用直流コンデンサの直流電圧Vintを目標直流電圧Vint*に追従するように、出力を演算する。この出力値に基づいて、第3の電力変換回路23のスイッチング素子230a~230dのオンオフ制御を行う。このとき、後段の第2の電力変換回路22は、負荷が直流電圧源である場合、固定のデューティ比となる。負荷電圧を制御する必要がある場合、制御回路25は、第4の電圧検出器26dから得られる直流出力電圧Voutを目標出力電圧Vout*に追従するように、出力を演算する。この出力値に基づいて、第2の電力変換回路22のスイッチング素子220a~220bのオンオフ制御を行う。 First, the CP control mode will be described. In the CP control mode, the non-contact power transmission / reception coil 231 receives power supplied from the non-contact power transmission / reception circuit 3 outside the apparatus. The control circuit 25 calculates the output so that the DC voltage V int of the integrating DC capacitor obtained from the third voltage detector 26c follows the target DC voltage V int *. On / off control of the switching elements 230a to 230d of the third power conversion circuit 23 is performed based on this output value. At this time, the second power conversion circuit 22 in the subsequent stage has a fixed duty ratio when the load is a DC voltage source. When it is necessary to control the load voltage, the control circuit 25 calculates the output so that the DC output voltage Vout obtained from the fourth voltage detector 26d follows the target output voltage Vout *. On / off control of the switching elements 220a to 220b of the second power conversion circuit 22 is performed based on the output value.
 なお、統合用直流コンデンサの直流電圧Vintを目標直流電圧Vint*に追従するように第2の電力変換回路22を制御するようにしてもよい。この場合、第3の電力変換回路23のスイッチング素子230a~230dを固定値のデューティ比でスイッチングさせ、第3の電圧検出器26cから得られる統合用直流コンデンサの直流電圧Vintを目標直流電圧Vint*に追従するように、制御回路25で演算された出力値に基づいて、第2の電力変換回路22のスイッチング素子220a~220bのオンオフ制御を行う。 Note that the second power conversion circuit 22 may be controlled so that the DC voltage V int of the integration DC capacitor follows the target DC voltage V int *. In this case, the switching elements 230a to 230d of the third power conversion circuit 23 are switched with a fixed duty ratio, and the DC voltage V int of the integration DC capacitor obtained from the third voltage detector 26c is set to the target DC voltage V Based on the output value calculated by the control circuit 25, on / off control of the switching elements 220a to 220b of the second power conversion circuit 22 is performed so as to follow int *.
 次に、CC制御モードについて説明する。CC制御モードでは、非接触送受電コイル231は、装置外の非接触送受電回路3から給電された電力を受電する。制御回路25は、第3の電圧検出器26cから得られる統合用直流コンデンサの直流電圧Vintを目標直流電圧Vint*に追従するように、出力を演算する。この出力値に基づいて、第3の電力変換回路23のスイッチング素子230a~230dのオンオフ制御を行う。また、制御回路25は、第2の電流検出器27bから得られる直流出力電流Ioutを目標出力電流Iout*に追従するように、出力を演算する。この出力値に基づいて、第2の電力変換回路22のスイッチング素子220a~220bのオンオフ制御を行う。以上が、第3動作モードの説明であり、動作モードM1から動作モードM3までが、順方向動作モードとなる。 Next, the CC control mode will be described. In the CC control mode, the non-contact power transmission / reception coil 231 receives power supplied from the non-contact power transmission / reception circuit 3 outside the apparatus. The control circuit 25 calculates the output so that the DC voltage V int of the integrating DC capacitor obtained from the third voltage detector 26c follows the target DC voltage V int *. On / off control of the switching elements 230a to 230d of the third power conversion circuit 23 is performed based on this output value. Further, the control circuit 25, so as to follow the DC output current I out obtained from the second current detector 27b to the target output current I out *, calculates the output. On / off control of the switching elements 220a to 220b of the second power conversion circuit 22 is performed based on the output value. The above is the description of the third operation mode, and the operation mode M1 to the operation mode M3 is the forward operation mode.
 図4のステップS100で、第1の電力変換回路20と第3の電力変換回路23との間で電力授受を行うと選択した場合、ステップS300へ移行する。ステップS300では、第1の電力変換回路20側から非接触送受電コイル231側へ電力を供給するか選択する。ここで、選択の方法としては、例えば、ステップS100と同様に、車両に切替スイッチを設け、ユーザが希望する使用用途に応じてスイッチを選択する方法がある。なお、選択の手法は1例であり、これに限定されるものではない。 If it is selected in step S100 in FIG. 4 that power is exchanged between the first power conversion circuit 20 and the third power conversion circuit 23, the process proceeds to step S300. In step S300, it is selected whether to supply power from the first power conversion circuit 20 side to the non-contact power transmission / reception coil 231 side. Here, as a selection method, for example, as in step S100, there is a method in which a changeover switch is provided in the vehicle and the switch is selected according to the intended use desired by the user. Note that the selection method is an example, and the present invention is not limited to this.
 ステップS300で、第1の電力変換回路20側から第3の電力変換回路23側へ電力を供給することを選択された場合、動作モードM4へ移行する。本動作モードを、第4動作モードと称する。第4動作モードでは、第1の電力変換回路20および第3の電力変換回路23を同時に動作させる。図8は、接触給電方式と非接触給電方式のみ、つまり、第1の電力変換回路20と、第3の電力変換回路23のみを利用した場合を示した簡易図である。 In step S300, when it is selected to supply power from the first power conversion circuit 20 side to the third power conversion circuit 23 side, the operation mode M4 is entered. This operation mode is referred to as a fourth operation mode. In the fourth operation mode, the first power conversion circuit 20 and the third power conversion circuit 23 are operated simultaneously. FIG. 8 is a simplified diagram showing a case where only the contact power feeding method and the non-contact power feeding method, that is, only the first power conversion circuit 20 and the third power conversion circuit 23 are used.
 この第4動作モードが選択され得るケースとして、例えば、図4のように本発明の電力装置が電動車両の直流バッテリを充電する充電器に適用された場合において、接触給電方式の充電設備しか設置されていない場所で、非接触充電のみ対応した電動車両の直流バッテリも充電することが考えられる。すなわち、交流電源から接触給電方式により得られる電力を、本装置を搭載した電動車両の非接触送受電コイルから、非接触給電方式のみに対応した電動車両の受電コイルへ非接触で伝送することで、非接触充電のみ対応した電動車両の直流バッテリも充電することが可能となる。 As a case where the fourth operation mode can be selected, for example, when the power device of the present invention is applied to a charger for charging a DC battery of an electric vehicle as shown in FIG. It is conceivable to charge a direct current battery of an electric vehicle that supports only non-contact charging in a place where it is not. In other words, the power obtained by the contact power supply method from the AC power supply is transmitted in a non-contact manner from the non-contact power transmission / reception coil of the electric vehicle equipped with this apparatus to the power reception coil of the electric vehicle that supports only the non-contact power supply method. Also, it becomes possible to charge a DC battery of an electric vehicle that supports only non-contact charging.
 第4動作モードの詳細を説明する。第4動作モードは、交流電源から第3の電力変換回路23を介して、装置外の非接触送受電回路3に電力を供給するモードであり、非接触受電側に対する定電力(CP)制御モードと、統合用直流コンデンサ側に対する定電圧(CV:Constant Voltage)モードが存在する。 Details of the fourth operation mode will be described. The fourth operation mode is a mode in which power is supplied from the AC power source to the non-contact power transmission / reception circuit 3 outside the apparatus via the third power conversion circuit 23, and a constant power (CP) control mode for the non-contact power reception side. And there is a constant voltage (CV: Constant Voltage) mode for the DC capacitor side for integration.
 まず、CP制御モードについて説明する。CP制御モードでは、制御回路25は、第1の電流検出器27aから得られる交流入力電流iacを目標正弦波電流iac*に追従するように、出力を演算する。この出力値に基づいて、第1の電力変換回路20内の第1のコンバータ回路201のスイッチング素子201a~201dのオンオフ制御を行う。さらに、制御回路25は、第2の電圧検出器26bから得られる直流リンクコンデンサの直流電圧Vlinkを目標直流電圧Vlink*に追従するように、出力を演算する。この出力値に基づいて、インバータ回路203のスイッチング素子203a~203d、および第2のコンバータ回路205のスイッチング素子205a~205dのオンオフ制御を行う。また、制御回路25は、第3の電圧検出器26cから得られる統合用直流コンデンサの直流電圧Vintを目標直流電圧Vint*に追従するように、出力を演算する。この出力値に基づいて、第3の電力変換回路23のスイッチング素子230a~230dのオンオフ制御を行う。これらのことから、非接触送受電コイル231を介して、装置外の非接触送受電回路3へ電力供給を行うことが可能となる。 First, the CP control mode will be described. In the CP control mode, the control circuit 25 calculates an output so that the AC input current i ac obtained from the first current detector 27a follows the target sine wave current i ac *. Based on this output value, on / off control of the switching elements 201a to 201d of the first converter circuit 201 in the first power conversion circuit 20 is performed. Further, the control circuit 25 calculates an output so that the DC voltage V link of the DC link capacitor obtained from the second voltage detector 26b follows the target DC voltage V link *. Based on this output value, on / off control of the switching elements 203a to 203d of the inverter circuit 203 and the switching elements 205a to 205d of the second converter circuit 205 is performed. In addition, the control circuit 25 calculates the output so that the DC voltage V int of the integrating DC capacitor obtained from the third voltage detector 26c follows the target DC voltage V int *. On / off control of the switching elements 230a to 230d of the third power conversion circuit 23 is performed based on this output value. From these things, it becomes possible to supply electric power to the non-contact power transmission / reception circuit 3 outside the apparatus via the non-contact power transmission / reception coil 231.
 次に、CV制御モードについて説明する。CV制御モードでは、制御回路25は、第2の電圧検出器26bから得られる直流リンクコンデンサの直流電圧Vlinkを目標直流電圧Vlink*に追従するように、出力を演算する。この出力値に基づいて、第1の電力変換回路20内の第1のコンバータ回路201のスイッチング素子201a~201dのオンオフ制御を行う。また、制御回路25は、第3の電圧検出器26cから得られる統合用直流コンデンサの直流電圧Vintを目標直流電圧Vint*に追従するように、出力を演算する。この出力値に基づいて、インバータ回路203のスイッチング素子203a~203d、および第2のコンバータ回路205のスイッチング素子205a~205dのオンオフ制御を行う。このとき、第3の電力変換回路23の構成要素であるスイッチング素子230a~230dを固定値のデューティ比でスイッチングさせる。これらのことから、非接触送受電コイル301を介して、装置外の非接触送受電回路3へ電力供給を行うことが可能となる。以上が、第4動作モードの説明である。 Next, the CV control mode will be described. In the CV control mode, the control circuit 25 calculates an output so that the DC voltage V link of the DC link capacitor obtained from the second voltage detector 26b follows the target DC voltage V link *. Based on this output value, on / off control of the switching elements 201a to 201d of the first converter circuit 201 in the first power conversion circuit 20 is performed. In addition, the control circuit 25 calculates the output so that the DC voltage V int of the integrating DC capacitor obtained from the third voltage detector 26c follows the target DC voltage V int *. Based on this output value, on / off control of the switching elements 203a to 203d of the inverter circuit 203 and the switching elements 205a to 205d of the second converter circuit 205 is performed. At this time, the switching elements 230a to 230d, which are components of the third power conversion circuit 23, are switched at a fixed duty ratio. From these things, it becomes possible to supply electric power to the non-contact power transmission / reception circuit 3 outside the apparatus via the non-contact power transmission / reception coil 301. The above is the description of the fourth operation mode.
 図4のステップS300で、第1の電力変換回路20側から第3の電力変換回路23側へ電力を供給することを選択されない場合に、すなわち、第3の電力変換回路23側から第1の電力変換回路20側へ電力を供給されることを選択された場合に、動作モードM5へ移行する。本動作モードを、第5動作モードと称する。第5動作モードでは、第1の電力変換回路20および第3の電力変換回路23を同時に動作させる。図9は、図8と同様に接触給電方式と非接触給電方式のみ、つまり、第1の電力変換回路20と、第3の電力変換回路23のみを利用した場合を示した簡易図である。 In step S300 of FIG. 4, when it is not selected to supply power from the first power conversion circuit 20 side to the third power conversion circuit 23 side, that is, from the third power conversion circuit 23 side to the first power conversion circuit 23 side. When it is selected that power is supplied to the power conversion circuit 20, the operation mode M5 is entered. This operation mode is referred to as a fifth operation mode. In the fifth operation mode, the first power conversion circuit 20 and the third power conversion circuit 23 are operated simultaneously. FIG. 9 is a simplified diagram illustrating a case where only the contact power feeding method and the non-contact power feeding method, that is, only the first power conversion circuit 20 and the third power conversion circuit 23 are used, as in FIG. 8.
 この第5動作モードが選択され得るケースとしては、例えば、本発明の装置が電動車両の充電器に適用された場合において、他の非接触給電方式のみに対応した電動車両のバッテリ電力を、非接触給電方式で本電力変換装置を介して接触給電方式で交流電力として出力することが考えられ、商用系統等の交流電源の代替として交流電力を供給することが可能となる。 As a case where the fifth operation mode can be selected, for example, when the apparatus of the present invention is applied to a charger of an electric vehicle, the battery power of the electric vehicle corresponding to only another non-contact power feeding method is not used. It is conceivable that AC power is output as AC power by the contact power supply method via this power conversion device by the contact power supply method, and AC power can be supplied as an alternative to an AC power source such as a commercial system.
 第5動作モードの詳細を説明する。第5動作モードは、第3の電力変換回路23が非接触送受電回路3から非接触給電方式で受電した電力を、接触給電方式の第1の電力変換回路を介して、装置外へ交流電力を供給するモードであり、系統側の実効値に対する定電圧(CV:Constant Voltage)モードが存在する。 Details of the fifth operation mode will be described. In the fifth operation mode, the power received by the third power conversion circuit 23 from the non-contact power transmission / reception circuit 3 by the non-contact power feeding method is supplied to the outside of the apparatus via the first power conversion circuit of the contact power feeding method. There is a constant voltage (CV: Constant Voltage) mode for the effective value on the system side.
 CV制御モードでは、装置外の非接触送受電回路3から、非接触送受電コイル231を介して電力が伝送される。制御回路25は、第3の電圧検出器26cから得られる統合用直流コンデンサの直流電圧Vintを目標直流電圧Vint*に追従するように、出力を演算する。この出力値に基づいて、第3の電力変換回路23のスイッチング素子230a~230dのオンオフ制御を行う。また、制御回路25は、第2の電圧検出器26bから得られる直流リンクコンデンサの直流電圧Vlinkを目標直流電圧Vlink*に追従するように、出力を演算する。この出力値に基づいて、第1の電力変換回路20内のインバータ回路203のスイッチング素子203a~203d、および第2のコンバータ回路205のスイッチング素子205a~205dのオンオフ制御を行う。さらに、制御回路25は、第1の電圧検出器26aから得られる交流入力電圧vacを目標実効電圧値Vac,rms*から演算される目標正弦波電圧vac*に追従するように、出力を演算する。この出力値に基づいて、第1のコンバータ回路のスイッチング素子201a~201dのオンオフ制御を行い、交流電力を供給する。以上が、第5動作モードの説明であり、動作モードM4から動作モードM5までが、第1の電力変換回路20と第3の電力変換回路23との間で電力を供給するモードとなる。 In the CV control mode, power is transmitted from the non-contact power transmission / reception circuit 3 outside the apparatus via the non-contact power transmission / reception coil 231. The control circuit 25 calculates the output so that the DC voltage V int of the integrating DC capacitor obtained from the third voltage detector 26c follows the target DC voltage V int *. On / off control of the switching elements 230a to 230d of the third power conversion circuit 23 is performed based on this output value. Further, the control circuit 25 calculates an output so that the DC voltage V link of the DC link capacitor obtained from the second voltage detector 26b follows the target DC voltage V link *. Based on this output value, on / off control of the switching elements 203a to 203d of the inverter circuit 203 in the first power conversion circuit 20 and the switching elements 205a to 205d of the second converter circuit 205 is performed. Further, the control circuit 25 outputs the AC input voltage v ac obtained from the first voltage detector 26a so as to follow the target sine wave voltage v ac * calculated from the target effective voltage value V ac, rms *. Is calculated. Based on this output value, on / off control of the switching elements 201a to 201d of the first converter circuit is performed to supply AC power. The above is the description of the fifth operation mode, and the operation mode M4 to the operation mode M5 is a mode in which power is supplied between the first power conversion circuit 20 and the third power conversion circuit 23.
 図4のステップS200で、負荷(直流バッテリ)4の充電状態が閾値以上であると判断した場合に、つまり、直流バッテリのエネルギを放電可能であると判断した場合に、ステップS220へ移行する。ステップS220では、ステップS210と同様に、第1の電圧検出器26aから得られる交流入力電圧vacと、非接触給電用制御信号の有無を判定する。 If it is determined in step S200 of FIG. 4 that the state of charge of the load (DC battery) 4 is equal to or greater than the threshold value, that is, if it is determined that the energy of the DC battery can be discharged, the process proceeds to step S220. In step S220, as in step S210, the AC input voltage vac obtained from the first voltage detector 26a and the presence / absence of the contactless power supply control signal are determined.
 S220の結果、交流入力電圧vacと非接触給電用制御信号の両方が検出された場合、動作モードM6へ移行する。本動作モードを、第6動作モードと称する。第6動作モードでは、第1~第3の電力変換回路を同時に動作させる。図10は、逆方向動作時に、接触給電方式と非接触給電方式が同時に動作、つまり、第1の電力変換回路20と、第3の電力変換回路23と、第2の電力変換回路22を同時に動作している場合を示した簡易図である。 As a result of S220, when both the AC input voltage vac and the non-contact power supply control signal are detected, the operation mode M6 is entered. This operation mode is referred to as a sixth operation mode. In the sixth operation mode, the first to third power conversion circuits are operated simultaneously. FIG. 10 shows that the contact power feeding method and the non-contact power feeding method operate simultaneously during reverse operation, that is, the first power conversion circuit 20, the third power conversion circuit 23, and the second power conversion circuit 22 are simultaneously operated. It is the simple figure which showed the case where it is operate | moving.
 第6動作モードの詳細を説明する。第6動作モードは、負荷4側から、交流電源1と、装置外の非接触送受電回路3へ電力を供給する逆方向動作であり、統合用直流コンデンサ側に対するCV制御モードが存在する。 Details of the sixth operation mode will be described. The sixth operation mode is a reverse operation in which power is supplied from the load 4 side to the AC power source 1 and the non-contact power transmission / reception circuit 3 outside the apparatus, and there is a CV control mode for the integration DC capacitor side.
 CV制御モードでは、制御回路25は、第3の電圧検出器26cから得られる統合用直流コンデンサの直流電圧Vintを目標直流電圧Vint*に追従するように、出力を演算する。この出力値に基づいて、第2の電力変換回路22のスイッチング素子220a~220bのオンオフ制御を行う。また、制御回路25は、第2の電圧検出器26bから得られる直流リンクコンデンサの直流電圧Vlinkを目標直流電圧Vlink*に追従するように、出力を演算する。この出力値に基づいて、インバータ回路203のスイッチング素子203a~203d、および第2のコンバータ回路205のスイッチング素子205a~205dのオンオフ制御を行う。さらに、制御回路25は、第1の電圧検出器26aから得られる交流入力電圧vacを目標実効電圧値Vac,rms*から演算される目標正弦波電圧vac*に追従するように、出力を演算する。この出力値に基づいて、第1のコンバータ回路201のスイッチング素子201a~201dのオンオフ制御を行い、交流電力を供給する。また、制御回路25は、固定値のデューティ比を出力し、第3の電力変換回路23のスイッチング素子230a~230dをスイッチングさせることで、非接触送受電コイル231を介して、装置外の非接触送受電回路3へ電力を供給する。 In the CV control mode, the control circuit 25 calculates the output so that the DC voltage V int of the integrating DC capacitor obtained from the third voltage detector 26c follows the target DC voltage V int *. On / off control of the switching elements 220a to 220b of the second power conversion circuit 22 is performed based on the output value. Further, the control circuit 25 calculates an output so that the DC voltage V link of the DC link capacitor obtained from the second voltage detector 26b follows the target DC voltage V link *. Based on this output value, on / off control of the switching elements 203a to 203d of the inverter circuit 203 and the switching elements 205a to 205d of the second converter circuit 205 is performed. Further, the control circuit 25 outputs the AC input voltage v ac obtained from the first voltage detector 26a so as to follow the target sine wave voltage v ac * calculated from the target effective voltage value V ac, rms *. Is calculated. Based on this output value, on / off control of the switching elements 201a to 201d of the first converter circuit 201 is performed to supply AC power. In addition, the control circuit 25 outputs a fixed duty ratio and switches the switching elements 230a to 230d of the third power conversion circuit 23, so that the non-contact outside the apparatus via the non-contact power transmission / reception coil 231. Power is supplied to the power transmission / reception circuit 3.
 なお、第3の電力変換回路23のスイッチング素子230a~230dを固定のデューティ比でオンオフ制御する場合について示したが、第2の電力変換回路22のスイッチング素子220a~220bを固定のデューティ比でオンオフ制御させてもよい。その場合、制御回路25は、第3の電圧検出器26cから得られる統合用直流コンデンサの直流電圧Vintを目標直流電圧Vint*に追従するように、出力を演算する。この出力値に基づいて、第3の電力変換回路23のスイッチング素子230a~230dのオンオフ制御を行う。 Although the case where the switching elements 230a to 230d of the third power conversion circuit 23 are on / off controlled at a fixed duty ratio is shown, the switching elements 220a to 220b of the second power conversion circuit 22 are turned on / off at a fixed duty ratio. It may be controlled. In that case, the control circuit 25 calculates the output so that the DC voltage V int of the integrating DC capacitor obtained from the third voltage detector 26c follows the target DC voltage V int *. On / off control of the switching elements 230a to 230d of the third power conversion circuit 23 is performed based on this output value.
 第6動作モードでは、接触給電方式と非接触給電方式を同時に動作させて負荷4側から放電を行うことが可能であり、統合用直流コンデンサ21で各方式を統合している為、いずれかの方式の電圧に制限されることなく安定して同時に放電を行うことが可能となる。以上が、第6動作モードの説明である。 In the sixth operation mode, the contact power supply method and the non-contact power supply method can be operated simultaneously to discharge from the load 4 side, and each method is integrated by the integration DC capacitor 21. It is possible to discharge stably and simultaneously without being limited to the voltage of the system. The above is the description of the sixth operation mode.
 図4のステップS220で、第1の電圧検出器26aから得られる交流入力電圧vacのみ検出された場合、動作モードM7へ移行する。本動作モードを、第7動作モードと称する。第7動作モードでは、第1の電力変換回路20および第2の電力変換回路22を同時に動作させる。図11は、接触給電方式のみ、つまり、第1の電力変換回路20と、第2の電力変換回路22のみを利用した場合を示した簡易図である。 When only the AC input voltage vac obtained from the first voltage detector 26a is detected in step S220 in FIG. 4, the operation mode M7 is entered. This operation mode is referred to as a seventh operation mode. In the seventh operation mode, the first power conversion circuit 20 and the second power conversion circuit 22 are operated simultaneously. FIG. 11 is a simplified diagram showing a case where only the contact power feeding method, that is, only the first power conversion circuit 20 and the second power conversion circuit 22 are used.
 第7動作モードの詳細を説明する。第7動作モードは、負荷4側から交流電源1へ電力を供給する逆方向動作であり、第6動作モードと同様に統合用直流コンデンサ側に対するCV制御モードが存在する。 Details of the seventh operation mode will be described. The seventh operation mode is a reverse operation in which power is supplied from the load 4 side to the AC power supply 1, and there is a CV control mode for the integration DC capacitor side as in the sixth operation mode.
 CV制御モードでは、制御回路25は、第3の電圧検出器26cから得られる統合用直流コンデンサの直流電圧Vintを目標直流電圧Vint*に追従するように、出力を演算する。この出力値に基づいて、第2の電力変換回路22のスイッチング素子220a~220bのオンオフ制御を行う。また、制御回路25は、第2の電圧検出器26bから得られる直流リンクコンデンサの直流電圧Vlinkを目標直流電圧Vlink*に追従するように、出力を演算する。この出力値に基づいて、第1の電力変換回路20内のインバータ回路203のスイッチング素子203a~203d、および第2のコンバータ回路205のスイッチング素子205a~205dのオンオフ制御を行う。さらに、制御回路25は、第1の電圧検出器26aから得られる交流入力電圧vacを目標実効電圧値Vac,rms*から演算される目標正弦波電圧vac*に追従するように、出力を演算する。この出力値に基づいて、第1のコンバータ回路201のスイッチング素子201a~201dのオンオフ制御を行い、商用系統等の交流電源の代替として交流電力を供給することが可能となる。以上が、第7動作モードの説明である。 In the CV control mode, the control circuit 25 calculates the output so that the DC voltage V int of the integrating DC capacitor obtained from the third voltage detector 26c follows the target DC voltage V int *. On / off control of the switching elements 220a to 220b of the second power conversion circuit 22 is performed based on the output value. Further, the control circuit 25 calculates an output so that the DC voltage V link of the DC link capacitor obtained from the second voltage detector 26b follows the target DC voltage V link *. Based on this output value, on / off control of the switching elements 203a to 203d of the inverter circuit 203 in the first power conversion circuit 20 and the switching elements 205a to 205d of the second converter circuit 205 is performed. Further, the control circuit 25 outputs the AC input voltage v ac obtained from the first voltage detector 26a so as to follow the target sine wave voltage v ac * calculated from the target effective voltage value V ac, rms *. Is calculated. Based on this output value, the on / off control of the switching elements 201a to 201d of the first converter circuit 201 is performed, and AC power can be supplied as an alternative to AC power supply such as a commercial system. The above is the description of the seventh operation mode.
 図3のステップS220で、非接触給電用制御信号のみ検出された場合、動作モードM8へ移行する。本動作モードを、第8動作モードと称する。第8動作モードでは、第2の電力変換回路22および第3の電力変換回路23を同時に動作させる。図12は、非接触給電方式のみ、つまり、第3の電力変換回路23と、第2の電力変換回路22のみを利用した場合を示した簡易図である。 If only the contactless power supply control signal is detected in step S220 in FIG. 3, the process proceeds to the operation mode M8. This operation mode is referred to as an eighth operation mode. In the eighth operation mode, the second power conversion circuit 22 and the third power conversion circuit 23 are operated simultaneously. FIG. 12 is a simplified diagram showing a case where only the non-contact power supply method, that is, only the third power conversion circuit 23 and the second power conversion circuit 22 are used.
 第8動作モードの詳細を説明する。第8動作モードは、負荷4側から非接触送受電コイル231を介して非接触送受電回路3へ電力を供給する逆方向動作であり、第6動作モードと同様に統合用直流コンデンサ側に対するCV制御モードが存在する。 Details of the eighth operation mode will be described. The eighth operation mode is a reverse operation in which power is supplied from the load 4 side to the non-contact power transmission / reception circuit 3 via the non-contact power transmission / reception coil 231. Similar to the sixth operation mode, the CV for the integration DC capacitor side is provided. A control mode exists.
 CV制御モードでは、制御回路25は、第3の電圧検出器26cから得られる統合用直流コンデンサの直流電圧Vintを目標直流電圧Vint*に追従するように、出力を演算する。この出力値に基づいて、第2の電力変換回路22のスイッチング素子220a~220bのオンオフ制御を行う。また、制御回路25は、固定値のデューティ比を出力し、第3の電力変換回路23のスイッチング素子230a~230dをスイッチングさせることで、非接触送受電コイル231を介して、装置外の非接触送受電回路3へ電力を供給する。 In the CV control mode, the control circuit 25 calculates the output so that the DC voltage V int of the integrating DC capacitor obtained from the third voltage detector 26c follows the target DC voltage V int *. On / off control of the switching elements 220a to 220b of the second power conversion circuit 22 is performed based on the output value. In addition, the control circuit 25 outputs a fixed duty ratio and switches the switching elements 230a to 230d of the third power conversion circuit 23, so that the non-contact outside the apparatus via the non-contact power transmission / reception coil 231. Power is supplied to the power transmission / reception circuit 3.
 なお、第3の電力変換回路23のスイッチング素子230a~230dを固定のデューティ比でオンオフ制御する場合について示したが、第2の電力変換回路22のスイッチング素子220a~220bを固定のデューティ比でオンオフ制御させてもよい。その場合、制御回路25は、第3の電圧検出器26cから得られる統合用直流コンデンサの直流電圧Vintを目標直流電圧Vint*に追従するように、出力を演算する。この出力値に基づいて、第3の電力変換回路23のスイッチング素子230a~230dのオンオフ制御を行う。以上が、第8動作モードの説明であり、動作モードM6から動作モードM8までが、逆方向動作モードとなる。 Although the case where the switching elements 230a to 230d of the third power conversion circuit 23 are on / off controlled at a fixed duty ratio is shown, the switching elements 220a to 220b of the second power conversion circuit 22 are turned on / off at a fixed duty ratio. It may be controlled. In that case, the control circuit 25 calculates the output so that the DC voltage V int of the integrating DC capacitor obtained from the third voltage detector 26c follows the target DC voltage V int *. On / off control of the switching elements 230a to 230d of the third power conversion circuit 23 is performed based on this output value. The above is the description of the eighth operation mode, and the operation mode M6 to the operation mode M8 is the reverse operation mode.
 図13に、本実施の形態に示す電力変換装置の各制御モードの制御方法の一覧を示す。図13では、制御回路25が、「制御する回路」に記載した回路を制御することにより、「制御値」に記載した値を制御することを示す。なお、制御値の欄に「固定」と記載したものは、制御する回路を固定のデューティ比でオンオフ制御を行うことを示す。また、第2の電力変換回路22が直流出力電圧Voutを制御する場合においても、直流出力電圧Voutを制御する必要のない場合には、第2の電力変換回路22を固定のデューティ比で動作することとなる。 FIG. 13 shows a list of control methods in each control mode of the power conversion device shown in the present embodiment. FIG. 13 shows that the control circuit 25 controls the value described in “Control Value” by controlling the circuit described in “Control Circuit”. Note that what is described as “fixed” in the control value column indicates that the circuit to be controlled is on / off controlled with a fixed duty ratio. Even when the second power conversion circuit 22 controls the DC output voltage Vout , if the DC output voltage Vout does not need to be controlled, the second power conversion circuit 22 is set at a fixed duty ratio. Will work.
 次に、本実施の形態に係る電力変換装置の各回路の制御方法について、制御ブロック図を用いて説明する。まず、交流入力電流iacを目標正弦波電流iac*に追従するように、第1のコンバータ回路201の制御を行う場合の、第1のコンバータ回路の制御について図14~図16の制御ブロック図を用いて説明する。本制御は、第1動作モードのCP制御モード、第2動作モードのCP制御モード、第4動作モードのCP制御モード、において用いられる。 Next, a method for controlling each circuit of the power conversion device according to the present embodiment will be described with reference to a control block diagram. First, in the control of the first converter circuit when the first converter circuit 201 is controlled so that the AC input current i ac follows the target sine wave current i ac *, the control blocks of FIGS. This will be described with reference to the drawings. This control is used in the CP control mode of the first operation mode, the CP control mode of the second operation mode, and the CP control mode of the fourth operation mode.
 図14は、制御回路25における、第1のコンバータ回路201のスイッチング素子のデューティ比の算出に関する制御ブロック図である。制御回路25では、予め定められた目標正弦波電流iac*の絶対値と、第1の電流検出器27aで検出される交流入力電流iacの絶対値との電流差を減算器2501により算出する。この算出値を比例制御器2502に入力し、得られた出力値を直流リンクコンデンサの直流電圧Vlinkで除算する。この除算値に、数式(1)で表されるフィードフォワード項2503を加算器2504で加算することで、第1のコンバータ回路のスイッチング素子のデューティ比2505(Duty_201)を出力する。なお、ここでは比例制御器2502を用いて説明しているが、積分制御器や比例積分制御器を用いても良く、制御方法を限定するものでないことは言うまでもない。 FIG. 14 is a control block diagram relating to the calculation of the duty ratio of the switching element of the first converter circuit 201 in the control circuit 25. In the control circuit 25, a subtractor 2501 calculates a current difference between a predetermined absolute value of the target sine wave current i ac * and an absolute value of the AC input current i ac detected by the first current detector 27a. To do. This calculated value is input to the proportional controller 2502, and the obtained output value is divided by the DC voltage V link of the DC link capacitor. The adder 2504 adds the feedforward term 2503 expressed by Equation (1) to this division value, thereby outputting the duty ratio 2505 (Duty_201) of the switching element of the first converter circuit. Although the proportional controller 2502 is described here, it is needless to say that an integral controller or a proportional integral controller may be used and the control method is not limited.
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 図15は、図14で算出されたデューティ比に基づいて第1のコンバータ回路201のスイッチング素子を駆動するためのゲート信号の生成に関する制御ブロック図である。図14で得られた第1のコンバータ回路のスイッチング素子のデューティ比2505が、搬送波2506(Vcar)と比較して小さい場合、コンパレータ2507の出力値2508(Sig_201a)はHighとなり、コンパレータ2509の出力値2510(Sig_201b)はLowとなる。一方、第1のコンバータ回路のスイッチング素子のデューティ比2505が、搬送波2506(Vcar)と比較して大きい場合、コンパレータ2507の出力値2508(Sig_201a)はLowとなり、コンパレータ2509の出力値2510(Sig_201b)はHighとなる。 FIG. 15 is a control block diagram relating to generation of a gate signal for driving the switching element of the first converter circuit 201 based on the duty ratio calculated in FIG. When the duty ratio 2505 of the switching element of the first converter circuit obtained in FIG. 14 is smaller than the carrier wave 2506 (V car ), the output value 2508 (Sig — 201a) of the comparator 2507 becomes High, and the output of the comparator 2509 The value 2510 (Sig_201b) is Low. On the other hand, when the duty ratio 2505 of the switching element of the first converter circuit is larger than the carrier wave 2506 (V car ), the output value 2508 (Sig_201a) of the comparator 2507 is Low and the output value 2510 (Sig_201b) of the comparator 2509 is low. ) Becomes High.
 図16は、交流入力電圧の極性に応じて第1のコンバータ回路のスイッチング素子のゲート信号を切替える制御に関する制御ブロック図である。図16に示すように、交流入力電圧vacが正極性の場合、コンパレータ2511はHighを出力する。このとき、マルチプレクサ(MUX)2512は、Sig_201b(2510)を第1コンバータ回路のスイッチング素子201aのゲート信号Gate_201a(2513)として出力する。また、マルチプレクサ(MUX)2514は、Sig_201a(2508)を第1コンバータ回路のスイッチング素子201bのゲート信号Gate_201b(2515)として出力する。一方、マルチプレクサ(MUX)2516は、Lowを第1コンバータ回路のスイッチング素子201cのゲート信号Gate_201c(2517)として出力し、マルチプレクサ(MUX)2518は、Highを第1コンバータ回路のスイッチング素子201dのゲート信号Gate_201d(2519)として出力する。 FIG. 16 is a control block diagram relating to control for switching the gate signal of the switching element of the first converter circuit in accordance with the polarity of the AC input voltage. As shown in FIG. 16, when the AC input voltage vac is positive, the comparator 2511 outputs High. At this time, the multiplexer (MUX) 2512 outputs Sig_201b (2510) as the gate signal Gate_201a (2513) of the switching element 201a of the first converter circuit. The multiplexer (MUX) 2514 outputs Sig_201a (2508) as the gate signal Gate_201b (2515) of the switching element 201b of the first converter circuit. On the other hand, the multiplexer (MUX) 2516 outputs Low as the gate signal Gate_201c (2517) of the switching element 201c of the first converter circuit, and the multiplexer (MUX) 2518 outputs High to the gate signal of the switching element 201d of the first converter circuit. Output as Gate_201d (2519).
 これに対し、交流入力電圧vacが負極性の場合、コンパレータ2511はLowを出力する。このとき、マルチプレクサ(MUX)2512は、Sig_201a(2508)を第1コンバータ回路のスイッチング素子201aのゲート信号Gate_201a(2513)として出力する。また、マルチプレクサ(MUX)2514は、Sig_201b(2510)を第1コンバータ回路のスイッチング素子201bのゲート信号Gate_201b(2515)として出力する。一方、マルチプレクサ(MUX)2516は、Highを第1コンバータ回路のスイッチング素子201cのゲート信号Gate_201c(2517)として出力する。また、マルチプレクサ(MUX)2518は、Lowを第1コンバータ回路のスイッチング素子201dのゲート信号Gate_201d(2519)として出力する。 On the other hand, when the AC input voltage vac is negative, the comparator 2511 outputs Low. At this time, the multiplexer (MUX) 2512 outputs Sig_201a (2508) as the gate signal Gate_201a (2513) of the switching element 201a of the first converter circuit. Further, the multiplexer (MUX) 2514 outputs Sig_201b (2510) as the gate signal Gate_201b (2515) of the switching element 201b of the first converter circuit. On the other hand, the multiplexer (MUX) 2516 outputs High as the gate signal Gate_201c (2517) of the switching element 201c of the first converter circuit. The multiplexer (MUX) 2518 outputs Low as the gate signal Gate_201d (2519) of the switching element 201d of the first converter circuit.
 次に、直流リンクコンデンサの直流電圧Vlinkを直流リンクコンデンサの目標直流電圧Vlink*に追従するように、絶縁型コンバータ回路の制御を行う場合の、インバータ回路203および第2のコンバータ回路205の制御について、図17~図19に示す制御ブロック図を用いて説明する。本制御は、第1制御モードのCP制御モード、第2制御モードのCP制御モード、第4制御モードのCP制御モード、において用いられる。
 図17は、インバータ回路203のゲート信号に対する、第2のコンバータ回路205のゲート信号の位相シフト量を生成する制御に関する制御ブロック図である。制御回路25では、予め定められた直流リンクコンデンサ202の目標直流電圧Vlink*と、第2の電圧検出器26bで検出される直流リンクコンデンサの直流電圧Vlinkとの電圧差を減算器2520により算出する。減算器2520により算出された算出値を比例積分制御器2521に入力することで、第1の位相シフト量Trig_N(2522)が得られる。また、第1の位相シフト量Trig_Nに定数0.5を加算器2523で加算することで、第2の位相シフト量Trig_P(2524)が得られる。なお、ここでは比例積分制御器2521を用いて説明しているが、比例制御器や積分制御器を用いても良く、制御方法を限定するものでないことは言うまでもない。
Next, in the inverter circuit 203 and the second converter circuit 205 in the case of controlling the isolated converter circuit so that the DC voltage V link of the DC link capacitor follows the target DC voltage V link * of the DC link capacitor. The control will be described with reference to control block diagrams shown in FIGS. This control is used in the CP control mode of the first control mode, the CP control mode of the second control mode, and the CP control mode of the fourth control mode.
FIG. 17 is a control block diagram relating to control for generating a phase shift amount of the gate signal of the second converter circuit 205 with respect to the gate signal of the inverter circuit 203. In the control circuit 25, the pre-target DC voltage of the DC link capacitor 202 defined V link *, the subtractor 2520 the voltage difference between the DC voltage V link of the DC link capacitor which is detected by the second voltage detector 26b calculate. By inputting the calculated value calculated by the subtractor 2520 to the proportional-plus-integral controller 2521, the first phase shift amount Trig_N (2522) is obtained. Further, by adding a constant 0.5 to the first phase shift amount Trig_N by the adder 2523, a second phase shift amount Trig_P (2524) is obtained. Here, the description is given using the proportional-plus-integral controller 2521. However, it goes without saying that a proportional controller or an integral controller may be used and the control method is not limited.
 図18は、インバータ回路203のゲート信号の生成に関する制御ブロック図である。制御回路25では、搬送波2506(Vcar)が、定数0.5と比較して大きい場合、コンパレータ2525の出力値2526はHighとなる。このとき、コンパレータ2525の出力値2526を否定回路2527に入力することで、否定回路の出力値2528はLowとなる。 FIG. 18 is a control block diagram relating to generation of the gate signal of the inverter circuit 203. In the control circuit 25, when the carrier wave 2506 (V car ) is larger than the constant 0.5, the output value 2526 of the comparator 2525 becomes High. At this time, by inputting the output value 2526 of the comparator 2525 to the negation circuit 2527, the output value 2528 of the negation circuit becomes Low.
 これに対し、搬送波2506(Vcar)が、定数0.5と比較して小さい場合、コンパレータ2525の出力値2526はLowとなる。このとき、コンパレータ2525の出力値2526を否定回路2527に入力することで、否定回路の出力値2528はHighとなる。コンパレータ2525の出力値2526を、インバータ回路のスイッチング素子203a,203dのゲート信号Gate_203adとして出力する。また、否定回路2527の出力値2528を、インバータ回路のスイッチング素子203b,203cのゲート信号Gate_203bcとして出力する。 On the other hand, when the carrier wave 2506 (V car ) is smaller than the constant 0.5, the output value 2526 of the comparator 2525 is Low. At this time, by inputting the output value 2526 of the comparator 2525 to the negation circuit 2527, the output value 2528 of the negation circuit becomes High. The output value 2526 of the comparator 2525 is output as the gate signal Gate_203ad of the switching elements 203a and 203d of the inverter circuit. Further, the output value 2528 of the negative circuit 2527 is output as the gate signal Gate_203bc of the switching elements 203b and 203c of the inverter circuit.
 図19は、第2のコンバータ回路205のゲート信号の生成に関する制御ブロック図である。図17で得られた第1の位相シフト量Trig_N(2522)が、搬送波2506(Vcar)と比較して小さい場合、コンパレータ2529はHighを出力する。さらに、このとき第2の位相シフト量Trig_P(2524)が、搬送波2506(Vcar)と比較して大きい場合、コンパレータ2530はHighを出力する。 FIG. 19 is a control block diagram relating to the generation of the gate signal of the second converter circuit 205. When the first phase shift amount Trig_N (2522) obtained in FIG. 17 is smaller than the carrier wave 2506 (V car ), the comparator 2529 outputs High. Further, at this time, if the second phase shift amount Trig_P (2524) is larger than the carrier wave 2506 (V car ), the comparator 2530 outputs High.
 これに対し、第1の位相シフト量Trig_N(2522)が、搬送波2506(Vcar)と比較して大きい場合、コンパレータ2529はLowを出力する。さらに、このとき、第2の位相シフト量Trig_P(2524)が、搬送波2506(Vcar)と比較して小さい場合、コンパレータ2530はLowを出力する。2つのコンパレータ(2529、2530)の出力を論理積回路2531に入力することで得られる出力値2532を、第2のコンバータ回路のスイッチング素子205aおよびスイッチング素子205dのゲート信号Gate_205adとして出力する。さらに、論理積回路2531の出力値2532を否定回路2533に入力することで得られる出力値2534を、第2のコンバータ回路のスイッチング素子205bおよびスイッチング素子205cのゲート信号Gate_205bcとして出力する。 On the other hand, when the first phase shift amount Trig_N (2522) is larger than the carrier wave 2506 (V car ), the comparator 2529 outputs Low. Further, at this time, when the second phase shift amount Trig_P (2524) is smaller than the carrier wave 2506 (V car ), the comparator 2530 outputs Low. An output value 2532 obtained by inputting the outputs of the two comparators (2529, 2530) to the AND circuit 2531 is output as the gate signal Gate_205ad of the switching element 205a and the switching element 205d of the second converter circuit. Further, the output value 2534 obtained by inputting the output value 2532 of the logical product circuit 2531 to the negative circuit 2533 is output as the gate signal Gate_205bc of the switching element 205b and the switching element 205c of the second converter circuit.
 次に、統合用直流コンデンサの直流電圧Vintを目標直流電圧Vint*に追従するように、第3の電力変換回路23の制御を行う場合の、第3のコンバータ回路230の制御について、図20および図21に示す制御ブロック図を用いて説明する。本制御は、第1動作モードのCP制御モード、第1動作モードのCC制御モード、第3動作モードのCP制御モード、第3動作モードのCC制御モード、第4動作モードのCP制御モード、第5動作モードのCV制御モード、第6動作モードのCV制御モード、第8動作モードのCV制御モード、において用いられる。 Next, the control of the third converter circuit 230 when the third power conversion circuit 23 is controlled so that the DC voltage V int of the integration DC capacitor follows the target DC voltage V int * is shown in FIG. 20 and the control block diagram shown in FIG. The control includes a CP control mode of the first operation mode, a CC control mode of the first operation mode, a CP control mode of the third operation mode, a CC control mode of the third operation mode, a CP control mode of the fourth operation mode, It is used in the CV control mode of the fifth operation mode, the CV control mode of the sixth operation mode, and the CV control mode of the eighth operation mode.
 図20は、制御回路25における、第3のコンバータ回路230のスイッチング素子のデューティ比の算出に関する制御ブロック図である。制御回路25では、予め定められた統合用直流コンデンサの目標直流電圧Vint*と、第3の電圧検出器26cで検出される統合用直流コンデンサの直流電圧Vintとの電圧差を減算器2535により算出する。この算出値を比例積分制御器2536に入力することで、第3のコンバータ回路のスイッチング素子のデューティ比2537(Duty_230)が得られる。なお、ここでは比例積分制御器2536を用いて説明しているが、比例制御器や積分制御器を用いても良く、制御方法を限定するものでないことは言うまでもない。 FIG. 20 is a control block diagram relating to the calculation of the duty ratio of the switching element of the third converter circuit 230 in the control circuit 25. The control circuit 25 subtracts a voltage difference between a predetermined target DC voltage V int * of the integration DC capacitor and a DC voltage V int of the integration DC capacitor detected by the third voltage detector 26c. Calculated by By inputting this calculated value to the proportional-plus-integral controller 2536, the duty ratio 2537 (Duty_230) of the switching element of the third converter circuit is obtained. Note that although the proportional-integral controller 2536 has been described here, it is needless to say that a proportional controller or an integral controller may be used and the control method is not limited.
 図21は、制御回路25における、第3のコンバータ回路230のスイッチング素子のゲート信号の生成に関する制御ブロック図である。図21に示すように、図20で得られた第3のコンバータ回路のスイッチング素子のデューティ比2537(Duty_230)が、搬送波2506(Vcar)と比較して小さい場合、コンパレータ2538の出力値2539はHighとなる。このとき、コンパレータ2540の出力値2541はLowとなる。 FIG. 21 is a control block diagram relating to generation of the gate signal of the switching element of the third converter circuit 230 in the control circuit 25. As shown in FIG. 21, when the duty ratio 2537 (Duty_230) of the switching element of the third converter circuit obtained in FIG. 20 is smaller than the carrier wave 2506 (V car ), the output value 2539 of the comparator 2538 is High. At this time, the output value 2541 of the comparator 2540 is Low.
 これに対し、第3のコンバータ回路のスイッチング素子のデューティ比2537(Duty_230)が、搬送波2506(Vcar)と比較して大きい場合、コンパレータ2538の出力値2539はLowとなる。このとき、コンパレータ2540の出力値2541はHighとなる。コンパレータ2538の出力値2539を、第3のコンバータ回路のスイッチング素子230aおよびスイッチング素子230dのゲート信号Gate_230adとして出力する。また、コンパレータ2540の出力値2541を、第3のコンバータ回路のスイッチング素子230bおよびスイッチング素子230cのゲート信号Gate_230bcとして出力する。 On the other hand, when the duty ratio 2537 (Duty_230) of the switching element of the third converter circuit is larger than the carrier wave 2506 (V car ), the output value 2539 of the comparator 2538 is Low. At this time, the output value 2541 of the comparator 2540 becomes High. The output value 2539 of the comparator 2538 is output as the gate signal Gate_230ad of the switching elements 230a and 230d of the third converter circuit. Further, the output value 2541 of the comparator 2540 is output as the gate signal Gate_230bc of the switching element 230b and the switching element 230c of the third converter circuit.
 固定のデューティ比で第2の電力変換回路22の制御を行う場合の、第2の電力変換回路22の制御方法について、図22に示す制御ブロック図を用いて説明する。本制御は、第1動作モードのCP制御モード、第3動作モードのCP制御モード、第6動作モードのCV制御モード、第8動作モードのCV制御モード、において用いられる。 A control method of the second power conversion circuit 22 when the second power conversion circuit 22 is controlled with a fixed duty ratio will be described with reference to a control block diagram shown in FIG. This control is used in the CP control mode of the first operation mode, the CP control mode of the third operation mode, the CV control mode of the sixth operation mode, and the CV control mode of the eighth operation mode.
 第2の電力変換回路22は、負荷4が直流電圧源である場合、固定のデューティ比でオンオフ制御される。図22は、制御回路25において、第2の電力変換回路22のスイッチング素子のゲート信号を固定値で生成する制御ブロック図である。予め定められた統合用直流コンデンサの目標直流電圧Vint*と、負荷4への直流出力電圧Voutを数式(2)に代入することで得られる固定デューティ比2542が、搬送波2506(Vcar)と比較して小さい場合、コンパレータ2543の出力値2544はHighとなる。このとき、コンパレータ2545の出力値2546はLowとなる。 The second power conversion circuit 22 is on / off controlled at a fixed duty ratio when the load 4 is a DC voltage source. FIG. 22 is a control block diagram for generating the gate signal of the switching element of the second power conversion circuit 22 with a fixed value in the control circuit 25. The fixed duty ratio 2542 obtained by substituting the predetermined target DC voltage V int * of the DC capacitor for integration and the DC output voltage V out to the load 4 into Equation (2) is a carrier wave 2506 (V car ). Is smaller than the output value 2544 of the comparator 2543, it becomes High. At this time, the output value 2546 of the comparator 2545 is Low.
 これに対し、固定デューティ比2542が、搬送波2506(Vcar)と比較して大きい場合、コンパレータ2543の出力値2544はLowとなる。このとき、コンパレータ2545の出力値2546はHighとなる。コンパレータ2543の出力値2544を、第2の電力変換回路のスイッチング素子220aのゲート信号Gate_220aとして出力する。また、コンパレータ2545の出力値2546を、第2の電力変換回路のスイッチング素子220bのゲート信号Gate_220bとして出力する。 On the other hand, when the fixed duty ratio 2542 is larger than the carrier wave 2506 (V car ), the output value 2544 of the comparator 2543 is Low. At this time, the output value 2546 of the comparator 2545 becomes High. The output value 2544 of the comparator 2543 is output as the gate signal Gate_220a of the switching element 220a of the second power conversion circuit. Further, the output value 2546 of the comparator 2545 is output as the gate signal Gate_220b of the switching element 220b of the second power conversion circuit.
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
 直流出力電圧Voutを目標出力電圧Vout*に追従するように、第2の電力変換回路22の制御を行う場合の、第2の電力変換回路22の制御方法について、図23および図24に示す制御ブロック図を用いて説明する。本制御は、第1動作モードのCP制御モード、第3動作モードのCP制御モード、において用いられる。
 負荷4の直流出力電圧Voutを可変に制御する必要がある場合、第4の電圧検出器26dから得られる直流出力電圧Voutを目標出力電圧Vout*に追従するように、第2の電力変換回路22の制御を行う。図23は、制御回路25における、第2の電力変換回路22のスイッチング素子のデューティ比の生成に関する制御ブロック図である。制御回路25では、予め定められた負荷4の目標出力電圧Vout*と、第4の電圧検出器26dで検出される負荷4の直流出力電圧Voutとの電圧差を減算器2547により算出する。この算出値を比例積分制御器2548に入力することで、第2の電力変換回路22のスイッチング素子のデューティ比2549(Duty_220)が得られる。なお、ここでは比例積分制御器2548を用いて説明しているが、比例制御器や積分制御器を用いても良く、制御方法を限定するものでないことは言うまでもない。
FIG. 23 and FIG. 24 show the control method of the second power conversion circuit 22 when the second power conversion circuit 22 is controlled so that the DC output voltage V out follows the target output voltage V out *. This will be described with reference to the control block diagram shown. This control is used in the CP control mode of the first operation mode and the CP control mode of the third operation mode.
When the DC output voltage Vout of the load 4 needs to be variably controlled, the second power is set so that the DC output voltage Vout obtained from the fourth voltage detector 26d follows the target output voltage Vout *. The conversion circuit 22 is controlled. FIG. 23 is a control block diagram related to generation of the duty ratio of the switching element of the second power conversion circuit 22 in the control circuit 25. In the control circuit 25, a subtractor 2547 calculates a voltage difference between a predetermined target output voltage V out * of the load 4 and the DC output voltage V out of the load 4 detected by the fourth voltage detector 26d. . By inputting this calculated value to the proportional-plus-integral controller 2548, the duty ratio 2549 (Duty_220) of the switching element of the second power conversion circuit 22 is obtained. Note that although the proportional-plus-integral controller 2548 is described here, it is needless to say that a proportional controller or an integral controller may be used and the control method is not limited.
 図24は、制御回路25における、第2の電力変換回路22のスイッチング素子のゲート信号の生成に関する制御ブロック図である。図23で得られた第2の電力変換回路22のスイッチング素子のデューティ比2549(Duty_220)が、搬送波2506(Vcar)と比較して小さい場合、コンパレータ2550の出力値2544はHighとなる。このとき、コンパレータ2551の出力値2546はLowとなる。 FIG. 24 is a control block diagram relating to the generation of the gate signal of the switching element of the second power conversion circuit 22 in the control circuit 25. When the duty ratio 2549 (Duty_220) of the switching element of the second power conversion circuit 22 obtained in FIG. 23 is smaller than the carrier wave 2506 (V car ), the output value 2544 of the comparator 2550 becomes High. At this time, the output value 2546 of the comparator 2551 is Low.
 これに対し、デューティ比2549(Duty_220)が、搬送波2506(Vcar)と比較して大きい場合、コンパレータ2550の出力値2544はLowとなる。このとき、コンパレータ2551の出力値2546はHighとなる。コンパレータ2543の出力値2544を、第2の電力変換回路のスイッチング素子220aのゲート信号Gate_220aとして出力する。また、コンパレータ2545の出力値2546を、第2の電力変換回路のスイッチング素子220bのゲート信号Gate_220bとして出力する。 On the other hand, when the duty ratio 2549 (Duty_220) is larger than the carrier wave 2506 (V car ), the output value 2544 of the comparator 2550 is Low. At this time, the output value 2546 of the comparator 2551 becomes High. The output value 2544 of the comparator 2543 is output as the gate signal Gate_220a of the switching element 220a of the second power conversion circuit. Further, the output value 2546 of the comparator 2545 is output as the gate signal Gate_220b of the switching element 220b of the second power conversion circuit.
 第3の電力変換回路23のスイッチング素子を固定値のデューティ比でスイッチングさせる場合の、第3の電力変換回路の制御方法について図25を用いて説明する。本制御は、第1動作モードのCP制御モード、第1動作モードのCC制御モード、第3動作モードのCP制御モード、第4動作モードのCV制御モード、第6動作モードのCV制御モード、第8動作モードのCV制御モード、において用いられる。 A control method of the third power conversion circuit when the switching element of the third power conversion circuit 23 is switched at a fixed duty ratio will be described with reference to FIG. This control includes a CP control mode of the first operation mode, a CC control mode of the first operation mode, a CP control mode of the third operation mode, a CV control mode of the fourth operation mode, a CV control mode of the sixth operation mode, It is used in the CV control mode of 8 operation modes.
 図25は、制御回路25における、固定デューティ比を用いた第3の電力変換回路23のスイッチング素子のゲート信号の生成に関する制御ブロック図である。固定デューティ比2552が、搬送波2506(Vcar)と比較して小さい場合、コンパレータ2553の出力値2539はHighとなる。このとき、コンパレータ2554の出力値2541はLowとなる。 FIG. 25 is a control block diagram relating to the generation of the gate signal of the switching element of the third power conversion circuit 23 using the fixed duty ratio in the control circuit 25. When the fixed duty ratio 2552 is smaller than the carrier wave 2506 (V car ), the output value 2539 of the comparator 2553 becomes High. At this time, the output value 2541 of the comparator 2554 is Low.
 これに対し、固定デューティ比2552が、搬送波2506(Vcar)と比較して大きい場合、コンパレータ2553の出力値2539はLowとなる。このとき、コンパレータ2554の出力値2541はHighとなる。コンパレータ2553の出力値2539を、第3のコンバータ回路のスイッチング素子230aと230dのゲート信号Gate_230adとして出力する。また、コンパレータ2554の出力値2541を、第3のコンバータ回路のスイッチング素子230bと230cのゲート信号Gate_230bcとして出力する。 On the other hand, when the fixed duty ratio 2552 is larger than the carrier wave 2506 (V car ), the output value 2539 of the comparator 2553 is Low. At this time, the output value 2541 of the comparator 2554 becomes High. The output value 2539 of the comparator 2553 is output as the gate signal Gate_230ad of the switching elements 230a and 230d of the third converter circuit. The output value 2541 of the comparator 2554 is output as the gate signal Gate_230bc of the switching elements 230b and 230c of the third converter circuit.
 統合用直流コンデンサの直流電圧Vintを目標直流電圧Vint*に追従するように第2の電力変換回路22を制御する場合の、第2の電力変換回路22の制御方法について、図26および図24に示す制御ブロック図を用いて説明する。本制御は、第1動作モードのCP制御モード、第2動作モードのCP制御モード、第3動作モードのCP制御モード、において用いられる。
 図26は、制御回路25における、第2の電力変換回路22のスイッチング素子のデューティ比の生成に関する制御ブロック図である。制御回路25では、予め定められた統合用直流コンデンサ21の目標直流電圧Vint*と、第3の電圧検出器26cで検出される統合用直流コンデンサ21の直流電圧Vintとの電圧差を減算器2555により算出する。この算出値を比例積分制御器2556に入力することで、第2の電力変換回路22のスイッチング素子のデューティ比2549(Duty_220)が得られる。なお、ここでは比例積分制御器2556を用いて説明しているが、比例制御器や積分制御器を用いても良く、制御方法を限定するものでないことは言うまでもない。
26 and FIG. 26 show a control method of the second power conversion circuit 22 in the case of controlling the second power conversion circuit 22 so that the DC voltage V int of the integration DC capacitor follows the target DC voltage V int *. This will be described with reference to the control block diagram shown in FIG. This control is used in the CP control mode of the first operation mode, the CP control mode of the second operation mode, and the CP control mode of the third operation mode.
FIG. 26 is a control block diagram relating to the generation of the duty ratio of the switching element of the second power conversion circuit 22 in the control circuit 25. The control circuit 25 subtracts the voltage difference between the predetermined target DC voltage V int * of the integration DC capacitor 21 and the DC voltage V int of the integration DC capacitor 21 detected by the third voltage detector 26c. It is calculated by the device 2555. By inputting this calculated value to the proportional-plus-integral controller 2556, the duty ratio 2549 (Duty_220) of the switching element of the second power conversion circuit 22 is obtained. Note that although the proportional-plus-integral controller 2556 is described here, it is needless to say that a proportional controller or an integral controller may be used and the control method is not limited.
 図26で得られた第2の電力変換回路22のスイッチング素子のデューティ比2549(Duty_220)と搬送波2506(Vcar)を、図24に示す制御ブロック図を用いて比較する。動作については前述したものと同様であり、説明を省略する。これにより、前述の通り第2の電力変換回路のスイッチング素子220aおよびスイッチング素子220bのゲート信号Gate_220aおよびGate_220bが生成される。 The duty ratio 2549 (Duty_220) of the switching element of the second power conversion circuit 22 and the carrier wave 2506 (V car ) obtained in FIG. 26 are compared using the control block diagram shown in FIG. The operation is the same as that described above, and a description thereof will be omitted. Thereby, as described above, the gate signals Gate_220a and Gate_220b of the switching element 220a and the switching element 220b of the second power conversion circuit are generated.
 直流リンクコンデンサの直流電圧Vlinkを目標直流電圧Vlink*に追従するように、第1のコンバータ回路201の制御を行う場合の、第1のコンバータ回路201の制御方法について図27、図15および図16を用いて説明する。本制御は、第1制御モードのCC制御モード、第2制御モードのCC制御モード、第4動作モードのCV制御モード、において用いられる。
 図27は、制御回路25における、第1のコンバータ回路201のスイッチング素子のデューティ比の生成に関する制御ブロック図である。制御回路25では、予め定められた直流リンクコンデンサ202の目標直流電圧Vlink*と、第2の電圧検出器26bで検出される直流リンクコンデンサ202の直流電圧Vlinkとの電圧差を減算器2557により算出する。減算器2557により算出された算出値を比例積分制御器2558に入力することで、第1のコンバータ回路201のスイッチング素子のデューティ比2505(Duty_201)が得られる。なお、ここでは比例積分制御器2558を用いて説明しているが、比例制御器や積分制御器を用いても良く、制御方法を限定するものでないことは言うまでもない。
A control method of the first converter circuit 201 when the first converter circuit 201 is controlled so that the DC voltage V link of the DC link capacitor follows the target DC voltage V link * is shown in FIGS. This will be described with reference to FIG. This control is used in the CC control mode of the first control mode, the CC control mode of the second control mode, and the CV control mode of the fourth operation mode.
FIG. 27 is a control block diagram relating to the generation of the duty ratio of the switching element of the first converter circuit 201 in the control circuit 25. In the control circuit 25, a target DC voltage V link * of the DC link capacitor 202 with a predetermined, subtractor a voltage difference between the DC voltage V link of the DC link capacitor 202 detected by the second voltage detector 26b 2557 Calculated by By inputting the calculated value calculated by the subtracter 2557 to the proportional-plus-integral controller 2558, the duty ratio 2505 (Duty_201) of the switching element of the first converter circuit 201 is obtained. Note that although the proportional-plus-integral controller 2558 is described here, it is needless to say that a proportional controller or an integral controller may be used and the control method is not limited.
 図27で得られた第1のコンバータ回路201のスイッチング素子のデューティ比2505(Duty_201)と搬送波2506(Vcar)を、図15に示す制御ブロック図を用いて比較する。図15に示す制御ブロック図の動作は前述したものと同様であり、説明を省略する。これにより、前述の通り第1のコンバータ回路のスイッチング素子を駆動するためのゲート信号Sig_201a(2508)とSig_201b(2510)が得られる。これらの2つのゲート信号(2508、2510)と、図16の制御ブロック図を用いることで、前述の通り第1コンバータ回路のスイッチング素子のゲート信号sGate_201a(2513)~Gate_201d(2519)が生成される。 The duty ratio 2505 (Duty_201) of the switching element of the first converter circuit 201 obtained in FIG. 27 and the carrier wave 2506 (V car ) are compared using the control block diagram shown in FIG. The operation of the control block diagram shown in FIG. 15 is the same as that described above, and a description thereof will be omitted. As a result, gate signals Sig_201a (2508) and Sig_201b (2510) for driving the switching elements of the first converter circuit are obtained as described above. By using these two gate signals (2508, 2510) and the control block diagram of FIG. 16, the gate signals sGate_201a (2513) to Gate_201d (2519) of the switching elements of the first converter circuit are generated as described above. .
 統合用直流コンデンサの直流電圧Vintを目標直流電圧Vint*に追従するように絶縁型コンバータ回路を制御する場合の、インバータ回路203および第2のコンバータ回路205の制御について図28、図18および図19を用いて説明する。本制御は、第1動作モードのCC制御モード、第2制御モードのCC制御モード、第4制御モードのCV制御モード、において用いられる。
 図28は、制御回路25における、インバータ回路203のゲート信号に対する、第2のコンバータ回路205のゲート信号の位相シフト量の生成に関する制御ブロック図である。制御回路25では、予め定められた統合用直流コンデンサの目標直流電圧Vint*と、第3の電圧検出器26cで検出される統合用直流コンデンサ21の直流電圧Vintとの電圧差を減算器2559により算出する。減算器2559により算出された算出値を比例積分制御器2560に入力することで、第1の位相シフト量Trig_N(2522)が得られる。また、第1の位相シフト量Trig_Nに定数0.5を加算器2561で加算することで、第2の位相シフト量Trig_P(2524)が得られる。なお、ここでは比例積分制御器2560を用いて説明しているが、比例制御器や積分制御器を用いても良く、制御方法を限定するものでないことは言うまでもない。
Control of the inverter circuit 203 and the second converter circuit 205 in the case of controlling the isolated converter circuit so that the DC voltage V int of the DC capacitor for integration follows the target DC voltage V int * is shown in FIGS. This will be described with reference to FIG. This control is used in the CC control mode of the first operation mode, the CC control mode of the second control mode, and the CV control mode of the fourth control mode.
FIG. 28 is a control block diagram relating to generation of the phase shift amount of the gate signal of the second converter circuit 205 with respect to the gate signal of the inverter circuit 203 in the control circuit 25. The control circuit 25 subtracts a voltage difference between a predetermined target DC voltage V int * of the integration DC capacitor and the DC voltage V int of the integration DC capacitor 21 detected by the third voltage detector 26c. 2559. By inputting the calculated value calculated by the subtracter 2559 to the proportional-plus-integral controller 2560, the first phase shift amount Trig_N (2522) is obtained. Further, by adding a constant 0.5 to the first phase shift amount Trig_N by the adder 2561, the second phase shift amount Trig_P (2524) is obtained. Although the description has been given using the proportional-plus-integral controller 2560 here, it is needless to say that a proportional controller or an integral controller may be used and the control method is not limited.
 図18に示す制御ブロック図を用いることで、前述の通りインバータ回路203のスイッチング素子203aとスイッチング素子203dのゲート信号Gate_203ad、およびスイッチング素子203bとスイッチング素子203cのゲート信号Gate_203bcが得られる。図18に示す制御ブロック図の動作は前述したものと同様であり、説明を省略する。また、図28で得られた2つの位相シフト量と、搬送波2506(Vcar)を、図18に示す制御ブロック図を用いて比較する。これにより、前述の通り第2のコンバータ回路のスイッチング素子を駆動するためのゲート信号Gate_205ad(2532)およびGate_205bc(2534)が生成される。 By using the control block diagram shown in FIG. 18, the gate signals Gate_203ad of the switching elements 203a and 203d of the inverter circuit 203 and the gate signals Gate_203bc of the switching elements 203b and 203c are obtained as described above. The operation of the control block diagram shown in FIG. Also, the two phase shift amounts obtained in FIG. 28 and the carrier wave 2506 (V car ) are compared using the control block diagram shown in FIG. Thus, gate signals Gate_205ad (2532) and Gate_205bc (2534) for driving the switching elements of the second converter circuit are generated as described above.
 固定のデューティ比で絶縁型コンバータ回路を制御する場合の、インバータ回路203および第2のコンバータ回路205の制御方法について説明する。本制御は、第1動作モードのCC制御モード、において用いられる。
 インバータ回路203のスイッチング素子203aとスイッチング素子203dのゲート信号Gate_203ad、およびスイッチング素子203bとスイッチング素子203cのゲート信号Gate_203bcは、前述の通り図18に示す制御ブロック図から得られる。第2のコンバータ回路205については、図29に示す制御ブロック図を用いて生成する。具体的には、搬送波2506(Vcar)が、定数0.5と比較して大きい場合、コンパレータ2562の出力値2532はHighとなる。このとき、コンパレータ2562の出力値2532を否定回路2563に入力することで、否定回路の出力値2534はLowとなる。
A method for controlling the inverter circuit 203 and the second converter circuit 205 when the isolated converter circuit is controlled with a fixed duty ratio will be described. This control is used in the CC control mode of the first operation mode.
As described above, the gate signals Gate_203ad of the switching elements 203a and 203d of the inverter circuit 203 and the gate signals Gate_203bc of the switching elements 203b and 203c are obtained from the control block diagram shown in FIG. The second converter circuit 205 is generated using the control block diagram shown in FIG. Specifically, when the carrier wave 2506 (V car ) is larger than the constant 0.5, the output value 2532 of the comparator 2562 becomes High. At this time, by inputting the output value 2532 of the comparator 2562 to the negation circuit 2563, the output value 2534 of the negation circuit becomes Low.
 これに対し、搬送波2506(Vcar)が、定数0.5と比較して小さい場合、コンパレータ2562の出力値2532はLowとなる。このとき、コンパレータ2562の出力値2532を否定回路2563に入力することで、否定回路の出力値2534はHighとなる。コンパレータ2562の出力値2532を、インバータ回路のスイッチング素子205aと205dのゲート信号Gate_205adとして出力する。また、否定回路2563の出力値2534を、インバータ回路のスイッチング素子205bと205cのゲート信号Gate_205bcとして出力する。 On the other hand, when the carrier wave 2506 (V car ) is smaller than the constant 0.5, the output value 2532 of the comparator 2562 is Low. At this time, by inputting the output value 2532 of the comparator 2562 to the negation circuit 2563, the output value 2534 of the negation circuit becomes High. The output value 2532 of the comparator 2562 is output as the gate signal Gate_205ad of the switching elements 205a and 205d of the inverter circuit. Further, the output value 2534 of the negative circuit 2563 is output as the gate signal Gate_205bc of the switching elements 205b and 205c of the inverter circuit.
 直流出力電流Ioutを目標出力電流Iout*に追従するように、第2の電力変換回路22の制御を行う場合の、第2の電力変換回路22の制御について図30および図24を用いて説明する。本制御は、第1動作モードのCC制御モード、第2動作モードのCC制御モード、第3動作モードのCC制御モード、において用いられる。
 図30は、制御回路25における、第2の電力変換回路22のスイッチング素子のデューティ比の生成に関する制御ブロック図である。制御回路25では、予め定められた直流出力電流Iout*と、第2の電流検出器27bで検出される直流出力電流Ioutとの電流差を減算器2564により算出する。この算出値を比例積分制御器2565に入力することで、第2の電力変換回路22のスイッチング素子のデューティ比2549(Duty_220)が得られる。なお、ここでは比例積分制御器2565を用いて説明しているが、比例制御器や積分制御器を用いても良く、制御方法を限定するものでないことは言うまでもない。
The control of the second power conversion circuit 22 when the second power conversion circuit 22 is controlled so that the DC output current I out follows the target output current I out * will be described with reference to FIGS. 30 and 24. explain. This control is used in the CC control mode of the first operation mode, the CC control mode of the second operation mode, and the CC control mode of the third operation mode.
FIG. 30 is a control block diagram relating to generation of the duty ratio of the switching element of the second power conversion circuit 22 in the control circuit 25. In the control circuit 25, the DC output current I out * that is determined in advance, and calculated by the subtractor 2564 the current difference between the DC output current I out that is detected by the second current detector 27b. By inputting this calculated value to the proportional-plus-integral controller 2565, the duty ratio 2549 (Duty_220) of the switching element of the second power conversion circuit 22 is obtained. Here, the description is made using the proportional-plus-integral controller 2565, but it is needless to say that a proportional controller or an integral controller may be used and the control method is not limited.
 また、図30で得られたデューティ比2549(Duty_220)と、搬送波2506(Vcar)を、図24の制御ブロック図を用いて比較する。これにより、前述の通り、第2の電力変換回路220のスイッチング素子を駆動するためのゲート信号Gate_220a(2544)およびGate_220b(2546)が生成される。 Also, the duty ratio 2549 (Duty_220) obtained in FIG. 30 and the carrier wave 2506 (V car ) are compared using the control block diagram of FIG. Thereby, as described above, the gate signals Gate_220a (2544) and Gate_220b (2546) for driving the switching elements of the second power conversion circuit 220 are generated.
 逆方向動作時において直流リンクコンデンサの直流電圧Vlinkを目標直流電圧Vlink*に追従するように、絶縁型コンバータ回路の制御を行う場合の、インバータ回路203および第2のコンバータ回路の制御方法について、図31~図33に示す制御ブロック図を用いて説明する。本制御は、第5動作モードのCV制御モード、第6動作モードのCV制御モード、第7動作モードのCV制御モード、において用いられる。
 図31は、制御回路25において、絶縁型コンバータ回路の逆方向動作時に、第2のコンバータ回路205のゲート信号に対する、インバータ回路203のゲート信号の位相シフト量を生成する制御ブロック図である。制御回路25では、予め定められた直流リンクコンデンサの目標直流電圧Vlink*と、第2の電圧検出器26bで検出される直流リンクコンデンサの直流電圧Vlinkとの電圧差を減算器2566により算出する。この算出値を比例積分制御器2567に入力することで、第1の位相シフト量Trig_N_inv(2568)が得られる。また、第1の位相シフト量Trig_N_invに定数0.5を加算器2569で加算することで、第2の位相シフト量Trig_P_inv(2570)が得られる。なお、ここでは比例積分制御器2567を用いて説明しているが、比例制御器や積分制御器を用いても良く、制御方法を限定するものでないことは言うまでもない。
Regarding the control method of the inverter circuit 203 and the second converter circuit when the isolated converter circuit is controlled so that the DC voltage V link of the DC link capacitor follows the target DC voltage V link * during reverse operation. This will be described with reference to control block diagrams shown in FIGS. This control is used in the CV control mode of the fifth operation mode, the CV control mode of the sixth operation mode, and the CV control mode of the seventh operation mode.
FIG. 31 is a control block diagram for generating a phase shift amount of the gate signal of the inverter circuit 203 with respect to the gate signal of the second converter circuit 205 in the control circuit 25 when the isolated converter circuit operates in the reverse direction. In the control circuit 25, a subtracter 2566 calculates a voltage difference between a predetermined target DC voltage V link * of the DC link capacitor and a DC voltage V link of the DC link capacitor detected by the second voltage detector 26b. To do. By inputting this calculated value to the proportional-plus-integral controller 2567, the first phase shift amount Trig_N_inv (2568) is obtained. Further, by adding a constant 0.5 to the first phase shift amount Trig_N_inv by the adder 2569, the second phase shift amount Trig_P_inv (2570) is obtained. Note that although the proportional-plus-integral controller 2567 is described here, it is needless to say that a proportional controller or an integral controller may be used and the control method is not limited.
 図32は、制御回路25において、絶縁型コンバータ回路の逆方向動作時に、第2のコンバータ回路205のゲート信号を生成する制御ブロック図である。制御回路25では、搬送波2506(Vcar)が、定数0.5と比較して大きい場合、コンパレータ2571の出力値2572はHighとなる。このとき、コンパレータ2571の出力値2572を否定回路2573に入力することで、否定回路の出力値2574はLowとなる。これに対し、搬送波2506(Vcar)が、定数0.5と比較して小さい場合、コンパレータ2571の出力値2572はLowとなる。このとき、コンパレータ2571の出力値2572を否定回路2573に入力することで、否定回路の出力値2574はHighとなる。コンパレータ2571の出力値2572を、第2のコンバータ回路のスイッチング素子205bと205cのゲート信号Gate_205bc_invとして出力する。また、否定回路2573の出力値2574を、2のコンバータ回路のスイッチング素子205aと205dのゲート信号Gate_205ad_invとして出力する。 FIG. 32 is a control block diagram for generating the gate signal of the second converter circuit 205 when the control circuit 25 operates in the reverse direction of the isolated converter circuit. In the control circuit 25, when the carrier wave 2506 (V car ) is larger than the constant 0.5, the output value 2572 of the comparator 2571 becomes High. At this time, by inputting the output value 2572 of the comparator 2571 to the negation circuit 2573, the output value 2574 of the negation circuit becomes Low. On the other hand, when the carrier wave 2506 (V car ) is smaller than the constant 0.5, the output value 2572 of the comparator 2571 becomes Low. At this time, by inputting the output value 2572 of the comparator 2571 to the negation circuit 2573, the output value 2574 of the negation circuit becomes High. The output value 2572 of the comparator 2571 is output as the gate signal Gate_205bc_inv of the switching elements 205b and 205c of the second converter circuit. Further, the output value 2574 of the negation circuit 2573 is output as the gate signal Gate_205ad_inv of the switching elements 205a and 205d of the second converter circuit.
 図33は、制御回路25において、絶縁形コンバータ回路の逆方向動作時に、インバータ回路203のゲート信号を生成する制御ブロック図である。図31で得られた第1の位相シフト量Trig_N_inv(2568)が、搬送波2506(Vcar)と比較して小さい場合、コンパレータ2575はHighを出力する。さらに、このとき第2の位相シフト量Trig_P_inv(2570)が、搬送波2506(Vcar)と比較して大きい場合、コンパレータ2576はHighを出力する。これに対し、第1の位相シフト量Trig_N_inv(2568)が、搬送波2506(Vcar)と比較して大きい場合、コンパレータ2575はLowを出力する。さらに、このとき、第2の位相シフト量Trig_P_inv(2570)が、搬送波2506(Vcar)と比較して小さい場合、コンパレータ2576はLowを出力する。2つのコンパレータ(2575、2576)の出力を論理積回路2577に入力することで得られる出力値2578を、インバータ回路のスイッチング素子203bと203cのゲート信号Gate_203bc_invとして出力する。さらに、論理積回路2577の出力値2578を否定回路2579に入力することで得られる出力値2580を、インバータ回路のスイッチング素子203aと203dのゲート信号Gate_203ad_invとして出力する。 FIG. 33 is a control block diagram for generating the gate signal of the inverter circuit 203 when the control circuit 25 operates in the reverse direction of the isolated converter circuit. When the first phase shift amount Trig_N_inv (2568) obtained in FIG. 31 is smaller than the carrier wave 2506 (V car ), the comparator 2575 outputs High. Further, at this time, when the second phase shift amount Trig_P_inv (2570) is larger than the carrier wave 2506 (V car ), the comparator 2576 outputs High. On the other hand, when the first phase shift amount Trig_N_inv (2568) is larger than the carrier wave 2506 (V car ), the comparator 2575 outputs Low. At this time, if the second phase shift amount Trig_P_inv (2570) is smaller than the carrier wave 2506 (V car ), the comparator 2576 outputs Low. An output value 2578 obtained by inputting the outputs of the two comparators (2575 and 2576) to the logical product circuit 2577 is output as the gate signal Gate_203bc_inv of the switching elements 203b and 203c of the inverter circuit. Further, the output value 2580 obtained by inputting the output value 2578 of the AND circuit 2577 to the negation circuit 2579 is output as the gate signal Gate_203ad_inv of the switching elements 203a and 203d of the inverter circuit.
 逆方向動作時において交流入力電圧vacを目標実効電圧値Vac,rms*から演算される目標正弦波電圧vac*に追従するように、第1のコンバータ回路の制御を行う場合の、第1のコンバータ回路の制御方法について、図34~図36に示す制御ブロック図を用いて説明する。本制御は、第5動作モードのCV制御モード、第6動作モードのCV制御モード、第7動作モードのCV制御モード、において用いられる。
 図34は、制御回路25において、第1のコンバータ回路の逆方向動作時に、第1のコンバータ回路のスイッチング素子のデューティ比を生成する制御ブロック図である。制御回路25において、予め定められた目標実効電圧値Vac,rms*と、振幅値が√2の正弦波sin(ωt)とを乗ずることで、交流電圧の目標正弦波電圧vac*(2581)が生成される。ここで、正弦波sin(ωt)内のωは、交流電圧の周波数成分を有する角周波数とする。生成された交流電圧の目標正弦波電圧vac*と、第1の電圧検出器26aで検出される交流入力電圧vacとの電圧差を減算器2582により算出する。この算出値を比例積分制御器2583に入力することで、第1のコンバータ回路のスイッチング素子のデューティ比2584(Duty_201_inv)を出力する。なお、ここでは比例積分制御器2583を用いて説明しているが、比例制御器や積分制御器を用いても良く、制御方法を限定するものでないことは言うまでもない。
When the first converter circuit is controlled so that the AC input voltage v ac follows the target sine wave voltage v ac * calculated from the target effective voltage value V ac, rms * during reverse operation. A control method of the converter circuit 1 will be described with reference to control block diagrams shown in FIGS. This control is used in the CV control mode of the fifth operation mode, the CV control mode of the sixth operation mode, and the CV control mode of the seventh operation mode.
FIG. 34 is a control block diagram for generating the duty ratio of the switching element of the first converter circuit when the control circuit 25 operates in the reverse direction of the first converter circuit. The control circuit 25 multiplies a predetermined target effective voltage value V ac, rms * and a sine wave sin (ωt) having an amplitude value of √2 to obtain a target sine wave voltage v ac * (2581) of the AC voltage. ) Is generated. Here, ω in the sine wave sin (ωt) is an angular frequency having a frequency component of the AC voltage. A subtractor 2582 calculates a voltage difference between the generated target sine wave voltage v ac * of the AC voltage and the AC input voltage v ac detected by the first voltage detector 26a. By inputting this calculated value to the proportional-plus-integral controller 2583, the duty ratio 2584 (Duty_201_inv) of the switching element of the first converter circuit is output. Although the description is given here using the proportional-plus-integral controller 2583, it goes without saying that a proportional controller or an integral controller may be used and the control method is not limited.
 図35は、制御回路25において、第1のコンバータ回路の逆方向動作時に、第1のコンバータ回路のスイッチング素子を駆動するためのゲート信号を生成する制御ブロック図である。図34で得られた第1のコンバータ回路のスイッチング素子のデューティ比2584が、搬送波2506(Vcar)と比較して大きい場合、コンパレータ2585の出力2586(Sig_201_inv)はHighとなる。対称的に、第1のコンバータ回路のスイッチング素子のデューティ比2584が、搬送波2506(Vcar)と比較して小さい場合、コンパレータ2585の出力2586(Sig_201_inv)はLowとなる。 FIG. 35 is a control block diagram for generating a gate signal for driving the switching element of the first converter circuit when the control circuit 25 operates in the reverse direction of the first converter circuit. When the duty ratio 2584 of the switching element of the first converter circuit obtained in FIG. 34 is larger than the carrier wave 2506 (V car ), the output 2586 (Sig — 201_inv) of the comparator 2585 becomes High. In contrast, when the duty ratio 2584 of the switching element of the first converter circuit is smaller than the carrier wave 2506 (V car ), the output 2586 (Sig — 201_inv) of the comparator 2585 becomes Low.
 図36は、制御回路25において、第1のコンバータ回路の逆方向動作時に、交流入力電圧vacの極性に応じて第1のコンバータ回路のスイッチング素子のゲート信号を切替える制御ブロック図である。交流入力電圧vacが正極性の場合、コンパレータ2587はHighを出力する。このとき、マルチプレクサ(MUX)2588は、Sig_201_inv(2586)を、第1コンバータ回路のスイッチング素子201aと201dのゲート信号Gate_201a_inv(2589)およびGate_201d_inv(2590)として出力する。また、マルチプレクサ(MUX)2591は、Lowの信号を第1コンバータ回路のスイッチング素子201bと201cのゲート信号Gate_201b_inv(2592)およびGate_201c_inv(2593)として出力する。これに対し、交流入力電圧vacが負極性の場合、コンパレータ2587はLowを出力する。このとき、マルチプレクサ(MUX)2588は、Lowの信号を第1コンバータ回路のスイッチング素子201aと201dのゲート信号Gate_201a_inv(2589)およびGate_201d_inv(2590)として出力する。また、マルチプレクサ(MUX)2593は、Sig_201_inv(2586)を,第1コンバータ回路のスイッチング素子201bと201cのゲート信号Gate_201b_inv(2592)およびGate_201c_inv(2593)として出力する。 FIG. 36 is a control block diagram for switching the gate signal of the switching element of the first converter circuit in accordance with the polarity of the AC input voltage vac when the control circuit 25 operates in the reverse direction of the first converter circuit. When the AC input voltage vac is positive, the comparator 2587 outputs High. At this time, the multiplexer (MUX) 2588 outputs Sig_201_inv (2586) as the gate signals Gate_201a_inv (2589) and Gate_201d_inv (2590) of the switching elements 201a and 201d of the first converter circuit. The multiplexer (MUX) 2591 outputs a Low signal as the gate signals Gate_201b_inv (2592) and Gate_201c_inv (2593) of the switching elements 201b and 201c of the first converter circuit. On the other hand, when the AC input voltage vac is negative, the comparator 2587 outputs Low. At this time, the multiplexer (MUX) 2588 outputs the Low signal as the gate signals Gate_201a_inv (2589) and Gate_201d_inv (2590) of the switching elements 201a and 201d of the first converter circuit. The multiplexer (MUX) 2593 outputs Sig_201_inv (2586) as the gate signals Gate_201b_inv (2592) and Gate_201c_inv (2593) of the switching elements 201b and 201c of the first converter circuit.
 逆方向動作時において統合用直流コンデンサの直流電圧Vintを目標直流電圧Vint*に追従するように、第2の電力変換回路22の制御を行う場合の、第2の電力変換回路22の制御方法について、図37および図38に示す制御ブロック図を用いて説明する。本制御は、第6動作モードのCV制御モード、第7動作モードのCV制御モード、第8動作モードのCV制御モード、において用いられる。
 図37は、制御回路25において、第2の電力変換回路22の逆方向動作時に、第2の電力変換回路22のスイッチング素子のデューティ比を生成する制御ブロック図である。制御回路25では、予め定められた統合用直流コンデンサの目標直流電圧Vint*と、第3の電圧検出器26cで検出される統合用直流コンデンサの直流電圧Vintとの電圧差を減算器2594により算出する。この算出値を比例積分制御器2595に入力することで、第2の電力変換回路22のスイッチング素子のデューティ比2596(Duty_220_inv)が得られる。なお、ここでは比例積分制御器2595を用いて説明しているが、比例制御器や積分制御器を用いても良く、制御方法を限定するものでないことは言うまでもない。
Control of the second power conversion circuit 22 when the second power conversion circuit 22 is controlled so that the DC voltage V int of the integration DC capacitor follows the target DC voltage V int * during reverse operation. The method will be described with reference to control block diagrams shown in FIGS. This control is used in the CV control mode of the sixth operation mode, the CV control mode of the seventh operation mode, and the CV control mode of the eighth operation mode.
FIG. 37 is a control block diagram for generating the duty ratio of the switching element of the second power conversion circuit 22 in the control circuit 25 when the second power conversion circuit 22 operates in the reverse direction. The control circuit 25 subtracts a voltage difference between a predetermined target DC voltage V int * of the integration DC capacitor and a DC voltage V int of the integration DC capacitor detected by the third voltage detector 26c. Calculated by By inputting this calculated value to the proportional-plus-integral controller 2595, the duty ratio 2596 (Duty_220_inv) of the switching element of the second power conversion circuit 22 is obtained. Although the description is given here using the proportional-plus-integral controller 2595, it is needless to say that a proportional controller or an integral controller may be used and the control method is not limited.
 図38は、制御回路25において、第2の電力変換回路22の逆方向動作時に、第2の電力変換回路22のスイッチング素子のゲート信号を生成する制御ブロック図である。図37で得られた第2の電力変換回路22のスイッチング素子のデューティ比2596(Duty_220_inv)が、搬送波2506(Vcar)と比較して小さい場合、コンパレータ2597の出力値2598はHighとなる。このとき、コンパレータ2599の出力値25100はLowとなる。これに対し、デューティ比2596(Duty_220_inv)が、搬送波2506(Vcar)と比較して大きい場合、コンパレータ2597の出力値2598はLowとなる。このとき、コンパレータ2599の出力値25100はHighとなる。コンパレータ2597の出力値2598を、第2の電力変換回路のスイッチング素子220aのゲート信号Gate_220a_invとして出力する。また、コンパレータ2599の出力値25100を、第2の電力変換回路のスイッチング素子220bのゲート信号Gate_220b_invとして出力する。
 以上が、各回路の制御方法である。
FIG. 38 is a control block diagram for generating the gate signal of the switching element of the second power conversion circuit 22 in the control circuit 25 when the second power conversion circuit 22 operates in the reverse direction. When the duty ratio 2596 (Duty_220_inv) of the switching element of the second power conversion circuit 22 obtained in FIG. 37 is smaller than the carrier wave 2506 (V car ), the output value 2598 of the comparator 2597 becomes High. At this time, the output value 25100 of the comparator 2599 is Low. On the other hand, when the duty ratio 2596 (Duty_220_inv) is larger than the carrier wave 2506 (V car ), the output value 2598 of the comparator 2597 is Low. At this time, the output value 25100 of the comparator 2599 becomes High. The output value 2598 of the comparator 2597 is output as the gate signal Gate_220a_inv of the switching element 220a of the second power conversion circuit. Further, the output value 25100 of the comparator 2599 is output as the gate signal Gate_220b_inv of the switching element 220b of the second power conversion circuit.
The above is the control method of each circuit.
 実施の形態1に係る電力変換装置は、以上のような構成となり、接触給電方式側の出力部と、非接触給電方式側の出力部と、を統合用直流コンデンサを介して統合しているため、交流電源電圧が高い場合は絶縁型コンバータ回路、もしくは第2の電力変換回路22で統合用直流コンデンサの直流電圧を制御することで、非接触給電方式側の受電電圧が低い場合であっても、いずれかの電力供給機能を停止することなく、同時に電力供給を行うことが可能となる。 The power conversion device according to the first embodiment has the above-described configuration, and the output unit on the contact power feeding method side and the output unit on the non-contact power feeding method side are integrated via a DC capacitor for integration. Even when the AC power supply voltage is high, the DC voltage of the DC capacitor for integration is controlled by the isolated converter circuit or the second power conversion circuit 22, so that even if the power reception voltage on the non-contact power supply side is low Thus, it is possible to supply power at the same time without stopping any of the power supply functions.
実施の形態2.
 本発明の実施の形態2に係る電力変換装置について説明する。本発明の実施の形態2に係る電力変換装置では、実施の形態1において示した電力変換装置と比較して、一部の動作モードにおける制御方法が異なる。ここでは、実施の形態1と異なる部分について説明する。なお、本発明の実施の形態2に係る電力変換装置の回路構成は、図1に示した電力変換装置と同様であり、説明を省略する。また、本実施の形態に係る電力変換装置は、実施の形態1と同様に、構成要素である各電力変換回路の動作パターンを組み合わせることで、図4に示すように8つの動作モードに分類することができる。動作モードの切替方法についても、実施の形態1と同様であるため、切替方法についての説明を省略する。
Embodiment 2. FIG.
A power conversion apparatus according to Embodiment 2 of the present invention will be described. The power conversion device according to Embodiment 2 of the present invention differs from the power conversion device shown in Embodiment 1 in the control method in some operation modes. Here, a different part from Embodiment 1 is demonstrated. The circuit configuration of the power conversion device according to the second embodiment of the present invention is the same as that of the power conversion device shown in FIG. Further, the power conversion device according to the present embodiment is classified into eight operation modes as shown in FIG. 4 by combining the operation patterns of the respective power conversion circuits as constituent elements, as in the first embodiment. be able to. Since the operation mode switching method is the same as that in the first embodiment, the description of the switching method is omitted.
 実施の形態1に示す電力変換装置では、第1動作モードおよび第2動作モードのCC制御モード動作時、ならびに第4動作モードのCV制御モード動作時に、第2の電圧検出器26bから得られる直流リンクコンデンサの直流電圧Vlinkを目標直流電圧Vlink*に追従するように出力を演算し、この出力値に基づいて、第1のコンバータ回路201のスイッチング素子201a~201dのオンオフ制御を行っていた。 In the power conversion device shown in the first embodiment, the direct current obtained from the second voltage detector 26b during the CC control mode operation in the first operation mode and the second operation mode and during the CV control mode operation in the fourth operation mode. The output is calculated so that the DC voltage V link of the link capacitor follows the target DC voltage V link *, and on / off control of the switching elements 201a to 201d of the first converter circuit 201 is performed based on this output value. .
 これに対し、本実施の形態では、第1動作モードおよび第2動作モードのCC制御モード時、ならびに第4動作モードのCV制御モード動作時に、第2の電圧検出器26bから得られる直流リンクコンデンサの直流電圧Vlinkを目標直流電圧Vlink*に追従するように演算された算出値から、交流入力の目標正弦波電流iac*を生成する。さらに、第1の電流検出器27aから得られる交流入力電流iacを、生成された目標正弦波電流iac*に追従するように、出力を演算する。この出力値に基づいて、第1のコンバータ回路201のスイッチング素子201a~201dのオンオフ制御を行う。以下にその詳細について説明する。 On the other hand, in the present embodiment, the DC link capacitor obtained from the second voltage detector 26b during the CC control mode of the first operation mode and the second operation mode and during the CV control mode operation of the fourth operation mode. The target sine wave current i ac * of the AC input is generated from the calculated value calculated so that the DC voltage V link of the current follows the target DC voltage V link *. Further, the output is calculated so that the AC input current i ac obtained from the first current detector 27a follows the generated target sine wave current i ac *. On / off control of the switching elements 201a to 201d of the first converter circuit 201 is performed based on this output value. The details will be described below.
 本実施の形態における第1動作モードおよび第2動作モードのCC制御モード時、ならびに第4動作モードのCV制御モード時の制御方法について、制御ブロックを用いて説明する。 The control method in the CC operation mode of the first operation mode and the second operation mode and the CV control mode of the fourth operation mode in the present embodiment will be described using control blocks.
 まず、第1動作モードにおけるCC制御モードについての制御方法を説明する。
 上述のように本実施の形態に係る電力変換装置では、実施の形態1に示した電力変換装置と比較して、第1のコンバータ回路の制御方法が異なる。図39は、制御回路25において、第1のコンバータ回路のスイッチング素子のデューティ比を生成する制御ブロック図である。制御回路25では、予め定められた直流リンクコンデンサの目標直流電圧Vlink*と、第2の電圧検出器26bで検出される直流リンクコンデンサの直流電圧Vlinkとの電圧差を減算器25101により算出する。この算出値を比例積分制御器25102に入力することで、交流入力電流の目標実効値Iac,rms*(25103)が得られる。また、第1の電圧検出器26aから得られる交流入力電圧vacを、交流入力電圧の実効値で除することで、交流入力電圧vacの位相に同期した振幅値√2の正弦波(25104)が得られる。なお、交流入力電圧vacの位相に同期した正弦波(25104)の生成方法はこれに限られるものではない。これら2つの演算値(25103、25104)を乗ずることで、交流入力電流の目標正弦波電流iac*(25105)が得られる。目標正弦波電流iac*(25105)の絶対値と、第1の電流検出器27aで検出される交流入力電流iacの絶対値との電流差を、減算器25106により算出する。この算出値を比例制御器25107に入力し、得られた出力値を直流リンクコンデンサの直流電圧Vlinkで除算する。この除算値に、上述の数式1のフィードフォワード項2503を加算器25108で加算することで、第1のコンバータ回路のスイッチング素子のデューティ比25109(Duty’_201)を出力する。なお、比例積分制御器25102の代わり比例制御器や積分制御器を用いても良く、比例制御器25107の代わりに積分制御器や比例積分制御器を用いても良いことは言うまでもない。
First, a control method for the CC control mode in the first operation mode will be described.
As described above, the power converter according to the present embodiment differs from the power converter shown in Embodiment 1 in the control method of the first converter circuit. FIG. 39 is a control block diagram for generating the duty ratio of the switching element of the first converter circuit in the control circuit 25. In the control circuit 25, a subtractor 25101 calculates a voltage difference between a predetermined target DC voltage V link * of the DC link capacitor and a DC voltage V link of the DC link capacitor detected by the second voltage detector 26b. To do. By inputting this calculated value to the proportional-plus-integral controller 25102, the target effective value I ac, rms * (25103) of the AC input current is obtained. Further, by dividing the AC input voltage v ac obtained from the first voltage detector 26a by the effective value of the AC input voltage, a sine wave (25104) having an amplitude value √2 synchronized with the phase of the AC input voltage v ac. ) Is obtained. Incidentally, the method of generating the sine wave (25,104) in synchronization with the phase of the AC input voltage v ac is not limited thereto. By multiplying these two calculated values (25103, 25104), the target sine wave current i ac * (25105) of the AC input current is obtained. A subtractor 25106 calculates a current difference between the absolute value of the target sine wave current i ac * (25105) and the absolute value of the AC input current i ac detected by the first current detector 27a. The calculated value is input to the proportional controller 25107, and the obtained output value is divided by the DC voltage V link of the DC link capacitor. The adder 25108 adds the feedforward term 2503 of Equation 1 above to this division value, thereby outputting the duty ratio 25109 (Duty '— 201) of the switching element of the first converter circuit. Needless to say, a proportional controller or integral controller may be used instead of the proportional-integral controller 25102, and an integral controller or proportional-integral controller may be used instead of the proportional controller 25107.
 図40は、第1のコンバータ回路のスイッチング素子を駆動するためのゲート信号を、制御回路25にて生成する制御ブロック図である。図39で得られた第1のコンバータ回路のスイッチング素子のデューティ比25109が、搬送波2506(Vcar)と比較して小さい場合、コンパレータ25110の出力25111(Sig’_201a)はHighとなり、コンパレータ25112の出力25113(Sig’_201b)はLowとなる。対称的に、第1のコンバータ回路のスイッチング素子のデューティ比25109が、搬送波2506(Vcar)と比較して大きい場合、コンパレータ25110の出力25111(Sig’_201a)はLowとなり、コンパレータ25112の出力25113(Sig’_201b)はHighとなる。 FIG. 40 is a control block diagram in which the control circuit 25 generates a gate signal for driving the switching element of the first converter circuit. When the duty ratio 25109 of the switching element of the first converter circuit obtained in FIG. 39 is smaller than the carrier wave 2506 (V car ), the output 25111 (Sig′_201a) of the comparator 25110 becomes High, and the comparator 25112 The output 25113 (Sig′_201b) becomes Low. In contrast, when the duty ratio 25109 of the switching element of the first converter circuit is larger than the carrier wave 2506 (V car ), the output 25111 (Sig ′ — 201a) of the comparator 25110 becomes Low and the output 25113 of the comparator 25112 (Sig ′ — 201b) becomes High.
 図41は、制御回路25において、交流入力電圧の極性に応じて第1のコンバータ回路のスイッチング素子のゲート信号を切替える制御ブロック図である。交流入力電圧vacが正極性の場合、コンパレータ25114はHighを出力する。このとき、マルチプレクサ(MUX)25115は、Sig’_201b(25113)を第1コンバータ回路のスイッチング素子201aのゲート信号Gate_201a(2513)として出力する。また、マルチプレクサ(MUX)25116は、Sig’_201a(25111)を第1コンバータ回路のスイッチング素子201bのゲート信号Gate_201b(2515)として出力する。また、マルチプレクサ(MUX)25117は、Lowを第1コンバータ回路のスイッチング素子201cのゲート信号Gate_201c(2517)として出力する。また、マルチプレクサ(MUX)25118は、Highを第1コンバータ回路のスイッチング素子201dのゲート信号Gate_201d(2519)として出力する。 FIG. 41 is a control block diagram for switching the gate signal of the switching element of the first converter circuit in the control circuit 25 in accordance with the polarity of the AC input voltage. If the AC input voltage v ac is positive polarity, the comparator 25114 outputs High. At this time, the multiplexer (MUX) 25115 outputs Sig′_201b (25113) as the gate signal Gate_201a (2513) of the switching element 201a of the first converter circuit. Also, the multiplexer (MUX) 25116 outputs Sig′_201a (25111) as the gate signal Gate_201b (2515) of the switching element 201b of the first converter circuit. The multiplexer (MUX) 25117 outputs Low as the gate signal Gate_201c (2517) of the switching element 201c of the first converter circuit. Further, the multiplexer (MUX) 25118 outputs High as the gate signal Gate_201d (2519) of the switching element 201d of the first converter circuit.
 これに対し、交流入力電圧vacが負極性の場合、コンパレータ25114はLowを出力する。このとき、マルチプレクサ(MUX)25115は、Sig’_201a(25111)を第1コンバータ回路のスイッチング素子201aのゲート信号Gate_201a(2513)として出力する。また、マルチプレクサ(MUX)25116は、Sig’_201b(25113)を第1コンバータ回路のスイッチング素子201bのゲート信号Gate_201b(2515)として出力する。また、マルチプレクサ(MUX)25117は、Highを第1コンバータ回路のスイッチング素子201cのゲート信号Gate_201c(2517)として出力する。また、マルチプレクサ(MUX)25118は、Lowを第1コンバータ回路のスイッチング素子201dのゲート信号Gate_201d(2519)として出力する。これにより、実施の形態1の場合と比較して、交流入力の力率を更に改善することが可能となり、高調波も抑制されて低ノイズ化が可能となる。 In contrast, when the AC input voltage v ac is negative, the comparator 25114 outputs Low. At this time, the multiplexer (MUX) 25115 outputs Sig′_201a (25111) as the gate signal Gate_201a (2513) of the switching element 201a of the first converter circuit. Further, the multiplexer (MUX) 25116 outputs Sig′_201b (25113) as the gate signal Gate_201b (2515) of the switching element 201b of the first converter circuit. Further, the multiplexer (MUX) 25117 outputs High as the gate signal Gate_201c (2517) of the switching element 201c of the first converter circuit. The multiplexer (MUX) 25118 outputs Low as the gate signal Gate_201d (2519) of the switching element 201d of the first converter circuit. Thereby, compared with the case of Embodiment 1, it becomes possible to further improve the power factor of alternating current input, a harmonic is also suppressed, and noise reduction is attained.
 インバータ回路203、第2のコンバータ回路205、第3のコンバータ回路230、および第2の電力変換回路22のそれぞれのスイッチング素子のゲート信号の生成手法は、実施の形態1と同様であるため省略する。
 以上が、本実施の形態に係る第1動作モードにおけるCC制御モードでの制御方法である。
Since the method for generating the gate signal of each switching element of the inverter circuit 203, the second converter circuit 205, the third converter circuit 230, and the second power conversion circuit 22 is the same as that in the first embodiment, a description thereof will be omitted. .
The above is the control method in the CC control mode in the first operation mode according to the present embodiment.
 また、第2動作モードにおけるCC制御モードおよび第4動作モードのCV制御モードについても本実施の形態の第1動作モードにおけるCC制御モードと同様であり、説明を省略する。



Also, the CC control mode in the second operation mode and the CV control mode in the fourth operation mode are the same as the CC control mode in the first operation mode of the present embodiment, and a description thereof will be omitted.



 また、実施の形態1において、第1動作モードのCP制御モードおよび第3動作モードのCP制御モード時に、第2の電力変換回路22は、固定デューティ比、または、第4の電圧検出器26dから得られる直流出力電圧Voutを目標出力電圧Vout*に追従するように生成される出力値、もしくは、第3の電圧検出器26cから得られる統合用直流コンデンサの直流電圧Vintを目標直流電圧Vint*に追従するように生成される出力値、のいずれか1つの値に基づいて、スイッチング素子220aおよび220bのオンオフ制御を行っていた。 In the first embodiment, in the CP control mode of the first operation mode and the CP control mode of the third operation mode, the second power conversion circuit 22 receives the fixed duty ratio or the fourth voltage detector 26d. generated output value to the DC output voltage V out resulting follow the target output voltage V out *, or the target DC voltage a DC voltage V int integrated DC capacitor obtained from the third voltage detector 26c The on / off control of the switching elements 220a and 220b is performed based on any one of the output values generated so as to follow V int *.
 これに対し、本実施の形態における第1動作モードのCP制御モードおよび第3動作モードのCP制御モードでは、第2の電力変換回路22は、固定デューティ比、または第4の電圧検出器26dから得られる直流出力電圧Voutを目標出力電圧Vout*に追従するように演算された算出値から、直流出力電流の目標出力電流Iout*を生成し、第2の電流検出器27bから得られる直流出力電流Ioutを目標出力電流Iout*に追従するように生成される出力値、もしくは、第3の電圧検出器26cから得られる統合用直流コンデンサの直流電圧Vintを目標直流電圧Vint*に追従するように演算された算出値から、目標出力電流Iout*を生成し、第2の電流検出器27bから得られる直流出力電流IoutをIout*に追従するように生成される出力値、のいずれか1つの値に基づいて、スイッチング素子220aおよびスイッチング素子220bのオンオフ制御を行う。 On the other hand, in the CP control mode of the first operation mode and the CP control mode of the third operation mode in the present embodiment, the second power conversion circuit 22 receives the fixed duty ratio or the fourth voltage detector 26d. A target output current I out * of the DC output current is generated from a calculated value calculated so that the obtained DC output voltage V out follows the target output voltage V out *, and obtained from the second current detector 27b. The output value generated so that the DC output current I out follows the target output current I out * or the DC voltage V int of the DC capacitor for integration obtained from the third voltage detector 26c is the target DC voltage V int. from computed calculated value so as to follow the *, to generate a target output current I out *, DC output current I ou obtained from the second current detector 27b The output values generated so as to follow the I out *, based on one of two values, either, performs on-off control of the switching element 220a and a switching element 220b.
 本実施の形態における第1動作モードにおけるCP制御モードについての制御方法を説明する。第1のコンバータ回路201、インバータ回路203、第2のコンバータ回路205、および第3のコンバータ回路230のスイッチング素子のゲート信号の生成手法は、実施の形態1と同様であるため省略する。 A control method for the CP control mode in the first operation mode in the present embodiment will be described. The method for generating gate signals of the switching elements of the first converter circuit 201, the inverter circuit 203, the second converter circuit 205, and the third converter circuit 230 is the same as that in Embodiment 1, and therefore will be omitted.
 第2の電力変換回路22の制御方法について説明する。第3の電力変換回路23が、統合用直流コンデンサの直流電圧Vintを目標直流電圧Vint*に追従するようにスイッチング素子230a~230dのオンオフ制御をする場合、第2の電力変換回路22のスイッチング素子は固定デューティ比でスイッチングする。このときのゲート信号の生成手法についても、実施の形態1と同様であるため説明を省略する。 A method for controlling the second power conversion circuit 22 will be described. When the third power conversion circuit 23 performs on / off control of the switching elements 230a to 230d so that the DC voltage V int of the integration DC capacitor follows the target DC voltage V int *, the second power conversion circuit 22 The switching element switches at a fixed duty ratio. The method for generating the gate signal at this time is also the same as that in the first embodiment, and thus description thereof is omitted.
 一方、負荷4の電圧を制御する場合、制御回路25において、図42の制御ブロック図を用いて第2の電力変換回路22のスイッチング素子のデューティ比を生成する。制御回路25では、予め定められた負荷4の目標出力電圧Vout*と、第4の電圧検出器26dで検出される負荷4の直流出力電圧Voutとの電圧差を減算器25119により算出する。この算出値を比例積分制御器25120に入力することで、目標出力電流Iout*(25121)が得られる。さらに、得られた目標出力電流Iout*(25121)と、第2の電流検出器27bで検出される直流出力電流Ioutとの電流差を減算器25122により算出する。この算出値を比例制御器25123に入力することで、第2の電力変換回路22のスイッチング素子のデューティ比25124(Duty’_220)を出力する。なお、比例積分制御器25120の代わり比例制御器や積分制御器を用いても良く、比例制御器25123の代わりに積分制御器や比例積分制御器を用いても良いことは言うまでもない。 On the other hand, when controlling the voltage of the load 4, the control circuit 25 generates the duty ratio of the switching element of the second power conversion circuit 22 using the control block diagram of FIG. In the control circuit 25, a subtractor 25119 calculates a voltage difference between a predetermined target output voltage V out * of the load 4 and the DC output voltage V out of the load 4 detected by the fourth voltage detector 26d. . By inputting this calculated value to the proportional-plus-integral controller 25120, the target output current I out * (25121) is obtained. Further, a subtractor 25122 calculates a current difference between the obtained target output current I out * (25121) and the DC output current I out detected by the second current detector 27b. By inputting this calculated value to the proportional controller 25123, the duty ratio 25124 (Duty'_220) of the switching element of the second power conversion circuit 22 is output. Needless to say, a proportional controller or an integral controller may be used instead of the proportional-plus-integral controller 25120, and an integral controller or a proportional-integral controller may be used instead of the proportional controller 25123.
 また、第3の電力変換回路23のスイッチング素子を固定値のデューティ比でスイッチングさせる場合、制御回路25において、図43の制御ブロック図を用いて第2の電力変換回路22のスイッチング素子のデューティ比を生成する。制御回路25では、予め定められた統合用直流コンデンサの目標直流電圧Vint*と、第3の電圧検出器26cで検出される統合用直流コンデンサの直流電圧Vintとの電圧差を減算器25125により算出する。この算出値を比例積分制御器25126に入力することで、目標出力電流Iout*(25127)が得られる。さらに、得られた目標出力電流Iout*(25127)と、第2の電流検出器27bで検出される直流出力電流Ioutとの電流差を減算器25128により算出する。この算出値を比例制御器25129に入力することで、第2の電力変換回路22のスイッチング素子のデューティ比25124(Duty’_220)を出力する。なお、比例積分制御器25126の代わり比例制御器や積分制御器を用いても良く、比例制御器25129の代わりに積分制御器や比例積分制御器を用いても良いことは言うまでもない。 When the switching element of the third power conversion circuit 23 is switched at a fixed duty ratio, the control circuit 25 uses the control block diagram of FIG. 43 to determine the duty ratio of the switching element of the second power conversion circuit 22. Is generated. The control circuit 25 subtracts a voltage difference between a predetermined target DC voltage V int * of the integration DC capacitor and a DC voltage V int of the integration DC capacitor detected by the third voltage detector 26c. Calculated by By inputting this calculated value to the proportional-plus-integral controller 25126, the target output current I out * (25127) is obtained. Further, a subtractor 25128 calculates a current difference between the obtained target output current I out * (25127) and the DC output current I out detected by the second current detector 27b. By inputting this calculated value to the proportional controller 25129, the duty ratio 25124 (Duty'_220) of the switching element of the second power conversion circuit 22 is output. Needless to say, a proportional controller or integral controller may be used instead of the proportional-integral controller 25126, and an integral controller or proportional-integral controller may be used instead of the proportional controller 25129.
 図44は、制御回路25において、第2の電力変換回路22のスイッチング素子のゲート信号を生成する制御ブロック図である。図42または図43で得られた第2の電力変換回路22のスイッチング素子のデューティ比25124(Duty’_220)が、搬送波2506(Vcar)と比較して小さい場合、コンパレータ25130の出力値2544はHighとなる。このとき、コンパレータ25131の出力値2546はLowとなる。これに対し、デューティ比25124(Duty’_220)が、搬送波2506(Vcar)と比較して大きい場合、コンパレータ25130の出力値2544はLowとなる。このとき、コンパレータ25131の出力値2546はHighとなる。コンパレータ25130の出力値2544を、第2の電力変換回路のスイッチング素子220aのゲート信号Gate_220aとして出力する。また、コンパレータ25131の出力値2546を、第2の電力変換回路のスイッチング素子220bのゲート信号Gate_220bとして出力する。これにより、実施の形態1の場合と比較して、安定した直流出力電流Ioutを負荷側へ出力することが可能となる。
 以上が、本実施の形態に係る第1動作モードのCP制御モードにおける制御方法である。また、本実施の形態に係る第3動作モードのCP制御モードにおける第2の電力変換回路22の制御方法も、第1動作モードにおけるCP制御モードでの制御方法と同様であり説明を省略する。
FIG. 44 is a control block diagram for generating the gate signal of the switching element of the second power conversion circuit 22 in the control circuit 25. When the duty ratio 25124 (Duty'_220) of the switching element of the second power conversion circuit 22 obtained in FIG. 42 or FIG. 43 is smaller than the carrier wave 2506 (V car ), the output value 2544 of the comparator 25130 is High. At this time, the output value 2546 of the comparator 25131 becomes Low. On the other hand, when the duty ratio 25124 (Duty '— 220) is larger than the carrier wave 2506 (V car ), the output value 2544 of the comparator 25130 is Low. At this time, the output value 2546 of the comparator 25131 becomes High. The output value 2544 of the comparator 25130 is output as the gate signal Gate_220a of the switching element 220a of the second power conversion circuit. Further, the output value 2546 of the comparator 25131 is output as the gate signal Gate_220b of the switching element 220b of the second power conversion circuit. This makes it possible to output a stable DC output current I out to the load side as compared with the case of the first embodiment.
The above is the control method in the CP control mode of the first operation mode according to the present embodiment. Further, the control method of the second power conversion circuit 22 in the CP control mode of the third operation mode according to the present embodiment is the same as the control method in the CP control mode of the first operation mode, and the description thereof is omitted.
 また、実施の形態1において、第2動作モードのCP制御モード時に、第2の電力変換回路22は、第3の電圧検出器26cから得られる統合用直流コンデンサの直流電圧Vintを目標直流電圧Vint*に追従するように生成される出力値に基づいて、スイッチング素子220aおよび220bのオンオフ制御を行っていた。 In the first embodiment, in the CP control mode of the second operation mode, the second power conversion circuit 22 uses the DC voltage V int of the integration DC capacitor obtained from the third voltage detector 26c as the target DC voltage. On / off control of the switching elements 220a and 220b is performed based on an output value generated so as to follow V int *.
 これに対し、本実施の形態における第2動作モードのCP制御モードでは、第2の電力変換回路22は、第3の電圧検出器26cから得られる統合用直流コンデンサの直流電圧Vintを目標直流電圧Vint*に追従するように演算された算出値から、目標出力電流Iout*を生成し、第2の電流検出器27bから得られる直流出力電流Ioutを目標出力電流Iout*に追従するように生成される出力値に基づいて、スイッチング素子220aおよび220bのオンオフ制御を行う。 In contrast, in the CP control mode of the second operation mode in the present embodiment, the second power conversion circuit 22 uses the DC voltage V int of the integration DC capacitor obtained from the third voltage detector 26c as the target DC. A target output current I out * is generated from the calculated value calculated to follow the voltage V int *, and the DC output current I out obtained from the second current detector 27b follows the target output current I out *. On / off control of the switching elements 220a and 220b is performed based on the output value generated as described above.
 本実施の形態における第2動作モードにおけるCP制御モードについての制御方法を説明する。本モードでは、第1のコンバータ回路201と、インバータ回路203と、第2のコンバータ回路205と、のそれぞれのスイッチング素子のゲート信号の生成手法は、実施の形態1と同様であるため省略する。 A control method for the CP control mode in the second operation mode in the present embodiment will be described. In this mode, the method for generating the gate signals of the switching elements of the first converter circuit 201, the inverter circuit 203, and the second converter circuit 205 is the same as that in the first embodiment, and thus will be omitted.
 次に、第2の電力変換回路22の制御方法について説明する。図42の制御ブロック図を用いることで、予め定められた統合用直流コンデンサの目標直流電圧Vint*と、第3の電圧検出器26cで検出される統合用直流コンデンサの直流電圧Vintとの関係から、前述の通り、目標出力電流Iout*(25127)が得られる。さらに、得られた目標出力電流Iout*(25127)と、第2の電流検出器27bで検出される直流出力電流Ioutとの関係から、前述の通り、第2の電力変換回路22のスイッチング素子のデューティ比25124(Duty’_220)が生成される。また、図42で得られたデューティ比25124(Duty’_220)と、搬送波2506(Vcar)を、図43の制御ブロック図を用いて比較する。これにより、前述の通り、第2の電力変換回路220のスイッチング素子を駆動するためのゲート信号Gate_220a(2544)およびGate_220b(2546)が生成される。これにより、実施の形態1の場合と比較して、安定した直流出力電流Ioutを負荷側へ出力することが可能となる。
 以上が、本実施の形態に係る第2動作モードにおけるCP制御モードでの制御方法である。
Next, a method for controlling the second power conversion circuit 22 will be described. 42, a predetermined target DC voltage V int * of the integration DC capacitor and a DC voltage V int of the integration DC capacitor detected by the third voltage detector 26c are determined. From the relationship, as described above, the target output current I out * (25127) is obtained. Furthermore, from the relationship between the obtained target output current I out * (25127) and the DC output current I out detected by the second current detector 27b, as described above, the switching of the second power conversion circuit 22 is performed. An element duty ratio 25124 (Duty'_220) is generated. Also, the duty ratio 25124 (Duty'_220) obtained in FIG. 42 and the carrier wave 2506 (Vcar) are compared using the control block diagram of FIG. Thereby, as described above, the gate signals Gate_220a (2544) and Gate_220b (2546) for driving the switching elements of the second power conversion circuit 220 are generated. This makes it possible to output a stable DC output current I out to the load side as compared with the case of the first embodiment.
The above is the control method in the CP control mode in the second operation mode according to the present embodiment.
 ここで、第3動作モードにおけるCC制御モードと、第4動作モードにおけるCP制御モードと、第5~第8動作モードにおけるCV制御モードの制御方法については、実施の形態1と同様であるため、説明は省略する。
 以上が、実施の形態2に係る電力変換装置の動作モードの説明である。なお、実施の形態1で説明した各動作モードと実施の形態2で説明した各動作モードとは、適宜組み合わせて実施してもよい。
Here, the CC control mode in the third operation mode, the CP control mode in the fourth operation mode, and the CV control mode control methods in the fifth to eighth operation modes are the same as in the first embodiment. Description is omitted.
The above is the description of the operation mode of the power conversion device according to the second embodiment. Note that the operation modes described in the first embodiment and the operation modes described in the second embodiment may be combined as appropriate.
 本発明の実施の形態2に係る電力変換装置は、以上のような構成および動作をするため、実施の形態1に係る電力変換装置と同様に、非接触給電方式側の受電電圧が低い場合であっても、いずれかの電力供給機能を停止することなく、同時に電力供給を行うことが可能となる。また、第1動作モードおよび第2動作モードのCC制御モード動作時、ならびに第4動作モードのCV制御モード動作時に、第2の電圧検出器26bから得られる直流リンクコンデンサの直流電圧Vlinkを目標直流電圧Vlink*に追従するように演算された算出値から、交流入力の目標正弦波電流iac*を生成し、第1の電流検出器27aから得られる交流入力電流iacを、生成された目標正弦波電流iac*に追従するように、第1のコンバータ回路201の制御を行うため、実施の形態1の場合と比較して、交流入力の力率を更に改善することが可能となり、高調波も抑制されて低ノイズ化が可能となる。 Since the power conversion device according to the second embodiment of the present invention has the above-described configuration and operation, similarly to the power conversion device according to the first embodiment, the power reception device on the non-contact power feeding method side is low. Even if it exists, it becomes possible to supply electric power simultaneously without stopping any one of the electric power supply functions. Further, during the CC control mode operation in the first operation mode and the second operation mode, and in the CV control mode operation in the fourth operation mode, the DC voltage V link of the DC link capacitor obtained from the second voltage detector 26b is targeted. An AC input target sine wave current i ac * is generated from a calculated value calculated to follow the DC voltage V link *, and an AC input current i ac obtained from the first current detector 27a is generated. Since the first converter circuit 201 is controlled so as to follow the target sine wave current i ac *, the power factor of the AC input can be further improved as compared with the first embodiment. The harmonics are also suppressed, and noise can be reduced.
 また、第1動作モード、第2動作モード、および第3動作モードにおけるCP動作モード動作時において、第2の電力変換回路22は、固定デューティ比、もしくは第3の電圧検出器26cから得られる統合用直流コンデンサの直流電圧Vintを目標直流電圧Vint*に追従するように演算された算出値から、目標出力電流Iout*を生成し、第2の電流検出器27bから得られる直流出力電流Ioutを目標出力電流Iout*に追従するように生成される出力値、のいずれかの値に基づいて、スイッチング素子220aおよび220bのオンオフ制御を行う。これにより、安定した直流出力電流Ioutを負荷側へ出力することが可能となる。 Further, in the CP operation mode operation in the first operation mode, the second operation mode, and the third operation mode, the second power conversion circuit 22 has a fixed duty ratio or an integration obtained from the third voltage detector 26c. The target output current I out * is generated from the calculated value calculated so that the DC voltage V int of the DC capacitor follows the target DC voltage V int *, and the DC output current obtained from the second current detector 27b generated output value so as to follow the I out to the target output current I out *, based on the value of one of, performs on-off control of the switching elements 220a and 220b. This makes it possible to output a stable DC output current Iout to the load side.
 1 交流電源、2 電力変換装置、3 非接触送受電回路、4 負荷、20 第1の電力変換回路、21 統合用直流コンデンサ、22 第2の電力変換回路、23 第3の電力変換回路、24 統合用直流母線、25 制御回路、201 第1のコンバータ回路、201a~201d スイッチング素子、201e~201f 交流リアクトル、202 直流リンクコンデンサ、203 インバータ回路、203a~203d スイッチング素子、204 絶縁トランス、205 第2のコンバータ回路、205a~205d スイッチング素子、205e 第1の直流コンデンサ、220a~220b スイッチング素子、220c 直流リアクトル、220d 直流出力コンデンサ、230 第3のコンバータ回路、230a~230d スイッチング素子、231 非接触送受電コイル、232 第2の直流コンデンサ、300a~300d スイッチング素子、300e 直流リンクコンデンサ、300f~300i スイッチング素子、300j~300k 交流リアクトル、301 非接触送受電コイル、vac 交流入力電圧、vac* 目標正弦波電圧、Vac,rms* 目標実効電圧値、Vlink 直流リンクコンデンサの直流電圧、Vlink* 直流リンクコンデンサの目標直流電圧、Vint 統合用直流コンデンサの直流電圧、Vint* 統合用直流コンデンサの目標直流電圧、Vout 直流出力電圧、Vout* 目標出力電圧、iac 交流入力電流、iac* 目標正弦波電流、Iout 直流出力電流、Iout* 目標出力電流 DESCRIPTION OF SYMBOLS 1 AC power supply, 2 Power converter device, 3 Contactless power transmission / reception circuit, 4 Load, 20 1st power converter circuit, 21 DC capacitor for integration, 22 2nd power converter circuit, 23 3rd power converter circuit, 24 DC bus for integration, 25 control circuit, 201 first converter circuit, 201a to 201d switching element, 201e to 201f AC reactor, 202 DC link capacitor, 203 inverter circuit, 203a to 203d switching element, 204 insulation transformer, 205 second Converter circuit, 205a to 205d switching element, 205e first DC capacitor, 220a to 220b switching element, 220c DC reactor, 220d DC output capacitor, 230 third converter circuit, 230a to 230d switching element, 231 non-contact Transmitting and receiving coil, 232 the second DC capacitor, 300a ~ 300d switching element, 300e DC link capacitors, 300f ~ 300i switching elements, 300j ~ 300k AC reactor, 301 non-contact transmitting and receiving coils, v ac ac input voltage, v ac * target sinusoidal voltage, V ac, rms * target effective voltage value, V link the DC voltage of the DC link capacitor, V link * target DC voltage of the DC link capacitor, V int DC voltage integrated DC capacitor, V int * integration DC capacitor target DC voltage, Vout DC output voltage, Vout * target output voltage, iac AC input current, iac * target sine wave current, Iout DC output current, Iout * target output current

Claims (28)

  1.  一端が交流電源に接続され、前記交流電源からの入力電圧を直流電圧へ変換する第1のコンバータ回路、前記第1のコンバータ回路により変換された直流電圧を交流電圧へ変換するインバータ回路、前記第1のコンバータ回路および前記インバータ回路に接続された直流リンクコンデンサ、前記インバータ回路から入力される電圧を絶縁して2次側へ給電する絶縁トランス、前記絶縁トランスから入力される交流電圧を直流電圧へ変換し他端より出力する第2のコンバータ回路、を有する第1の電力変換回路と、
     一端が負荷に接続され、前記負荷に供給する直流出力電圧または直流出力電流を制御する第2の電力変換回路と、
     非接触送受電回路と磁気的に結合することにより、非接触で電力を送受電する非接触送受電コイル、前記非接触送受電コイルにより受電した交流電圧を直流電圧へ変換する第3のコンバータ回路、を有する第3の電力変換回路と、
     一端が統合用直流母線の正極側、他端が前記統合用直流母線の負極側に接続された統合用直流コンデンサと、
     前記第1~第3の電力変換回路を制御する制御回路と、を備え、
     前記第1の電力変換回路の他端および前記第2の電力変換回路の他端が前記統合用直流母線に接続されるとともに、前記第3の電力変換回路が前記統合用直流母線に接続されること、
     を特徴とする電力変換装置。
    A first converter circuit having one end connected to an AC power source and converting an input voltage from the AC power source into a DC voltage; an inverter circuit converting a DC voltage converted by the first converter circuit into an AC voltage; 1 converter circuit and a DC link capacitor connected to the inverter circuit, an insulation transformer that insulates a voltage input from the inverter circuit and supplies power to the secondary side, and an AC voltage input from the insulation transformer to a DC voltage A first power conversion circuit having a second converter circuit that converts and outputs from the other end;
    A second power conversion circuit, one end of which is connected to a load and controls a DC output voltage or a DC output current supplied to the load;
    A non-contact power transmission / reception coil that magnetically couples with a non-contact power transmission / reception circuit, and a third converter circuit that converts an AC voltage received by the non-contact power transmission / reception coil into a DC voltage. A third power conversion circuit comprising:
    An integration DC capacitor in which one end is connected to the positive electrode side of the integration DC bus, and the other end is connected to the negative electrode side of the integration DC bus;
    A control circuit for controlling the first to third power conversion circuits,
    The other end of the first power conversion circuit and the other end of the second power conversion circuit are connected to the integration DC bus, and the third power conversion circuit is connected to the integration DC bus. about,
    The power converter characterized by this.
  2.  前記第1の電力変換回路に入力される交流入力電圧を検出する第1の電圧検出器と、
     前記第2の電力変換回路より前記負荷に供給される直流出力電圧を検出する第4の電圧検出器と、
     前記第2の電力変換回路より前記負荷に供給される直流出力電流を検出する第2の電流検出器と、
     を備え、
     前記制御回路は、前記第1の電圧検出器による検出結果と、前記第4の電圧検出器による検出結果と、前記第2の電流検出器による検出結果と、前記非接触送受電回路から前記第3の電力変換回路へ非接触給電方式によって給電可能かどうか表す非接触給電用制御信号と、に基づいて、前記第1~第3の電力変換回路の内から動作させる電力変換回路を選択すること、
     を特徴とする請求項1記載の電力変換装置。
    A first voltage detector for detecting an AC input voltage input to the first power conversion circuit;
    A fourth voltage detector for detecting a DC output voltage supplied from the second power conversion circuit to the load;
    A second current detector for detecting a DC output current supplied to the load from the second power conversion circuit;
    With
    The control circuit includes: a detection result from the first voltage detector; a detection result from the fourth voltage detector; a detection result from the second current detector; Selecting a power conversion circuit to be operated from among the first to third power conversion circuits based on a control signal for non-contact power supply indicating whether or not power can be supplied to the three power conversion circuits by a non-contact power supply method ,
    The power conversion device according to claim 1.
  3.  前記制御回路は、
     複数の動作モードで前記第1~第3の電力変換回路を制御可能であり、
     前記第1の電力変換回路と、前記第2の電力変換回路と、前記第3の電力変換回路と、を同時に動作させ、前記第1の電力変換回路の入力電力と、前記非接触送受電回路から受電した前記第3の電力変換回路の入力電力と、の合計入力電力を、前記第2の電力変換回路を介して前記負荷へ供給する第1動作モードを有すること、
     を特徴とする請求項2に記載の電力変換装置。
    The control circuit includes:
    The first to third power conversion circuits can be controlled in a plurality of operation modes,
    The first power conversion circuit, the second power conversion circuit, and the third power conversion circuit are operated simultaneously, and the input power of the first power conversion circuit and the non-contact power transmission / reception circuit A first operation mode in which the total input power of the third power conversion circuit received from the third power conversion circuit is supplied to the load via the second power conversion circuit;
    The power converter according to claim 2 characterized by things.
  4.  前記制御回路は、
     複数の動作モードで前記第1~第3の電力変換回路を制御可能であり、
     前記第1の電力変換回路と、前記第2の電力変換回路と、を同時に動作させ、前記第1の電力変換回路の入力電力を、前記第2の電力変換回路を介して前記負荷へ供給する第2動作モードを有すること、
    を特徴とする請求項2または3のいずれかに記載の電力変換装置。
    The control circuit includes:
    The first to third power conversion circuits can be controlled in a plurality of operation modes,
    The first power conversion circuit and the second power conversion circuit are operated simultaneously, and the input power of the first power conversion circuit is supplied to the load via the second power conversion circuit. Having a second mode of operation;
    The power converter according to claim 2, wherein:
  5.  前記制御回路は、
     複数の動作モードで前記第1~第3の電力変換回路を制御可能であり、
     前記第2の電力変換回路と、前記第3の電力変換回路と、を同時に動作させ、前記非接触送受電回路から受電した前記第3の電力変換回路の入力電力を、前記第2の電力変換回路を介して前記負荷へ供給する第3動作モードを有すること、
    を特徴とする請求項2~4のいずれか1項に記載の電力変換装置。
    The control circuit includes:
    The first to third power conversion circuits can be controlled in a plurality of operation modes,
    The second power conversion circuit and the third power conversion circuit are operated simultaneously, and the input power of the third power conversion circuit received from the non-contact power transmission / reception circuit is converted into the second power conversion. Having a third operating mode for supplying to the load via a circuit;
    The power conversion device according to any one of claims 2 to 4, wherein:
  6.  前記制御回路は、
     複数の動作モードで前記第1~第3の電力変換回路を制御可能であり、
     前記第1の電力変換回路と、前記第3の電力変換回路と、を同時に動作させ、前記第1の電力変換回路の入力電力を、前記第3の電力変換回路を介して前記非接触送受電回路へ供給する第4動作モードを有すること、
    を特徴とする請求項2~5のいずれか1項に記載の電力変換装置。
    The control circuit includes:
    The first to third power conversion circuits can be controlled in a plurality of operation modes,
    The first power conversion circuit and the third power conversion circuit are operated simultaneously, and the input power of the first power conversion circuit is transmitted to the contactless power transmission / reception via the third power conversion circuit. Having a fourth operating mode to supply to the circuit;
    The power conversion device according to any one of claims 2 to 5, wherein:
  7.  前記制御回路は、
     複数の動作モードで前記第1~第3の電力変換回路を制御可能であり、
     前記第1の電力変換回路と、前記第3の電力変換回路と、を同時に動作させ、前記第3の電力変換回路の入力電力を、前記第1の電力変換回路を介して前記交流電源に供給する第5動作モードを有すること、
    を特徴とする請求項2~6のいずれか1項に記載の電力変換装置。
    The control circuit includes:
    The first to third power conversion circuits can be controlled in a plurality of operation modes,
    The first power conversion circuit and the third power conversion circuit are operated simultaneously, and the input power of the third power conversion circuit is supplied to the AC power supply via the first power conversion circuit. Having a fifth mode of operation;
    The power conversion device according to any one of claims 2 to 6, wherein:
  8.  前記制御回路は、
     複数の動作モードで前記第1~第3の電力変換回路を制御可能であり、
     前記第1の電力変換回路と、前記第2の電力変換回路と、前記第3の電力変換回路と、を同時に動作させ、前記負荷から供給される電力を、前記第1の電力変換回路を介して前記交流電源、および、前記第3の電力変換回路を介して前記非接触送受電回路へ供給する第6動作モードを有すること、
    を特徴とする請求項2~7のいずれか1項に記載の電力変換装置。
    The control circuit includes:
    The first to third power conversion circuits can be controlled in a plurality of operation modes,
    The first power conversion circuit, the second power conversion circuit, and the third power conversion circuit are operated simultaneously, and the power supplied from the load is passed through the first power conversion circuit. Having a sixth operation mode for supplying to the non-contact power transmission / reception circuit via the AC power source and the third power conversion circuit,
    The power conversion device according to any one of claims 2 to 7, wherein:
  9.  前記制御回路は、
     複数の動作モードで前記第1~第3の電力変換回路を制御可能であり、
     前記第1の電力変換回路と、前記第2の電力変換回路と、を同時に動作させ、前記負荷から供給される電力を、前記第1の電力変換回路を介して前記交流電源へ供給する第7動作モードを有すること、
    を特徴とする請求項2~8のいずれか1項に記載の電力変換装置。
    The control circuit includes:
    The first to third power conversion circuits can be controlled in a plurality of operation modes,
    A seventh power supply circuit that operates the first power conversion circuit and the second power conversion circuit simultaneously, and supplies power supplied from the load to the AC power supply through the first power conversion circuit. Having an operating mode,
    The power conversion device according to any one of claims 2 to 8, wherein:
  10.  前記制御回路は、
     複数の動作モードで前記第1~第3の電力変換回路を制御可能であり、
     前記第2の電力変換回路と、前記第3の電力変換回路と、を同時に動作させ、前記負荷から供給される電力を、前記第2の電力変換回路および前記第3の電力変換回路を介して前記非接触送受電回路へ供給する第8動作モードを有すること、
    を特徴とする請求項2~9のいずれか1項に記載の電力変換装置。
    The control circuit includes:
    The first to third power conversion circuits can be controlled in a plurality of operation modes,
    The second power conversion circuit and the third power conversion circuit are operated simultaneously, and the power supplied from the load is passed through the second power conversion circuit and the third power conversion circuit. Having an eighth operation mode for supplying to the non-contact power transmission and reception circuit;
    The power conversion device according to any one of claims 2 to 9, wherein:
  11.  前記直流リンクコンデンサの直流電圧を検出する第2の電圧検出器と、
     前記統合用直流コンデンサの直流電圧を検出する第3の電圧検出器と、
     前記第1の電力変換回路に入力される交流入力電流を検出する第1の電流検出器と、をさらに備え、
     前記制御回路は、
     前記第1動作モードにおいて、
     前記第1の電流検出器による検出結果に基づき、前記交流入力電流が目標正弦波電流に追従するように前記第1のコンバータ回路のスイッチング素子を制御し、
     前記第2の電圧検出器による検出結果に基づき、前記直流リンクコンデンサの直流電圧が目標直流電圧に追従するように前記インバータ回路のスイッチング素子および前記第2のコンバータ回路のスイッチング素子を制御し、
     前記第3の電圧検出器による検出結果に基づき、前記統合用直流コンデンサの直流電圧が目標直流電圧に追従するように前記第2の電力変換回路のスイッチング素子と、第3の電力変換回路のスイッチング素子と、の少なくともいずれか一方を制御すること、
    を特徴とする請求項3に記載の電力変換装置。
    A second voltage detector for detecting a DC voltage of the DC link capacitor;
    A third voltage detector for detecting a DC voltage of the integration DC capacitor;
    A first current detector for detecting an AC input current input to the first power conversion circuit,
    The control circuit includes:
    In the first operation mode,
    Based on the detection result by the first current detector, the switching element of the first converter circuit is controlled so that the AC input current follows a target sine wave current,
    Based on the detection result by the second voltage detector, the switching element of the inverter circuit and the switching element of the second converter circuit are controlled so that the DC voltage of the DC link capacitor follows the target DC voltage,
    Based on the detection result of the third voltage detector, the switching element of the second power conversion circuit and the switching of the third power conversion circuit so that the DC voltage of the integration DC capacitor follows the target DC voltage. Controlling at least one of the elements,
    The power conversion device according to claim 3.
  12.  前記直流リンクコンデンサの直流電圧を検出する第2の電圧検出器と、
     前記統合用直流コンデンサの直流電圧を検出する第3の電圧検出器と、をさらに備え、
     前記制御回路は、
     前記第1動作モードにおいて、
     前記第2の電圧検出器による検出結果に基づき、前記直流リンクコンデンサの直流電圧が目標直流電圧に追従するように前記第1のコンバータ回路のスイッチング素子を制御し、
     前記第3の電圧検出器による検出結果に基づき、前記統合用直流コンデンサの直流電圧が目標直流電圧に追従するように、前記インバータ回路のスイッチング素子および前記第2のコンバータ回路のスイッチング素子と、前記第3の電力変換回路のスイッチング素子と、の少なくともいずれか一方を制御し、
     前記第2の電流検出器による検出結果に基づき、前記直流出力電流が目標出力電流に追従するように第2の電力変換回路のスイッチング素子を制御し、
     前記負荷へ電力を供給すること、
     を特徴とする請求項3に記載の電力変換装置。
    A second voltage detector for detecting a DC voltage of the DC link capacitor;
    A third voltage detector for detecting a DC voltage of the integration DC capacitor;
    The control circuit includes:
    In the first operation mode,
    Based on the detection result by the second voltage detector, the switching element of the first converter circuit is controlled so that the DC voltage of the DC link capacitor follows the target DC voltage,
    Based on the detection result by the third voltage detector, the switching element of the inverter circuit and the switching element of the second converter circuit, so that the DC voltage of the DC capacitor for integration follows a target DC voltage, Controlling at least one of the switching elements of the third power conversion circuit;
    Based on the detection result by the second current detector, the switching element of the second power conversion circuit is controlled so that the DC output current follows the target output current,
    Supplying power to the load;
    The power conversion device according to claim 3.
  13.  前記直流リンクコンデンサの直流電圧を検出する第2の電圧検出器と、
     前記統合用直流コンデンサの直流電圧を検出する第3の電圧検出器と、
     前記第1の電力変換回路に入力される交流入力電流を検出する第1の電流検出器と、をさらに備え、
     前記第2動作モードにおいて、
     前記第1の電流検出器による検出結果に基づき、前記第1の電力変換回路に入力される交流入力電流が目標正弦波電流に追従するように前記第1のコンバータ回路のスイッチング素子を制御し、
     前記第2の電圧検出器による検出結果に基づき、前記直流リンクコンデンサの直流電圧が目標直流電圧に追従するように前記インバータ回路のスイッチング素子および前記第2のコンバータ回路のスイッチング素子を制御し、
     前記第3の電圧検出器による検出結果に基づき、前記統合用直流コンデンサの直流電圧が目標直流電圧に追従するように前記第2の電力変換回路のスイッチング素子を制御し、
     前記負荷へ電力を供給すること、
     を特徴とする請求項4に記載の電力変換装置。
    A second voltage detector for detecting a DC voltage of the DC link capacitor;
    A third voltage detector for detecting a DC voltage of the integration DC capacitor;
    A first current detector for detecting an AC input current input to the first power conversion circuit,
    In the second operation mode,
    Based on the detection result by the first current detector, the switching element of the first converter circuit is controlled so that the AC input current input to the first power conversion circuit follows the target sine wave current,
    Based on the detection result by the second voltage detector, the switching element of the inverter circuit and the switching element of the second converter circuit are controlled so that the DC voltage of the DC link capacitor follows the target DC voltage,
    Based on the detection result by the third voltage detector, the switching element of the second power conversion circuit is controlled so that the DC voltage of the integration DC capacitor follows the target DC voltage,
    Supplying power to the load;
    The power conversion device according to claim 4.
  14.  前記直流リンクコンデンサの直流電圧を検出する第2の電圧検出器と、
     前記統合用直流コンデンサの直流電圧を検出する第3の電圧検出器と、をさらに備え、
     前記制御回路は、
     前記第2動作モードにおいて、
     前記第2の電圧検出器による検出結果に基づき、前記直流リンクコンデンサの直流電圧が目標直流電圧に追従するように前記第1のコンバータ回路のスイッチング素子を制御し、
     前記第3の電圧検出器による検出結果に基づき、前記統合用直流コンデンサの直流電圧が目標直流電圧に追従するように前記インバータ回路のスイッチング素子および前記第2のコンバータ回路のスイッチング素子を制御し、
     前記第2の電流検出器の検出結果に基づき、前記直流出力電流が目標出力電流に追従するように前記第2の電力変換回路のスイッチング素子を制御し、
     前記負荷へ電力を供給すること、
    を特徴とする請求項4に記載の電力変換装置。
    A second voltage detector for detecting a DC voltage of the DC link capacitor;
    A third voltage detector for detecting a DC voltage of the integration DC capacitor;
    The control circuit includes:
    In the second operation mode,
    Based on the detection result by the second voltage detector, the switching element of the first converter circuit is controlled so that the DC voltage of the DC link capacitor follows the target DC voltage,
    Based on the detection result by the third voltage detector, the switching element of the inverter circuit and the switching element of the second converter circuit are controlled so that the DC voltage of the integration DC capacitor follows the target DC voltage,
    Based on the detection result of the second current detector, the switching element of the second power conversion circuit is controlled so that the DC output current follows the target output current,
    Supplying power to the load;
    The power conversion device according to claim 4.
  15.  前記統合用直流コンデンサの電圧を検出する第3の電圧検出器をさらに備え、
     前記制御回路は、
     前記第3動作モードにおいて、
     前記第3の電圧検出器による検出値に基づき、前記統合用直流コンデンサの直流電圧が目標直流電圧に追従するように前記第3の電力変換回路のスイッチング素子と、前記第2の電力変換回路のスイッチング素子と、の少なくともいずれか一方を制御し、
     前記負荷へ電力を供給すること、
     を特徴とする請求項5に記載の電力変換装置。
    A third voltage detector for detecting a voltage of the integration DC capacitor;
    The control circuit includes:
    In the third operation mode,
    Based on the detection value by the third voltage detector, the switching element of the third power conversion circuit and the second power conversion circuit so that the DC voltage of the integration DC capacitor follows the target DC voltage. Controlling at least one of the switching element,
    Supplying power to the load;
    The power conversion device according to claim 5.
  16.  前記統合用直流コンデンサの直流電圧を検出する第3の電圧検出器をさらに備え、
     前記制御回路は、
     前記第3動作モードにおいて、
     前記第3の電圧検出器による検出結果に基づき、前記統合用直流コンデンサの直流電圧が目標直流電圧に追従するように前記第3の電力変換回路のスイッチング素子を制御し、
     前記第2の電流検出器による検出結果に基づき、前記直流出力電流が目標出力電流に追従するように前記第2の電力変換回路のスイッチング素子を制御し、
     前記負荷へ電力を供給すること、
     を特徴とする請求項5に記載の電力変換装置。
    A third voltage detector for detecting a DC voltage of the integration DC capacitor;
    The control circuit includes:
    In the third operation mode,
    Based on the detection result by the third voltage detector, the switching element of the third power conversion circuit is controlled so that the DC voltage of the integration DC capacitor follows the target DC voltage,
    Based on the detection result by the second current detector, the switching element of the second power conversion circuit is controlled so that the DC output current follows the target output current,
    Supplying power to the load;
    The power conversion device according to claim 5.
  17.  前記直流リンクコンデンサの直流電圧を検出する第2の電圧検出器と、
     前記統合用直流コンデンサの直流電圧を検出する第3の電圧検出器と、
     前記第1の電力変換回路に入力される交流入力電流を検出する第1の電流検出器と、をさらに備え、
     前記制御回路は、
     前記第4動作モードにおいて、
     前記第1の電流検出器による検出結果に基づき、前記第1の電力変換回路に入力される交流入力電流が目標正弦波電流に追従するように前記第1のコンバータ回路のスイッチング素子を制御し、
     前記第2の電圧検出器による検出結果に基づき、前記直流リンクコンデンサの直流電圧が目標直流電圧に追従するように前記インバータ回路のスイッチング素子および前記第2のコンバータ回路のスイッチング素子を制御し、
     前記第3の電圧検出器による検出結果に基づき、前記統合用直流コンデンサの直流電圧が目標直流電圧に追従するように前記第3の電力変換回路のスイッチング素子を制御し、
     前記非接触送受電回路へ電力を供給すること、
     を特徴とする請求項6に記載の電力変換装置。
    A second voltage detector for detecting a DC voltage of the DC link capacitor;
    A third voltage detector for detecting a DC voltage of the integration DC capacitor;
    A first current detector for detecting an AC input current input to the first power conversion circuit,
    The control circuit includes:
    In the fourth operation mode,
    Based on the detection result by the first current detector, the switching element of the first converter circuit is controlled so that the AC input current input to the first power conversion circuit follows the target sine wave current,
    Based on the detection result by the second voltage detector, the switching element of the inverter circuit and the switching element of the second converter circuit are controlled so that the DC voltage of the DC link capacitor follows the target DC voltage,
    Based on the detection result by the third voltage detector, the switching element of the third power conversion circuit is controlled so that the DC voltage of the integration DC capacitor follows the target DC voltage,
    Supplying power to the contactless power transmission and reception circuit;
    The power converter according to claim 6.
  18.  前記直流リンクコンデンサの直流電圧を検出する第2の電圧検出器と、
     前記統合用直流コンデンサの直流電圧を検出する第3の電圧検出器と、をさらに備え、
     前記制御回路は、
     前記第4動作モードにおいて、
     前記第2の電圧検出器による検出結果に基づき、前記直流リンクコンデンサの直流電圧が目標直流電圧に追従するように前記第1のコンバータ回路のスイッチング素子を制御し、
     前記第3の電圧検出器による検出結果に基づき、前記統合用直流コンデンサの直流電圧が目標直流電圧に追従するように前記インバータ回路のスイッチング素子および前記第2のコンバータ回路のスイッチング素子を制御し、
     前記第3の電力変換回路のスイッチング素子を、デューティ比と、位相シフト量と、スイッチング周波数の少なくとも1つを固定値でスイッチングし、
     前記非接触送受電回路へ電力を供給すること、
     を特徴とする請求項6に記載の電力変換装置。
    A second voltage detector for detecting a DC voltage of the DC link capacitor;
    A third voltage detector for detecting a DC voltage of the integration DC capacitor;
    The control circuit includes:
    In the fourth operation mode,
    Based on the detection result by the second voltage detector, the switching element of the first converter circuit is controlled so that the DC voltage of the DC link capacitor follows the target DC voltage,
    Based on the detection result by the third voltage detector, the switching element of the inverter circuit and the switching element of the second converter circuit are controlled so that the DC voltage of the integration DC capacitor follows the target DC voltage,
    The switching element of the third power conversion circuit is switched at a fixed value at least one of a duty ratio, a phase shift amount, and a switching frequency,
    Supplying power to the contactless power transmission and reception circuit;
    The power converter according to claim 6.
  19.  前記直流リンクコンデンサの直流電圧を検出する第2の電圧検出器と、
     前記統合用直流コンデンサの直流電圧を検出する第3の電圧検出器と、をさらに備え、
     前記制御回路は、
     前記第5動作モードにおいて、
     前記第1の電圧検出器による検出結果に基づき、前記第1の電力変換回路に入力される交流入力電圧が目標正弦波電流に追従するように前記第1のコンバータ回路のスイッチング素子を制御し、
     前記第2の電圧検出器による検出結果に基づき、前記直流リンクコンデンサの直流電圧が目標直流電圧に追従するように前記インバータ回路のスイッチング素子および前記第2のコンバータ回路のスイッチング素子を制御し、
     前記第3の電圧検出器による検出結果に基づき、前記統合用直流コンデンサの直流電圧が目標直流電圧に追従するように前記第3の電力変換回路のスイッチング素子を制御し、
     前記交流電源へ電力を供給すること、
     を特徴とする請求項7に記載の電力変換装置。
    A second voltage detector for detecting a DC voltage of the DC link capacitor;
    A third voltage detector for detecting a DC voltage of the integration DC capacitor;
    The control circuit includes:
    In the fifth operation mode,
    Based on the detection result by the first voltage detector, the switching element of the first converter circuit is controlled so that the AC input voltage input to the first power conversion circuit follows the target sine wave current,
    Based on the detection result by the second voltage detector, the switching element of the inverter circuit and the switching element of the second converter circuit are controlled so that the DC voltage of the DC link capacitor follows the target DC voltage,
    Based on the detection result by the third voltage detector, the switching element of the third power conversion circuit is controlled so that the DC voltage of the integration DC capacitor follows the target DC voltage,
    Supplying power to the AC power source;
    The power converter according to claim 7 characterized by things.
  20.  前記直流リンクコンデンサの直流電圧を検出する第2の電圧検出器と、
     前記統合用直流コンデンサの直流電圧を検出する第3の電圧検出器と、をさらに備え、
     前記制御回路は、
     前記第6動作モードにおいて、
     前記第1の電圧検出器による検出結果に基づき、前記第1の電力変換回路に入力される交流入力電圧が目標正弦波電圧に追従するように前記第1のコンバータ回路のスイッチング素子を制御し、
     前記第2の電圧検出器による検出結果に基づき、前記直流リンクコンデンサの直流電圧が目標直流電圧に追従するように前記インバータ回路のスイッチング素子および前記第2のコンバータ回路のスイッチング素子を制御し、
     前記第3の電圧検出器による検出結果に基づき、目標直流電圧に追従するように前記第3の電力変換回路のスイッチング素子と、前記第2の電力変換回路のスイッチング素子と、の少なくともいずれか一方を制御し、
     前記交流電源と、前記非接触送受電回路と、の少なくともいずれか一方へ負荷から電力を供給すること、
    を特徴とする請求項8に記載の電力変換装置。
    A second voltage detector for detecting a DC voltage of the DC link capacitor;
    A third voltage detector for detecting a DC voltage of the integration DC capacitor;
    The control circuit includes:
    In the sixth operation mode,
    Based on the detection result by the first voltage detector, the switching element of the first converter circuit is controlled so that the AC input voltage input to the first power conversion circuit follows the target sine wave voltage,
    Based on the detection result by the second voltage detector, the switching element of the inverter circuit and the switching element of the second converter circuit are controlled so that the DC voltage of the DC link capacitor follows the target DC voltage,
    Based on the detection result by the third voltage detector, at least one of the switching element of the third power conversion circuit and the switching element of the second power conversion circuit so as to follow the target DC voltage Control
    Supplying power from a load to at least one of the AC power supply and the non-contact power transmission and reception circuit;
    The power conversion device according to claim 8.
  21.  前記直流リンクコンデンサの直流電圧を検出する第2の電圧検出器と、
     前記統合用直流コンデンサの直流電圧を検出する第3の電圧検出器と、をさらに備え、
     前記制御回路は、
     前記第7動作モードにおいて、
     前記第1の電圧検出器による検出結果に基づき、前記第1の電力変換回路に入力される交流入力電圧が目標正弦波電圧に追従するように前記第1のコンバータ回路のスイッチング素子を制御し、
     前記第2の電圧検出器による検出結果に基づき、前記直流リンクコンデンサの直流電圧が目標直流電圧に追従するように前記インバータ回路のスイッチング素子および前記第2のコンバータ回路のスイッチング素子を制御し、
     前記第3の電圧検出器による検出結果に基づき、目標直流電圧に追従するように前記第2の電力変換回路のスイッチング素子を制御し、
     前記負荷から前記交流電源へ電力を供給すること、
     を特徴とする請求項9に記載の電力変換装置。
    A second voltage detector for detecting a DC voltage of the DC link capacitor;
    A third voltage detector for detecting a DC voltage of the integration DC capacitor;
    The control circuit includes:
    In the seventh operation mode,
    Based on the detection result by the first voltage detector, the switching element of the first converter circuit is controlled so that the AC input voltage input to the first power conversion circuit follows the target sine wave voltage,
    Based on the detection result by the second voltage detector, the switching element of the inverter circuit and the switching element of the second converter circuit are controlled so that the DC voltage of the DC link capacitor follows the target DC voltage,
    Based on the detection result by the third voltage detector, the switching element of the second power conversion circuit is controlled to follow the target DC voltage,
    Supplying power from the load to the AC power source;
    The power converter according to claim 9.
  22.  前記統合用直流コンデンサの直流電圧を検出する第3の電圧検出器をさらに備え、
     前記第8動作モードにおいて、
     前記第3の電圧検出器による検出結果に基づき、前記統合用直流コンデンサの電圧が目標直流電圧に追従するように前記第3の電力変換回路のスイッチング素子と、前記第2の電力変換回路のスイッチング素子と、の少なくともいずれか一方を制御し、
     前記負荷から前記非接触送受電回路へ電力を供給すること、
     を特徴とする請求項10に記載の電力変換装置。
    A third voltage detector for detecting a DC voltage of the integration DC capacitor;
    In the eighth operation mode,
    Based on the detection result by the third voltage detector, the switching element of the third power conversion circuit and the switching of the second power conversion circuit so that the voltage of the integration DC capacitor follows the target DC voltage. Controlling at least one of the elements,
    Supplying power from the load to the contactless power transmission and reception circuit;
    The power converter according to claim 10.
  23.  前記直流リンクコンデンサの直流電圧を検出する第2の電圧検出器と、
     前記統合用直流コンデンサの直流電圧を検出する第3の電圧検出器と、
     前記第1の電力変換回路に入力される交流入力電流を検出する第1の電流検出器と、をさらに備え、
     前記制御回路は、
     前記第1動作モードにおいて、
     前記第1の電流検出器による検出結果に基づき、前記交流入力電流が目標正弦波電流に追従するように前記第1のコンバータ回路のスイッチング素子を制御し、
     前記第2の電圧検出器による検出結果に基づき、前記直流リンクコンデンサの直流電圧が目標直流電圧に追従するように前記インバータ回路のスイッチング素子および前記第2のコンバータ回路のスイッチング素子を制御し、
     前記第3の電圧検出器による検出結果に基づき、前記統合用直流コンデンサの直流電圧が目標直流電圧に追従するように演算された算出値から前記直流出力電流の目標出力電流を生成し、前記第2の電流検出器による検出結果に基づき、前記直流出力電流が、生成された前記目標出力電流に追従するように前記第2の電力変換回路のスイッチング素子を制御し、
     前記負荷へ電力を供給すること、      
     を特徴とする請求項3に記載の電力変換装置。
    A second voltage detector for detecting a DC voltage of the DC link capacitor;
    A third voltage detector for detecting a DC voltage of the integration DC capacitor;
    A first current detector for detecting an AC input current input to the first power conversion circuit,
    The control circuit includes:
    In the first operation mode,
    Based on the detection result by the first current detector, the switching element of the first converter circuit is controlled so that the AC input current follows a target sine wave current,
    Based on the detection result by the second voltage detector, the switching element of the inverter circuit and the switching element of the second converter circuit are controlled so that the DC voltage of the DC link capacitor follows the target DC voltage,
    Based on the detection result by the third voltage detector, the target output current of the DC output current is generated from the calculated value calculated so that the DC voltage of the DC capacitor for integration follows the target DC voltage, The switching element of the second power conversion circuit is controlled so that the DC output current follows the generated target output current based on the detection result by the current detector of 2;
    Supplying power to the load;
    The power conversion device according to claim 3.
  24. 前記第1の電力変換回路に入力される交流入力電流を検出する第1の電流検出器と、
    前記直流リンクコンデンサの直流電圧を検出する第2の電圧検出器と、
     前記統合用直流コンデンサの直流電圧を検出する第3の電圧検出器と、をさらに備え、
     前記制御回路は、
     前記第1動作モードにおいて、
     前記第2の電圧検出器による検出結果に基づき、前記直流リンクコンデンサの直流電圧が目標直流電圧に追従するように演算された算出値から交流入力の目標正弦波電流を生成し、前記第1の電流検出器による検出結果に基づき、前記交流入力電流が、生成された前記目標正弦波電流に追従するように前記第1のコンバータ回路のスイッチング素子を制御し、
     前記第3の電圧検出器による検出結果に基づき、前記統合用直流コンデンサの直流電圧が目標直流電圧に追従するように、前記インバータ回路のスイッチング素子および前記第2のコンバータ回路のスイッチング素子と、前記第3の電力変換回路のスイッチング素子と、の少なくともいずれか一方を制御し、
     前記第2の電流検出器による検出結果に基づき、前記直流出力電流が目標出力電流に追従するように第2の電力変換回路のスイッチング素子を制御し、
     前記負荷へ電力を供給すること、
     を特徴とする請求項3に記載の電力変換装置。

    A first current detector for detecting an alternating current input to the first power conversion circuit;
    A second voltage detector for detecting a DC voltage of the DC link capacitor;
    A third voltage detector for detecting a DC voltage of the integration DC capacitor;
    The control circuit includes:
    In the first operation mode,
    Based on a detection result by the second voltage detector, an AC input target sine wave current is generated from a calculated value calculated so that the DC voltage of the DC link capacitor follows the target DC voltage, and the first Based on the detection result by the current detector, the switching element of the first converter circuit is controlled so that the AC input current follows the generated target sine wave current,
    Based on the detection result by the third voltage detector, the switching element of the inverter circuit and the switching element of the second converter circuit, so that the DC voltage of the DC capacitor for integration follows a target DC voltage, Controlling at least one of the switching elements of the third power conversion circuit;
    Based on the detection result by the second current detector, the switching element of the second power conversion circuit is controlled so that the DC output current follows the target output current,
    Supplying power to the load;
    The power conversion device according to claim 3.

  25.  前記直流リンクコンデンサの直流電圧を検出する第2の電圧検出器と、
     前記統合用直流コンデンサの直流電圧を検出する第3の電圧検出器と、
     前記第1の電力変換回路に入力される交流入力電流を検出する第1の電流検出器と、をさらに備え、
     前記第2動作モードにおいて、
     前記第1の電流検出器による検出結果に基づき、前記第1の電力変換回路に入力される交流入力電流が目標正弦波電流に追従するように前記第1のコンバータ回路のスイッチング素子を制御し、
     前記第2の電圧検出器による検出結果に基づき、前記直流リンクコンデンサの直流電圧が目標直流電圧に追従するように前記インバータ回路のスイッチング素子および前記第2のコンバータ回路のスイッチング素子を制御し、
     前記第3の電圧検出器による検出結果に基づき、前記統合用直流コンデンサの直流電圧が目標直流電圧に追従するように演算された算出値から前記直流出力電流の目標出力電流を生成し、前記第2の電流検出器による検出結果に基づき、前記直流出力電流が、生成された前記目標出力電流に追従するように前記第2の電力変換回路のスイッチング素子を制御し、
     前記負荷へ電力を供給すること、
     を特徴とする請求項4に記載の電力変換装置。
    A second voltage detector for detecting a DC voltage of the DC link capacitor;
    A third voltage detector for detecting a DC voltage of the integration DC capacitor;
    A first current detector for detecting an AC input current input to the first power conversion circuit,
    In the second operation mode,
    Based on the detection result by the first current detector, the switching element of the first converter circuit is controlled so that the AC input current input to the first power conversion circuit follows the target sine wave current,
    Based on the detection result by the second voltage detector, the switching element of the inverter circuit and the switching element of the second converter circuit are controlled so that the DC voltage of the DC link capacitor follows the target DC voltage,
    Based on the detection result by the third voltage detector, the target output current of the DC output current is generated from the calculated value calculated so that the DC voltage of the DC capacitor for integration follows the target DC voltage, The switching element of the second power conversion circuit is controlled so that the DC output current follows the generated target output current based on the detection result by the current detector of 2;
    Supplying power to the load;
    The power conversion device according to claim 4.
  26.  前記第1の電力変換回路に入力される交流入力電流を検出する第1の電流検出器と、
     前記直流リンクコンデンサの直流電圧を検出する第2の電圧検出器と、
     前記統合用直流コンデンサの直流電圧を検出する第3の電圧検出器と、をさらに備え、
     前記制御回路は、
     前記第2動作モードにおいて、
    前記第2の電圧検出器による検出結果に基づき、前記直流リンクコンデンサの直流電圧が目標直流電圧に追従するように演算された算出値から交流入力の目標正弦波電流を生成し、前記第1の電流検出器による検出結果に基づき、前記交流入力電流が、生成された前記目標正弦波電流に追従するように前記第1のコンバータ回路のスイッチング素子を制御し、
     前記第3の電圧検出器による検出結果に基づき、前記統合用直流コンデンサの直流電圧が目標直流電圧に追従するように前記インバータ回路のスイッチング素子および前記第2のコンバータ回路のスイッチング素子を制御し、
     前記第2の電流検出器の検出結果に基づき、前記直流出力電流が目標出力電流に追従するように前記第2の電力変換回路のスイッチング素子を制御し、
     前記負荷へ電力を供給すること、
    を特徴とする請求項4に記載の電力変換装置。
    A first current detector for detecting an alternating current input to the first power conversion circuit;
    A second voltage detector for detecting a DC voltage of the DC link capacitor;
    A third voltage detector for detecting a DC voltage of the integration DC capacitor;
    The control circuit includes:
    In the second operation mode,
    Based on a detection result by the second voltage detector, an AC input target sine wave current is generated from a calculated value calculated so that the DC voltage of the DC link capacitor follows the target DC voltage, and the first Based on the detection result by the current detector, the switching element of the first converter circuit is controlled so that the AC input current follows the generated target sine wave current,
    Based on the detection result by the third voltage detector, the switching element of the inverter circuit and the switching element of the second converter circuit are controlled so that the DC voltage of the integration DC capacitor follows the target DC voltage,
    Based on the detection result of the second current detector, the switching element of the second power conversion circuit is controlled so that the DC output current follows the target output current,
    Supplying power to the load;
    The power conversion device according to claim 4.
  27.  前記統合用直流コンデンサの電圧を検出する第3の電圧検出器をさらに備え、
     前記制御回路は、
     前記第3動作モードにおいて、
     前記第3の電圧検出器による検出結果に基づき、前記統合用直流コンデンサの直流電圧が目標直流電圧に追従するように演算された算出値から前記直流出力電流の目標出力電流を生成し、前記第2の電流検出器による検出結果に基づき、前記直流出力電流が、生成された前記目標出力電流に追従するように前記第2の電力変換回路のスイッチング素子を制御し、
     前記負荷へ電力を供給すること、
     を特徴とする請求項5に記載の電力変換装置。
    A third voltage detector for detecting a voltage of the integration DC capacitor;
    The control circuit includes:
    In the third operation mode,
    Based on the detection result by the third voltage detector, the target output current of the DC output current is generated from the calculated value calculated so that the DC voltage of the DC capacitor for integration follows the target DC voltage, The switching element of the second power conversion circuit is controlled so that the DC output current follows the generated target output current based on the detection result by the current detector of 2;
    Supplying power to the load;
    The power conversion device according to claim 5.
  28.  前記第1の電力変換回路に入力される交流入力電流を検出する第1の電流検出器と、
     前記直流リンクコンデンサの直流電圧を検出する第2の電圧検出器と、
     前記統合用直流コンデンサの直流電圧を検出する第3の電圧検出器と、をさらに備え、
     前記制御回路は、
     前記第4動作モードにおいて、
    前記第2の電圧検出器による検出結果に基づき、前記直流リンクコンデンサの直流電圧が目標直流電圧に追従するように演算された算出値から交流入力の目標正弦波電流を生成し、前記第1の電流検出器による検出結果に基づき、前記交流入力電流が、生成された前記目標正弦波電流に追従するように前記第1のコンバータ回路のスイッチング素子を制御し、
     前記第3の電圧検出器による検出結果に基づき、前記統合用直流コンデンサの直流電圧が目標直流電圧に追従するように前記インバータ回路のスイッチング素子および前記第2のコンバータ回路のスイッチング素子を制御し、
     前記第3の電力変換回路のスイッチング素子を、デューティ比と、位相シフト量と、スイッチング周波数の少なくとも1つを固定値でスイッチングし、
     前記非接触送受電回路へ電力を供給すること、
     を特徴とする請求項6に記載の電力変換装置。
    A first current detector for detecting an alternating current input to the first power conversion circuit;
    A second voltage detector for detecting a DC voltage of the DC link capacitor;
    A third voltage detector for detecting a DC voltage of the integration DC capacitor;
    The control circuit includes:
    In the fourth operation mode,
    Based on a detection result by the second voltage detector, an AC input target sine wave current is generated from a calculated value calculated so that the DC voltage of the DC link capacitor follows the target DC voltage, and the first Based on the detection result by the current detector, the switching element of the first converter circuit is controlled so that the AC input current follows the generated target sine wave current,
    Based on the detection result by the third voltage detector, the switching element of the inverter circuit and the switching element of the second converter circuit are controlled so that the DC voltage of the integration DC capacitor follows the target DC voltage,
    The switching element of the third power conversion circuit is switched at a fixed value at least one of a duty ratio, a phase shift amount, and a switching frequency,
    Supplying power to the contactless power transmission and reception circuit;
    The power converter according to claim 6.
PCT/JP2018/025261 2018-02-02 2018-07-03 Electric power converting device WO2019150597A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018556506A JP6497489B1 (en) 2018-02-02 2018-07-03 Power converter

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-017072 2018-02-02
JP2018017072 2018-02-02

Publications (1)

Publication Number Publication Date
WO2019150597A1 true WO2019150597A1 (en) 2019-08-08

Family

ID=67479672

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/025261 WO2019150597A1 (en) 2018-02-02 2018-07-03 Electric power converting device

Country Status (1)

Country Link
WO (1) WO2019150597A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11476694B2 (en) 2019-10-17 2022-10-18 Samsung Electronics Co., Ltd Electronic device including resonant charging circuit
US11527947B2 (en) 2018-09-03 2022-12-13 Mitsubishi Electric Corporation Power conversion device having a configuration for simultaneous wired and wireless charging
US11532951B2 (en) * 2019-10-17 2022-12-20 Samsung Electronics Co., Ltd Electronic device including resonant charging circuit

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012130193A (en) * 2010-12-16 2012-07-05 Denso Corp Vehicular power supply device
WO2013151123A1 (en) * 2012-04-06 2013-10-10 株式会社 豊田自動織機 Non-contact power transmitting apparatus and non-contact power transmitting system
JP2014176170A (en) * 2013-03-07 2014-09-22 Toshiba Corp Power incoming apparatus and charging system
JP2015061493A (en) * 2013-09-20 2015-03-30 Tdk株式会社 Charger

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012130193A (en) * 2010-12-16 2012-07-05 Denso Corp Vehicular power supply device
WO2013151123A1 (en) * 2012-04-06 2013-10-10 株式会社 豊田自動織機 Non-contact power transmitting apparatus and non-contact power transmitting system
JP2014176170A (en) * 2013-03-07 2014-09-22 Toshiba Corp Power incoming apparatus and charging system
JP2015061493A (en) * 2013-09-20 2015-03-30 Tdk株式会社 Charger

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11527947B2 (en) 2018-09-03 2022-12-13 Mitsubishi Electric Corporation Power conversion device having a configuration for simultaneous wired and wireless charging
US11476694B2 (en) 2019-10-17 2022-10-18 Samsung Electronics Co., Ltd Electronic device including resonant charging circuit
US11532951B2 (en) * 2019-10-17 2022-12-20 Samsung Electronics Co., Ltd Electronic device including resonant charging circuit

Similar Documents

Publication Publication Date Title
JP5923120B2 (en) Bi-directional contactless power supply system
US9287790B2 (en) Electric power converter
US11056979B2 (en) Power conversion apparatus
JP2021522769A (en) DCDC converters, in-vehicle chargers and electric vehicles
WO2016063678A1 (en) Electric power conversion device
US8587252B2 (en) System and method for digital control of a DC/DC power-converter device, in particular for automotive applications
WO2019150597A1 (en) Electric power converting device
CN102801328A (en) Power supply apparatus
US20200091830A1 (en) Vehicle power supply device
US11368037B2 (en) On-board charger (OBC) single-stage converter
CN111585443B (en) DC-DC converter
JP2012152041A (en) Contactless power supply system
WO2019216180A1 (en) Dc power transformation system
US11736020B2 (en) Power supply system
US10277139B2 (en) Power conversion device which detects power shortage and switches to a power supply that is capable of supplying power
CN109842182B (en) Power supply system
KR102500741B1 (en) Combined power conversion circuit of OBC and LDC for electric vehicles
JP6497489B1 (en) Power converter
JP6369509B2 (en) Power conversion circuit
Pandey et al. Bridgeless PFC converter based EV charger
KR20200038152A (en) An integrated multi battery charging system having an active power decoupling capability for an electric vehicle
Kamarajugadda et al. 7.2 kW Multifunctional and Integrated On-board Electric Vehicle Charger
CN111756269B (en) Passenger train DC power supply device
CN112997396B (en) Adapter device for bidirectional operation
Vinod et al. Comparative Analysis of Symmetrical and Asymmetrical Phase Shift Control Strategy for Resonant Wireless Inductive Charging System

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018556506

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18904136

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18904136

Country of ref document: EP

Kind code of ref document: A1