WO2019149112A1 - 天线组件、电子装置及改善天线辐射指标的方法 - Google Patents

天线组件、电子装置及改善天线辐射指标的方法 Download PDF

Info

Publication number
WO2019149112A1
WO2019149112A1 PCT/CN2019/072671 CN2019072671W WO2019149112A1 WO 2019149112 A1 WO2019149112 A1 WO 2019149112A1 CN 2019072671 W CN2019072671 W CN 2019072671W WO 2019149112 A1 WO2019149112 A1 WO 2019149112A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
antenna
coupled
coupler
nonlinear harmonic
Prior art date
Application number
PCT/CN2019/072671
Other languages
English (en)
French (fr)
Inventor
杨怀
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Publication of WO2019149112A1 publication Critical patent/WO2019149112A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/38Transceivers, i.e. devices in which transmitter and receiver form a structural unit and in which at least one part is used for functions of transmitting and receiving
    • H04B1/40Circuits
    • H04B1/50Circuits using different frequencies for the two directions of communication
    • H04B1/52Hybrid arrangements, i.e. arrangements for transition from single-path two-direction transmission to single-direction transmission on each of two paths or vice versa
    • H04B1/525Hybrid arrangements, i.e. arrangements for transition from single-path two-direction transmission to single-direction transmission on each of two paths or vice versa with means for reducing leakage of transmitter signal into the receiver
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/52Means for reducing coupling between antennas; Means for reducing coupling between an antenna and another structure
    • H01Q1/526Electromagnetic shields
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/24Supports; Mounting means by structural association with other equipment or articles with receiving set
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/52Means for reducing coupling between antennas; Means for reducing coupling between an antenna and another structure
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/02Transmitters
    • H04B1/04Circuits
    • H04B1/0475Circuits with means for limiting noise, interference or distortion
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/06Receivers
    • H04B1/10Means associated with receiver for limiting or suppressing noise or interference
    • H04B1/12Neutralising, balancing, or compensation arrangements
    • H04B1/123Neutralising, balancing, or compensation arrangements using adaptive balancing or compensation means

Definitions

  • the present application relates to an electronic device, and more particularly to an electronic device having an antenna, an antenna assembly, and a method for improving an antenna radiation index applied to the electronic device.
  • GSM Global System for Mobile Communications
  • the transmitted antenna signal is amplified by the amplifier to realize the call.
  • GSM will also be in a high-power situation.
  • the linearity of the GSM amplifier will drop sharply and the harmonic components will increase.
  • the harmonic components of this carrier will cause the radiation spurious to exceed the standard due to the radiation of the antenna.
  • the purpose of the present application is to provide an antenna assembly, an electronic device, and a method for improving an antenna radiation index, which can effectively avoid the radiation spurious of the antenna and improve the radiation index of the antenna when the antenna is operated at different powers.
  • the antenna assembly includes a radio frequency transceiver unit, an antenna amplifier, a coupler, and an antenna.
  • the antenna amplifier and the coupler are coupled to the radio frequency transceiver unit and the Between the antennas, and the coupler is also coupled to the radio frequency transceiver unit.
  • the radio frequency transceiver unit is configured to generate an antenna signal, wherein the antenna amplifier is configured to amplify the antenna signal and output the signal to the antenna, where the coupler is configured to couple an antenna signal amplified by the antenna amplifier to obtain an antenna signal.
  • the radio frequency transceiver unit is further configured to obtain a nonlinear harmonic signal generated by the antenna amplifier according to the coupled signal, and according to the nonlinearity
  • the harmonic signal generates an inverse pre-processed signal, and transmits the reverse pre-processed signal and the antenna signal to the antenna amplifier to cancel nonlinear harmonics generated by the antenna amplifier by the reverse pre-processed signal Wave signal.
  • an electronic device including an antenna assembly, the antenna assembly including a radio frequency transceiver unit, an antenna amplifier, a coupler, and an antenna, wherein the antenna amplifier and the coupler are coupled to the
  • the RF transceiver unit is coupled to the antenna, and the coupler is also coupled to the RF transceiver unit.
  • the radio frequency transceiver unit is configured to generate an antenna signal, wherein the antenna amplifier is configured to amplify the antenna signal and output the signal to the antenna, where the coupler is configured to couple an antenna signal amplified by the antenna amplifier to obtain an antenna signal.
  • a method for improving an antenna radiation index for use in an electronic device, the electronic device comprising a radio frequency transceiver unit, an antenna amplifier, a coupler, and an antenna; the method comprising: passing the coupler through the coupler The antenna signal of the amplified output of the antenna amplifier is coupled to obtain a coupled signal, and the coupled signal is fed back to the RF transceiver unit; and the nonlinear harmonic signal generated by the antenna amplifier is obtained according to the coupled signal; The linear harmonic signal generates an inverse pre-processed signal; and the inverse pre-processed signal and the antenna signal are transmitted to the antenna amplifier to cancel nonlinearity generated by the antenna amplifier by the reverse pre-processed signal Harmonic signal.
  • the antenna assembly, the electronic device and the method for improving the antenna radiation index provided by the present application generate a reverse pre-processing signal for canceling a nonlinear harmonic signal generated by the antenna amplifier according to the feedback of the coupler, and then sent to the antenna amplifier.
  • the reverse pre-processed signal is simultaneously sent to the antenna amplifier, which effectively cancels the nonlinear harmonic signal generated by the antenna amplifier, thereby avoiding radiation spurious exceeding the standard and effectively improving the radiation miscellaneous Disperse this antenna radiation indicator.
  • FIG. 3 is a schematic diagram of a nonlinear harmonic signal and a reverse preprocessed signal in an embodiment of the present application.
  • FIG. 4 is a schematic diagram showing a specific structure of a coupler of an antenna assembly according to an embodiment of the present application.
  • FIG. 6 is a flowchart of a method for improving an antenna radiation index according to an embodiment of the present application.
  • FIG. 7 is a flowchart of a method for improving an antenna radiation index according to another embodiment of the present application.
  • the antenna assembly 1 includes a radio frequency transceiver unit 11, an antenna amplifier 12, a coupler 13, and an antenna 14.
  • the antenna amplifier 12 and the coupler 13 are sequentially coupled between the RF transceiver unit 11 and the antenna 14 , and the coupler 13 is also coupled to the RF transceiver unit 11 . That is, the antenna amplifier 12 is coupled between the radio frequency transceiver unit 11 and the antenna 14. The coupler 13 is coupled to the antenna amplifier 13, the radio frequency transceiver unit 11, and the antenna 14. between.
  • the radio frequency transceiver unit 11 is configured to generate an antenna signal
  • the antenna amplifier 12 is configured to amplify the antenna signal and output the signal to the antenna 14.
  • the coupler 13 is configured to couple an antenna signal amplified by the antenna amplifier 12 to obtain a coupled signal, and feed the coupled signal to the radio frequency transceiver unit 11.
  • the radio frequency transceiver unit 11 is further configured to obtain a nonlinear harmonic signal generated by the antenna amplifier 12 according to the coupled signal, and generate a reverse preprocess signal according to the nonlinear harmonic signal, and generate the reverse
  • the pre-processed signal and the antenna signal are sent to the antenna amplifier 12 to cancel the nonlinear harmonic signal generated by the antenna amplifier 12 by the reverse pre-processed signal.
  • the reverse pre-processing signal is used to cancel the nonlinear harmonic signal.
  • the antenna signal amplified by the antenna amplifier is coupled back to the RF transceiver unit 11 through the coupler 13, and then the RF transceiver unit 11 analyzes the coupled signal fed back from the coupler 13 to obtain the antenna amplifier 12.
  • the nonlinear harmonic signal generates an inverse pre-processed signal for canceling the nonlinear harmonic signal, effectively eliminating the nonlinear harmonic signal generated by the antenna amplifier 12 operating in a nonlinear phase, and avoiding the antenna 14
  • the radiation spurs exceed the standard, improving the radiation index of the antenna 14.
  • the reverse pre-processed signal is an electromagnetic wave signal having the same amplitude and opposite direction as the amplitude of the nonlinear harmonic signal.
  • the coupler 13 couples the antenna signals amplified by the antenna amplifier 12 to obtain a coupled signal, including: the coupler 13 amplifies and outputs the antenna signal of the antenna amplifier 12
  • the nonlinear harmonic signals are coupled to obtain a coupled signal of the nonlinear harmonic signals. That is, in some embodiments, the coupler 13 can only couple nonlinear harmonic signals according to prior settings.
  • the coupler 13 has a specific coupling coefficient X1, and the coupled signal of the nonlinear harmonic signal obtained by the coupler 13 is the nonlinear harmonic signal through the specific coupling coefficient X1.
  • the attenuation signal of the nonlinear harmonic signal obtained by the attenuation is performed.
  • the specific coupling coefficient X1 may be a value less than one.
  • the radio frequency transceiver unit 11 obtains a nonlinear harmonic signal generated by the antenna amplifier 12 according to the coupled signal, including: the radio frequency transceiver unit 11 according to the coupling signal and a specific coupling coefficient X1 of the coupler 13
  • the nonlinear harmonic signal is restored.
  • the coupler 13 may also couple all of the antenna signals amplified and output by the antenna amplifier 12 to generate the coupled signal, and the radio frequency transceiver unit 11 receives the coupled signal. After that, a partial coupled signal corresponding to the nonlinear harmonic signal may be separated by harmonic analysis, and then the above-mentioned processing is performed according to the separated partial coupled signal corresponding to the nonlinear harmonic signal to restore the Nonlinear harmonic signal S2.
  • the demodulation receiver 112 is coupled to the coupler 13 for receiving a coupling signal fed back by the coupler 13 and demodulating the coupled signal to obtain a corresponding nonlinear harmonic signal.
  • the nonlinear harmonic signal generated by the antenna amplifier 12 is already a carrier-modulated signal, so that the coupled signal fed back to the demodulation receiver 112 by the coupler 13 is also a carrier.
  • the demodulation receiver 112 first demodulates the coupled signal to obtain a demodulated coupled signal, and then restores the demodulated coupled signal according to the demodulated coupled signal and the specific coupling coefficient X1 of the coupler 13.
  • the nonlinear harmonic signal is coupled to the coupler 13 for receiving a coupling signal fed back by the coupler 13 and demodulating the coupled signal to obtain a corresponding nonlinear harmonic signal.
  • FIG. 3 Please refer to FIG. 3 together for a schematic diagram of the nonlinear harmonic signal and the reverse pre-processed signal.
  • the nonlinear harmonic signal is S2
  • the reverse pre-processing signal is S3, and the reverse pre-processing signal S3 has the same period and the same amplitude as the nonlinear harmonic signal S2, and the reverse pre-processing
  • Each peak of the signal S3 corresponds to each valley of the nonlinear harmonic signal S2
  • each valley of the reverse pre-processing signal S3 corresponds to each peak of the nonlinear harmonic signal S2, and forms a peak
  • the signals of the nonlinear harmonic signal S2 having the same amplitude and opposite directions are described.
  • the thick line indicates that the nonlinear harmonic signal is S2
  • the thin line indicates that the reverse preprocess signal is S3.
  • the combiner 114 is configured to synthesize the antenna signal generated by the baseband processor 111 and the reverse pre-processed signal generated by the inverter 113 to form the reverse pre-processed signal and the A composite signal of the antenna signal is described and transmitted to the antenna amplifier 12.
  • the nonlinear harmonic signal generated by the antenna amplifier 12 is the same as the amplitude of the reverse preprocessed signal in the composite signal, the nonlinear harmonic signal generated by the antenna amplifier 12 is synthesized.
  • the reverse pre-processed signal in the signal cancels out, so that the nonlinear harmonic signal in the antenna signal output to the antenna 14 is eliminated, avoiding the radiation spurs of the antenna 14 exceeding the standard.
  • the coupler 13 includes an input end 131, a first output end 132, and a second output end 133.
  • the input end 131 is coupled to the antenna amplifier 12 for receiving the antenna amplifier 12.
  • the amplified antenna signal output after the antenna signal is amplified.
  • the first output end 132 is coupled to the antenna 14.
  • the input end 131 and the first output end 132 can be directly connected by wires or the like. Therefore, the amplified antenna signal of the antenna amplifier 12 received by the input terminal 131 is directly output to the antenna 14 through the first output terminal 132 and radiated through the antenna 14.
  • the second output end 132 is coupled to the radio frequency transceiver unit 11 , and further coupled to the demodulation receiver 112 in the radio frequency transceiver unit 11 .
  • the coupler 13 further includes a coupling member 134 coupled between the input end 31 and the second output end 133, the coupling member 134 is configured to perform the function of the coupler 13 described above, that is, the The coupling component 134 couples the antenna signal amplified by the antenna amplifier 12 received by the input terminal 131 to obtain a coupling signal, and outputs the demodulated receiver to the radio frequency transceiver unit 11 through the second output terminal 133. 112, and the coupled signal is fed back to the radio frequency transceiver unit 11.
  • the coupling member 134 can be a specific coupling device or a coupling circuit.
  • the radio frequency transceiver unit 11 generates an inverse pre-processed signal for canceling the nonlinear harmonic signal generated by the antenna amplifier 12 based on the feedback of the coupler 13, and then transmits the antenna signal to the antenna amplifier 12.
  • the antenna amplifier 12 is given, the reverse pre-processed signal is simultaneously transmitted to the antenna amplifier 12, which effectively cancels the nonlinear harmonic signal generated by the antenna amplifier 12, thereby avoiding radiation spurious exceeding the standard and effectively improving the radiation.
  • This antenna radiation indicator is stray.
  • the antenna amplifier 12 may specifically be a GSM (Global System for Mobile Communications) antenna amplifier.
  • GSM Global System for Mobile Communications
  • the electronic device 100 can be a device having an antenna 14 such as a mobile phone or a tablet computer.
  • the antenna 14 may be a metal member disposed on a circuit board of the electronic device 100, or may be a metal back shell or a metal frame of the electronic device 100, or may be a metal member disposed on a circuit board of the electronic device 100.
  • the electronic device 100 may also include other components, such as display screens, processors, etc., which are not described herein because they are not related to improvements of the present application.
  • FIG. 6 is a flowchart of a method for improving an antenna radiation index according to an embodiment of the present application.
  • the method for improving the antenna radiation index is applied to the aforementioned electronic device 100 and the antenna assembly 1, and the method for improving the antenna radiation index includes the following steps.
  • the antenna signal amplified by the antenna amplifier 12 is coupled by the coupler 13 to obtain a coupled signal, and the coupled signal is fed back to the radio frequency transceiver unit 11 (S61).
  • the "coupling of the antenna signal for amplifying the output of the antenna amplifier 12 by the coupler 13 to obtain a coupled signal” includes: nonlinearity in the antenna signal amplified by the antenna amplifier 12 through the coupler 13
  • the harmonic signals are coupled to obtain a coupled signal of the nonlinear harmonic signal.
  • the coupled signal of the nonlinear harmonic signal obtained by the coupler 13 is an attenuation signal of a nonlinear harmonic signal obtained by attenuating the nonlinear harmonic signal by the specific coupling coefficient X1.
  • the reverse pre-processed signal is an electromagnetic wave signal having the same amplitude and opposite direction as the amplitude of the nonlinear harmonic signal.
  • the reverse pre-processed signal and the antenna signal are transmitted to the antenna amplifier 12 to cancel a nonlinear harmonic signal generated by the antenna amplifier 12 by the reverse pre-processed signal (S67).
  • FIG. 7 is a flowchart of a method for improving an antenna radiation index according to another embodiment of the present application.
  • the functional elements of the electronic device 100 that implement the specific steps are more specifically described. Wherein, the method comprises the following steps.
  • the nonlinear harmonic signal in the antenna signal amplified and output by the antenna amplifier 12 is coupled by the coupler 13 to obtain a coupled signal of the nonlinear harmonic signal (S71).
  • the step S71 includes: attenuating the nonlinear harmonic signal by the coupler 13 according to a specific coupling coefficient X1 of the coupler 13 to obtain the nonlinear harmonic signal.
  • the coupled signal of the attenuated signal includes: attenuating the nonlinear harmonic signal by the coupler 13 according to a specific coupling coefficient X1 of the coupler 13 to obtain the nonlinear harmonic signal.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Transmitters (AREA)

Abstract

本申请提供一种改善天线辐射指标的方法,应用于一电子装置中,所述方法包括:通过耦合器将天线放大器放大输出的天线信号进行耦合而得到耦合信号,并将所述耦合信号反馈给射频收发单元;根据所述耦合信号得出所述天线放大器产生的非线性谐波信号;根据所述非线性谐波信号产生反向预处理信号;以及将所述反向预处理信号和所述天线信号发送给所述天线放大器,以通过所述反向预处理信号消除所述天线放大器产生的非线性谐波信号。本申请还提供应用所述方法的电子装置及天线组件。

Description

天线组件、电子装置及改善天线辐射指标的方法 技术领域
本申请涉及一种电子设备,特别涉及一种具有天线的电子装置、天线组件及应用于所述电子装置的改善天线辐射指标的方法。
背景技术
辐射杂散作为目前电子设备的强制认证指标,是所有天线辐射指标认证当中最复杂,最为难解的一个难题。特别是对于GSM频段,在部分工作场景下,它本身的功率会比较高,很容易在瞬间激发强有的能量从而导致辐射杂散的谐波超标。在实际的使用中,我们也主要会碰到GSM900的三次谐波容易超标,GSM1800的二次或者三次谐波超标。
对于射频信号而言,发射的信号不仅仅会包含可用信号(GSM900),往往在这其中还会包含有二次(1800GHz)/三次谐波的成分(2700GHz),实际的使用中大部分是三次谐波会出现超标。同样对于谐振的天线而言,也会包含有基波,二次/三次的谐振。而当射频信号的三次谐波能量到达天线的三次谐振处,就会将这些无用的谐波能量辐射出去,从而导致杂散超标。
另外,GSM作为大功率通信连接制式,在大部分情况下都是使用较小的功率,发射的天线信号通过放大器放大后实现通话,然而,部分场景下GSM也会处于大功率情况,当GSM在处于大功率情况下时,会导致GSM的放大器的线性度急剧下降从来使得谐波的成分会增加,这种携带的谐波成分会随着天线的辐射而导致辐射杂散超标。
发明内容
本申请的目的在于提供一种天线组件、电子装置及改善天线辐射指标的方法,可在天线工作在不同的功率下时,都能有效避免天线的辐射杂散超标而改善天线的辐射指标。
为了解决上述技术问题,提供一种天线组件,所述天线组件包括射频收发单元、天线放大器、耦合器以及天线,所述天线放大器及所述耦合器依次耦接 于所述射频收发单元与所述天线之间,且所述耦合器还与所述射频收发单元耦接。所述射频收发单元用于产生天线信号,所述天线放大器用于将所述天线信号进行放大后输出给所述天线,所述耦合器用于将所述天线放大器放大输出的天线信号进行耦合而得到耦合信号,并将所述耦合信号反馈给所述射频收发单元;所述射频收发单元还用于根据所述耦合信号得出所述天线放大器产生的非线性谐波信号,并根据所述非线性谐波信号产生反向预处理信号,并将所述反向预处理信号和所述天线信号发送给所述天线放大器,以通过所述反向预处理信号消除所述天线放大器产生的非线性谐波信号。
另一方面,提供一种电子装置,所述电子装置包括天线组件,所述天线组件包括射频收发单元、天线放大器、耦合器以及天线,所述天线放大器及所述耦合器依次耦接于所述射频收发单元与所述天线之间,且所述耦合器还与所述射频收发单元耦接。所述射频收发单元用于产生天线信号,所述天线放大器用于将所述天线信号进行放大后输出给所述天线,所述耦合器用于将所述天线放大器放大输出的天线信号进行耦合而得到耦合信号,并将所述耦合信号反馈给所述射频收发单元;所述射频收发单元还用于根据所述耦合信号得出所述天线放大器产生的非线性谐波信号,并根据所述非线性谐波信号产生反向预处理信号,并将所述反向预处理信号和所述天线信号发送给所述天线放大器,以通过所述反向预处理信号消除所述天线放大器产生的非线性谐波信号。
再一方面,提供一种改善天线辐射指标的方法,应用于一电子装置中,所述电子装置包括射频收发单元、天线放大器、耦合器以及天线;所述方法包括:通过所述耦合器将所述天线放大器放大输出的天线信号进行耦合而得到耦合信号,并将所述耦合信号反馈给射频收发单元;根据所述耦合信号得出所述天线放大器产生的非线性谐波信号;根据所述非线性谐波信号产生反向预处理信号;以及将所述反向预处理信号和所述天线信号发送给所述天线放大器,以通过所述反向预处理信号消除所述天线放大器产生的非线性谐波信号。
本申请提供的天线组件、电子装置及改善天线辐射指标的方法,根据耦合器的反馈而生成用于抵消天线放大器产生的非线性谐波信号的反向预处理信号,然后在发送给天线放大器的天线信号给天线放大器时,同时发送所述反向预处理信号至所述天线放大器,有效地抵消了天线放大器产生的非线性谐波信 号,从而避免了辐射杂散超标,有效地改善了辐射杂散这一天线辐射指标。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的明显变形方式。
图1为本申请一实施例中的天线组件的结构框图。
图2为本申请一实施例中的天线组件的中的射频收发单元的结构示意图。
图3为本申请一实施例中的非线性谐波信号和反向预处理信号的示意图。
图4为本申请一实施例中的天线组件的示意出了耦合器的具体结构的示意图。
图5为本申请一实施例中的电子装置的结构框图。
图6为本申请一实施例中的改善天线辐射指标的方法的流程图。
图7为本申请另一实施例中的改善天线辐射指标的方法的流程图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有付出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
本申请实施例的描述中,需要理解的是,作为一个整体描述的元件,当包括进一步的元器件时,所述元件包括的元器件可为相互独立的也可为整合在一起的。
请参阅图1,为天线组件1的结构框图。所述天线组件1包括射频收发单元11、天线放大器12、耦合器13以及天线14。
所述天线放大器12及所述耦合器13依次耦接于所述射频收发单元11与所述天线14之间,且所述耦合器13还与所述射频收发单元11耦接。即,所 述天线放大器12耦接于所述射频收发单元11与所述天线14之间,所述耦合器13耦接于所述天线放大器13、所述射频收发单元11及所述天线14之间。
所述射频收发单元11用于产生天线信号,所述天线放大器12用于将所述天线信号进行放大后输出给所述天线14。所述耦合器13用于将所述天线放大器12放大输出的天线信号进行耦合而得到耦合信号,并将所述耦合信号反馈给所述射频收发单元11。
所述射频收发单元11还用于根据所述耦合信号得出所述天线放大器12产生的非线性谐波信号,并根据所述非线性谐波信号产生反向预处理信号,并将所述反向预处理信号和所述天线信号发送给所述天线放大器12,以通过所述反向预处理信号消除所述天线放大器12产生的非线性谐波信号。其中,所述反向预处理信号用于消除所述非线性谐波信号。
从而,本申请中,通过所述耦合器13将所述天线放大器放大输出的天线信号耦合反馈回射频收发单元11,然后射频收发单元11根据耦合器13反馈回的耦合信号分析得到天线放大器12产生的非线性谐波信号,而产生用于消除所述非线性谐波信号的反向预处理信号,有效地消除了天线放大器12工作在非线性阶段产生的非线性谐波信号,避免了天线14的辐射杂散超标,改善了天线14的辐射指标。
在一些实施例中,所述反向预处理信号为与所述非线性谐波信号的振幅相同,方向相反的电磁波信号。
其中,在一些实施例中,所述耦合器13将所述天线放大器12放大输出的天线信号进行耦合而得到耦合信号,包括:所述耦合器13将所述天线放大器12放大输出的天线信号中的非线性谐波信号进行耦合而得到所述非线性谐波信号的耦合信号。即,在一些实施例中,所述耦合器13可根据预先的设置而仅对非线性谐波信号进行耦合。
在一些实施例中,所述耦合器13具有特定耦合系数X1,所述耦合器13得到的所述非线性谐波信号的耦合信号为通过所述特定耦合系数X1对所述非线性谐波信号进行了衰减得到的非线性谐波信号的衰减信号。其中,所述特定耦合系数X1可为一小于1的值。
即,在一些实施例中,所述耦合器13将所述天线放大器12放大输出的天 线信号进行耦合而得到耦合信号,更包括:所述耦合器13根据所述特定耦合系数X1对所述非线性谐波信号进行衰减而得到为非线性谐波信号的衰减信号的耦合信号。
所述射频收发单元11根据所述耦合信号得出所述天线放大器12产生的非线性谐波信号,包括:所述射频收发单元11根据所述耦合信号以及所述耦合器13的特定耦合系数X1而还原出所述非线性谐波信号。具体的,所述射频收发单元11可将所述耦合信号乘以所述特定耦合系数X1的倒数而还原出所述非线性谐波信号。例如,设耦合信号为S1,非线性谐波信号为S2,则所述射频收发单元11根据公式S2=S1/X1还原出所述非线性谐波信号S2。
显然,在其他实施例中,所述耦合器13还可将所述天线放大器12放大输出的天线信号的全部进行耦合而产生所述耦合信号,所述射频收发单元11在接收到所述耦合信号后,可先通过谐波分析分离出与非线性谐波信号对应的部分耦合信号,然后再根据所述分离出来的与非线性谐波信号对应的部分耦合信号进行上述的处理而还原出所述非线性谐波信号S2。
请一并参阅图2,为射频收发单元11的结构框图。如图2所示,所述射频收发单元11包括基带处理器111、解调接收器112、反向器113以及合路器114。
所述基带处理器111用于产生所述天线信号。
所述解调接收器112与所述耦合器13耦接,用于接收所述耦合器13反馈的耦合信号,并对所述耦合信号进行解调而得出对应的非线性谐波信号。在一些实施例中,所述天线放大器12产生的非线性谐波信号已经是经过载波调制后的信号,从而,所述耦合器13反馈给所述解调接收器112的耦合信号也为经过载波调制后的信号。所述解调接收器112先对所述耦合信号进行解调而得到解调后的耦合信号,然后,根据所述解调后的耦合信号以及所述耦合器13的特定耦合系数X1而还原出所述非线性谐波信号。
所述反向器113用于根据所述解调接收器112还原出的非线性谐波信号产生对应的反向预处理信号。具体的,所述反向器113根据所述解调接收器112还原出的非线性谐波信号的振幅和方向而产生振幅与所述非线性谐波信号的振幅相同、方向与所述非线性谐波信号的方向相反的反向预处理信号。
请一并参阅图3,为非线性谐波信号和反向预处理信号的示意图。如图3所示,设非线性谐波信号为S2,反向预处理信号为S3,反向预处理信号S3与所述非线性谐波信号S2的周期相同、振幅相同,且反向预处理信号S3的每个波峰正好对应所述非线性谐波信号S2的每个波谷,反向预处理信号S3的每个波谷正好对应所述非线性谐波信号S2的每个波峰,而形成与所述非线性谐波信号S2的振幅相同、方向相反的信号。其中,图3中,粗线所示的为非线性谐波信号为S2,细线所示的为反向预处理信号为S3。
所述合路器114用于将所述基带处理器111产生的所述天线信号与所述反向器113产生的反向预处理信号进行合成,而形成包括所述反向预处理信号与所述天线信号的合成信号,并发送给所述天线放大器12。
由于所述天线放大器12产生的非线性谐波信号与所述合成信号中的反向预处理信号的振幅相同、方向相反,从而,所述天线放大器12产生的非线性谐波信号被所述合成信号中的反向预处理信号抵消,而使得输出给天线14的天线信号中的非线性谐波信号被消除,避免了天线14的辐射杂散超标。
请一并参阅图4,为本申请一实施例中的天线组件1的示意出了耦合器13的具体结构的示意图。如图4所示,所述耦合器13包括输入端131、第一输出端132以及第二输出端133,所述输入端131与所述天线放大器12耦接,用于接收所述天线放大器12对天线信号放大后输出的放大后的天线信号。所述第一输出端132与所述天线14耦接,所述输入端131与所述第一输出端132可通过导线等直接连接。从而,所述输入端131接收的所述天线放大器12放大后的天线信号通过所述第一输出端132直接输出给天线14,并通过天线14辐射出去。
所述第二输出端132与所述射频收发单元11耦接,进一步的,为与所述射频收发单元11中的解调接收器112耦接。所述耦合器13还包括耦接于所述输入端31以及所述第二输出端133之间的耦合件134,所述耦合件134用于执行前述的耦合器13的功能,即,所述耦合件134对所述输入端131接收的所述天线放大器12放大后的天线信号进行耦合而得到耦合信号,并通过所述第二输出端133输出给所述射频收发单元11的解调接收器112,而将所述耦合信号反馈至所述射频收发单元11。其中,所述耦合件134可为特定的耦合 器件或耦合电路。
从而,本申请中,所述射频收发单元11根据耦合器13的反馈而生成用于抵消天线放大器12产生的非线性谐波信号的反向预处理信号,然后在发送给天线放大器12的天线信号给天线放大器12时,同时发送所述反向预处理信号至所述天线放大器12,有效地抵消了天线放大器12产生的非线性谐波信号,从而避免了辐射杂散超标,有效地改善了辐射杂散这一天线辐射指标。
其中,所述天线放大器12具体可为GSM(全球移动通信系统,Global System forMobile Communications)天线放大器。
请参阅图5,为电子装置100的示意图。所述电子装置100包括前述的天线组件1。
其中,所述电子装置100可为手机、平板电脑等具有天线14的装置。
其中,所述天线14可为设置于电子装置100的电路板上的金属件,也可以为电子装置100的金属后壳或金属边框,或者可为设置于电子装置100的电路板上的金属件与金属后壳或金属边框电连接后形成的天线辐射体。
显然,所述电子装置100还可包括其他的元件,例如显示屏、处理器等等,由于与本申请改进无关,故未在此描述。
请参阅图6,为本申请一实施例中的改善天线辐射指标的方法的流程图。所述改善天线辐射指标的方法应用于前述的电子装置100及天线组件1中,所述改善天线辐射指标的方法包括如下步骤。
通过耦合器13将天线放大器12放大输出的天线信号进行耦合而得到耦合信号,并将所述耦合信号反馈给射频收发单元11(S61)。其中,所述“通过耦合器13用于将天线放大器12放大输出的天线信号进行耦合而得到耦合信号”包括:通过所述耦合器13将所述天线放大器12放大输出的天线信号中的非线性谐波信号进行耦合而得到所述非线性谐波信号的耦合信号。其中,所述耦合器13得到的所述非线性谐波信号的耦合信号为通过所述特定耦合系数X1对所述非线性谐波信号进行了衰减得到的非线性谐波信号的衰减信号。
根据所述耦合信号得出所述天线放大器12产生的非线性谐波信号(S63)。具体的,所述步骤S63包括:根据所述耦合信号以及所述耦合器13的特定耦合系数X1而还原出所述非线性谐波信号。
根据所述非线性谐波信号产生反向预处理信号(S65)。其中,所述反向预处理信号为与所述非线性谐波信号的振幅相同,方向相反的电磁波信号。
将所述反向预处理信号和所述天线信号发送给所述天线放大器12,以通过所述反向预处理信号消除所述天线放大器12产生的非线性谐波信号(S67)。
请参阅图7,为本申请另一实施例中的改善天线辐射指标的方法的流程图。在另一实施例中,更具体地描述了所述电子装置100中实现具体步骤的功能元件。其中,所述方法包括如下步骤。
通过耦合器13将天线放大器12放大输出的天线信号中的非线性谐波信号进行耦合而得到所述非线性谐波信号的耦合信号(S71)。在一些实施例中,所述步骤S71包括:通过所述耦合器13来根据所述耦合器13的特定耦合系数X1对所述非线性谐波信号进行衰减而得到为所述非线性谐波信号的衰减信号的耦合信号。
通过解调接收器112来根据所述耦合信号以及所述耦合器13的特定耦合系数X1而还原出所述非线性谐波信号(S73)。在一些实施例中,所述步骤S73包括:通过解调接收器112对所述耦合信号进行解调,然后根据所述解调后的耦合信号以及所述耦合器13的特定耦合系数X1而还原出所述非线性谐波信号。
通过反向器113来根据所述解调接收器112还原出的非线性谐波信号产生对应的反向预处理信号(S75)。具体的,所述步骤S75包括:通过所述反向器113来根据所述解调接收器112还原出的非线性谐波信号的振幅和方向而产生振幅与所述非线性谐波信号的振幅相同、方向与所述非线性谐波信号的方向相反的反向预处理信号。
通过合路器114将天线信号与所述反向器113产生的反向预处理信号进行合成,而形成包括所述反向预处理信号与所述天线信号的合成信号,并发送给所述天线放大器12(S77)。
其中,图7中的上述步骤S71-S77分别对应图6中的步骤S61-S67,相关的地方可以相互参照。图7中的上述步骤S71-S77更具体地描述了所述电子装置100中实现具体步骤的功能元件,可以视为图6中对应步骤的更具体的步骤。
本申请提供的电子装置100、天线组件1及改善天线辐射指标的方法,根 据耦合器13的反馈而生成用于抵消天线放大器12产生的非线性谐波信号的反向预处理信号,然后在发送给天线放大器12的天线信号给天线放大器12时,同时发送所述反向预处理信号至所述天线放大器12,有效地抵消了天线放大器12产生的非线性谐波信号,从而避免了辐射杂散超标,有效地改善了辐射杂散这一天线辐射指标。
以上是本申请实施例的实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本申请实施例原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也视为本申请的保护范围。

Claims (20)

  1. 一种天线组件,其特征在于,所述天线组件包括射频收发单元、天线放大器、耦合器以及天线,所述天线放大器及所述耦合器依次耦接于所述射频收发单元与所述天线之间,且所述耦合器还与所述射频收发单元耦接;所述射频收发单元用于产生天线信号,所述天线放大器用于将所述天线信号进行放大后输出给所述天线,所述耦合器用于将所述天线放大器放大输出的天线信号进行耦合而得到耦合信号,并将所述耦合信号反馈给所述射频收发单元;所述射频收发单元还用于根据所述耦合信号得出所述天线放大器产生的非线性谐波信号,并根据所述非线性谐波信号产生反向预处理信号,并将所述反向预处理信号和所述天线信号发送给所述天线放大器,以通过所述反向预处理信号消除所述天线放大器产生的非线性谐波信号。
  2. 根据权利要求1所述的天线组件,其特征在于,所述反向预处理信号为与所述非线性谐波信号的振幅相同,方向相反的电磁波信号。
  3. 根据权利要求2所述的天线组件,其特征在于,所述耦合器将所述天线放大器放大输出的天线信号中的非线性谐波信号进行耦合而得到所述非线性谐波信号的耦合信号。
  4. 根据权利要求3所述的天线组件,其特征在于,所述耦合器具有特定耦合系数,所述耦合器得到的所述非线性谐波信号的耦合信号为通过所述特定耦合系数对所述非线性谐波信号进行了衰减得到的非线性谐波信号的衰减信号。
  5. 根据权利要求4所述的天线组件,其特征在于,所述射频收发单元根据所述耦合信号以及所述耦合器的特定耦合系数而还原出所述非线性谐波信号。
  6. 根据权利要求5所述的天线组件,其特征在于,所述射频收发单元包括基带处理器、解调接收器、反向器以及合路器;所述基带处理器用于产生所述天线信号,所述解调接收器与所述耦合器耦接,用于接收所述耦合器反馈的耦合信号,并对所述耦合信号进行解调而得出对应的非线性谐波信号,所述反向器用于根据所述解调接收器还原出的非线性谐波信号产生对应的反向预处 理信号,所述合路器用于将所述基带处理器产生的所述天线信号与所述反向器产生的反向预处理信号进行合成,而形成包括所述反向预处理信号与所述天线信号的合成信号,并发送给所述天线放大器。
  7. 根据权利要求6所述的天线组件,其特征在于,所述反向器根据所述解调接收器还原出的非线性谐波信号的振幅和方向而产生振幅与所述非线性谐波信号的振幅相同、方向与所述非线性谐波信号的方向相反的反向预处理信号。
  8. 根据权利要求6所述的天线组件,其特征在于,所述解调接收器先对所述耦合信号进行解调而得到解调后的耦合信号,然后,根据所述解调后的耦合信号以及所述耦合器的特定耦合系数而还原出所述非线性谐波信号。
  9. 根据权利要求1-8任一项所述的天线组件,其特征在于,所述耦合器包括输入端、第一输出端以及第二输出端,所述输入端与所述天线放大器耦接,用于接收所述天线放大器对天线信号放大后输出的放大后的天线信号;所述第一输出端与所述天线耦接,所述输入端与所述第一输出端直接连接;所述第二输出端与所述射频收发单元耦接,所述耦合器还包括耦接于所述输入端以及所述第二输出端之间的耦合件,所述耦合件对所述输入端接收的所述天线放大器放大后的天线信号进行耦合而得到耦合信号,并通过所述第二输出端输出给所述射频收发单元。
  10. 一种电子装置,其特征在于,所述电子装置包括天线组件,所述天线组件包括射频收发单元、天线放大器、耦合器以及天线,所述天线放大器及所述耦合器依次耦接于所述射频收发单元与所述天线之间,且所述耦合器还与所述射频收发单元耦接;所述射频收发单元用于产生天线信号,所述天线放大器用于将所述天线信号进行放大后输出给所述天线,所述耦合器用于将所述天线放大器放大输出的天线信号进行耦合而得到耦合信号,并将所述耦合信号反馈给所述射频收发单元;所述射频收发单元还用于根据所述耦合信号得出所述天线放大器产生的非线性谐波信号,并根据所述非线性谐波信号产生反向预处理信号,并将所述反向预处理信号和所述天线信号发送给所述天线放大器,以通过所述反向预处理信号消除所述天线放大器产生的非线性谐波信号。
  11. 根据权利要求10所述的电子装置,其特征在于,所述反向预处理信 号为与所述非线性谐波信号的振幅相同,方向相反的电磁波信号。
  12. 根据权利要求11所述的电子装置,其特征在于,所述耦合器将所述天线放大器放大输出的天线信号中的非线性谐波信号进行耦合而得到所述非线性谐波信号的耦合信号。
  13. 根据权利要求12所述的电子装置,其特征在于,所述耦合器具有特定耦合系数,所述耦合器得到的所述非线性谐波信号的耦合信号为通过所述特定耦合系数对所述非线性谐波信号进行了衰减得到的非线性谐波信号的衰减信号。
  14. 根据权利要求13所述的电子装置,其特征在于,所述射频收发单元根据所述耦合信号以及所述耦合器的特定耦合系数而还原出所述非线性谐波信号。
  15. 根据权利要求14所述的电子装置,其特征在于,所述射频收发单元包括基带处理器、解调接收器、反向器以及合路器;所述基带处理器用于产生所述天线信号,所述解调接收器与所述耦合器耦接,用于接收所述耦合器反馈的耦合信号,并对所述耦合信号进行解调而得出对应的非线性谐波信号,所述反向器用于根据所述解调接收器还原出的非线性谐波信号产生对应的反向预处理信号,所述合路器用于将所述基带处理器产生的所述天线信号与所述反向器产生的反向预处理信号进行合成,而形成包括所述反向预处理信号与所述天线信号的合成信号,并发送给所述天线放大器。
  16. 一种改善天线辐射指标的方法,应用于一电子装置中,所述电子装置包括射频收发单元、天线放大器、耦合器以及天线;所述方法包括:
    通过所述耦合器将所述天线放大器放大输出的天线信号进行耦合而得到耦合信号,并将所述耦合信号反馈给射频收发单元;
    根据所述耦合信号得出所述天线放大器产生的非线性谐波信号;
    根据所述非线性谐波信号产生反向预处理信号;以及
    将所述反向预处理信号和所述天线信号发送给所述天线放大器,以通过所述反向预处理信号消除所述天线放大器产生的非线性谐波信号。
  17. 根据权利要求16所述的改善天线辐射指标的方法,其特征在于,所述反向预处理信号为与所述非线性谐波信号的振幅相同,方向相反的电磁波信 号。
  18. 根据权利要求17所述的改善天线辐射指标的方法,其特征在于,所述“通过所述耦合器将所述天线放大器放大输出的天线信号进行耦合而得到耦合信号”包括:
    通过所述耦合器将所述天线放大器放大输出的天线信号中的非线性谐波信号进行耦合而得到所述非线性谐波信号的耦合信号。
  19. 根据权利要求18所述的改善天线辐射指标的方法,其特征在于,所述“通过所述耦合器将所述天线放大器放大输出的天线信号中的非线性谐波信号进行耦合而得到所述非线性谐波信号的耦合信号”,包括:
    通过所述耦合器来根据所述耦合器的特定耦合系数对所述非线性谐波信号进行衰减而得到为所述非线性谐波信号的衰减信号的耦合信号。
  20. 根据权利要求19所述的改善天线辐射指标的方法,其特征在于,所述“根据所述非线性谐波信号产生反向预处理信号”包括:
    根据所述耦合信号以及所述耦合器的特定耦合系数而还原出所述非线性谐波信号。
PCT/CN2019/072671 2018-02-05 2019-01-22 天线组件、电子装置及改善天线辐射指标的方法 WO2019149112A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810115959.8 2018-02-05
CN201810115959.8A CN108400442A (zh) 2018-02-05 2018-02-05 天线组件、电子装置及改善天线辐射指标的方法

Publications (1)

Publication Number Publication Date
WO2019149112A1 true WO2019149112A1 (zh) 2019-08-08

Family

ID=63095857

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/072671 WO2019149112A1 (zh) 2018-02-05 2019-01-22 天线组件、电子装置及改善天线辐射指标的方法

Country Status (2)

Country Link
CN (1) CN108400442A (zh)
WO (1) WO2019149112A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108400442A (zh) * 2018-02-05 2018-08-14 广东欧珀移动通信有限公司 天线组件、电子装置及改善天线辐射指标的方法
CN109600772B (zh) * 2018-12-13 2020-09-29 京信通信系统(中国)有限公司 带内杂散消除的方法、装置及其主控器、直放站设备

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104218895A (zh) * 2014-09-01 2014-12-17 中国电子科技集团公司第五十五研究所 高次谐波混频器
CN105099488A (zh) * 2015-07-20 2015-11-25 联想(北京)有限公司 一种射频电路
CN105978522A (zh) * 2016-05-04 2016-09-28 电子科技大学 一种吸收式带通滤波器组件
CN206962817U (zh) * 2017-05-19 2018-02-02 维沃移动通信有限公司 一种天线系统及移动终端
CN108400442A (zh) * 2018-02-05 2018-08-14 广东欧珀移动通信有限公司 天线组件、电子装置及改善天线辐射指标的方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5966645A (en) * 1997-06-03 1999-10-12 Garmin Corporation Transmitter with low-level modulation and minimal harmonic emissions
US7313370B2 (en) * 2002-12-27 2007-12-25 Nokia Siemens Networks Oy Intermodulation product cancellation in communications
ATE542292T1 (de) * 2008-07-02 2012-02-15 Innovaradio S A Vorverzerrungsverfahren und einrichtung zur verbesserung der leistungsfähigkeit von leistungsverstärkern in drahtlosen digitalen kommunikationsanwendungen
CN101677149B (zh) * 2008-09-19 2013-04-24 华为技术有限公司 一种提高天线隔离度的方法、系统及装置
US8615207B2 (en) * 2010-02-01 2013-12-24 Intersil Americas Inc. Power amplifier linearization feedback methods and systems
CN103701479B (zh) * 2013-12-16 2017-04-19 联想(北京)有限公司 一种信息处理的方法及一种基站
CN104883195B (zh) * 2015-06-05 2017-05-10 苏州闻捷传感技术有限公司 基于谐波反馈的太赫兹雷达信号发射机及发射方法
CN105812003B (zh) * 2016-03-21 2019-02-05 Oppo广东移动通信有限公司 杂散干扰抑制方法、杂散干扰抑制装置及电子装置
CN106685442A (zh) * 2016-12-29 2017-05-17 北京裕源大通科技股份有限公司 一种二次谐波反相抵消功能电路

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104218895A (zh) * 2014-09-01 2014-12-17 中国电子科技集团公司第五十五研究所 高次谐波混频器
CN105099488A (zh) * 2015-07-20 2015-11-25 联想(北京)有限公司 一种射频电路
CN105978522A (zh) * 2016-05-04 2016-09-28 电子科技大学 一种吸收式带通滤波器组件
CN206962817U (zh) * 2017-05-19 2018-02-02 维沃移动通信有限公司 一种天线系统及移动终端
CN108400442A (zh) * 2018-02-05 2018-08-14 广东欧珀移动通信有限公司 天线组件、电子装置及改善天线辐射指标的方法

Also Published As

Publication number Publication date
CN108400442A (zh) 2018-08-14

Similar Documents

Publication Publication Date Title
WO2019114622A1 (zh) 天线调谐电路、天线装置及移动终端
US7555280B2 (en) Apparatus for frequency direct conversion reception in mobile communication terminal and method thereof
WO2015043524A1 (zh) 自干扰信号消除设备及方法
US9438314B2 (en) Apparatus and method for wirelessly transmitting and receiving energy and data
JP5908568B2 (ja) スプール減衰デバイス、システム、および方法
WO2019149112A1 (zh) 天线组件、电子装置及改善天线辐射指标的方法
JP2016072951A (ja) 無線通信装置
EP3734752A1 (en) Antenna module, terminal, control method and device and storage medium
US20200328828A1 (en) Apparatus And Method For Correcting Deviation Between Plurality Of Transmission Channels
CN208939946U (zh) 一种天线收发电路、有源天线及电子设备
WO2013078793A1 (zh) 一种天线及终端
JPS58210729A (ja) 二重通信の方法および装置
KR100379378B1 (ko) 중계국 시스템의 송수신장치
WO2020043108A1 (zh) Fm天线电路和终端设备
US8073408B2 (en) Semiconductor integrated circuit including a mixer and wireless communication apparatus
TWI622224B (zh) 天線結構及具有該天線結構的無線通訊裝置
JP5635925B2 (ja) 通信モジュールおよび車載機器
US20240088835A1 (en) Radio-frequency Mixer having Transformer with Passive Termination
KR100595736B1 (ko) 휴대인터넷 시간분할이중방식 안테나단의 저잡음증폭기설계방법 및 그 저잡음증폭기
US20130045695A1 (en) Transmitting and receiving radio signals in various frequency ranges
JP3385917B2 (ja) 送受信装置
JPS62245730A (ja) デユプレツクス送受信機
JP2012209737A (ja) 送信装置
US20160173140A1 (en) Method and apparatus for an antenna
JPH0358528A (ja) 無線通信システムの基地局配置方式及びそれに用いる送信アンテナの配置方式

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19747427

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19747427

Country of ref document: EP

Kind code of ref document: A1