WO2019150514A1 - Method for producing purified magnesium salt - Google Patents

Method for producing purified magnesium salt Download PDF

Info

Publication number
WO2019150514A1
WO2019150514A1 PCT/JP2018/003292 JP2018003292W WO2019150514A1 WO 2019150514 A1 WO2019150514 A1 WO 2019150514A1 JP 2018003292 W JP2018003292 W JP 2018003292W WO 2019150514 A1 WO2019150514 A1 WO 2019150514A1
Authority
WO
WIPO (PCT)
Prior art keywords
weight
magnesium
ppm
raw material
ratio
Prior art date
Application number
PCT/JP2018/003292
Other languages
French (fr)
Japanese (ja)
Inventor
史明 岡峰
敏 三木
Original Assignee
富田製薬株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富田製薬株式会社 filed Critical 富田製薬株式会社
Priority to PCT/JP2018/003292 priority Critical patent/WO2019150514A1/en
Priority to JP2018515915A priority patent/JP6355184B1/en
Publication of WO2019150514A1 publication Critical patent/WO2019150514A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F5/00Compounds of magnesium
    • C01F5/26Magnesium halides
    • C01F5/30Chlorides
    • C01F5/32Preparation of anhydrous magnesium chloride by chlorinating magnesium compounds

Definitions

  • the present invention relates to a method for producing a purified magnesium salt.
  • Magnesium is an element that is abundant in minerals or seawater, and is an essential mineral for animals and plants, so it is used in a wide range of applications such as foods, pharmaceuticals, feeds, and fertilizers.
  • magnesium chloride is an indispensable compound in daily life as a typical magnesium salt in the food field such as co-minerals and tofu coagulants, as well as in the pharmaceutical field such as dialyzers for artificial kidneys.
  • the ratio of magnesium chloride demand for renal dialysate applications is remarkably large.
  • the number of dialysis patients is rapidly increasing all over the world due to the increase in the elderly population and the number of diabetic patients.
  • the dialysis population in 2030 is said to be 5.4 million.
  • Dialysis patients maintain their lives by artificial dialysis three to four times a week, and it is a social responsibility for pharmaceutical companies to supply a large amount and a stable amount of dialysate to the market.
  • Table 1 the Japanese Pharmacopoeia Standards for Pharmaceuticals (abbreviation: external regulations), United States Pharmacopeia (abbreviation: abbreviation :) for magnesium chloride hexahydrate crystals. USP) and European Pharmacopoeia (abbreviation: EP) tripolar official standards list strict purity requirements.
  • magnesium chloride production methods are generally classified into the following three methods according to the type of raw material.
  • Patent Document 2 a method of producing basic magnesium chloride using a magnesium chloride aqueous solution as a raw material.
  • the method (1) is advantageous in that a high-purity product can be obtained with certainty, but is an expensive material, and its use is limited. That is, in the use of artificial kidney dialysate requiring a large amount of demand, it is an unfavorable material selection because it is contrary to the situation of medical cost reduction. Therefore, in order to satisfy the quality required for pharmaceutical use, the production method of magnesium chloride using anhydrous magnesium chloride commercially available as a by-product of the above-mentioned sponge titanium production process is the most efficient and practical Even occupies much of the domestic market.
  • the bittern obtained by the method (2) is mostly magnesium chloride, but also contains many impurities such as sodium, potassium, calcium, sulfate and bromide. Further, by boiling to increase the purity, sodium chloride, potassium chloride, etc. having lower solubility than magnesium chloride are precipitated first, and calcium ions and sulfate ions are precipitated as calcium sulfate. It is well known that high purity magnesium chloride can be obtained.
  • magnesium hydroxide and magnesium carbonate are used as raw materials, but most of the magnesium hydroxide and magnesium carbonate commercially available in Japan are based on the seawater-lime method. That is, the following reaction formula: MgCl 2 + Ca (OH) 2 ⁇ Mg (OH) 2 + CaCl 2
  • magnesium hydroxide is synthesized. Magnesium carbonate is produced by blowing carbon dioxide into this magnesium hydroxide. In large-scale factories, carbon dioxide generated in the calcination process from limestone to quick lime is used effectively to reduce costs, but the tendency of impurities does not change much between magnesium carbonate and magnesium hydroxide.
  • magnesium hydroxide and magnesium carbonate by the seawater-lime method When using magnesium hydroxide and magnesium carbonate by the seawater-lime method as raw materials, most of the impurities are calcium and sulfate.
  • magnesium chloride When magnesium chloride is produced using these as starting materials, calcium equivalent to about 3000 to 15000 ppm by weight and sulfate equivalent to 10,000 to 50000 ppm by weight coexist as impurities with respect to the weight of magnesium.
  • limestone-derived impurities include iron, aluminum, silicon and other trace metals.
  • harmful trace metal impurities such as heavy metals and arsenic are already within the allowable range at the time of the starting material, and silicon can be removed by filtration because it does not elute even when reacted with hydrochloric acid.
  • iron and aluminum are eluted as iron chloride, aluminum chloride and the like during the hydrochloric acid reaction, and it is difficult to comply with the standards shown in Table 1 when raw materials with poor purity are used.
  • the nigari-lime method is a well-known method for producing magnesium hydroxide.
  • Nigari is an aqueous solution containing magnesium chloride as the main component after removing salt from seawater.
  • the chemical reaction formula is the same as the seawater-lime method, but the remaining amount of sulfate impurities in the produced magnesium hydroxide is relatively low.
  • calcium impurities are likely to remain, and when magnesium chloride is synthesized using this as a starting material, calcium impurities necessarily remain.
  • magnesium hydroxide obtained by suppressing the amount of lime added in the bittern-lime method, or adding caustic or ammonia water instead of lime can reduce both calcium and sulfate as impurities.
  • Raw material costs increase.
  • the basic magnesium chloride (Mg 2 (OH) 3 Cl ⁇ 4H 2 O) can be produced, depending on the purity of the starting material, as in the case (3). Since the substance is different from the magnesium chloride hexahydrate (MgCl 2 .6H 2 O) used, further improvement is necessary to produce a highly pure magnesium salt.
  • a main object of the present invention is to provide a method capable of stably producing a high purity magnesium salt at a low cost.
  • a method for producing an aqueous magnesium chloride solution comprising: (1) When reacting an insoluble magnesium compound-based raw material with hydrogen chloride, 2 nmol per 1 mol of Mg 2+ ions contained in the raw material (where n satisfies 0.00 ⁇ n ⁇ 0.98). A reaction step of obtaining a reaction product by reacting hydrogen chloride of (2) A method for producing a magnesium chloride aqueous solution, comprising a separation step of obtaining a magnesium chloride aqueous solution by removing sludge containing an insoluble magnesium compound present in the reaction system. 2.
  • the ratio of iron weight (weight as Fe) to 10 ppm or less and the ratio of aluminum weight (weight as Al) to 100 ppm or less with respect to magnesium weight (weight as Mg) contained in the magnesium chloride aqueous solution Item 2.
  • the manufacturing method according to Item 1. 3.
  • Item 2. The manufacturing method according to Item 1, wherein n is 0.50 ⁇ n ⁇ 0.98. 4).
  • Item 2. The production method according to Item 1, wherein the magnesium content (content as Mg) contained in the insoluble magnesium compound-based raw material is 24 to 60% by weight (in terms of dry matter). 5).
  • the insoluble magnesium compound-based raw material has a ratio of iron weight (weight as Fe) of 160 ppm or more with respect to magnesium weight (weight as Mg) contained in the raw material, and a ratio of aluminum weight (weight as Al)
  • item 1 whose is is 160 ppm or more. 6).
  • the content of calcium weight (as Ca) is 2000 ppm by weight or less and the content of sulfate weight (as SO 4 ) is 2000 with respect to the weight of magnesium (weight as Mg) contained in the insoluble magnesium compound-based raw material.
  • Item 6 The production method according to Item 5, which is not more than ppm by weight. 7).
  • item 1 whose density
  • item 1 which further includes the washing
  • the cleaning process (A) a first step including a step of preparing an aqueous suspension of an insoluble magnesium compound-based raw material and subjecting the aqueous suspension to solid-liquid separation; (B) An aqueous suspension of the insoluble magnesium compound-based raw material that has undergone the first step is prepared, and alkali is added and mixed until the aqueous suspension has a pH of 12 to 14, followed by heating and solid-liquid separation.
  • item 8 including the 2nd process including the process of wash
  • the insoluble magnesium compound-based raw material after the washing step has a calcium weight (weight as Ca) ratio of 2000 ppm or less with respect to the magnesium weight (weight as Mg) contained in the raw material, and the sulfate weight ( Item 10.
  • the insoluble magnesium compound-based raw material before passing through the washing step has a ratio of iron weight (weight as Fe) of 160 ppm or more, aluminum weight (weight as Al) to magnesium weight (weight as Mg) contained in the raw material.
  • the ratio of weight is 160 ppm or more, the ratio of calcium weight (weight as Ca) is 3000 ppm or more, and the ratio of sulfate weight (weight as SO 4 ) is 10,000 ppm or more.
  • Production method. 12 Item 2. The method according to Item 1, further comprising the step of adding aluminum chloride to the liquid phase in the reaction step. 13. A method for producing high-purity magnesium chloride, (1) When reacting an insoluble magnesium compound-based raw material with hydrogen chloride, 2 nmol per 1 mol of Mg 2+ ions contained in the raw material (where n satisfies 0.00 ⁇ n ⁇ 0.98).
  • 14 Item 14. The method according to Item 13, wherein in the recrystallization step, the magnesium chloride aqueous solution is concentrated and recrystallized. 15.
  • the proportion of iron weight (weight as Fe) is 10 ppm or less and the proportion of aluminum weight (weight as Al) is 50 ppm or less with respect to magnesium weight (weight as Mg) contained in the magnesium chloride aqueous solution, Item 14.
  • Item 14. The method according to Item 13, wherein n is 0.50 ⁇ n ⁇ 0.98. 17.
  • Item 14. The production method according to Item 13, wherein the magnesium content (content as Mg) contained in the insoluble magnesium compound-based raw material is 24 to 60% by weight (in terms of dry matter).
  • the insoluble magnesium compound-based raw material has a ratio of iron weight (weight as Fe) of 160 ppm or more with respect to magnesium weight (weight as Mg) contained in the raw material, and a ratio of aluminum weight (weight as Al) Item 14.
  • the content of calcium weight (as Ca) is 2000 ppm by weight or less and the content of sulfate weight (as SO 4 ) is 2000 with respect to the weight of magnesium (weight as Mg) contained in the insoluble magnesium compound-based raw material.
  • Item 19 The production method according to Item 18, wherein the weight is not more than ppm.
  • the cleaning process (A) a first step including a step of preparing an aqueous suspension of an insoluble magnesium compound-based raw material and subjecting the aqueous suspension to solid-liquid separation; (B) An aqueous suspension of the insoluble magnesium compound-based raw material that has undergone the first step is prepared, and alkali is added and mixed until the aqueous suspension has a pH of 12 to 14, followed by heating and solid-liquid separation.
  • item 21 including the 2nd process including the process of wash
  • the insoluble magnesium compound-based raw material after the washing step has a calcium weight (weight as Ca) ratio of 2000 ppm or less with respect to the magnesium weight (weight as Mg) contained in the raw material, and the sulfate weight ( ratio of the weight) as SO 4 is 2000ppm or less, the production method according to the claim 21 or 22.
  • the insoluble magnesium compound-based raw material before the washing step has a ratio of iron weight (weight as Fe) to magnesium weight (weight as Mg) contained in the raw material is 160 ppm or more, and aluminum weight (Al Or 21), wherein the proportion of calcium (weight as Ca) is 3000 ppm or more, and the proportion of sulfate weight (weight as SO 4 ) is 10,000 ppm or more. 22.
  • a method for producing high-purity magnesium chloride (A) The magnesium content (content as Mg) is 24 to 60% by weight (in terms of dry matter), and the ratio of iron weight (weight as Fe) to magnesium weight (weight as Mg) is 160 ppm. The ratio of aluminum weight (weight as Al) is 160 ppm or more, the ratio of calcium weight (weight as Ca) is 3000 ppm or more, and the ratio of sulfate weight (weight as SO 4 ) is 10,000 ppm.
  • a water washing step including a step of preparing an aqueous suspension of the insoluble magnesium compound-based raw material as described above and subjecting the aqueous suspension to solid-liquid separation, (B) A step of preparing an aqueous suspension of an insoluble magnesium compound-based raw material that has undergone a water washing step, adding and mixing alkali until the aqueous suspension has a pH of 12 to 14, followed by heating and solid-liquid separation.
  • Alkaline washing step (C) The ratio of calcium weight (weight as Ca) is 2000 ppm or less and the ratio of sulfate weight (weight as SO 4 ) is 2000 ppm or less with respect to magnesium weight (weight as Mg).
  • the reaction step the total amount of insoluble magnesium compound in the insoluble magnesium compound-based material is not reacted, but the unreacted insoluble magnesium compound is reacted so that it remains slightly in the reaction system. Impurities can remain as solids together with unreacted insoluble magnesium compounds, and elution into the solution can be effectively suppressed. As a result, a high-purity magnesium chloride aqueous solution, and thus a high-purity magnesium chloride crystal can be produced.
  • the manufacturing method (1st method) of the magnesium chloride aqueous solution of this invention is the following. (1) When reacting an insoluble magnesium compound-based raw material with hydrogen chloride, 2 nmol per 1 mol of Mg 2+ ions contained in the raw material (where n satisfies 0.00 ⁇ n ⁇ 0.98). A reaction step of obtaining a reaction product by reacting hydrogen chloride of (2) It includes a separation step of obtaining an aqueous magnesium chloride solution by removing sludge containing insoluble magnesium compounds present in the reaction system.
  • the insoluble magnesium compound- based material itself used in the first method of the insoluble magnesium compound-based material is not particularly limited, and known or commercially available materials can also be used. Moreover, what was obtained by the well-known manufacturing method can also be used.
  • the insoluble magnesium compound a compound that is hardly soluble or insoluble in water (usually solubility in water (20 ° C.) of 1 g / 30 mL or less) can be used.
  • magnesium oxide basic magnesium carbonate, normal magnesium carbonate, magnesium hydroxide, etc.
  • magnesium silicate and ore include magnesite, forsterite and the like.
  • at least one of magnesium oxide, basic magnesium carbonate, magnesium hydroxide and the like can be used from the viewpoints of cost and availability.
  • the magnesium content of the insoluble magnesium compound-based raw material is not particularly limited.
  • the Mg content is 24 to 60% by weight, preferably 40 to 60% by weight, more preferably 54 to 59% by weight in terms of dry matter. %.
  • the raw material in such a range, a more effective purification effect can be obtained at a lower cost. Therefore, in order to satisfy such a content, it is preferable to use magnesium oxide or a mixture containing the same as the insoluble magnesium compound.
  • Insoluble magnesium compound-based raw materials contain other impurities in addition to the above insoluble magnesium compounds. That is, in the present invention, by using an insoluble magnesium compound-based material as a crude material, a high-purity magnesium chloride aqueous solution and magnesium chloride (crystal) can be obtained even with an inexpensive material.
  • magnesium hydroxide by the seawater-lime method or magnesium carbonate obtained by reacting magnesium hydroxide with carbonate ions or carbon dioxide gas is used.
  • An insoluble magnesium compound-based raw material contained as an insoluble magnesium compound can be suitably used.
  • the magnesium oxide obtained from the said magnesium hydroxide and magnesium carbonate can also be used suitably.
  • the above-mentioned insoluble magnesium compound-based raw materials by the seawater-lime method are a) calcium hydroxide and calcium salt, b) sulfate, c) as main impurities.
  • Aluminum, d) iron, e) silicon and f) other trace metals are included.
  • f) trace metals are already within the acceptable range at the time of the starting material, and e) silicon can be removed by filtration because it does not elute upon reaction with hydrochloric acid.
  • impurities that can be substantially removed in the seawater-lime method-derived raw materials and the like are a) calcium hydroxide and calcium salt, b) sulfate, c) aluminum, and d) iron. More specifically, the ratio to the magnesium weight (as Mg) in the insoluble magnesium compound-based raw material is as follows: a) Calcium (as Ca) content 3000 ppm by weight or more, b) Sulfate (as SO 4 ) content 10,000 weight It is also possible to use a raw material containing ppm or more, c) an aluminum (as Al) content of 160 wt ppm or more, and d) an iron (as Fe) content of 160 wt ppm or more.
  • the Mg content is W (Mg)
  • the Ca content is W (Ca)
  • the sulfate content is W (SO 4 )
  • the aluminum content is W (Al)
  • W (Fe) [W (Ca) / W (Mg)]
  • W (SO 4 ) / W (Mg)] value is shown (the same applies hereinafter).
  • the calcium component contained in the insoluble magnesium compound-based raw material is considered to be in any form of calcium salt such as calcium sulfate, calcium carbonate, etc. in addition to calcium hydroxide.
  • calcium sulfate and calcium hydroxide dissolve in a small amount in water and are relatively easy to remove by washing with water, but calcium carbonate hardly dissolves in water.
  • magnesium carbonate is used as the insoluble magnesium compound, most of the impurity calcium is often in the form of calcium carbonate, which makes it difficult to remove by washing. Therefore, it is preferable to use other insoluble magnesium compounds or to use a small amount even if they are used.
  • the impurity calcium is considered to be either calcium sulfate or calcium hydroxide, but the liquid phase using magnesium hydroxide should exhibit basicity exceeding pH 10. Therefore, it becomes easy to absorb dissolved carbon dioxide and carbon dioxide in the air, and eventually, the possibility that calcium carbonate is generated increases. Therefore, it is easier to reduce the amount of calcium impurities if the amount of use is suppressed.
  • magnesium oxide most of calcium impurities are usually calcium sulfate in many cases.
  • the insoluble magnesium compound-based material it is preferable to use a magnesium oxide-based material in a form in which calcium is easily removed or a material comprising a mixture containing the same.
  • magnesium hydroxide can be used in combination when giving priority to cost.
  • the higher the compounding ratio of magnesium oxide the higher the calcium removal effect.
  • the higher the compounding ratio of magnesium oxide the higher the magnesium content (for example, Examples 12 to 13 described later).
  • the lower limit value in consideration of the target purity of the magnesium chloride to be generated can be set up to a blending ratio of about 54% by weight of magnesium (that is, about 1/4 of magnesium hydroxide).
  • the property (form) of the insoluble magnesium compound-based raw material is not particularly limited, but is usually preferably in the form of powder from the viewpoint of reaction operation in the production method of the present invention.
  • the average particle diameter is not limited, but can be appropriately set within the range of about 1 to 20 ⁇ m.
  • the insoluble magnesium compound-based material is subjected to the reaction step, but it is preferable to perform the washing step on the insoluble magnesium compound-based material in advance prior to the reaction step.
  • a part or all of impurities (especially calcium, sulfate, etc.) contained in the insoluble magnesium compound-based raw material can be removed by the washing process, so that a higher-purity aqueous solution, and thus higher-purity magnesium chloride can be more reliably obtained. It becomes possible to provide.
  • the washing step is not particularly limited as long as the content of impurities as described above can be reduced, but usually a method including a water washing treatment of an insoluble magnesium compound-based raw material may be employed.
  • a first step including a step of preparing an aqueous suspension of an insoluble magnesium compound-based raw material and subjecting the aqueous suspension to solid-liquid separation;
  • An aqueous suspension of the insoluble magnesium compound-based raw material that has undergone the first step is prepared, and alkali is added and mixed until the aqueous suspension has a pH of 12 to 14, followed by heating and solid-liquid separation. It is preferable to perform a washing step including a second step including a step of washing the obtained solid content with water.
  • both the calcium salt and the sulfate can be more reliably removed by the above method. That is, after first removing the calcium salt mainly in the first step, the sulfate is removed by heat solubilization in the presence of an alkali in the second step, followed by solid-liquid separation and washing with solids. It is desirable to carry out a washing process including steps.
  • the first step includes a step of preparing an aqueous suspension of an insoluble magnesium compound-based raw material and subjecting the aqueous suspension to solid-liquid separation.
  • mainly water-soluble impurities for example, calcium ions and sulfate ions
  • an aqueous suspension can be prepared by using a powdery insoluble magnesium compound-based raw material and dispersing it in water.
  • the amount of dispersion in this case can be appropriately set according to the type of insoluble magnesium compound, the particle size, etc., but it is usually sufficient that the solid content is about 5 to 40% by weight.
  • an insoluble magnesium compound-based material any one of magnesium oxide, magnesium hydroxide and magnesium carbonate, or a mixture containing two or more thereof, preferably magnesium oxide alone, the magnesium content is 24 to 60% by weight in terms of dry matter.
  • the resulting powdery solid or its aqueous slurry is dispersed or suspended in water and then decanted or washed with filtered water to elute and remove some or all of the water-soluble impurities.
  • water-soluble impurities are calcium ions and sulfate ions, it is not necessary to completely remove sulfate ions at this stage, so it is preferable to wash with water until almost no calcium ions are detected in the washing solution.
  • the water suspension is subjected to stirring or the like as required, and then the raw material is recovered by solid-liquid separation.
  • the solid-liquid separation method itself may follow a known method.
  • a known method such as pressure filtration, vacuum filtration, vacuum filtration, natural filtration, centrifugal filtration, or the like can be employed. It is only necessary to separate solids present in the suspension, and the degree of separation is not particularly limited.
  • a) a method of continuously replacing a semi-sedimented supernatant solution like a thickener b) a method of continuously filtering by adding pressure while diluting the suspension by adding water, etc. May be.
  • a known or commercially available device such as a filter press or a centrifuge can be used.
  • a series of steps including preparation of the aqueous suspension and solid-liquid separation may be repeated twice or more as necessary. Moreover, you may further wash with the said raw material (solid content) collect
  • calcium and sulfate are mainly removed.
  • a ratio with respect to magnesium weight (as Mg) in the insoluble magnesium compound-based raw material for example, a) calcium (as Ca) content 2500 ppm by weight or more, b) It is preferred that a sulfate (as SO 4 ) content of 7000 ppm by weight or more is removed.
  • the raw material after the first step has a ratio to the magnesium weight (as Mg) in the insoluble magnesium compound-based raw material, for example, a) calcium (as Ca) content of 2000 ppm by weight or less B) Sulfate (as SO 4 ) content 20000 ppm by weight or less, c) Aluminum (as Al) content 160 ppm by weight or more, d) Iron (as Fe) content 160 ppm by weight or more preferable.
  • a ratio to the magnesium weight (as Mg) in the insoluble magnesium compound-based raw material for example, a) calcium (as Ca) content of 2000 ppm by weight or less B) Sulfate (as SO 4 ) content 20000 ppm by weight or less, c) Aluminum (as Al) content 160 ppm by weight or more, d) Iron (as Fe) content 160 ppm by weight or more preferable.
  • the second step is to prepare an aqueous suspension of the insoluble magnesium compound-based raw material that has undergone the first step, add and mix alkali until the aqueous suspension reaches pH 12 to 14, and heat.
  • a step of washing the solid content obtained by solid-liquid separation later with water is included.
  • the second step a method of heat-extracting the hardly soluble sulfate under high alkalinity and then removing by washing with water is taken, but the most important point is that the second step is carried out after sufficiently removing calcium impurities. It is to be. That is, the cleaning process has two stages, and the order is important. If the second step is carried out without sufficiently removing calcium impurities, the remaining calcium is dissolved in water or absorbs carbon dioxide in the air under high alkalinity, so that calcium removal is performed to produce insoluble calcium carbonate. It becomes difficult. For this reason, it is necessary to perform a 2nd process with respect to the insoluble magnesium compound type raw material after passing through a 1st process to the last.
  • the second step after sufficiently removing calcium impurities in the first step, heat extraction is performed under high alkalinity in order to further remove sulfates.
  • most of the sulfate can be removed, but this is a soluble sulfate bound as calcium sulfate, and a portion of the sulfate remains as poorly soluble basic magnesium sulfate.
  • Preparation of the water suspension can be performed in the same manner as in the first step. And an alkali is added and mixed with respect to the obtained water suspension.
  • Various alkalis such as potassium hydroxide, sodium hydroxide, ammonia, lithium hydroxide, sodium silicate, etc. can be used as the alkali to be used.
  • magnesium chloride is used as a dialysis agent, especially from the viewpoint of avoiding the chance of contamination. It is preferable to use sodium hydroxide as the alkali from the standpoint that it can be used for the like.
  • the alkali can be added in the form of a solid or an aqueous solution thereof.
  • the amount of alkali added may be an amount added so that the pH of the aqueous suspension is within the range of 12-14. That is, in order to sufficiently remove sulfate, heating in a highly alkaline state at pH 12 to 14 (concentration equivalent to 0.01 to 1 mol / L as OH) is required. In particular, the higher the alkali concentration, the higher the sulfate removal effect. However, in consideration of raw material costs, wastewater neutralization costs, material handling due to increased viscosity, the pH is preferably about 12 to 13.
  • the insoluble sulfate can be solubilized by heating in the presence of alkali.
  • the heating temperature is usually about 50 to 95 ° C., preferably 70 to 95 ° C.
  • the heating time can be appropriately set according to the heating temperature or the like, but generally it may be set within a range of about 1 to 10 hours.
  • the water suspension After heating, the water suspension is cooled as necessary, and then the raw material is recovered by solid-liquid separation.
  • the solid-liquid separation method may be the same as in the first step.
  • a series of steps including preparation of aqueous suspension, addition of alkali, mixing and heating, and solid-liquid separation may be repeated twice or more for the recovered raw material as necessary.
  • the solid content obtained by the above solid-liquid separation is washed with water.
  • the method of washing with water may follow a known method, and for example, various methods such as a method of preparing a water suspension and performing solid-liquid separation, and a method of pouring water onto a raw material placed on a filter paper can be adopted. it can.
  • Reaction Step when reacting the insoluble magnesium compound-based raw material with hydrogen chloride, 2 nmol (where n is 0.00 ⁇ n ⁇ 0.98) with respect to 1 mol of Mg 2+ ions contained in the raw material.
  • the reaction product is obtained by reacting with hydrogen chloride.
  • the ratio of the weight of iron (weight as Mg) to the weight of magnesium contained in the raw material (weight as Fe) is 160 ppm by weight or more. It is also possible to use a raw material whose aluminum weight (weight as Al) is 160 ppm by weight or more.
  • the ratio of the calcium content and the sulfate content to the magnesium weight (weight as Mg) contained in the raw material is not particularly limited, but the calcium (as Ca) content is 2000 ppm by weight or less, sulfate (SO 4 ) The content is preferably 2000 ppm by weight or less.
  • the reaction step may be performed in any of a gas phase, a liquid phase, and the like, but is preferably performed in a liquid phase.
  • the liquid phase (solvent) in the case of carrying out in the liquid phase is not limited, but usually water may be used.
  • the water may be tap water, industrial water or the like, but pure water or ultrapure water is preferred. Accordingly, for example, ion exchange water, distilled water, and the like can also be suitably used.
  • the insoluble magnesium compound-based material is preferably dispersed in the liquid phase.
  • the aqueous suspension obtained in the second step of the washing step can be used as it is. It is also possible to disperse the insoluble magnesium compound-based material in hydrochloric acid.
  • the hydrogen chloride to be added a known or commercially available one can be used.
  • any of hydrogen chloride obtained by various production methods can be used.
  • hydrochloric acid obtained by synthesizing chlorine and hydrogen obtained as by-products when sodium hydroxide is produced by a salt electrolysis method can be obtained with high purity and relatively inexpensively, such hydrogen chloride can also be suitably used. .
  • Hydrogen chloride is usually used in the form of an aqueous solution (that is, hydrochloric acid), but is not limited thereto.
  • a method of reacting gaseous hydrogen chloride (or a separate action of chlorine gas and hydrogen gas) directly with an insoluble magnesium compound-based material is also possible. Thereby, the magnesium chloride aqueous solution can be obtained at a higher concentration.
  • n satisfies 0.00 ⁇ n ⁇ 0.98, particularly preferably satisfies 0.50 ⁇ n ⁇ 0.98, and more preferably satisfies 0.67 ⁇ n ⁇ 0.90.
  • impurities may elute in the liquid phase and remain in the magnesium chloride aqueous solution.
  • MgOR is magnesium oxide (MgO), magnesium hydroxide (Mg (OH) 2 ), basic magnesium carbonate (aMgCO 3 .Mg (OH) 2 ⁇ nH 2 O (a is 3 to 5)) and magnesite (MgCO 3 ), n satisfies 0.00 ⁇ n ⁇ 0.98, and the by-product is Water (H 2 O) and / or carbon dioxide (CO 2 ).
  • n ⁇ 1 especially 0.98 or less, it is obtained by removing sludge (residue) which is solid content in a state where 67 to 98% of MgO is reacted with HCl.
  • sludge reductia
  • Fe, Al, and the like contained in the insoluble magnesium compound remain in the sludge.
  • a magnesium chloride aqueous solution that does not contain these impurities can be obtained. That is, if the unreacted insoluble magnesium compound is only slightly suspended, the effect of removing Fe and Al is sufficiently observed.
  • the amount of unreacted insoluble magnesium compound is as small as possible, it is desirable to set it within the range of n as described above.
  • aluminum chloride can be added to the liquid phase as necessary. By adding aluminum chloride, separation in a sludge cake separation step, which is a subsequent step, is facilitated. That is, in the present invention, aluminum chloride functions as a so-called filter aid. Known or commercially available aluminum chloride can be used.
  • the timing of addition of aluminum chloride is not particularly limited, and may be any stage before addition of hydrogen chloride (before reaction), simultaneously with hydrogen chloride, after addition of hydrogen chloride, or the like.
  • an aqueous magnesium chloride solution is obtained by removing sludge containing an insoluble magnesium compound present in the reaction system.
  • the reaction is carried out so that unreacted insoluble magnesium compound remains, and therefore sludge containing the insoluble magnesium compound exists as a solid content in the reaction system (particularly in the liquid phase). That is, the sludge coexists in a high purity magnesium chloride aqueous solution. Therefore, in the separation step, the sludge is removed and the magnesium chloride aqueous solution is recovered.
  • the separation method is not limited as long as the sludge can be removed.
  • a known method such as pressure filtration, vacuum filtration, vacuum filtration, natural filtration, or centrifugal filtration may be employed.
  • a known or commercially available device such as a filter press or a centrifuge can be used.
  • the separation step from the reaction step mainly aluminum and iron are removed, but as a ratio with respect to the magnesium weight (as Mg) in the insoluble magnesium compound-based raw material, for example, c) aluminum (as Al) content 100 weight ppm As described above, it is preferable that d) iron (as Fe) content of 150 ppm by weight or more is removed.
  • the ratio to the magnesium weight (as Mg) in the aqueous solution is, for example, a) Calcium (as Ca) content of 2000 ppm by weight or less B) Sulfate (as SO 4 ) content 2000 ppm by weight or less, c) Aluminum (as Al) content 100 wt ppm or less, d) Iron (as Fe) content 10 ppm by weight or less preferable.
  • the magnesium chloride aqueous solution can be used as a raw material for producing magnesium chloride as it is or after adjusting its concentration.
  • concentration of the obtained aqueous magnesium chloride solution is not particularly limited, but usually the magnesium chloride concentration can be 10 wt% or more (particularly 10 to 30 wt%) as magnesium chloride anhydride. Therefore, for example, it can be set within a range of 15 to 20% by weight.
  • the production method (second method) of high purity magnesium chloride of the present invention comprises: (1) When reacting an insoluble magnesium compound-based raw material with hydrogen chloride, 2 nmol per 1 mol of Mg 2+ ions contained in the raw material (where n satisfies 0.00 ⁇ n ⁇ 0.98). A reaction step of obtaining a reaction product by reacting hydrogen chloride of (2) a separation step of obtaining an aqueous magnesium chloride solution by removing sludge containing insoluble magnesium compounds present in the reaction system; (3) It includes a recrystallization step of recrystallizing magnesium chloride from the aqueous solution.
  • the second method is a method including a step of recrystallizing the magnesium chloride aqueous solution obtained by the first method, whereby desired high purity magnesium chloride can be obtained. Therefore, the reaction step and the separation step in the second method can be performed in the same manner as in the first method. Moreover, it can implement similarly to a 1st method also about a washing
  • the insoluble magnesium compound- based material itself used in the second method of the insoluble magnesium compound-based material is not particularly limited, and known or commercially available materials can also be used. Moreover, what was obtained by the well-known manufacturing method can also be used.
  • the insoluble magnesium compound a compound that is hardly soluble or insoluble in water (usually solubility in water (20 ° C.) of 1 g / 30 mL or less) can be used.
  • magnesium oxide basic magnesium carbonate, normal magnesium carbonate, magnesium hydroxide, etc.
  • magnesium silicate and ore include magnesite, forsterite and the like.
  • at least one of magnesium oxide, basic magnesium carbonate, magnesium hydroxide and the like can be used from the viewpoints of cost and availability.
  • the magnesium content of the insoluble magnesium compound-based material is not particularly limited, but is usually 24 to 60% by weight, preferably 40 to 60% by weight (especially 54 to 59% by weight) in terms of dry matter as the Mg content. It is preferable. By using the raw material in such a range, a more effective purification effect can be obtained at a lower cost. Therefore, in order to satisfy such a content, it is preferable to use magnesium oxide or a mixture containing the same as the insoluble magnesium compound.
  • Insoluble magnesium compound-based raw materials contain other impurities in addition to the above insoluble magnesium compounds. That is, in the present invention, by using an insoluble magnesium compound-based material as a crude material, a high-purity magnesium chloride aqueous solution and magnesium chloride (crystal) can be obtained even with an inexpensive material.
  • magnesium hydroxide by the seawater-lime method or magnesium carbonate obtained by reacting magnesium hydroxide with carbonate ions or carbon dioxide gas is used.
  • An insoluble magnesium compound-based raw material contained as an insoluble magnesium compound can be suitably used.
  • the magnesium oxide obtained from the said magnesium hydroxide and magnesium carbonate can also be used suitably.
  • the above-mentioned insoluble magnesium compound-based raw materials by the seawater-lime method are a) calcium hydroxide and calcium salt, b) sulfate, c) as main impurities.
  • Aluminum, d) iron, e) silicon and f) other trace metals are included.
  • f) trace metals are already within acceptable limits at the time of the starting material, and e) silicon can be removed by filtration because it does not elute upon reaction with hydrochloric acid.
  • impurities that can be substantially removed in the seawater-lime method-derived raw materials and the like are a) calcium hydroxide and calcium salt, b) sulfate, c) aluminum, and d) iron. More specifically, the ratio to the magnesium weight (as Mg) in the insoluble magnesium compound-based raw material is as follows: a) Calcium (as Ca) content 3000 ppm by weight or more, b) Sulfate (as SO 4 ) content 10,000 weight It is also possible to use a raw material containing ppm or more, c) an aluminum (as Al) content of 160 wt ppm or more, and d) an iron (as Fe) content of 160 wt ppm or more.
  • the Mg content is W (Mg)
  • the Ca content is W (Ca)
  • the sulfate content is W (SO 4 )
  • the aluminum content is W (Al)
  • W (Fe) [W (Ca) / W (Mg)]
  • W (SO 4 ) / W (Mg)] value is shown (the same applies hereinafter).
  • the calcium component contained in the insoluble magnesium compound-based raw material is considered to be in any form of calcium salt such as calcium sulfate, calcium carbonate, etc. in addition to calcium hydroxide.
  • calcium sulfate and calcium hydroxide dissolve in a small amount in water and are relatively easy to remove by washing with water, but calcium carbonate hardly dissolves in water.
  • magnesium carbonate is used as the insoluble magnesium compound, most of the impurity calcium is often in the form of calcium carbonate, which makes it difficult to remove by washing. Therefore, it is preferable to use other insoluble magnesium compounds or to use a small amount even if they are used.
  • the impurity calcium is considered to be either calcium sulfate or calcium hydroxide, but the liquid phase using magnesium hydroxide should exhibit basicity exceeding pH 10. Therefore, it becomes easy to absorb dissolved carbon dioxide and carbon dioxide in the air, and eventually, the possibility that calcium carbonate is generated increases. Therefore, it is easier to reduce the amount of calcium impurities if the amount of use is suppressed.
  • magnesium oxide most of calcium impurities are usually calcium sulfate in many cases.
  • the insoluble magnesium compound-based material it is preferable to use a magnesium oxide-based material in a form in which calcium is easily removed or a material comprising a mixture containing the same.
  • magnesium hydroxide can be used in combination when giving priority to cost.
  • the higher the compounding ratio of magnesium oxide the higher the calcium removal effect.
  • the higher the compounding ratio of magnesium oxide the higher the magnesium content (for example, Examples 12 to 13 described later).
  • the lower limit value in consideration of the target purity of the magnesium chloride to be generated can be set up to a blending ratio of about 54% by weight of magnesium (that is, about 1/4 of magnesium hydroxide).
  • the property (form) of the insoluble magnesium compound-based raw material is not particularly limited, but is usually preferably in the form of powder from the viewpoint of reaction operation in the production method of the present invention.
  • the average particle diameter is not limited, but can be appropriately set within the range of about 1 to 20 ⁇ m.
  • the insoluble magnesium compound-based material is subjected to the reaction step, but it is preferable to perform the washing step on the insoluble magnesium compound-based material in advance prior to the reaction step.
  • a part or all of impurities (especially calcium, sulfate, etc.) contained in the insoluble magnesium compound-based raw material can be removed by the washing process, so that a higher-purity aqueous solution, and thus higher-purity magnesium chloride can be more reliably obtained. It becomes possible to provide.
  • the washing step is not particularly limited as long as the content of impurities as described above can be reduced, but usually a method including a water washing treatment of an insoluble magnesium compound-based raw material may be employed.
  • a first step including a step of preparing an aqueous suspension of an insoluble magnesium compound-based raw material and subjecting the aqueous suspension to solid-liquid separation;
  • An aqueous suspension of the insoluble magnesium compound-based raw material that has undergone the first step is prepared, and alkali is added and mixed until the aqueous suspension has a pH of 12 to 14, followed by heating and solid-liquid separation. It is preferable to perform a washing step including a second step including a step of washing the obtained solid content with water.
  • both the calcium salt and the sulfate can be more reliably removed by the above method. That is, after first removing the calcium salt mainly in the first step, the sulfate is removed by heat solubilization in the presence of an alkali in the second step, followed by solid-liquid separation and washing with solids. It is desirable to carry out a washing process including steps.
  • the first step includes a step of preparing an aqueous suspension of an insoluble magnesium compound-based raw material and subjecting the aqueous suspension to solid-liquid separation.
  • mainly water-soluble impurities for example, calcium ions and sulfate ions
  • an aqueous suspension can be prepared by using a powdery insoluble magnesium compound-based raw material and dispersing it in water.
  • the dispersion amount in this case can be appropriately set according to the type, particle size, etc. of the insoluble magnesium compound, but is usually about 5 to 40% by weight.
  • an insoluble magnesium compound-based material any one of magnesium oxide, magnesium hydroxide and magnesium carbonate, or a mixture containing two or more, preferably magnesium oxide alone, the magnesium content is 24 to 60% by weight in terms of dry matter
  • the powdered solid or the aqueous slurry thereof is dispersed or suspended in water and then decanted or washed with filtered water to elute and remove some or all of the water-soluble impurities.
  • most of the water-soluble impurities are calcium ions and sulfate ions, it is not necessary to completely remove sulfate ions at this stage, so it is preferable to wash with water until almost no calcium ions are detected in the washing solution.
  • the water suspension is subjected to stirring or the like as required, and then the raw material is recovered by solid-liquid separation.
  • the solid-liquid separation method itself may follow a known method.
  • a known method such as pressure filtration, vacuum filtration, vacuum filtration, natural filtration, centrifugal filtration, or the like can be employed. It is only necessary to separate solids present in the suspension, and the degree of separation is not particularly limited.
  • a) a method of continuously replacing a semi-sedimented supernatant solution like a thickener b) a method of continuously filtering by adding pressure while diluting the suspension by adding water, etc. May be.
  • a known or commercially available device such as a filter press or a centrifuge can be used.
  • a series of steps including preparation of the aqueous suspension and solid-liquid separation may be repeated twice or more as necessary. Moreover, you may further wash with the said raw material (solid content) collect
  • calcium and sulfate are mainly removed.
  • a ratio with respect to magnesium weight (as Mg) in the insoluble magnesium compound-based raw material for example, a) calcium (as Ca) content 2500 ppm by weight or more, b) It is preferred that a sulfate (as SO 4 ) content of 7000 ppm by weight or more is removed.
  • the raw material after the first step has a ratio to the magnesium weight (as Mg) in the insoluble magnesium compound-based raw material, for example, a) calcium (as Ca) content of 2000 ppm by weight or less B) Sulfate (as SO 4 ) content 20000 ppm by weight or less, c) Aluminum (as Al) content 160 ppm by weight or more, d) Iron (as Fe) content 160 ppm by weight or more preferable.
  • a ratio to the magnesium weight (as Mg) in the insoluble magnesium compound-based raw material for example, a) calcium (as Ca) content of 2000 ppm by weight or less B) Sulfate (as SO 4 ) content 20000 ppm by weight or less, c) Aluminum (as Al) content 160 ppm by weight or more, d) Iron (as Fe) content 160 ppm by weight or more preferable.
  • the second step is to prepare an aqueous suspension of the insoluble magnesium compound-based raw material that has undergone the first step, add and mix alkali until the aqueous suspension reaches pH 12 to 14, and heat. A step of washing the solid content with water later is included.
  • the second step a method of heat-extracting the hardly soluble sulfate under high alkalinity and then removing by washing with water is taken, but the most important point is that the second step is carried out after sufficiently removing calcium impurities. It is to be. That is, the cleaning process has two stages, and the order is important. If the second step is carried out without sufficiently removing calcium impurities, the remaining calcium is dissolved in water or absorbs carbon dioxide in the air under high alkalinity, so that calcium removal is performed to produce insoluble calcium carbonate. It becomes difficult. For this reason, it is necessary to perform a 2nd process with respect to the insoluble magnesium compound type raw material after passing through a 1st process to the last.
  • the second step after sufficiently removing calcium impurities in the first step, heat extraction is performed under high alkalinity in order to further remove sulfates.
  • most of the sulfate can be removed, but this is a soluble sulfate bound as calcium sulfate, and a portion of the sulfate remains as poorly soluble basic magnesium sulfate.
  • Preparation of the water suspension can be performed in the same manner as in the first step. And an alkali is added and mixed with respect to the obtained water suspension.
  • Various alkalis such as potassium hydroxide, sodium hydroxide, ammonia, lithium hydroxide, sodium silicate, etc. can be used as the alkali to be used.
  • magnesium chloride is used as a dialysis agent, especially from the viewpoint of avoiding the chance of contamination. It is preferable to use sodium hydroxide as the alkali from the standpoint that it can be used for the like.
  • the alkali can be added in the form of a solid or an aqueous solution thereof.
  • the amount of alkali added may be an amount added so that the pH of the aqueous suspension is within the range of 12-14. That is, in order to sufficiently remove sulfate, heating in a highly alkaline state at pH 12 to 14 (concentration equivalent to 0.01 to 1 mol / L as OH) is required. In particular, the higher the alkali concentration, the higher the sulfate removal effect. However, in consideration of raw material costs, wastewater neutralization costs, material handling due to increased viscosity, the pH is preferably about 12 to 13.
  • the insoluble sulfate can be solubilized by heating in the presence of alkali.
  • the heating temperature is usually about 50 to 95 ° C., preferably 70 to 95 ° C.
  • the heating time can be appropriately set according to the heating temperature or the like, but generally it may be set within a range of about 1 to 10 hours.
  • the water suspension After heating, the water suspension is cooled as necessary, and then the raw material is recovered by solid-liquid separation.
  • the solid-liquid separation method may be the same as in the first step.
  • a series of steps including preparation of aqueous suspension, addition of alkali, mixing and heating, and solid-liquid separation may be repeated twice or more for the recovered raw material as necessary.
  • the method of washing with water may be in accordance with a known method, for example, a method of preparing a water suspension for solid-liquid separation by preparing a water suspension and solid-liquid separation, water injection to a raw material placed on a filter paper Various methods, such as a method to do, can be adopted.
  • Reaction Step when reacting the insoluble magnesium compound-based raw material with hydrogen chloride, 2 nmol (where n is 0.00 ⁇ n ⁇ 0.98) with respect to 1 mol of Mg 2+ ions contained in the raw material.
  • the reaction product is obtained by reacting with hydrogen chloride.
  • the ratio of the weight of iron (weight as Mg) to the weight of magnesium contained in the raw material (weight as Fe) is 160 ppm by weight or more. It is also possible to use a raw material whose aluminum weight (weight as Al) is 160 ppm by weight or more.
  • the ratio of the calcium content and the sulfate content to the magnesium weight (weight as Mg) contained in the raw material is not particularly limited, but the calcium (as Ca) content is 2000 ppm by weight or less, sulfate (SO 4 ) The content is preferably 2000 ppm by weight or less.
  • the reaction step may be performed in any of a gas phase, a liquid phase, and the like, but is preferably performed in a liquid phase.
  • the liquid phase (solvent) in the case of carrying out in the liquid phase is not limited, but usually water may be used.
  • the water may be tap water, industrial water or the like, but pure water or ultrapure water is preferred. Accordingly, for example, ion exchange water, distilled water, and the like can also be suitably used.
  • the insoluble magnesium compound-based material is preferably dispersed in the liquid phase.
  • the aqueous suspension obtained in the second step of the washing step can be used as it is. It is also possible to disperse the insoluble magnesium compound-based material in hydrochloric acid.
  • the hydrogen chloride to be added a known or commercially available one can be used.
  • any of hydrogen chloride obtained by various production methods can be used.
  • hydrochloric acid obtained by synthesizing chlorine and hydrogen obtained as by-products when sodium hydroxide is produced by a salt electrolysis method can be obtained with high purity and relatively inexpensively, such hydrogen chloride can also be suitably used. .
  • Hydrogen chloride is usually used in the form of an aqueous solution (that is, hydrochloric acid), but is not limited thereto.
  • a method of reacting gaseous hydrogen chloride (or a separate action of chlorine gas and hydrogen gas) directly with an insoluble magnesium compound-based material is also possible. Thereby, the magnesium chloride aqueous solution can be obtained at a higher concentration.
  • n satisfies 0.00 ⁇ n ⁇ 0.98, particularly preferably satisfies 0.50 ⁇ n ⁇ 0.98, and more preferably satisfies 0.67 ⁇ n ⁇ 0.90.
  • impurities may elute in the liquid phase and remain in the magnesium chloride aqueous solution.
  • MgOR is magnesium oxide (MgO), magnesium hydroxide (Mg (OH) 2 ), basic magnesium carbonate (aMgCO 3 .Mg (OH) 2 ⁇ nH 2 O (a is 3 to 5)) and magnesite (MgCO 3 ), n satisfies 0 ⁇ n ⁇ 0.98, and the by-product is water ( H 2 O) and / or carbon dioxide (CO 2 ).
  • n ⁇ 1 especially 0.98 or less, it is obtained by removing sludge (residue) which is solid content in a state where 67 to 98% of MgO is reacted with HCl.
  • sludge reductia
  • Fe, Al, and the like contained in the insoluble magnesium compound remain in the sludge.
  • a magnesium chloride aqueous solution that does not contain these impurities can be obtained. That is, if the unreacted insoluble magnesium compound is slightly suspended, the effect of removing Fe and Al is sufficiently observed.
  • the amount of unreacted insoluble magnesium compound is as small as possible, it is desirable to set it within the range of n as described above.
  • aluminum chloride can be added to the liquid phase as necessary. By adding aluminum chloride, separation in a separation step, which is a subsequent step, is facilitated. That is, in the present invention, aluminum chloride functions as a so-called filter aid. Known or commercially available aluminum chloride can be used.
  • the timing of addition of aluminum chloride is not particularly limited, and may be any stage before addition of hydrogen chloride (before reaction), simultaneously with hydrogen chloride, after addition of hydrogen chloride, or the like.
  • an aqueous magnesium chloride solution is obtained by removing sludge containing an insoluble magnesium compound present in the reaction system.
  • the reaction is carried out so that unreacted insoluble magnesium compound remains, so that sludge containing the insoluble magnesium compound exists as a solid content in the reaction system (particularly in the liquid phase). That is, the sludge coexists in a high purity magnesium chloride aqueous solution. Therefore, in the separation step, the sludge is removed and the magnesium chloride aqueous solution is recovered.
  • the separation method is not limited as long as the sludge can be removed.
  • a known method such as pressure filtration, vacuum filtration, vacuum filtration, natural filtration, or centrifugal filtration may be employed.
  • a known or commercially available device such as a filter press or a centrifuge can be used.
  • the separation step from the reaction step mainly aluminum and iron are removed, but as a ratio with respect to the magnesium weight (as Mg) in the insoluble magnesium compound-based raw material, for example, c) aluminum (as Al) content 100 weight ppm As described above, it is preferable that d) iron (as Fe) content of 150 ppm by weight or more is removed.
  • the ratio to the magnesium weight (as Mg) in the aqueous solution is, for example, a) Calcium (as Ca) content of 2000 ppm by weight or less B) Sulfate (as SO 4 ) content 2000 ppm by weight or less, c) Aluminum (as Al) content 100 wt ppm or less, d) Iron (as Fe) content 10 ppm by weight or less preferable.
  • the concentration of the obtained magnesium chloride aqueous solution is not particularly limited, but usually the magnesium chloride concentration can be 10% by weight or more (particularly 10 to 30% by weight) as magnesium chloride anhydride. Therefore, for example, it can be set within a range of 15 to 20% by weight.
  • magnesium chloride is recrystallized from the aqueous solution.
  • magnesium chloride is used for food additives, pharmaceutical applications, etc., it is necessary to commercialize it as a solid (usually equivalent to hexahydrate) combined with crystal water.
  • high-purity magnesium chloride is prepared from a magnesium chloride aqueous solution.
  • the recrystallization method itself can be carried out according to a known method. For example, a) a step of obtaining a concentrate by concentrating a magnesium chloride aqueous solution (magnesium chloride aqueous solution obtained through the separation step); b) cooling the concentrate and recrystallizing the magnesium chloride using a difference in solubility depending on temperature.
  • the method including the process to make can be implemented.
  • concentration by heating can be suitably employed.
  • the heating temperature is not limited, but is usually about 60 to 100 ° C.
  • the degree of concentration is not particularly limited, but usually the magnesium chloride concentration can be appropriately set within a range of 35 wt% or more (particularly 37 to 40 wt%) as magnesium chloride anhydride. Therefore, for example, it can be set within the range of 38 to 39% by weight.
  • the concentrated liquid heated in the a) is cooled. Cooling is usually performed to room temperature (usually 10 to 30 ° C.), where magnesium chloride crystals are precipitated.
  • the crystals precipitated in the step b) are collected by solid-liquid separation.
  • the solid-liquid separation method itself may follow a known method.
  • a known method such as pressure filtration, vacuum filtration, vacuum filtration, natural filtration, centrifugal filtration, or the like can be employed.
  • a known or commercially available device such as a filter press or a centrifuge can be used.
  • Magnesium chloride obtained by the production method of the present invention usually has a granular form consisting of crystal grains of magnesium chloride hydrate. When it is granular, its average particle size can be usually about 200 to 800 ⁇ m, but is not limited thereto.
  • the magnesium chloride may be anhydrous, but generally has a hydrate form, hexahydrate, dihydrate, tetrahydrate, octahydrate depending on the precipitation temperature, A 12 hydrate etc. are illustrated.
  • hexahydrate MgCl 2 ⁇ 6H 2 O
  • hexahydrate that can be applied to pharmaceuticals and the like is preferable.
  • the magnesium chloride hexahydrate has a magnesium content of about 12% by weight (especially 11.8 to 12.1% by weight in the pharmaceutical standard), and the ratio to the magnesium weight (as Mg) is, for example, a) calcium ( (As Ca) content 400 wt ppm or less, preferably 200 wt ppm or less, b) sulfate (as SO 4 ) content 400 wt ppm or less, preferably 300 wt ppm or less, c) aluminum (as Al) content 20 Weight ppm or less, d) Iron (as Fe) content is 5 weight ppm or less. Moreover, the ratio of content of other metals is usually less than 3 ppm by weight.
  • Such high-purity magnesium chloride is suitably used for various chemicals such as pharmaceuticals, quasi drugs, foods and drinks (including functional foods, food additives, etc.), cosmetic feeds, fertilizers, and the like. be able to. In particular, it can be suitably used as a raw material for dialyzing agents for artificial dialysis.
  • the analysis evaluation method in an Example and a comparative example is as follows.
  • the calcium standard solutions were prepared at 0 mg / L, 0.5 mg / L, and 1.0 mg / L, and the sample concentration was adjusted to be in the same range.
  • the insoluble sample was dissolved in an equivalent amount of hydrochloric acid.
  • Example solution preparation (Sample solution) In a graduated test tube, a liquid volume (range of reference liquid) according to the sulfate ion concentration in magnesium chloride was mixed with 0.5 mL of the liquid c) to make a total volume of 10 mL. (Reference solution) In each of three graduated test tubes, 0 mL (empty), 1 mL, and 2 mL of the liquid a) and 0.5 mL of the liquid c) were mixed to make a total volume of 10 mL.
  • Iron test method This test is performed in accordance with the external standard magnesium chloride hydrate test method, but it is an in-limit test, similar to sulfates. After measuring the absorbance of the photometer OD490, a calibration curve was prepared and the measured values were shown as numerical results using this.
  • the aluminum test method is performed according to the test method of USP “Magnesium Chloride” Aluminum, but the sample amount is adjusted according to the impurity value (frameless atomic absorption calibration curve method).
  • the water-washed purified suspension was dispensed into 13 tubes of about 20 mL each with a stoppered Nessler tube with a stopper, and the suspension weight obtained by subtracting the empty weight was determined.
  • Examples 12-13 Combined with Tomita Pharmaceutical Co., Ltd. USP heavy magnesium oxide powder (59% as a magnesium content dry product) and Tomita Pharmaceutical Co., Ltd. USP heavy magnesium hydroxide powder (40.4% as a magnesium content dry product), or The powder was weighed as a single powder, and the weight corresponding to 60 g of magnesium was used as the powder sample.
  • the calcium content of the impurities contained in USP heavy magnesium oxide powder manufactured by Tomita Pharmaceutical Co., Ltd. is 8000 ppm, and the sulfate content is 20000 ppm (both are values converted to a ratio per weight of magnesium (as Mg)).
  • the calcium content of impurities contained in the USP heavy magnesium hydroxide powder manufactured by Tomita Pharmaceutical Co., Ltd. was 13000 ppm, and the sulfate content was 32000 ppm (both values converted to a ratio per weight of magnesium (as Mg)).
  • the aqueous suspension was subjected to suction filtration with a Buchner funnel (filter paper No. 131, manufactured by Advantech, diameter 150 mm), and the cake on the filter paper was 4 with 1 L of water. Washed once (total 4L). 100 mL of the 4th cleaning solution was sampled, 5 mL of 8 mol / L potassium hydroxide aqueous solution was added, and then an NN indicator was added. As a result, the cleaning solution turned blue. From this, it was confirmed that the calcium ion elution cleaning was completed.
  • Examples 14 to 16 500 g of USP heavy magnesium oxide powder manufactured by Tomita Pharmaceutical Co., Ltd., the same as that used in Example 12, was weighed and suspended in 5 L of water. Next, the obtained aqueous suspension was subjected to suction filtration with a Buchner funnel (filter paper No. 131, manufactured by Advantech, diameter 300 mm), and the cake on the filter paper was washed four times with 5 L of water (20 L in total). 100 mL of the 4th cleaning solution was sampled, 5 mL of an 8 mol / L potassium hydroxide aqueous solution was added, and then an NN indicator was added. As a result, the cleaning solution was blue. From this, it was confirmed that the calcium ion elution cleaning was completed.
  • the entire cake on the filter paper was washed with water and suspended to obtain a suspension with a feed amount of 2258 g.
  • the solid content ratio was 12.65% as the magnesium content.
  • the calcium impurity and sulfate impurity contents were measured, and the ratio to the magnesium (as Mg) in the suspension was determined.
  • Ca was 670 ppm and SO 4 was 2500 ppm.
  • each liquid was cooled and then suction filtered with a Buchner funnel (filter paper No. 131, manufactured by Advantech, diameter 150 mm), and the cake on the filter paper was washed 4 times with 1 L of water (4 L in total).
  • a Buchner funnel filter paper No. 131, manufactured by Advantech, diameter 150 mm
  • 1 L of water 4 L in total
  • 2 mL of an aqueous solution of barium chloride dihydrate an aqueous solution in which 250 g of barium chloride dihydrate was dissolved in water to make 1 L
  • a Buchner funnel filter paper No. 131, manufactured by Advantech, diameter 300 mm
  • the entire cake on the filter paper was washed with water and suspended to obtain a 2680 g suspension.
  • the solid content ratio was 11.08% as the magnesium content.
  • the calcium impurity and sulfate impurity contents were measured, and the calcium and sulfate contained in the suspension were converted to the ratio per magnesium (as Mg).
  • Ca was 1400 ppm and SO 4 was 3600 ppm.
  • each liquid was cooled and then suction filtered with a Buchner funnel (filter paper No. 131, manufactured by Advantech, diameter 150 mm), and the cake on the filter paper was washed 4 times with 1 L of water (4 L in total).
  • a Buchner funnel filter paper No. 131, manufactured by Advantech, diameter 150 mm
  • 1 L of water 4 L in total
  • 2 mL of an aqueous solution of barium chloride dihydrate an aqueous solution in which 250 g of barium chloride dihydrate was dissolved in water
  • the cake on the filter paper was collected, resuspended in water, and the water-purified suspension of the insoluble magnesium compound was completely dissolved in hydrochloric acid, and then 20 mL of the solution was syringe filtered (Millipore Mirex PES, pore size 0.45 ⁇ m). This was used as a sample solution.
  • the impurity content of Ca and SO 4 in each sample solution was determined as a ratio to magnesium (as Mg) dissolved in the sample solution. The results are shown in Table 6.
  • Example 20 550 g of USP heavy magnesium oxide powder manufactured by Tomita Pharmaceutical Co., Ltd. was weighed and suspended in 5 L of water. Next, the suspension was subjected to suction filtration with a Buchner funnel (filter paper No. 131, manufactured by Advantech, diameter 300 mm), and the cake on the filter paper was washed 4 times with 5 L of water (20 L in total). 100 mL of the 4th cleaning solution was sampled, 5 mL of an 8 mol / L potassium hydroxide aqueous solution was added, and then an NN indicator was added. As a result, the cleaning solution was blue. From this, it was confirmed that the calcium ion elution cleaning was completed. The entire cake on the filter paper was washed with water and suspended to obtain a suspension with a feed amount of 2600 g.
  • the treated liquid was subjected to suction filtration with a Buchner funnel (filter paper No. 131, manufactured by Advantech, diameter 300 mm), and the cake on the filter paper was washed four times with 5 L of water (20 L in total).
  • a Buchner funnel filter paper No. 131, manufactured by Advantech, diameter 300 mm
  • 1 mL of 10% hydrochloric acid was added, and then 2 mL of an aqueous solution of barium chloride dihydrate (an aqueous solution in which 250 g of barium chloride dihydrate was dissolved in water) was added. No cloudiness was observed. From this, it was confirmed that elution removal of sulfate ions was completed.
  • the cake on the filter paper was dispersed while being washed away with water and recovered as a suspension to obtain 3120 g of a suspension sample (the solid content ratio was 9.890% as the magnesium content).
  • the recovered suspension was divided into 2 minutes, of which 1545 g was collected separately (used in Example 21).
  • the remaining 1545 g (solid content ratio: 152.8 g as magnesium content; 6.285 mol) was transferred to a 3 L enamel container, covered with a polypropylene sheet cover, and the upper surface of the container was stirred with 1064 g of synthetic hydrochloric acid (produced by Toa Gosei Co., Ltd.) 35.70% as HCl, HCl; 379.9 g) and weighed slowly over 1 hour to obtain 2570 g of a reaction suspension.
  • synthetic hydrochloric acid produced by Toa Gosei Co., Ltd.
  • the crystal-containing liquid is suction filter paper no. 2, manufactured by Advantech Co., Ltd., diameter 150 mm), and 320 g of filtration residue was collected and used as an analysis sample.
  • the magnesium content of the sample crystals and the sample for purity comparison before crystallization, and the ratio of the content of impurities (calcium, sulfate, iron, Al) to the magnesium content were measured. The results are shown in Table 7.
  • the filtrate was allowed to stand overnight, the supernatant clarified portion was extracted and collected, and suction filtration (filter paper 0.20 ⁇ m, mixed cellulose ester, manufactured by Advantech, diameter 47 mm) was performed using a Buchner funnel, and 2320 g of a filtrate sample ( The solid content ratio was 5.67% as magnesium content).
  • suction filtration filter paper 0.20 ⁇ m, mixed cellulose ester, manufactured by Advantech, diameter 47 mm
  • 2320 g of a filtrate sample The solid content ratio was 5.67% as magnesium content.
  • the remaining liquid 2260 g was heated and concentrated in a 3 L enamel container, boiled to 1306 g, and then naturally cooled with stirring in a covered state. After maintaining the temperature at 1 ° C. for 1 hour, it was cooled to 30 ° C. over 2 hours while controlling the temperature to precipitate crystals.
  • the crystal-containing liquid was subjected to suction filtration with a Buchner funnel (filter paper No. 2, manufactured by Advantech, diameter 150 mm), and 340 g of the filtration residue was recovered and used as an analysis sample.
  • the magnesium content of the sample crystals and the sample for purity comparison before crystallization, and the ratio of the content of impurities (calcium, sulfate, iron, Al) to the magnesium content were measured. The results are shown in Table 7.
  • the solution was allowed to stand overnight, and the supernatant clarified portion was extracted and collected, and after stirring, suction filtered with a Buchner funnel (filter paper 0.20 ⁇ m, mixed cellulose ester, Advantech, diameter 47 mm), and 2370 g of a filtrate sample ( The solid content ratio was 5.60% as magnesium content).
  • the remaining liquid 2310 g was heated and concentrated in a 4.5 L enamel container, boiled up to 1318 g, and then naturally cooled with stirring in a covered state. After maintaining the temperature at 60 ° C. for 1 hour, it was cooled to 30 ° C. over 2 hours while controlling the temperature to precipitate crystals.
  • the crystal-containing liquid was subjected to suction filtration with a Buchner funnel (filter paper No. 2, manufactured by Advantech, diameter 150 mm), and 370 g of filtration residue was recovered and used as an analysis sample.
  • the magnesium content of the sample crystals and the sample for purity comparison before crystallization, and the ratio of the content of impurities (calcium, sulfate, iron, Al) to the magnesium content were measured. The results are shown in Table 7.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Inorganic Chemistry (AREA)
  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)

Abstract

[Problem] To provide a method for producing a high-purity magnesium salt steadily at low cost. [Solution] A method for producing a high-purity magnesium salt, characterized in that a reaction step for the reaction of an insoluble magnesium compound-based raw material with hydrogen chloride is included, wherein the reaction step includes reacting hydrogen chloride in an amount of 2n mol (wherein n satisfies the formula: 0.00 < n ≤ 0.98) relative to 1 mol of Mg2+ ions contained in the raw material to produce a reaction product.

Description

精製マグネシウム塩の製造方法Method for producing purified magnesium salt
 本発明は、精製マグネシウム塩の製造方法に関する。 The present invention relates to a method for producing a purified magnesium salt.
 マグネシウムは、鉱物又は海水に多く含まれる元素であり、動植物にとって必須ミネラルであることから食品、医薬品、飼料、肥料等の幅広い用途で使用されている。その中でも塩化マグネシウムは、補ミネラル剤、豆腐の凝固剤等の食品分野のほか、人工腎臓用透析剤等の医薬品分野において、代表的なマグネシウム塩として日常生活に欠かせない化合物であり、特に人工腎臓用透析剤用途への塩化マグネシウム需要比率は目立って大きい。 Magnesium is an element that is abundant in minerals or seawater, and is an essential mineral for animals and plants, so it is used in a wide range of applications such as foods, pharmaceuticals, feeds, and fertilizers. Among them, magnesium chloride is an indispensable compound in daily life as a typical magnesium salt in the food field such as co-minerals and tofu coagulants, as well as in the pharmaceutical field such as dialyzers for artificial kidneys. The ratio of magnesium chloride demand for renal dialysate applications is remarkably large.
 高齢者人口、糖尿病患者の増加等により、世界中で透析患者が急増しており、2030年の透析人口は540万人とも言われている。透析患者は週3~4回の人工透析により生命維持をしており、大量に且つ安定的に透析剤を市場に供給することが製薬会社にとっての社会的責任である。ただし、塩化マグネシウムを医薬品用途に使用する場合は、塩化マグネシウム6水和物結晶に対して、表1に示すように日本薬局方外医薬品規格(略称:局外規)、United States Pharmacopeia(略称:USP)及びEuropean Pharmacopoeia(略称:EP)の三極公定書規格に厳しい純度要求が収載されている。 The number of dialysis patients is rapidly increasing all over the world due to the increase in the elderly population and the number of diabetic patients. The dialysis population in 2030 is said to be 5.4 million. Dialysis patients maintain their lives by artificial dialysis three to four times a week, and it is a social responsibility for pharmaceutical companies to supply a large amount and a stable amount of dialysate to the market. However, when magnesium chloride is used for pharmaceutical applications, as shown in Table 1, the Japanese Pharmacopoeia Standards for Pharmaceuticals (abbreviation: external regulations), United States Pharmacopeia (abbreviation: abbreviation :) for magnesium chloride hexahydrate crystals. USP) and European Pharmacopoeia (abbreviation: EP) tripolar official standards list strict purity requirements.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 医薬品用途等を目的とする場合は、相応の高純度の塩化マグネシウムを製造する必要がある。このような塩化マグネシウムの製造方法としては、原料の種類から以下の3つの方法に分類されるのが一般的である。 For the purpose of pharmaceutical use, etc., it is necessary to produce magnesium chloride with high purity. Such magnesium chloride production methods are generally classified into the following three methods according to the type of raw material.
(1)金属マグネシウムを出発原料とし、塩素と反応させる方法
 実際は、金属マグネシウムは高価であるため、下記式のようにスポンジチタン製造工程の副産物として得られた無水塩化マグネシウムがチタンメーカーより市販されている
 TiCl+2Mg→Ti+2MgCl
 この製法で製造された塩化マグネシウムは、出発原料の純度が高いので、特段の精製工程を経ることなく、溶解及びろ過後の再結晶だけで医薬品用途の純度を満たすことができる。
(1) Method of reacting with magnesium using metallic magnesium as a starting material Actually, magnesium magnesium is expensive, so anhydrous magnesium chloride obtained as a by-product of the sponge titanium production process is commercially available from a titanium manufacturer as shown in the following formula. TiCl 4 + 2Mg → Ti + 2MgCl 2
Since magnesium chloride produced by this production method has a high purity of the starting material, it can satisfy the purity for pharmaceutical use only by recrystallization after dissolution and filtration without passing through a special purification step.
(2)海水から回収する方法
 最も良く知られている方法であり、海水からイオン交換により食塩を採取する過程の副産物として塩化マグネシウム水和物(にがり(苦汁))を得る。主に豆腐凝固剤等の食品添加物、土壌肥料等の用途で使用されることが多い。純度が高いものは水溶液を煮詰めて塩化マグネシウムよりも溶解度の小さい不純物を先に析出させてこれを除去する方法が知られている。
(2) Method of recovering from seawater It is the most well-known method, and magnesium chloride hydrate (bittern (bitter juice)) is obtained as a byproduct of the process of collecting salt from seawater by ion exchange. It is often used mainly for food additives such as tofu coagulants and soil fertilizers. A method of removing an impurity having a high purity by boiling an aqueous solution and precipitating impurities having a lower solubility than magnesium chloride first.
(3)水酸化マグネシウム及び炭酸マグネシウム(天然鉱石のマグネサイトも多く使用される)を塩酸又は塩化水素ガスと反応させる方法
 天然鉱石を除けば、水酸化マグネシウム、炭酸マグネシウムは合成される際に、海水由来の不純物の大半を取り込まずに得られる(既に精製工程を経ている)。また、副塩が水又は二酸化炭素ガスとして空気中に離脱するので、この方法では比較的純度の高い塩化マグネシウムが得られる。このため、当然ながら塩化マグネシウムの純度は、出発原料の純度に左右されることになる。類似する方法として、アルカリ金属の塩化物又はアルカリ土類金属の塩化物の溶融塩を原料として用いる方法(特許文献1)等が知られている。
(3) Method of reacting magnesium hydroxide and magnesium carbonate (natural ore magnesite is also often used) with hydrochloric acid or hydrogen chloride gas Except for natural ore, when magnesium hydroxide and magnesium carbonate are synthesized, It is obtained without taking in most of the impurities derived from seawater (already undergoing a purification process). Further, since the secondary salt is released into the air as water or carbon dioxide gas, magnesium chloride having a relatively high purity can be obtained by this method. For this reason, the purity of magnesium chloride naturally depends on the purity of the starting material. As a similar method, a method using a molten salt of an alkali metal chloride or an alkaline earth metal chloride as a raw material (Patent Document 1) is known.
(4)その他の方法
 例えば塩化マグネシウム水溶液を原料として塩基性塩化マグネシウムを製造する方法(特許文献2)等が知られている。
(4) Other methods For example, a method of producing basic magnesium chloride using a magnesium chloride aqueous solution as a raw material (Patent Document 2) is known.
特開平2-243510JP-A-2-243510 特開平9-221318JP-A-9-221318
 前記(1)の方法は、高純度品が確実に得られる点において有利ではあるが高価な材料であり、使用できる用途が限定される。すなわち、大量の需要が要求される人工腎臓用透析剤用途においては、医療費削減の情勢に反することから好まれない材料選定である。従って、前述スポンジチタン製造工程の副産物として市販される無水塩化マグネシウムを出発原料とする塩化マグネシウムの製造方法が、医薬品用途に要求される品質を満足させるためには、現状で最も効率が良く、実際にも国内市場の多くを占めている。 The method (1) is advantageous in that a high-purity product can be obtained with certainty, but is an expensive material, and its use is limited. That is, in the use of artificial kidney dialysate requiring a large amount of demand, it is an unfavorable material selection because it is contrary to the situation of medical cost reduction. Therefore, in order to satisfy the quality required for pharmaceutical use, the production method of magnesium chloride using anhydrous magnesium chloride commercially available as a by-product of the above-mentioned sponge titanium production process is the most efficient and practical Even occupies much of the domestic market.
 しかしながら、現在スポンジチタンの製造は中国、ロシア、カザフスタン及びアメリカが大半であり、日本国内での製造は数社のみであるため、輸入品に頼る割合が高くなる。すなわち、国際情勢、為替変動等の影響を受けやすい。また、何よりも副産物であることが前提であるためにチタン産業の景気動向にも左右される。これらは、いずれも製薬会社の重要責任である「安定供給」に対する不安要因となる。今後、透析患者が増加する背景を鑑み、医薬品の製造現場からは、安定供給可能であり、安価であり、なおかつ、医薬品用途の規格も満たせる代替製造方法の開発が強く望まれている。 However, currently, the production of titanium sponge is mostly made in China, Russia, Kazakhstan, and the United States, and since there are only a few companies in Japan, the proportion of reliance on imported products is high. In other words, it is easily affected by international conditions and exchange rate fluctuations. Moreover, since it is a premise that it is a by-product above all, it depends on the economic trend of the titanium industry. All of these become anxiety factors for “stable supply,” which is an important responsibility of pharmaceutical companies. In the future, in view of the background of an increase in dialysis patients, development of an alternative manufacturing method that can be stably supplied, is inexpensive, and can also satisfy standards for pharmaceutical applications is strongly desired from the manufacturing site of pharmaceuticals.
 前記(2)の方法で得られたにがりは塩化マグネシウムが大部分であるが、ナトリウム、カリウム、カルシウム、硫酸塩、臭化物等の不純物も多く含まれている。さらに純度を高めるために煮詰めを行うことにより、塩化マグネシウムよりも溶解度の小さい塩化ナトリウム、塩化カリウム等が先に析出し、さらにカルシウムイオン、硫酸イオンは硫酸カルシウムとして析出し、これを除去することで高純度の塩化マグネシウムが得られることは良く知られている。 The bittern obtained by the method (2) is mostly magnesium chloride, but also contains many impurities such as sodium, potassium, calcium, sulfate and bromide. Further, by boiling to increase the purity, sodium chloride, potassium chloride, etc. having lower solubility than magnesium chloride are precipitated first, and calcium ions and sulfate ions are precipitated as calcium sulfate. It is well known that high purity magnesium chloride can be obtained.
 しかしながら、煮詰め法にも精製限度があり、煮詰めた水溶液側の少量の水に溶けている飽和分の塩化ナトリウム、塩化カリウム及び硫酸カルシウム(硫酸カルシウムは少量だが水に溶ける)だけはどうしても除去しきれず、また臭化マグネシウムは塩化マグネシウムよりも溶解度が高いため析出除去自体が難しい。従って、本製造方法ではある程度の高純度化は見込めるものの、表1のような規格に合格させるためには確実性に欠ける。 However, there is also a refining limit in the boiled method, so only the saturated sodium chloride, potassium chloride and calcium sulfate (calcium sulfate is small but soluble in water) that is dissolved in a small amount of water on the boiled aqueous solution side cannot be completely removed. Moreover, since magnesium bromide has higher solubility than magnesium chloride, the precipitation removal itself is difficult. Therefore, although a certain degree of purity can be expected in this manufacturing method, there is no certainty in order to pass the standards shown in Table 1.
 前記(3)の方法では、水酸化マグネシウム及び炭酸マグネシウムが原料として用いられるが、日本国内で市販されている水酸化マグネシウム及び炭酸マグネシウムの大半は、海水-石灰法による。すなわち、下記反応式:
 MgCl+Ca(OH)→Mg(OH)+CaCl
によって、水酸化マグネシウムが合成される。炭酸マグネシウムの製造は、この水酸化マグネシウムに二酸化炭素を吹き込むことによって製造される。大規模工場では、石灰石から生石灰への焼成工程で発生する二酸化炭素を有効利用し、コスト削減を図っているが、不純物の傾向は炭酸マグネシウムも水酸化マグネシウムも大きく変わらない。
In the method (3), magnesium hydroxide and magnesium carbonate are used as raw materials, but most of the magnesium hydroxide and magnesium carbonate commercially available in Japan are based on the seawater-lime method. That is, the following reaction formula:
MgCl 2 + Ca (OH) 2 → Mg (OH) 2 + CaCl 2
Thus, magnesium hydroxide is synthesized. Magnesium carbonate is produced by blowing carbon dioxide into this magnesium hydroxide. In large-scale factories, carbon dioxide generated in the calcination process from limestone to quick lime is used effectively to reduce costs, but the tendency of impurities does not change much between magnesium carbonate and magnesium hydroxide.
 海水-石灰法による水酸化マグネシウム及び炭酸マグネシウムを原料として使用する場合、不純物の大半はカルシウム及び硫酸塩が占めることになる。これらを出発原料として塩化マグネシウムを製造した場合には、マグネシウム重量に対し、約3000~15000重量ppm相当のカルシウムと10000~50000重量ppm相当の硫酸塩が不純物として共存することとなる。 When using magnesium hydroxide and magnesium carbonate by the seawater-lime method as raw materials, most of the impurities are calcium and sulfate. When magnesium chloride is produced using these as starting materials, calcium equivalent to about 3000 to 15000 ppm by weight and sulfate equivalent to 10,000 to 50000 ppm by weight coexist as impurities with respect to the weight of magnesium.
 これらを原料として塩酸と反応させて塩化マグネシウム溶液を得る場合、再結晶を行うことにより母液側にこれらの不純物は移行するが、固液分離の際、結晶の完全脱水は難しく、回収結晶重量に対して1~2割程度は母液が付着するため、精製を行うことなく、表1の厳しい規格(局外規の場合:カルシウム100重量ppm以下、硫酸塩50重量ppm以下(マグネシウム重量に対する割合はカルシウム840重量ppm以下、硫酸塩420重量ppm以下))を満たすことは難しい。 When these materials are reacted with hydrochloric acid to obtain a magnesium chloride solution, these impurities migrate to the mother liquor side by recrystallization, but complete solid dehydration is difficult during solid-liquid separation, and the recovered crystal weight On the other hand, the mother liquor adheres to about 10 to 20%, so the strict specifications in Table 1 (in the case of external regulations: calcium 100 wt ppm or less, sulfate 50 wt ppm or less (ratio to magnesium weight is not required) It is difficult to satisfy calcium 840 ppm by weight or less and sulfate 420 ppm by weight or less)).
 また、石灰石由来の不純物としては、鉄、アルミニウム、ケイ素及びその他微量金属が含まれる。このうち重金属、ヒ素等の有害微量金属不純物は出発原料の時点で既に許容範囲内となっており、ケイ素は塩酸との反応でも溶出しないため、ろ過により除去できる。ところが、鉄、アルミニウムは、塩酸反応の際に塩化鉄、塩化アルミニウム等として溶出し、純度が悪い原料を使用した場合、表1の規格への対応が難しい。 Also, limestone-derived impurities include iron, aluminum, silicon and other trace metals. Among these, harmful trace metal impurities such as heavy metals and arsenic are already within the allowable range at the time of the starting material, and silicon can be removed by filtration because it does not elute even when reacted with hydrochloric acid. However, iron and aluminum are eluted as iron chloride, aluminum chloride and the like during the hydrochloric acid reaction, and it is difficult to comply with the standards shown in Table 1 when raw materials with poor purity are used.
 他方、にがり-石灰法も良く知られた水酸化マグネシウムの製造方法である。にがりは海水から食塩を取った後の塩化マグネシウムを主成分とする水溶液であり、化学反応式は海水-石灰法と同じであるが、生成した水酸化マグネシウム中における硫酸塩不純物残存量が比較的少ないという特徴がある。しかし、にがり-石灰法でも、カルシウム不純物は残存しやすく、これを出発物質に塩化マグネシウムを合成した場合は、必然的にカルシウム不純物が残存する。 On the other hand, the nigari-lime method is a well-known method for producing magnesium hydroxide. Nigari is an aqueous solution containing magnesium chloride as the main component after removing salt from seawater. The chemical reaction formula is the same as the seawater-lime method, but the remaining amount of sulfate impurities in the produced magnesium hydroxide is relatively low. There are few features. However, even in the bittern-lime method, calcium impurities are likely to remain, and when magnesium chloride is synthesized using this as a starting material, calcium impurities necessarily remain.
 また、にがり-石灰法において石灰の添加量を抑え、あるいは石灰の替わりに苛性アルカリ又はアンモニア水を添加して得られた水酸化マグネシウムは、不純物であるカルシウム及び硫酸塩ともに少なくすることはできるが、原料コストが高くなる。 In addition, magnesium hydroxide obtained by suppressing the amount of lime added in the bittern-lime method, or adding caustic or ammonia water instead of lime can reduce both calcium and sulfate as impurities. , Raw material costs increase.
 前記(4)の方法では、前記(3)と同じように出発原料の純度に依存し、塩基性塩化マグネシウム(Mg(OH)Cl・4HO)は製造できるものの、医薬品用途等で使用される塩化マグネシウム6水和物(MgCl・6HO)とは物質が異なるため、高純度のマグネシウム塩を製造するためにはさらなる改良が必要である。 In the method (4), the basic magnesium chloride (Mg 2 (OH) 3 Cl · 4H 2 O) can be produced, depending on the purity of the starting material, as in the case (3). Since the substance is different from the magnesium chloride hexahydrate (MgCl 2 .6H 2 O) used, further improvement is necessary to produce a highly pure magnesium salt.
 従って、本発明の主な目的は、高純度のマグネシウム塩を低コストで安定的に製造できる方法を提供することにある。 Therefore, a main object of the present invention is to provide a method capable of stably producing a high purity magnesium salt at a low cost.
 本発明者らは、従来技術の問題点に鑑みて鋭意研究を重ねた結果、特定の工程を含む製造方法が上記目的を達成できることを見出し、本発明を完成するに至った。 As a result of intensive studies in view of the problems of the prior art, the present inventors have found that a production method including a specific process can achieve the above object, and have completed the present invention.
 すなわち、本発明は、下記の精製マグネシウム塩の製造方法に係る。
1. 塩化マグネシウム水溶液を製造する方法であって、
(1)不溶性マグネシウム化合物系原料と塩化水素を反応させるに際し、前記原料中に含まれるMg2+イオン1モルに対して2nモル(但し、nは0.00<n≦0.98を満たす。)の塩化水素を反応させることにより反応生成物を得る反応工程、
(2)反応系中に存在する不溶性マグネシウム化合物を含むスラッジを除去することにより塩化マグネシウム水溶液を得る分離工程
を含むことを特徴とする塩化マグネシウム水溶液の製造方法。
2. 塩化マグネシウム水溶液に含まれるマグネシウム重量(Mgとしての重量)に対し、鉄重量(Feとしての重量)の割合が10ppm以下であり、アルミニウム重量(Alとしての重量)の割合が100ppm以下である、前記項1に記載の製造方法。
3. 前記nが0.50≦n≦0.98である、前記項1に記載の製造方法。
4. 不溶性マグネシウム化合物系原料中に含まれるマグネシウム含有量(Mgとしての含有量)が24~60重量%(乾燥物換算)である、前記項1に記載の製造方法。
5. 不溶性マグネシウム化合物系原料は、当該原料中に含まれるマグネシウム重量(Mgとしての重量)に対し、鉄重量(Feとしての重量)の割合が160ppm以上であり、アルミニウム重量(Alとしての重量)の割合が160ppm以上である、前記項1に記載の製造方法。
6. 不溶性マグネシウム化合物系原料中に含まれるマグネシウム重量(Mgとしての重量)に対し、カルシウム重量(Caとして)の割合が含有量2000重量ppm以下、硫酸塩重量(SOとして)の割合が含有量2000重量ppm以下である、前記項5に記載の製造方法。
7. 塩化マグネシウム水溶液の濃度が10重量%以上である、前記項1に記載の製造方法。
8. 反応工程に先立って、不溶性マグネシウム化合物系原料の水洗処理を含む洗浄工程をさらに含む、前記項1に記載の製造方法。
9. 洗浄工程は、
(a)不溶性マグネシウム化合物系原料の水懸濁液を調製し、当該水懸濁液を固液分離する工程を含む第1工程、
(b)第1工程を経た不溶性マグネシウム化合物系原料の水懸濁液を調製し、当該水懸濁液がpH12~14となるまでアルカリを添加及び混合し、加熱した後に固液分離して得られた固形分を水で洗浄する工程を含む第2工程
を含む、前記項8に記載の製造方法。
10. 洗浄工程を経た後の不溶性マグネシウム化合物系原料は、当該原料中に含まれるマグネシウム重量(Mgとしての重量)に対し、カルシウム重量(Caとしての重量)の割合が2000ppm以下であり、硫酸塩重量(SOとしての重量)の割合が2000ppm以下である、前記項8又は9に記載の製造方法。
11. 洗浄工程を経る前の不溶性マグネシウム化合物系原料は、当該原料中に含まれるマグネシウム重量(Mgとしての重量)に対し、鉄重量(Feとしての重量)の割合が160ppm以上、アルミニウム重量(Alとしての重量)の割合が160ppm以上、カルシウム重量(Caとしての重量)の割合が3000ppm以上であり、硫酸塩重量(SOとしての重量)の割合が10000ppm以上である、前記項8又は9に記載の製造方法。
12. 反応工程において、液相中に塩化アルミニウムを添加する工程をさらに含む、前記項1に記載の製造方法。
13. 高純度塩化マグネシウムを製造する方法であって、
(1)不溶性マグネシウム化合物系原料と塩化水素を反応させるに際し、前記原料中に含まれるMg2+イオン1モルに対して2nモル(但し、nは0.00<n≦0.98を満たす。)の塩化水素を反応させることにより反応生成物を得る反応工程、
(2)反応系中に存在する不溶性マグネシウム化合物を含むスラッジを除去することにより塩化マグネシウム水溶液を得る分離工程、
(3)前記水溶液から塩化マグネシウムを再結晶化させる再結晶化工程
を含むことを特徴とする高純度塩化マグネシウムの製造方法。
14. 再結晶化工程において、塩化マグネシウム水溶液を濃縮し、再結晶化させる、前記項13に記載の製造方法。
15. 塩化マグネシウム水溶液に含まれるマグネシウム重量(Mgとしての重量)に対し、鉄重量(Feとしての重量)の割合が10ppm以下であり、アルミニウム重量(Alとしての重量)の割合が50ppm以下である、前記項13に記載の製造方法。
16. 前記nが0.50≦n≦0.98である、前記項13に記載の製造方法。
17. 不溶性マグネシウム化合物系原料中に含まれるマグネシウム含有量(Mgとしての含有量)が24~60重量%(乾燥物換算)である、前記項13に記載の製造方法。
18. 不溶性マグネシウム化合物系原料は、当該原料中に含まれるマグネシウム重量(Mgとしての重量)に対し、鉄重量(Feとしての重量)の割合が160ppm以上であり、アルミニウム重量(Alとしての重量)の割合が160ppm以上である、前記項13に記載の製造方法。
19. 不溶性マグネシウム化合物系原料中に含まれるマグネシウム重量(Mgとしての重量)に対し、カルシウム重量(Caとして)の割合が含有量2000重量ppm以下、硫酸塩重量(SOとして)の割合が含有量2000重量ppm以下である、前記項18に記載の製造方法。
20. 塩化マグネシウム水溶液の濃度が10重量%以上である、前記項13に記載の製造方法。
21. 反応工程に先立って、不溶性マグネシウム化合物系原料の水洗処理を含む洗浄工程をさらに含む、前記項13に記載の製造方法。
22. 洗浄工程は、
(a)不溶性マグネシウム化合物系原料の水懸濁液を調製し、当該水懸濁液を固液分離する工程を含む第1工程、
(b)第1工程を経た不溶性マグネシウム化合物系原料の水懸濁液を調製し、当該水懸濁液がpH12~14となるまでアルカリを添加及び混合し、加熱した後に固液分離して得られた固形分を水で洗浄する工程を含む第2工程
を含む、前記項21に記載の製造方法。
23. 洗浄工程を経た後の不溶性マグネシウム化合物系原料は、当該原料中に含まれるマグネシウム重量(Mgとしての重量)に対し、カルシウム重量(Caとしての重量)の割合が2000ppm以下であり、硫酸塩重量(SOとしての重量)の割合が2000ppm以下である、前記項21又は22に記載の製造方法。
24. 洗浄工程を経る前の不溶性マグネシウム化合物系原料は、当該原料中に含まれるマグネシウム重量(Mgとしての重量)に対し、鉄重量(Feとしての重量)の割合が160ppm以上であり、アルミニウム重量(Alとしての重量)の割合が160ppm以上であり、カルシウム重量(Caとしての重量)の割合が3000ppm以上であり、硫酸塩重量(SOとしての重量)の割合が10000ppm以上である、前記項21又は22に記載の製造方法。
25. 反応工程において、液相中に塩化アルミニウムを添加する工程をさらに含む、前記項13に記載の製造方法。
26. 高純度塩化マグネシウムを製造する方法であって、
(A)マグネシウム含有量(Mgとしての含有量)が24~60重量%(乾燥物換算)であり、マグネシウム重量(Mgとしての重量)に対し、鉄重量(Feとしての重量)の割合が160ppm以上であり、アルミニウム重量(Alとしての重量)の割合が160ppm以上であり、カルシウム重量(Caとしての重量)の割合が3000ppm以上であり、硫酸塩重量(SOとしての重量)の割合が10000ppm以上である不溶性マグネシウム化合物系原料の水懸濁液を調製し、当該水懸濁液を固液分離する工程を含む水洗工程、
(B)水洗工程を経た不溶性マグネシウム化合物系原料の水懸濁液を調製し、当該水懸濁液がpH12~14となるまでアルカリを添加及び混合し、加熱した後に固液分離する工程を含むアルカリ洗浄工程
(C)マグネシウム重量(Mgとしての重量)に対し、カルシウム重量(Caとしての重量)の割合が2000ppm以下であり、硫酸塩重量(SOとしての重量)の割合が2000ppm以下であるアルカリ洗浄工程を経た不溶性マグネシウム化合物系原料と塩化水素を反応させるに際し、前記原料中に含まれるMg2+イオン1モルに対して2nモル(但し、nは0.00<n≦0.98を満たす。)の塩化水素を反応させることにより反応生成物を得る反応工程、
(D)反応系中に存在する不溶性マグネシウム化合物を含むスラッジを除去することによりマグネシウム重量(Mgとしての重量)に対し、鉄重量(Feとしての重量)の割合が10ppm以下であり、アルミニウム重量(Alとしての重量)の割合が100ppm以下である塩化マグネシウム水溶液を得る分離工程、
(E)前記水溶液から塩化マグネシウムを再結晶化させる工程
を含むことを特徴とする高純度塩化マグネシウムの製造方法。
That is, the present invention relates to the following method for producing a purified magnesium salt.
1. A method for producing an aqueous magnesium chloride solution, comprising:
(1) When reacting an insoluble magnesium compound-based raw material with hydrogen chloride, 2 nmol per 1 mol of Mg 2+ ions contained in the raw material (where n satisfies 0.00 <n ≦ 0.98). A reaction step of obtaining a reaction product by reacting hydrogen chloride of
(2) A method for producing a magnesium chloride aqueous solution, comprising a separation step of obtaining a magnesium chloride aqueous solution by removing sludge containing an insoluble magnesium compound present in the reaction system.
2. The ratio of iron weight (weight as Fe) to 10 ppm or less and the ratio of aluminum weight (weight as Al) to 100 ppm or less with respect to magnesium weight (weight as Mg) contained in the magnesium chloride aqueous solution, Item 2. The manufacturing method according to Item 1.
3. Item 2. The manufacturing method according to Item 1, wherein n is 0.50 ≦ n ≦ 0.98.
4). Item 2. The production method according to Item 1, wherein the magnesium content (content as Mg) contained in the insoluble magnesium compound-based raw material is 24 to 60% by weight (in terms of dry matter).
5). The insoluble magnesium compound-based raw material has a ratio of iron weight (weight as Fe) of 160 ppm or more with respect to magnesium weight (weight as Mg) contained in the raw material, and a ratio of aluminum weight (weight as Al) The manufacturing method of said claim | item 1 whose is is 160 ppm or more.
6). The content of calcium weight (as Ca) is 2000 ppm by weight or less and the content of sulfate weight (as SO 4 ) is 2000 with respect to the weight of magnesium (weight as Mg) contained in the insoluble magnesium compound-based raw material. Item 6. The production method according to Item 5, which is not more than ppm by weight.
7). The manufacturing method of said claim | item 1 whose density | concentration of magnesium chloride aqueous solution is 10 weight% or more.
8). The manufacturing method of said claim | item 1 which further includes the washing | cleaning process including the water washing process of an insoluble magnesium compound type raw material prior to a reaction process.
9. The cleaning process
(A) a first step including a step of preparing an aqueous suspension of an insoluble magnesium compound-based raw material and subjecting the aqueous suspension to solid-liquid separation;
(B) An aqueous suspension of the insoluble magnesium compound-based raw material that has undergone the first step is prepared, and alkali is added and mixed until the aqueous suspension has a pH of 12 to 14, followed by heating and solid-liquid separation. The manufacturing method of said claim | item 8 including the 2nd process including the process of wash | cleaning the obtained solid content with water.
10. The insoluble magnesium compound-based raw material after the washing step has a calcium weight (weight as Ca) ratio of 2000 ppm or less with respect to the magnesium weight (weight as Mg) contained in the raw material, and the sulfate weight ( Item 10. The method according to Item 8 or 9, wherein the ratio of (weight as SO 4 ) is 2000 ppm or less.
11 The insoluble magnesium compound-based raw material before passing through the washing step has a ratio of iron weight (weight as Fe) of 160 ppm or more, aluminum weight (weight as Al) to magnesium weight (weight as Mg) contained in the raw material. The ratio of weight) is 160 ppm or more, the ratio of calcium weight (weight as Ca) is 3000 ppm or more, and the ratio of sulfate weight (weight as SO 4 ) is 10,000 ppm or more. Production method.
12 Item 2. The method according to Item 1, further comprising the step of adding aluminum chloride to the liquid phase in the reaction step.
13. A method for producing high-purity magnesium chloride,
(1) When reacting an insoluble magnesium compound-based raw material with hydrogen chloride, 2 nmol per 1 mol of Mg 2+ ions contained in the raw material (where n satisfies 0.00 <n ≦ 0.98). A reaction step of obtaining a reaction product by reacting hydrogen chloride of
(2) a separation step of obtaining an aqueous magnesium chloride solution by removing sludge containing insoluble magnesium compounds present in the reaction system;
(3) A method for producing high-purity magnesium chloride, comprising a recrystallization step of recrystallizing magnesium chloride from the aqueous solution.
14 Item 14. The method according to Item 13, wherein in the recrystallization step, the magnesium chloride aqueous solution is concentrated and recrystallized.
15. The proportion of iron weight (weight as Fe) is 10 ppm or less and the proportion of aluminum weight (weight as Al) is 50 ppm or less with respect to magnesium weight (weight as Mg) contained in the magnesium chloride aqueous solution, Item 14. The manufacturing method according to Item 13.
16. Item 14. The method according to Item 13, wherein n is 0.50 ≦ n ≦ 0.98.
17. Item 14. The production method according to Item 13, wherein the magnesium content (content as Mg) contained in the insoluble magnesium compound-based raw material is 24 to 60% by weight (in terms of dry matter).
18. The insoluble magnesium compound-based raw material has a ratio of iron weight (weight as Fe) of 160 ppm or more with respect to magnesium weight (weight as Mg) contained in the raw material, and a ratio of aluminum weight (weight as Al) Item 14. The method according to Item 13, wherein the content is 160 ppm or more.
19. The content of calcium weight (as Ca) is 2000 ppm by weight or less and the content of sulfate weight (as SO 4 ) is 2000 with respect to the weight of magnesium (weight as Mg) contained in the insoluble magnesium compound-based raw material. Item 19. The production method according to Item 18, wherein the weight is not more than ppm.
20. Item 14. The method according to Item 13, wherein the concentration of the magnesium chloride aqueous solution is 10% by weight or more.
21. Item 14. The production method according to Item 13, further comprising a washing step including a water washing treatment of the insoluble magnesium compound-based raw material prior to the reaction step.
22. The cleaning process
(A) a first step including a step of preparing an aqueous suspension of an insoluble magnesium compound-based raw material and subjecting the aqueous suspension to solid-liquid separation;
(B) An aqueous suspension of the insoluble magnesium compound-based raw material that has undergone the first step is prepared, and alkali is added and mixed until the aqueous suspension has a pH of 12 to 14, followed by heating and solid-liquid separation. The manufacturing method of said claim | item 21 including the 2nd process including the process of wash | cleaning the obtained solid content with water.
23. The insoluble magnesium compound-based raw material after the washing step has a calcium weight (weight as Ca) ratio of 2000 ppm or less with respect to the magnesium weight (weight as Mg) contained in the raw material, and the sulfate weight ( ratio of the weight) as SO 4 is 2000ppm or less, the production method according to the claim 21 or 22.
24. The insoluble magnesium compound-based raw material before the washing step has a ratio of iron weight (weight as Fe) to magnesium weight (weight as Mg) contained in the raw material is 160 ppm or more, and aluminum weight (Al Or 21), wherein the proportion of calcium (weight as Ca) is 3000 ppm or more, and the proportion of sulfate weight (weight as SO 4 ) is 10,000 ppm or more. 22. The production method according to 22.
25. Item 14. The method according to Item 13, further comprising the step of adding aluminum chloride in the liquid phase in the reaction step.
26. A method for producing high-purity magnesium chloride,
(A) The magnesium content (content as Mg) is 24 to 60% by weight (in terms of dry matter), and the ratio of iron weight (weight as Fe) to magnesium weight (weight as Mg) is 160 ppm. The ratio of aluminum weight (weight as Al) is 160 ppm or more, the ratio of calcium weight (weight as Ca) is 3000 ppm or more, and the ratio of sulfate weight (weight as SO 4 ) is 10,000 ppm. A water washing step including a step of preparing an aqueous suspension of the insoluble magnesium compound-based raw material as described above and subjecting the aqueous suspension to solid-liquid separation,
(B) A step of preparing an aqueous suspension of an insoluble magnesium compound-based raw material that has undergone a water washing step, adding and mixing alkali until the aqueous suspension has a pH of 12 to 14, followed by heating and solid-liquid separation. Alkaline washing step (C) The ratio of calcium weight (weight as Ca) is 2000 ppm or less and the ratio of sulfate weight (weight as SO 4 ) is 2000 ppm or less with respect to magnesium weight (weight as Mg). When reacting an insoluble magnesium compound-based raw material that has undergone an alkali cleaning step with hydrogen chloride, 2 nmol per mol of Mg 2+ ions contained in the raw material (where n satisfies 0.00 <n ≦ 0.98) A reaction step of obtaining a reaction product by reacting hydrogen chloride of
(D) By removing sludge containing an insoluble magnesium compound present in the reaction system, the ratio of iron weight (weight as Mg) to magnesium weight (weight as Mg) is 10 ppm or less, and aluminum weight ( A separation step of obtaining a magnesium chloride aqueous solution having a ratio of (weight as Al) of 100 ppm or less,
(E) A method for producing high-purity magnesium chloride, comprising a step of recrystallizing magnesium chloride from the aqueous solution.
 本発明によれば、高純度のマグネシウム塩を低コストで安定的に製造できる方法を提供することができる。 According to the present invention, it is possible to provide a method capable of stably producing a high-purity magnesium salt at a low cost.
 特に、反応工程において、不溶性マグネシウム化合物系原料中の不溶性マグネシウム化合物の全量を反応させるのではなく、未反応の不溶性マグネシウム化合物が反応系に僅かに残存させるように反応させるので、原料中に含まれる不純物を未反応の不溶性マグネシウム化合物とともに固形分として残存させ、溶液中への溶出を効果的に抑制することができる。その結果、高い純度の塩化マグネシウム水溶液、ひいては高い純度の塩化マグネシウム結晶を製造することが可能となる。 In particular, in the reaction step, the total amount of insoluble magnesium compound in the insoluble magnesium compound-based material is not reacted, but the unreacted insoluble magnesium compound is reacted so that it remains slightly in the reaction system. Impurities can remain as solids together with unreacted insoluble magnesium compounds, and elution into the solution can be effectively suppressed. As a result, a high-purity magnesium chloride aqueous solution, and thus a high-purity magnesium chloride crystal can be produced.
本発明の塩化マグネシウム水溶液及び塩化マグネシウムの製造方法の一例を示すフローチャートである。It is a flowchart which shows an example of the manufacturing method of the magnesium chloride aqueous solution and magnesium chloride of this invention.
1.塩化マグネシウム水溶液の製造方法
 本発明の塩化マグネシウム水溶液の製造方法(第1方法)は、
(1)不溶性マグネシウム化合物系原料と塩化水素を反応させるに際し、前記原料中に含まれるMg2+イオン1モルに対して2nモル(但し、nは0.00<n≦0.98を満たす。)の塩化水素を反応させることにより反応生成物を得る反応工程、
(2)反応系中に存在する不溶性マグネシウム化合物を含むスラッジを除去することにより塩化マグネシウム水溶液を得る分離工程
を含むことを特徴とする。
1. Manufacturing method of magnesium chloride aqueous solution The manufacturing method (1st method) of the magnesium chloride aqueous solution of this invention is the following.
(1) When reacting an insoluble magnesium compound-based raw material with hydrogen chloride, 2 nmol per 1 mol of Mg 2+ ions contained in the raw material (where n satisfies 0.00 <n ≦ 0.98). A reaction step of obtaining a reaction product by reacting hydrogen chloride of
(2) It includes a separation step of obtaining an aqueous magnesium chloride solution by removing sludge containing insoluble magnesium compounds present in the reaction system.
 不溶性マグネシウム化合物系原料
 第1方法で用いる不溶性マグネシウム化合物系原料自体は、特に限定されず、公知又は市販のものを使用することもできる。また、公知の製造方法で得られたものを使用することもできる。
The insoluble magnesium compound- based material itself used in the first method of the insoluble magnesium compound-based material is not particularly limited, and known or commercially available materials can also be used. Moreover, what was obtained by the well-known manufacturing method can also be used.
 不溶性マグネシウム化合物の種類としては、水に難溶性ないしは不溶性(通常は水に対する溶解度(20℃)が1g/30mL以下)の化合物を使用することができる。例えば、酸化マグネシウム、塩基性炭酸マグネシウム、正炭酸マグネシウム、水酸化マグネシウム等のほか、ケイ酸マグネシウム、鉱石としてマグネサイト、フォルステライト等が挙げられる。この中でも、コスト面、入手の容易さ等の観点から、酸化マグネシウム、塩基性炭酸マグネシウム、水酸化マグネシウム等の少なくとも1種を用いることができる。 As the type of the insoluble magnesium compound, a compound that is hardly soluble or insoluble in water (usually solubility in water (20 ° C.) of 1 g / 30 mL or less) can be used. For example, in addition to magnesium oxide, basic magnesium carbonate, normal magnesium carbonate, magnesium hydroxide, etc., magnesium silicate and ore include magnesite, forsterite and the like. Among these, at least one of magnesium oxide, basic magnesium carbonate, magnesium hydroxide and the like can be used from the viewpoints of cost and availability.
 不溶性マグネシウム化合物系原料のマグネシウム含有量は、特に限定されないが、通常はMgの含有量として乾燥物換算で24~60重量%とし、好ましくは40~60重量%とし、より好ましくは54~59重量%とする。このような範囲の原料を用いることによって、より低コストでより効果的な精製効果が得られる。従って、このような含有量を満たすためには、不溶性マグネシウム化合物として酸化マグネシウム又はそれを含む混合物を用いることが好ましい。 The magnesium content of the insoluble magnesium compound-based raw material is not particularly limited. Usually, the Mg content is 24 to 60% by weight, preferably 40 to 60% by weight, more preferably 54 to 59% by weight in terms of dry matter. %. By using the raw material in such a range, a more effective purification effect can be obtained at a lower cost. Therefore, in order to satisfy such a content, it is preferable to use magnesium oxide or a mixture containing the same as the insoluble magnesium compound.
 不溶性マグネシウム化合物系原料においては、上記のような不溶性マグネシウム化合物のほか、他の不純物が含まれている。すなわち、本発明では、粗原料としての不溶性マグネシウム化合物系原料を用いることにより、安価な原料を用いても高純度の塩化マグネシウム水溶液及び塩化マグネシウム(結晶)を得ることができる。 Insoluble magnesium compound-based raw materials contain other impurities in addition to the above insoluble magnesium compounds. That is, in the present invention, by using an insoluble magnesium compound-based material as a crude material, a high-purity magnesium chloride aqueous solution and magnesium chloride (crystal) can be obtained even with an inexpensive material.
 このような粗原料としては、入手の容易さ、コスト面等の見地より、例えば海水-石灰法による水酸化マグネシウム、あるいはその水酸化マグネシウムに炭酸イオン又は炭酸ガスと反応させて得られる炭酸マグネシウムを不溶性マグネシウム化合物として含む不溶性マグネシウム化合物系原料を好適に用いることができる。さらに、前記の水酸化マグネシウム及び炭酸マグネシウムから得られた酸化マグネシウムも好適に用いることができる。 As such a raw material, from the viewpoint of easy availability and cost, for example, magnesium hydroxide by the seawater-lime method, or magnesium carbonate obtained by reacting magnesium hydroxide with carbonate ions or carbon dioxide gas is used. An insoluble magnesium compound-based raw material contained as an insoluble magnesium compound can be suitably used. Furthermore, the magnesium oxide obtained from the said magnesium hydroxide and magnesium carbonate can also be used suitably.
 上記のような海水-石灰法による不溶性マグネシウム化合物系原料(以下「海水-石灰法由来原料」ともいう。)は、主な不純物としてa)水酸化カルシウム及びカルシウム塩、b)硫酸塩、c)アルミニウム、d)鉄、e)ケイ素及びf)その他の微量金属が含まれる。前記のとおり、f)微量金属は出発原料の時点で既に許容範囲内にあり、e)ケイ素は塩酸との反応でも溶出しないためにろ過により除去できる。 The above-mentioned insoluble magnesium compound-based raw materials by the seawater-lime method (hereinafter also referred to as “seawater-lime method-derived raw materials”) are a) calcium hydroxide and calcium salt, b) sulfate, c) as main impurities. Aluminum, d) iron, e) silicon and f) other trace metals are included. As described above, f) trace metals are already within the acceptable range at the time of the starting material, and e) silicon can be removed by filtration because it does not elute upon reaction with hydrochloric acid.
 従って、海水-石灰法由来原料等において、実質的に除去対象となり得る不純物は、a)水酸化カルシウム及びカルシウム塩、b)硫酸塩、c)アルミニウム及びd)鉄となる。より具体的には、不溶性マグネシウム化合物系原料中のマグネシウム重量(Mgとして)に対する割合が、a)カルシウム(Caとして)含有量3000重量ppm以上、b)硫酸塩(SOとして)含有量10000重量ppm以上、c)アルミニウム(Alとして)含有量160重量ppm以上、d)鉄(Feとして)含有量160重量ppm以上を含む原料を用いることもできる。 Therefore, impurities that can be substantially removed in the seawater-lime method-derived raw materials and the like are a) calcium hydroxide and calcium salt, b) sulfate, c) aluminum, and d) iron. More specifically, the ratio to the magnesium weight (as Mg) in the insoluble magnesium compound-based raw material is as follows: a) Calcium (as Ca) content 3000 ppm by weight or more, b) Sulfate (as SO 4 ) content 10,000 weight It is also possible to use a raw material containing ppm or more, c) an aluminum (as Al) content of 160 wt ppm or more, and d) an iron (as Fe) content of 160 wt ppm or more.
 なお、上記割合は、Mgの含有量をW(Mg)、Caの含有量をW(Ca)、硫酸塩の含有量をW(SO)、アルミニウムの含有量をW(Al)、鉄の含有量をW(Fe)とすると、それぞれ[W(Ca)/W(Mg)]、[W(SO)/W(Mg)]、[W(Al)/W(Mg)]、[W(Fe)/W(Mg)]の値(重量割合)を示す(以下同じ。)。 In addition, the above-mentioned ratio is as follows: the Mg content is W (Mg), the Ca content is W (Ca), the sulfate content is W (SO 4 ), the aluminum content is W (Al), When the content is W (Fe), [W (Ca) / W (Mg)], [W (SO 4 ) / W (Mg)], [W (Al) / W (Mg)], [W (Fe) / W (Mg)] value (weight ratio) is shown (the same applies hereinafter).
 他方、出発原料である不溶性マグネシウム化合物系原料に水酸化カルシウム及びカルシウム塩ならびに硫酸塩が含まれる場合は、これらを反応工程により除去することができない。このため、これらが許容値以上含まれる場合等は、水酸化カルシウム及びカルシウム塩ならびに硫酸塩の全含有量の一部又は全部を取り除くために、反応工程前の段階において予め洗浄工程(後記)を行うことが望ましい。 On the other hand, when calcium hydroxide, calcium salt, and sulfate are contained in the insoluble magnesium compound-based raw material that is the starting material, these cannot be removed by the reaction step. For this reason, when these are contained more than the allowable value, in order to remove part or all of the total content of calcium hydroxide, calcium salt, and sulfate, a washing step (described later) is performed in advance before the reaction step. It is desirable to do.
 不溶性マグネシウム化合物系原料に含まれるカルシウム成分は、水酸化カルシウムのほか、硫酸カルシウム、炭酸カルシウム等のようなカルシウム塩のいずれかの形態をとっていると考えられる。このうち、硫酸カルシウム及び水酸化カルシウムは、水に少量溶解するので水洗により比較的除去しやすいが、炭酸カルシウムは水にほとんど溶けない。このため、不溶性マグネシウム化合物として炭酸マグネシウムを用いる場合は、不純物カルシウムの大半が炭酸カルシウムの状態であることが多いため、洗浄除去が困難になる。従って、それ以外の不溶性マグネシウム化合物を用いるか、あるいは使用するとしても少量とすることが好ましい。また、不溶性マグネシウム化合物として水酸化マグネシウムを選定した場合、不純物カルシウムは硫酸カルシウム及び水酸化カルシウムのいずれかであると考えられるが、水酸化マグネシウムを用いた液相はpH10を超える塩基性を示すことから水中溶存及び空気中の二酸化炭素を吸収しやすい状態となり、結局のところ炭酸カルシウムが生成する可能性が高くなるので、その使用量を抑えた方がカルシウム不純物を少なくしやすい。これに対し、酸化マグネシウムは、通常はカルシウム不純物のほとんどが硫酸カルシウムであることが多い。これは、酸化物にするための焼成工程で不純物として含まれる炭酸カルシウムの二酸化炭素が脱離し、酸化カルシウムとなり、遊離したカルシウムイオンが共存する硫酸塩と結びついて硫酸カルシウムとなっていると考えられる。これらの点からみて、不溶性マグネシウム化合物系原料としては、カルシウムが除去しやすい形態となっている酸化マグネシウム系原料又はそれを含む混合物からなる原料を用いることが好ましい。 The calcium component contained in the insoluble magnesium compound-based raw material is considered to be in any form of calcium salt such as calcium sulfate, calcium carbonate, etc. in addition to calcium hydroxide. Of these, calcium sulfate and calcium hydroxide dissolve in a small amount in water and are relatively easy to remove by washing with water, but calcium carbonate hardly dissolves in water. For this reason, when magnesium carbonate is used as the insoluble magnesium compound, most of the impurity calcium is often in the form of calcium carbonate, which makes it difficult to remove by washing. Therefore, it is preferable to use other insoluble magnesium compounds or to use a small amount even if they are used. In addition, when magnesium hydroxide is selected as the insoluble magnesium compound, the impurity calcium is considered to be either calcium sulfate or calcium hydroxide, but the liquid phase using magnesium hydroxide should exhibit basicity exceeding pH 10. Therefore, it becomes easy to absorb dissolved carbon dioxide and carbon dioxide in the air, and eventually, the possibility that calcium carbonate is generated increases. Therefore, it is easier to reduce the amount of calcium impurities if the amount of use is suppressed. On the other hand, in magnesium oxide, most of calcium impurities are usually calcium sulfate in many cases. This is thought to be due to the release of carbon dioxide from the calcium carbonate contained as an impurity in the firing step to make an oxide, calcium oxide, and calcium sulfate combined with sulfates in which free calcium ions coexist. . In view of these points, as the insoluble magnesium compound-based material, it is preferable to use a magnesium oxide-based material in a form in which calcium is easily removed or a material comprising a mixture containing the same.
 但し、酸化マグネシウムは、一般的に水酸化マグネシウムよりも原料コストが高いため、コストを優先する場合には水酸化マグネシウムを併用することもできる。この場合、酸化マグネシウムの配合比が高い程カルシウムの除去効果が高い。ここで、酸化マグネシウムの配合比が高いほど、マグネシウム含量は高くなる(例えば、後記の実施例12~13)。例えば水酸化マグネシウムの乾燥物含量が97重量%であれば、マグネシウム含量は97重量%×(24.3(マグネシウムの原子量)/58.3(水酸化マグネシウムの式量))=約40重量%となる。一方、酸化マグネシウムの乾燥物含量が99重量%であれば99重量%×(24.3(マグネシウムの原子量)/40.3(酸化マグネシウムの式量))=約60重量%と計算される。特に好ましくは、マグネシウム含量が54重量%程度(すなわち、水酸化マグネシウムが4分の1程度)の配合までが、生成させる塩化マグネシウムの目標純度を考慮した場合の下限値とすることができる。 However, since magnesium oxide generally has a higher raw material cost than magnesium hydroxide, magnesium hydroxide can be used in combination when giving priority to cost. In this case, the higher the compounding ratio of magnesium oxide, the higher the calcium removal effect. Here, the higher the compounding ratio of magnesium oxide, the higher the magnesium content (for example, Examples 12 to 13 described later). For example, if the dry matter content of magnesium hydroxide is 97% by weight, the magnesium content is 97% by weight × (24.3 (atomic weight of magnesium) /58.3 (formula weight of magnesium hydroxide)) = about 40% by weight. It becomes. On the other hand, if the dry matter content of magnesium oxide is 99% by weight, 99% by weight × (24.3 (magnesium atomic weight) /40.3 (magnesium oxide formula weight)) = about 60% by weight is calculated. Particularly preferably, the lower limit value in consideration of the target purity of the magnesium chloride to be generated can be set up to a blending ratio of about 54% by weight of magnesium (that is, about 1/4 of magnesium hydroxide).
 不溶性マグネシウム化合物系原料の性状(形態)は、特に限定されないが、通常は本発明の製造方法における反応操作上の見地より、粉末状であることが好ましい。また、粉末状の形態で用いる場合、その平均粒径も制限されないが、通常は1~20μm程度の範囲内で適宜設定することができる。 The property (form) of the insoluble magnesium compound-based raw material is not particularly limited, but is usually preferably in the form of powder from the viewpoint of reaction operation in the production method of the present invention. When used in the form of powder, the average particle diameter is not limited, but can be appropriately set within the range of about 1 to 20 μm.
 洗浄工程
 本発明では、不溶性マグネシウム化合物系原料を反応工程に供するが、反応工程に先立って予め不溶性マグネシウム化合物系原料に対して洗浄工程を実施することが好ましい。洗浄工程によって、不溶性マグネシウム化合物系原料中に含まれる不純物(特にカルシウム、硫酸塩等)の一部又は全部を除去することができるので、より高純度の水溶液、ひいては高純度塩化マグネシウムをより確実に提供することが可能となる。
Washing Step In the present invention, the insoluble magnesium compound-based material is subjected to the reaction step, but it is preferable to perform the washing step on the insoluble magnesium compound-based material in advance prior to the reaction step. A part or all of impurities (especially calcium, sulfate, etc.) contained in the insoluble magnesium compound-based raw material can be removed by the washing process, so that a higher-purity aqueous solution, and thus higher-purity magnesium chloride can be more reliably obtained. It becomes possible to provide.
 洗浄工程としては、上記のような不純物の含有量を低減できる限り、特に限定されないが、通常は不溶性マグネシウム化合物系原料の水洗処理を含む方法を採用すれば良い。 The washing step is not particularly limited as long as the content of impurities as described above can be reduced, but usually a method including a water washing treatment of an insoluble magnesium compound-based raw material may be employed.
 例えば、本発明では、以下のような洗浄工程を実施することが好ましい。
(a)不溶性マグネシウム化合物系原料の水懸濁液を調製し、当該水懸濁液を固液分離する工程を含む第1工程、
(b)第1工程を経た不溶性マグネシウム化合物系原料の水懸濁液を調製し、当該水懸濁液がpH12~14となるまでアルカリを添加及び混合し、加熱した後に固液分離して得られた固形分を水で洗浄する工程を含む第2工程
を含む洗浄工程を行うことが好ましい。
For example, in the present invention, it is preferable to carry out the following cleaning process.
(A) a first step including a step of preparing an aqueous suspension of an insoluble magnesium compound-based raw material and subjecting the aqueous suspension to solid-liquid separation;
(B) An aqueous suspension of the insoluble magnesium compound-based raw material that has undergone the first step is prepared, and alkali is added and mixed until the aqueous suspension has a pH of 12 to 14, followed by heating and solid-liquid separation. It is preferable to perform a washing step including a second step including a step of washing the obtained solid content with water.
 上記の方法によって、特にカルシウム塩及び硫酸塩の両方をより確実に除去することができる。すなわち、まず第1工程で主にカルシウム塩を先に除去した後に、第2工程でアルカリ存在下にて硫酸塩の加熱可溶化、固液分離後固形分の水洗により硫酸塩を除去するという2段階を含む洗浄工程を実施することが望ましい。 In particular, both the calcium salt and the sulfate can be more reliably removed by the above method. That is, after first removing the calcium salt mainly in the first step, the sulfate is removed by heat solubilization in the presence of an alkali in the second step, followed by solid-liquid separation and washing with solids. It is desirable to carry out a washing process including steps.
 第1工程
 第1工程は、不溶性マグネシウム化合物系原料の水懸濁液を調製し、当該水懸濁液を固液分離する工程を含む。第1工程では、主として水可溶性の不純物(例えばカルシウムイオン、硫酸イオン等)を除去することができる。
First Step The first step includes a step of preparing an aqueous suspension of an insoluble magnesium compound-based raw material and subjecting the aqueous suspension to solid-liquid separation. In the first step, mainly water-soluble impurities (for example, calcium ions and sulfate ions) can be removed.
 第1工程では、特に粉末状の不溶性マグネシウム化合物系原料を用い、これを水に分散させることによって水懸濁液を調製することができる。この場合の分散量は、不溶性マグネシウム化合物の種類、粒度等に応じて適宜設定できるが、通常は固形分5~40重量%程度とすれば良い。例えば、不溶性マグネシウム化合物系原料として酸化マグネシウム、水酸化マグネシウム及び炭酸マグネシウムのいずれか1つ、あるいは2つ以上を含む混合物、好ましくは酸化マグネシウム単体でマグネシウム含量が乾燥物換算で24~60重量%となる粉末状固形物又はその水性スラリーを水に分散又は懸濁した後、デカンテーション又はろ過水洗し、水可溶性不純物の一部又は全部を溶出させて除去する。水可溶性不純物の多くはカルシウムイオンと硫酸イオンであるが、この段階では硫酸イオンを完全に除去する必要はないので、水洗液中のカルシウムイオンがほとんど検出されなくなるまで水洗することが好ましい。 In the first step, an aqueous suspension can be prepared by using a powdery insoluble magnesium compound-based raw material and dispersing it in water. The amount of dispersion in this case can be appropriately set according to the type of insoluble magnesium compound, the particle size, etc., but it is usually sufficient that the solid content is about 5 to 40% by weight. For example, as an insoluble magnesium compound-based material, any one of magnesium oxide, magnesium hydroxide and magnesium carbonate, or a mixture containing two or more thereof, preferably magnesium oxide alone, the magnesium content is 24 to 60% by weight in terms of dry matter. The resulting powdery solid or its aqueous slurry is dispersed or suspended in water and then decanted or washed with filtered water to elute and remove some or all of the water-soluble impurities. Although most of the water-soluble impurities are calcium ions and sulfate ions, it is not necessary to completely remove sulfate ions at this stage, so it is preferable to wash with water until almost no calcium ions are detected in the washing solution.
 水懸濁液は、必要に応じて攪拌等を実施した後、固液分離することにより当該原料を回収する。固液分離の方法自体は、公知の方法に従えば良く、例えば加圧ろ過、減圧濾過、真空ろ過、自然ろ過、遠心ろ過等のような公知の方法を採用することができる。懸濁液中に存在する固体を分離できれば良く、分離の度合いも特に制限されない。例えば、a)シックナーのように半沈降させた上澄み液を連続的に置換させる方法、b)懸濁液に水を加えて希釈しながら、圧力を加えて連続的にろ過する方法等を採用しても良い。この際、例えばフィルタープレス、遠心分離機等の公知又は市販の装置を用いることができる。 The water suspension is subjected to stirring or the like as required, and then the raw material is recovered by solid-liquid separation. The solid-liquid separation method itself may follow a known method. For example, a known method such as pressure filtration, vacuum filtration, vacuum filtration, natural filtration, centrifugal filtration, or the like can be employed. It is only necessary to separate solids present in the suspension, and the degree of separation is not particularly limited. For example, a) a method of continuously replacing a semi-sedimented supernatant solution like a thickener, b) a method of continuously filtering by adding pressure while diluting the suspension by adding water, etc. May be. At this time, for example, a known or commercially available device such as a filter press or a centrifuge can be used.
 第1工程では、必要に応じて前記の水懸濁液の調製と固液分離からなる一連の工程を2回以上繰り返しても良い。また、固液分離によって回収された当該原料(固形分)は、必要に応じてさらに水洗しても良い。 In the first step, a series of steps including preparation of the aqueous suspension and solid-liquid separation may be repeated twice or more as necessary. Moreover, you may further wash with the said raw material (solid content) collect | recovered by solid-liquid separation as needed.
 第1工程では、主としてカルシウム及び硫酸塩が除去されるが、不溶性マグネシウム化合物系原料中のマグネシウム重量(Mgとして)に対する割合として、例えばa)カルシウム(Caとして)含有量2500重量ppm以上、b)硫酸塩(SOとして)含有量7000重量ppm以上が除去されることが好ましい。 In the first step, calcium and sulfate are mainly removed. As a ratio with respect to magnesium weight (as Mg) in the insoluble magnesium compound-based raw material, for example, a) calcium (as Ca) content 2500 ppm by weight or more, b) It is preferred that a sulfate (as SO 4 ) content of 7000 ppm by weight or more is removed.
 第1工程を経た原料は、特にカルシウム及び硫酸塩が除去された結果、不溶性マグネシウム化合物系原料中のマグネシウム重量(Mgとして)に対する割合が、例えばa)カルシウム(Caとして)含有量2000重量ppm以下、b)硫酸塩(SOとして)含有量20000重量ppm以下、c)アルミニウム(Alとして)含有量160重量ppm以上、d)鉄(Feとして)含有量160重量ppm以上となっていることが好ましい。 As a result of the removal of calcium and sulfate, in particular, the raw material after the first step has a ratio to the magnesium weight (as Mg) in the insoluble magnesium compound-based raw material, for example, a) calcium (as Ca) content of 2000 ppm by weight or less B) Sulfate (as SO 4 ) content 20000 ppm by weight or less, c) Aluminum (as Al) content 160 ppm by weight or more, d) Iron (as Fe) content 160 ppm by weight or more preferable.
 第2工程
 第2工程は、前記の第1工程を経た不溶性マグネシウム化合物系原料の水懸濁液を調製し、当該水懸濁液がpH12~14となるまでアルカリを添加及び混合し、加熱した後に固液分離して得られた固形分を水で洗浄する工程を含む。
Second Step The second step is to prepare an aqueous suspension of the insoluble magnesium compound-based raw material that has undergone the first step, add and mix alkali until the aqueous suspension reaches pH 12 to 14, and heat. A step of washing the solid content obtained by solid-liquid separation later with water is included.
 本発明では、第2工程として、高アルカリ性下で難溶性硫酸塩を加熱抽出後、水洗除去するという手法をとるが、特に重要な点はカルシウム不純物を十分に除去した後で第2工程を実施することである。すなわち、洗浄工程は、2段階であり、かつ、その順序が重要である。仮にカルシウム不純物の除去を十分に行わずに第2工程を実施した場合、高アルカリ性下で残存カルシウムが水中溶存又は空気中の二酸化炭素を吸収し、不溶性の炭酸カルシウムを生成するためにカルシウム除去が困難になってしまう。このため、第2工程は、あくまで第1工程を経た後の不溶性マグネシウム化合物系原料に対して行うことが必要である。 In the present invention, as the second step, a method of heat-extracting the hardly soluble sulfate under high alkalinity and then removing by washing with water is taken, but the most important point is that the second step is carried out after sufficiently removing calcium impurities. It is to be. That is, the cleaning process has two stages, and the order is important. If the second step is carried out without sufficiently removing calcium impurities, the remaining calcium is dissolved in water or absorbs carbon dioxide in the air under high alkalinity, so that calcium removal is performed to produce insoluble calcium carbonate. It becomes difficult. For this reason, it is necessary to perform a 2nd process with respect to the insoluble magnesium compound type raw material after passing through a 1st process to the last.
 そこで、第2工程では、第1工程にてカルシウム不純物を十分に除去した後に、さらに硫酸塩を十分に除去するために高アルカリ性下で加熱抽出を行う。第1工程においても硫酸塩の大半を除去することはできるが、これは硫酸カルシウムとして結合している可溶性硫酸塩であり、硫酸塩の一部は難溶性の塩基性硫酸マグネシウムとして残存していると考えられ、表1に示す規格の硫酸塩を合格水準にするためには、これを第2工程で除去することが望ましい。 Therefore, in the second step, after sufficiently removing calcium impurities in the first step, heat extraction is performed under high alkalinity in order to further remove sulfates. In the first step, most of the sulfate can be removed, but this is a soluble sulfate bound as calcium sulfate, and a portion of the sulfate remains as poorly soluble basic magnesium sulfate. In order to bring the sulfates of the standards shown in Table 1 to acceptable levels, it is desirable to remove them in the second step.
 水懸濁液の調製は、第1工程の場合と同様に実施することができる。そして、得られた水懸濁液に対してアルカリを添加及び混合する。用いるアルカリは、例えば水酸化カリウム、水酸化ナトリウム、アンモニア、水酸化リチウム、ケイ酸ナトリウム等の各種のアルカリを使用できるが、特に不純物混入の機会を避けるという見地より、また塩化マグネシウムを透析剤用途等に使用できるという見地より、アルカリとして水酸化ナトリウムを用いることが好ましい。また、アルカリは、固形又はその水溶液の形態で添加することができる。 Preparation of the water suspension can be performed in the same manner as in the first step. And an alkali is added and mixed with respect to the obtained water suspension. Various alkalis such as potassium hydroxide, sodium hydroxide, ammonia, lithium hydroxide, sodium silicate, etc. can be used as the alkali to be used. However, magnesium chloride is used as a dialysis agent, especially from the viewpoint of avoiding the chance of contamination. It is preferable to use sodium hydroxide as the alkali from the standpoint that it can be used for the like. Further, the alkali can be added in the form of a solid or an aqueous solution thereof.
 アルカリの添加量は、水懸濁液のpHが12~14の範囲内となるような添加量であれば良い。すなわち、硫酸塩を充分に除去するためにはpH12~14(OHとして0.01~1mol/L相当濃度)の高アルカリ性状態での加熱が必要である。特に、アルカリ濃度は高いほど硫酸塩の除去効果は高くなるものの、原料費、排水中和処理費用、粘性上昇によるマテリアルハンドリング等を考慮すれば、上記pHは12~13程度とすることが好ましい。 The amount of alkali added may be an amount added so that the pH of the aqueous suspension is within the range of 12-14. That is, in order to sufficiently remove sulfate, heating in a highly alkaline state at pH 12 to 14 (concentration equivalent to 0.01 to 1 mol / L as OH) is required. In particular, the higher the alkali concentration, the higher the sulfate removal effect. However, in consideration of raw material costs, wastewater neutralization costs, material handling due to increased viscosity, the pH is preferably about 12 to 13.
 アルカリを添加した後、水懸濁液を加熱する。アルカリ存在下で加熱することによって不溶性硫酸塩が可溶化することができる。加熱温度は、通常は50~95℃程度とし、好ましくは70~95℃とすれば良い。また、加熱時間は、加熱温度等に応じて適宜設定できるが、一般的には1~10時間程度の範囲内とすれば良い。 After adding alkali, heat the water suspension. The insoluble sulfate can be solubilized by heating in the presence of alkali. The heating temperature is usually about 50 to 95 ° C., preferably 70 to 95 ° C. The heating time can be appropriately set according to the heating temperature or the like, but generally it may be set within a range of about 1 to 10 hours.
 加熱した後、必要に応じて水懸濁液を冷却した後、固液分離を行うことにより当該原料を回収する。固液分離の方法は、第1工程と同様にすれば良い。また、第2工程では、必要に応じて、回収された当該原料について、水懸濁液の調製、アルカリ添加・混合及び加熱ならびに固液分離からなる一連の工程を2回以上繰り返しても良い。 After heating, the water suspension is cooled as necessary, and then the raw material is recovered by solid-liquid separation. The solid-liquid separation method may be the same as in the first step. In the second step, a series of steps including preparation of aqueous suspension, addition of alkali, mixing and heating, and solid-liquid separation may be repeated twice or more for the recovered raw material as necessary.
 次いで、上記の固液分離で得られた固形分を水で洗浄する。これにより、特に第2工程で付着していたアルカリを除去することができる。水で洗浄する方法は、公知の方法に従えば良く、例えば水懸濁液を調製して固液分離する方法、ろ紙上に載せた原料に注水する方法等の各種の方法を採用することができる。 Next, the solid content obtained by the above solid-liquid separation is washed with water. Thereby, especially the alkali adhering in the second step can be removed. The method of washing with water may follow a known method, and for example, various methods such as a method of preparing a water suspension and performing solid-liquid separation, and a method of pouring water onto a raw material placed on a filter paper can be adopted. it can.
 反応工程
 反応工程では、不溶性マグネシウム化合物系原料と塩化水素を反応させるに際し、前記原料中に含まれるMg2+イオン1モルに対して2nモル(但し、nは0.00<n≦0.98を満たす。)の塩化水素を反応させることにより反応生成物を得る。
Reaction Step In the reaction step, when reacting the insoluble magnesium compound-based raw material with hydrogen chloride, 2 nmol (where n is 0.00 <n ≦ 0.98) with respect to 1 mol of Mg 2+ ions contained in the raw material. The reaction product is obtained by reacting with hydrogen chloride.
 本発明では、特に反応工程における塩化水素との反応を経ることにより、特にFe及びAlを効果的に除去することができる。従って、本発明では、反応工程に供する不溶性マグネシウム化合物系原料として、当該原料中に含まれるマグネシウム重量(Mgとしての重量)に対する割合が、鉄重量(Feとしての重量)の割合が160重量ppm以上であり、アルミニウム重量(Alとしての重量)の割合が160重量ppm以上である原料を用いることもできる。 In the present invention, particularly through the reaction with hydrogen chloride in the reaction step, particularly Fe and Al can be effectively removed. Therefore, in the present invention, as an insoluble magnesium compound-based raw material to be used in the reaction step, the ratio of the weight of iron (weight as Mg) to the weight of magnesium contained in the raw material (weight as Fe) is 160 ppm by weight or more. It is also possible to use a raw material whose aluminum weight (weight as Al) is 160 ppm by weight or more.
 なお、当該原料中に含まれるマグネシウム重量(Mgとしての重量)に対するカルシウム含有量と硫酸塩含有量の割合は、特に限定されないが、カルシウム(Caとして)含有量2000重量ppm以下、硫酸塩(SOとして)含有量2000重量ppm以下であることが好ましい。これにより、高純度の塩化マグネシウム水溶液及び高純度塩化マグネシウムをより確実に得ることができる。すなわち、本発明において、不純物としてFe及びAlが比較的多量に含まれる粗原料を用いても、本発明では高純度の塩化マグネシウム水溶液、ひいては高純度塩化マグネシウムを製造することができる。 The ratio of the calcium content and the sulfate content to the magnesium weight (weight as Mg) contained in the raw material is not particularly limited, but the calcium (as Ca) content is 2000 ppm by weight or less, sulfate (SO 4 ) The content is preferably 2000 ppm by weight or less. Thereby, high purity magnesium chloride aqueous solution and high purity magnesium chloride can be obtained more reliably. That is, in the present invention, even if a crude material containing a relatively large amount of Fe and Al as impurities is used, in the present invention, a high-purity magnesium chloride aqueous solution, and thus high-purity magnesium chloride can be produced.
 反応工程は、気相、液相等のいずれで実施しても良いが、特に液相中で実施することが好ましい。液相で実施する場合の液相(溶媒)としては、限定的ではないが、通常は水を使用すれば良い。水は、水道水、工業用水等を用いても良いが、純水ないしは超純水が好ましい。従って、例えばイオン交換水、蒸留水等も好適に用いることができる。 The reaction step may be performed in any of a gas phase, a liquid phase, and the like, but is preferably performed in a liquid phase. The liquid phase (solvent) in the case of carrying out in the liquid phase is not limited, but usually water may be used. The water may be tap water, industrial water or the like, but pure water or ultrapure water is preferred. Accordingly, for example, ion exchange water, distilled water, and the like can also be suitably used.
 不溶性マグネシウム化合物系原料は、好ましくは液相中に分散させれば良い。この場合、塩化水素と反応させる前に不溶性マグネシウム化合物系原料を液相中に分散させておくことが好ましい。例えば、前記の洗浄工程の第2工程で得られた水懸濁液をそのまま用いることもできる。また、塩酸中に不溶性マグネシウム化合物系原料を分散させることも可能である。 The insoluble magnesium compound-based material is preferably dispersed in the liquid phase. In this case, it is preferable to disperse the insoluble magnesium compound-based raw material in the liquid phase before reacting with hydrogen chloride. For example, the aqueous suspension obtained in the second step of the washing step can be used as it is. It is also possible to disperse the insoluble magnesium compound-based material in hydrochloric acid.
 添加する塩化水素は、公知又は市販のものを使用することができる。また、各種の製造方法で得られた塩化水素のいずれも使用することができる。特に、食塩電解法で水酸化ナトリウムを生成する時の副産物として得られる塩素と水素を合成した塩酸が、高純度で比較的安価に入手できることから、このような塩化水素も好適に用いることができる。 As the hydrogen chloride to be added, a known or commercially available one can be used. In addition, any of hydrogen chloride obtained by various production methods can be used. In particular, since hydrochloric acid obtained by synthesizing chlorine and hydrogen obtained as by-products when sodium hydroxide is produced by a salt electrolysis method can be obtained with high purity and relatively inexpensively, such hydrogen chloride can also be suitably used. .
 塩化水素は、通常は水溶液(すなわち塩酸)の形態で使用すれば良いが、これに限定されない。例えば、ガス状の塩化水素(あるいは塩素ガスと水素ガスの別箇作用)を直接に不溶性マグネシウム化合物系原料と反応させる方法も可能である。これによって、塩化マグネシウム水溶液をより高濃度で得ることができる。 Hydrogen chloride is usually used in the form of an aqueous solution (that is, hydrochloric acid), but is not limited thereto. For example, a method of reacting gaseous hydrogen chloride (or a separate action of chlorine gas and hydrogen gas) directly with an insoluble magnesium compound-based material is also possible. Thereby, the magnesium chloride aqueous solution can be obtained at a higher concentration.
 不溶性マグネシウム化合物系原料と塩化水素との反応に際しては、前記原料中に含まれるMg2+イオン1モルに対して2nモル(但し、nは0.00<n≦0.98を満たす。)の塩化水素を反応させる。すなわち、塩化水素2nモルを全て反応させることにより、未反応の不溶性マグネシウム化合物が残存するように反応させる。これにより、未反応の不溶性マグネシウム化合物中に、不溶性マグネシウム化合物系原料に含まれる不純物をできるだけ多く閉じ込めることによって液相中に不純物(イオン)が溶出することを効果的に抑制することができる。 In the reaction between the insoluble magnesium compound-based material and hydrogen chloride, 2 nmol (where n satisfies 0.00 <n ≦ 0.98) with respect to 1 mol of Mg 2+ ions contained in the material. React with hydrogen. That is, the reaction is carried out so that the unreacted insoluble magnesium compound remains by reacting all 2 nmoles of hydrogen chloride. Thereby, it is possible to effectively suppress the elution of impurities (ions) in the liquid phase by confining as much impurities as possible contained in the insoluble magnesium compound-based raw material in the unreacted insoluble magnesium compound.
 前記nは、0.00<n≦0.98を満たし、特に0.50≦n≦0.98を満たすことが好ましく、その中でも0.67≦n≦0.90を満たすことがより好ましい。nが0.98を超える場合は、不純物が液相中に溶出し、塩化マグネシウム水溶液に残存するおそれがある。 The n satisfies 0.00 <n ≦ 0.98, particularly preferably satisfies 0.50 ≦ n ≦ 0.98, and more preferably satisfies 0.67 ≦ n ≦ 0.90. When n exceeds 0.98, impurities may elute in the liquid phase and remain in the magnesium chloride aqueous solution.
 例えば、上記nを制御することによって、以下のような反応式で反応を進めることができる。
 MgOR+2n(HCl)→ nMgCl+(1-n)MgOR+副生成物
[式中、MgORは、酸化マグネシウム(MgO)、水酸化マグネシウム(Mg(OH))、塩基性炭酸マグネシウム(aMgCO・Mg(OH)・nHO(aは3~5))及びマグネサイト(MgCO)のいずれか1つを示し、nは0.00<n≦0.98を満たし、副生成物は、水(HO)及び/又は二酸化炭素(CO)である。]
For example, by controlling the above n, the reaction can proceed with the following reaction formula.
MgOR + 2n (HCl) → nMgCl 2 + (1-n) MgOR + by-product [wherein, MgOR is magnesium oxide (MgO), magnesium hydroxide (Mg (OH) 2 ), basic magnesium carbonate (aMgCO 3 .Mg (OH) 2 · nH 2 O (a is 3 to 5)) and magnesite (MgCO 3 ), n satisfies 0.00 <n ≦ 0.98, and the by-product is Water (H 2 O) and / or carbon dioxide (CO 2 ). ]
 上記反応式において、n≧1の場合は、MgOが全て反応したことを意味し、n>1の場合はMgClの他に過剰のHClが残存していることを意味する。この条件下では、不溶性マグネシウム化合物中に含まれるFe及びAlが塩化物として溶出するので、結果的に不純物として塩化マグネシウム水溶液中に共存することになる。 In the above reaction formula, when n ≧ 1, it means that all MgO has reacted, and when n> 1, it means that excess HCl other than MgCl 2 remains. Under this condition, Fe and Al contained in the insoluble magnesium compound are eluted as chlorides, and as a result, they coexist in the magnesium chloride aqueous solution as impurities.
 一方、n<1である場合、特に0.98以下である場合は、67~98%程度のMgOがHClと反応している状態で、固形分であるスラッジ(残渣)を除去して得られた塩化マグネシウム水溶液には、不溶性マグネシウム化合物中に含まれているFe、Al等はスラッジ中にとどまる結果、これらの不純物が含まれない塩化マグネシウム水溶液を得ることができる。すなわち、未反応の不溶性マグネシウム化合物はほんの少し懸濁されていれば十分にFe、Alの除去効果が認められる。但し、未反応の不溶性マグネシウム化合物はできるだけ少ない方が好ましいので、上記のようなnの範囲内に設定することが望ましい。量産レベルでの制御運転では限りなくn=1に近づけることは不純物混入リスクが高まる。一方、品質的安全性に過剰配慮して不溶性マグネシウム塩を残しすぎると、a)ろ過除去のマテリアルハンドリング性に負担がかかる点、b)スラッジケーキの体積が大きく、その含水ロスが大きい点、c)得られた塩化マグネシウム水溶液が薄い点等のように生産性への負荷が大きく現実的ではない。このため、nの範囲を上記範囲に収まるように制御することが望ましい。 On the other hand, when n <1, especially 0.98 or less, it is obtained by removing sludge (residue) which is solid content in a state where 67 to 98% of MgO is reacted with HCl. In the magnesium chloride aqueous solution, Fe, Al, and the like contained in the insoluble magnesium compound remain in the sludge. As a result, a magnesium chloride aqueous solution that does not contain these impurities can be obtained. That is, if the unreacted insoluble magnesium compound is only slightly suspended, the effect of removing Fe and Al is sufficiently observed. However, since it is preferable that the amount of unreacted insoluble magnesium compound is as small as possible, it is desirable to set it within the range of n as described above. In the control operation at the mass production level, the risk of mixing impurities increases as much as n = 1. On the other hand, if too much insoluble magnesium salt is left in consideration of quality safety, a) the material handling property of filtration removal is burdened, b) the volume of sludge cake is large and its water loss is large, c ) The load on productivity is large and unrealistic as the obtained magnesium chloride aqueous solution is thin. For this reason, it is desirable to control so that the range of n falls within the above range.
 また、反応工程においては、必要に応じて液相中に塩化アルミニウムを添加することもできる。塩化アルミニウムを添加することによって、後工程であるスラッジケーキの分離工程における分離が容易となる。すなわち、本発明では、塩化アルミニウムはいわゆるろ過助剤として機能する。塩化アルミニウム自体は公知又は市販のものを使用することができる。 In the reaction step, aluminum chloride can be added to the liquid phase as necessary. By adding aluminum chloride, separation in a sludge cake separation step, which is a subsequent step, is facilitated. That is, in the present invention, aluminum chloride functions as a so-called filter aid. Known or commercially available aluminum chloride can be used.
 塩化アルミニウムの添加時期は、特に制限されず、塩化水素の添加前(反応前)、塩化水素と同時、塩化水素の添加後等のいずれの段階であっても良い。塩化アルミニウムの添加量は、特に限定的ではないが、一般的にはスラッジ中に含まれるマグネシウム重量に対するアルミニウムの重量割合が0.02~0.2重量%程度(Al/Mg重量比=0.02~0.2程度)とすれば、ろ過性への効果を得ることができ、スラッジ中のマグネシウムと反応し、不溶化されるため、塩化マグネシウム水溶液中へのアルミニウムの溶出を防ぐことができる。 The timing of addition of aluminum chloride is not particularly limited, and may be any stage before addition of hydrogen chloride (before reaction), simultaneously with hydrogen chloride, after addition of hydrogen chloride, or the like. The amount of aluminum chloride added is not particularly limited, but generally the weight ratio of aluminum to the weight of magnesium contained in the sludge is about 0.02 to 0.2% by weight (Al / Mg weight ratio = 0.0.0). If it is about 02 to 0.2), an effect on filterability can be obtained, and since it reacts with magnesium in sludge and is insolubilized, elution of aluminum into the magnesium chloride aqueous solution can be prevented.
 分離工程
 分離工程では、反応系中に存在する不溶性マグネシウム化合物を含むスラッジを除去することにより塩化マグネシウム水溶液を得る。
Separation process In the separation process, an aqueous magnesium chloride solution is obtained by removing sludge containing an insoluble magnesium compound present in the reaction system.
 反応工程では、未反応の不溶性マグネシウム化合物が残存するように反応させるため、反応系中(特に液相中)には不溶性マグネシウム化合物を含むスラッジが固形分として存在することになる。すなわち、高純度の塩化マグネシウム水溶液中に前記スラッジが共存した状態となっている。そこで、分離工程において、前記スラッジを取り除き、塩化マグネシウム水溶液を回収する。 In the reaction step, the reaction is carried out so that unreacted insoluble magnesium compound remains, and therefore sludge containing the insoluble magnesium compound exists as a solid content in the reaction system (particularly in the liquid phase). That is, the sludge coexists in a high purity magnesium chloride aqueous solution. Therefore, in the separation step, the sludge is removed and the magnesium chloride aqueous solution is recovered.
 分離方法は、前記スラッジを除去できる限りは限定されず、例えば加圧ろ過、減圧濾過、真空ろ過、自然ろ過、遠心ろ過等の公知の方法を採用すれば良い。この場合、例えばフィルタープレス、遠心分離機等の公知又は市販の装置を用いることができる。 The separation method is not limited as long as the sludge can be removed. For example, a known method such as pressure filtration, vacuum filtration, vacuum filtration, natural filtration, or centrifugal filtration may be employed. In this case, for example, a known or commercially available device such as a filter press or a centrifuge can be used.
 このように反応工程から分離工程において、主としてアルミニウム及び鉄が除去されるが、不溶性マグネシウム化合物系原料中のマグネシウム重量(Mgとして)に対する割合として、例えばc)アルミニウム(Alとして)含有量100重量ppm以上、d)鉄(Feとして)含有量150重量ppm以上が除去されることが好ましい。 Thus, in the separation step from the reaction step, mainly aluminum and iron are removed, but as a ratio with respect to the magnesium weight (as Mg) in the insoluble magnesium compound-based raw material, for example, c) aluminum (as Al) content 100 weight ppm As described above, it is preferable that d) iron (as Fe) content of 150 ppm by weight or more is removed.
 このようにして得られた塩化マグネシウム水溶液は、特にアルミニウム及び鉄が除去された結果、当該水溶液中のマグネシウム重量(Mgとして)に対する割合が、例えばa)カルシウム(Caとして)含有量2000重量ppm以下、b)硫酸塩(SOとして)含有量2000重量ppm以下、c)アルミニウム(Alとして)含有量100重量ppm以下、d)鉄(Feとして)含有量10重量ppm以下となっていることが好ましい。 In the magnesium chloride aqueous solution thus obtained, as a result of removal of aluminum and iron in particular, the ratio to the magnesium weight (as Mg) in the aqueous solution is, for example, a) Calcium (as Ca) content of 2000 ppm by weight or less B) Sulfate (as SO 4 ) content 2000 ppm by weight or less, c) Aluminum (as Al) content 100 wt ppm or less, d) Iron (as Fe) content 10 ppm by weight or less preferable.
 塩化マグネシウム水溶液は、そのまま又は濃度を調整したうえで、塩化マグネシウムの製造原料等の用途として用いることができる。得られた塩化マグネシウム水溶液の濃度は、特に限定されないが、通常は塩化マグネシウム濃度は、塩化マグネシウム無水物として10重量%以上(特に10~30重量%)とすることができる。従って、例えば15~20重量%の範囲内に設定することもできる。 The magnesium chloride aqueous solution can be used as a raw material for producing magnesium chloride as it is or after adjusting its concentration. The concentration of the obtained aqueous magnesium chloride solution is not particularly limited, but usually the magnesium chloride concentration can be 10 wt% or more (particularly 10 to 30 wt%) as magnesium chloride anhydride. Therefore, for example, it can be set within a range of 15 to 20% by weight.
2.高純度塩化マグネシウムの製造方法
 本発明の高純度塩化マグネシウムの製造方法(第2方法)は、
(1)不溶性マグネシウム化合物系原料と塩化水素を反応させるに際し、前記原料中に含まれるMg2+イオン1モルに対して2nモル(但し、nは0.00<n≦0.98を満たす。)の塩化水素を反応させることにより反応生成物を得る反応工程、
(2)反応系中に存在する不溶性マグネシウム化合物を含むスラッジを除去することにより塩化マグネシウム水溶液を得る分離工程、
(3)前記水溶液から塩化マグネシウムを再結晶化させる再結晶化工程
を含むことを特徴とする。
2. Production method of high purity magnesium chloride The production method (second method) of high purity magnesium chloride of the present invention comprises:
(1) When reacting an insoluble magnesium compound-based raw material with hydrogen chloride, 2 nmol per 1 mol of Mg 2+ ions contained in the raw material (where n satisfies 0.00 <n ≦ 0.98). A reaction step of obtaining a reaction product by reacting hydrogen chloride of
(2) a separation step of obtaining an aqueous magnesium chloride solution by removing sludge containing insoluble magnesium compounds present in the reaction system;
(3) It includes a recrystallization step of recrystallizing magnesium chloride from the aqueous solution.
 第2方法は、第1方法で得られた塩化マグネシウム水溶液を再結晶化する工程を含む方法であり、これによって所望の高純度塩化マグネシウムを得ることができる。従って、第2方法における反応工程及び分離工程は、第1方法と同様にして実施することができる。また、洗浄工程についても、第1方法と同様に実施することができる。以下、第2方法の各工程について説明する。 The second method is a method including a step of recrystallizing the magnesium chloride aqueous solution obtained by the first method, whereby desired high purity magnesium chloride can be obtained. Therefore, the reaction step and the separation step in the second method can be performed in the same manner as in the first method. Moreover, it can implement similarly to a 1st method also about a washing | cleaning process. Hereinafter, each step of the second method will be described.
 不溶性マグネシウム化合物系原料
 第2方法で用いる不溶性マグネシウム化合物系原料自体は、特に限定されず、公知又は市販のものを使用することもできる。また、公知の製造方法で得られたものを使用することもできる。
The insoluble magnesium compound- based material itself used in the second method of the insoluble magnesium compound-based material is not particularly limited, and known or commercially available materials can also be used. Moreover, what was obtained by the well-known manufacturing method can also be used.
 不溶性マグネシウム化合物の種類としては、水に難溶性ないしは不溶性(通常は水に対する溶解度(20℃)が1g/30mL以下)の化合物を使用することができる。例えば、酸化マグネシウム、塩基性炭酸マグネシウム、正炭酸マグネシウム、水酸化マグネシウム等のほか、ケイ酸マグネシウム、鉱石としてマグネサイト、フォルステライト等が挙げられる。この中でも、コスト面、入手の容易さ等の観点から、酸化マグネシウム、塩基性炭酸マグネシウム、水酸化マグネシウム等の少なくとも1種を用いることができる。 As the type of the insoluble magnesium compound, a compound that is hardly soluble or insoluble in water (usually solubility in water (20 ° C.) of 1 g / 30 mL or less) can be used. For example, in addition to magnesium oxide, basic magnesium carbonate, normal magnesium carbonate, magnesium hydroxide, etc., magnesium silicate and ore include magnesite, forsterite and the like. Among these, at least one of magnesium oxide, basic magnesium carbonate, magnesium hydroxide and the like can be used from the viewpoints of cost and availability.
 不溶性マグネシウム化合物系原料のマグネシウム含有量は、特に限定されないが、通常はMgの含有量として乾燥物換算で24~60重量%、好ましくは40~60重量%(特に54~59重量%)であることが好ましい。このような範囲の原料を用いることによって、より低コストでより効果的な精製効果が得られる。従って、このような含有量を満たすためには、不溶性マグネシウム化合物として酸化マグネシウム又はそれを含む混合物を用いることが好ましい。 The magnesium content of the insoluble magnesium compound-based material is not particularly limited, but is usually 24 to 60% by weight, preferably 40 to 60% by weight (especially 54 to 59% by weight) in terms of dry matter as the Mg content. It is preferable. By using the raw material in such a range, a more effective purification effect can be obtained at a lower cost. Therefore, in order to satisfy such a content, it is preferable to use magnesium oxide or a mixture containing the same as the insoluble magnesium compound.
 不溶性マグネシウム化合物系原料においては、上記のような不溶性マグネシウム化合物のほか、他の不純物が含まれている。すなわち、本発明では、粗原料としての不溶性マグネシウム化合物系原料を用いることにより、安価な原料を用いても高純度の塩化マグネシウム水溶液及び塩化マグネシウム(結晶)を得ることができる。 Insoluble magnesium compound-based raw materials contain other impurities in addition to the above insoluble magnesium compounds. That is, in the present invention, by using an insoluble magnesium compound-based material as a crude material, a high-purity magnesium chloride aqueous solution and magnesium chloride (crystal) can be obtained even with an inexpensive material.
 このような粗原料としては、入手の容易さ、コスト面等の見地より、例えば海水-石灰法による水酸化マグネシウム、あるいはその水酸化マグネシウムに炭酸イオン又は炭酸ガスと反応させて得られる炭酸マグネシウムを不溶性マグネシウム化合物として含む不溶性マグネシウム化合物系原料を好適に用いることができる。さらに、前記の水酸化マグネシウム及び炭酸マグネシウムから得られた酸化マグネシウムも好適に用いることができる。 As such a raw material, from the viewpoint of easy availability and cost, for example, magnesium hydroxide by the seawater-lime method, or magnesium carbonate obtained by reacting magnesium hydroxide with carbonate ions or carbon dioxide gas is used. An insoluble magnesium compound-based raw material contained as an insoluble magnesium compound can be suitably used. Furthermore, the magnesium oxide obtained from the said magnesium hydroxide and magnesium carbonate can also be used suitably.
 上記のような海水-石灰法による不溶性マグネシウム化合物系原料(以下「海水-石灰法由来原料」ともいう。)は、主な不純物としてa)水酸化カルシウム及びカルシウム塩、b)硫酸塩、c)アルミニウム、d)鉄、e)ケイ素及びf)その他の微量金属が含まれる。前記のとおり、f)微量金属は、出発原料の時点で既に許容範囲内にあり、e)ケイ素は塩酸との反応でも溶出しないためにろ過により除去できる。 The above-mentioned insoluble magnesium compound-based raw materials by the seawater-lime method (hereinafter also referred to as “seawater-lime method-derived raw materials”) are a) calcium hydroxide and calcium salt, b) sulfate, c) as main impurities. Aluminum, d) iron, e) silicon and f) other trace metals are included. As noted above, f) trace metals are already within acceptable limits at the time of the starting material, and e) silicon can be removed by filtration because it does not elute upon reaction with hydrochloric acid.
 従って、海水-石灰法由来原料等において、実質的に除去対象となり得る不純物は、a)水酸化カルシウム及びカルシウム塩、b)硫酸塩、c)アルミニウム及びd)鉄となる。より具体的には、不溶性マグネシウム化合物系原料中のマグネシウム重量(Mgとして)に対する割合が、a)カルシウム(Caとして)含有量3000重量ppm以上、b)硫酸塩(SOとして)含有量10000重量ppm以上、c)アルミニウム(Alとして)含有量160重量ppm以上、d)鉄(Feとして)含有量160重量ppm以上を含む原料を用いることもできる。 Therefore, impurities that can be substantially removed in the seawater-lime method-derived raw materials and the like are a) calcium hydroxide and calcium salt, b) sulfate, c) aluminum, and d) iron. More specifically, the ratio to the magnesium weight (as Mg) in the insoluble magnesium compound-based raw material is as follows: a) Calcium (as Ca) content 3000 ppm by weight or more, b) Sulfate (as SO 4 ) content 10,000 weight It is also possible to use a raw material containing ppm or more, c) an aluminum (as Al) content of 160 wt ppm or more, and d) an iron (as Fe) content of 160 wt ppm or more.
 なお、上記割合は、Mgの含有量をW(Mg)、Caの含有量をW(Ca)、硫酸塩の含有量をW(SO)、アルミニウムの含有量をW(Al)、鉄の含有量をW(Fe)とすると、それぞれ[W(Ca)/W(Mg)]、[W(SO)/W(Mg)]、[W(Al)/W(Mg)]、[W(Fe)/W(Mg)]の値(重量割合)を示す(以下同じ。)。 In addition, the above-mentioned ratio is as follows: the Mg content is W (Mg), the Ca content is W (Ca), the sulfate content is W (SO 4 ), the aluminum content is W (Al), When the content is W (Fe), [W (Ca) / W (Mg)], [W (SO 4 ) / W (Mg)], [W (Al) / W (Mg)], [W (Fe) / W (Mg)] value (weight ratio) is shown (the same applies hereinafter).
 他方、出発原料である不溶性マグネシウム化合物系原料に水酸化カルシウム及びカルシウム塩ならびに硫酸塩が含まれる場合は、これらを反応工程により除去することができない。このため、これらが許容値以上含まれる場合等は、水酸化カルシウム及びカルシウム塩ならびに硫酸塩の全含有量の一部又は全部を取り除くために、反応工程前の段階において予め洗浄工程(後記)を行うことが望ましい。 On the other hand, when calcium hydroxide, calcium salt, and sulfate are contained in the insoluble magnesium compound-based raw material that is the starting material, these cannot be removed by the reaction step. For this reason, when these are contained more than the allowable value, in order to remove part or all of the total content of calcium hydroxide, calcium salt, and sulfate, a washing step (described later) is performed in advance before the reaction step. It is desirable to do.
 不溶性マグネシウム化合物系原料に含まれるカルシウム成分は、水酸化カルシウムのほか、硫酸カルシウム、炭酸カルシウム等のようなカルシウム塩のいずれかの形態をとっていると考えられる。このうち、硫酸カルシウム及び水酸化カルシウムは、水に少量溶解するので水洗により比較的除去しやすいが、炭酸カルシウムは水にほとんど溶けない。このため、不溶性マグネシウム化合物として炭酸マグネシウムを用いる場合は、不純物カルシウムの大半が炭酸カルシウムの状態であることが多いため、洗浄除去が困難になる。従って、それ以外の不溶性マグネシウム化合物を用いるか、あるいは使用するとしても少量とすることが好ましい。また、不溶性マグネシウム化合物として水酸化マグネシウムを選定した場合、不純物カルシウムは硫酸カルシウム及び水酸化カルシウムのいずれかであると考えられるが、水酸化マグネシウムを用いた液相はpH10を超える塩基性を示すことから水中溶存及び空気中の二酸化炭素を吸収しやすい状態となり、結局のところ炭酸カルシウムが生成する可能性が高くなるので、その使用量を抑えた方がカルシウム不純物を少なくしやすい。これに対し、酸化マグネシウムは、通常はカルシウム不純物のほとんどが硫酸カルシウムであることが多い。これは、酸化物にするための焼成工程で不純物として含まれる炭酸カルシウムの二酸化炭素が脱離し、酸化カルシウムとなり、遊離したカルシウムイオンが共存する硫酸塩と結びついて硫酸カルシウムとなっていると考えられる。これらの点からみて、不溶性マグネシウム化合物系原料としては、カルシウムが除去しやすい形態となっている酸化マグネシウム系原料又はそれを含む混合物からなる原料を用いることが好ましい。 The calcium component contained in the insoluble magnesium compound-based raw material is considered to be in any form of calcium salt such as calcium sulfate, calcium carbonate, etc. in addition to calcium hydroxide. Of these, calcium sulfate and calcium hydroxide dissolve in a small amount in water and are relatively easy to remove by washing with water, but calcium carbonate hardly dissolves in water. For this reason, when magnesium carbonate is used as the insoluble magnesium compound, most of the impurity calcium is often in the form of calcium carbonate, which makes it difficult to remove by washing. Therefore, it is preferable to use other insoluble magnesium compounds or to use a small amount even if they are used. In addition, when magnesium hydroxide is selected as the insoluble magnesium compound, the impurity calcium is considered to be either calcium sulfate or calcium hydroxide, but the liquid phase using magnesium hydroxide should exhibit basicity exceeding pH 10. Therefore, it becomes easy to absorb dissolved carbon dioxide and carbon dioxide in the air, and eventually, the possibility that calcium carbonate is generated increases. Therefore, it is easier to reduce the amount of calcium impurities if the amount of use is suppressed. On the other hand, in magnesium oxide, most of calcium impurities are usually calcium sulfate in many cases. This is thought to be due to the release of carbon dioxide from the calcium carbonate contained as an impurity in the firing step to make an oxide, calcium oxide, and calcium sulfate combined with sulfates in which free calcium ions coexist. . In view of these points, as the insoluble magnesium compound-based material, it is preferable to use a magnesium oxide-based material in a form in which calcium is easily removed or a material comprising a mixture containing the same.
 但し、酸化マグネシウムは、一般的に水酸化マグネシウムよりも原料コストが高いため、コストを優先する場合には水酸化マグネシウムを併用することもできる。この場合、酸化マグネシウムの配合比が高い程カルシウムの除去効果が高い。ここで、酸化マグネシウムの配合比が高いほど、マグネシウム含量は高くなる(例えば、後記の実施例12~13)。例えば水酸化マグネシウムの乾燥物含量が97重量%であれば、マグネシウム含量は97重量%×(24.3(マグネシウムの原子量)/58.3(水酸化マグネシウムの式量))=約40重量%となる。一方、酸化マグネシウムの乾燥物含量が99重量%であれば99重量%×(24.3(マグネシウムの原子量)/40.3(酸化マグネシウムの式量))=約60重量%と計算される。特に好ましくは、マグネシウム含量が54重量%程度(すなわち、水酸化マグネシウムが4分の1程度)の配合までが、生成させる塩化マグネシウムの目標純度を考慮した場合の下限値とすることができる。 However, since magnesium oxide generally has a higher raw material cost than magnesium hydroxide, magnesium hydroxide can be used in combination when giving priority to cost. In this case, the higher the compounding ratio of magnesium oxide, the higher the calcium removal effect. Here, the higher the compounding ratio of magnesium oxide, the higher the magnesium content (for example, Examples 12 to 13 described later). For example, if the dry matter content of magnesium hydroxide is 97% by weight, the magnesium content is 97% by weight × (24.3 (atomic weight of magnesium) /58.3 (formula weight of magnesium hydroxide)) = about 40% by weight. It becomes. On the other hand, if the dry matter content of magnesium oxide is 99% by weight, 99% by weight × (24.3 (magnesium atomic weight) /40.3 (magnesium oxide formula weight)) = about 60% by weight is calculated. Particularly preferably, the lower limit value in consideration of the target purity of the magnesium chloride to be generated can be set up to a blending ratio of about 54% by weight of magnesium (that is, about 1/4 of magnesium hydroxide).
 不溶性マグネシウム化合物系原料の性状(形態)は、特に限定されないが、通常は本発明の製造方法における反応操作上の見地より、粉末状であることが好ましい。また、粉末状の形態で用いる場合、その平均粒径も制限されないが、通常は1~20μm程度の範囲内で適宜設定することができる。 The property (form) of the insoluble magnesium compound-based raw material is not particularly limited, but is usually preferably in the form of powder from the viewpoint of reaction operation in the production method of the present invention. When used in the form of powder, the average particle diameter is not limited, but can be appropriately set within the range of about 1 to 20 μm.
 洗浄工程
 本発明では、不溶性マグネシウム化合物系原料を反応工程に供するが、反応工程に先立って予め不溶性マグネシウム化合物系原料に対して洗浄工程を実施することが好ましい。洗浄工程によって、不溶性マグネシウム化合物系原料中に含まれる不純物(特にカルシウム、硫酸塩等)の一部又は全部を除去することができるので、より高純度の水溶液、ひいては高純度塩化マグネシウムをより確実に提供することが可能となる。
Washing Step In the present invention, the insoluble magnesium compound-based material is subjected to the reaction step, but it is preferable to perform the washing step on the insoluble magnesium compound-based material in advance prior to the reaction step. A part or all of impurities (especially calcium, sulfate, etc.) contained in the insoluble magnesium compound-based raw material can be removed by the washing process, so that a higher-purity aqueous solution, and thus higher-purity magnesium chloride can be more reliably obtained. It becomes possible to provide.
 洗浄工程としては、上記のような不純物の含有量を低減できる限り、特に限定されないが、通常は不溶性マグネシウム化合物系原料の水洗処理を含む方法を採用すれば良い。 The washing step is not particularly limited as long as the content of impurities as described above can be reduced, but usually a method including a water washing treatment of an insoluble magnesium compound-based raw material may be employed.
 例えば、本発明では、以下のような洗浄工程を実施することが好ましい。
(a)不溶性マグネシウム化合物系原料の水懸濁液を調製し、当該水懸濁液を固液分離する工程を含む第1工程、
(b)第1工程を経た不溶性マグネシウム化合物系原料の水懸濁液を調製し、当該水懸濁液がpH12~14となるまでアルカリを添加及び混合し、加熱した後に固液分離して得られた固形分を水で洗浄する工程を含む第2工程
を含む洗浄工程を行うことが好ましい。
For example, in the present invention, it is preferable to carry out the following cleaning process.
(A) a first step including a step of preparing an aqueous suspension of an insoluble magnesium compound-based raw material and subjecting the aqueous suspension to solid-liquid separation;
(B) An aqueous suspension of the insoluble magnesium compound-based raw material that has undergone the first step is prepared, and alkali is added and mixed until the aqueous suspension has a pH of 12 to 14, followed by heating and solid-liquid separation. It is preferable to perform a washing step including a second step including a step of washing the obtained solid content with water.
 上記の方法によって、特にカルシウム塩及び硫酸塩の両方をより確実に除去することができる。すなわち、まず第1工程で主にカルシウム塩を先に除去した後に、第2工程でアルカリ存在下にて硫酸塩の加熱可溶化、固液分離後固形分の水洗により硫酸塩を除去するという2段階を含む洗浄工程を実施することが望ましい。 In particular, both the calcium salt and the sulfate can be more reliably removed by the above method. That is, after first removing the calcium salt mainly in the first step, the sulfate is removed by heat solubilization in the presence of an alkali in the second step, followed by solid-liquid separation and washing with solids. It is desirable to carry out a washing process including steps.
 第1工程
 第1工程は、不溶性マグネシウム化合物系原料の水懸濁液を調製し、当該水懸濁液を固液分離する工程を含む。第1工程では、主として水可溶性の不純物(例えばカルシウムイオン、硫酸イオン等)を除去することができる。
First Step The first step includes a step of preparing an aqueous suspension of an insoluble magnesium compound-based raw material and subjecting the aqueous suspension to solid-liquid separation. In the first step, mainly water-soluble impurities (for example, calcium ions and sulfate ions) can be removed.
 第1工程では、特に粉末状の不溶性マグネシウム化合物系原料を用い、これを水に分散させることによって水懸濁液を調製することができる。この場合の分散量は、不溶性マグネシウム化合物の種類、粒度等に応じて適宜設定できるが、通常は5~40重量%程度とすれば良い。例えば、不溶性マグネシウム化合物系原料として酸化マグネシウム、水酸化マグネシウム及び炭酸マグネシウムのいずれか1つ、あるいは2つ以上を含むなる混合物、好ましくは酸化マグネシウム単体でマグネシウム含量が乾燥物換算で24~60重量%となる粉末状固形物又はその水性スラリーを水に分散又は懸濁した後、デカンテーション又はろ過水洗し、水可溶性不純物の一部又は全部を溶出させて除去する。水可溶性不純物の多くはカルシウムイオンと硫酸イオンであるが、この段階では硫酸イオンを完全に除去する必要はないので、水洗液中のカルシウムイオンがほとんど検出されなくなるまで水洗することが好ましい。 In the first step, an aqueous suspension can be prepared by using a powdery insoluble magnesium compound-based raw material and dispersing it in water. The dispersion amount in this case can be appropriately set according to the type, particle size, etc. of the insoluble magnesium compound, but is usually about 5 to 40% by weight. For example, as an insoluble magnesium compound-based material, any one of magnesium oxide, magnesium hydroxide and magnesium carbonate, or a mixture containing two or more, preferably magnesium oxide alone, the magnesium content is 24 to 60% by weight in terms of dry matter The powdered solid or the aqueous slurry thereof is dispersed or suspended in water and then decanted or washed with filtered water to elute and remove some or all of the water-soluble impurities. Although most of the water-soluble impurities are calcium ions and sulfate ions, it is not necessary to completely remove sulfate ions at this stage, so it is preferable to wash with water until almost no calcium ions are detected in the washing solution.
 水懸濁液は、必要に応じて攪拌等を実施した後、固液分離することにより当該原料を回収する。固液分離の方法自体は、公知の方法に従えば良く、例えば加圧ろ過、減圧濾過、真空ろ過、自然ろ過、遠心ろ過等のような公知の方法を採用することができる。懸濁液中に存在する固体を分離できれば良く、分離の度合いも特に制限されない。例えば、a)シックナーのように半沈降させた上澄み液を連続的に置換させる方法、b)懸濁液に水を加えて希釈しながら、圧力を加えて連続的にろ過する方法等を採用しても良い。この際、例えばフィルタープレス、遠心分離機等の公知又は市販の装置を用いることができる。 The water suspension is subjected to stirring or the like as required, and then the raw material is recovered by solid-liquid separation. The solid-liquid separation method itself may follow a known method. For example, a known method such as pressure filtration, vacuum filtration, vacuum filtration, natural filtration, centrifugal filtration, or the like can be employed. It is only necessary to separate solids present in the suspension, and the degree of separation is not particularly limited. For example, a) a method of continuously replacing a semi-sedimented supernatant solution like a thickener, b) a method of continuously filtering by adding pressure while diluting the suspension by adding water, etc. May be. At this time, for example, a known or commercially available device such as a filter press or a centrifuge can be used.
 第1工程では、必要に応じて前記の水懸濁液の調製と固液分離からなる一連の工程を2回以上繰り返しても良い。また、固液分離によって回収された当該原料(固形分)は、必要に応じてさらに水洗しても良い。 In the first step, a series of steps including preparation of the aqueous suspension and solid-liquid separation may be repeated twice or more as necessary. Moreover, you may further wash with the said raw material (solid content) collect | recovered by solid-liquid separation as needed.
 第1工程では、主としてカルシウム及び硫酸塩が除去されるが、不溶性マグネシウム化合物系原料中のマグネシウム重量(Mgとして)に対する割合として、例えばa)カルシウム(Caとして)含有量2500重量ppm以上、b)硫酸塩(SOとして)含有量7000重量ppm以上が除去されることが好ましい。 In the first step, calcium and sulfate are mainly removed. As a ratio with respect to magnesium weight (as Mg) in the insoluble magnesium compound-based raw material, for example, a) calcium (as Ca) content 2500 ppm by weight or more, b) It is preferred that a sulfate (as SO 4 ) content of 7000 ppm by weight or more is removed.
 第1工程を経た原料は、特にカルシウム及び硫酸塩が除去された結果、不溶性マグネシウム化合物系原料中のマグネシウム重量(Mgとして)に対する割合が、例えばa)カルシウム(Caとして)含有量2000重量ppm以下、b)硫酸塩(SOとして)含有量20000重量ppm以下、c)アルミニウム(Alとして)含有量160重量ppm以上、d)鉄(Feとして)含有量160重量ppm以上となっていることが好ましい。 As a result of the removal of calcium and sulfate, in particular, the raw material after the first step has a ratio to the magnesium weight (as Mg) in the insoluble magnesium compound-based raw material, for example, a) calcium (as Ca) content of 2000 ppm by weight or less B) Sulfate (as SO 4 ) content 20000 ppm by weight or less, c) Aluminum (as Al) content 160 ppm by weight or more, d) Iron (as Fe) content 160 ppm by weight or more preferable.
 第2工程
 第2工程は、前記の第1工程を経た不溶性マグネシウム化合物系原料の水懸濁液を調製し、当該水懸濁液がpH12~14となるまでアルカリを添加及び混合し、加熱した後に固形分を水で洗浄する工程を含む。
Second Step The second step is to prepare an aqueous suspension of the insoluble magnesium compound-based raw material that has undergone the first step, add and mix alkali until the aqueous suspension reaches pH 12 to 14, and heat. A step of washing the solid content with water later is included.
 本発明では、第2工程として、高アルカリ性下で難溶性硫酸塩を加熱抽出後、水洗除去するという手法をとるが、特に重要な点はカルシウム不純物を十分に除去した後で第2工程を実施することである。すなわち、洗浄工程は、2段階であり、かつ、その順序が重要である。仮にカルシウム不純物の除去を十分に行わずに第2工程を実施した場合、高アルカリ性下で残存カルシウムが水中溶存又は空気中の二酸化炭素を吸収し、不溶性の炭酸カルシウムを生成するためにカルシウム除去が困難になってしまう。このため、第2工程は、あくまで第1工程を経た後の不溶性マグネシウム化合物系原料に対して行うことが必要である。 In the present invention, as the second step, a method of heat-extracting the hardly soluble sulfate under high alkalinity and then removing by washing with water is taken, but the most important point is that the second step is carried out after sufficiently removing calcium impurities. It is to be. That is, the cleaning process has two stages, and the order is important. If the second step is carried out without sufficiently removing calcium impurities, the remaining calcium is dissolved in water or absorbs carbon dioxide in the air under high alkalinity, so that calcium removal is performed to produce insoluble calcium carbonate. It becomes difficult. For this reason, it is necessary to perform a 2nd process with respect to the insoluble magnesium compound type raw material after passing through a 1st process to the last.
 そこで、第2工程では、第1工程にてカルシウム不純物を十分に除去した後に、さらに硫酸塩を十分に除去するために高アルカリ性下で加熱抽出を行う。第1工程においても硫酸塩の大半を除去することはできるが、これは硫酸カルシウムとして結合している可溶性硫酸塩であり、硫酸塩の一部は難溶性の塩基性硫酸マグネシウムとして残存していると考えられ、表1に示す規格の硫酸塩を合格水準にするためには、これを第2工程で除去することが望ましい。 Therefore, in the second step, after sufficiently removing calcium impurities in the first step, heat extraction is performed under high alkalinity in order to further remove sulfates. In the first step, most of the sulfate can be removed, but this is a soluble sulfate bound as calcium sulfate, and a portion of the sulfate remains as poorly soluble basic magnesium sulfate. In order to bring the sulfates of the standards shown in Table 1 to acceptable levels, it is desirable to remove them in the second step.
 水懸濁液の調製は、第1工程の場合と同様に実施することができる。そして、得られた水懸濁液に対してアルカリを添加及び混合する。用いるアルカリは、例えば水酸化カリウム、水酸化ナトリウム、アンモニア、水酸化リチウム、ケイ酸ナトリウム等の各種のアルカリを使用できるが、特に不純物混入の機会を避けるという見地より、また塩化マグネシウムを透析剤用途等に使用できるという見地より、アルカリとして水酸化ナトリウムを用いることが好ましい。また、アルカリは、固形又はその水溶液の形態で添加することができる。 Preparation of the water suspension can be performed in the same manner as in the first step. And an alkali is added and mixed with respect to the obtained water suspension. Various alkalis such as potassium hydroxide, sodium hydroxide, ammonia, lithium hydroxide, sodium silicate, etc. can be used as the alkali to be used. However, magnesium chloride is used as a dialysis agent, especially from the viewpoint of avoiding the chance of contamination. It is preferable to use sodium hydroxide as the alkali from the standpoint that it can be used for the like. Further, the alkali can be added in the form of a solid or an aqueous solution thereof.
 アルカリの添加量は、水懸濁液のpHが12~14の範囲内となるような添加量であれば良い。すなわち、硫酸塩を充分に除去するためにはpH12~14(OHとして0.01~1mol/L相当濃度)の高アルカリ性状態での加熱が必要である。特に、アルカリ濃度は高いほど硫酸塩の除去効果は高くなるものの、原料費、排水中和処理費用、粘性上昇によるマテリアルハンドリング等を考慮すれば、上記pHは12~13程度とすることが好ましい。 The amount of alkali added may be an amount added so that the pH of the aqueous suspension is within the range of 12-14. That is, in order to sufficiently remove sulfate, heating in a highly alkaline state at pH 12 to 14 (concentration equivalent to 0.01 to 1 mol / L as OH) is required. In particular, the higher the alkali concentration, the higher the sulfate removal effect. However, in consideration of raw material costs, wastewater neutralization costs, material handling due to increased viscosity, the pH is preferably about 12 to 13.
 アルカリを添加した後、水懸濁液を加熱する。アルカリ存在下で加熱することによって不溶性硫酸塩が可溶化することができる。加熱温度は、通常は50~95℃程度とし、好ましくは70~95℃とすれば良い。また、加熱時間は、加熱温度等に応じて適宜設定できるが、一般的には1~10時間程度の範囲内とすれば良い。 After adding alkali, heat the water suspension. The insoluble sulfate can be solubilized by heating in the presence of alkali. The heating temperature is usually about 50 to 95 ° C., preferably 70 to 95 ° C. The heating time can be appropriately set according to the heating temperature or the like, but generally it may be set within a range of about 1 to 10 hours.
 加熱した後、必要に応じて水懸濁液を冷却した後、固液分離を行うことにより当該原料を回収する。固液分離の方法は、第1工程と同様にすれば良い。また、第2工程では、必要に応じて、回収された当該原料について、水懸濁液の調製、アルカリ添加・混合及び加熱ならびに固液分離からなる一連の工程を2回以上繰り返しても良い。 After heating, the water suspension is cooled as necessary, and then the raw material is recovered by solid-liquid separation. The solid-liquid separation method may be the same as in the first step. In the second step, a series of steps including preparation of aqueous suspension, addition of alkali, mixing and heating, and solid-liquid separation may be repeated twice or more for the recovered raw material as necessary.
 次いで、上記の固液分離で得られた固形分を水で洗浄する。これにより、特に第2工程で付着していたアルカリを除去することができる。水で洗浄する方法は、公知の方法に従えば良く、例えば水懸濁液を調製して固液分離する水懸濁液を調製して固液分離する方法、ろ紙上に載せた原料に注水する方法等の各種の方法を採用することができる。 Next, the solid content obtained by the above solid-liquid separation is washed with water. Thereby, especially the alkali adhering in the second step can be removed. The method of washing with water may be in accordance with a known method, for example, a method of preparing a water suspension for solid-liquid separation by preparing a water suspension and solid-liquid separation, water injection to a raw material placed on a filter paper Various methods, such as a method to do, can be adopted.
 反応工程
 反応工程では、不溶性マグネシウム化合物系原料と塩化水素を反応させるに際し、前記原料中に含まれるMg2+イオン1モルに対して2nモル(但し、nは0.00<n≦0.98を満たす。)の塩化水素を反応させることにより反応生成物を得る。
Reaction Step In the reaction step, when reacting the insoluble magnesium compound-based raw material with hydrogen chloride, 2 nmol (where n is 0.00 <n ≦ 0.98) with respect to 1 mol of Mg 2+ ions contained in the raw material. The reaction product is obtained by reacting with hydrogen chloride.
 本発明では、特に反応工程における塩化水素との反応を経ることにより、特にFe及びAlを効果的に除去することができる。従って、本発明では、反応工程に供する不溶性マグネシウム化合物系原料として、当該原料中に含まれるマグネシウム重量(Mgとしての重量)に対する割合が、鉄重量(Feとしての重量)の割合が160重量ppm以上であり、アルミニウム重量(Alとしての重量)の割合が160重量ppm以上である原料を用いることもできる。 In the present invention, particularly through the reaction with hydrogen chloride in the reaction step, particularly Fe and Al can be effectively removed. Therefore, in the present invention, as an insoluble magnesium compound-based raw material to be used in the reaction step, the ratio of the weight of iron (weight as Mg) to the weight of magnesium contained in the raw material (weight as Fe) is 160 ppm by weight or more. It is also possible to use a raw material whose aluminum weight (weight as Al) is 160 ppm by weight or more.
 なお、当該原料中に含まれるマグネシウム重量(Mgとしての重量)に対するカルシウム含有量と硫酸塩含有量の割合は、特に限定されないが、カルシウム(Caとして)含有量2000重量ppm以下、硫酸塩(SOとして)含有量2000重量ppm以下であることが好ましい。これにより、高純度の塩化マグネシウム水溶液及び高純度塩化マグネシウムをより確実に得ることができる。すなわち、本発明においては、不純物としてFe及びAlが比較的多量に含まれる粗原料を用いても、本発明では高純度の塩化マグネシウム水溶液、ひいては高純度塩化マグネシウムを製造することができる。 The ratio of the calcium content and the sulfate content to the magnesium weight (weight as Mg) contained in the raw material is not particularly limited, but the calcium (as Ca) content is 2000 ppm by weight or less, sulfate (SO 4 ) The content is preferably 2000 ppm by weight or less. Thereby, high purity magnesium chloride aqueous solution and high purity magnesium chloride can be obtained more reliably. That is, in the present invention, even if a crude material containing a relatively large amount of Fe and Al as impurities is used, a high-purity magnesium chloride aqueous solution, and thus high-purity magnesium chloride can be produced in the present invention.
 反応工程は、気相、液相等のいずれで実施しても良いが、特に液相中で実施することが好ましい。液相で実施する場合の液相(溶媒)としては、限定的ではないが、通常は水を使用すれば良い。水は、水道水、工業用水等を用いても良いが、純水ないしは超純水が好ましい。従って、例えばイオン交換水、蒸留水等も好適に用いることができる。 The reaction step may be performed in any of a gas phase, a liquid phase, and the like, but is preferably performed in a liquid phase. The liquid phase (solvent) in the case of carrying out in the liquid phase is not limited, but usually water may be used. The water may be tap water, industrial water or the like, but pure water or ultrapure water is preferred. Accordingly, for example, ion exchange water, distilled water, and the like can also be suitably used.
 不溶性マグネシウム化合物系原料は、好ましくは液相中に分散させれば良い。この場合、塩化水素と反応させる前に不溶性マグネシウム化合物系原料を液相中に分散させておくことが好ましい。例えば、前記の洗浄工程の第2工程で得られた水懸濁液をそのまま用いることもできる。また、塩酸中に不溶性マグネシウム化合物系原料を分散させることも可能である。 The insoluble magnesium compound-based material is preferably dispersed in the liquid phase. In this case, it is preferable to disperse the insoluble magnesium compound-based raw material in the liquid phase before reacting with hydrogen chloride. For example, the aqueous suspension obtained in the second step of the washing step can be used as it is. It is also possible to disperse the insoluble magnesium compound-based material in hydrochloric acid.
 添加する塩化水素は、公知又は市販のものを使用することができる。また、各種の製造方法で得られた塩化水素のいずれも使用することができる。特に、食塩電解法で水酸化ナトリウムを生成する時の副産物として得られる塩素と水素を合成した塩酸が、高純度で比較的安価に入手できることから、このような塩化水素も好適に用いることができる。 As the hydrogen chloride to be added, a known or commercially available one can be used. In addition, any of hydrogen chloride obtained by various production methods can be used. In particular, since hydrochloric acid obtained by synthesizing chlorine and hydrogen obtained as by-products when sodium hydroxide is produced by a salt electrolysis method can be obtained with high purity and relatively inexpensively, such hydrogen chloride can also be suitably used. .
 塩化水素は、通常は水溶液(すなわち塩酸)の形態で使用すれば良いが、これに限定されない。例えば、ガス状の塩化水素(あるいは塩素ガスと水素ガスの別箇作用)を直接に不溶性マグネシウム化合物系原料と反応させる方法も可能である。これによって、塩化マグネシウム水溶液をより高濃度で得ることができる。 Hydrogen chloride is usually used in the form of an aqueous solution (that is, hydrochloric acid), but is not limited thereto. For example, a method of reacting gaseous hydrogen chloride (or a separate action of chlorine gas and hydrogen gas) directly with an insoluble magnesium compound-based material is also possible. Thereby, the magnesium chloride aqueous solution can be obtained at a higher concentration.
 不溶性マグネシウム化合物系原料と塩化水素との反応に際しては、前記原料中に含まれるMg2+イオン1モルに対して2nモル(但し、nは0.00<n≦0.98を満たす。)の塩化水素を反応させる。すなわち、塩化水素2nモルを全て反応させることにより、未反応の不溶性マグネシウム化合物が残存するように反応させる。これにより、未反応の不溶性マグネシウム化合物中に、不溶性マグネシウム化合物系原料に含まれる不純物をできるだけ多く閉じ込めることによって液相中に不純物(イオン)が溶出することを効果的に抑制することができる。 In the reaction between the insoluble magnesium compound-based material and hydrogen chloride, 2 nmol (where n satisfies 0.00 <n ≦ 0.98) with respect to 1 mol of Mg 2+ ions contained in the material. React with hydrogen. That is, the reaction is carried out so that the unreacted insoluble magnesium compound remains by reacting all 2 nmoles of hydrogen chloride. Thereby, it is possible to effectively suppress the elution of impurities (ions) in the liquid phase by confining as much impurities as possible contained in the insoluble magnesium compound-based raw material in the unreacted insoluble magnesium compound.
 前記nは、0.00<n≦0.98を満たし、特に0.50≦n≦0.98を満たすことが好ましく、その中でも0.67≦n≦0.90を満たすことがより好ましい。nが0.98を超える場合は、不純物が液相中に溶出し、塩化マグネシウム水溶液に残存するおそれがある。 The n satisfies 0.00 <n ≦ 0.98, particularly preferably satisfies 0.50 ≦ n ≦ 0.98, and more preferably satisfies 0.67 ≦ n ≦ 0.90. When n exceeds 0.98, impurities may elute in the liquid phase and remain in the magnesium chloride aqueous solution.
 例えば、上記nを制御することによって、以下のような反応式で反応を進めることができる。
 MgOR+2n(HCl)→ nMgCl+(1-n)MgOR+副生成物
[式中、MgORは、酸化マグネシウム(MgO)、水酸化マグネシウム(Mg(OH))、塩基性炭酸マグネシウム(aMgCO・Mg(OH)・nHO(aは3~5))及びマグネサイト(MgCO)のいずれか1つを示し、nは0<n≦0.98を満たし、副生成物は、水(HO)及び/又は二酸化炭素(CO)である。]
For example, by controlling the above n, the reaction can proceed with the following reaction formula.
MgOR + 2n (HCl) → nMgCl 2 + (1-n) MgOR + by-product [wherein, MgOR is magnesium oxide (MgO), magnesium hydroxide (Mg (OH) 2 ), basic magnesium carbonate (aMgCO 3 .Mg (OH) 2 · nH 2 O (a is 3 to 5)) and magnesite (MgCO 3 ), n satisfies 0 <n ≦ 0.98, and the by-product is water ( H 2 O) and / or carbon dioxide (CO 2 ). ]
 上記反応式において、n≧1の場合は、MgOが全て反応したことを意味し、n>1の場合はMgClの他に過剰のHClが残存していることを意味する。この条件下では、不溶性マグネシウム化合物中に含まれるFe及びAlが塩化物として溶出するので、結果的に不純物として塩化マグネシウム水溶液中に共存することになる。 In the above reaction formula, when n ≧ 1, it means that all MgO has reacted, and when n> 1, it means that excess HCl other than MgCl 2 remains. Under this condition, Fe and Al contained in the insoluble magnesium compound are eluted as chlorides, and as a result, they coexist in the magnesium chloride aqueous solution as impurities.
 一方、n<1である場合、特に0.98以下である場合は、67~98%程度のMgOがHClと反応している状態で、固形分であるスラッジ(残渣)を除去して得られた塩化マグネシウム水溶液には、不溶性マグネシウム化合物中に含まれているFe、Al等はスラッジ中にとどまる結果、これらの不純物が含まれない塩化マグネシウム水溶液を得ることができる。すなわち、未反応の不溶性マグネシウム化合物は僅かに懸濁されていれば十分にFe、Alの除去効果が認められる。但し、未反応の不溶性マグネシウム化合物はできるだけ少ない方が好ましいので、上記のようなnの範囲内に設定することが望ましい。量産レベルでの制御運転では限りなくn=1に近づけることは不純物混入リスクが高まる。一方、品質的安全性に過剰配慮して不溶性マグネシウム塩を残しすぎると、a)ろ過除去のマテリアルハンドリング性に負担がかかる点、b)スラッジケーキの体積が大きく、その含水ロスが大きい点、c)得られた塩化マグネシウム水溶液が薄い点等のように生産性への負荷が大きく現実的ではない。このため、nの範囲を上記範囲に収まるように制御することが望ましい。 On the other hand, when n <1, especially 0.98 or less, it is obtained by removing sludge (residue) which is solid content in a state where 67 to 98% of MgO is reacted with HCl. In the magnesium chloride aqueous solution, Fe, Al, and the like contained in the insoluble magnesium compound remain in the sludge. As a result, a magnesium chloride aqueous solution that does not contain these impurities can be obtained. That is, if the unreacted insoluble magnesium compound is slightly suspended, the effect of removing Fe and Al is sufficiently observed. However, since it is preferable that the amount of unreacted insoluble magnesium compound is as small as possible, it is desirable to set it within the range of n as described above. In the control operation at the mass production level, the risk of mixing impurities increases as much as n = 1. On the other hand, if too much insoluble magnesium salt is left in consideration of quality safety, a) the material handling property of filtration removal is burdened, b) the volume of sludge cake is large and its water loss is large, c ) The load on productivity is large and unrealistic as the obtained magnesium chloride aqueous solution is thin. For this reason, it is desirable to control so that the range of n falls within the above range.
 また、反応工程においては、必要に応じて液相中に塩化アルミニウムを添加することもできる。塩化アルミニウムを添加することによって、後工程である分離工程における分離が容易となる。すなわち、本発明では、塩化アルミニウムはいわゆるろ過助剤として機能する。塩化アルミニウム自体は公知又は市販のものを使用することができる。 In the reaction step, aluminum chloride can be added to the liquid phase as necessary. By adding aluminum chloride, separation in a separation step, which is a subsequent step, is facilitated. That is, in the present invention, aluminum chloride functions as a so-called filter aid. Known or commercially available aluminum chloride can be used.
 塩化アルミニウムの添加時期は、特に制限されず、塩化水素の添加前(反応前)、塩化水素と同時、塩化水素の添加後等のいずれの段階であっても良い。塩化アルミニウムの添加量は、特に限定的ではないが、一般的にはスラッジ中に含まれるマグネシウム重量に対するアルミニウムの重量割合が0.02~0.2重量%程度(Al/Mg重量比=0.02~0.2程度)とすれば、ろ過性への効果を得ることができ、スラッジ中のマグネシウムと反応し、不溶化されるため、塩化マグネシウム水溶液中へのアルミニウムの溶出を防ぐことができる。 The timing of addition of aluminum chloride is not particularly limited, and may be any stage before addition of hydrogen chloride (before reaction), simultaneously with hydrogen chloride, after addition of hydrogen chloride, or the like. The amount of aluminum chloride added is not particularly limited, but generally the weight ratio of aluminum to the weight of magnesium contained in the sludge is about 0.02 to 0.2% by weight (Al / Mg weight ratio = 0.0.0). If it is about 02 to 0.2), an effect on filterability can be obtained, and since it reacts with magnesium in sludge and is insolubilized, elution of aluminum into the magnesium chloride aqueous solution can be prevented.
 分離工程
 分離工程では、反応系中に存在する不溶性マグネシウム化合物を含むスラッジを除去することにより塩化マグネシウム水溶液を得る。
Separation process In the separation process, an aqueous magnesium chloride solution is obtained by removing sludge containing an insoluble magnesium compound present in the reaction system.
 反応工程では、未反応の不溶性マグネシウム化合物が残存するように反応させるため、反応系(特に液相中)には不溶性マグネシウム化合物を含むスラッジが固形分として存在することになる。すなわち、高純度の塩化マグネシウム水溶液中に前記スラッジが共存した状態となっている。そこで、分離工程において、前記スラッジを取り除き、塩化マグネシウム水溶液を回収する。 In the reaction step, the reaction is carried out so that unreacted insoluble magnesium compound remains, so that sludge containing the insoluble magnesium compound exists as a solid content in the reaction system (particularly in the liquid phase). That is, the sludge coexists in a high purity magnesium chloride aqueous solution. Therefore, in the separation step, the sludge is removed and the magnesium chloride aqueous solution is recovered.
 分離方法は、前記スラッジを除去できる限りは限定されず、例えば加圧ろ過、減圧濾過、真空ろ過、自然ろ過、遠心ろ過等の公知の方法を採用すれば良い。この場合、例えばフィルタープレス、遠心分離機等の公知又は市販の装置を用いることができる。 The separation method is not limited as long as the sludge can be removed. For example, a known method such as pressure filtration, vacuum filtration, vacuum filtration, natural filtration, or centrifugal filtration may be employed. In this case, for example, a known or commercially available device such as a filter press or a centrifuge can be used.
 このように反応工程から分離工程において、主としてアルミニウム及び鉄が除去されるが、不溶性マグネシウム化合物系原料中のマグネシウム重量(Mgとして)に対する割合として、例えばc)アルミニウム(Alとして)含有量100重量ppm以上、d)鉄(Feとして)含有量150重量ppm以上が除去されることが好ましい。 Thus, in the separation step from the reaction step, mainly aluminum and iron are removed, but as a ratio with respect to the magnesium weight (as Mg) in the insoluble magnesium compound-based raw material, for example, c) aluminum (as Al) content 100 weight ppm As described above, it is preferable that d) iron (as Fe) content of 150 ppm by weight or more is removed.
 このようにして得られた塩化マグネシウム水溶液は、特にアルミニウム及び鉄が除去された結果、当該水溶液中のマグネシウム重量(Mgとして)に対する割合が、例えばa)カルシウム(Caとして)含有量2000重量ppm以下、b)硫酸塩(SOとして)含有量2000重量ppm以下、c)アルミニウム(Alとして)含有量100重量ppm以下、d)鉄(Feとして)含有量10重量ppm以下となっていることが好ましい。 In the magnesium chloride aqueous solution thus obtained, as a result of removal of aluminum and iron in particular, the ratio to the magnesium weight (as Mg) in the aqueous solution is, for example, a) Calcium (as Ca) content of 2000 ppm by weight or less B) Sulfate (as SO 4 ) content 2000 ppm by weight or less, c) Aluminum (as Al) content 100 wt ppm or less, d) Iron (as Fe) content 10 ppm by weight or less preferable.
 また、得られた塩化マグネシウム水溶液の濃度は、特に限定されないが、通常は塩化マグネシウム濃度は、塩化マグネシウム無水物として10重量%以上(特に10~30重量%)とすることができる。従って、例えば15~20重量%の範囲内に設定することもできる。 The concentration of the obtained magnesium chloride aqueous solution is not particularly limited, but usually the magnesium chloride concentration can be 10% by weight or more (particularly 10 to 30% by weight) as magnesium chloride anhydride. Therefore, for example, it can be set within a range of 15 to 20% by weight.
 再結晶化工程
 再結晶化工程では、前記水溶液から塩化マグネシウムを再結晶化させる。特に、塩化マグネシウムを食品添加物、医薬用途等に使用する場合、その性状を結晶水と結合した固形物(通常は6水和物相当)として製品化する必要がある。
In the recrystallization step, magnesium chloride is recrystallized from the aqueous solution. In particular, when magnesium chloride is used for food additives, pharmaceutical applications, etc., it is necessary to commercialize it as a solid (usually equivalent to hexahydrate) combined with crystal water.
 本発明では、高純度塩化マグネシウムを塩化マグネシウム水溶液から調製することから、例えば1)当該水溶液を直接固体まで乾燥する方法、2)過飽和まで濃縮した後、析出分を固液分離させる方法等のいずれでも良いが、より確実に高純度化できるという点で上記2)の方法を採用することが望ましい。 In the present invention, high-purity magnesium chloride is prepared from a magnesium chloride aqueous solution. For example, 1) a method of directly drying the aqueous solution to a solid, 2) a method of concentrating to supersaturation, and then separating a precipitate into a solid-liquid separation, etc. However, it is desirable to adopt the above method 2) in that it can be purified more reliably.
 再結晶化する方法自体は、公知の方法に従って実施することができる。例えば、a)塩化マグネシウム水溶液(前記分離工程を経た塩化マグネシウム水溶液)を濃縮することにより濃縮液を得る工程、b)濃縮液を冷却し、温度による溶解度差を利用して塩化マグネシウムを再結晶化させる工程を含む方法を実施することができる。 The recrystallization method itself can be carried out according to a known method. For example, a) a step of obtaining a concentrate by concentrating a magnesium chloride aqueous solution (magnesium chloride aqueous solution obtained through the separation step); b) cooling the concentrate and recrystallizing the magnesium chloride using a difference in solubility depending on temperature. The method including the process to make can be implemented.
 上記a)の工程では、加熱による濃縮を好適に採用することができる。加熱温度は、限定的ではないが、通常は60~100℃程度とすれば良い。また、濃縮の程度は、特に限定されないが、通常は塩化マグネシウム濃度は塩化マグネシウム無水物として35重量%以上(特に37~40重量%)の範囲内で適宜設定することができる。従って、例えば38~39重量%の範囲内に設定することもできる。 In the step a), concentration by heating can be suitably employed. The heating temperature is not limited, but is usually about 60 to 100 ° C. The degree of concentration is not particularly limited, but usually the magnesium chloride concentration can be appropriately set within a range of 35 wt% or more (particularly 37 to 40 wt%) as magnesium chloride anhydride. Therefore, for example, it can be set within the range of 38 to 39% by weight.
 上記b)の工程では、上記a)で加熱された濃縮液を冷却する。冷却は、通常は室温(通常は10~30℃)までとすれば良く、そこで塩化マグネシウムの結晶を析出させる。 In the step b), the concentrated liquid heated in the a) is cooled. Cooling is usually performed to room temperature (usually 10 to 30 ° C.), where magnesium chloride crystals are precipitated.
 上記b)の工程で析出した結晶を固液分離することで回収する。固液分離の方法自体は、公知の方法に従えば良く、例えば加圧ろ過、減圧濾過、真空ろ過、自然ろ過、遠心ろ過等のような公知の方法を採用することができる。この際、例えばフィルタープレス、遠心分離機等の公知又は市販の装置を用いることができる。 The crystals precipitated in the step b) are collected by solid-liquid separation. The solid-liquid separation method itself may follow a known method. For example, a known method such as pressure filtration, vacuum filtration, vacuum filtration, natural filtration, centrifugal filtration, or the like can be employed. At this time, for example, a known or commercially available device such as a filter press or a centrifuge can be used.
3.高純度塩化マグネシウム
 本発明の製造方法で得られる塩化マグネシウムは、通常は塩化マグネシウム水和物の結晶粒子からなる粒状の形態を有する。粒状である場合、その平均粒径は通常200~800μm程度とすることができるが、これに限定されない。
3. High Purity Magnesium Chloride Magnesium chloride obtained by the production method of the present invention usually has a granular form consisting of crystal grains of magnesium chloride hydrate. When it is granular, its average particle size can be usually about 200 to 800 μm, but is not limited thereto.
 上記塩化マグネシウムは、無水物でも良いが、一般的には水和物の形態を有しており、6水和物、また析出温度により2水和物、4水和物、8水和物、12水和物等が例示される。本発明では、医薬品等に適用できる6水和物(MgCl・6HO)が好適である。 The magnesium chloride may be anhydrous, but generally has a hydrate form, hexahydrate, dihydrate, tetrahydrate, octahydrate depending on the precipitation temperature, A 12 hydrate etc. are illustrated. In the present invention, hexahydrate (MgCl 2 · 6H 2 O) that can be applied to pharmaceuticals and the like is preferable.
 上記塩化マグネシウム6水和物は、マグネシウム含有量が12重量%程度(特に医薬品規格では11.8~12.1重量%)であり、マグネシウム重量(Mgとして)に対する割合が、例えばa)カルシウム(Caとして)含有量400重量ppm以下、好ましくは200重量ppm以下、b)硫酸塩(SOとして)含有量400重量ppm以下、好ましくは300重量ppm以下、c)アルミニウム(Alとして)含有量20重量ppm以下、d)鉄(Feとして)含有量5重量ppm以下である。また、その他の金属の含有量の割合は、通常3重量ppm未満である。 The magnesium chloride hexahydrate has a magnesium content of about 12% by weight (especially 11.8 to 12.1% by weight in the pharmaceutical standard), and the ratio to the magnesium weight (as Mg) is, for example, a) calcium ( (As Ca) content 400 wt ppm or less, preferably 200 wt ppm or less, b) sulfate (as SO 4 ) content 400 wt ppm or less, preferably 300 wt ppm or less, c) aluminum (as Al) content 20 Weight ppm or less, d) Iron (as Fe) content is 5 weight ppm or less. Moreover, the ratio of content of other metals is usually less than 3 ppm by weight.
 このような高純度塩化マグネシウムは、例えば医薬品、医薬部外品、飲食品(機能性食品、食品添加物等を含む。)、化粧品飼料、肥料等をはじめ、各種の化学品等に好適に用いることができる。特に、人工透析用の透析剤の原料としても好適に用いることができる。 Such high-purity magnesium chloride is suitably used for various chemicals such as pharmaceuticals, quasi drugs, foods and drinks (including functional foods, food additives, etc.), cosmetic feeds, fertilizers, and the like. be able to. In particular, it can be suitably used as a raw material for dialyzing agents for artificial dialysis.
 以下に実施例及び比較例を示し、本発明の特徴をより具体的に説明する。ただし、本発明の範囲は、実施例に限定されない。なお、実施例中に記載の「%」「ppm」はそれぞれ「重量%」「重量ppm」を意味する。 Hereinafter, examples and comparative examples will be shown to describe the features of the present invention more specifically. However, the scope of the present invention is not limited to the examples. In the examples, “%” and “ppm” mean “wt%” and “wt ppm”, respectively.
 なお、実施例及び比較例における分析評価方法は次の通りである。
(1)カルシウム試験方法
 原子吸光;検量線法で測定した。カルシウム標準液は0mg/L、0.5mg/L、1.0mg/Lを調製し、同範囲になるよう試料濃度を調整して行なった。なお、不溶性試料は、当量の塩酸に溶解した。
In addition, the analysis evaluation method in an Example and a comparative example is as follows.
(1) Calcium test method Atomic absorption; measured by a calibration curve method. The calcium standard solutions were prepared at 0 mg / L, 0.5 mg / L, and 1.0 mg / L, and the sample concentration was adjusted to be in the same range. The insoluble sample was dissolved in an equivalent amount of hydrochloric acid.
(2)硫酸塩試験方法
 表1に示した公定書収載の試験方法は限度内試験であり、数値の比較評価がわかりにくい。このため、本実施例及び比較例においては、標準液の希釈系列を作り、濁度を分光光度計波長610nmとして測定した。その数値より検量線を作成し、これを用いて測定値を数値結果として表した。
<調製試薬> 
 a)硫酸水溶液:濃硫酸50mgを水1Lで希釈した(調製方法EPに準じる)
 b)塩化バリウム二水和物溶解液:塩化バリウム二水和物250gを水に溶かして1Lとした。
 c)酢酸試液:酢酸30gを水で希釈し全量を100mLとした。
<試料液調製>
(サンプル液)
 目盛付試験管に塩化マグネシウム中の硫酸イオン濃度に応じた液量(基準液の範囲)と上記c)液0.5mLとを混合して全量を10mLとした。
(基準液)
 目盛付試験管3本にそれぞれ上記a)液を0mL(空)、1mL及び2mLと上記c)液0.5mLとを混合して全量を10mLとした。
<測定>
 試料液及び基準液に上記a)液及び上記b)液の混合液(体積比1:3)を2mLそれぞれ加え振り混ぜた。15~20分後、吸光度(白濁)を分光光度計波長610nmで測定した。測定吸光度数値は、エクセルで検量線数式により換算し、数値を求めた
(2) Sulfate test method The test method listed in the official document shown in Table 1 is an in-limit test, and comparative evaluation of numerical values is difficult to understand. For this reason, in this example and a comparative example, a dilution series of a standard solution was prepared, and turbidity was measured with a spectrophotometer wavelength of 610 nm. A calibration curve was created from the numerical values, and the measured values were expressed as numerical results using the calibration curves.
<Preparation reagent>
a) Aqueous sulfuric acid solution: 50 mg of concentrated sulfuric acid was diluted with 1 L of water (according to preparation method EP)
b) Barium chloride dihydrate solution: 250 g of barium chloride dihydrate was dissolved in water to make 1 L.
c) Acetic acid test solution: 30 g of acetic acid was diluted with water to make a total volume of 100 mL.
<Sample solution preparation>
(Sample solution)
In a graduated test tube, a liquid volume (range of reference liquid) according to the sulfate ion concentration in magnesium chloride was mixed with 0.5 mL of the liquid c) to make a total volume of 10 mL.
(Reference solution)
In each of three graduated test tubes, 0 mL (empty), 1 mL, and 2 mL of the liquid a) and 0.5 mL of the liquid c) were mixed to make a total volume of 10 mL.
<Measurement>
2 mL each of the mixed liquid (volume ratio 1: 3) of the liquid a) and liquid b) was added to the sample liquid and the reference liquid and shaken. After 15 to 20 minutes, the absorbance (white turbidity) was measured at a spectrophotometer wavelength of 610 nm. The measured absorbance value was converted by Excel using a calibration curve formula to obtain the value.
(3)鉄試験方法
 局外規塩化マグネシウム水和物試験方法に準じて行うが、硫酸塩と同様に限度内試験であり、数値を比較評価させるため、標準液の希釈系列を作成し、分光光度計OD490の吸光度を測定後、検量線を作成し、これを用いて測定値を数値結果として示した。
(3) Iron test method This test is performed in accordance with the external standard magnesium chloride hydrate test method, but it is an in-limit test, similar to sulfates. After measuring the absorbance of the photometer OD490, a calibration curve was prepared and the measured values were shown as numerical results using this.
(4)アルミニウム試験方法
 USP「Magnesium Chloride」Aluminiumの試験方法に準じて行うが、試料量は、不純物数値に応じて調整する(フレームレス原子吸光検量線法)。
(4) Aluminum Test Method The aluminum test method is performed according to the test method of USP “Magnesium Chloride” Aluminum, but the sample amount is adjusted according to the impurity value (frameless atomic absorption calibration curve method).
(5)含量試験方法
 局外規塩化マグネシウム水和物試験方法に準じて実施した。
(5) Content test method The test was conducted according to the external standard magnesium chloride hydrate test method.
(6)不溶性マグネシウム化合物系原料中に含まれるマグネシウム含有量(乾燥物換算)試験方法
 不溶性マグネシウム化合物が酸化マグネシウムの場合は、USP「Magnesium Oxide」の含量試験方法に準じて行うが、前処理の強熱処理を行わずに試験を行い、有姿としての含量を求めた。
 また、水酸化マグネシウムの場合は、USP「Magnesium Hydroxide」の含量試験方法に準じて行うが、前処理の乾燥処理を行わずに試験を行い、有姿としての含量を求めた。前記有姿としての含量を算出した後、下記の式に従ってマグネシウム含有量(乾燥物換算)を求めた。
 
 マグネシウム含有量(乾燥物換算)(%)=有姿としての含量(%)÷(100-乾燥減量(試料1g、105℃・2時間後の減少量)(%))×100
(6) Test method of magnesium content (in dry matter equivalent) contained in insoluble magnesium compound-based raw material When the insoluble magnesium compound is magnesium oxide, it is performed according to the content test method of USP “Magnesium Oxide”. The test was conducted without performing strong heat treatment, and the content as a solid was determined.
Further, in the case of magnesium hydroxide, the content was tested according to the content test method of USP “Magnesium Hydroxide”, but the test was performed without performing the pretreatment drying treatment, and the content as solid was obtained. After calculating the content as solid, the magnesium content (in terms of dry matter) was determined according to the following formula.

Magnesium content (dry matter equivalent) (%) = solid content (%) ÷ (100-weight loss on drying (sample 1g, decrease after 2 hours at 105 ° C) (%)) x 100
 実施例1~11及び比較例1~2
 富田製薬(株)製USP重質酸化マグネシウム粉末100g(マグネシウム含量58.4%)の1L水懸濁液をブフナー漏斗で吸引ろ過(ろ紙No.131,アドバンテック社製,直径150mm)を行い、ろ紙上のケーキを1Lの水で4回洗浄した(合計4L)。4回目の洗浄液は、100mLサンプリングし、8mol/L水酸化カリウム水溶液5mLを添加した後、NN指示薬を加えた。その結果、洗浄液は青色を呈していたことから、カルシウムイオンの溶出洗浄が終了していることを確認した。
Examples 1 to 11 and Comparative Examples 1 and 2
A 1 L aqueous suspension of 100 g (magnesium content 58.4%) of USP heavy magnesium oxide powder manufactured by Tomita Pharmaceutical Co., Ltd. was suction filtered with a Buchner funnel (filter paper No. 131, manufactured by Advantech, diameter 150 mm). The top cake was washed 4 times with 1 L water (4 L total). The fourth washing solution was sampled at 100 mL, added with 5 mL of 8 mol / L potassium hydroxide aqueous solution, and then added with NN indicator. As a result, since the cleaning liquid was blue, it was confirmed that the calcium ion elution cleaning was completed.
 続いて、ろ紙上のケーキを回収した後、水に再懸濁して水懸濁液を調製し、さらに水酸化ナトリウム4gを水懸濁液に溶かし、最終液量を1Lとした(pH13)。この水懸濁液を蒸発しないように覆いをかけてから撹拌しながら加熱し、90℃に昇温してから90±2℃で3時間保持した。冷却した後、懸濁液をブフナー漏斗で吸引ろ過(ろ紙No.131,アドバンテック社製,直径150mm)を行い、ろ紙上のケーキを1Lの水で4回洗浄(合計4L)した。4回目の洗浄液20mLをネスラー管に入れ、10%塩酸1mLを加えた後、塩化バリウム二水和物水溶液(塩化バリウム二水和物250gを水に溶かして1Lとしたもの)2mLを加えた時、白濁は認められなかった。このことから、硫酸イオンの溶出除去が終了していることを確認した。ろ紙上のケーキを回収し、水に再懸濁することにより、不溶性マグネシウム化合物の水洗精製懸濁液370gを得た。このときの固形分割合はマグネシウム含有量として9.829%であった。水洗精製懸濁液において、そのマグネシウム含有量に対する不純物の含有量の割合を表2に示す。 Subsequently, after the cake on the filter paper was collected, it was resuspended in water to prepare an aqueous suspension, and 4 g of sodium hydroxide was dissolved in the aqueous suspension to make the final liquid volume 1 L (pH 13). The aqueous suspension was covered so as not to evaporate and then heated with stirring. After the temperature was raised to 90 ° C., the suspension was held at 90 ± 2 ° C. for 3 hours. After cooling, the suspension was subjected to suction filtration with a Buchner funnel (filter paper No. 131, manufactured by Advantech, diameter 150 mm), and the cake on the filter paper was washed 4 times with 1 L of water (4 L in total). When 20 mL of the 4th washing solution was placed in a Nessler tube, 1 mL of 10% hydrochloric acid was added, and then 2 mL of an aqueous solution of barium chloride dihydrate (250 g of barium chloride dihydrate dissolved in water to make 1 L) was added No cloudiness was observed. From this, it was confirmed that elution removal of sulfate ions was completed. The cake on the filter paper was collected and resuspended in water to obtain 370 g of a water-purified suspension of insoluble magnesium compound. The solid content ratio at this time was 9.829% in terms of magnesium content. Table 2 shows the ratio of the impurity content to the magnesium content in the purified water suspension.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 次に、水洗精製懸濁液を空重量測定済みの共栓付ネスラー管に約20mLずつ13本に分注し、空重量を差し引いた懸濁液重量を求めた。 Next, the water-washed purified suspension was dispensed into 13 tubes of about 20 mL each with a stoppered Nessler tube with a stopper, and the suspension weight obtained by subtracting the empty weight was determined.
 次いで、合成塩酸(東亜合成(株)製、HCl含有量35.59%)を加え、氷水中にネスラー管を挿入し、冷却しながら、時々振り混ぜながら反応させ、塩酸を加えてから10分放置した。この場合、実施例1~8では、nが0.50~0.98の範囲となるように段階的に変化させて塩酸を加えた。また、実施例9~11ならびに比較例1及び2では、それぞれnが1.0、0.99になるように塩酸を加えた(液が黄色の着色とともに溶解した)後、実施例9~11及び比較例2では懸濁液を微量ずつ加えて僅かに濁る状態になるまでにし(nが0.98~0.99の範囲)、一方で比較例1では溶液の状態のまま放置した(nは1.0のまま)。 Next, synthetic hydrochloric acid (manufactured by Toa Gosei Co., Ltd., HCl content: 35.59%) was added, a Nessler tube was inserted into ice water, allowed to react with occasional shaking while cooling, and 10 minutes after adding hydrochloric acid. I left it alone. In this case, in Examples 1 to 8, hydrochloric acid was added stepwise so that n was in the range of 0.50 to 0.98. In Examples 9 to 11 and Comparative Examples 1 and 2, hydrochloric acid was added so that n was 1.0 and 0.99 (the solution was dissolved together with yellow coloring), and then Examples 9 to 11 were added. In Comparative Example 2, a small amount of the suspension was added until it became slightly turbid (n was in the range of 0.98 to 0.99), while in Comparative Example 1, it was left as a solution (n Remains 1.0).
 それぞれの液を一晩静置した後、上澄み液をシリンジろ過(ミリポア製マイレックスPES,孔径0.45μm)し、これを試料溶液とした。 After each liquid was allowed to stand overnight, the supernatant was subjected to syringe filtration (Millipore Pyrex, Millipore PES, pore size 0.45 μm), which was used as a sample solution.
 それぞれ試料溶液のマグネシウム含有量を測定し、その後に鉄(Feとして)、アルミニウム(Alとして)の含有量及び除去量を測定し、上記マグネシウム含有量(Mgとして)に対する割合として算出した。その結果を表3に示す。 The magnesium content of each sample solution was measured, and thereafter the content and removal amount of iron (as Fe) and aluminum (as Al) were measured and calculated as a ratio to the magnesium content (as Mg). The results are shown in Table 3.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 実施例12~13
 富田製薬(株)製USP重質酸化マグネシウム粉末(マグネシウム含量乾燥物として59%)及び富田製薬(株)製USP重質水酸化マグネシウム粉末(マグネシウム含量乾燥物として40.4%)を配合、あるいは単独粉末として計量し、それぞれがマグネシウムとして60gに相当する重量分を粉末試料とした。
Examples 12-13
Combined with Tomita Pharmaceutical Co., Ltd. USP heavy magnesium oxide powder (59% as a magnesium content dry product) and Tomita Pharmaceutical Co., Ltd. USP heavy magnesium hydroxide powder (40.4% as a magnesium content dry product), or The powder was weighed as a single powder, and the weight corresponding to 60 g of magnesium was used as the powder sample.
 なお、富田製薬社製USP重質酸化マグネシウム粉末に含まれる不純物のカルシウム含量は8000ppm、硫酸塩含量は20000ppm(いずれもマグネシウム(Mgとして)重量あたりの割合に換算した数値) In addition, the calcium content of the impurities contained in USP heavy magnesium oxide powder manufactured by Tomita Pharmaceutical Co., Ltd. is 8000 ppm, and the sulfate content is 20000 ppm (both are values converted to a ratio per weight of magnesium (as Mg)).
 一方、富田製薬社製USP重質水酸化マグネシウム粉末に含まれる不純物のカルシウム含量は13000ppm、硫酸塩含量は32000ppm(いずれもマグネシウム(Mgとして)重量あたりの割合に換算した数値)であった。 On the other hand, the calcium content of impurities contained in the USP heavy magnesium hydroxide powder manufactured by Tomita Pharmaceutical Co., Ltd. was 13000 ppm, and the sulfate content was 32000 ppm (both values converted to a ratio per weight of magnesium (as Mg)).
 それぞれの試料を水に懸濁して1Lとした後、水懸濁液をブフナー漏斗で吸引ろ過(ろ紙No.131,アドバンテック社製,直径150mm)を行い、ろ紙上のケーキを1Lの水で4回洗浄(合計4L)した。4回目の洗浄液は100mLサンプリングし、8mol/L水酸化カリウム水溶液5mLを添加した後、NN指示薬を加えたところ、洗浄液は青色を呈した。このことから、カルシウムイオンの溶出洗浄が終了していることを確認した。 After suspending each sample in water to make 1 L, the aqueous suspension was subjected to suction filtration with a Buchner funnel (filter paper No. 131, manufactured by Advantech, diameter 150 mm), and the cake on the filter paper was 4 with 1 L of water. Washed once (total 4L). 100 mL of the 4th cleaning solution was sampled, 5 mL of 8 mol / L potassium hydroxide aqueous solution was added, and then an NN indicator was added. As a result, the cleaning solution turned blue. From this, it was confirmed that the calcium ion elution cleaning was completed.
 それぞれ洗浄ケーキを水に懸濁し、塩酸に溶解させた後、得られた溶液をシリンジろ過(ミリポア製マイレックスPES、孔径0.45μm)し、これを試料溶液とした。それぞれの試料溶液のCa、SOとしての不純物含量を試料液に溶存するマグネシウム(Mgとして)に対する割合を求めた。その結果を表4に示す。 Each of the washed cakes was suspended in water and dissolved in hydrochloric acid, and the resulting solution was subjected to syringe filtration (Millipore Pyrex, pore size 0.45 μm), which was used as a sample solution. The ratio of the impurity content of each sample solution as Ca and SO 4 to magnesium (as Mg) dissolved in the sample solution was determined. The results are shown in Table 4.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 実施例14~16
 実施例12で使用したものと同じ富田製薬(株)製USP重質酸化マグネシウム粉末500gを計量し、これを水5Lに懸濁した。次に、得られた水懸濁液をブフナー漏斗で吸引ろ過(ろ紙No.131,アドバンテック社製,直径300mm)を行い、ろ紙上のケーキを5Lの水で4回洗浄(合計20L)した。4回目の洗浄液は100mLサンプリングし、8mol/L水酸化カリウム水溶液5mLを添加した後、NN指示薬を加えたところ、洗浄液は青色を呈していた。このことから、カルシウムイオンの溶出洗浄が終了していることを確認した。
Examples 14 to 16
500 g of USP heavy magnesium oxide powder manufactured by Tomita Pharmaceutical Co., Ltd., the same as that used in Example 12, was weighed and suspended in 5 L of water. Next, the obtained aqueous suspension was subjected to suction filtration with a Buchner funnel (filter paper No. 131, manufactured by Advantech, diameter 300 mm), and the cake on the filter paper was washed four times with 5 L of water (20 L in total). 100 mL of the 4th cleaning solution was sampled, 5 mL of an 8 mol / L potassium hydroxide aqueous solution was added, and then an NN indicator was added. As a result, the cleaning solution was blue. From this, it was confirmed that the calcium ion elution cleaning was completed.
 ろ紙上のケーキを全量水で洗いこんで、懸濁し、送液量2258gの懸濁液を得た。固形分割合はマグネシウム含有量として12.65%であった。また、カルシウム不純物と硫酸塩不純物含量を測定し、懸濁液中のマグネシウム(Mgとして)に対する割合を求めたところ、Caが670ppm、SOが2500ppmであった。 The entire cake on the filter paper was washed with water and suspended to obtain a suspension with a feed amount of 2258 g. The solid content ratio was 12.65% as the magnesium content. In addition, the calcium impurity and sulfate impurity contents were measured, and the ratio to the magnesium (as Mg) in the suspension was determined. As a result, Ca was 670 ppm and SO 4 was 2500 ppm.
 この懸濁液を均等に440gずつポリプロピレン製ふた付き1L容器に入れ、5個分取し、それぞれに所定量の水酸化ナトリウムを加えた後、液量を500mLに調整し、密封状態で90℃恒温槽に入れた。30分毎に取り出し、振とうとガス抜きを行いながら合計4時間処理を行った。 Put 440g of this suspension evenly into a 1L container with a polypropylene lid, take 5 pieces, add a predetermined amount of sodium hydroxide to each, adjust the liquid volume to 500mL, and seal it at 90 ° C in a sealed state. It put into the thermostat. The sample was taken out every 30 minutes and treated for a total of 4 hours while shaking and degassing.
 処理後、それぞれの液を冷却した後にブフナー漏斗で吸引ろ過(ろ紙No.131,アドバンテック社製,直径150mm)を行い、ろ紙上のケーキを1Lの水で4回洗浄(合計4L)した。4回目の洗浄液20mLをネスラー管に入れ、10%塩酸1mLを加えた後、塩化バリウム二水和物水溶液(塩化バリウム二水和物250gを水に溶かして1Lとした水溶液)を2mL加えた時、白濁は認められなかった(硫酸イオンの溶出除去が終了していることの確認)。ろ紙上のケーキを回収し、水に再懸濁し不溶性マグネシウム化合物の水洗精製懸濁液を塩酸に完全に溶かした後、液20mLをシリンジろ過(ミリポア製マイレックスPES,孔径0.45μm)し、これを試料溶液とした。それぞれの試料溶液のCa、SOの含量を試料液に溶存するマグネシウム(Mgとして)に対する割合として求めた。その結果を表5に示す。 After the treatment, each liquid was cooled and then suction filtered with a Buchner funnel (filter paper No. 131, manufactured by Advantech, diameter 150 mm), and the cake on the filter paper was washed 4 times with 1 L of water (4 L in total). When 20 mL of the 4th washing solution was put into a Nessler tube, 1 mL of 10% hydrochloric acid was added, and then 2 mL of an aqueous solution of barium chloride dihydrate (an aqueous solution in which 250 g of barium chloride dihydrate was dissolved in water to make 1 L) was added No cloudiness was observed (confirmation that elution removal of sulfate ions had been completed). The cake on the filter paper was collected, resuspended in water, and the water-washed purified suspension of the insoluble magnesium compound was completely dissolved in hydrochloric acid. Then, 20 mL of the solution was syringe filtered (Millipore Pyrex, pore size 0.45 μm), This was used as a sample solution. The content of Ca and SO 4 in each sample solution was determined as a ratio with respect to magnesium (as Mg) dissolved in the sample solution. The results are shown in Table 5.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 実施例17~19
 実施例13で使用したものと同じ原料、同じ配合比で富田製薬(株)製USP重質酸化マグネシウム粉末415g及び富田製薬(株)製USP重質水酸化マグネシウム粉末135gを計量し、これを水5Lに懸濁した。次に、得られた水懸濁液をブフナー漏斗で吸引ろ過(ろ紙No.131,アドバンテック社製,直径300mm)を行い、ろ紙上のケーキを5Lの水で4回洗浄(合計20L)した。4回目の洗浄液は100mLサンプリングし、8mol/L水酸化カリウム水溶液5mLを添加した後、NN指示薬を加えたところ、洗浄液は青色に変化した。このことから、カルシウムイオンの溶出洗浄が終了していることを確認した。
Examples 17-19
415 g of USP Heavy Magnesium Oxide Powder manufactured by Tomita Pharmaceutical Co., Ltd. and 135 g of USP Heavy Magnesium Hydroxide Powder manufactured by Tomita Pharmaceutical Co., Ltd. with the same raw material and the same blending ratio as those used in Example 13 were weighed. Suspended in 5 L. Next, the obtained aqueous suspension was subjected to suction filtration with a Buchner funnel (filter paper No. 131, manufactured by Advantech, diameter 300 mm), and the cake on the filter paper was washed four times with 5 L of water (20 L in total). 100 mL of the 4th cleaning solution was sampled, 5 mL of an 8 mol / L potassium hydroxide aqueous solution was added, and then an NN indicator was added. As a result, the cleaning solution turned blue. From this, it was confirmed that the calcium ion elution cleaning was completed.
 ろ紙上のケーキを全量水で洗いこんで、懸濁し、送液量2680gの懸濁液を得た。固形分割合はマグネシウム含有量として11.08%であった。また、カルシウム不純物と硫酸塩不純物含量を測定し、懸濁液中に含まれるカルシウム、硫酸塩をマグネシウム(Mgとして)あたりの割合に換算したところ、Caが1400ppm、SOが3600ppmであった。 The entire cake on the filter paper was washed with water and suspended to obtain a 2680 g suspension. The solid content ratio was 11.08% as the magnesium content. Further, the calcium impurity and sulfate impurity contents were measured, and the calcium and sulfate contained in the suspension were converted to the ratio per magnesium (as Mg). As a result, Ca was 1400 ppm and SO 4 was 3600 ppm.
 この懸濁液を均等に490gずつポリプロピレン製ふた付き1L容器に入れ、5個分取し、それぞれに所定量の水酸化ナトリウムを加えた後、液量を500mLに調整し、密封状態で90℃恒温槽に入れた。30分毎に取り出し振とうとガス抜きを行いながら合計4時間処理を行った。 Put 490g of this suspension evenly into a 1L container with a polypropylene lid, take 5 pieces, add a predetermined amount of sodium hydroxide to each, adjust the liquid volume to 500mL, and seal 90 ° C It put into the thermostat. The treatment was performed for a total of 4 hours while degassing and degassing every 30 minutes.
 処理後、それぞれの液を冷却した後にブフナー漏斗で吸引ろ過(ろ紙No.131,アドバンテック社製,直径150mm)を行い、ろ紙上のケーキを1Lの水で4回洗浄(合計4L)した。4回目の洗浄液20mLをネスラー管に入れ、10%塩酸1mLを加えた後、塩化バリウム二水和物水溶液(塩化バリウム二水和物250gを水に溶かして1Lとした水溶液)2mLを加えた時、白濁は認められなかった。これにより、硫酸イオンの溶出除去が終了していることを確認した。ろ紙上のケーキを回収し、水に再懸濁し、不溶性マグネシウム化合物の水洗精製懸濁液を塩酸に完全に溶かした後、液20mLをシリンジろ過(ミリポア製マイレックスPES、孔径0.45μm)し、これを試料溶液とした。それぞれの試料溶液のCa、SOとしての不純物含量を試料液に溶存するマグネシウム(Mgとして)に対する割合として求めた。その結果を表6に示す。 After the treatment, each liquid was cooled and then suction filtered with a Buchner funnel (filter paper No. 131, manufactured by Advantech, diameter 150 mm), and the cake on the filter paper was washed 4 times with 1 L of water (4 L in total). When 20 mL of the 4th washing solution was put into a Nessler tube, 1 mL of 10% hydrochloric acid was added, and then 2 mL of an aqueous solution of barium chloride dihydrate (an aqueous solution in which 250 g of barium chloride dihydrate was dissolved in water) was added. No cloudiness was observed. This confirmed that elution removal of sulfate ions was completed. The cake on the filter paper was collected, resuspended in water, and the water-purified suspension of the insoluble magnesium compound was completely dissolved in hydrochloric acid, and then 20 mL of the solution was syringe filtered (Millipore Mirex PES, pore size 0.45 μm). This was used as a sample solution. The impurity content of Ca and SO 4 in each sample solution was determined as a ratio to magnesium (as Mg) dissolved in the sample solution. The results are shown in Table 6.
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
 実施例20
 富田製薬(株)製USP重質酸化マグネシウム粉末を550g計量し、これを水5Lに懸濁した。次に、懸濁液をブフナー漏斗で吸引ろ過(ろ紙No.131,アドバンテック社製,直径300mm)を行い、ろ紙上のケーキを5Lの水で4回洗浄(合計20L)した。4回目の洗浄液は100mLサンプリングし、8mol/L水酸化カリウム水溶液5mLを添加した後、NN指示薬を加えたところ、洗浄液は青色を呈していた。このことより、カルシウムイオンの溶出洗浄が終了していることを確認した。ろ紙上のケーキを全量水で洗いこんで、懸濁し、送液量2600gの懸濁液を得た。
Example 20
550 g of USP heavy magnesium oxide powder manufactured by Tomita Pharmaceutical Co., Ltd. was weighed and suspended in 5 L of water. Next, the suspension was subjected to suction filtration with a Buchner funnel (filter paper No. 131, manufactured by Advantech, diameter 300 mm), and the cake on the filter paper was washed 4 times with 5 L of water (20 L in total). 100 mL of the 4th cleaning solution was sampled, 5 mL of an 8 mol / L potassium hydroxide aqueous solution was added, and then an NN indicator was added. As a result, the cleaning solution was blue. From this, it was confirmed that the calcium ion elution cleaning was completed. The entire cake on the filter paper was washed with water and suspended to obtain a suspension with a feed amount of 2600 g.
 懸濁液に水酸化ナトリウム10gを加えて全量を2.5L(NaOH濃度;0.1mol/L、pH13)とし、カバーで密封して蒸発を抑えながら撹拌しながら90±2℃を保持した。 10 g of sodium hydroxide was added to the suspension to make the total volume 2.5 L (NaOH concentration: 0.1 mol / L, pH 13), and the mixture was sealed with a cover and kept at 90 ± 2 ° C. while stirring while suppressing evaporation.
 この処理液をブフナー漏斗で吸引ろ過(ろ紙No.131,アドバンテック社製,直径300mm)を行い、ろ紙上のケーキを5Lの水で4回洗浄(合計20L)した。4回目の洗浄液20mLをネスラー管に入れ、10%塩酸1mLを加えた後、塩化バリウム二水和物水溶液(塩化バリウム二水和物250gを水に溶かして1Lとした水溶液)2mLを加えた時、白濁は認められなかった。このことから硫酸イオンの溶出除去が終了していることを確認した。ろ紙上のケーキを水で洗い流しながら分散させ、懸濁液として回収し、3120gの懸濁液試料を得た(固形分割合はマグネシウム含有量として9.890%)。 The treated liquid was subjected to suction filtration with a Buchner funnel (filter paper No. 131, manufactured by Advantech, diameter 300 mm), and the cake on the filter paper was washed four times with 5 L of water (20 L in total). When 20 mL of the 4th washing solution was put into a Nessler tube, 1 mL of 10% hydrochloric acid was added, and then 2 mL of an aqueous solution of barium chloride dihydrate (an aqueous solution in which 250 g of barium chloride dihydrate was dissolved in water) was added. No cloudiness was observed. From this, it was confirmed that elution removal of sulfate ions was completed. The cake on the filter paper was dispersed while being washed away with water and recovered as a suspension to obtain 3120 g of a suspension sample (the solid content ratio was 9.890% as the magnesium content).
 回収懸濁液を2分し、そのうち1545gは、別に採取した(実施例21で使用)。残り1545g(固形分割合はマグネシウム含有量として152.8g;6.285mol)を3Lホーロー容器に移し、ポリプロピレン製シートカバーで容器上面を覆い、撹拌しながら合成塩酸1064g(東亜合成(株)製 含量HClとして35.70%、HCl;379.9g)計量し、1時間かけてゆっくり投入し、反応懸濁液2570gを得た。 The recovered suspension was divided into 2 minutes, of which 1545 g was collected separately (used in Example 21). The remaining 1545 g (solid content ratio: 152.8 g as magnesium content; 6.285 mol) was transferred to a 3 L enamel container, covered with a polypropylene sheet cover, and the upper surface of the container was stirred with 1064 g of synthetic hydrochloric acid (produced by Toa Gosei Co., Ltd.) 35.70% as HCl, HCl; 379.9 g) and weighed slowly over 1 hour to obtain 2570 g of a reaction suspension.
 なお、円滑にろ過するため、予め塩酸添加前に、ろ過助剤(凝集剤)として塩化アルミニウム溶液(浅田化学工業(株)製,AX-10S)45g(Alとして4.5g、HCl 9.7g相当)を懸濁液に加えておいた。本反応に使用した塩酸使用量はn=0.85に相当するものであった。 For smooth filtration, before adding hydrochloric acid, 45 g of aluminum chloride solution (AX-10S, manufactured by Asada Chemical Industry Co., Ltd.) as a filter aid (flocculating agent) (4.5 g as Al 2 O 3 , HCl 9.7 g) was added to the suspension. The amount of hydrochloric acid used in this reaction was equivalent to n = 0.85.
 塩酸を添加した後、3時間撹拌した。次に、ブフナー漏斗で吸引ろ過(ろ紙No.131,アドバンテック社製,直径150mm)を行った後、さらに精密ろ紙(0.20μm混合セルロースエステル,アドバンテック社製,直径47mm)を用いてブフナー漏斗で吸引ろ過を行った。このようにして2段階のろ過を実施した後、ろ液試料2480g(固形分割合はマグネシウム含有量として5.13%)を回収した。本液60gを晶析前純度比較用試料として採取した後、残液2420gを3Lホーロー容器で加熱濃縮し、液量が1262gになるまで煮詰めた後、覆いをした状態で撹拌しながら自然冷却し、60℃を1時間温度保持した後、温度制御しながら30℃まで2時間かけて冷却して結晶を析出させた。 After adding hydrochloric acid, the mixture was stirred for 3 hours. Next, after suction filtration (filter paper No. 131, manufactured by Advantech, diameter 150 mm) with a Buchner funnel, further using a precision filter paper (0.20 μm mixed cellulose ester, manufactured by Advantech, diameter 47 mm) with a Buchner funnel. Suction filtration was performed. After carrying out the two-stage filtration in this way, 2480 g of a filtrate sample (the solid content ratio was 5.13% as the magnesium content) was recovered. After collecting 60 g of this liquid as a sample for purity comparison before crystallization, 2420 g of the remaining liquid was heated and concentrated in a 3 L enamel container, boiled until the liquid volume reached 1262 g, and then naturally cooled with stirring in a covered state. After maintaining the temperature at 60 ° C. for 1 hour, it was cooled to 30 ° C. over 2 hours while controlling the temperature to precipitate crystals.
 結晶含有液はブフナー漏斗で吸引ろ過ろ紙No.2、アドバンテック社製、直径150mm)を行い、ろ過残分320gを回収し、分析試料とした。試料結晶及び晶析前純度比較用試料のマグネシウム含有量、マグネシウム含有量に対する不純物(カルシウム、硫酸塩、鉄、Al)の含有量の割合を測定した。その結果を表7に示す。 The crystal-containing liquid is suction filter paper no. 2, manufactured by Advantech Co., Ltd., diameter 150 mm), and 320 g of filtration residue was collected and used as an analysis sample. The magnesium content of the sample crystals and the sample for purity comparison before crystallization, and the ratio of the content of impurities (calcium, sulfate, iron, Al) to the magnesium content were measured. The results are shown in Table 7.
 実施例21
 実施例20で別途回収した懸濁液1544g(Mgとして152.7g;6.281mol)を3Lホーロー容器に移し、ポリプロピレン製シートで容器上面を覆い、撹拌しながら合成塩酸1257g(東亜合成(株)製 含量;HClとして35.70%、448.7g)を計量し、1時間かけて滴下投入し、反応懸濁液2664gを得た。なお、本反応に使用した塩酸使用量はn=0.98に相当するものであった。
Example 21
1544 g of the suspension separately recovered in Example 20 (152.7 g as Mg; 6.281 mol) was transferred to a 3 L enamel container, and the upper surface of the container was covered with a polypropylene sheet, and 1257 g of synthetic hydrochloric acid (Toa Gosei Co., Ltd.) was stirred. Production content: 35.70% as HCl, 448.7 g) was weighed and added dropwise over 1 hour to obtain 2664 g of a reaction suspension. The amount of hydrochloric acid used in this reaction was equivalent to n = 0.98.
 ろ液を一晩静置し、上澄清澄部分を抜き出して回収した後、ブフナー漏斗で吸引ろ過(ろ紙0.20μm,混合セルロースエステル,アドバンテック社製,直径47mm)を行い、ろ液試料2320g(固形分割合はマグネシウム含有量として5.67%)を得た。本液60gを晶析前純度比較用試料として採取した後、残液2260gを3Lホーロー容器で加熱濃縮し、液量を1306gまで煮詰めた後、覆いをした状態で撹拌しながら自然冷却し、60℃を1時間温度保持した後、温度制御しながら30℃まで2時間かけて冷却し、結晶を析出させた。結晶含有液はブフナー漏斗で吸引ろ過(ろ紙No.2,アドバンテック社製,直径150mm)を行い、ろ過残分340gを回収し、分析試料とした。試料結晶及び晶析前純度比較用試料のマグネシウム含有量、マグネシウム含有量に対する不純物(カルシウム、硫酸塩、鉄、Al)の含有量の割合を測定した。その結果を表7に示す。 The filtrate was allowed to stand overnight, the supernatant clarified portion was extracted and collected, and suction filtration (filter paper 0.20 μm, mixed cellulose ester, manufactured by Advantech, diameter 47 mm) was performed using a Buchner funnel, and 2320 g of a filtrate sample ( The solid content ratio was 5.67% as magnesium content). After collecting 60 g of this liquid as a sample for purity comparison before crystallization, the remaining liquid 2260 g was heated and concentrated in a 3 L enamel container, boiled to 1306 g, and then naturally cooled with stirring in a covered state. After maintaining the temperature at 1 ° C. for 1 hour, it was cooled to 30 ° C. over 2 hours while controlling the temperature to precipitate crystals. The crystal-containing liquid was subjected to suction filtration with a Buchner funnel (filter paper No. 2, manufactured by Advantech, diameter 150 mm), and 340 g of the filtration residue was recovered and used as an analysis sample. The magnesium content of the sample crystals and the sample for purity comparison before crystallization, and the ratio of the content of impurities (calcium, sulfate, iron, Al) to the magnesium content were measured. The results are shown in Table 7.
 比較例3
 富田製薬社製USP重質酸化マグネシウム粉末300gを3Lホーロー容器に入れ、水で懸濁し、全量を1870g(Mgとして176.0g;7.240mol)とした。ポリプロピレンシートで容器上面を覆い、撹拌しながら合成塩酸1483g(東亜合成(株)製,HCl含量として35.70%、529.4g、14.52mol)を1時間かけて加え溶解させた。なお、本反応に使用した塩酸使用量はn=1.0に相当するものであった。
Comparative Example 3
300 g of USP heavy magnesium oxide powder manufactured by Tomita Pharmaceutical Co., Ltd. was placed in a 3 L enamel container and suspended in water to make the total amount 1870 g (176.0 g as Mg; 7.240 mol). The upper surface of the container was covered with a polypropylene sheet, and while stirring, 1483 g of synthetic hydrochloric acid (manufactured by Toa Gosei Co., Ltd., 35.70%, 529.4 g, 14.52 mol as HCl content) was added and dissolved over 1 hour. In addition, the usage-amount of hydrochloric acid used for this reaction was equivalent to n = 1.0.
 溶液を一晩静置し、上澄清澄部分を抜き出して回収後、撹拌後ブフナー漏斗で吸引ろ過(ろ紙0.20μm,混合セルロースエステル,アドバンテック社製,直径47mm)を行い、ろ液試料2370g(固形分割合はマグネシウム含有量として5.60%)を得た。本液60gを晶析前純度比較用試料として採取後、残液2310gを4.5Lホーロー容器で加熱濃縮し、液量を1318gまで煮詰めた後、覆いをした状態で撹拌しながら自然冷却し、60℃を1時間温度保持した後、温度制御しながら30℃まで2時間かけて冷却し、結晶を析出させた。結晶含有液はブフナー漏斗で吸引ろ過(ろ紙No.2,アドバンテック社製,直径150mm)を行い、ろ過残分370gを回収し、分析試料とした。試料結晶及び晶析前純度比較用試料のマグネシウム含有量、マグネシウム含有量に対する不純物(カルシウム、硫酸塩、鉄、Al)の含有量の割合を測定した。その結果を表7に示す。 The solution was allowed to stand overnight, and the supernatant clarified portion was extracted and collected, and after stirring, suction filtered with a Buchner funnel (filter paper 0.20 μm, mixed cellulose ester, Advantech, diameter 47 mm), and 2370 g of a filtrate sample ( The solid content ratio was 5.60% as magnesium content). After collecting 60 g of this liquid as a sample for purity comparison before crystallization, the remaining liquid 2310 g was heated and concentrated in a 4.5 L enamel container, boiled up to 1318 g, and then naturally cooled with stirring in a covered state. After maintaining the temperature at 60 ° C. for 1 hour, it was cooled to 30 ° C. over 2 hours while controlling the temperature to precipitate crystals. The crystal-containing liquid was subjected to suction filtration with a Buchner funnel (filter paper No. 2, manufactured by Advantech, diameter 150 mm), and 370 g of filtration residue was recovered and used as an analysis sample. The magnesium content of the sample crystals and the sample for purity comparison before crystallization, and the ratio of the content of impurities (calcium, sulfate, iron, Al) to the magnesium content were measured. The results are shown in Table 7.
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
 表7の結果からも明らかなように、n=1.0で処理した比較例3では再結晶品中に原料中に存在していた不純物が多量に残存していたのに対し、本発明の製造方法による再結晶品は不純物を効果的に除去できた結果、高純度の塩化マグネシウム結晶が得られることがわかる。 As is clear from the results in Table 7, in Comparative Example 3 treated with n = 1.0, a large amount of impurities remaining in the raw material remained in the recrystallized product, whereas in the present invention, It can be seen that the recrystallized product produced by the production method can remove impurities effectively, resulting in high purity magnesium chloride crystals.

Claims (26)

  1. 塩化マグネシウム水溶液を製造する方法であって、
    (1)不溶性マグネシウム化合物系原料と塩化水素を反応させるに際し、前記原料中に含まれるMg2+イオン1モルに対して2nモル(但し、nは0.00<n≦0.98を満たす。)の塩化水素を反応させることにより反応生成物を得る反応工程、
    (2)反応系中に存在する不溶性マグネシウム化合物を含むスラッジを除去することにより塩化マグネシウム水溶液を得る分離工程
    を含むことを特徴とする塩化マグネシウム水溶液の製造方法。
    A method for producing an aqueous magnesium chloride solution, comprising:
    (1) When reacting an insoluble magnesium compound-based raw material with hydrogen chloride, 2 nmol per 1 mol of Mg 2+ ions contained in the raw material (where n satisfies 0.00 <n ≦ 0.98). A reaction step of obtaining a reaction product by reacting hydrogen chloride of
    (2) A method for producing a magnesium chloride aqueous solution, comprising a separation step of obtaining a magnesium chloride aqueous solution by removing sludge containing an insoluble magnesium compound present in the reaction system.
  2. 塩化マグネシウム水溶液に含まれるマグネシウム重量(Mgとしての重量)に対し、鉄重量(Feとしての重量)の割合が10ppm以下であり、アルミニウム重量(Alとしての重量)の割合が100ppm以下である、請求項1に記載の製造方法。 The ratio of iron weight (weight as Fe) to magnesium weight (weight as Mg) contained in the magnesium chloride aqueous solution is 10 ppm or less, and the ratio of aluminum weight (weight as Al) is 100 ppm or less. Item 2. The manufacturing method according to Item 1.
  3. 前記nが0.50≦n≦0.98である、請求項1に記載の製造方法。 The manufacturing method according to claim 1, wherein n is 0.50 ≦ n ≦ 0.98.
  4. 不溶性マグネシウム化合物系原料中に含まれるマグネシウム含有量(Mgとしての含有量)が24~60重量%(乾燥物換算)である、請求項1に記載の製造方法。 The production method according to claim 1, wherein the magnesium content (content as Mg) contained in the insoluble magnesium compound-based raw material is 24 to 60% by weight (in terms of dry matter).
  5. 不溶性マグネシウム化合物系原料は、当該原料中に含まれるマグネシウム重量(Mgとしての重量)に対し、鉄重量(Feとしての重量)の割合が160ppm以上であり、アルミニウム重量(Alとしての重量)の割合が160ppm以上である、請求項1に記載の製造方法。 The insoluble magnesium compound-based raw material has a ratio of iron weight (weight as Fe) of 160 ppm or more with respect to magnesium weight (weight as Mg) contained in the raw material, and a ratio of aluminum weight (weight as Al) The production method according to claim 1, wherein is 160 ppm or more.
  6. 不溶性マグネシウム化合物系原料中に含まれるマグネシウム重量(Mgとしての重量)に対し、カルシウム重量(Caとして)の割合が含有量2000重量ppm以下、硫酸塩重量(SOとして)の割合が含有量2000重量ppm以下である、請求項5に記載の製造方法。 The content of calcium weight (as Ca) is 2000 ppm by weight or less and the content of sulfate weight (as SO 4 ) is 2000 with respect to the weight of magnesium (weight as Mg) contained in the insoluble magnesium compound-based raw material. The manufacturing method of Claim 5 which is weight ppm or less.
  7. 塩化マグネシウム水溶液の濃度が10重量%以上である、請求項1に記載の製造方法。 The manufacturing method of Claim 1 whose density | concentration of magnesium chloride aqueous solution is 10 weight% or more.
  8. 反応工程に先立って、不溶性マグネシウム化合物系原料の水洗処理を含む洗浄工程をさらに含む、請求項1に記載の製造方法。 Prior to the reaction step, the production method according to claim 1, further comprising a washing step including a water washing treatment of the insoluble magnesium compound-based raw material.
  9. 洗浄工程は、
    (a)不溶性マグネシウム化合物系原料の水懸濁液を調製し、当該水懸濁液を固液分離する工程を含む第1工程、
    (b)第1工程を経た不溶性マグネシウム化合物系原料の水懸濁液を調製し、当該水懸濁液がpH12~14となるまでアルカリを添加及び混合し、加熱した後に固液分離して得られた固形分を水で洗浄する工程を含む第2工程
    を含む、請求項8に記載の製造方法。
    The cleaning process
    (A) a first step including a step of preparing an aqueous suspension of an insoluble magnesium compound-based raw material and subjecting the aqueous suspension to solid-liquid separation;
    (B) An aqueous suspension of the insoluble magnesium compound-based raw material that has undergone the first step is prepared, and alkali is added and mixed until the aqueous suspension has a pH of 12 to 14, followed by heating and solid-liquid separation. The manufacturing method of Claim 8 including the 2nd process including the process of wash | cleaning the obtained solid content with water.
  10. 洗浄工程を経た後の不溶性マグネシウム化合物系原料は、当該原料中に含まれるマグネシウム重量(Mgとしての重量)に対し、カルシウム重量(Caとしての重量)の割合が2000ppm以下であり、硫酸塩重量(SOとしての重量)の割合が2000ppm以下である、請求項8又は9に記載の製造方法。 The insoluble magnesium compound-based raw material after the washing step has a calcium weight (weight as Ca) ratio of 2000 ppm or less with respect to the magnesium weight (weight as Mg) contained in the raw material, and the sulfate weight ( The production method according to claim 8 or 9, wherein a ratio of (weight as SO 4 ) is 2000 ppm or less.
  11. 洗浄工程を経る前の不溶性マグネシウム化合物系原料は、当該原料中に含まれるマグネシウム重量(Mgとしての重量)に対し、鉄重量(Feとしての重量)の割合が160ppm以上、アルミニウム重量(Alとしての重量)の割合が160ppm以上、カルシウム重量(Caとしての重量)の割合が3000ppm以上であり、硫酸塩重量(SOとしての重量)の割合が10000ppm以上である、請求項8又は9に記載の製造方法。 The insoluble magnesium compound-based raw material before passing through the washing step has a ratio of iron weight (weight as Fe) of 160 ppm or more, aluminum weight (weight as Al) to magnesium weight (weight as Mg) contained in the raw material. The ratio of weight) is 160 ppm or more, the ratio of calcium weight (weight as Ca) is 3000 ppm or more, and the ratio of sulfate weight (weight as SO 4 ) is 10,000 ppm or more. Production method.
  12. 反応工程において、液相中に塩化アルミニウムを添加する工程をさらに含む、請求項1に記載の製造方法。 The production method according to claim 1, further comprising a step of adding aluminum chloride in the liquid phase in the reaction step.
  13. 高純度塩化マグネシウムを製造する方法であって、
    (1)不溶性マグネシウム化合物系原料と塩化水素を反応させるに際し、前記原料中に含まれるMg2+イオン1モルに対して2nモル(但し、nは0.00<n≦0.98を満たす。)の塩化水素を反応させることにより反応生成物を得る反応工程、
    (2)反応系中に存在する不溶性マグネシウム化合物を含むスラッジを除去することにより塩化マグネシウム水溶液を得る分離工程、
    (3)前記水溶液から塩化マグネシウムを再結晶化させる再結晶化工程
    を含むことを特徴とする高純度塩化マグネシウムの製造方法。
    A method for producing high-purity magnesium chloride,
    (1) When reacting an insoluble magnesium compound-based raw material with hydrogen chloride, 2 nmol per 1 mol of Mg 2+ ions contained in the raw material (where n satisfies 0.00 <n ≦ 0.98). A reaction step of obtaining a reaction product by reacting hydrogen chloride of
    (2) a separation step of obtaining an aqueous magnesium chloride solution by removing sludge containing insoluble magnesium compounds present in the reaction system;
    (3) A method for producing high-purity magnesium chloride, comprising a recrystallization step of recrystallizing magnesium chloride from the aqueous solution.
  14. 再結晶化工程において、塩化マグネシウム水溶液を濃縮し、再結晶化させる、請求項13に記載の製造方法。 The manufacturing method of Claim 13 which concentrates and recrystallizes magnesium chloride aqueous solution in a recrystallization process.
  15. 塩化マグネシウム水溶液に含まれるマグネシウム重量(Mgとしての重量)に対し、鉄重量(Feとしての重量)の割合が10ppm以下であり、アルミニウム重量(Alとしての重量)の割合が100ppm以下である、請求項13に記載の製造方法。 The ratio of iron weight (weight as Fe) to magnesium weight (weight as Mg) contained in the magnesium chloride aqueous solution is 10 ppm or less, and the ratio of aluminum weight (weight as Al) is 100 ppm or less. Item 14. The manufacturing method according to Item 13.
  16. 前記nが0.50≦n≦0.98である、請求項13に記載の製造方法。 The manufacturing method of Claim 13 whose said n is 0.50 <= n <= 0.98.
  17. 不溶性マグネシウム化合物系原料中に含まれるマグネシウム含有量(Mgとしての含有量)が24~60重量%(乾燥物換算)である、請求項13に記載の製造方法。 The production method according to claim 13, wherein the magnesium content (content as Mg) contained in the insoluble magnesium compound-based raw material is 24 to 60% by weight (in terms of dry matter).
  18. 不溶性マグネシウム化合物系原料は、当該原料中に含まれるマグネシウム重量(Mgとしての重量)に対し、鉄重量(Feとしての重量)の割合が160ppm以上であり、アルミニウム重量(Alとしての重量)の割合が160ppm以上である、請求項13に記載の製造方法。 The insoluble magnesium compound-based raw material has a ratio of iron weight (weight as Fe) of 160 ppm or more with respect to magnesium weight (weight as Mg) contained in the raw material, and a ratio of aluminum weight (weight as Al) The production method according to claim 13, wherein is not less than 160 ppm.
  19. 不溶性マグネシウム化合物系原料中に含まれるマグネシウム重量(Mgとしての重量)に対し、カルシウム重量(Caとして)の割合が含有量2000重量ppm以下、硫酸塩重量(SOとして)の割合が含有量2000重量ppm以下である、請求項18に記載の製造方法。 The content of calcium weight (as Ca) is 2000 ppm by weight or less and the content of sulfate weight (as SO 4 ) is 2000 with respect to the weight of magnesium (weight as Mg) contained in the insoluble magnesium compound-based raw material. The manufacturing method of Claim 18 which is weight ppm or less.
  20. 塩化マグネシウム水溶液の濃度が10重量%以上である、請求項13に記載の製造方法。 The manufacturing method of Claim 13 whose density | concentration of magnesium chloride aqueous solution is 10 weight% or more.
  21. 反応工程に先立って、不溶性マグネシウム化合物系原料の水洗処理を含む洗浄工程をさらに含む、請求項13に記載の製造方法。 The production method according to claim 13, further comprising a washing step including a water washing treatment of the insoluble magnesium compound-based raw material prior to the reaction step.
  22. 洗浄工程は、
    (a)不溶性マグネシウム化合物系原料の水懸濁液を調製し、当該水懸濁液を固液分離する工程を含む第1工程、
    (b)第1工程を経た不溶性マグネシウム化合物系原料の水懸濁液を調製し、当該水懸濁液がpH12~14となるまでアルカリを添加及び混合し、加熱した後に固液分離して得られた固形分を水で洗浄する工程を含む第2工程
    を含む、請求項21に記載の製造方法。
    The cleaning process
    (A) a first step including a step of preparing an aqueous suspension of an insoluble magnesium compound-based raw material and subjecting the aqueous suspension to solid-liquid separation;
    (B) An aqueous suspension of the insoluble magnesium compound-based raw material that has undergone the first step is prepared, and alkali is added and mixed until the aqueous suspension has a pH of 12 to 14, followed by heating and solid-liquid separation. The manufacturing method of Claim 21 including the 2nd process including the process of wash | cleaning the obtained solid content with water.
  23. 洗浄工程を経た後の不溶性マグネシウム化合物系原料は、当該原料中に含まれるマグネシウム重量(Mgとしての重量)に対し、カルシウム重量(Caとしての重量)の割合が2000ppm以下であり、硫酸塩重量(SOとしての重量)の割合が2000ppm以下である、請求項21又は22に記載の製造方法。 The insoluble magnesium compound-based raw material after the washing step has a calcium weight (weight as Ca) ratio of 2000 ppm or less with respect to the magnesium weight (weight as Mg) contained in the raw material, and the sulfate weight ( The production method according to claim 21 or 22, wherein a ratio of (weight as SO 4 ) is 2000 ppm or less.
  24. 洗浄工程を経る前の不溶性マグネシウム化合物系原料は、当該原料中に含まれるマグネシウム重量(Mgとしての重量)に対し、鉄重量(Feとしての重量)の割合が160ppm以上であり、アルミニウム重量(Alとしての重量)の割合が160ppm以上であり、カルシウム重量(Caとしての重量)の割合が3000ppm以上であり、硫酸塩重量(SOとしての重量)の割合が10000ppm以上である、請求項21又は22に記載の製造方法。 The insoluble magnesium compound-based raw material before the washing step has a ratio of iron weight (weight as Fe) to magnesium weight (weight as Mg) contained in the raw material is 160 ppm or more, and aluminum weight (Al The ratio of the weight (as weight) is 160 ppm or more, the ratio of calcium weight (weight as Ca) is 3000 ppm or more, and the ratio of sulfate weight (weight as SO 4 ) is 10,000 ppm or more, 22. The production method according to 22.
  25. 反応工程において、液相中に塩化アルミニウムを添加する工程をさらに含む、請求項13に記載の製造方法。 The production method according to claim 13, further comprising a step of adding aluminum chloride in the liquid phase in the reaction step.
  26. 高純度塩化マグネシウムを製造する方法であって、
    (A)マグネシウム含有量(Mgとしての含有量)が24~60重量%(乾燥物換算)であり、マグネシウム重量(Mgとしての重量)に対し、鉄重量(Feとしての重量)の割合が160ppm以上であり、アルミニウム重量(Alとしての重量)の割合が160ppm以上であり、カルシウム重量(Caとしての重量)の割合が3000ppm以上であり、硫酸塩重量(SOとしての重量)の割合が10000ppm以上である不溶性マグネシウム化合物系原料の水懸濁液を調製し、当該水懸濁液を固液分離する工程を含む水洗工程、
    (B)水洗工程を経た不溶性マグネシウム化合物系原料の水懸濁液を調製し、当該水懸濁液がpH12~14となるまでアルカリを添加及び混合し、加熱した後に固液分離する工程を含むアルカリ洗浄工程
    (C)マグネシウム重量(Mgとしての重量)に対し、カルシウム重量(Caとしての重量)の割合が2000ppm以下であり、硫酸塩重量(SOとしての重量)の割合が2000ppm以下であるアルカリ洗浄工程を経た不溶性マグネシウム化合物系原料と塩化水素を反応させるに際し、前記原料中に含まれるMg2+イオン1モルに対して2nモル(但し、nは0.00<n≦0.98を満たす。)の塩化水素を反応させることにより反応生成物を得る反応工程、
    (D)反応系中に存在する不溶性マグネシウム化合物を含むスラッジを除去することによりマグネシウム重量(Mgとしての重量)に対し、鉄重量(Feとしての重量)の割合が10ppm以下であり、アルミニウム重量(Alとしての重量)の割合が100ppm以下である塩化マグネシウム水溶液を得る分離工程、
    (E)前記水溶液から塩化マグネシウムを再結晶化させる工程
    を含むことを特徴とする高純度塩化マグネシウムの製造方法。
    A method for producing high-purity magnesium chloride,
    (A) The magnesium content (content as Mg) is 24 to 60% by weight (in terms of dry matter), and the ratio of iron weight (weight as Fe) to magnesium weight (weight as Mg) is 160 ppm. The ratio of aluminum weight (weight as Al) is 160 ppm or more, the ratio of calcium weight (weight as Ca) is 3000 ppm or more, and the ratio of sulfate weight (weight as SO 4 ) is 10,000 ppm. A water washing step including a step of preparing an aqueous suspension of the insoluble magnesium compound-based raw material as described above and subjecting the aqueous suspension to solid-liquid separation,
    (B) A step of preparing an aqueous suspension of an insoluble magnesium compound-based raw material that has undergone a water washing step, adding and mixing alkali until the aqueous suspension has a pH of 12 to 14, followed by heating and solid-liquid separation. Alkaline washing step (C) The ratio of calcium weight (weight as Ca) is 2000 ppm or less and the ratio of sulfate weight (weight as SO 4 ) is 2000 ppm or less with respect to magnesium weight (weight as Mg). When reacting an insoluble magnesium compound-based raw material that has undergone an alkali cleaning step with hydrogen chloride, 2 nmol per mol of Mg 2+ ions contained in the raw material (where n satisfies 0.00 <n ≦ 0.98) A reaction step of obtaining a reaction product by reacting hydrogen chloride of
    (D) By removing sludge containing an insoluble magnesium compound present in the reaction system, the ratio of iron weight (weight as Mg) to magnesium weight (weight as Mg) is 10 ppm or less, and aluminum weight ( A separation step of obtaining a magnesium chloride aqueous solution having a ratio of (weight as Al) of 100 ppm or less,
    (E) A method for producing high-purity magnesium chloride, comprising a step of recrystallizing magnesium chloride from the aqueous solution.
PCT/JP2018/003292 2018-01-31 2018-01-31 Method for producing purified magnesium salt WO2019150514A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2018/003292 WO2019150514A1 (en) 2018-01-31 2018-01-31 Method for producing purified magnesium salt
JP2018515915A JP6355184B1 (en) 2018-01-31 2018-01-31 Method for producing purified magnesium salt

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/003292 WO2019150514A1 (en) 2018-01-31 2018-01-31 Method for producing purified magnesium salt

Publications (1)

Publication Number Publication Date
WO2019150514A1 true WO2019150514A1 (en) 2019-08-08

Family

ID=62843676

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/003292 WO2019150514A1 (en) 2018-01-31 2018-01-31 Method for producing purified magnesium salt

Country Status (2)

Country Link
JP (1) JP6355184B1 (en)
WO (1) WO2019150514A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021140840A1 (en) * 2020-01-08 2021-07-15 三菱パワー株式会社 System for producing magnesium chloride aqueous solution and system for producing magnesium
JP7515259B2 (en) 2020-01-08 2024-07-12 三菱重工業株式会社 Magnesium chloride aqueous solution production system and magnesium production system

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5520296A (en) * 1978-07-27 1980-02-13 Mineral Process Licensing Corp Preparing anhydrous magnesium chloride
JPH02243510A (en) * 1989-03-16 1990-09-27 Osaka Titanium Co Ltd Production of magnesium chloride
JPH09506066A (en) * 1994-05-17 1997-06-17 ノランダ メタラージー インコーポレイティド Preparation of anhydrous magnesium chloride-containing melt from hydrated magnesium chloride and production of magnesium metal
JP2014205133A (en) * 2013-04-12 2014-10-30 サム サム カンパニー, リミテッドSAM SAM Co., Ltd. Slag treatment method for extraction of silica and magnesia

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5520296A (en) * 1978-07-27 1980-02-13 Mineral Process Licensing Corp Preparing anhydrous magnesium chloride
JPH02243510A (en) * 1989-03-16 1990-09-27 Osaka Titanium Co Ltd Production of magnesium chloride
JPH09506066A (en) * 1994-05-17 1997-06-17 ノランダ メタラージー インコーポレイティド Preparation of anhydrous magnesium chloride-containing melt from hydrated magnesium chloride and production of magnesium metal
JP2014205133A (en) * 2013-04-12 2014-10-30 サム サム カンパニー, リミテッドSAM SAM Co., Ltd. Slag treatment method for extraction of silica and magnesia

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021140840A1 (en) * 2020-01-08 2021-07-15 三菱パワー株式会社 System for producing magnesium chloride aqueous solution and system for producing magnesium
AU2020420155B2 (en) * 2020-01-08 2023-10-19 Mitsubishi Heavy Industries, Ltd. System for producing magnesium chloride aqueous solution and system for producing magnesium
JP7515259B2 (en) 2020-01-08 2024-07-12 三菱重工業株式会社 Magnesium chloride aqueous solution production system and magnesium production system

Also Published As

Publication number Publication date
JPWO2019150514A1 (en) 2020-02-06
JP6355184B1 (en) 2018-07-11

Similar Documents

Publication Publication Date Title
CN102602965B (en) From the method containing direct preparation of high-purity degree lithium compound lithium bittern
KR101093557B1 (en) Method for treating phosphorus and nitrogen comprised in sewage or wastewater using iron ore wastewater
RU2408534C2 (en) Method of preparing caesium hydroxide solutions
CA2736379C (en) Process for the production of high purity magnesium hydroxide
CN104973628A (en) Method used for purifying sodium tungstate solution
CN109607572A (en) A method of comprehensive utilization subsurface brine production refined brine and calcium and magnesium compound
CN108862335A (en) A method of lithium carbonate is prepared with lithium phosphate
EA010106B1 (en) Process for complete utilization of olivine constituents
KR20160085649A (en) Method for manufacturing hydrated magnesium carbonate
JP6355184B1 (en) Method for producing purified magnesium salt
US3760064A (en) Process for the production of neutral calcium hypochlorite crystals
US20100129282A1 (en) High-purity calcium compounds
AU685018B2 (en) Process for preparing high-purity zirconium oxychloride crystals
NO841402L (en) PROCEDURE FOR THE PRODUCTION OF ZEOLITE A
TWI694057B (en) Method for manufacturing gypsum and method for manufacturing cement composition
US4200618A (en) Preparation of magnesium chloride
CA2142663A1 (en) Process for preparing calcium salts of low aluminum content
JP4468568B2 (en) Water treatment flocculant, method for producing the same, and water treatment method
JP3870400B1 (en) Method for refining aluminum hydroxide sludge
CN109850929A (en) A kind of seed precipitation tank dilution crude ore pulp prepares aluminium hydroxide micro powder method
RU2748796C1 (en) Method for producing magnesium citrate and its derivatives
JP6901807B1 (en) Treatment method of water containing selenate ion
JP2019085321A (en) Manufacturing method of scorodite
JP6322517B2 (en) Method for producing sulfate radical-modified basic aluminum chloride aqueous solution
CN103608289A (en) Process of purifying a residue with calcium ions

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018515915

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18903285

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18903285

Country of ref document: EP

Kind code of ref document: A1