WO2019148945A1 - 多叶片旋流分相电容含水率测量装置 - Google Patents

多叶片旋流分相电容含水率测量装置 Download PDF

Info

Publication number
WO2019148945A1
WO2019148945A1 PCT/CN2018/117161 CN2018117161W WO2019148945A1 WO 2019148945 A1 WO2019148945 A1 WO 2019148945A1 CN 2018117161 W CN2018117161 W CN 2018117161W WO 2019148945 A1 WO2019148945 A1 WO 2019148945A1
Authority
WO
WIPO (PCT)
Prior art keywords
phase
capacitance
phase separation
liquid
flow
Prior art date
Application number
PCT/CN2018/117161
Other languages
English (en)
French (fr)
Inventor
张涛
徐英
汪晶晗
李继良
Original Assignee
天津大学
天津市天大泰和自控仪表技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 天津大学, 天津市天大泰和自控仪表技术有限公司 filed Critical 天津大学
Publication of WO2019148945A1 publication Critical patent/WO2019148945A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/22Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating capacitance
    • G01N27/223Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating capacitance for determining moisture content, e.g. humidity
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/26Oils; Viscous liquids; Paints; Inks
    • G01N33/28Oils, i.e. hydrocarbon liquids
    • G01N33/2835Specific substances contained in the oils or fuels
    • G01N33/2847Water in oils

Definitions

  • the invention belongs to the technical field of gas-liquid two-phase flow measurement, and relates to a multi-blade flow-conducting cyclone phase-separating capacitance water-measuring device.
  • the moisture content measurement methods mainly include radiation technology, microwave technology, electrical (resistance, capacitance) technology, and differential pressure technology.
  • radioactive technology has been limited in recent years due to increasingly strict safety management requirements.
  • the capacitance method has a long history, simple principle, and convenient maintenance.
  • the disadvantage is that it is seriously affected by the flow pattern.
  • Capacitive sensors are classified into contact and non-contact. Since the capacitive sensor response strongly depends on the spatial distribution of the dispersed phase, in order to reduce the spatial sensitivity non-uniformity, the researchers have performed on the capacitive sensor electrode structure. A large number of optimized designs were studied to measure the phase holdup under different flow patterns. The development status of the moisture measurement technology of the non-contact capacitive method is as follows:
  • the flow pattern includes slug flow, intermittent flow and annular flow.
  • the authors used wavelet analysis to study the flow pattern and phase hold ratio.
  • the conclusion is that the measurement of the phase hold ratio is inevitably affected by the flow pattern.
  • Zhao An et al. of Tianjin University studied two kinds of capacitive sensors—the adaptability of wall-type and double-helical sensors to the measurement of gas-liquid two-phase flow phase concentration, and built a vertical rising gas-liquid two-phase flow capacitive sensor measurement system. .
  • the conclusion is that the measurement resolution of the wall capacitive sensor is poor, and the double spiral capacitive sensor has a relatively high resolution of the phase concentration, but both are affected by the flow pattern.
  • M J Da Silva et al. designed a capacitive wire mesh sensor. Experiments were carried out on the bubble flow of vertical duct air and silicone oil to achieve image reconstruction of the axial and radial sections of a single bubble.
  • Tonglusheng et al. of Tianjin University used parallel-line capacitance probes to measure the cross-correlation velocity of oil-water two-phase flow in horizontal tubes. It was found that the cross-correlation properties of parallel-line capacitance probes were affected by the flow structure of oil and water.
  • X.Chen et al. of Tianjin University used a coaxial capacitance sensor to conduct an oil-water two-phase flow experiment in a riser with an inner diameter of 20 mm.
  • Chinese patent application No. 201710465819.9 and Chinese patent application No. 201710465822.0 propose a device capable of improving the moisture content of a capacitive sensor by a flow pattern, which is a single spiral blade design, which results in two When the phase flow velocity is low, the spin-up effect is limited.
  • the present invention designs a capacitive moisture content sensor with a multi-blade special cyclone phase separation function, which can effectively change the randomly dispersed gas-liquid two-phase into a spiral strip flow with a good distribution law.
  • the field thus breaking the measurement of the phase ratio, is affected by the moisture flow structure.
  • the object of the present invention is to provide a new measuring device for measuring the moisture content of gas-water two-phase flow, and propose a multi-blade guiding type swirling split-phase capacitance water measuring device, which adopts multiple sets of spiral blades to make the separation more thorough. Effectively overcome the effects of gravity. After the cyclotron rectification is followed by the capacitance measurement part, due to the large inertia of the liquid phase, the tangential velocity will be guaranteed within a certain length range, and the liquid phase can be stably distributed on the pipe wall, and the gas-liquid phase separation effect is good.
  • the two-phase flow type does not depend on, and the reliable measurement of the water content of the capacitor unit can be realized.
  • the present invention adopts the following technical solutions:
  • a multi-blade cyclone phase-separating capacitor moisture content measuring device comprises a cyclone phase separation unit and a capacitance moisture content measuring unit, wherein the cyclone phase separation unit comprises a spiral blade support rod and is evenly distributed on the outer circumference of the spiral blade support rod More than 2 spiral blades and outer tube walls; the capacitance measuring unit comprises a metal inner core, a thin insulating layer covering the outer surface of the metal inner core, and an outer metal tube wall coaxial with the metal inner core.
  • the angle of the spiral blade is between 5° and 85°.
  • Each spiral blade is evenly distributed along the circumference.
  • the tail of the spiral blade support rod is matched with and connected to the size of the metal core, and the outer tube wall and the outer metal tube wall are matched and connected to each other.
  • the inner diameter of the flow pipe is D
  • the pitch of the spiral blade is 0.5D or more
  • the length of the capacitance measuring section is greater than 1D
  • the diameter of the outer metal pipe wall is more than twice the diameter of the metal inner core.
  • the water-facing surface of the spiral blade support rod is streamlined.
  • the present invention has the following technical effects:
  • the invention adopts more than one set of guiding spiral blades to enhance the spinning effect and overcome the influence of gravity on the capacitance measurement result;
  • the gas-liquid two phases continue to maintain a phase separation distribution, and the outer metal tube wall and the liquid film together constitute an external electrode, and interact with the metal inner core to form a capacitor.
  • the invention directly measures the liquid volume content rate by using a capacitance sensor, and the capacitance measurement value monotonously increases with the volume liquid content, and has measurement feasibility;
  • FIG. 1 is a schematic structural view of a multi-blade flow guiding type cyclone phase-separating capacitor water-containing measuring device of the present invention.
  • FIG. 2 Schematic diagram of the spiral blade structure of the cyclone phase separation section
  • (a) is a schematic diagram of the swirling blade -3 blade of the swirling phase separation unit
  • (b) is a schematic diagram of the swirling phase splitting section -4 blade of the swirling phase separation section.
  • Figure 3 is a schematic diagram of the principle of capacitance measurement.
  • Fig. 4 is based on the CFD numerical simulation results of air-water two-phase flow, and the axial liquid phase distribution cloud diagram of the capacitor water content measuring device under 0.6 MPa (white is gas phase distribution, black is liquid phase distribution).
  • Figure 5 is based on the CFD numerical simulation results of air-water two-phase flow.
  • the apparent gas flow rate at 0.6MPa is 20m/s
  • the liquid phase volume is 10%
  • the gas-liquid two-phase axial, radial and tangential directions under operating conditions
  • the velocity profile (a) is the gas phase axial velocity profile
  • (b) is the liquid phase axial velocity profile
  • (c) is the gas phase radial velocity profile
  • (d) is the liquid phase radial velocity profile
  • (e) is a gas phase tangential velocity profile
  • (f) is a liquid phase tangential velocity profile.
  • Figure 6 is based on the CFD numerical simulation results of air-water two-phase flow, the apparent flow velocity of the gas phase at 0.6MPa is 3m / s and 20m / s air two-phase flow, the relationship between the equivalent liquid film thickness and the volumetric liquid content LVF.
  • Figure 7 is based on the CFD numerical simulation results of air-water two-phase flow, the apparent flow velocity of gas phase at 0.6MPa is 3m / s and 20m / s air two-phase flow, the relationship between the volumetric liquid rate LVF and the measured capacitance.
  • the invention relates to a moisture content measuring device used in gas-liquid two-phase flow, and the structural schematic diagram is shown in FIG. 1 . It can be combined with any single-phase differential pressure meter upstream of the device, such as orifice plate, venturi, V cone and other standard and non-standard throttling devices to measure the gas-liquid two-phase flow.
  • any single-phase differential pressure meter upstream of the device such as orifice plate, venturi, V cone and other standard and non-standard throttling devices to measure the gas-liquid two-phase flow.
  • the multi-blade guiding type swirling split-phase capacitor water content measuring device of the invention comprises a swirling phase splitting unit 1 and a capacitance measuring unit 2, and the swirling phase splitting unit 1 is composed of a spiral blade 1-2 and a spiral blade supporting rod 1-1
  • the outer wall 2-3 is formed, and the capacitance measuring unit 2 is composed of a metal inner core 2-1, an insulating layer 2-2 and an outer metal tube wall 2-3.
  • the swirling phase separation part, the spiral blade (Fig. 2) has an angle of rise of 5° to 85°, and the spiral blades are at least two, or may be three, four or more, and are evenly distributed along the circumference.
  • the head of the support rod has a semi-ellipsoidal upper part and a hemispherical lower part.
  • the inner diameter of the flow tube is D
  • the pitch is 0.5D or more
  • the length of the capacitance measuring section is 1D or more.
  • the present invention is different from the conventional moisture content measuring device in that the gas-liquid two phases are subjected to cyclone phase separation while measuring the capacitance.
  • the gas-liquid two-phase flows into the swirling phase separation section through the upstream straight pipe section, and the plurality of sets of spiral blades are simultaneously rotated to ensure that the liquid phase can be completely separated from the gas phase to the pipe wall. Due to the large density of the liquid phase, the phase separation of the gas phase in the central region and the liquid phase along the tube wall is achieved under the action of centrifugal force, which overcomes the interference of the flow pattern on the phase content measurement. Simulation studies have found that the gas-liquid distribution is basically stable after the spiral blades.
  • the metal inner core 2-1 serves as an inner electrode
  • the outer metal tube wall 2-3 and the liquid film distributed on the tube wall together constitute an outer electrode
  • the gas phase and the insulating layer 2-2 constitute an insulating medium layer, thereby forming
  • the ratio of the diameter of the metal core to the diameter of the outer metal tube wall can be selected from 1:2 to 1:8.
  • Fig. 2(a) is a schematic diagram of three spiral blades, each blade has an angle of 120°, a pipe inner diameter D, and a pitch of 2.5D;
  • Fig. 2(b) is a schematic diagram of four spiral blades, each The angle of the blade is 90°, the inner diameter of the pipe is D, and the pitch is 1.5D.
  • Figure 4 shows that compared with (a) and (b), when the apparent gas flow rate is 3m/s and 20m/s at 0.6MPa, the LVF is 10%, and the liquid phase distribution is not much different; Comparing (b) and (c), the liquid phase distribution of LVF at 10% and 50% under the condition of Usg of 3 m/s at 0.6 MPa is known. As shown in Fig.
  • the phase can still be separated well, and in the measurement section distribution rule, the liquid phase is always distributed in the pipe wall, and the gas phase is in the center of the pipe, which ensures the measurement feasibility.
  • water is a conductor, which together with the outer metal pipe wall constitutes an external electrode, and air is an insulating medium. By changing different working conditions, the thickness of water distributed on the wall surface changes, and then the thickness of the insulating dielectric layer is changed to change the measuring capacitance. value.
  • Fig. 5 is a velocity distribution diagram of the capacitance measuring unit at different positions under the condition of 0.6 MPa-Usg 20 m/s-LVF 10%. A total of three equally spaced pipe centerlines (shown in Figure 5) were taken in the measurement section. The axial velocity, tangential velocity and radial direction of the gas and liquid phases of the three wires were extracted from the numerical simulation results. Speed to analyze the stability of the flow field.
  • Figure 5 (b) shows that for the liquid phase, the axial velocity difference between the side wall and the center of the pipe is small, but the liquid phase velocity at the center is still large;
  • Figure 5(c) shows that the gas phase radial velocity is almost zero at the center of the pipe, which proves that the gas phase has almost no radial motion, and near the pipe wall, when y is positive, that is, the upper portion of the pipe, the gas phase radial velocity is negative. That is, moving downwards, at the bottom of the pipe, the radial velocity of the gas phase is positive, that is, moving upward.
  • the gas phase at the pipe wall has a tendency to move toward the center of the pipe, rather than the gas phase at the pipe wall without radial movement;
  • Fig. 6 is a graph showing the relationship between the equivalent liquid film thickness and the volumetric liquid fraction LVF under the conditions of a gas phase apparent flow velocity of 0.6 m under a condition of 3 m/s and 20 m/s, respectively.
  • the liquid film thickness corresponds to the volumetric liquid content in the capacitance measurement section, and the initial rate of change is large, and then the rate of change tends to be constant, that is, the liquid film is The capacitance measurement section monotonically increases with the liquid content. As the gas phase velocity becomes larger, the liquid film is slightly reduced.
  • Figure 7 shows the relationship between the volumetric liquid fraction LVF and the measured capacitance under the condition that the apparent gas flow rate at 0.6 MPa is 3 m/s and 20 m/s, respectively.
  • the predicted capacitance value of the present invention increases with the increase of the liquid content. The trend is to achieve a capacitance value corresponding to a unique liquid phase content value.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Pathology (AREA)
  • Immunology (AREA)
  • General Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Electrochemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Medicinal Chemistry (AREA)
  • Food Science & Technology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Measuring Volume Flow (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Abstract

一种多叶片旋流分相电容含水率测量装置,包括旋流分相单元(1)和电容测量单元(2),其特征在于,旋流分相单元(1)包括螺旋叶片支撑杆(1-1),分布在螺旋叶片支撑杆(1-1)外周的2个以上的螺旋叶片(1-2)与外管壁(2-3)构成;电容测量单元(2)包括金属内芯(2-1),覆盖在金属内芯(2-1)外周的绝缘层(2-2)和外金属管壁(2-3),螺旋叶片支撑杆(1-1)的迎水面为流线型设计。本发明的气液分相分布效果好,不依赖两相流型,可实现电容单元对含水率的可靠测量。

Description

多叶片旋流分相电容含水率测量装置 技术领域
本发明属于气液两相流流量测量技术领域,涉及一种多叶片导流式旋流分相电容含水测量装置。
背景技术
气水两相流广泛存在于石油、化工、能源等领域,其含水率的准确测量具有十分重要的意义。目前含水率测量手段主要有射线技术、微波技术、电学(电阻、电容)技术、差压技术等。近年来由于安全管理要求日益严格放射性技术的使用受到限制。
在非放射性含水率测量技术中,电容法历史悠久、原理简单、维护方便,缺点是受流型影响严重。
基于电容传感器分为接触式和非接触式两大类,由于电容传感器响应强烈地依赖于分散相的介质空间分布,为了减小空间灵敏度的不均匀性,研究者们对电容传感器电极结构进行了大量的优化设计,研究了其在不同流动流型下相含率的测量特性。非接触式电容法的含水率测量技术发展现状如下:
1992年清华大学张宝芬等人利用有限元法研究了“对壁式非接触电容传感器”,采用了8电极旋转激励测量方法,旨在克服相分布对含率影响。1998年J Tollefsen等人设计了表面螺旋电极的电容传感器,旨在测量原油中的水相和气相浓度。作者利用有限元方法仿真,并将仿真结果与静态测试结果进行了比对。2009年A.Jaworek等人利用对壁式电容传感器的相位移信息测量气液两相流的相含率,实验介质采用蒸馏水和异丙醇,利用不同直径的聚酰胺棒插入管道中心模拟气核,开展了环状流静态模拟实验测试。2012年Min S K等人优化设计了对壁式电容器和环形电容器两种传感器,利用不同直径的机玻璃棒模拟了环状流,开展了静态试验。2014年浙江大学林翀等人提出非接触六电极阵列式电容耦合电导传感器,通过循环激励、接收法降低相分布对含率测量的影响,模拟了不同流型的静态实验。2015年Kathleen De Kerpel等人利用对壁式电容器在内径8mm的水平管进行实验,流型包括弹状流,间歇流和环状流,作者利用小波分析的方法研究了流型和相含率。结论是相含率的测量结果不可避免的受到流型的影响。2015年天津大学赵安等人研究了两种电容传感器——对壁式及双螺旋式传感器对气液两相流相浓度测量的适应性,搭建了垂直上升气液两相流电容传感器测量系统。结论是对壁式电容传感器测量分辨率较差,而双螺旋式电容传感器对相浓度具有相对较高的分辨能力,但二者均受到流型的影响。
接触式电容法的含水率测量技术发展现状:
2007年M J Da Silva等人设计电容金属丝网传感器。对竖直管道空气和硅油的泡状流进行实验,实现了对单一气泡的轴向和径向切面的图像重建。2013年天津大学翟路生等人利用平行线电容探针 测量水平管油水两相流的互相关速度,发现平行线电容探针的互相关特性受到油水的流动结构的影响。2015年天津大学X.Chen等人利用同轴电容传感器在内径20mm的上升管内进行油水两相流实验。实验结果表明同轴电容器的响应与流型紧密相关。另外,3D电容断层扫描ECT技术被广泛用于可视化流动形态和多相流相含率的分布,但现有系统均存在空间分辨率低的缺点。X射线和伽马射线扫描仪也会应用于多相流,但成本较高。
中国专利申请201710465819.9和中国专利申请201710465822.0提出了一种能够改善电容传感器受到流型影响导流式旋流分相测量电容含水率的装置,然而,由于该装置为单一螺旋叶片设计,会导致当两相流动流速较低时,起旋效果有限。
综上所述,根据电容法相含率测量的研究现状分析可知,国内外科研工作者已经在电容器结构方面开展了大量的研究工作,取得了宝贵的经验,然而,电容传感器的响应仍旧强烈地依赖于分散相介质空间分布,导致相含率的测量结果无不受到流动结构的影响。本发明针对这一问题,设计了一种带有多叶片的特殊旋流分相功能的电容含水率传感器,能够有效的将随机分散的气液两相改变成有良好分布规律的螺旋带状流场,从而打破相含率的测量受湿气流动结构影响的局面。
发明内容
本发明的目的旨在为气水两相流含水率测量提供一种新的测量装置,提出一种多叶片导流式旋流分相电容含水测量装置,采用多组螺旋叶片,使得分离更加彻底,有效克服重力影响。起旋整流后紧接电容测量部分,由于液相惯性较大,将在一定长度范围内保证切向速度较大,仍能维持液相稳定地分布在管壁上,气液分相分布效果好,不依赖两相流型,可实现电容单元对含水率的可靠测量,本发明采用如下技术方案:
一种多叶片旋流分相电容含水率测量装置,包括旋流分相单元和电容含水率测量单元,其特征在于,旋流分相单元包括螺旋叶片支撑杆,均匀分布在螺旋叶片支撑杆外周的2个以上的螺旋叶片和外管壁;电容测量单元包括金属内芯、覆盖在金属内芯外表面的薄绝缘层和与金属内芯同轴的外金属管壁。
优选地,螺旋叶片的升角在5°~85°之间。每个螺旋叶片沿圆周均匀分布。螺旋叶片支撑杆的尾部与金属内芯的尺寸相配合并相互连接,外管壁和外金属管壁尺寸相配合并相互连接。设来流管道内径为D,螺旋叶片的螺距为0.5D以上,电容测量段长度为大于1D,外金属管壁直径是金属内芯直径2倍以上。螺旋叶片支撑杆的迎水面为流线型。
与现有技术相比,本发明具有如下的技术效果:
(1)气水两相流入旋流分相单元,螺旋叶片的导流作用改变了流体的流动方向和状态。液相由于密度偏大,在离心力作用下做圆周运动,液相将穿过气相甩向管壁。从而实现气相集中在中心区域、液相沿管壁形成旋转液膜的气液分相流动形态;
(2)本发明采用大于一组的导流式螺旋叶片,加强起旋效果,克服重力对电容测量结果的影响;
(3)本发明上下游只需与对应直管段法兰连接即可;
(4)在电容测量段内,气液两相继续保持分相分布,同时外金属管壁和液膜共同构成外电极,与金属内芯相互作用形成电容器。液相含率越高,分布在管壁的液膜越厚,气相作为绝缘介质,液膜厚度发生变化,导致电容值变化,实现仅与液相体积含率相关的电容含水测量;
(5)本发明利用电容传感器直接测量液相体积含率,电容测量值随着体积含液率单调增加,具有测量可行性;
(6)无需分离,不依赖放射性技术和示踪技术对气液两相流中的含水率进行测量,结构简单、安全可靠,维护费用低。
附图说明
图1本发明的多叶片导流式旋流分相电容含水测量装置结构示意图。
图2旋流分相段螺旋叶片结构图,(a)为旋流分相单元的起旋叶片--3叶片示意图,(b)为旋流分相段起旋叶片--4叶片示意图。
图3电容测量原理示意图。
图4基于空气水两相流CFD数值模拟结果,0.6MPa下电容含水测量装置的轴向液相分布云图(白色为气相分布,黑色为液相分布)。(a)、(b)、(c)分别为气相表观流速(后面用Usg表示)为20m/s条件下,液相体积含率(后面用LVF表示)分别为10%;Usg=3m/s,LVF=10%和Usg=3m/s,LVF=50%时对应的数值模拟结果。
图5基于空气水两相流CFD数值模拟结果,0.6MPa下气相表观流速为20m/s,液相体积含率为10%,工况点下气液两相轴向、径向和切向速度分布图,(a)为气相轴向速度分布图,(b)为液相轴向速度分布图,(c)为气相径向速度分布图,(d)为液相径向速度分布图,(e)为气相切向速度分布图,(f)为液相切向速度分布图。
图6基于空气水两相流CFD数值模拟结果,0.6MPa下气相表观流速为3m/s和20m/s空气水两相流,等效液膜厚度与体积含液率LVF的变化关系图。
图7基于空气水两相流CFD数值模拟结果,0.6MPa下气相表观流速为3m/s和20m/s空气水两相流,体积含液率LVF与测量电容的变化关系图。
具体实施方式
下面参照附图对本发明做进一步详述。
本发明为气液两相流中使用的一种含水率测量装置,结构示意图如图1所示。在装置上游可与任意单相差压式仪表组合使用,如孔板、文丘里、V锥等标准与非标准的节流装置组合成测量气液两相流量。
本发明的多叶片导流式旋流分相电容含水测量装置,包括旋流分相单元1和电容测量单元2,旋流分相单元1由螺旋叶片1-2、螺旋叶片支撑杆1-1和外管壁2-3构成,电容测量单元2由金属内芯2-1,绝缘层2-2和外金属管壁2-3构成。
旋流分相部分,螺旋叶片(如图2)升角5°~85°之间,螺旋叶片至少是两个,也可以是3个、4个或更多,沿圆周均匀分布。支撑杆头部,上部分为半椭球形,下部分为半球形,设来流管道内径为D,螺距为0.5D以上,电容测量段长度为1D以上。
本发明区别于以往的含水率测量装置,在于对气液两相进行旋流分相的同时进行电容的测量。如图1所示,气液两相经上游直管段流入旋流分相段,以多组螺旋叶片同时起旋,保证液相能够与气相完全分离至管壁。液相由于密度偏大,在离心力作用下实现气相集中在中心区域、液相沿管壁的分相流动形态,克服了流型对相含率测量的干扰。仿真研究发现,经过螺旋叶片后,气液分布基本稳定。在电容测量段内,金属内芯2-1作为内电极,外金属管壁2-3与分布在管壁的液膜共同构成外电极,气相和绝缘层2-2构成绝缘介质层,进而形成电容器,为提高电容灵敏度,金属内芯直径与外金属管壁直径比可选择1:2~1:8。
如图2所示,图2(a)为三螺旋叶片示意图,每个叶片夹角为120°,设管道内径为D,螺距为2.5D;图2(b)为四螺旋叶片示意图,每个叶片夹角为90°,设管道内径为D,螺距为1.5D。
电容测量原理及组成如图3所示,通过对待测电容进行放电,测量被测电容与参考电容的放电时间,实现电容值的测量。
基于CFD数值模拟结果分析,图4为对比(a)、(b)可知,0.6MPa下气相表观流速3m/s和20m/s时,当LVF均为10%,液相分布差异不大;对比(b)(c)可知,0.6MPa下Usg为3m/s条件下,LVF分别为10%和50%时的液相分布情况。如图4所示在本发明的中心截面上的气液两相分布云图可知,无论在高流速、低流速,还是在不同含液率(LVF=10%或者50%)情况时,气液两相仍能够较好的分离开,且在测量段分布规则,液相始终分布在管壁,而气相在管道中心,保证了测量的可行性。测 量中,水为导体,与外金属管壁共同构成外电极,而空气为绝缘介质,通过改变不同工况条件,使得水在壁面分布厚度发生变化,进而改变绝缘介质层的厚度来改变测量电容值。
图5为0.6MPa-Usg20m/s-LVF10%条件下电容测量单元在不同位置速度大小分布图。一共在测量段取了3条等间隔距离的管道中心线(如图5所示),从数值模拟结果中分别提取这3条线的气相和液相的轴向速度、切向速度和径向速度,以分析流场的稳定性。
图5(a)可以看出对于气相来说,管道中心的气相轴向速度较大,边壁较小,3条线速度分布基本一致,证明流场在整个电容测量段具有良好的稳定性;
图5(b)可以看出对于液相来说,管道边壁和中心的轴向速度差异较小,但仍是中心处液相速度较大;
图5(c)可以看出在管道中心处气相径向速度几乎为零,证明气相几乎没有径向运动,而在管壁附近,在y为正即管道上部分时,气相径向速度为负,即向下运动,在管道底部,气相的径向速度为正,即向上运动。总体来看,管壁处的气相有向管道中心运动的趋势,而非管壁处的气相无径向运动;
图5(d)可以看出,在y为正即管道上部分时,液相径向速度为正,即向上运动,在管道底部,液相的径向速度为负,即向下运动,整个管道中液相均为向边壁运动的速度方向,line3位置的液相径向速度大小要稍小于line1位置,但仍为向管壁运动的方向;
图5(e)、(f)可以看出气液两相切向速度方向相同,在管壁处大小几乎一致。
图6为0.6MPa下气相表观流速分别为3m/s和20m/s条件下,含水率0-90%,等效液膜厚度与体积含液率LVF的变化关系。由图中我们可以看出,在气相流速不变时,液膜厚度随体积含液率在电容测量段一一对应,且最初变化率较大,随后变化率趋于定值,即液膜在电容测量段随着含液率而单调上升。当气相速度变大,液膜会略有减小。
图7为0.6MPa下气相表观流速分别为3m/s和20m/s条件下,体积含液率LVF与测量电容的变化关系,本发明预测电容值随含液率的增大表现出增加的趋势,可实现一个电容值对应唯一的液相含率值。

Claims (6)

  1. 一种多叶片旋流分相电容含水率测量装置,包括旋流分相单元和电容含水率测量单元,其特征在于,旋流分相单元包括螺旋叶片支撑杆,均匀分布在螺旋叶片支撑杆外周的2个以上的螺旋叶片和外管壁;电容测量单元包括金属内芯、覆盖在金属内芯外表面的薄绝缘层和与金属内芯同轴的外金属管壁。
  2. 根据权利要求1所述的装置,其特征在于,螺旋叶片的升角在5°~85°之间。
  3. 根据权利要求1所述的装置,其特征在于,每个螺旋叶片沿支撑圆周均匀分布,将流体通道均匀等分。
  4. 根据权利要求1所述的装置,其特征在于,螺旋叶片支撑杆的下游末端与金属内芯的尺寸相配合并相互连接,起旋单元的外管壁和电容单元的外金属管壁尺寸相配合并相互连接。
  5. 根据权利要求1所述的装置,其特征在于,设来流管道内径为D,螺旋叶片的螺距为0.5D以上,电容测量单元长度为大于1D。
  6. 根据权利要求1所述的装置,其特征在于,螺旋叶片支撑杆的迎水面为流线型。
PCT/CN2018/117161 2018-01-30 2018-11-23 多叶片旋流分相电容含水率测量装置 WO2019148945A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201810088699.X 2018-01-30
CN201810088699.XA CN108426925A (zh) 2018-01-30 2018-01-30 多叶片旋流分相电容含水率测量装置
CN201811314687.0A CN109613074A (zh) 2018-01-30 2018-11-06 多叶片旋流分相电容含水率测量装置
CN201811314687.0 2018-11-06

Publications (1)

Publication Number Publication Date
WO2019148945A1 true WO2019148945A1 (zh) 2019-08-08

Family

ID=63156194

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/117161 WO2019148945A1 (zh) 2018-01-30 2018-11-23 多叶片旋流分相电容含水率测量装置

Country Status (2)

Country Link
CN (2) CN108426925A (zh)
WO (1) WO2019148945A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108426925A (zh) * 2018-01-30 2018-08-21 天津大学 多叶片旋流分相电容含水率测量装置
WO2019179293A1 (zh) * 2018-03-22 2019-09-26 天津大学 一种气液两相流量测量系统
CN111175321A (zh) * 2019-08-20 2020-05-19 天津大学 一种气液两相流含水率测量装置及测量方法
CN111337546B (zh) * 2020-02-28 2022-05-31 西安建筑科技大学 一种两相流型的测定方法及降膜蒸发实验装置
CN111413377A (zh) * 2020-04-14 2020-07-14 中国人民解放军陆军勤务学院 一种气液两相管流的截面持液率测量装置及其测量方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101737041A (zh) * 2009-11-16 2010-06-16 大庆油田有限责任公司 应用于油井含水率测量的组合型传感器
CN102562026A (zh) * 2010-12-15 2012-07-11 中国石油天然气股份有限公司 一种煤层气井产气、产水剖面测试方法及仪器
CN203948344U (zh) * 2014-07-15 2014-11-19 古勇 新型风扇叶片
US20150330932A1 (en) * 2014-05-19 2015-11-19 Fiskars Oyj Abp Soil moisture sensor
CN107153086A (zh) * 2017-04-28 2017-09-12 天津大学 两相流过程参数的声电双模态融合测量方法
CN107422000A (zh) * 2017-06-19 2017-12-01 天津大学 气液两相流起旋分相式电容含水率测量装置
CN107421999A (zh) * 2017-06-19 2017-12-01 天津大学 气液两相流起旋分相器
CN108426925A (zh) * 2018-01-30 2018-08-21 天津大学 多叶片旋流分相电容含水率测量装置
CN207882201U (zh) * 2018-01-30 2018-09-18 天津大学 多叶片旋流分相电容含水率测量装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100406857C (zh) * 2006-08-08 2008-07-30 寿焕根 油、水、气三相流自动计量装置
WO2011063532A1 (en) * 2009-11-27 2011-06-03 Genesis Group Inc. Cyclonic sensor for multiphase composition measurement
CN103411467B (zh) * 2013-08-02 2015-04-01 北京化工大学 换热管内带扰流芯低驱动转子

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101737041A (zh) * 2009-11-16 2010-06-16 大庆油田有限责任公司 应用于油井含水率测量的组合型传感器
CN102562026A (zh) * 2010-12-15 2012-07-11 中国石油天然气股份有限公司 一种煤层气井产气、产水剖面测试方法及仪器
US20150330932A1 (en) * 2014-05-19 2015-11-19 Fiskars Oyj Abp Soil moisture sensor
CN203948344U (zh) * 2014-07-15 2014-11-19 古勇 新型风扇叶片
CN107153086A (zh) * 2017-04-28 2017-09-12 天津大学 两相流过程参数的声电双模态融合测量方法
CN107422000A (zh) * 2017-06-19 2017-12-01 天津大学 气液两相流起旋分相式电容含水率测量装置
CN107421999A (zh) * 2017-06-19 2017-12-01 天津大学 气液两相流起旋分相器
CN108426925A (zh) * 2018-01-30 2018-08-21 天津大学 多叶片旋流分相电容含水率测量装置
CN207882201U (zh) * 2018-01-30 2018-09-18 天津大学 多叶片旋流分相电容含水率测量装置

Also Published As

Publication number Publication date
CN108426925A (zh) 2018-08-21
CN109613074A (zh) 2019-04-12

Similar Documents

Publication Publication Date Title
WO2019148945A1 (zh) 多叶片旋流分相电容含水率测量装置
CN107882547B (zh) 管道式高含水油井产液三相计量装置与方法
CN102116754B (zh) 基于双截面阻抗式长腰内锥传感器的多相流测量方法
CN110031046A (zh) 一种气液两相流测量系统
US8505363B2 (en) Cyclonic sensor for multiphase composition measurement
CN102147385A (zh) 基于单截面阻抗式长腰内锥传感器的多相流测量方法
CN101793852A (zh) 一种多环电极阵列成像传感器
CN102116755A (zh) 基于多截面阻抗式长腰内锥及相关测速的多相流测量方法
CN104729595B (zh) 一种管内相分隔式两相流体电磁流量计测量装置及方法
CN106403800B (zh) 一种电容式气液两相分离流液膜分布测量装置
CN107543586A (zh) 管内相分隔式电磁差压相结合的两相流测量装置及方法
CN107882546A (zh) 高含水低产气油井产液三相计量装置与方法
CN107402238A (zh) 二元化学液作用下的油井油水两相流含水率测量方法
CN207268709U (zh) 一种阵列式电导光纤一体化探针传感器
CN208399422U (zh) 竖直旋流分相电容一体式含水测量装置
CN107422000A (zh) 气液两相流起旋分相式电容含水率测量装置
Meng et al. Experimental investigation for liquid film characteristics of gas-liquid swirling flow in a horizontal pipe
CN107421999A (zh) 气液两相流起旋分相器
CN207882201U (zh) 多叶片旋流分相电容含水率测量装置
Huang et al. Local Void Fractions and Bubble Velocity in Vertical Air‐Water Two‐Phase Flows Measured by Needle‐Contact Capacitance Probe
CN102147383A (zh) 多截面阻抗式长腰内锥传感器及多相流测量装置
CN108181357B (zh) 竖直旋流分相电容一体式含水测量装置
Zhang et al. Response characteristics of coaxial capacitance sensor for horizontal segregated and non-uniform oil-water two-phase flows
Zhai et al. Development of wire-mesh sensor in small bubble visualization based on differential measurement mode
CN109141563B (zh) 基于管内相分隔的z型天然气湿气实时测量装置和方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18904455

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18904455

Country of ref document: EP

Kind code of ref document: A1