WO2019148306A1 - 具有分时、分区域屏蔽功能的传感器、电子皮肤和机器人 - Google Patents

具有分时、分区域屏蔽功能的传感器、电子皮肤和机器人 Download PDF

Info

Publication number
WO2019148306A1
WO2019148306A1 PCT/CN2018/000191 CN2018000191W WO2019148306A1 WO 2019148306 A1 WO2019148306 A1 WO 2019148306A1 CN 2018000191 W CN2018000191 W CN 2018000191W WO 2019148306 A1 WO2019148306 A1 WO 2019148306A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
parallel plate
multifunctional
sensor
functional layer
Prior art date
Application number
PCT/CN2018/000191
Other languages
English (en)
French (fr)
Inventor
孙滕谌
张大华
庄玮
Original Assignee
北京他山科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京他山科技有限公司 filed Critical 北京他山科技有限公司
Priority to US16/966,492 priority Critical patent/US11598681B2/en
Priority to JP2020542310A priority patent/JP7054561B2/ja
Priority to EP18903940.7A priority patent/EP3748320A4/en
Publication of WO2019148306A1 publication Critical patent/WO2019148306A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • G01L1/14Measuring force or stress, in general by measuring variations in capacitance or inductance of electrical elements, e.g. by measuring variations of frequency of electrical oscillators
    • G01L1/142Measuring force or stress, in general by measuring variations in capacitance or inductance of electrical elements, e.g. by measuring variations of frequency of electrical oscillators using capacitors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • G01L1/14Measuring force or stress, in general by measuring variations in capacitance or inductance of electrical elements, e.g. by measuring variations of frequency of electrical oscillators
    • G01L1/142Measuring force or stress, in general by measuring variations in capacitance or inductance of electrical elements, e.g. by measuring variations of frequency of electrical oscillators using capacitors
    • G01L1/146Measuring force or stress, in general by measuring variations in capacitance or inductance of electrical elements, e.g. by measuring variations of frequency of electrical oscillators using capacitors for measuring force distributions, e.g. using force arrays
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J13/00Controls for manipulators
    • B25J13/08Controls for manipulators by means of sensing devices, e.g. viewing or touching devices
    • B25J13/085Force or torque sensors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • G01L1/14Measuring force or stress, in general by measuring variations in capacitance or inductance of electrical elements, e.g. by measuring variations of frequency of electrical oscillators
    • G01L1/142Measuring force or stress, in general by measuring variations in capacitance or inductance of electrical elements, e.g. by measuring variations of frequency of electrical oscillators using capacitors
    • G01L1/144Measuring force or stress, in general by measuring variations in capacitance or inductance of electrical elements, e.g. by measuring variations of frequency of electrical oscillators using capacitors with associated circuitry
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • G01L1/20Measuring force or stress, in general by measuring variations in ohmic resistance of solid materials or of electrically-conductive fluids; by making use of electrokinetic cells, i.e. liquid-containing cells wherein an electrical potential is produced or varied upon the application of stress
    • G01L1/205Measuring force or stress, in general by measuring variations in ohmic resistance of solid materials or of electrically-conductive fluids; by making use of electrokinetic cells, i.e. liquid-containing cells wherein an electrical potential is produced or varied upon the application of stress using distributed sensing elements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L19/00Details of, or accessories for, apparatus for measuring steady or quasi-steady pressure of a fluent medium insofar as such details or accessories are not special to particular types of pressure gauges
    • G01L19/06Means for preventing overload or deleterious influence of the measured medium on the measuring device or vice versa
    • G01L19/069Protection against electromagnetic or electrostatic interferences
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L5/00Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes
    • G01L5/0061Force sensors associated with industrial machines or actuators
    • G01L5/0076Force sensors associated with manufacturing machines
    • G01L5/009Force sensors associated with material gripping devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L5/00Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes
    • G01L5/16Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes for measuring several components of force
    • G01L5/161Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes for measuring several components of force using variations in ohmic resistance
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L5/00Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes
    • G01L5/16Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes for measuring several components of force
    • G01L5/165Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes for measuring several components of force using variations in capacitance
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L9/00Measuring steady of quasi-steady pressure of fluid or fluent solid material by electric or magnetic pressure-sensitive elements; Transmitting or indicating the displacement of mechanical pressure-sensitive elements, used to measure the steady or quasi-steady pressure of a fluid or fluent solid material, by electric or magnetic means
    • G01L9/12Measuring steady of quasi-steady pressure of fluid or fluent solid material by electric or magnetic pressure-sensitive elements; Transmitting or indicating the displacement of mechanical pressure-sensitive elements, used to measure the steady or quasi-steady pressure of a fluid or fluent solid material, by electric or magnetic means by making use of variations in capacitance, i.e. electric circuits therefor
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means

Definitions

  • the invention relates to a sensor, an electronic skin and a robot with time-sharing and sub-area shielding functions, and is suitable for the technical field of artificial intelligence.
  • intelligent robots have developed into a large-scale practical stage in the industrial field.
  • the interaction between intelligent robots and the external world requires intelligent sensors that mimic human various sensory functions, including: visual sensors, auditory sensors, tactile sensors, and olfactory sensors. .
  • visual sensors and hearing sensors have matured and are widely used in the field of industrial robots.
  • robots are required to perform more flexible and complex movements, and at the same time Robots need to be in closer contact with humans and must ensure the safety and comfort of robots in contact with humans. Therefore, highly sensitive tactile sensors with human-like haptic functions are becoming more and more important. Extensive research has been carried out on bionic tactile sensors in countries all over the world.
  • a service robot should be able to distinguish whether the object to be touched or just touched is a human limb or other object.
  • the agricultural picking robot should be able to distinguish whether the object to be touched or just touched is fruit, cotton or plant foliage, and should be able to judge the speed of approach and Distance, so that the intelligent robot can properly control the initial velocity of the limb approaching or touching the external object to avoid damage to the human body to be contacted or damage to the object to be contacted.
  • the limb of an intelligent robot touches an external object, it should be able to sense the magnitude and direction of the three-dimensional pressure applied by it, so that the intelligent robot can control the three-dimensional pressure applied to the external object to a suitable range, for example :
  • the service robot picks up the teacup, it should control the three-dimensional pressure applied to the teacup so that it will not be crushed and will not slip.
  • the limb of the intelligent robot slides on the external object, it should be able to sense the direction of sliding and the sliding speed, so that the intelligent robot can control the direction and speed of the sliding.
  • the massage service robot should be able to slide its palm on the human body. Speed and direction are controlled in the appropriate range.
  • Temperature and humidity awareness When the limb of the intelligent robot approaches or touches the external object, it should be able to sense the temperature of the external environment and the external object, so that the intelligent robot protects the intelligent robot's own limb from high temperature or low temperature, and protects its service object. It is damaged by high temperature or low temperature. For example, when the service robot gives the elderly or the patient a tea, it should be judged whether the temperature of the tea is suitable for human consumption. When the intelligent robot body approaches the flame or high temperature object, it should be able to actively avoid it. In addition, the body of the intelligent robot should be able to sense the external environment and the humidity of the external object when approaching or touching the external object. For example, the home service robot should help the human to dry the clothes to distinguish whether the clothes have dried.
  • the smart touch sensor In addition to the above basic functions, since all limbs of the bionic robot need to cover a large amount of bionic skin with a large number of touch sensors, the smart touch sensor also needs to meet the requirements of miniaturization, low power consumption, and easy formation of a sensor matrix.
  • the existing intelligent touch sensor technology research is mainly divided into: resistive, capacitive, photoelectric, piezoelectric, inductive, micro-electromechanical and composite (two or more principles composite) .
  • resistive, capacitive, photoelectric, piezoelectric, inductive, micro-electromechanical and composite two or more principles composite.
  • resistive, capacitive, photoelectric, piezoelectric, inductive, micro-electromechanical and composite two or more principles composite
  • a purely resistive touch sensor utilizes a flexible piezoresistive variable material (for example, a conductive rubber) that is subjected to a change in resistivity when subjected to pressure, whereby the reaction is subjected to the principle of the magnitude of the pressure.
  • the utility model has the advantages that the pressure perception, that is, the three-dimensional force perception can be realized, the production process is simple, the cost is low, the anti-interference ability is strong, and the mass production is convenient; but the disadvantage is that the contact feeling requirement can hardly be realized, and the contact object cannot be classified. It is recognized that when the external object is about to be touched, the speed and distance of the approach cannot be judged, the sensitivity is low, and the product consistency is difficult to control. In some application areas where contact sensitivity and sensitivity are not high, it has certain market potential.
  • Capacitive or RC composite touch sensors are currently the most promising. Compared with other forms of touch sensors, capacitive touch sensors have unique advantages for achieving contact. Capacitive touch sensors use electric field theory and their electric fields. The line can be traversed or contacted with external objects, and the different objects have different dielectric constant characteristics to classify and identify the external objects. In particular, it can accurately distinguish whether the external object is a human body or other objects. It also has the advantages of high sensitivity, good consistency, easy fabrication, low cost, and easy realization of matrix for the realization of pressure and sliding capacitive touch sensors. However, the shortcomings of the existing capacitive touch sensor technology are:
  • contact sensation including classification and recognition of external objects and discrimination of the proximity of external objects
  • pressure and slidness that is, measurement of the magnitude and direction of three-dimensional force
  • temperature perception and humidity perception .
  • the anti-interference ability is poor, and it is easy to be affected by the ambient temperature, humidity, and electromagnetic interference.
  • the differential method is usually used to eliminate the influence of ambient temperature and humidity, and the electromagnetic shielding method is adopted to improve the anti-electromagnetic field interference capability. .
  • the electromagnetic shielding measures are adopted, although the ability to resist electromagnetic interference is effectively improved, the ability to classify and recognize external objects and determine the approach speed and distance is lost, that is, the contact sense function cannot be realized.
  • the application No. CN201410245030 discloses a fully flexible capacitive touch sensor.
  • the patent directly grounds the upper plate of the parallel plate capacitor as a shielding layer.
  • the anti-interference ability is improved, the electric field line inside the shielding layer cannot pass through the shielding layer. Therefore, the function of classifying the recognition and proximity of the external object is lost, and the contact feeling cannot be realized.
  • the publication US 2008/0174321 A1 discloses a capacitive sensor that can simultaneously measure the approach and slip of an object, which sensor can operate in two modes.
  • the capacitor electrode of the patent adopts two layers of upper and lower layers, and the upper layer is composed of two electrodes to form a plane capacitance, which can realize the function of distinguishing and recognizing the external object by contact sense, but cannot measure the proximity of the external object by the contact sense, and the upper layer thereof
  • the electrode and the lower electrode can form a parallel plate capacitor, which can measure the normal force of the pressure sense, but can not measure the tangential force.
  • the patent cannot achieve any anti-interference measures such as shielding or differential. Any cross-talk prevention measures cannot be achieved when the matrix is formed.
  • the object of the present invention is to overcome the deficiencies of the prior art and to provide a sensor having a time division and sub-area shielding function.
  • the invention provides a sensor with time-sharing and sub-area shielding function, wherein the touch sensor comprises a plurality of sensor units, each sensor unit comprises four multi-functional layers, each multifunctional layer
  • the internal portion includes a parallel plate capacitor; the multi-function layer is connected to the processor through an analog switch, and the processor is connected to the external circuit;
  • the multi-function layer shields the sensor by sub-area by means of time-sharing switching of the analog switch and bus control.
  • each measurement period T consists of two sub-periods T1 and T2:
  • the first multi-functional layer is connected to the multi-layer excitation signal
  • the third multi-function layer is connected to the analog-to-digital conversion circuit
  • the second multi-functional layer and the fourth multi-functional layer are simultaneously grounded, or the second multi-functional layer and the fourth
  • the multi-functional layer is simultaneously connected to the excitation signal of the internal parallel plate capacitor common electrode, and the analog switch for controlling the internal parallel plate capacitance of the first multi-functional layer and the third multi-functional layer is disconnected, and the second multi-functional layer and the fourth are controlled simultaneously.
  • the analog switch of the internal parallel plate capacitor of the multifunctional layer is connected to the excitation signal of the common electrode of the internal parallel plate capacitor, so that the planar capacitor C1 composed of the first multifunctional layer and the third multifunctional layer is neither affected by the contact sense.
  • the external crosstalk of the second multi-functional layer and the fourth multi-functional layer is also not interfered by the parallel plate capacitance inside the first multi-functional layer and the third multi-functional layer, and at the same time, the second multi-functional layer and the fourth multi-layer When the functional layer is in the shielded state, its internal parallel plate capacitance can still be in working state to measure the change of three-dimensional force;
  • the second multi-functional layer is connected to the excitation signal of the multi-function layer
  • the fourth multi-functional layer is connected to the analog-to-digital conversion circuit
  • the first multi-functional layer and the third multi-functional layer are simultaneously grounded, or the first multi-functional layer and the first
  • the three multifunctional layers simultaneously connect the excitation signals of the internal parallel plate capacitor common electrodes, and disconnect the analog switches that control the internal parallel plate capacitors of the second multifunctional layer and the fourth multifunctional layer, and simultaneously control the first multifunctional layer and the first
  • the analog switch of the internal parallel plate capacitor of the three multi-function layer is connected to the excitation signal of the common electrode of the internal parallel plate capacitor, so that the plane-like capacitor C2 composed of the second multi-functional layer and the fourth multi-functional layer does not realize contact feeling.
  • the external crosstalk of the first multi-functional layer and the third multi-functional layer is also not interfered by the parallelism of the internal parallel plate capacitors of the second multi-functional layer and the fourth multi-functional layer, and at the same time, the first multi-functional layer and the third multi-layer
  • the functional layer When the functional layer is in the shielded state, its internal parallel plate capacitance can still be in working state to measure the change of three-dimensional force;
  • the four multi-function layers of the sensor unit in the shielded state are grounded at the same time, or the excitation signal of the common electrode of the internal parallel plate capacitor is connected at the same time, and the internal parallel plate capacitors of the four multi-function layers are connected.
  • the invention provides a sensor with time-sharing and sub-area shielding function, and further comprises the following subsidiary technical solutions:
  • each of the multi-functional layers is provided with two layers of electrodes, the upper layer is a cross-shaped common electrode, and the lower layer is four independent electrodes corresponding to the upper cross-type common electrode, and the upper layer of the cross-type common electrode and the lower layer 4
  • the individual electrodes form four parallel plate capacitors.
  • each multifunctional layer comprises an upper portion and a bottom portion corresponding to the multifunctional layer
  • the upper portion is composed of a flexible conductive material
  • the outer portion of the flexible conductive material is provided with a protective layer composed of a flexible insulating material
  • the bottom portion comprises a multilayer PCB board.
  • the FPC board, the PCB board or the FPC board is provided with a flexible insulating layer, the flexible insulating layer is provided with a grounding shield layer controlled by an analog switch, and the grounding shielding layer controlled by the analog switch is provided with an insulating protective layer;
  • the first layer PCB A circular electrode corresponding to each multifunctional layer is disposed on the board or the FPC board, a circular electrode is disposed on the second layer PCB board or the FPC board, and a via hole is disposed on the circular electrode, and the via hole is connected in a ring shape
  • An electrode and a circular electrode to form a separate conductive region, the upper portion and the bottom portion being electrically connected;
  • the upper cross-type common electrode being electrically connected to the first through a central conductive post disposed inside the multifunctional layer
  • the lower independent electrode is directly disposed on the first layer PCB board or the FPC board.
  • the flexible conductive material is an organic conductive silver adhesive material, and a conductive silver adhesive layer is disposed between the organic conductive silver adhesive material and the multifunctional layer.
  • the grounding shielding layer controlled by the analog switch is a silicone conductive silver adhesive shielding layer, and the insulating protective layer is a PDMS protective layer.
  • the upper portion and the bottom portion of the multifunctional layer are electrically connected by bonding or crimping with a conductive adhesive.
  • the conductive pillar is electrically connected to the first layer PCB board or the FPC board by soldering, crimping or conductive adhesive.
  • the first multi-functional layer and the third multi-functional layer are equal and oppositely disposed, and the second multi-functional layer and the fourth multi-functional layer are equally and relatively disposed;
  • the center distance of the first multi-functional layer and the third multi-functional layer For d1 the center distance between the second multifunctional layer and the fourth multifunctional layer is d2, and the ratio of d1 to d2 is 1.2-5;
  • the height of the first multifunctional layer and the third multifunctional layer is h1, and the second multifunctional
  • the height of the layer and the fourth multifunctional layer is h2, and the difference between h1 and h2 is 1-3 mm.
  • the present invention also provides an electronic skin comprising the touch sensor of the sensor having the time division and sub-area shielding function according to any of the above.
  • the present invention also provides an intelligent robot comprising the above-described electronic skin.
  • the present invention also provides an artificial intelligence prosthesis comprising an electronic skin as described above.
  • the sensor with time-sharing and sub-area shielding function can completely realize all the functional requirements of the touch sensor by using the multi-functional layer:
  • the multi-functional layer itself can form an electrode of a plane-like capacitance, and fully realize the contact sensing function.
  • the multi-functional layer can be used as an electromagnetic shielding layer of a plurality of parallel plate capacitors contained therein, thereby realizing the full function of the contact sense under the premise of effectively improving the anti-jamming capability of the three-dimensional force measurement;
  • the multi-function layer can be used to implement the sub-area shielded scanning, effectively avoiding the crosstalk problem of adjacent sensor units.
  • Fig. 1 is a view showing the appearance of a sensor unit of the present invention.
  • FIG. 2 is a layout view of a multi-functional layer of one mode of the present invention.
  • Fig. 3 is a layout view of a multi-functional layer of another mode of the present invention.
  • FIG. 4 is a layout view of a multi-functional layer according to still another aspect of the present invention.
  • Figure 5 is a layered view of the sensor unit of the present invention.
  • Figure 6 is an exploded view of the series sensor unit in one embodiment of the present invention.
  • Figure 7 is a diagram showing the electric field line distribution of the multifunctional layer of the present invention.
  • Fig. 8 is a diagram showing the electric field line distribution when the external object of the present invention does not enter the electric field line distribution region of the plane-like capacitors C1 and C2.
  • FIG. 9 is a diagram showing electric field line distribution when an external object of the present invention enters a field-plane capacitance C1 electric field line distribution region but does not enter a class plane capacitance C2 electric field line distribution region.
  • Fig. 10 is a view showing electric field line distribution when an external object of the present invention enters a field-plane capacitance C1 and C2 electric field line distribution region.
  • Figure 11 is a diagram showing the electric field line distribution when the external object of the present invention contacts the plane-like capacitor C1 but does not contact the plane-like capacitor C2.
  • Figure 12 is a diagram showing the electric field line distribution when the external object of the present invention simultaneously contacts the plane-like capacitors C1 and C2.
  • Figure 13 is a matrix scan of a conventional sensor.
  • Figure 14 is a partial area masked matrix scan of the present invention.
  • Figure 15 is a cross-sectional view of a multi-function area in one embodiment of the present invention.
  • Figure 16 is a structural diagram of a parallel plate capacitor in one embodiment of the present invention.
  • Figure 17 is a schematic illustration of a parallel plate capacitor in an embodiment of the present invention.
  • Figure 18 is a schematic illustration of a parallel plate capacitance subjected to a normal force in one embodiment of the present invention.
  • Figure 19 is a schematic illustration of the parallel plate capacitance subjected to shear forces in one embodiment of the present invention.
  • Figure 20 is a schematic view showing the parallel plate capacitance subjected to a sliding force in an embodiment of the present invention.
  • Figure 21 is a circuit control diagram in one embodiment of the present invention.
  • Figure 22 is an equivalent circuit diagram of a sensor unit in one embodiment of the present invention.
  • Figure 23 is a cross-sectional view showing a multi-functional layer in another embodiment of the present invention.
  • Figure 24 is a partial exploded view of Figure 23.
  • Figure 25 is a schematic view showing the varistor under thermal expansion in another embodiment of the present invention.
  • Figure 26 is a schematic view showing the varistor in the event of cold shrinkage in another embodiment of the present invention.
  • Figure 27 is an equivalent circuit diagram of a sensor unit in another embodiment of the present invention.
  • the present embodiment provides a sensor with time-sharing and sub-area shielding functions
  • the touch sensor includes a plurality of sensor units, each sensor unit includes four multi-functional layers, and four regions.
  • the multi-functional layers are arranged opposite to each other, and can be arranged at an arbitrary angle with the intersection of two pairs of central connecting lines as a center.
  • the four multifunctional layers are arranged orthogonally, that is, at an angle of 90 degrees; as shown in FIG. 3, the four multifunctional layers are horizontally arranged, that is, arranged at an angle of 0 degrees;
  • the 4 multi-functional layers are arranged at a 45 degree angle.
  • each of the multi-functional layers includes a corresponding region including an upper portion 11 and a bottom portion corresponding to the multi-functional layer, the upper portion 11 is composed of a flexible conductive material, and the outer portion of the flexible conductive material is provided with a flexible insulating material.
  • the protective layer 12 includes a multilayer PCB board or an FPC board at the bottom, and a flexible insulating layer 17 is disposed under the PCB board or the FPC board.
  • the grounding shielding layer 18 controlled by the analog switch is disposed under the flexible insulating layer 17, and the ground is controlled by the analog switch.
  • An insulating protective layer 19 is disposed under the shielding layer 18; the first layer PCB board or the FPC board 14 is provided with an annular electrode 141 corresponding to each multifunctional layer, and the second layer PCB board or the FPC board 15 is provided with a circular shape.
  • the electrode 151, the circular electrode 151 is provided with a via 152 for connecting the annular electrode 141 and the circular electrode 151 to form a separate conductive region, the upper portion 11 and the second composed of a flexible conductive material
  • the layer PCB board or the FPC board 15 forms a complete multi-functional layer. Since the thickness of the single-layer PCB board or the FPC board is only 0.025 mm, the function of the multi-functional layer as a shield layer can be fully satisfied.
  • the electronics of the touch sensor unit are disposed on the lower surface 162 of the third layer PCB board or FPC board 16, and the upper surface 161 and the lower surface 162 of the third layer PCB board or FPC board 16 are used for electronic circuit wiring; It is shown that a flexible insulating material 13 is filled inside the corresponding region of each multifunctional layer, and the flexible insulating material 13 insulates the upper and lower electrodes and the multifunctional layer from each other; the upper cross-type common electrode 6 is disposed at the same
  • the central conductive pillar 20 inside the multifunctional layer is electrically connected to the first layer PCB board or the FPC board, and the lower independent electrode 7 is directly disposed on the first layer PCB board or the FPC board 141; the upper layer
  • the distance between the cross-type common electrode and the lower independent electrode is 0.5-3 mm.
  • the sensor unit has a volume of 1 mm 3 - 100 mm 3 .
  • the grounding shield layer 18 controlled by the analog switch is made of a silicone conductive silver paste material
  • the insulating protective layer 19 is made of a PDMS material.
  • the flexible conductive material is an organic conductive silver glue material, and the organic conductive silver glue material and the multifunctional layer are bonded by a conductive silver paste.
  • an electrical connection is formed between the upper portion 11 and the bottom portion of the multifunctional layer by conductive adhesive bonding or crimping; the conductive pillar 20 is electrically connected to the first layer PCB board by soldering, crimping or conductive adhesive. Or on the FPC board 141.
  • the present embodiment takes a horizontal arrangement as an example.
  • the first multi-function layer 1 and the third multi-function layer 3 form a capacitor C1
  • the second multi-function layer 2 and the fourth multi-function layer 4 form a capacitor C2.
  • the long dashed line in the figure indicates the electric field distribution of the capacitor C1
  • the short dashed line indicates the electric field distribution of the capacitor C2.
  • the first multi-functional layer 1 and the third multi-functional layer 3 are higher than the second multi-functional layer 2 and the fourth multi-functional layer 4,
  • the center distance between the first multifunctional layer 1 and the third multifunctional layer 3 is greater than that of the second multifunctional layer 2 and the fourth multifunctional layer 4.
  • the arrangement is such that the electric field line distribution area of the capacitor C1 is higher than the electric field line distribution area of the capacitor C2.
  • the medium of the electric field line distribution region of the capacitor C1 and the capacitor C2 is air, and the capacitance values of the capacitor C1 and the capacitor C2 follow
  • the change in ambient temperature and humidity is proportional to the variation of this ratio.
  • the digital difference algorithm can be used to eliminate the effects of ambient temperature and humidity changes. As shown in FIG.
  • the bottom of the multi-functional layer disposed inside each sensor unit is disposed on the same plane. Therefore, the capacitor provided in this embodiment can be regarded as a plane-like capacitor.
  • the timing of the contact with the external object can be further accurately determined, and the speed at which the external object contacts the sensor surface can be accurately calculated.
  • the sensor with time division and sub-area shielding function provided by the embodiment can realize the sub-area shielded sensor matrix through analog switch and bus synchronization control when multiple touch sensor units form a sensor matrix (for intelligent bionic skin)
  • the scanning function prevents crosstalk between adjacent sensor units when the matrix is scanned.
  • the prior art capacitive matrix scanning mode is shown in FIG. 13, wherein the row scanning line is connected to the excitation signal through a multi-way switch, and the column scanning line is input to the measurement channel through the multi-way switch capacitor.
  • the excitation signal on the selected row is simultaneously applied to the capacitive excitation poles of all columns, and only the capacitive input stage of the selected column is connected to the capacitance measurement channel.
  • the excitation electrode of the capacitor on the adjacent column that is not selected on the selected line will crosstalk the selected capacitor.
  • the excitation signal on the selected line on the selected line will also cause crosstalk to the selected capacitor.
  • the sub-area masked scanning mode of this embodiment is as shown in FIG. 14.
  • the sensor unit of the SPI bus that selects the measurement state by the address bit is marked as O; the sensor unit that does not specify the address bit is marked as the X ground shield, so it is not
  • the selected sensor unit causes crosstalk.
  • the selected sensor unit has four multi-function layers forming two types of planar capacitors for implementing the haptic function, and the excitation signal is from the inside of the sensor unit. When the sensor unit is used as the grounding shielding unit, its four multi-function layers are grounded at the same time, and the size of the shielding area, that is, the number of units shielded by the ground can be selected according to actual needs.
  • the sensor unit When the sensor unit is used as a grounding shielding unit, its multi-functional layer temporarily loses the sense of contact, but the unit for three-dimensional force measurement inside each multi-functional layer is still in normal working condition to ensure that it still has pressure and slip. Sensory function. Since the four multi-function layers of the unselected sensor unit are grounded, crosstalk is not caused to adjacent selected cells.
  • the detecting unit for detecting the three-dimensional force inside the multi-function layer is a parallel plate capacitor.
  • the parallel plate capacitors inside the four multi-function layers on each sensor unit have the same structure.
  • the upper cross-shaped common electrode 6 of the first multi-functional layer 1 respectively forms four parallel-plate capacitors C3, C4, C5, and C6 with four rectangular independent electrodes 7 corresponding to the lower layer.
  • the upper cross-shaped common electrode 6 of the second multi-functional layer 2 respectively forms four parallel plate capacitors C7, C8, C9, C10 with the four rectangular independent electrodes 7 corresponding to the lower layer, and the upper cross-shaped shape of the third multi-functional layer 3
  • the common electrode 6 respectively forms four parallel plate capacitors C11, C12, C13, C14 with four rectangular independent electrodes 7 corresponding to the lower layer, and the upper cross-shaped common electrode 6 of the fourth multifunctional layer 4 and the lower four rectangular independent electrodes respectively 7 forming four parallel plate capacitors C15, C16, C17, C18; wherein the common electrode 6 is connected to the excitation signal, and the rectangular electrode 7 is respectively connected to the four capacitance analog-to-digital conversion channels.
  • the spacing between the two plates of the parallel plate capacitor C4 is a1
  • the facing area between the two plates is s1
  • the spacing between the plates of the parallel plate capacitor C5 is a2.
  • the spacing a1 between the two plates of the parallel plate capacitor C4 and the spacing a2 between the two plates of the parallel plate capacitor C5 are changed, thereby making the parallel plate capacitance The capacitance values of C4 and parallel plate capacitor C5 change.
  • the magnitude and direction of the normal force received can be determined.
  • the facing area s1 between the two plates of the parallel plate capacitor C4 and the facing area s2 between the two plates of the parallel plate capacitor C5 change.
  • the capacitance values of the parallel plate capacitor C4 and the parallel plate capacitor C5 are changed.
  • the magnitude of the tangential force received can be determined.
  • the direction of the tangential force received can be determined according to the difference in the capacitance values of the parallel plate capacitor C4 and the parallel plate capacitor C5, specifically, when subjected to the tangential force in the direction indicated by the arrow in FIG.
  • the absolute value of the capacitance value change value of the board capacitor C4 is larger than the absolute value of the capacitance value change value of the parallel board capacitor C5.
  • the absolute value of the capacitance value change value of the parallel plate capacitance C4 is smaller than the absolute value of the capacitance value change value of the parallel plate capacitance C5.
  • the normal and tangential forces received by the parallel plate capacitor C4 and the parallel plate capacitor C5 will vibrate, causing the spacing a1 between the plates of the parallel plate capacitor C4 and the parallel plate.
  • the spacing a2 between the two plates of the capacitor C5 and the facing area s1 between the two plates of the parallel plate capacitor C4 and the facing area s2 between the two plates of the parallel plate capacitor C5 are changed, resulting in a parallel plate
  • the capacitance of capacitor C4 and parallel plate capacitor C5 fluctuates. According to this, the speed and direction of the sliding can be determined.
  • the multi-functional layer is covered on the outside of the upper cross-type common electrode and the lower-layer independent electrode, and the multi-functional layer has a shape of a groove, wherein the shape of the multi-functional layer may be a hemisphere Shape or ellipsoidal shape;
  • the multi-functional layer is used for electromagnetic shielding function of the parallel plate capacitors therein, and there are two ways to realize electromagnetic shielding: ground shielding and equipotential shielding;
  • the multi-function layer By switching the analog switch of the multi-function layer to the grounding position, the multi-function layer can be grounded to achieve grounding shielding of the external electromagnetic signal; the analog switch of the multi-function layer is switched to the excitation signal of the common electrode of the corresponding parallel plate capacitor, The multi-function layer is equipotential to the common electrode of the parallel plate capacitor to achieve equipotential shielding of the external electromagnetic signal.
  • the multi-function layer of the embodiment is connected to the processor through an analog switch, and the processor is connected to the external circuit through a bus;
  • the multi-function layer can realize the function of the sub-area shielding sensor through the time-sharing switching of the analog switch and the control of the bus, when performing the sub-area scanning:
  • the sensor unit in the scanning state performs the following T-cycle operation; wherein one measurement period T is composed of two sub-periods T1 and T2:
  • the analog switch K1 of the first multi-function layer 1 is connected to the multi-layer excitation signal S1
  • the analog switch K3 of the third multi-function layer 3 is connected to the analog-to-digital conversion circuit M1
  • the analog switch K2 of the second multi-function layer 2 The analog switch K4 of the fourth multi-function layer 4 is grounded at the same time, or the analog switch K2 of the second multi-function layer 2 is connected to the excitation signal S2-1 of the internal parallel plate capacitor common electrode 6, and the analog switch K4 of the fourth multi-function layer 4
  • the excitation signal S4-1 connected to the internal parallel plate capacitor common electrode 6, the analog switch K1-1 of the internal parallel plate capacitor of the first multifunctional layer 1, and the analog switch K3-1 of the internal parallel plate capacitance of the third multifunctional layer 3 are both Disconnected so that the class plane capacitance C1 is neither crosstalked by the second multifunction layer 2 and the fourth multifunction layer 4 outside the first multifunction layer 1 and the third multifunction layer 3 when the contact sense is realized.
  • the analog switch K2 of the second multi-function layer 2 is connected to the multi-layer excitation signal S2
  • the analog switch K4 of the fourth multi-function layer 4 is connected to the analog-to-digital conversion circuit M2
  • the analog switch K1 of the first multi-function layer 1 The analog switch K3 of the third multi-function layer 3 is grounded at the same time, or the analog switch K1 of the first multi-function layer 1 is connected to the excitation signal S1-1 of the parallel plate capacitor common electrode 6, and the analog switch K3 of the third multi-function layer 3
  • the excitation signal S3-1 of the internal parallel plate capacitor common electrode 6 , the analog switch K2-1 of the internal parallel plate capacitor of the second multifunctional layer, and the analog switch K4-1 of the internal parallel plate capacitor of the fourth multifunctional layer are both disconnected.
  • the class-like capacitor C2 is neither interfered by the external crosstalk of the first multi-functional layer 1 and the third multi-functional layer 3, nor is the internal parallel plate of the second multi-functional layer 2 and the fourth multi-functional layer 4 in realizing the contact sense.
  • the crosstalk of the capacitor; at the same time, the analog switch K1-1 that controls the internal parallel plate capacitance of the first multi-function layer 1 is connected to the excitation signal S1-1 of the common electrode 6 of the internal parallel plate capacitor, and the inside of the third multi-function layer 3 is controlled.
  • the parallel switch capacitor analog switch K3-1 is connected to the internal parallel plate capacitor common electricity S3-1 6 of the excitation signal, so that the first layer 1 and the third multi-purpose multi-function layer 3 is masked, the parallel plate capacitor inside still in operation, to measure three-dimensional changes in force;
  • the analog switches K1, K2, K3, and K4 of the four multi-function layers of the sensor unit in the shield state are simultaneously grounded, or the analog switches K1, K2, K3, and K4 of the four multi-function layers are simultaneously connected.
  • Internal parallel plate capacitor common electrode 6 excitation signals S1-1, S2-1, S3-1, S4-1, and analog switches K1-1, K2- for controlling the common electrode of the internal parallel plate capacitors of the four multi-function layers 1.
  • K3-1 and K4-1 are connected to the excitation signals S1-1, S2-1, S3-1, and S4-1 of the corresponding parallel plate capacitor common electrode 6, so that the sensor unit in the shield state can measure the three-dimensional force. The change.
  • the capacitance measurement of this embodiment adopts the 7150 chip of the ad1 company
  • the processor adopts the 32-bit processor of the ARM-m0 core
  • the external communication adopts the SPI bus.
  • the combination of the multi-functional layer and the parallel plate capacitor enables a temperature sensing function.
  • the temperature can be measured directly using parallel plate capacitances for measuring three-dimensional forces, which can cause media expansion or contraction between parallel plate capacitances, thereby changing the spacing of the parallel plate capacitances, resulting in changes in capacitance.
  • the existing touch sensor does not have a multi-functional layer, it cannot be distinguished whether the change in capacitance is caused by the pressure of the external object or due to the temperature change, and thus the temperature sensitivity of the touch sensor cannot be directly realized by the parallel plate capacitance.
  • the multi-function layer can accurately determine whether an external object is connected to the touch sensor.
  • the only factor that causes the internal parallel plate capacitance change due to the electromagnetic shielding function of the multi-functional layer can only be The temperature, as shown in Figures 8 and 25, when the ambient temperature rises, the flexible insulating material between the parallel plate capacitors will expand, causing the spacing between the parallel plate capacitors to become larger, so that the capacitance values of the four parallel plate capacitors are larger than that of the same. Conversely, as shown in Fig. 26, when the ambient temperature is lowered, the flexible insulating material between the parallel plate capacitors will shrink, causing the spacing between the parallel plate capacitors to become smaller, so that the capacitance values of the four parallel plate capacitors are larger than that of the same. It becomes larger, so that the amount of change in temperature can be derived from the amount of change in capacitance.
  • the higher first multi-function layer 1 and the third multi-function layer 3 are first subjected to pressure, and lower.
  • the second multi-functional layer 2 and the fourth multi-functional layer 4 have not been subjected to pressure, as shown in FIG. 25, if the temperature of the external object 5 is higher than the ambient temperature, the second multi-function that is not subjected to pressure due to the action of the thermal sensing guide
  • the flexible insulating material between the internal parallel plate capacitor plates of the layer 2 and the fourth multifunctional layer 4 will be thermally expanded, thereby causing the capacitance thereof to decrease year by year; conversely, as shown in FIG.
  • the flexible insulating material between the uncompressed second multifunctional layer and the internal parallel plate capacitor plate of the fourth multifunctional layer will shrink, causing its capacitance to increase year by year. Thereby, the temperature of the contact with the external object can be estimated from the change in the capacitance of the parallel plate capacitance in the second multi-functional layer 2 and the fourth multi-functional layer.
  • the parallel plate capacitance is measured in the range of 0.001 pf to 100 pf.
  • the center distance between the first multifunctional layer 1 and the third multifunctional layer 3 is d1
  • the center distance between the second multifunctional layer 2 and the fourth multifunctional layer 4 is d2
  • the ratio of d1 to d2 is 1.2-5.
  • the heights of the first multifunctional layer 1 and the third multifunctional layer 3 are h1
  • the heights of the second multifunctional layer 2 and the fourth multifunctional layer 4 are h2
  • the difference between h1 and h2 is 1-3 mm.
  • the detecting unit for detecting the three-dimensional force inside the multi-function layer is a varistor.
  • the structure and function of the multi-functional layer are the same as those of the multi-functional layer in the first embodiment.
  • the principle of the multi-functional layer for measuring the three-dimensional force is changed from the parallel plate capacitor to the varistor, and the internal electrode structure of the multi-functional layer is unchanged, but four rectangles are added between the upper cross-type common electrode 6 and the lower rectangular independent electrode 7.
  • the flexible varistor 21, the upper cross-type common electrode 6 and the lower four rectangular independent electrodes serve as the two poles of the varistor 21.
  • the four varistor 21 are subjected to the same deformation pressure when subjected to tangential direction.
  • the four varistor 21 are subjected to different deformation pressures, and the change of the three-dimensional force can be measured according to the change of the four resistances.
  • the multi-functional layer is covered on the outside of the upper cross-type common electrode, the varistor and the lower independent electrode, and the multi-functional layer has a groove shape; wherein the multifunctional layer
  • the shape may be hemispherical or ellipsoidal or the like.
  • the combination of the multifunctional layer and the varistor 21 also enables a temperature sensing function.
  • the four varistors used to measure the three-dimensional force inside the multi-function layer are also affected by the temperature change, which causes the change of the resistance, so that the temperature sensing function can also be realized.
  • the measurement principle and the parallel plate capacitance measure the temperature. The principle is similar, so it will not be described here.
  • the varistor 21 is made of a conductive rubber piezoresistive material, and the force-sensitive conductive rubber piezoresistive material is formed by uniformly distributing carbon or other highly conductive particles into an insulating flexible polymer base material by a specific process.
  • the polymer material, the conductivity of the piezoresistive material depends on the density of the internal conductive particles.
  • the density of the conductive particles inside it will also change, so that the resistance across the sensor changes, and according to the change of the resistance, the change of the three-dimensional force inside the multifunctional layer can be measured. .
  • the multi-function layer is connected to the processor through an analog switch, and the processor is connected to the external circuit through a bus; the function of the multi-function layer controlled by the analog switch and the varistor inside the multi-function layer It is periodically time-divisionally switched; wherein one measurement period T consists of two sub-periods T1 and T2:
  • the analog switch K1 of the first multifunction layer 1 connects the first multifunction layer 1 with the multi-layer excitation signal S1
  • the analog switch K3 of the third multi-function layer 3 connects the third multi-function layer 3 with the capacitor.
  • the analog-to-digital conversion circuit m1 is turned on, so that the first multi-function layer 1 and the third multi-function layer 3 form a class-like capacitor C1, the analog switch K2 of the second multi-function layer 2, and the analog switch K4 of the fourth multi-function layer 4 Simultaneously grounding, the analog switch K1-1 that controls the internal varistor 21 of the first multi-function layer 1 and the analog switch K3-1 that controls the internal varistor 21 of the third multi-function layer 3 are simultaneously opened, so that the plane-like capacitance C1 When the contact sense is realized, neither the external crosstalk of the second multifunction layer 2 and the fourth multifunction layer 4 nor the crosstalk inside the first multifunction layer 1 and the third multifunction layer 3, and at the same time,
  • the analog switch K2-1 that controls the internal varistor 21 of the second multi-function layer 2 and the analog switch K4-1 that controls the internal varistor 21 of the fourth multi-function layer 4 are connected to the common electrode 6 of the varistor 21 thereof. , making the second multifunctional layer 2 and
  • the analog switch K2 of the second multifunction layer 2 connects the second multifunction layer 2 with the multi-layer excitation signal S2, and the analog switch K4 of the fourth multi-function layer 4 connects the fourth multi-function layer 4 with the capacitor.
  • the analog-to-digital conversion circuit m2 is turned on, so that the second multi-function layer 2 and the fourth multi-function layer 4 form a class-like capacitor C2, the analog switch K1 of the first multi-function layer 1 and the analog switch K3 of the third multi-function layer 3 Simultaneously grounding, the analog switch K2-1 that controls the internal varistor 21 of the second multi-function layer 2 and the analog switch K4-1 that controls the internal varistor 21 of the fourth multi-function layer 4 are simultaneously opened, so that the plane-like capacitance C2 When the contact sense is realized, neither the external crosstalk of the first multifunction layer 1 and the third multifunction layer 3 nor the crosstalk inside the second multifunction layer 2 and the fourth multifunction layer 4, and at the same time, The analog switch K1-1 that controls the internal varistor 21 of the first multi-function layer 1 and the analog switch K3-1 that controls the internal varistor 21 of the third multi-function layer 3 are connected to the common electrode 6 of the varistor 21 thereof. a varistor that causes the first multi-functional layer
  • the sensor unit selected to be in the measurement state performs the above-described T period, and the sensor unit selected as the shield area performs a special period T3.
  • the analog switches K1, K2, K3, and K4 of the four multi-function layers of the sensor unit in the shield state are grounded, and the analog switches K1-1, K2-1, and K3 that control the internal varistor 21 of the four multi-function layers are simultaneously controlled.
  • -1, K4-1 is connected to the cross-type common electrode 6 of the internal varistor 21, so that the sensor unit in the shield state can measure the change of the three-dimensional force.
  • the capacitance measurement of the present embodiment uses the 7150 chip of the ad1 company, the processor adopts the 32-bit processor of the ARM-m0 core, and the external communication uses the SPI bus.
  • Another aspect of the present application is also directed to an electronic skin comprising the above-described sensor having a time-sharing and sub-regional shielding function, since the improvement point only relates to the sensor on the artificial skin, and other components can adopt the more mature ones in the prior art. technology. Therefore, other components of the electronic skin are not described in this application.
  • Another aspect of the present application is also directed to a robot including the above-described electronic skin, since the improvement point relates only to a touch sensor on an electronic skin, and other components may employ a more mature technique in the prior art. Therefore, other components of the intelligent robot will not be described in this application.
  • Yet another aspect of the present application is also directed to an artificial intelligence prosthesis comprising the above-described electronic skin, since the improvement point relates only to contact sensors on artificial skin, while other components may employ more mature techniques in the prior art. Therefore, other components of the artificial intelligence prosthesis are not described in this application.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Human Computer Interaction (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Robotics (AREA)
  • Mechanical Engineering (AREA)
  • Theoretical Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Electromagnetism (AREA)
  • Force Measurement Appropriate To Specific Purposes (AREA)
  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)

Abstract

一种具有分时、分区域屏蔽功能的传感器和机器人,包括多个传感器单元,每个单元包括4个多功能层包含的区域,多功能层内部包含4个平行板电容;多功能层通过模拟开关分时切换及总线控制实现分区域屏蔽功能。在进行分区域扫描时:将扫描传感器单元执行操作,以使由多功能层构成的类平面电容在实现接触觉时既不受多功能层外部串扰,也不受其内部平行板电容的串扰,还能使处于屏蔽状态下的多功能层内部的平行板电容能测量三维力的变化;将屏蔽传感器单元的多功能层同时接地,或同时接其内部平行板电容公共电极的激励信号,将内部平行板电容的公共电极接对应公共电极激励信号,使处于屏蔽状态的传感器单元能测三维力变化。

Description

具有分时、分区域屏蔽功能的传感器、电子皮肤和机器人 技术领域
本发明涉及一种具有分时、分区域屏蔽功能的传感器、电子皮肤和机器人,适用于人工智能的技术领域。
背景技术
近年来,智能机器人在工业领域已经发展到大规模实用阶段,智能机器人与外部世界的交互作用需要模仿人类的各种感官功能的智能传感器,主要包括:视觉传感器、听觉传感器、触觉传感器和嗅觉传感器。到目前为止,视觉传感器和听觉传感器已经发展成熟并广泛地应用在工业机器人领域。但随着智能机器人向人类活动的各个领域深入扩展,特别是农业机器人、家庭服务机器人、医疗服务机器人和酒店餐饮业服务机器人等领域,需要机器人能够完成更加灵活、复杂的动作,同时由于这些领域的机器人需要与人类做更加密切的接触,必须保证机器人与人类接触的安全性和舒适性。因此,具有类似人类触觉功能的高度敏感的触觉传感器就显得越来越重要。世界各国均对仿生触觉传感器开展了广泛的研究。
智能触觉传感器应具备以下基本功能:
接触觉:当智能机器人的肢体即将或刚刚接触外部物体时,应能对即将或刚刚接触的外部物体进行大致的分类并判断即将接近的外部物体的速度和距离。例如:服务类机器人应能分辨出即将或刚刚接触的物体是人类肢体或其他物体,农业采摘机器人应能分辨即将或刚刚接触的物体是水果、棉花或植物枝叶,同时应能判断接近的速度和距离,以便智能机器人能恰当的控制其肢体接近或接触外部对象的初速度,以避免对即将接触的人体造成伤害或对即将接触 的物体造成损坏。
压觉和滑动觉:当智能机器人的肢体接触到外部物体后,应能感知其施加的三维压力的大小和方向,以便智能机器人能将其施加于外部物体的三维压力控制在适合的范围,例如:服务类机器人端起茶杯时应控制其施加于茶杯的三维压力,使其即不至于被捏碎,又不至于滑落。另外,当智能机器人的肢体在外部物体上滑动时应能感知滑动的方向和滑动速度,以便智能机器人能将控制滑动的方向和速度,例如:按摩服务机器人应能将其手掌在人体上滑动的速度和方向控制在适当的范围。
温湿度觉:当智能机器人的肢体接近或接触到外部物体时应能感知外部环境和外部物体的温度,以便智能机器人保护智能机器人自身的肢体不受到高温或低温的损坏,同时保护其服务对象不受到高温或低温的伤害,例如:服务机器人给老人或病人端茶水时应判断茶水的温度是否适合人类饮用;当智能机器人肢体接近火焰或高温物体时应能主动趋避。另外,智能机器人的肢体接近或接触到外部物体时应能感知外部环境和外部物体的湿度,例如:家庭服务机器人,帮人类晾晒衣物时应能分辨出衣物是否已经晾干。
除上述基本功能外,由于仿生机器人的全部肢体需要大面积覆盖具有大量触摸传感器的仿生皮肤,因此,智能触摸传感器还需要符合小型化、低功耗、便于形成传感器矩阵的要求。
现有智能触摸传感器技术研究,按传感原理划分,主要分为,电阻式、电容式、光电式、压电式、电感式、微机电式和复合式(两种或两种以上原理复合)。目前大都处在实验室研究阶段,还没有成熟到实用阶段,随着研究的深入,越来越多的研究团队将关注点聚焦于电阻式、电容式和阻容复合式,由于其制作工艺简单、成本低便于批量生产等特点已经接近于成熟。
纯电阻式触摸传感器是利用柔性压阻可变材料(例如导电橡胶),当受到压力时其电阻率发生变化,从而反应受到压力的大小的原理实现的。其优点是:能实现压觉即三维力的感知,制作工艺简单、成本低、抗干扰能力较强,便于 批量生产;但缺点是:几乎无法实现接触觉的要求,无法对接触的物体进行分类识别,当即将接触外部物体时无法判断接近的速度和距离,灵敏度偏低,产品一致性较难控制。在一些对接触觉和灵敏度要求不高的应用领域,具有一定的市场潜力。
电容式或阻容复合式触摸传感器是目前最具发展前景的,与其他形式的触摸传感器相比,电容式触摸传感器对于实现接触觉具有独有的优势,电容式触摸传感器利用电场理论,其电场线可以穿越接近或接触到外部物体,利用不同物体具有不同介电常数的特性对外部物体进行分类识别,特别是可以准确分辨外部物体是人体还是其他物体。对于实现压觉和滑动觉电容式触觉传感器也有灵敏度高、一致性好、易于制作、成本低、易于实现矩阵等优点。但现有电容式触觉传感器技术的不足是:
第一、无法实现触摸传感器的全部要求:接触觉,包括对外部物体的分类识别和对外部物体接近程度的判别;压觉和滑觉,即三维力的大小和方向测量;温度觉和湿度觉。
第二、抗干扰能力较差,易于受到环境温度、湿度、电磁干扰的影响,在测量三维力时通常采用差分的方法消除环境温、湿度的影响,并采用电磁屏蔽的方法提高抗电磁场干扰能力。而一旦采用电磁屏蔽措施,虽然有效提高了抗电磁干扰的能力,但同时丧失了对外部物体进行分类识别和判断接近速度及距离的能力,即无法实现接触觉功能。
第三、当形成传感器矩阵时,无法避免相邻传感器单元的电场串扰。
近年来,国内外的研究者发表了众多的论文和专利文献,大体上可以分为以下2大类:
仅具有压觉和/或滑觉功能,即仅能测量三维力的传感器,其中又分为有屏蔽和无屏蔽措施两小类:例如:
申请号为CN201410245030专利公开了一种全柔性电容式触觉传感器,该专利将平行板电容的上极板直接接地作为屏蔽层,虽然提高了抗干扰能力,但 由于屏蔽层内部电场线无法穿越屏蔽层,因而丧失了对外部物体的分类识别和接近程度的功能,不能实现接触觉。
公开号US2008/0174321A1专利公开了一种可同时测量物体接近和滑觉的电容传感器,该传感器可以在两种模式下工作。该专利的电容电极采用上下两层结构,上层由两个电极构成平面电容,可以实现接触觉的对外部物体分类识识别的功能,但无法实现接触觉的对外部物体接近程度的测量,其上层电极和下层电极又可以形成平行板电容,可以实现压觉的法向力测量,但无法实现切向力的测量,该专利无法实现屏蔽或差分等任何抗干扰措施。当形成矩阵时也无法实现任何抗串扰措施。
发明内容
本发明的目的在于克服现有技术的不足,提供一种具有分时、分区域屏蔽功能的传感器。
本发明提供的一种具有分时、分区域屏蔽功能的传感器,其特征在于:所述触摸传感器包括多个传感器单元,每个传感器单元包括4个多功能层包含的区域,每个多功能层内部包含平行板电容;所述多功能层通过模拟开关连接在处理器上,所述处理器连接在外电路上;
多功能层通过模拟开关的分时切换及总线的控制来分区域屏蔽传感器,
其中,每个测量周期T由两个子周期T1和T2构成:
在T1时,第一多功能层接多功能层激励信号,第三多功能层接模数转换电路,第二多功能层和第四多功能层同时接地,或第二多功能层和第四多功能层同时接其内部平行板电容公共电极的激励信号,将控制第一多功能层和第三多功能层内部平行板电容的模拟开关断开,同时将控制第二多功能层和第四多功能层内部平行板电容的模拟开关接其内部平行板电容公共电极的激励信号,以使由第一多功能层和第三多功能层构成的类平面电容C1在实现接触觉时既不受第二多功能层和第四多功能层的外部串扰,也不受第一多功能层和第三多 功能层内部的平行板电容的串扰,同时还能使第二多功能层和第四多功能层在处于屏蔽状态下,其内部的平行板电容仍能处于工作状态,以测量三维力的变化;
在T2时,第二多功能层接多功能层的激励信号,第四多功能层接模数转换电路,第一多功能层和第三多功能层同时接地,或第一多功能层和第三多功能层同时接其内部平行板电容公共电极的激励信号,将控制第二多功能层和第四多功能层内部平行板电容的模拟开关断开,同时将控制第一多功能层和第三多功能层内部平行板电容的模拟开关接其内部平行板电容公共电极的激励信号,以使由第二多功能层和第四多功能层构成的类平面电容C2在实现接触觉时既不受第一多功能层和第三多功能层的外部串扰,也不受第二多功能层和第四多功能层内部平行板电容的串扰,同时还能使第一多功能层和第三多功能层处于屏蔽状态下,其内部的平行板电容仍能处于工作状态,以测量三维力的变化;
在在接下来的T3周期内,将处于屏蔽状态的传感器单元的4个多功能层同时接地,或同时接其内部平行板电容公共电极的激励信号,并将4个多功能层内部平行板电容的公共电极接通对应的公共电极的激励信号,使处于屏蔽状态的传感器单元能测三维力的变化,其中的T3=T。
本发明提供的一种具有分时、分区域屏蔽功能的传感器,还包括如下附属技术方案:
其中,所述测量周期T为1-20ms,且T1=T2=0.5T。
其中,每个所述多功能层的内部均设置有两层电极,上层为十字形公共电极,下层为与上层十字型公共电极对应的4个独立电极,所述上层十字型公共电极和下层4个独立电极构成4个平行板电容。
其中,每个多功能层包含的区域包括与多功能层对应的上部和底部,上部由柔性导电材料构成,柔性导电材料的外部设置有由柔性绝缘材料构成的保护层,底部包括多层PCB板或FPC板,PCB板或FPC板下面设置有柔性绝缘层, 柔性绝缘层下面设置有由模拟开关控制的接地屏蔽层,由模拟开关控制的接地屏蔽层下面设置有绝缘保护层;第一层PCB板或FPC板上设置有与每个多功能层对应的环状电极,第二层PCB板或FPC板上设置有圆形电极,圆形电极上设置有过孔,所述过孔连接环状电极与圆形电极,以形成独立的导电区域,所述上部与底部之间电连接;所述上层十字型公共电极通过设置在所述多功能层内部的中心导电柱电连接在所述第一层PCB板或FPC板上,所述下层独立电极直接设置在所述第一层PCB板或FPC板上。
其中,所述柔性导电材料为有机导电银胶材料,所述有机导电银胶材料与所述多功能层之间设有导电银胶粘结层。
其中,所述由模拟开关控制的接地屏蔽层为有机硅导电银胶屏蔽层,所述绝缘保护层为PDMS保护层。
其中,所述多功能层的上部和底部之间通过导电胶粘结或压接形成电连接。
其中,所述导电柱通过焊接、压接或导电胶电连接在所述第一层PCB板或FPC板上。
其中,第一多功能层和第三多功能层等高且相对设置,第二多功能层和第四多功能层等高且相对设置;第一多功能层和第三多功能层的中心距为d1,第二多功能层和第四多功能层的中心距为d2,d1与d2的比值为1.2-5;第一多功能层与第三多功能层的高度为h1,第二多功能层和第四多功能层的高度为h2,h1与h2的差值为1-3mm。
本发明还提供了一种电子皮肤,其特征在于,包括如上述任一项所述的具有分时、分区域屏蔽功能的传感器的触摸传感器。
本发明还提供了一种智能机器人,其特征在于,包括上述的电子皮肤。
本发明还提供了一种人工智能假肢,其特征在于,包括如上述的电子皮肤。
本发明的实施包括以下技术效果:
本发明的一种具有分时、分区域屏蔽功能的传感器,借助多功能层可以完整实现触摸传感器的全部功能要求:第一,多功能层本身可以形成类平面电容 的电极,完整实现接触觉功能要求;第二,多功能层可以作为其内部包含的多个平行板电容的电磁屏蔽层,从而在有效提高了三维力测量抗干扰能力的前提下,还可以实现接触觉的全部功能;第三,当形成传感器矩阵时,多功能层可以用来实现分区域屏蔽式扫描,有效地避免了相邻传感器单元的串扰问题。
附图说明
图1为本发明的传感器单元的外观结构图。
图2为本发明的一种方式的多功能层的布置图。
图3为本发明的另一种方式的多功能层的布置图。
图4为本发明的再一种方式的多功能层的布置图。
图5为本发明的传感器单元的分层图。
图6为本发明的一个实施例中串感器单元的爆炸图。
图7为本发明的多功能层的电场线分布图。
图8为本发明的外部物体未进入类平面电容C1和C2电场线分布区域时的电场线分布图。
图9为本发明的外部物体进入了类平面电容C1电场线分布区域,但未进入类平面电容C2电场线分布区域时的电场线分布图。
图10为本发明的外部物体进入类平面电容C1和C2电场线分布区域时的电场线分布图。
图11为本发明的外部物体接触到类平面电容C1,但未接触到类平面电容C2时的电场线分布图。
图12为本发明的外部物体同时接触到类平面电容C1和C2时的电场线分布图。
图13为传统传感器的矩阵扫描图。
图14为本发明的分区域屏蔽式矩阵扫描图。
图15为本发明的一个实施例中多功能区域的剖面图。
图16为本发明的一个实施例中平行板电容的结构图。
图17为本发明的一个实施例中平行板电容未受力时的示意图。
图18为本发明的一个实施例中平行板电容受到法向力时的示意图。
图19为本发明的一个实施例中平行板电容受到切力时的示意图。
图20为本发明的一个实施例中平行板电容受到滑动力时的示意图。
图21为本发明的一个实施例中的电路控制图。
图22为本发明的一个实施例中的传感器单元的等效电路图。
图23为本发明的另一个实施例中的多功能层的剖面图。
图24为图23的局部爆炸图。
图25为本发明的另一个实施例中压敏电阻受热膨胀时的示意图。
图26为本发明的另一个实施例中压敏电阻遇冷收缩时的示意图。
图27为本发明的另一个实施例中的传感器单元的等效电路图。
具体实施方式
下面将结合实施例以及附图对本发明加以详细说明,需要指出的是,所描述的实施例仅旨在便于对本发明的理解,而对其不起任何限定作用。
如图1所示,本实施例提供的一种具有分时、分区域屏蔽功能的传感器,所述触摸传感器包括多个传感器单元,每个传感器单元包括4个多功能层包含的区域,4个多功能层两两相对布置,可以以两对中心连接线的交点为圆心,按任意角度布置。如图2所示,4个多功能层正交布置,即,按90度角布置;如图3所示,4个多功能层水平布置,即,按0度角布置;如图4所示,4个多功能层按45度角布置。
如图5、6所示,每个多功能层包含对应的区域包括与多功能层对应的上部11和底部,上部11由柔性导电材料构成,柔性导电材料的外部设置有由柔性绝缘材料构成的保护层12,底部包括多层PCB板或FPC板,PCB板或FPC板下面设置有柔性绝缘层17,柔性绝缘层17下面设置有由模拟开关控制的接地 屏蔽层18,由模拟开关控制的接地屏蔽层18下面设置有绝缘保护层19;第一层PCB板或FPC板14上设置有与每个多功能层对应的环状电极141,第二层PCB板或FPC板15上设置有圆形电极151,圆形电极151上设置有过孔152,过孔152用于连接环状电极141与圆形电极151,以形成独立的导电区域,所述由柔性导电材料组成的上部11与第二层PCB板或FPC板15形成完整的多功能层,由于单层PCB板或FPC板的厚度只有0.025mm,因此能完全满足多功能层作为屏蔽层功能的需要。触摸传感器单元的电子器件布置在第三层PCB板或FPC板16的下表面162上,第三层PCB板或FPC板16的上表面161和下表面162用于电子电路布线;如图6所示,在每一个多功能层对应的区域内部填充柔性绝缘材料13,所述柔性绝缘材料13使上下两层电极以及多功能层之间相互绝缘;所述上层十字型公共电极6通过设置在所述多功能层内部的中心导电柱20电连接在所述第一层PCB板或FPC板上,所述下层独立电极7直接设置在所述第一层PCB板或FPC板141上;所述上层十字型公共电极和下层独立电极之间的距离为0.5-3mm。
优选地,所述传感器单元的体积为1mm3-100mm3。
优选地,所述由模拟开关控制的接地屏蔽层18采用有机硅导电银胶材料制作,所述绝缘保护层19采用PDMS材料制作。
优选地,所述柔性导电材料为有机导电银胶材料,所述有机导电银胶材料与所述多功能层通过导电银胶粘结。
优选地,所述多功能层的上部11和底部之间通过导电胶粘结或压接形成电连接;所述导电柱20通过焊接、压接或导电胶电连接在所述第一层PCB板或FPC板141上。
为便于说明,本实施例以水平布置为例。如图7所示,本实施例的4个多功能层中,第一多功能层1与第三多功能层3构成电容C1,第二多功能层2与第四多功能层4构成电容C2,图中长虚线表示电容C1的电场分布,短虚线表示电容C2的电场分布,第一多功能层1与第三多功能层3高于第二多功能层2 与第四多功能层4,且第一多功能层1与第三多功能层3的中心距大于第二多功能层2与第四多功能层4。如此设置,使得电容C1的电场线分布区域高于电容C2的电场线分布区域。如图8所示,当外部物体5未进入电容C1和电容C2的电场线分布区域时,电容C1和电容C2的电场线分布区域的介质均为空气,电容C1和电容C2的电容值会随环境温度和湿度变化等比例变化,这个等比变化的特性可以用数字差分算法消除环境温度、湿度变化的影响。如图9所示,当外部物体5进入电容C1的电场线分布区域,而未进入电容C2的电场线分布区域时,由于不同材质的物体的介电常数不同,电容C1的电容量将发生变化,C1的电容量的变化量与外部物体的介电常数近似成正比,C2的电容量不变;如图10所示,当外部物体5同时进入C1和C2的电场线分布区域时,C1和C2的电容量的变化量同时与物体的介电常数成正比,依据C1和C2的变化量和变化时间的关系可以算出外部物体的介电常数和接近距离、速度,从而实现对外部物体5的分类识别和接近程度判别功能。
需要说明的是,本实施例中,设置在每个传感器单元内部的多功能层的底部均设置在同一个平面上,因此,本实施例提供的电容可以认为类平面电容。
如图11所示,当外部物体5刚刚接触到传感器单元相对较高的第一多功能层1和第三多功能层3,而尚未接触到相对较低的第二多功能层2和第四多功能层4时,第一多功能层1和第三多功能层3内部的检测单元受力,而第二多功能层2和第四多功能层4内部的检测单元尚未受力,因而没有发生变化。当外部物体5进一步对传感器单元施加压力,如图12所示,第二多功能层2和第四多功能层4内部的检测单元也受到压力而发生变化。据此,能进一步准确地判别接触到外部物体的时刻,并准确地计算出外部物体接触传感器表面的速度。本实施例提供的具有分时、分区域屏蔽功能的传感器,当多个触摸传感器单元形成传感器矩阵时(用于智能仿生皮肤),通过模拟开关和总线同步控制,可以实现分区域屏蔽式传感器矩阵扫描功能,以避免矩阵扫描时,相邻传感器单元的相互串扰。
现有技术的电容矩阵扫描方式如图13所示,其中行扫描线通过多路开关连接激励信号,列扫描线通过多路开关接电容输入测量通道。当选中某行和某列,例如第二行,第二列时,被选中行上的激励信号会同时施加到所有列的电容激励极,只有被选中列的电容输入级被接入电容测量通道,但此时在选中行上未被选中的相邻列上的电容的激励电极会对选中的电容产生串扰。此外,选中行上的连接线上的激励信号也会对选中电容造成串扰。
本实施例的分区域式屏蔽式扫描方式如图14所示,SPI总线通过地址位选择测量状态的传感器单元标记为O;未指定地址位的传感器单元标记为X接地屏蔽,因此不会对被选中的传感器单元造成串扰。被选中的传感器单元,其4个多功能层形成2个类平面电容,用来实现触觉的功能,其激励信号来自与该传感器单元的内部。当传感器单元作为接地屏蔽单元时,其4个多功能层同时接地,屏蔽区域的大小即被接地屏蔽的单元数可以根据实际需要选择。当传感器单元作为接地屏蔽单元时,其多功能层暂时丧失了接触觉的功能,但每个多功能层内部用于三维力测量的单元仍处于正常工作状态,以保证其仍具有压觉和滑觉功能。由于未被选中的传感器单元的4个多功能层均被接地,因而不会对相邻的被选中单元造成串扰。
实施例1
本实施例中,多功能层内部的用于检测三维力的检测单元为平行板电容。
每个传感器单元上的4个多功能层内部的平行板电容结构相同,为简化说明,我们仅以第一多功能层1的内部结构为例进行说明。
如图15、16、21、22所示,第一多功能层1的上层十字形公共电极6分别与下层对应设置的4个矩形独立电极7形成4个平行板电容C3、C4、C5、C6,第二多功能层2的上层十字形公共电极6分别与下层对应设置的4个矩形独立电极7形成4个平行板电容C7、C8、C9、C10,第三多功能层3的上层十字形公共电极6分别与下层对应设置的4个矩形独立电极7形成4个平行板电容C11、C12、C13、C14,第四多功能层4的上层十字形公共电极6分别与下层4 个矩形独立电极7形成4个平行板电容C15、C16、C17、C18;其中公共电极6接激励信号,矩形电极7分别接入4个电容量模数转换通道。
为方便说明,仅以上层十字形公共电极6与下层矩形电极7组成的平行板电容C4、C5为例进行说明。
如图17所示,在未受到外力时,平行板电容C4的两极板之间的间距为a1、两极板之间的正对面积为s1,平行板电容C5的两极板之间的间距为a2、两极板之间的正对面积为s2,其中a1=a2,s1=s2,因此平行板电容C4和平行板电容C5的电容值也相等。当受到外部物体5的法向压力时,如图18所示,平行板电容C4的两极板之间的间距a1和平行板电容C5两极板之间的间距a2均发生变化,从而使平行板电容C4和平行板电容C5的电容值均发生变化。据此可以测定受到的法向力的大小和方向。当受到外部物体5的切向力时,如图19所示,平行板电容C4的两极板之间的正对面积s1和平行板电容C5的两极板之间的正对面积s2均发生变化,从而使平行板电容C4和平行板电容C5的电容值均发生变化。据此可以测定受到的切向力的大小。并且根据平行板电容C4和平行板电容C5的电容值的变化值的不同可以判断出受到的切向力的方向,具体地,当受到图19中箭头所示的方向的切向力时,平行板电容C4的电容值变化值的绝对值大于平行板电容C5的电容值变化值的绝对值。当受到与图19中箭头所示的方向相反的切向力时,平行板电容C4的电容值变化值的绝对值小于平行板电容C5的电容值变化值的绝对值。可见,根据本实施例中平行板电容C4和平行板电容C5的电容值的变化值的不同可以判断出传感器受到的切向力的方向。当受到滑动力时,如图20所示,平行板电容C4和平行板电容C5受到的法向力和切向力将发生震动,引起平行板电容C4的两极板之间的间距a1和平行板电容C5的两极板之间的间距a2、以及平行板电容C4的两极板之间的正对面积s1和平行板电容C5的两极板之间的正对面积为s2均发生变化,从而导致平行板电容C4和平行板电容C5电容量发生波动。据此可以测定滑动的速度和方向。
本实施例中,所述多功能层覆盖在所述上层十字型公共电极和下层独立电极的外部,所述多功能层的形状为凹槽形,其中,所述多功能层的形状可以为半球形或椭球形等;
多功能层用于对其内部的平行板电容实现电磁屏蔽功能,其实现电磁屏蔽的方式有两种:接地屏蔽和等电位屏蔽;
将多功能层的模拟开关切换到接地位置,即可将多功能层接地,以实现对外部电磁信号的接地屏蔽;将多功能层的模拟开关切换到接对应平行板电容公共电极的激励信号,使多功能层与平行板电容的公共电极形成等电位,以实现对外部电磁信号的等电位屏蔽。
具体地,本实施例的所述多功能层通过模拟开关连接在处理器上,所述处理器通过总线连接在外电路上;
所述多功能层能通过模拟开关的分时切换及总线的控制实现分区域屏蔽传感器的功能,在进行分区域扫描时:
如图21所示,将处于扫描状态的传感器单元执行下述T周期操作;其中,一个测量周期T由两个子周期T1和T2构成:
在T1时,第一多功能层1的模拟开关K1接多功能层激励信号S1,第三多功能层3的模拟开关K3接模数转换电路M1,第二多功能层2的模拟开关K2、第四多功能层4的模拟开关K4同时接地,或第二多功能层2的模拟开关K2接其内部平行板电容公共电极6的激励信号S2-1、第四多功能层4的模拟开关K4接其内部平行板电容公共电极6的激励信号S4-1,第一多功能层1内部平行板电容的模拟开关K1-1与第三多功能层3内部平行板电容的模拟开关K3-1均断开,以使类平面电容C1在实现接触觉时既不受第二多功能层2和第四多功能层4外部串扰,也不受第一多功能层1和第三多功能层3内部平行板电容的串扰;同时,将控制第二多功能层2内部平行板电容的模拟开关K2-1接其内部平行板电容的公共电极6的激励信号S2-1、将控制第四多功能层4内部平行板电容的模拟开关K4-1接其内部平行板电容的公共电极6的激励信号 S4-1,以使第二多功能层2和第四多功能层4处于屏蔽状态下,其内部的平行板电容仍能处于工作状态,以测量三维力的变化;
在T2时,第二多功能层2的模拟开关K2接多功能层激励信号S2,第四多功能层4的模拟开关K4接模数转换电路M2,第一多功能层1的模拟开关K1、第三多功能层3的模拟开关K3同时接地,或第一多功能层1的模拟开关K1接其平行板电容公共电极6的激励信号S1-1、第三多功能层3的模拟开关K3接其内部平行板电容公共电极6的激励信号S3-1,第二多功能层内部平行板电容的模拟开关K2-1与第四多功能层内部平行板电容的模拟开关K4-1均断开,以使类平面电容C2在实现接触觉时既不受第一多功能层1和第三多功能层3的外部串扰,也不受第二多功能层2和第四多功能层4内部平行板电容的串扰;同时,将控制第一多功能层1内部平行板电容的模拟开关K1-1接其内部平行板电容的公共电极6的激励信号S1-1、将控制第三多功能层3内部平行板电容的模拟开关K3-1接其内部平行板电容的公共电极6的激励信号S3-1,以使第一多功能层1和第三多功能层3处于屏蔽状态下,其内部的平行板电容仍能处于工作状态,以测量三维力的变化;
将处于屏蔽状态的传感器单元执行下述T3周期操作;其中T3=T:
在T3时,将处于屏蔽状态的传感器单元的4个多功能层的模拟开关K1、K2、K3、K4同时接地,或使4个多功能层的模拟开关K1、K2、K3、K4同时接其内部平行板电容公共电极6的激励信号S1-1、S2-1、S3-1、S4-1,并将控制4个多功能层内部平行板电容的公共电极的模拟开关K1-1、K2-1、K3-1、K4-1同时接其对应的平行板电容公共电极6的激励信号S1-1、S2-1、S3-1、S4-1,使处于屏蔽状态的传感器单元能测三维力的变化。
如图22所示,本实施例的电容测量采用ad1公司的7150芯片、处理器采用ARM-m0内核的32位处理器,外部通讯采用SPI总线。
优选地,所述测量周期T为1-20ms,且T1=T2=0.5T。
优选地,所述多功能层与所述平行板电容的结合能实现温觉功能。事实上, 可以直接利用用于测量三维力的平行板电容测量温度,环境温度变化可以引起平行板电容之间的介质膨胀或收缩,从而改变平行板电容的间距,导致了电容量的变化。但是,现有的触摸传感器由于没有多功能层,无法区分电容的变化是由外部物体的压力引起的还是由于温度变化引起的,因而无法直接利用平行板电容实现触摸传感器的温觉。本实施例利用多功能层可以准确判定是否有外部物体接触摸传感器,在没有外部物体接触触摸传感器的情况下,由于多功能层的电磁屏蔽作用,引起内部平行板电容变化的唯一因素只能是温度,如图8、25所示,当环境温度升高时,平行板电容间的柔性绝缘物质将膨胀,引起平行板电容之间的间距变大,从而使4个平行板电容的电容值同比变小;反之,如图26所示,当环境温度降低时,平行板电容间的柔性绝缘物质将收缩,引起平行板电容之间的间距变小,从而使4个平行板电容的电容值同比变大,从而依据电容的变化量可以推算出温度的变化量。
如图11所示,当外部物体5接触到触摸传感器时,由于两对多功能层存在高度差,较高的第一多功能层1和第三多功能层3先受到压力,而较低的第二多功能层2和第四多功能层4尚未受到压力,如图25所示,若外部物体5的温度高于环境温度,由于热传感导的作用,未受到压力的第二多功能层2和第四多功能层4的内部平行板电容极板间的柔性绝缘物质将受热膨胀,从而引起其电容量同比减小;反之,如图26所示,若外部物体5的温度低于环境温度,由于热传感导的作用,未受到压力的第二多功能层和第四多功能层的内部平行板电容极板间的柔性绝缘物质将收缩,引起其电容量同比增大。从而依据第二多功能层2和第四多功能层内的平行板电容的电容量的变化可以推算出接触到外部物体的温度。
优选地,所述平行板电容的测量范围为0.001pf-100pf。
优选地,第一多功能层1和第三多功能层3的中心距为d1,第二多功能层2和第四多功能层4的中心距为d2,d1与d2的比值为1.2-5;第一多功能层1与第三多功能层3的高度为h1,第二多功能层2和第四多功能层4的高度为h2, h1与h2的差值为1-3mm。
实施例2
本实施例中,多功能层内部的用于检测三维力的检测单元为压敏电阻。
如图23-26所示,多功能层的结构和作用与实施例1中的多功能层的相同。但多功能层用于测量三维力的原理由平行板电容改为压敏电阻,多功能层内部电极结构不变,但上层十字型公共电极6和下层矩形独立电极7之间增加了4个矩形柔性压敏电阻21,上层十字型公共电极6和下层4个矩形独立电极作为压敏电阻21的两极,当受到法向力时,4个压敏电阻21受到同样的变形压力,当受到切向力和滑动力时,4个压敏电阻21受到不同的变形压力,依据四个电阻的变化可以测量三维力的变化。
本实施例中,所述多功能层覆盖在所述上层十字型公共电极、压敏电阻和下层独立电极的外部,所述多功能层的形状为凹槽形;其中,所述多功能层的形状可以为半球形或椭球形等。
优选地,所述多功能层与所述压敏电阻21的结合也能实现温觉功能。当温度变化时,多功能层内部用于测量三维力的四个压敏电阻也会受到温度变化的影响导致电阻的变化,从而也可以实现温觉功能,其测量原理与平行板电容测量温度的原理类似,故在此不再赘述。具体地,所述压敏电阻21采用导电橡胶压阻材料制成,力敏导电橡胶压阻材料是用特定的工艺将碳或其他高导电粒子均匀地分布到绝缘的柔性聚合物基体材料中制成的高分子材料,压阻材料的导电能力取决于内部导电粒子的密度。当压阻材料受到压力产生变形时,其内部的导电粒子的密度也将发生改变,从而使传感器两端的电阻发生变化,而根据电阻的变化,就可以测出多功能层内部的三维力的变化。
如图27所示,所述多功能层通过模拟开关连接在处理器上,所述处理器通过总线连接在外电路上;由模拟开关控制的多功能层和多功能层内部的压敏电阻的功能是周期性分时切换的;其中,一个测量周期T由两个子周期T1和T2构成:
T1周期时,第一多功能层1的模拟开关K1将第一多功能层1与多功能层激励信号S1接通,第三多功能层3的模拟开关K3将第三多功能层3与电容模数转换电路m1接通,使得第一多功能层1和第三多功能层3形成一个类平面电容C1,第二多功能层2的模拟开关K2和第四多功能层4的模拟开关K4同时接地,而将控制第一多功能层1内部压敏电阻21的模拟开关K1-1和控制第三多功能层3内部压敏电阻21的模拟开关K3-1同时开路,使得类平面电容C1在实现接触觉时既不受第二多功能层2和第四多功能层4的外部串扰,也不受第一多功能层1和第三多功能层3内部的串扰,与此同时,将控制第二多功能层2内部压敏电阻21的模拟开关K2-1和控制第四多功能层4内部压敏电阻21的模拟开关K4-1与其内部的压敏电阻21的公共电极6接通,使得第二多功能层2和第四多功能层4在处于屏蔽状态下其内部的压敏电阻仍处于工作状态,仍能测量三维力的变化。
T2周期时,第二多功能层2的模拟开关K2将第二多功能层2与多功能层激励信号S2接通,第四多功能层4的模拟开关K4将第四多功能层4与电容模数转换电路m2接通,使得第二多功能层2和第四多功能层4形成一个类平面电容C2,第一多功能层1的模拟开关K1和第三多功能层3的模拟开关K3同时接地,而将控制第二多功能层2内部压敏电阻21的模拟开关K2-1和控制第四多功能层4内部压敏电阻21的模拟开关K4-1同时开路,使得类平面电容C2在实现接触觉时既不受第一多功能层1和第三多功能层3的外部串扰,也不受第二多功能层2和第四多功能层4内部的串扰,与此同时,将控制第一多功能层1内部压敏电阻21的模拟开关K1-1和控制第三多功能层3内部压敏电阻21的模拟开关K3-1与其内部的压敏电阻21的公共电极6接通,使得第一多功能层和第三多功能层处于屏蔽状态下其内部的压敏电阻处于工作状态,仍能测量三维力的变化。
测量周期T的时间应控制在1至20ms之间,T1=T2=1/2T。
当进行分区域矩阵式扫描时,被选中处于测量状态的传感器单元执行上述 T周期,被选中作为屏蔽区域的传感器单元执行一个特殊的周期T3。
将处于屏蔽状态的传感器单元的4个多功能层的模拟开关K1、K2、K3、K4接地,同时使控制4个多功能层内部压敏电阻21的模拟开关K1-1、K2-1、K3-1、K4-1接其内部压敏电阻21的十字型公共电极6,使处于屏蔽状态的传感器单元能测三维力的变化。
如图27所示,本实施例的电容测量采用ad1公司的7150芯片、处理器采用ARM-m0内核的32位处理器,外部通讯采用SPI总线。
优选地,所述测量周期T为1-20ms,且T1=T2=0.5T。
本申请的另一方面还涉及一种包括上述具有分时、分区域屏蔽功能的传感器的电子皮肤,由于改进点仅涉及人工皮肤上的传感器,而其他部件均可以采用现有技术中比较成熟的技术。所以,本申请不再对电子皮肤的其他部件进行描述。
本申请的另一方面还涉及一种包括上述电子皮肤的机器人,由于改进点仅涉及电子皮肤上的触摸传感器,而其他部件均可以采用现有技术中比较成熟的技术。所以,本申请不再对智能机器人的其他部件进行描述。
本申请的又一方面还涉及一种包括上述电子皮肤的人工智能假肢,由于改进点仅涉及人工皮肤上的接触传感器,而其他部件均可以采用现有技术中比较成熟的技术。所以,本申请不再对人工智能假肢的其他部件进行描述。
最后应当说明的是,以上实施例仅用以说明本发明的技术方案,而非对本发明保护范围的限制,尽管参照较佳实施例对本发明作了详细地说明,本领域的普通技术人员应当理解,可以对本发明的技术方案进行修改或者等同替换,而不脱离本发明技术方案的实质和范围。

Claims (11)

  1. 一种具有分时、分区域屏蔽功能的传感器,其特征在于:所述传感器包括多个传感器单元,每个传感器单元包括4个多功能层包含的区域,每个多功能层内部包含平行板电容;所述多功能层通过模拟开关连接在处理器上,所述处理器连接在外电路上;
    所述多功能层通过模拟开关的分时切换及总线的控制来分区域屏蔽传感器,其中,每个测量周期T由两个子周期T1和T2构成:
    在T1时,第一多功能层接多功能层激励信号,第三多功能层接模数转换电路,第二多功能层和第四多功能层同时接地,或第二多功能层和第四多功能层同时接其内部平行板电容公共电极的激励信号;将控制第一多功能层和第三多功能层的内部平行板电容的模拟开关断开,同时将控制第二多功能层和第四多功能层的内部平行板电容的模拟开关接其内部平行板电容公共电极的激励信号;
    在T2时,第二多功能层接多功能层的激励信号,第四多功能层接模数转换电路,第一多功能层和第三多功能层同时接地,或第一多功能层和第三多功能层同时接其内部平行板电容公共电极的激励信号;将控制第二多功能层和第四多功能层的内部平行板电容的模拟开关断开,同时将控制第一多功能层和第三多功能层的内部平行板电容的模拟开关接其内部平行板电容公共电极的激励信号;
    在接下来的T3周期内,将处于屏蔽状态的传感器单元的4个多功能层同时接地,或同时接其内部平行板电容公共电极的激励信号,并将4个多功能层内部平行板电容的公共电极接通对应的公共电极的激励信号,使处于屏蔽状态的传感器单元能测三维力的变化,其中的T3=T。
  2. 根据权利要求1所述的一种具有分时、分区域屏蔽功能的传感器,其特征在于:所述测量周期T为1-20ms,且T1=T2=0.5T。
  3. 根据权利要求1或2所述的一种具有分时、分区域屏蔽功能的传感器,其特征在于:每个所述多功能层的内部均设置有两层电极,上层为十字形公共电极,下层为与上层十字型公共电极对应的4个独立电极,所述上层十字型公共电极和下层4个独立电极构成4个平行板电容。
  4. 根据权利要求3所述的一种具有分时、分区域屏蔽功能的传感器,其特征在于:每个多功能层包含的区域包括与多功能层对应的上部和底部,上部由柔性导电材料构成,柔性导电材料的外部设置有由柔性绝缘材料构成的保护层,底部包括多层PCB板或FPC板,PCB板或FPC板下面设置有柔性绝缘层,柔性绝缘层下面设置有由模拟开关控制的接地屏蔽层,由模拟开关控制的接地屏蔽层下面设置有绝缘保护层;第一层PCB板或FPC板上设置有与每个多功能层对应的环状电极,第二层PCB板或FPC板上设置有圆形电极,圆形电极上设置有过孔,所述过孔连接环状电极与圆形电极,以形成独立的导电区域,所述上部与底部之间电连接;所述上层十字型公共电极通过设置在所述多功能层内部的中心导电柱电连接在所述第一层PCB板或FPC板上,所述下层独立电极直接设置在所述第一层PCB板或FPC板上。
  5. 根据权利要求4所述的一种具有分时、分区域屏蔽功能的传感器,其特征在于:所述柔性导电材料为有机导电银胶材料,所述有机导电银胶材料与所述多功能层之间设有导电银胶粘结层。
  6. 根据权利要求4所述的一种具有分时、分区域屏蔽功能的传感器,其特征在于:所述由模拟开关控制的接地屏蔽层为有机硅导电银胶屏蔽层,所述绝缘保护层为PDMS保护层。
  7. 根据权利要求4所述的一种具有分时、分区域屏蔽功能的传感器,其特征在于:所述多功能层的上部和底部之间通过导电胶粘结或压接形成电连接;所述导电柱通过焊接、压接或导电胶电连接在所述第一层PCB板或FPC板上。
  8. 根据权利要求1或2所述的一种具有分时、分区域屏蔽功能的传感器,其特征在于:第一多功能层和第三多功能层等高且相对设置,第二多功能层和 第四多功能层等高且相对设置;第一多功能层和第三多功能层的中心距为d1,第二多功能层和第四多功能层的中心距为d2,d1与d2的比值为1.2-5;第一多功能层与第三多功能层的高度为h1,第二多功能层和第四多功能层的高度为h2,h1与h2的差值为1-3mm。
  9. 一种电子皮肤,其特征在于:包括如权利要求1-8中任一项所述的一种具有分时、分区域屏蔽功能的传感器。
  10. 一种机器人,其特征在于,包括如权利要求9中所述的电子皮肤。
  11. 一种人工智能假肢,其特征在于,包括如权利要求9所述的电子皮肤。
PCT/CN2018/000191 2018-01-31 2018-05-23 具有分时、分区域屏蔽功能的传感器、电子皮肤和机器人 WO2019148306A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US16/966,492 US11598681B2 (en) 2018-01-31 2018-05-23 Sensor with time-sharing regional shielding function, electronic skin and robot
JP2020542310A JP7054561B2 (ja) 2018-01-31 2018-05-23 時間に分けてシールドしかつ領域に分けてシールドする機能を有するセンサ、電子皮膚及びロボット
EP18903940.7A EP3748320A4 (en) 2018-01-31 2018-05-23 TIME AND ZONE BASED SHIELDING SENSOR, ELECTRONIC MEMBRANE AND ROBOT

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810093888.6 2018-01-31
CN201810093888.6A CN108195490B (zh) 2018-01-31 2018-01-31 具有分时、分区域屏蔽功能的传感器、电子皮肤和机器人

Publications (1)

Publication Number Publication Date
WO2019148306A1 true WO2019148306A1 (zh) 2019-08-08

Family

ID=62591376

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/000191 WO2019148306A1 (zh) 2018-01-31 2018-05-23 具有分时、分区域屏蔽功能的传感器、电子皮肤和机器人

Country Status (5)

Country Link
US (1) US11598681B2 (zh)
EP (1) EP3748320A4 (zh)
JP (1) JP7054561B2 (zh)
CN (1) CN108195490B (zh)
WO (1) WO2019148306A1 (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102558531B1 (ko) * 2017-08-14 2023-07-20 콘택타일 피티와이 리미티드 그립 안정성을 측정하기 위한 마찰-기반 촉각 센서
CN108461015B (zh) * 2018-06-29 2019-11-22 华中科技大学 一种用于盲文阅读的三维电触觉表皮电子系统
CN111626278B (zh) * 2019-02-28 2024-04-16 京东方科技集团股份有限公司 纹路识别装置以及纹路识别装置的操作方法
TWI715318B (zh) * 2019-11-28 2021-01-01 原見精機股份有限公司 自動化設備及其安全裝置
CN111780896B (zh) * 2020-05-15 2021-09-28 北京他山科技有限公司 一种地理皮肤
JP2022187868A (ja) * 2021-06-08 2022-12-20 本田技研工業株式会社 力検出装置
CN114571501A (zh) * 2022-02-28 2022-06-03 深圳市越疆科技有限公司 电子皮肤、接近感应方法、机械臂和机器人

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4584625A (en) * 1984-09-11 1986-04-22 Kellogg Nelson R Capacitive tactile sensor
US5578765A (en) * 1992-09-18 1996-11-26 Incontrol Solutions, Inc. Transducer array
DE69808073T2 (de) * 1997-05-16 2003-06-05 Authentec Inc Fingerabdrucksensor mit elektrischem feld mit verbesserten merkmalen und zugehörige verfahren
US20080174321A1 (en) 2007-01-19 2008-07-24 Sungchul Kang Capacitive sensor for sensing tactile and proximity, and a sensing system using the same
CN102483667A (zh) * 2009-09-03 2012-05-30 皇家飞利浦电子股份有限公司 触摸感测输出设备
CN106706176A (zh) * 2016-11-23 2017-05-24 浙江大学 具有图案化微结构阵列的电容式触觉传感器

Family Cites Families (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4621227A (en) * 1984-02-29 1986-11-04 Borg-Warner Corporation Measuring system for determining the capacitance ratio of a pair of capacitors
US4555954A (en) * 1984-12-21 1985-12-03 At&T Technologies, Inc. Method and apparatus for sensing tactile forces
US5469070A (en) * 1992-10-16 1995-11-21 Rosemount Analytical Inc. Circuit for measuring source resistance of a sensor
DE4243832A1 (de) * 1992-12-23 1994-06-30 Daimler Benz Ag Tastsensoranordnung
TW546480B (en) * 2000-03-07 2003-08-11 Sumitomo Metal Ind Circuit, apparatus and method for inspecting impedance
DE10134680A1 (de) * 2001-07-20 2003-02-06 Endress & Hauser Gmbh & Co Kg Schaltungsanrdnung für einen kapazitiven Sensor
FR2849918B1 (fr) * 2003-01-10 2005-06-17 Faurecia Sieges Automobile Systeme de detection capacitif, notamment pour interieur de vehicule automobile.
FR2885416B1 (fr) * 2005-05-07 2016-06-10 Acam Messelectronic Gmbh Procede et dispositif de mesure de capacites.
JP4668836B2 (ja) * 2006-05-09 2011-04-13 ローム株式会社 充電制御回路ならびにそれらを用いた充電回路および電子機器
WO2008070454A2 (en) * 2006-11-28 2008-06-12 Process Equipment Co. Of Tipp City Proximity detection system
DE102007047887A1 (de) * 2006-11-29 2008-06-19 Aisin Seiki Kabushiki Kaisha, Kariya Kapazitätserfassungsvorrichtung
KR20100100773A (ko) * 2007-10-04 2010-09-15 가부시키가이샤후지쿠라 정전용량형 근접센서 및 근접검지방법
DE102008057823A1 (de) * 2008-11-18 2010-08-19 Ident Technology Ag Kapazitives Sensorsystem
TWI410853B (zh) * 2010-05-07 2013-10-01 Novatek Microelectronics Corp 用於觸控裝置之電容量測量裝置
JP5535766B2 (ja) * 2010-05-27 2014-07-02 ラピスセミコンダクタ株式会社 タイマー回路
US8688393B2 (en) * 2010-07-29 2014-04-01 Medtronic, Inc. Techniques for approximating a difference between two capacitances
WO2012129410A2 (en) * 2011-03-23 2012-09-27 University Of Southern California Elastomeric optical tactile sensor
CN103649688B (zh) * 2011-06-30 2017-02-22 迈普尔平版印刷Ip有限公司 用于电容式测量系统的有源屏蔽
US9564275B2 (en) * 2012-03-09 2017-02-07 The Paper Battery Co. Supercapacitor structures
CN104969158A (zh) * 2012-12-14 2015-10-07 苹果公司 通过电容变化进行力感测
DE102014115802A1 (de) * 2014-10-30 2016-05-04 Endress + Hauser Gmbh + Co. Kg Kapazitiver Drucksensor und Verfahren zu dessen Herstellung
DE102016208381A1 (de) * 2016-05-17 2017-11-23 Robert Bosch Gmbh Kondensator, insbesondere Zwischenkreiskondensator für ein Mehrphasensystem
CN107404299B (zh) * 2016-05-20 2020-09-22 株式会社村田制作所 层叠型电子部件
KR20180050004A (ko) * 2016-11-04 2018-05-14 삼성전기주식회사 적층 세라믹 커패시터
CN110088637B (zh) * 2016-12-21 2021-07-27 阿尔卑斯阿尔派株式会社 静电电容检测装置以及输入装置
CN106840476B (zh) * 2017-01-25 2019-12-03 东南大学 三维碳纳米材料场效应柔性力敏传感元件及制备方法
EP3438677A1 (en) * 2017-07-31 2019-02-06 ams AG Method for determining an electrical parameter and measurement arrangement for determining an electrical parameter
JP2019113391A (ja) * 2017-12-22 2019-07-11 ルネサスエレクトロニクス株式会社 圧力センサ装置、制御装置、及び、圧力センサユニット
US10969248B2 (en) * 2018-01-24 2021-04-06 Gentherm Inc. Capacitive sensing and heating system for steering wheels or seats to sense presence of hand of occupant on steering wheel or occupant in seat
CN207923324U (zh) * 2018-01-31 2018-09-28 北京他山科技有限公司 具有分时、分区域屏蔽功能的传感器、电子皮肤和机器人
JP7119478B2 (ja) * 2018-03-23 2022-08-17 セイコーエプソン株式会社 回路装置、物理量測定装置、電子機器及び移動体

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4584625A (en) * 1984-09-11 1986-04-22 Kellogg Nelson R Capacitive tactile sensor
US5578765A (en) * 1992-09-18 1996-11-26 Incontrol Solutions, Inc. Transducer array
DE69808073T2 (de) * 1997-05-16 2003-06-05 Authentec Inc Fingerabdrucksensor mit elektrischem feld mit verbesserten merkmalen und zugehörige verfahren
US20080174321A1 (en) 2007-01-19 2008-07-24 Sungchul Kang Capacitive sensor for sensing tactile and proximity, and a sensing system using the same
CN102483667A (zh) * 2009-09-03 2012-05-30 皇家飞利浦电子股份有限公司 触摸感测输出设备
CN106706176A (zh) * 2016-11-23 2017-05-24 浙江大学 具有图案化微结构阵列的电容式触觉传感器

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
SATOSHI,TSUJI: "Tactile and Proximity Sensor Using Self-Capacitance Measurement on Curved Surface", IEEE INTERNATIONAL CONFERENCE ON INDUSTRIAL TECHNOLOGY, 22 March 2017 (2017-03-22), pages 934 - 937, XP033091231 *
See also references of EP3748320A4

Also Published As

Publication number Publication date
EP3748320A1 (en) 2020-12-09
EP3748320A4 (en) 2021-10-20
JP7054561B2 (ja) 2022-04-14
US20210041309A1 (en) 2021-02-11
US11598681B2 (en) 2023-03-07
JP2021512329A (ja) 2021-05-13
CN108195490A (zh) 2018-06-22
CN108195490B (zh) 2019-10-11

Similar Documents

Publication Publication Date Title
WO2019148306A1 (zh) 具有分时、分区域屏蔽功能的传感器、电子皮肤和机器人
WO2019148305A1 (zh) 一种具有多功能层的接触传感器、电子皮肤和智能机器人
CN108362428A (zh) 一种阻容复合式触摸传感器、电子皮肤和智能机器人
KR200483031Y1 (ko) 일종 정전용량식 터치 센서와 터치 감지 장치 및 터치 단말
CN106775055A (zh) 柔性触摸屏及柔性触摸显示屏
CN108446042A (zh) 一种电容式触摸传感器、电子皮肤和智能机器人
CN207741882U (zh) 一种具有多功能层的接触传感器、电子皮肤和智能机器人
CN207923324U (zh) 具有分时、分区域屏蔽功能的传感器、电子皮肤和机器人
US11281329B2 (en) Device for detecting touch
CN104236764A (zh) 一种电容式触滑觉传感器装置
CN113386158B (zh) 一种全打印仿生超感知柔性机器人皮肤
CN209820667U (zh) 一种电容式触摸传感器、电子皮肤和智能机器人
CN104990650B (zh) 一种多方向性电容式滑觉传感器
CN207503187U (zh) 一种触摸显示装置
CN108132113A (zh) 应用多功能层实现电磁屏蔽的传感器、电子皮肤和机器人
CN205353970U (zh) 压力感应触控面板
CN207741883U (zh) 一种阻容复合式触摸传感器、电子皮肤和智能机器人
CN207764769U (zh) 一种电容式触摸传感器、电子皮肤和智能机器人
CN201583936U (zh) 单层感应层电容触控板
CN111896163A (zh) 一种电阻式触摸传感器、电子皮肤和智能机器人
CN210036760U (zh) 双模传感单元和双模传感器
CN207816489U (zh) 应用多功能层实现电磁屏蔽的传感器、电子皮肤和机器人
CN216623225U (zh) 一种圆形触摸装置及手表
CN206388155U (zh) 触摸感应装置
CN206039460U (zh) 压力感应装置和具有其的显示设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18903940

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020542310

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018903940

Country of ref document: EP

Effective date: 20200831