WO2019146675A1 - Insulated waterproof vehicle-mounted heater having high withstand voltage, vehicle-mounted heater unit, vehicle-mounted heater device, method for manufacturing vehicle-mounted heater unit, and insulated waterproof heater - Google Patents

Insulated waterproof vehicle-mounted heater having high withstand voltage, vehicle-mounted heater unit, vehicle-mounted heater device, method for manufacturing vehicle-mounted heater unit, and insulated waterproof heater Download PDF

Info

Publication number
WO2019146675A1
WO2019146675A1 PCT/JP2019/002208 JP2019002208W WO2019146675A1 WO 2019146675 A1 WO2019146675 A1 WO 2019146675A1 JP 2019002208 W JP2019002208 W JP 2019002208W WO 2019146675 A1 WO2019146675 A1 WO 2019146675A1
Authority
WO
WIPO (PCT)
Prior art keywords
vehicle
electrode
cylindrical body
pair
heater
Prior art date
Application number
PCT/JP2019/002208
Other languages
French (fr)
Japanese (ja)
Inventor
浩四郎 田口
渡邊 浩
Original Assignee
カシン工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by カシン工業株式会社 filed Critical カシン工業株式会社
Priority to JP2019534431A priority Critical patent/JP6627058B2/en
Publication of WO2019146675A1 publication Critical patent/WO2019146675A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/22Heating, cooling or ventilating [HVAC] devices the heat being derived otherwise than from the propulsion plant
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/02Details
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/02Details
    • H05B3/03Electrodes
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/02Details
    • H05B3/04Waterproof or air-tight seals for heaters
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/02Details
    • H05B3/06Heater elements structurally combined with coupling elements or holders
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/10Heating elements characterised by the composition or nature of the materials or by the arrangement of the conductor
    • H05B3/12Heating elements characterised by the composition or nature of the materials or by the arrangement of the conductor characterised by the composition or nature of the conductive material
    • H05B3/14Heating elements characterised by the composition or nature of the materials or by the arrangement of the conductor characterised by the composition or nature of the conductive material the material being non-metallic

Definitions

  • the present invention relates to a high withstand voltage insulated and waterproof vehicle-mounted heater, a vehicle-mounted heater unit, a method of manufacturing the vehicle-mounted heater unit, and an insulated and waterproof heater, more specifically, a vehicle-mounted heater using a heating element generating heat by voltage application.
  • the present invention relates to an on-vehicle heater, an on-vehicle heater unit, an on-vehicle heater device, a method for manufacturing the on-vehicle heater unit, and an insulation waterproof heater, which have high voltage resistance, high efficiency and high waterproof characteristics.
  • An on-vehicle heater using a heating element that generates heat by application of a voltage is used as an aid when the heat of the engine can not be used for in-vehicle heating, such as immediately after the start of the engine.
  • a PTC (Positive Temperature Coefficient) element is used as a heating element of the on-vehicle heater.
  • the PTC element has positive temperature characteristics, which can facilitate temperature control and suppress power consumption.
  • the inventor of the present invention proposes an insulation waterproof type heater disclosed in Patent Document 1 as a heater excellent in insulation and waterproofness.
  • This insulation waterproof type heater comprises a pair of electrode members sandwiching the heating element, an insulation sheet which wraps the heating element and the pair of electrode members, a cylindrical body for accommodating them, and a cap which closes both ends of the cylindrical body. And a sealing material for closing both ends of the hollow portion of the cylindrical body.
  • the inventor of the present invention proposes an on-vehicle heater disclosed in Patent Document 2.
  • the on-vehicle heater includes a pair of electrode members sandwiching the heat generating element, an insulation sheet that wraps the heat generating element and the pair of electrode members, a cylindrical body that accommodates these, and a radiator unit including at least fins.
  • the insulating sheet is sandwiched between the electrode surface of the heat generating element and the back surface of the heat dissipation surface of the cylindrical body, and both end edges of the insulating sheet overlap substantially parallel to the side surface of the heat generating element.
  • the voltage of a motor used in an electric car or a hybrid car is about 300 volts (V) to 400 V, and a voltage much higher than the voltage of 12 V or 24 V handled in a conventional car will be handled.
  • In-vehicle heaters also need to cope with such high voltages.
  • even electric vehicles need to be designed to withstand use in severe environments such as cold places and bad roads.
  • in-vehicle heaters using heat generating elements operate in such a way that they can not be compared with conventional ones such as submersion in a high voltage environment, tsunami, or high tide. It is desirable to clear the conditions.
  • the present invention is a high withstand voltage insulated and waterproof type vehicle which is high in voltage resistance and excellent in insulation and waterproofness, small in size and high in efficiency, and capable of responding to a severe environment without adopting a complicated configuration. It is an object of the present invention to provide a heater, an on-vehicle heater unit, a method of manufacturing the on-vehicle heater unit, and an insulated and waterproof heater.
  • a heating element having an electrode layer provided on the front and back, a pair of electrode parts electrically connected to each of the front and back electrode layers, and a pair of electrode parts.
  • a cylinder having an insulating sheet, a hollow portion, and a heat generating structure including a heat generating element, a pair of electrodes and an insulating sheet, housed in the hollow portion, and a seal for sealing the openings at both ends of the cylinder
  • a high-withstand voltage insulated and waterproof vehicle-mounted heater comprising: a stop; and a pair of caps each having a recess and each end of the cylinder fitted in the recess to close the hollow portion.
  • the first electrode portion which is one of the pair of electrode portions, has a first plate-like portion connected to be conductive with one of the front and back electrode layers, and one opening of the cylinder in the first plate-like portion And a first terminal portion provided at the end of the side.
  • the second electrode portion which is the other of the pair of electrode portions, is one of a second plate-like portion connected to be conductive with the other of the front and back electrode layers, and one of the cylinders in the second plate-like portion. And a second terminal portion provided at an end of the opening.
  • the direction in which the heating element is held between the pair of electrode portions is orthogonal to the first direction and the first direction
  • the direction in which the cylinder extends is orthogonal to the second direction, the first direction, and the second direction.
  • the direction be the third direction.
  • the first terminal portion and the second terminal portion are disposed at mutually offset positions.
  • the sealing portion for sealing one opening of the cylinder is provided so as to embed the first terminal portion and the second terminal portion surrounded by the insulating sheet, and a gap between the insulating sheet and the inner surface of the cylinder. Provided to intervene.
  • the pair of electrode portions are accommodated in the hollow portion of the cylindrical body sealed by the cap and the sealing portion, and are not exposed outside the cylindrical body.
  • the first terminal portion and the second terminal portion are arranged at mutually shifted positions in the first direction, compared to the case where the two terminal portions are arranged overlapping each other.
  • the distance can be increased, and the withstand voltage can be increased.
  • the sealing portion is provided so as to embed the first terminal portion and the second terminal portion, thereby preventing The voltage can be increased.
  • a sealing part intervenes also in a crevice between an insulating sheet and the inner surface of a cylinder, waterproofness in a crevice between an inner surface of a cylinder and an insulating sheet is also securable.
  • the sealing portion constitutes a waterproof structure to the inside of the cylinder and a withstand voltage structure of 300 V or more between the first terminal portion and the second terminal portion. May be
  • the sealing portion may be made of a material having heat resistance of 150 ° C. or more.
  • the first terminal portion has a first crimped portion
  • the second terminal portion has a second crimped portion
  • the first electrode portion is a first plate portion and A second convexly extended portion provided between the second plate-like portion and the second crimped portion, having a first convexly extended portion provided between the first crimped portion and the second crimped portion. It may have an outlet part.
  • the length of the 2nd direction in the 1st convex-like extension part is longer than the length of the 2nd direction of the caulking weir of the 1st convex-like extension part side in the 1st caulking part, and the 2nd convex-like shape extension
  • the length in the second direction in the outlet portion may be longer than the length in the second direction of the caulking weir on the second convex extending portion side in the second caulking portion.
  • the influence of the crimped ridge is a plate-like portion It does not reach. That is, the influence of the waviness of the plate-like portion due to the caulking can be suppressed to make contact with the electrode layer of the heating element.
  • the length in the third direction of the first convex extending portion may be longer than the length in the third direction of the first caulking portion.
  • the length in the third direction of the second protruding extension portion may be longer than the length in the third direction of the second crimped portion.
  • the length in the third direction of the first convex extension portion is shorter than half of the length in the third direction of the first plate-like portion;
  • the length of the convex extending portion in the third direction is shorter than 1 ⁇ 2 of the length of the second plate-like portion in the third direction, and the first convex extending portion and the second convex portion are viewed in the first direction.
  • the convex extending portions may be arranged so as not to overlap each other. As a result, the distance between the two convex extending portions can be made longer than when two convex extending portions are arranged in an overlapping manner, and the withstand voltage can be increased.
  • the thickness of the heat generating element may be 3 millimeters (mm) or more. By setting the thickness of the heat generating element to 3 mm or more, it is possible to cope with application of a voltage of, for example, 300 V or more between the pair of electrodes.
  • the gap between the first terminal portion and the second terminal portion in the first direction may be 2.5 mm or more. Thereby, insulation can be ensured even if a voltage of, for example, 300 V or more is applied between the first terminal portion and the second terminal portion.
  • the length in the third direction of the first plate-like portion and the length in the third direction of the second plate-like portion are longer than the length in the third direction of the electrode layer It may be long and not longer than the length in the third direction of the heating element.
  • the length in the second direction of the first plate-like portion and the length in the second direction of the second plate-like portion may be 20 mm or more and 30 mm or less. Thereby, sufficient heat generation output can be obtained.
  • both ends of the winding of the insulating sheet may overlap each other at the side surface portion of the heat generating element.
  • the insulating sheets do not overlap on the back surface of the heat dissipation surface of the cylindrical body, and a reduction in heat transfer efficiency is suppressed.
  • the heating element may be a PTC element.
  • easy temperature control and low power consumption can be achieved by utilizing the positive temperature characteristics of the PTC element.
  • the sealing portion may be a silicone resin. Thereby, the opening of the cylindrical body can be easily sealed.
  • One aspect of the present invention is an on-vehicle heater unit including the above-described high withstand voltage insulated and waterproof in-vehicle heater and a fin attached to a heat dissipation surface of a cylindrical body via a brazing portion.
  • the heat radiation efficiency is improved by the fins being attached to the heat radiation surface of the cylindrical body via the brazing part.
  • a heating element having an electrode layer provided on the front and back, a pair of electrode parts electrically connected to each of the front and back electrode layers, and a pair of electrode parts.
  • a cylindrical body for housing a heat generating structure having an insulating sheet, a hollow portion and a heat radiating surface, and a heating element, a pair of electrode portions and an insulating sheet, and sealing the openings at both ends of the cylindrical body
  • a vehicle-mounted heater unit provided with the sealing part to stop, and the fin attached to the thermal radiation surface of a cylinder via the brazing part.
  • the fins are attached to the heat dissipating surface through the brazed portion, so that the vehicle-mounted heater unit having improved heat dissipating efficiency can be configured.
  • the load resistance in the thickness direction of the fins is larger than the load resistance in the thickness direction of the cylinder. Thereby, even when pressure is applied through the fins, the fins can be prevented from being crushed.
  • the on-vehicle heater unit may further include a protrusion provided on the side surface of the cylinder, and the length in the thickness direction of the protrusion may be longer than the length in the thickness direction of the cylinder. . Thus, the side surface of the fin can be covered by the projecting portion, and the influence of the outside air temperature is less likely to be transmitted to the fin.
  • One aspect of the present invention is an on-vehicle heater device including a case having the above-described on-vehicle heater unit, a medium inlet, and a medium outlet.
  • the on-vehicle heater unit is housed in the case with one end of the flow path of the fin facing the inlet and the outlet. Further, in the vehicle heater unit, one end of the flow path of the fin is opposed to the inflow port, and the other end of the flow path of the fin is opposed to the outflow port to be housed between the inflow port and the outflow port in the case. It may be done.
  • the medium flowing from the inlet into the case can be efficiently flowed to the flow path of the fins to improve the heat exchange efficiency.
  • the medium is at least one of water, air, gas, oil and gel.
  • the case is provided with a first hole for passing a first conducting cable conducting to the first electrode and a second hole for passing a second conducting cable conducting to the second electrode.
  • the sealant may be embedded in each of the gap between the first hole and the first conductive cable and the gap between the second hole and the second conductive cable.
  • One aspect of the present invention is a process of brazing a fin to a heat dissipation surface of a cylindrical body having a hollow portion and a heat dissipation surface, a process of sandwiching a heating element provided with an electrode layer on the front and back with a pair of electrode parts, Covering the periphery of the electrode portion with an insulating sheet, and storing the heat generating element, the heat generating structure including the pair of electrode portions and the insulating sheet, in the hollow portion of the cylindrical body to which the fin is brazed; And fixing the heat generating structure in the hollow portion by pressing the cylindrical body through the fins to crush the cylindrical body, and the method of manufacturing the on-vehicle heater unit. According to such a manufacturing method, even in the manufacturing method in which the heat generating structure is fixed in the hollow portion by crushing the cylindrical body, the fins can be attached to the heat dissipation surface by brazing.
  • One embodiment of the present invention is a heating element having an electrode layer provided on the front and back, a pair of electrode parts electrically connected to each of the front and back electrode layers, a heating element, and a pair of electrode parts.
  • the insulating powder is embedded in the gap between the inner surface of the cylindrical body and the heat generating member, so that the heat generating member can be electrically insulated and positioning of the heat generating member inside the cylindrical portion is performed.
  • the first electrode portion which is one of the pair of electrode portions, has a first plate-like portion in electrical contact with the electrode layer and one of the cylinders in the first plate-like portion.
  • a second plate-like portion having a first terminal portion provided at an end portion on the opening side, the second electrode portion being the other of the pair of electrode portions being in electrical contact with the electrode layer;
  • a second terminal portion provided at the end of one opening side of the cylindrical body in the second plate-like portion; a direction in which the heating element is held between the pair of electrode portions is a first direction;
  • the first terminal portion and the second terminal viewed in the first direction, assuming that the direction in which the cylinder extends is the second direction and the direction orthogonal to the first direction and the second direction is the third direction.
  • the parts may be disposed at mutually offset positions. According to such a configuration, the distance between the two terminal portions can be made longer than when two terminal portions are arranged in an overlapping manner, and the withstand voltage can be increased.
  • the cylinder may be cylindrical and the heat generating member may be plate-like. Thereby, manufacture of an insulation waterproof type heater becomes easy, and it can aim at cost reduction. Further, the circumferential surface, which is the outer surface of the cylindrical body, serves as a heat dissipation surface, so that heat can be uniformly transmitted to the surroundings. Also, the material of the cylinder may be stainless steel. Thereby, water resistance and chemical resistance can be improved.
  • an on-vehicle heater an on-vehicle heater unit, a method for manufacturing the on-vehicle heater unit, and an insulation waterproof heater, which can cope with a severe environment without adopting a complicated configuration. Becomes possible.
  • FIG. 2 is a cross-sectional view illustrating the configuration of the on-vehicle heater according to the embodiment; (A) to (c) are cross-sectional views illustrating the configuration of the on-vehicle heater according to the present embodiment. It is an enlarged plan view illustrated about the convex extension part of an electrode part. It is an enlarged plan view illustrated about a terminal portion of an electrode part. It is a perspective view explaining an application example. It is a flowchart which illustrates the manufacturing method of a heater unit for vehicles.
  • FIG. 7 is a perspective view illustrating another on-vehicle heater device. It is a schematic diagram which shows the application example of a vehicle-mounted heater apparatus. It is a schematic diagram which shows the other application example of a vehicle-mounted heater apparatus. It is a schematic diagram of a heat pump system. It is a schematic diagram of a heat pump system.
  • FIG. 6 is an exploded perspective view illustrating the heat generating member. It is a perspective view which shows the application example of an insulation waterproof type heater.
  • FIG. 1 is a perspective view illustrating the configuration of a high-voltage insulated and waterproof vehicle-mounted heater (hereinafter, also simply referred to as “vehicle-mounted heater”) according to the present embodiment.
  • FIG. 2 is an exploded perspective view illustrating the configuration of the on-vehicle heater according to the present embodiment.
  • the on-vehicle heater 1 according to the present embodiment is a device that generates heat by voltage application.
  • the on-vehicle heater 1 can be driven with a high voltage of 300 volts (V) or more, and has high waterproofness and dust resistance to clear IP67 in the IP code (IEC: International Electrotechnical Commission).
  • IP67 means that it has a dustproof performance that prevents dust from entering the inside of the device, and a waterproof performance that does not cause water immersion to the inside even if it is temporarily submerged under a constant water pressure condition.
  • the on-vehicle heater 1 includes a heating element 10, a pair of electrode portions 20 sandwiching the heating element 10, an insulating sheet 30, a cylinder 50, and sealing. A portion 60 and a pair of caps 70 are provided.
  • the direction in which the heating element 10 is held between the pair of electrode portions 20 is the first direction D1
  • the direction in which the cylindrical body 50 extends orthogonal to the first direction is the second direction.
  • a direction perpendicular to the D2, the first direction D1, and the second direction D2 is referred to as a third direction D3.
  • the first direction D1 is also referred to as a thickness direction
  • the second direction D2 as a length direction
  • the third direction D3 as a width direction.
  • the heating element 10 is an element that generates heat by application of a voltage.
  • a PTC (Positive Temperature Coefficient) element is used as the heating element 10.
  • the PTC element has positive temperature characteristics. That is, when the temperature is higher than the Curie point, the resistance increases, and the temperature rise beyond that is limited.
  • the positive temperature characteristics of the PTC element are changed by adding a trace amount of rare earth or the like to barium titanate (BaTiO 3 ).
  • a plurality of heating elements 10 are provided.
  • One heating element 10 is a substantially rectangular parallelepiped having a thickness of about 3 millimeters (mm), a width of about 24 mm, and a length of about 15 mm.
  • the composition, the shape, and the size for driving at a high voltage of about 300 V or more are applied as the heating element 10. Further, in the on-vehicle heater 1 according to the present embodiment, a plurality of heating elements 10 of the above-described size are provided in the second direction D2 in order to achieve a high output of about 500 watts (W) or more and save space. , Are arranged in series.
  • An electrode layer 10 a is provided on each of the front and back surfaces (front and back surfaces in the thickness direction) of the heater element 10.
  • a metal such as silver (Ag) or aluminum (Al) is used for the electrode layer 10a.
  • the electrode layer 10 a is formed by, for example, thermal spraying these metals on the front and back surfaces of the heater element 10.
  • the electrode layer 10 a is in ohmic contact with the heating element 10.
  • the heating element 10 is held between the pair of electrode units 20.
  • One of the pair of electrode units 20 is the first electrode unit 201, and the other is the second electrode unit 202.
  • the electrode unit 20 For convenience of description, when the first electrode unit 201 and the second electrode unit 202 are shown without distinction, they will be referred to as the electrode unit 20.
  • the first electrode portion 201 is electrically connected to one of the electrode layers 10 a of the heating element 10, and the second electrode portion 202 is electrically connected to the other electrode layer 10 a of the heating element 10.
  • the first electrode portion 201 has a first plate-like portion 211, a first terminal portion 221, and a first convex extension portion 231.
  • the second electrode portion 202 has a second plate-like portion 212, a second terminal portion 222, and a second convexly extending portion 232.
  • the first terminal portion 221 has a first crimped portion 251
  • the second terminal portion 222 has a second crimped portion 252.
  • first plate-like portion 211 and the second plate-like portion 212 are shown without distinction, they will be referred to as the plate-like portion 210.
  • first terminal portion 221 and the second terminal portion 222 are shown without distinction, they are referred to as the terminal portion 220.
  • the convex-shaped extension part 230 when showing the 1st convex-shaped extension part 231 and the 2nd convex-shaped extension part 232 indifferently, it shall be called the convex-shaped extension part 230.
  • FIG. when the first crimped portion 251 and the second crimped portion 252 are shown without distinction, they will be referred to as crimped portions 250.
  • the plate-like portion 210 is a thin plate-like portion extending in the second direction D2, and is in electrical contact with the electrode layer 10a.
  • the length in the third direction D3 of the plate-like portion 210 may be approximately 20 mm or more and 30 mm or less. Thereby, sufficient heat generation output can be obtained.
  • the terminal portion 220 is provided at an end of the plate-like portion 210 on the side of one opening 50 a of the cylinder 50.
  • the first conductive cable C11 is fixed to the first caulking portion 251 by caulking, and the second conductive cable C12 is fixed to the second caulking portion 252 by caulking.
  • the conducting cable C10 is one in which the periphery of the conducting wire is covered with an insulating covering material. Conductors exposed from the insulation coating at the end of the conductive cable C10 are connected by caulking at caulking portion 250. Further, it is desirable that the front end portion of the insulating covering material is also fixed by caulking at the caulking portion 250.
  • the caulking connection can be more easily and reliably connected than soldering, brazing or screwing.
  • the convex extension portion 230 is provided between the plate-like portion 210 and the caulking portion 250.
  • the convexly extending portion 230 is a portion protruding from the end of the plate-like portion 210 on the side of the opening 50a in the second direction D2 in a convex manner toward the opening 50a.
  • a caulking portion 250 extends from the tip of the convex extending portion 230 in the second direction D2.
  • the thickness of the plate-like portion 210 is about 0.2 mm or more and 0.5 mm or less.
  • the plate-like portion 210 and the electrode layer 10 a of the heat-generating element 10 are bonded by, for example, a silicone-based adhesive excellent in conductivity and thermal conductivity.
  • minute unevenness corresponding to the unevenness of the surface of the heat generating element 10 is formed on the surface of the electrode layer 10a. Therefore, even if the conductivity of the adhesive is low, the minute convex and concave portions of the electrode layer 10a penetrate the adhesive and contact the plate-like portion 210, whereby sufficient conduction can be obtained.
  • the insulating sheet 30 is an insulating sheet material that covers the periphery of the pair of electrode units 20. That is, the insulating sheet 30 is provided so as to wrap around the pair of electrode portions 20 having the plurality of heat generating elements 10 sandwiched therebetween.
  • a material of the insulating sheet 30 it has flexibility, heat conductivity, and electrical insulation, and, for example, a polyimide film having a thickness of about 0.05 mm is preferable.
  • the whole of the plate-like portion 210, the terminal portion 220 and the convex extension portion 230 is covered by the insulating sheet 30. Both ends of the insulating sheet 30 in the second direction D2 are open.
  • the cylindrical body 50 has a hollow portion 55, and accommodates the heat generating structure 100 including the heat generating element 10, the pair of electrode portions 20 and the insulating sheet 30 in the hollow portion 55.
  • the cylindrical body 50 has a cylindrical shape in which an internal space is formed by the pair of heat radiation surfaces 51 and the pair of side surfaces 53 and which extends in the second direction D2.
  • the heat dissipation surface 51 is a flat surface.
  • the cylindrical body 50 is provided with an opening 50a on one end side and an opening 50b on the other end side.
  • the heat generating structure 100 is inserted into, for example, an opening 50 a of the cylinder 50 into the cylinder.
  • the cylindrical body 50 is made of, for example, aluminum (Al), and is pressurized in the first direction D1 in a state where the heat generating structure 100 is accommodated in the hollow portion 55. By this pressure, the side surfaces 53 are bent and crushed.
  • the groove 53a may be provided in the second direction D2 in advance on the side surface 53. Thereby, the side surface 53 can be prevented from being bent inward at the portion of the groove 53a and protruding outward.
  • the cylindrical body 50 is crushed in the first direction D1 by pressurization, so that the heat generating structure 100 is sandwiched by the inner surfaces of the upper and lower heat radiation surfaces 51. Thereafter, the adhesive between the electrode unit 20 and the heating element 10 is cured. As a result, the pair of electrode portions 20 is in a state of being in electrical continuity with the electrode layer 10a, and the heating element 10 is firmly held between the pair of electrode portions 20.
  • the width (the length in the third direction D3) of the plate-like portion 210 of the electrode portion 20 be wider than the width of the electrode layer 11 and smaller than or equal to the width of the heating element 10.
  • the width of the plate-like portion 210 is wider than the width of the electrode layer 11, the entire electrode layer 11 can be in contact with the plate-like portion 210.
  • the width of the plate-like portion 210 equal to or less than the width of the heat-generating element 10
  • the edge portion in the width direction of the plate-like portion 210 does not protrude outside the heat-generating element 10.
  • the edge portion of the plate-like portion 210 protrudes outside the heat generating element 10
  • pressure may be applied to the protruding portion to cause bending. is there. Due to this curvature, the distance between the electrodes at the side surface portion of the heat generating element 10 becomes narrow, which may cause a decrease in withstand voltage.
  • the width of the plate-like portion 210 equal to or less than the width of the heat-generating element 10 as in this embodiment, deformation of the edge portion of the plate-like portion 210 at the time of pressurization is suppressed, and withstand voltage is ensured by securing the distance between the electrodes. It is possible to suppress the decrease.
  • the sealing portion 60 is a member that seals the openings 50 a and 50 b at both ends of the cylindrical body 50.
  • a sealing material of withstand voltage and heat resistance type such as silicone resin or epoxy resin is used.
  • a rubber material such as silicone rubber may be inserted into the opening 50a, and the sealing property may be enhanced by crushing the cylindrical body 50.
  • the openings 50a and 50b of the cylindrical body 50 can be easily sealed. That is, after the silicone resin in a soft state before curing is filled into the openings 50a and 50b and then cured, the inside of the cylindrical body 50 can be sealed in a liquid tight state easily and reliably.
  • the sealing portion 60 forms a waterproof structure to the inside of the cylindrical body 50 and a withstand voltage structure of 300 V or more between the first terminal portion 221 and the second terminal portion 222. Moreover, as the sealing part 60, it is preferable to use the material of 150 degreeC or more of heat-resistant temperature.
  • Caps 70 are attached to both ends of the cylindrical body 50, respectively.
  • the cap 70 has electrical insulation and heat resistance to the heat generated by the heating element 10.
  • the cap 70 is made of, for example, polybutylene terephthalate (PBT).
  • PBT polybutylene terephthalate
  • the cap 70 has a recess 70 a into which the end of the cylinder 50 is fitted.
  • two through holes 70 h communicating the inside and the outside of the recess 70 a are formed.
  • the cap 70 is fixed by the sealing material. Specifically, for example, a silicone-based sealing material having heat resistance and electrical insulation is put in the recess 70 a of the cap 70, and then the end of the cylindrical body 50 is fitted in the recess 70 a. Then, the cap 70 and the cylindrical body 50 are fixed by curing the sealing material.
  • the sealing material may be the same material as the sealing portion 60.
  • the conduction cable C10 is passed through the two through holes 70h.
  • the continuity cable C10 is pulled out of the cap 70 through the through hole 70h and connected to an external circuit (not shown).
  • the sealing material is also injected into the through hole 70h through which the conductive cable C10 is passed, and a portion thereof protrudes from the through hole 70h to the outside of the cap 70, and covers and cures the gap between the conductive cable C10 and the through hole 70h. .
  • a similar cap 70 is provided at the other end of the cylindrical body 50, but no through hole 70h is formed in the cap 70.
  • the hollow portion 55 of the cylindrical body 50 is liquid-tightly shut from the outside by the cap 70 and the sealing portion 60.
  • FIG. 3 shows a cross-sectional view of the on-vehicle heater 1 as viewed in the first direction D1.
  • FIG. 3 shows a cross-sectional view of the on-vehicle heater 1 as viewed in the first direction D1.
  • FIG. 3 shows a cross section which cut
  • 4 (a) shows a cross-sectional view taken along the line AA of FIG. 3
  • FIG. 4 (b) shows a cross-sectional view taken along the line BB of FIG. 3
  • FIG. 4 (c) shows it. Is a cross-sectional view taken along the line CC of FIG.
  • the first terminal portion 221 and the second terminal portion 222 are located on one side of the opening 50 a of the cylindrical body 50. Thereby, the first conductive cable C11 and the second conductive cable C12 can be pulled out from the terminal portion 220 substantially straight from the same opening 50a side.
  • the first terminal portion 221 and the second terminal portion 222 are disposed at mutually offset positions.
  • the shifted position means that the center of the width of the first terminal portion 221 and the center of the width of the second terminal portion 222 do not overlap.
  • the first terminal portion 221 and the second terminal portion 222 may partially overlap each other, but it is preferable that they do not overlap at all. As a result, the distance between the two terminal portions can be made longer as compared to the case where two terminal portions are arranged in an overlapping manner, and the withstand voltage (dielectric strength) between the first terminal portion 221 and the second terminal portion 222 can be increased. Can.
  • the insulating sheet 30 has covered so that the outer side of a pair of electrode part 20 which clamps the heat generating element 10 may be enclosed.
  • the insulating sheet 30 covers the entire electrode portion 20 (plate-like portion 210, convex extension portion 230 and terminal portion 220) in the second direction D2.
  • the end portions 30 a and 30 b of the insulating sheet 30 in the second direction D 2 do not protrude outward beyond both ends of the cylindrical body 50.
  • the both ends of the winding overlap each other at the side surface portion of the heat generating element 10.
  • the insulating sheet 30 does not overlap on the inner surface of the heat dissipation surface 51, and heat can be efficiently transmitted from the heat generating element 10 to the heat dissipation surface 51.
  • the abutments of the caulking portions 250 are provided to face each other.
  • the caulking portion 250 does not protrude to the inner surface side of the cylindrical body 50 in the first direction D1. That is, the heat dissipation surface 51 side of the electrode portion 20 is substantially flat from the plate-like portion 210 to the convex extension portion 230 and the caulking portion 250, and the inner surface of the heat dissipation surface 51 presses the electrode portion 20 uniformly.
  • thickness reduction of the vehicle heater 1 can be achieved.
  • the sealing portion 60 is embedded in the openings 50 a and 50 b of the cylindrical body 50.
  • the entire opening 50 b is closed by the sealing portion 60 on the opening 50 b side of the cylindrical body 50.
  • the sealing portion 60 is embedded from the opening 50 a to at least the terminal portion 220 inside the cylindrical body 50.
  • the first conductive cable C11 and the second conductive cable C12 pierce through the sealing portion 60 and extend outward through the through holes 70h of the cap 70.
  • the sealing portion 60 is in close contact with the inner surface 50c of the cylindrical body 50 and also in close contact with the cap 70 and the insulating covering material of the conductive cable C10.
  • the sealing portion 60 is provided so as to embed the first terminal portion 221 and the second terminal portion 222 surrounded by the insulating sheet 30. . Since the terminal portion 220 is embedded by the sealing portion 60, the position fixing of the first terminal portion 221 and the second terminal portion 222 is ensured.
  • the sealing portion 60 is interposed between the first terminal portion 221 and the second terminal portion 222, it is more resistant than when the space between the first terminal portion 221 and the second terminal portion 222 is a space.
  • the voltage can be increased.
  • a silicone-based resin as the sealing portion 60, a dielectric strength higher by two digits or more than that of a space (air) can be obtained.
  • the sealing portion 60 also intervenes in the gap G between the insulating sheet 30 and the inner surface 50c of the cylindrical body 50 on the opening 50a side.
  • the insulating sheet 30 extends to a position covering the entire terminal portion 220 on the opening 50 a side. This is to avoid conduction between the terminal portion 220 housed in the cylindrical body 50 and the inner surface 50 c of the cylindrical body 50.
  • the sealing portion 60 By interposing the sealing portion 60 in the gap G, the waterproofness in the gap G between the insulating sheet 30 and the inner surface 50 c of the cylindrical body 50 on the opening 50 a side is enhanced. That is, the waterproofness from the outside of the cylindrical body 50 toward the inside of the cylinder becomes higher as the length of the sealing portion 60 that blocks the inflow path of moisture (water) is longer. If the sealing portion 60 does not intervene in the gap G, the length of the sealing portion 60 on the permeation path of moisture (moisture) along the inner surface 50c of the cylindrical body 50 is from the opening 50a to the insulating sheet It becomes to the edge part 30a of 30 (refer length L11 of FIG. 3).
  • the length of the sealing portion 60 on the permeation path of moisture (moisture) along the inner surface 50c of the cylindrical body 50 is the length L11 and insulation
  • the length (see length L12 in FIG. 3) of the portion surrounding the terminal portion 220 of the sexing sheet 30 is added.
  • the length L12 of the portion surrounding the terminal portion 220 of the insulating sheet 30 is sufficiently longer than the length L11 from the opening 50a to the end 30a of the insulating sheet 30.
  • the gap G is generated in the portion of the length L12, by filling the gap G with the sealing portion 60, the length of the sealing portion 60 for closing the permeation path of moisture (moisture) can be increased, and the waterproofness is improved. It can be effectively enhanced.
  • the sealing portion 60 may be embedded in part of the range of the length L2 in the gap G, the longer the length in the second direction D2 of the sealing portion 60 in which the gap G is embedded, the higher the waterproofness. Therefore, it is most preferable to bury the sealing portion 60 in the entire range of the length L2 in the gap G.
  • the sealing portion 60 on the opening 50a side is shown, but it is preferable that the sealing portion 60 intervenes in the gap between the insulating sheet 30 and the inner surface 50c of the cylindrical body 50 also on the opening 50b side .
  • FIG. 5 is an enlarged plan view illustrating a convexly extending portion of the electrode portion.
  • the convex extending portion 230 is a portion extending in a convex shape in the second direction D2 from the end of the plate-like portion 210.
  • the caulking portion 250 is provided to extend from the tip of the convex extension portion 230. That is, the convex extension portion 230 is a portion provided between the plate-like portion 210 and the caulking portion 250.
  • caulking flaws 255 are generated.
  • the caulking weir 255 refers to a portion where the metal plate material is plastically deformed in the shape of a weir by the force applied near the base of the caulking piece 250a when the caulking piece 250a is bent in the formation of the caulking portion 250.
  • the crimped ridge 255 is formed on the crimped portion 250 side of the convex extension portion 230.
  • the caulking weir 255 is formed to be raised on the bending side of the caulking piece 250a, that is, on the welding side of the caulking. For this reason, by providing the caulking portion 250, the caulking weir 255 is formed, and the thickness increases by the amount of swelling by the caulking weir 255.
  • the length L2 of the convex extending portion 230 in the second direction D2 is longer than the length L1 of the second direction D2 of the crimp rod 255.
  • the plate-like portion 210 has less waviness, the plate-like portion 210 and the electrode layer 10 a can be reliably brought into contact when the heating element 10 is held between the pair of electrode portions 20.
  • the convex extension portion 230 is not provided or the length L2 of the convex extension portion 230 is shorter than the length L1 of the caulking ridge 255, the influence of the swelling by the caulking ridge 255 causes the plate portion 210 It will In this case, the flatness of the plate-like portion 210 is impaired, which prevents uniform contact between the plate-like portion 210 and the heating element 10 (electrode layer 10 a). If the cylinder 50 is pressurized in this state to bring the electrode unit 20 and the heating element 10 into close contact with each other, a variation in stress of pressurization occurs between the electrode unit 20 and the heating element 10.
  • Irregularities are formed on the surface of the electrode layer 10 a based on the irregularities of the surface of the heat generating element 10, and the contact between the electrode layer 10 a and the plate-like portion 210 is considered to be a collection of point contacts.
  • the contact area between the plate-like portion 210 and the electrode layer 10a per unit area in the first direction D1 is taken as the contact density.
  • the contact density is the variation in the electric field between the electrode unit 20 and the heating element 10.
  • the voltage applied to the electrode unit 20 is a high voltage of 300 V or more
  • the withstand voltage of the heat generating element 10 is affected by the electric field concentration due to the variation of the electric field.
  • an inrush current is generated at the beginning of energization.
  • a high voltage of 300 V or more it is desirable to avoid the occurrence of an excessive inrush current locally.
  • the plate-like portion 210 is not affected by the crimped ridge 255. Therefore, while being able to arrange heating element 10 over the whole region of plate-like portion 210, variation in electric field distribution is suppressed without being affected by the rise of caulking wedge 255, and sufficient withstand voltage is obtained even when a high voltage is applied. It becomes possible. Moreover, it becomes possible to aim at the improvement of heat dissipation efficiency by the increase in the contact density of the electrode part 20 and the electrode layer 10a.
  • the length (width W2) of the convex extension portion 230 in the third direction D3 is longer than the length (width W3) of the third direction D3 of the caulking portion 250. That is, the convex extension portion 230 is provided wider than the caulking portion 250. Thereby, when stress is applied to the caulking portion 250, it is possible to suppress the stress from being absorbed by the convex extension portion 230 and transfer to the plate-like portion 210.
  • the width of the convex extension portion 230 may be constant or may be gradually increased (continuously or stepwisely) from the caulking portion 250 to the plate-like portion 210.
  • the length (width W2) of the convex extension 230 in the third direction D3 is more than half (width W1) of the length (width W1) of the third direction D3 in the plate-like portion 210. It may be provided short.
  • the convex extending portion 230 is provided at a position closer to one side with respect to the center of the plate-like portion 210.
  • the first convex extending portion 231 and the second convex extending portion 232 are arranged so as not to overlap with each other in the first direction D1.
  • the distance between the first convexly extending portion 231 and the second convexly extending portion 232 is longer than when the first convexly extending portion 231 and the second convexly extending portion 232 overlap with each other. And the withstand voltage can be improved.
  • FIG. 6 is an enlarged plan view illustrating the terminal portion of the electrode unit.
  • the first terminal portion 221 and the second terminal portion 222 are arranged so as not to overlap with each other in the first direction D1.
  • clearance gap S1 of the 1st terminal area 221 and the 2nd terminal area 222 is 2.5 mm or more seeing in the 1st direction D1.
  • the sealing portion 60 is interposed between the first terminal portion 221 and the second terminal portion 222, and the gap S1 is 2.5 mm or more, for example, between the first terminal portion 221 and the second terminal portion 222, for example Even if a voltage of 300 V or more is applied, sufficient insulation can be ensured.
  • FIG. 7 is a perspective view for explaining an application example.
  • the on-vehicle heater 1 according to the present embodiment can be applied to an on-vehicle heater unit 1U.
  • the on-vehicle heater unit 1U has fins 150 provided on the upper and lower heat radiation surfaces 51 of the on-vehicle heater 1, respectively. Note that, for the convenience of description, in FIG. 7, the upper fins 150 are shown separated from the on-vehicle heater 1.
  • the width W4 of the in-vehicle heater unit 1U is substantially equal to the width of the in-vehicle heater 1 according to the present embodiment.
  • the air passes from one side to the other side in the width direction of the in-vehicle heater unit 1U, the air is heated by the in-vehicle heater 1, and warm air can be output.
  • the on-vehicle heater 1 according to the present embodiment it is possible to exhibit high withstand voltage, excellent insulation and waterproofness also for the on-vehicle heater unit 1U.
  • the fins 150 are formed by bending a plate made of, for example, aluminum (Al) so as to repeat a peak and a valley.
  • the fins 150 may be connected by means of, for example, a silicone-based adhesive excellent in heat resistance and thermal conductivity, but it is preferable that the fins 150 be brazed and fixed to the heat dissipation surface 51 via the brazing portion 80.
  • the outer side of the fin 150 is covered by a cover plate 151 such as aluminum (Al).
  • a cover plate 151 such as aluminum (Al).
  • the cover plate 151 is provided on the side of the heater 150 of the fin 150 to widen the contact surface, and the surface of the cover plate 151 and the heat radiation surface 51 are silicone-based. Bonded by an adhesive.
  • the fins 150 are brazed to the heat dissipation surface 51, the heat dissipation efficiency between the heat dissipation surface 51 and the fins 150 is improved as compared with the case where they are bonded with a resin such as a silicone adhesive. That is, the thermal conductivity of metal is orders of magnitude higher than the thermal conductivity of resin. Therefore, since the fins 150 are brazed to the heat dissipation surface 51, miniaturization can be achieved if the heater unit has the same output, and high output can be achieved if the heater unit has the same size. . Further, in the case of brazing, since it is not necessary to provide the cover plate 151 on the in-vehicle heater 1 side of the fin 150, the fin structure can be simplified and cost can be reduced.
  • FIG. 8 is a flowchart illustrating the method of manufacturing the on-vehicle heater unit.
  • the fin 150 is fixed to the heat dissipation surface 51 of the cylindrical body 50 by brazing (step S101).
  • a eutectic alloy of aluminum (Al) -silicon (Si) is used as the brazing material of the brazing portion 80.
  • the heating element 10 is sandwiched between the pair of electrode units 20 (step S102).
  • a silicone-based adhesive excellent in conductivity and thermal conductivity is applied between the heating element 10 and the electrode portion 20.
  • step S103 the periphery of the pair of electrode units 20 holding the heating element 10 is covered with the insulating sheet 30.
  • a polyimide film is used for the insulating sheet 30.
  • the whole of the electrode unit 20 is covered with the insulating sheet 30.
  • step S104 the heat generating structure 100 covered with the insulating sheet 30 is accommodated in the hollow portion 55 of the cylindrical body 50.
  • the fins 150 have already been attached to the heat dissipation surface 51 of the cylindrical body 50 by brazing.
  • step S105 the cylinder 50 in which the heat generating structure 100 is accommodated is pressurized.
  • the pressurization of the cylindrical body 50 is performed via the fins 150. That is, the cylinder 50 is pressurized in the vertical direction (first direction D1) via the fins 150 to crush the cylinder 50 and fix the heat generating structure 100 in the hollow portion 55.
  • the side surface 53 is bent inward at the portion of the groove 53a.
  • the electrode portion 20 and the heating element 10 are in close contact with each other, and the plate-like portion 210 of the electrode portion 20 and the electrode layer 11 of the heating element 10 are electrically connected.
  • the on-vehicle heater unit 1U is completed.
  • the fins 150 are attached to the cylindrical body 50 before the cylindrical body 50 is pressurized. Then, the heat generating structure 100 is accommodated in the hollow portion 55 of the cylindrical body 50 to which the fins 150 are attached, and thereafter, the cylindrical body 50 is pressurized via the fins 150. That is, when attaching the fin 150 to the cylindrical body 50, the insulating property of the heating structure 100 is attached when attaching the fin 150 because the heating structure 100 is not accommodated in the hollow portion 55 (empty state). It is possible to adopt brazing that exceeds the heat resistance temperature of the sheet 30.
  • the load resistance in the first direction D1 of the fin 150 is made larger than the load resistance in the first direction D1 of the cylindrical body 50.
  • the inventor of the present invention has repeatedly made ingenuity in order to solve the problem when trying to braze the fin 150. That is, when attaching the fin 150 to the cylinder 50, it is desirable to fix by brazing instead of a silicone type adhesive (resin) from the viewpoint of heat radiation efficiency.
  • a silicone type adhesive resin
  • the insulating sheet 30 polyimide
  • the polyimide can not withstand the brazing temperature (about 600 ° C.) (the heat resistance temperature of the polyimide is 280 ° C.) degree).
  • the inventor of the present invention brazes the fins 150 to the cylinder 50 first, and then, the heat generating structure 100 is accommodated in the cylinder 50 and the cylinder 50 is crushed without deforming the fins 150.
  • the load resistance of the fin 150 in the first direction D1 is larger than the load resistance of the cylindrical body 50 in the first direction D1.
  • the fins 150 are attached in advance to the cylindrical body 50 by brazing, and it becomes possible to pressurize the cylindrical body 50 through the fins 150 to crush the cylindrical body 50, and the insulation waterproof type using the insulating sheet 30 (polyimide) Even if there is, it becomes possible to configure the on-vehicle heater unit 1U to which the fins 150 are brazed.
  • the fins 150 can be fixed by brazing to the cylindrical body 50 can significantly reduce the time required for fixing as compared with the case of fixing with a silicone-based adhesive. Moreover, the fins 150 can be brazed to the cylinder 50 in advance without waiting for the pressing process of the cylinder 50. Therefore, the process of brazing the fins 150 and the process of pressing the cylindrical body 50 can be performed in parallel, and the production time can be shortened in mass production.
  • FIG. 9 is a perspective view illustrating multistage fins.
  • the in-vehicle heater unit 1U shown in FIG. 9 two stages of fins 150 are provided on the upper and lower surfaces of the in-vehicle heater 1, respectively.
  • the fins 150 adjacent to the in-vehicle heater 1 are brazed by the brazing part 80. Further, it is preferable that the two-stage fins 150 be brazed to each other in order to improve the heat radiation efficiency.
  • the cover plate 151 is interposed therebetween, and the load resistance in the first direction D1 can be increased more than in the case of one stage.
  • the number of stages of the fins 150 may be more than two. Moreover, even if it is except a multistage type, the thickness of the board
  • FIGS. 10A and 10B are diagrams for explaining another application example.
  • FIG. 10 (a) shows a vehicle heater unit 1U
  • FIG. 10 (b) shows an application example to air conditioning.
  • the on-vehicle heater unit 1U shown in FIG. 10A has a configuration in which a plurality of on-vehicle heaters 1 and fins 150 are stacked.
  • upper and lower fins 150 are attached to each of the four on-vehicle heaters 1A, 1B, 1C, and 1D, and these are stacked.
  • Caps 71 and 72 are attached to the ends of the laminated structure.
  • the caps 71 and 72 are attached so as to put together the ends of the plurality of on-vehicle heaters 1A, 1B, 1C and 1D stacked.
  • a bus bar (not shown) is provided inside the cap 71 so that the conduction cables C10 connected to the on-vehicle heaters 1A, 1B, 1C and 1D can be collectively connected.
  • a first conductive cable C11 and a second conductive cable C12 which combine the respective conductive cables C10, extend one by one.
  • such an on-vehicle heater unit 1U is disposed in a flow passage R for sending warm air or the like into the vehicle.
  • the fan F is provided in the front
  • An on-vehicle heater unit 1U is disposed downstream of the flow path R.
  • the air sent by the fan F is heated by passing through the on-vehicle heater unit 1U, and is output as a warm air (see arrow A3).
  • the on-vehicle heater unit 1U obtains an output of 3 kilowatts (kW) or more.
  • the high withstand voltage, the excellent insulation property and the waterproofness of the on-vehicle heater unit 1U make it possible to use even in a severe environment.
  • a withstand voltage of 300 V or more can be obtained while having a simple sealing structure in which the openings 50a and 50b of the cylindrical body 50 are sealed by the sealing portion 60.
  • high waterproofness and high heat dissipation efficiency can be obtained.
  • Electric cars and hybrid cars handle voltages of about 300V to 400V.
  • the on-vehicle heater 1 according to the present embodiment can be used by applying a voltage without step-down for such a high voltage.
  • the car heater 1 may be submerged in water even if the car is submerged, suffers a tsunami or high tide, or is not submerged.
  • the on-vehicle heater 1 according to the present embodiment has high waterproofness, leakage can be prevented even in a high voltage environment.
  • the on-vehicle heater 1 according to the present embodiment can sufficiently withstand use in a severe environment where cold regions, bad roads, and dust are received.
  • miniaturization can be achieved if the output is the same, and high output can be achieved if the size is the same.
  • FIG. 11 is a perspective view illustrating an on-vehicle heater unit used for the on-vehicle heater device.
  • FIG. 12 is a perspective view illustrating the on-vehicle heater device.
  • 13 (a) and 13 (b) are cross-sectional views illustrating the on-vehicle heater device, and FIG. 13 (a) shows a cross-sectional view seen in the direction along the flow path of the fin, and FIG. A cross-sectional view taken in the direction perpendicular to the path is shown.
  • the on-vehicle heater unit 1U has a structure in which a plurality of on-vehicle heaters 1 and a plurality of fins 150 are stacked.
  • the in-vehicle heaters 1 are arranged in three rows and two stages, and two stages of fins 150 are stacked on the upper and lower sides of the in-vehicle heaters 1 of each stage.
  • the number of on-vehicle heaters 1, the number of fins 150, and the number of stacked on-vehicle heaters 1 and fins 150 are arbitrary and are not limited to the illustrated numbers.
  • the on-vehicle heater 1 has the configuration according to the present embodiment described above.
  • the fin 150 is bent so as to repeat a peak and a valley in the second direction D2.
  • the direction of the flow path 1501 which is a gap between the peak portion and the valley portion of the fin 150 is provided in the third direction orthogonal to the second direction D2.
  • a plurality of (for example, three) in-vehicle heaters 1 are juxtaposed in the third direction D3, and fins 150 are provided so as to cross these three. Therefore, the medium passing from one end 1501 a to the other end 1501 b of the flow path 1501 can obtain a heating action from the plurality of on-vehicle heaters 1.
  • the on-vehicle heater device 500 shown in FIG. 12 includes the on-vehicle heater unit 1U shown in FIG. 11 and a case 501.
  • the in-vehicle heater unit 1U is housed in a case 501.
  • the case 501 is provided with an inlet 5011 and an outlet 5012 for a medium (water, air, etc.) to be heated.
  • the inflow port 5011 and the outflow port 5012 are provided, for example, in a cylindrical shape, and are provided so as to protrude from the side surface 501s of the case 501.
  • the medium is sent from the inflow port 5011 into the case 501 and comes out of the case 501 from the outflow port 5012 while being heated by the on-vehicle heater unit 1U in the case 501.
  • the inlet 5011 and the outlet 5012 are arranged side by side on the same side surface 501s of the case 501.
  • the on-vehicle heater unit 1 U is accommodated in the case 501 with one end 1501 a of the flow path 1501 of the fin 150 facing the inflow port 5011 and the outflow port 5012.
  • the mounting portion of the on-vehicle heater 1 is provided on the inner wall of the case 501.
  • the attachment portion is, for example, a recess 5015.
  • each of the caps 70 provided at both ends of the in-vehicle heater 1 is fitted into the recess 5015. Thereby, the accommodation position in case 501 of heater unit 1U for vehicles is decided.
  • the case 501 is provided with a first hole h1 and a second hole h2 for passing the first conduction cable C11 and the second conduction cable C12 extending from the in-vehicle heater 1 respectively.
  • the first conduction cable C11 of the in-vehicle heater 1 housed in the case 501 is drawn out of the case 501 through the first hole h1 of the case 501.
  • the second conductive cable C12 is pulled out of the case 501 through the second hole h2 of the case 501.
  • first hole h1 and the second hole h2 are provided as holes other than the inlet 5011 and the outlet 5012.
  • the first hole h1 and the second hole h2 provided in the case 501 may have a diameter sufficient to pass the conductive cable C10.
  • a sealant 65 is embedded in each of the gap between the first hole h1 and the first conductive cable C11 and the gap between the second hole h2 and the second conductive cable C12. The sealant 65 prevents the medium flowing into the case 501 from leaking out of the case 501 from the first hole h1 and the second hole h2.
  • the waterproofness of the on-vehicle heater 1 according to the present embodiment is very high. Therefore, the whole of the on-vehicle heater 1 can be accommodated in the case 501.
  • the medium is a liquid (eg, water)
  • the case 501 is filled with water. Since the waterproofness of the on-vehicle heater 1 according to the present embodiment is very high, even if the entire on-vehicle heater 1 including the cap 70 is accommodated in the case 501, the inside of the on-vehicle heater 1 is not flooded. .
  • the holes opened in the case 501 other than the inflow port 5011 and the outflow port 5012 are only the small first holes h1 and the second holes h2 through which the conduction cable C10 passes. Since the holes provided in the case 501 are small, only a slight gap between the holes (the first hole h1 and the second hole h2) and the conductive cable C10 may be sealed with the sealing agent 65, and the sealing is easy. Become. Furthermore, even if the amount of the sealing agent 65 is small, reliable sealing can be performed, and high sealing performance can be realized while being simple.
  • the medium is fed into the case 501 from the inflow port 5011.
  • the medium having flowed into the case 501 flows along the flow path 1501 of the fin 150.
  • the inflowing medium efficiently flows along the flow path 1501 of the fin 150.
  • the medium flowing along the flow path 1501 is heated by heat exchange with the fins 150, and flows out from the outlet 5012 to the outside of the case 501.
  • the medium heated along the flow path 1501 efficiently flows out from the outlet 5012 to the outside. .
  • FIG. 14 is a perspective view illustrating another on-vehicle heater device.
  • the inflow port 5011 and the outflow port 5012 are disposed at mutually opposing positions in the case 501.
  • the extending direction of the inlet 5011 and the extending direction of the outlet 5012 substantially coincide with each other.
  • the on-vehicle heater unit 1U causes one end 1501a (see FIG. 11) of the flow passage 1501 of the fin 150 to face the inflow port 5011 and the other end 1501b (see FIG. 11). And the outlet 5012 are accommodated in the case 501.
  • a tapered portion 5013 is provided at a portion of the case 501 to which each of the inlet 5011 and the outlet 5012 is attached.
  • the tapered portion 5013 on the inflow port 5011 side is formed so that the cross-sectional area gradually expands from the inflow port 5011 toward the inside of the case 501.
  • an on-vehicle heater unit 1U in which multiple fins 150 are formed is accommodated.
  • the tapered portion 5013 on the outlet 5012 side is formed so that the cross-sectional area gradually narrows from the inside of the case 501 toward the outlet 5012.
  • the medium that has passed through the channels 1501 of the multi-stage fins 150 of the in-vehicle heater unit 1U housed in the case 501 is efficiently collected at the outlet 5012 by the tapered portion 5013. It will flow out.
  • the on-vehicle heater device 500 only the first hole h1 and the second hole h2 are provided in the case 501 as holes other than the inflow port 5011 and the outflow port 5012. Since the holes provided in the case 501 are small, reliable sealing performance can be obtained even with a small amount of the sealing agent 65.
  • the on-vehicle heater device 500 since the on-vehicle heater 1 having high withstand voltage, excellent insulation and waterproofness is used, withstand voltage of 300 V or more As a result, high waterproofness and high heat dissipation efficiency can be obtained. In addition, by brazing the fins 150, it is possible to achieve high efficiency (improvement of heat dissipation efficiency). Therefore, downsizing of the on-vehicle heater device 500 can be achieved with the same output, and high output of the on-vehicle heater device 500 can be achieved with the same size.
  • FIG. 15 is a schematic view showing an application example of the on-vehicle heater device.
  • a case 501 accommodating the in-vehicle heater unit 1U is connected to the circulation passage 6.
  • the circulation passage 6 has conduits 6a to 6d.
  • the conduit 6a connects the case 501 and the heater core 2H.
  • the conduit 6 b connects the heater core 2 H and the hydraulic pump 3.
  • the conduit 6 c connects the hydraulic pump 3 and the three-way valve 4.
  • the conduit 6 d connects the three-way valve 4 and the case 501.
  • the conduit 6 d is connected to the inlet 5011 of the case 501, and the conduit 6 a is connected to the outlet 5012 of the case.
  • the circulation passage 6 and the case 501 are also connected to the engine 5 via the conduits 7a and 7b.
  • the hydraulic pump 3 is driven in a state where the three-way valve 4 shuts off between the pipeline 6c and the pipeline 7a and brings the pipeline 6c and the pipeline 6d into communication, the inside of the case 501 and The liquid circulates in the circulation path 6 in the direction indicated by the arrow A11 shown in FIG.
  • the on-vehicle heater unit 1U by supplying power from the battery mounted on the vehicle to the on-vehicle heater unit 1U in the case 501, the on-vehicle heater unit 1U generates heat, and the liquid in the case 501 is overheated.
  • the hot water generated by this superheating is supplied to the heater core 2H through the outlet 5012 and the pipe line 6a.
  • Hot water supplied to the heater core 2H flows through a pipe provided in the heater core 2H.
  • Gas (air) is blown from the blower 8 to the heater core 2H.
  • the heat of the hot water flowing through the tube of the heater core 2H is transferred to the gas blown from the blower 8 through a heat transfer surface such as a fin provided on the heater core 2H.
  • a heat transfer surface such as a fin provided on the heater core 2H.
  • the three-way valve 4 is switched to connect the pipe line 6c and the pipe line 7a and to shut off the pipe line 6c and the pipe line 6d. Act as. The flow of the liquid at this time is shown by arrow A12 in FIG. Hot water passing through the engine 5 and warmed by heat exchange with the engine 5 is supplied to the heater core 2H via the conduits 7b and 6d, the inlet 5011, the inside of the case 501, the outlet 5012 and the conduit 6a. Therefore, in this mode, warm water can be supplied to the heater core 2H without energizing (heating) the on-vehicle heater unit 1U, and hot air can be sent into the vehicle by driving the blower 8.
  • the on-vehicle heater device 500 can be incorporated as it is into an existing on-vehicle hot water generation system using cooling water heated by the exhaust heat of the engine 5.
  • FIG. 16 is a schematic view showing another application example of the on-vehicle heater device.
  • FIG. 16 shows a specific example in which the on-vehicle heater device 500 described above is attached to a vehicle such as an electric vehicle that does not have the engine 5.
  • a motor M is used as a drive source instead of the engine 5.
  • the case 501 accommodating the in-vehicle heater unit 1U is connected to the circulation passage 6.
  • the three-way valve 4 and the conduits 7a and 7b as shown in FIG. 15 are not connected to the circulation passage 6.
  • the warm air is sent into the vehicle in the same operation as the mode selected when the exhaust heat of the engine 5 can not be utilized at the start of the engine 5 described above. That is, when the hydraulic pump 3 is driven, the liquid circulates in the case 501 and the circulation path 6 in the direction indicated by the arrow A13 shown in FIG.
  • the on-vehicle heater unit 1U by supplying power from the battery mounted on the vehicle to the on-vehicle heater unit 1U in the case 501, the on-vehicle heater unit 1U generates heat, and the liquid in the case 501 is overheated.
  • the hot water generated by this superheating is supplied to the heater core 2H through the outlet 5012 and the pipe line 6a. Then, the heat of the hot water flowing through the tube of the heater core 2H is transmitted to the gas blown from the blower 8 and the warm air is blown into the car.
  • the on-vehicle heater device 500 according to the present embodiment can be used by being incorporated into a warm air generation system of a vehicle such as an electric car that does not use the engine 5.
  • FIG. 17 is a schematic view of a heat pump system.
  • the heat pump system includes two heat exchangers 101 and 105, an expansion valve 103, a compressor 107, and the on-vehicle heater device 500 of the embodiment described above.
  • a refrigerant (a medium such as non-fluorocarbon gas) circulates in the system.
  • the refrigerant is compressed by the compressor 107 and is sent to the heat exchanger 101 through the pipe 108 in the state of high-temperature high-pressure gas. Then, the refrigerant is condensed by heat exchange with the fluid (air or liquid) to be heated in the heat exchanger 101, and is sent to the expansion valve 103 through the pipe 102 in the state of a high-temperature high-pressure liquid.
  • the refrigerant expanded by the expansion valve is sent to the heat exchanger 105 through the pipe 104 in the form of a low temperature and low pressure liquid.
  • the refrigerant is evaporated and sent to the compressor 107 through the pipe 106 in the state of low-temperature low-pressure gas, and the cycle described above is repeated.
  • the on-vehicle heater device 500 is connected to the pipe 106 between the heat exchanger 105 and the compressor 107 and heats the low pressure gas sent from the heat exchanger 105 to the compressor 107. That is, the on-vehicle heater device 500 assists the refrigerant heating in the path between the heat exchanger 105 and the compressor 107.
  • the low pressure gas flows in the flow path 1501 described above, and the gas is heated by the heating element 10. That is, the on-vehicle heater device 500 is effective not only for the liquid but also for heating the gas.
  • the on-vehicle heater device 500 may be connected to the pipe 108 between the compressor 107 and the heat exchanger 101 to heat the liquid flowing through the pipe 108. Further, although not shown, the on-vehicle heater device 500 may be connected to the pipe 102. Further, in the heat pump system, two or more on-vehicle heater devices 500 may be connected to appropriate pipes. The on-vehicle heater device 500 may be connected to any of the pipes 102, 106 and 108 in the heat pump system, but is preferably connected to the low pressure pipe 106.
  • FIG. 19 is a partially exploded perspective view showing a configuration example of a vehicle-mounted heater device applied to the heat pump system.
  • FIG. 19 shows a state in which the taper portion 5013 on one side of the case 501 is removed.
  • the direction of the flow path 1501 of the fin 150 is extended in the direction connecting the inflow port 5011 and the outflow port 5012. That is, in the on-vehicle heater device 500, the longitudinal direction of the on-vehicle heater unit 1U accommodated in the case 501 matches the direction of the flow path 1501 of the fin 150.
  • the medium such as the refrigerant that has flowed into the case 501 from the inflow port 5011 naturally flows into the flow path 1501 of the fin 150, and the medium that has flowed out of the flow path 1501 naturally flows out from the outflow port 5012 It will go.
  • a protrusion 530 is provided on the side surface 53 of the cylindrical body 50.
  • the protrusion 530 protrudes outward beyond the fin 150 in the width direction.
  • the protrusion 530 is provided on each of the left and right side surfaces 53 of the cylindrical body 50.
  • Each of the opposing inner walls of the case 501 is provided with a pair of convex portions 5021.
  • a projection of the cylindrical body 50 is formed between the pair of convex portions 5021 530 is inserted.
  • the projection 530 serves as a support, and thus the in-vehicle heater unit 1U is positioned at a predetermined position in the case 501 without applying a force to the fins 150. be able to.
  • the length (height) of the protrusion 530 in the thickness direction is longer than the length of the cylindrical body 50 in the thickness direction. It is preferable that the height of the protrusion 530 be equal to or slightly larger than the height of the fin 150.
  • the side surface of the fin 150 is covered by the protrusion 530.
  • the side surface of the fin 150 is covered by the projecting portion 530, so that the influence of the outside air temperature becomes difficult to be transmitted to the fin 150, It becomes easy to exhibit the heating performance by heater unit 1U for vehicles.
  • the protrusion 530 may be provided integrally with the side surface 53 of the cylindrical body 50, may be provided separately from the cylindrical body 50, and may be attached to the side surface 53.
  • the on-vehicle heater unit 1U provided with the projecting portion 530 is also applicable to the on-vehicle heater device 500 shown in FIGS. 12 and 14.
  • the embodiment it is possible to provide the on-vehicle heater 1 that can cope with a severe environment without adopting a complicated configuration.
  • FIG. 20A and FIG. 20B are views exemplifying the insulated waterproof heater according to the present embodiment.
  • FIG. 20 (a) shows a perspective view of the insulated waterproof heater 2
  • FIG. 20 (b) shows an enlarged cross-sectional view taken along the line DD of (a).
  • FIG. 21 is an exploded perspective view illustrating the heat generating member.
  • the insulation and waterproof type heater 2 according to the present embodiment is a tubular temperature control device having waterproofness and electrical insulation.
  • the insulated waterproof heater 2 includes a heating element 10, a pair of electrode units 20, a cylinder 50, an insulating powder 40, a sealing body 90, and a pair of conductive cables C10.
  • Electrode layers 10 a are provided on the front and back of the heater element 10.
  • a PTC element is used for the heating element 10.
  • the heating element 10 is held between the pair of electrode portions 20.
  • each of the front and back electrode layers 10a of the heat generating element 10 and each of the pair of electrode portions 20 are brought into conduction.
  • the heat generating element 200 and the pair of electrode parts 20 constitute a heat generating member 200.
  • the heat generating member 200 preferably has the same configuration as the heat generating structure 100 (see FIG. 2) described above. However, the heat generating member 200 is different from the heat generating structure 100 in that the insulating sheet 30 is not provided.
  • the cylindrical body 50 accommodates the heat generating member 200 inside.
  • the cylinder 50 is provided, for example, in a cylindrical shape.
  • the cylindrical body 50 may be other than a cylindrical shape, but if it is a cylindrical shape, manufacture is easy and cost can be easily reduced.
  • stainless steel is used for the cylindrical body 50. Since stainless steel has high water resistance and chemical resistance, high durability can be obtained when the insulated waterproof heater 2 is used by being immersed in water or liquid.
  • the outer surface of the cylindrical body 50 is a heat dissipation surface 51. If the cylindrical body 50 is cylindrical, the heat dissipation surface 51 becomes a circumferential surface, and heat can be uniformly transmitted to the periphery.
  • the heat radiation surface 51 may be flat, or may be provided with asperities or grooves (such as spiral grooves).
  • the heat dissipating surface 51 may be provided with fins. By providing the asperities, the grooves, and the fins, the heat radiation efficiency can be enhanced as compared with the case where the heat radiation surface 51 is flat.
  • the inside of the cylindrical body 50 is filled with the insulating powder 40.
  • the insulating powder 40 serves to electrically insulate the cylindrical body 50 and the heat generating member 200 accommodated in the cylindrical body 50. That is, the insulating powder 40 is embedded in the gap between the inner surface of the cylindrical body 50 and the heat generating member 200. Thereby, the direct contact between the cylindrical body 50 and the heat generating member 300 is prevented.
  • the cylindrical body 50 has the hollow portion 55 before the insulating powder 40 is filled. The whole of the hollow portion 55 may be embedded with the insulating powder 40, or a part of the hollow portion 55 may remain after the filling of the insulating powder 40.
  • magnesium oxide is used as the insulating powder 40.
  • the heat-generating member 200 is positioned near the center of the inside of the cylindrical body 50 so as not to be in contact with the inner surface of the cylindrical body 50.
  • the heat generating member 200 is a plate-like mold, and when the heat generating member 200 is housed in the cylindrical hollow portion 55, the gap between the heat generating member 200 and the inner surface of the cylindrical body 50 is filled with the insulating powder 40.
  • the insulating powder 40 also serves to position the heat generating member 200 inside the cylindrical body 50 as well as electrically insulating.
  • a sealing body 90 is provided at the open end of the cylindrical body 50.
  • the sealing body 90 is provided at the opening ends of both ends, one end is open, and the other end is closed, the sealing body is provided at one end. 90 are provided.
  • the sealing body 90 may be a cap or an embedding material.
  • sealing body 90 In the case of a cap, metal (for example, stainless steel) or resin is used as the sealing body 90.
  • the sealing body 90 by the cap is fitted to the open end of the cylindrical body 50 and sealed and fixed by welding, adhesion or the like.
  • a silicone resin or the like is used as the sealing body 90.
  • the sealing body 90 made of the embedding material is embedded in the cylinder from the open end of the cylinder 50 and seals the inside of the cylinder.
  • the pair of conductive cables C10 are respectively conducted to the pair of electrode portions 20, penetrate the sealing body 90, and are drawn out of the cylindrical body 50. It is preferable that the lead exposed from the insulation coating material at the end of the conductive cable C10 be connected by caulking at the caulking portion 250.
  • FIG. 22 is a perspective view showing an application example of the insulating waterproof heater.
  • the exterior shape of the insulation and waterproof type heater 2 according to the present embodiment is the shape of the cylindrical body 50 (for example, a cylindrical shape). Therefore, for example, as the cylindrical body 50 is inserted into the container V, the object in the container V can be heated (temperature control). For example, in the case of a system in which the liquid LQ is fed into the container V and the liquid LQ is heated and delivered in the container V, the cylindrical body 50 of the insulating waterproof heater 2 is inserted into the approximate center of the container V.
  • the heating element 10 When the temperature of the liquid LQ in the container V becomes lower than a predetermined threshold value, a voltage is applied to the heat generating member 200 from the conduction cable C10. Thereby, the heat generating element 10 generates heat, and the liquid LQ in the container V is heated via the heat dissipation surface 51 of the cylindrical body 50.
  • the heating element 10 is a PTC element, it has positive temperature characteristics. Thereby, when the temperature reaches a certain temperature, the current is suppressed by the increase of the resistance value. Therefore, when heating the liquid LQ, it can control so that it does not become more than fixed temperature.
  • the temperature control can be accurately performed with a simple configuration by using the insulation waterproof heater 2 according to the present embodiment. It is possible to realize
  • the present invention is not limited to these examples.
  • the example of the caulking part 250 was shown as a terminal which connects the conduction
  • the conductive cable C10 may be connected by soldering, brazing, screwing, or may be connected by a connector.
  • a PTC element for example, a ceramic such as alumina or silicon nitride
  • an element other than the PTC element for example, a ceramic such as alumina or silicon nitride
  • the medium to be heated may be water, air, gas, and other objects such as oil and gel (including a mixture of at least one of them).
  • the material of the insulating sheet 30 may be an alumina plate, an insulating ceramic plate, or another insulating material other than a polyimide film.
  • the present invention can be suitably used as a heating device driven by a high voltage of 300 V or more, such as heating of vehicles (electric vehicles, hybrid vehicles, etc.), trains and other mobile objects, and industrial devices.
  • In-vehicle heater 2 Insulated waterproof type heater 1U: In-vehicle heater unit 10: Heating element 10a: Electrode layer 20: Electrode portion 30: Insulating sheet 30a, 30b: End 40 Insulating powder 50: cylinder 50a, 50b: opening 50c: inner surface 51: heat dissipation surface 53: side surface 53a: groove 55: hollow portion 60: sealing portion 70, 71, 72: cap 70a: recess 70h: through hole 80 Brazed portion 90: Sealed body 100: Heating structure 101, 105: Heat exchangers 102, 104, 106, 108: Piping 103: Expansion valve 107: Compressor 150: Fin 151: Cover plate 200: Heating plate 201: Heating member 201 First electrode portion 202 Second electrode portion 210 Plate-like portion 211 First plate-like portion 212 Second plate-like portion 220 Terminal portion 221 First terminal portion 222 Second terminal portion 2 0 ...
  • convex extension part 231 ... first convex extension part 232 ... second convex extension part 250 ... caulking part 250a ... caulking piece 251 ... first caulking part 252 ... second caulking part 255 ... caulking collar 500 ... car heater device 1501 ... flow path 1501a ... one end 1501b ... other end 5011 ... inflow port 5012 ... outflow port A1, A2, A3, A11, A12, A13 ... arrow C10 ... conductive cable C11 ... first conductive cable C12 ... first 2 Conduction cable D1 ... first direction D2 ... second direction D3 ... third direction F ... fan G ... gap h1 ... first hole h2 ... second hole LQ ... liquid R ... flow path V ... container

Landscapes

  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Resistance Heating (AREA)
  • Air-Conditioning For Vehicles (AREA)

Abstract

Provided is an insulated waterproof vehicle heater 1 having high withstand voltage which can be adapted to a severe environment without using a complicated configuration. The insulated waterproof vehicle type heater 1 having high withstand voltage comprises: a heating element 10 provided with an electrode layer 10a on the front and back; a pair of electrode portions 20 (a first electrode portion 201, a second electrode portion 202) sandwiching the heating element 10 therebetween; an insulating sheet 30 covering the periphery of the pair of electrode portions 20; a cylindrical body 50 for housing a heat generating structure 100 in a hollow portion 55; a sealing portion 60 for sealing openings 50a at both ends of the cylindrical body 50; and a pair of caps 70 to be fitted into both ends of the cylindrical body 50. A first terminal portion 221 of the first electrode portion 201 and a second terminal portion 222 of the second electrode portion 202 are provided on one opening 50a side of the cylindrical body 50, and are disposed at mutually offset positions. The sealing portion 60 is provided to embed the first terminal portion 212 and the second terminal portion 222, and is provided to be interposed between the insulating sheet 30 and the inner surface 50c of the cylindrical body 50.

Description

高耐電圧絶縁防水型車載用ヒータ、車載用ヒータユニット、車載用ヒータ装置、車載用ヒータユニットの製造方法および絶縁防水型ヒータHigh withstand voltage insulated and waterproof vehicle-mounted heater, vehicle-mounted heater unit, vehicle-mounted heater device, method of manufacturing vehicle-mounted heater unit and insulation waterproof heater
 本発明は、高耐電圧絶縁防水型車載用ヒータ、車載用ヒータユニット、車載用ヒータユニットの製造方法および絶縁防水型ヒータに関し、より詳しくは電圧印加によって発熱する発熱素子を用いた車載用ヒータであって、高電圧耐性、高効率および高い防水特性を備えた車載用ヒータ、車載用ヒータユニット、車載用ヒータ装置、車載用ヒータユニットの製造方法および絶縁防水型ヒータに関するものである。 The present invention relates to a high withstand voltage insulated and waterproof vehicle-mounted heater, a vehicle-mounted heater unit, a method of manufacturing the vehicle-mounted heater unit, and an insulated and waterproof heater, more specifically, a vehicle-mounted heater using a heating element generating heat by voltage application. The present invention relates to an on-vehicle heater, an on-vehicle heater unit, an on-vehicle heater device, a method for manufacturing the on-vehicle heater unit, and an insulation waterproof heater, which have high voltage resistance, high efficiency and high waterproof characteristics.
 電圧の印加によって発熱する発熱素子を用いた車載用ヒータは、エンジンの始動直後などエンジンの熱を車内暖房に利用できない場合の補助用として利用されている。車載用ヒータの発熱素子としては、例えばPTC(Positive Temperature Coefficient)素子が用いられる。PTC素子は正温度特性を有しており、温度制御の容易性および消費電力の抑制を図ることができる。 An on-vehicle heater using a heating element that generates heat by application of a voltage is used as an aid when the heat of the engine can not be used for in-vehicle heating, such as immediately after the start of the engine. For example, a PTC (Positive Temperature Coefficient) element is used as a heating element of the on-vehicle heater. The PTC element has positive temperature characteristics, which can facilitate temperature control and suppress power consumption.
 本願発明者は、絶縁性および防水性に優れたヒータとして、特許文献1に開示される絶縁防水型ヒータを提案している。この絶縁防水型ヒータは、発熱素子を挟み込んだ一対の電極部材と、発熱素子および一対の電極部材を包む絶縁シートと、これらを収容する筒体と、筒体の両端部を閉塞するキャップと、筒体の中空部の両端などを塞ぐ封止材とを備えている。 The inventor of the present invention proposes an insulation waterproof type heater disclosed in Patent Document 1 as a heater excellent in insulation and waterproofness. This insulation waterproof type heater comprises a pair of electrode members sandwiching the heating element, an insulation sheet which wraps the heating element and the pair of electrode members, a cylindrical body for accommodating them, and a cap which closes both ends of the cylindrical body. And a sealing material for closing both ends of the hollow portion of the cylindrical body.
 さらに、本願発明者は、特許文献2に開示される車載用ヒータを提案している。この車載用ヒータは、発熱素子を挟み込んだ一対の電極部材と、発熱素子および一対の電極部材を包む絶縁シートと、これらを収容する筒体と、少なくともフィンを含む放熱体ユニットとを備えている。この車載用ヒータにおいては、発熱素子の電極面と筒体の放熱面の裏面との間で絶縁シートが挟圧され、絶縁シートの両端縁部が発熱素子の側面に対して略平行に重なり合うよう構成される。 Furthermore, the inventor of the present invention proposes an on-vehicle heater disclosed in Patent Document 2. The on-vehicle heater includes a pair of electrode members sandwiching the heat generating element, an insulation sheet that wraps the heat generating element and the pair of electrode members, a cylindrical body that accommodates these, and a radiator unit including at least fins. . In this on-vehicle heater, the insulating sheet is sandwiched between the electrode surface of the heat generating element and the back surface of the heat dissipation surface of the cylindrical body, and both end edges of the insulating sheet overlap substantially parallel to the side surface of the heat generating element. Configured
特許第4388519号公報Patent No. 4388519 特許第4455473号公報Patent No. 4455473
 近年、動力源としてモータを利用した電気自動車やハイブリッド車が盛んに開発されている。自動車の電化に伴い、PTC素子など電圧印加によって発熱する発熱素子を利用した車載用ヒータの需要は増加することになる。これに伴い、車載用ヒータとして求められる仕様は益々厳しくなる。 In recent years, electric vehicles and hybrid vehicles using a motor as a power source have been actively developed. With the electrification of automobiles, the demand for on-board heaters utilizing heating elements, such as PTC elements, that generate heat due to voltage application will increase. Along with this, the specifications required for the on-vehicle heater become stricter.
 例えば、電気自動車やハイブリッド車で用いられるモータの電圧は300ボルト(V)から400V程度であり、従来の自動車で取り扱う12Vや24Vといった電圧よりも遥かに高い電圧を取り扱うことになる。車載用ヒータもこのような高電圧に対応する必要がある。また、電気自動車であっても寒冷地や悪路といった厳しい環境下での使用に耐えうる設計が必要となる。 For example, the voltage of a motor used in an electric car or a hybrid car is about 300 volts (V) to 400 V, and a voltage much higher than the voltage of 12 V or 24 V handled in a conventional car will be handled. In-vehicle heaters also need to cope with such high voltages. In addition, even electric vehicles need to be designed to withstand use in severe environments such as cold places and bad roads.
 近年では、突発的な雷雨など激しい気象変化も起き得ることから、発熱素子を用いた車載用ヒータについては、高電圧環境下での水没、津波、高潮といった従来とは比較にならない程に厳しい動作条件をクリアすることが望まれる。 In recent years, since sudden weather changes such as sudden thunderstorms may occur, in-vehicle heaters using heat generating elements operate in such a way that they can not be compared with conventional ones such as submersion in a high voltage environment, tsunami, or high tide. It is desirable to clear the conditions.
 その一方で、厳しい環境に耐えられる構成を採用するために複雑な構成になると、製造が難しくなったり、コストアップに繋がったりする。このため、装置構成は極力簡素化したい。特に、車載用ヒータに放熱用のフィンを取り付ける方法において、熱伝導の観点から金属同士のろう付けが望ましいが、発熱素子を覆う絶縁シートがろう付けの熱に耐えられないという問題を抱えている。本願発明者は、このような状況に鑑み、先に提案している絶縁防水型ヒータについて、更なる高耐電圧化、高防水性化、小型化および高効率化を進めている。 On the other hand, if the configuration is complicated to adopt a configuration that can withstand severe environments, manufacturing may be difficult and cost may increase. Therefore, we would like to simplify the device configuration as much as possible. In particular, in the method of attaching fins for heat radiation to a vehicle heater, brazing of metals is preferable from the viewpoint of heat conduction, but the problem is that the insulating sheet covering the heat generating element can not withstand the heat of brazing. . In view of such a situation, the inventor of the present application is promoting further increase in withstand voltage, increase in waterproof property, downsizing and improvement in efficiency of the insulation waterproof type heater previously proposed.
 本発明は、複雑な構成を採用することなく、高耐電圧で絶縁性および防水性に優れ、小型かつ高効率であり、厳しい環境下であっても対応可能な高耐電圧絶縁防水型車載用ヒータ、車載用ヒータユニット、車載用ヒータユニットの製造方法および絶縁防水型ヒータを提供することを目的とする。 The present invention is a high withstand voltage insulated and waterproof type vehicle which is high in voltage resistance and excellent in insulation and waterproofness, small in size and high in efficiency, and capable of responding to a severe environment without adopting a complicated configuration. It is an object of the present invention to provide a heater, an on-vehicle heater unit, a method of manufacturing the on-vehicle heater unit, and an insulated and waterproof heater.
 本発明の一態様は、表裏に電極層が設けられた発熱素子と、発熱素子を間に挟持し、表裏の電極層のそれぞれと導通する一対の電極部と、一対の電極部の周囲を覆う絶縁性シートと、中空部を有し、発熱素子、一対の電極部および絶縁性シートで構成された発熱構造体を中空部内に収容する筒体と、筒体の両端の開口を封止する封止部と、凹部を有し、前記凹部に前記筒体の両端部がそれぞれ嵌め入れられて前記中空部を閉塞する一対のキャップと、を備えた高耐電圧絶縁防水型車載用ヒータである。 In one embodiment of the present invention, a heating element having an electrode layer provided on the front and back, a pair of electrode parts electrically connected to each of the front and back electrode layers, and a pair of electrode parts. A cylinder having an insulating sheet, a hollow portion, and a heat generating structure including a heat generating element, a pair of electrodes and an insulating sheet, housed in the hollow portion, and a seal for sealing the openings at both ends of the cylinder A high-withstand voltage insulated and waterproof vehicle-mounted heater comprising: a stop; and a pair of caps each having a recess and each end of the cylinder fitted in the recess to close the hollow portion.
 一対の電極部のうちの一方である第1電極部は、表裏の電極層のうちの一方と導通するよう接続された第1板状部分と、第1板状部分における筒体の一方の開口側の端部に設けられた第1端子部分と、を有する。
 また、一対の電極部のうちの他方である第2電極部は、表裏の電極層のうちの他方と導通するよう接続された第2板状部分と、第2板状部分における筒体の一方の開口の端部に設けられた第2端子部分と、を有する。
The first electrode portion, which is one of the pair of electrode portions, has a first plate-like portion connected to be conductive with one of the front and back electrode layers, and one opening of the cylinder in the first plate-like portion And a first terminal portion provided at the end of the side.
In addition, the second electrode portion, which is the other of the pair of electrode portions, is one of a second plate-like portion connected to be conductive with the other of the front and back electrode layers, and one of the cylinders in the second plate-like portion. And a second terminal portion provided at an end of the opening.
 ここで、一対の電極部の間で発熱素子を挟持する方向を第1方向、第1方向と直交し、筒体の延在する方向を第2方向、第1方向および第2方向と直交する方向を第3方向とする。 Here, the direction in which the heating element is held between the pair of electrode portions is orthogonal to the first direction and the first direction, and the direction in which the cylinder extends is orthogonal to the second direction, the first direction, and the second direction. Let the direction be the third direction.
 そして、第1方向にみた場合、第1端子部分と第2端子部分とは互いにずれた位置で配置される。また、筒体の一方の開口を封止する封止部は、絶縁性シートで囲まれる第1端子部分および第2端子部分を埋め込むよう設けられるとともに、絶縁性シートと筒体の内面との隙間に介在するよう設けられる。
 また、一対の電極部は、キャップおよび封止部によって密閉された筒体の中空部内に収容され、筒体の外に露出していない。
When viewed in the first direction, the first terminal portion and the second terminal portion are disposed at mutually offset positions. In addition, the sealing portion for sealing one opening of the cylinder is provided so as to embed the first terminal portion and the second terminal portion surrounded by the insulating sheet, and a gap between the insulating sheet and the inner surface of the cylinder. Provided to intervene.
In addition, the pair of electrode portions are accommodated in the hollow portion of the cylindrical body sealed by the cap and the sealing portion, and are not exposed outside the cylindrical body.
 このような構成によれば、第1方向にみて、第1端子部分と第2端子部分とは互いにずれた位置に配置されるため、2つの端子部分を重ねて配置する場合に比べて両者の距離を長くとることができ、耐電圧を高めることができる。 According to such a configuration, since the first terminal portion and the second terminal portion are arranged at mutually shifted positions in the first direction, compared to the case where the two terminal portions are arranged overlapping each other. The distance can be increased, and the withstand voltage can be increased.
 また、第1端子部分および第2端子部分が位置する筒体の一方の開口において、封止部が第1端子部分および第2端子部分を埋め込むように設けられることで、両端子部分間の耐電圧を高めることができる。しかも、封止部が、絶縁性シートと筒体の内面との隙間にも介在するため、筒体の内面と絶縁性シートとの隙間における防水性も確保することができる。 In addition, in one opening of the cylindrical body where the first terminal portion and the second terminal portion are located, the sealing portion is provided so as to embed the first terminal portion and the second terminal portion, thereby preventing The voltage can be increased. And since a sealing part intervenes also in a crevice between an insulating sheet and the inner surface of a cylinder, waterproofness in a crevice between an inner surface of a cylinder and an insulating sheet is also securable.
 上記高耐電圧絶縁防水型車載用ヒータにおいて、封止部によって、筒体の内部への防水性構造、および第1端子部分と第2端子部分との間における300V以上の耐電圧構造が構成されてもよい。また、封止部は、150℃以上の耐熱性を有する材料によって構成されていてもよい。 In the high withstand voltage insulated waterproof vehicle type heater described above, the sealing portion constitutes a waterproof structure to the inside of the cylinder and a withstand voltage structure of 300 V or more between the first terminal portion and the second terminal portion. May be The sealing portion may be made of a material having heat resistance of 150 ° C. or more.
 上記高耐電圧絶縁防水型車載用ヒータにおいて、第1端子部分は第1かしめ部分を有し、第2端子部分は第2かしめ部分を有し、第1電極部は、第1板状部分と第1かしめ部分との間に設けられた第1凸状延出部分を有し、第2電極部は、第2板状部分と第2かしめ部分との間に設けられた第2凸状延出部分を有していてもよい。
 そして、第1凸状延出部分における第2方向の長さは、第1かしめ部分における第1凸状延出部分側のかしめ皺の第2の方向の長さよりも長く、第2凸状延出部分における第2方向の長さは、第2かしめ部分における第2凸状延出部分側のかしめ皺の第2の方向の長さよりも長く設けられていてもよい。
In the high withstand voltage insulated and waterproof vehicle-mounted heater, the first terminal portion has a first crimped portion, the second terminal portion has a second crimped portion, and the first electrode portion is a first plate portion and A second convexly extended portion provided between the second plate-like portion and the second crimped portion, having a first convexly extended portion provided between the first crimped portion and the second crimped portion. It may have an outlet part.
And the length of the 2nd direction in the 1st convex-like extension part is longer than the length of the 2nd direction of the caulking weir of the 1st convex-like extension part side in the 1st caulking part, and the 2nd convex-like shape extension The length in the second direction in the outlet portion may be longer than the length in the second direction of the caulking weir on the second convex extending portion side in the second caulking portion.
 上記のような構成によれば、かしめ部分に形成されるかしめ皺の第2方向の長さより、凸状延出部分の第2方向の長さのほうが長いため、かしめ皺の影響が板状部分に及ばない。すなわち、かしめによる板状部分のうねりの影響を抑制して発熱素子の電極層との接触を行うことができる。 According to the configuration as described above, since the length in the second direction of the convex extending portion is longer than the length in the second direction of the crimped ridge formed in the crimped portion, the influence of the crimped ridge is a plate-like portion It does not reach. That is, the influence of the waviness of the plate-like portion due to the caulking can be suppressed to make contact with the electrode layer of the heating element.
 上記高耐電圧絶縁防水型車載用ヒータにおいて、第1凸状延出部分における第3方向の長さは、第1かしめ部分における第3方向の長さよりも長く設けられていてもよい。また、第2凸状延出部分における第3方向の長さは、第2かしめ部分における第3方向の長さよりも長く設けられていてもよい。これにより、かしめ部分に応力が加わった場合に凸状延出部分でその応力を吸収して板状部分へ伝わることを抑制できる。 In the high withstand voltage insulated and waterproof vehicle-mounted heater, the length in the third direction of the first convex extending portion may be longer than the length in the third direction of the first caulking portion. In addition, the length in the third direction of the second protruding extension portion may be longer than the length in the third direction of the second crimped portion. Thereby, when stress is applied to the caulking portion, it is possible to suppress the stress from being absorbed by the convex extending portion and to transmit the stress to the plate-like portion.
 上記高耐電圧絶縁防水型車載用ヒータにおいて、第1凸状延出部分における第3方向の長さは、第1板状部分における第3方向の長さの1/2よりも短く、第2凸状延出部分における第3方向の長さは、第2板状部分における第3方向の長さの1/2よりも短く、第1方向にみて、第1凸状延出部分と第2凸状延出部分とは互いに重ならないように配置されていてもよい。これにより、2つの凸状延出部分を重ねて配置する場合に比べて両者の距離を長くとることができ、耐電圧を高めることができる。 In the high withstand voltage insulated and waterproof vehicle-mounted heater, the length in the third direction of the first convex extension portion is shorter than half of the length in the third direction of the first plate-like portion; The length of the convex extending portion in the third direction is shorter than 1⁄2 of the length of the second plate-like portion in the third direction, and the first convex extending portion and the second convex portion are viewed in the first direction. The convex extending portions may be arranged so as not to overlap each other. As a result, the distance between the two convex extending portions can be made longer than when two convex extending portions are arranged in an overlapping manner, and the withstand voltage can be increased.
 上記高耐電圧絶縁防水型車載用ヒータにおいて、発熱素子の厚さは3ミリメートル(mm)以上であってもよい。発熱素子の厚さが3mm以上あることで、一対の電極間に例えば300V以上の電圧が印加されても対応することができる。 In the high withstand voltage insulated waterproof vehicle-mounted heater, the thickness of the heat generating element may be 3 millimeters (mm) or more. By setting the thickness of the heat generating element to 3 mm or more, it is possible to cope with application of a voltage of, for example, 300 V or more between the pair of electrodes.
 上記高耐電圧絶縁防水型車載用ヒータにおいて、第1方向にみて、第1端子部分と第2端子部分との隙間は2.5ミリメートル以上であってもよい。これにより、第1端子部分と第2端子部分との間に例えば300V以上の電圧が印加されても絶縁性を確保することができる。 In the high withstand voltage insulated and waterproof type vehicle heater, the gap between the first terminal portion and the second terminal portion in the first direction may be 2.5 mm or more. Thereby, insulation can be ensured even if a voltage of, for example, 300 V or more is applied between the first terminal portion and the second terminal portion.
 上記高耐電圧絶縁防水型車載用ヒータにおいて、第1板状部分の第3方向の長さ、および第2板状部分の第3方向の長さは、電極層の第3方向の長さよりも長く、発熱素子の第3方向の長さ以下であってもよい。これにより、筒体を加圧して発熱構造体を挟圧する際、第1板状部分および第2板状部分の縁の曲がりが抑制される。 In the high withstand voltage insulated waterproof vehicle-mounted heater, the length in the third direction of the first plate-like portion and the length in the third direction of the second plate-like portion are longer than the length in the third direction of the electrode layer It may be long and not longer than the length in the third direction of the heating element. Thereby, when pressing a cylinder and pinching a heat-generation structure, the bending of the edge of a 1st plate-like part and a 2nd plate-like part is suppressed.
 上記高耐電圧絶縁防水型車載用ヒータにおいて、第1板状部分の第2方向の長さ、および第2板状部分の第2方向の長さは、20mm以上30mm以下であってもよい。これにより、十分な発熱出力を得ることができる。 In the high withstand voltage insulated and waterproof type vehicle heater, the length in the second direction of the first plate-like portion and the length in the second direction of the second plate-like portion may be 20 mm or more and 30 mm or less. Thereby, sufficient heat generation output can be obtained.
 上記高耐電圧絶縁防水型車載用ヒータにおいて、絶縁性シートにおける巻き付けの両端は、発熱素子の側面部分で互いに重なり合っていてもよい。これにより、筒体の放熱面の裏面で絶縁性シートが重ならず、熱伝達効率の低下が抑制される。 In the high withstand voltage insulated waterproof vehicle-mounted heater, both ends of the winding of the insulating sheet may overlap each other at the side surface portion of the heat generating element. As a result, the insulating sheets do not overlap on the back surface of the heat dissipation surface of the cylindrical body, and a reduction in heat transfer efficiency is suppressed.
 上記高耐電圧絶縁防水型車載用ヒータにおいて、発熱素子は、PTC素子であってもよい。これによりPTC素子の正温度特性を利用して、容易な温度制御および低消費電力化を図ることができる。 In the high withstand voltage insulated and waterproof vehicle-mounted heater, the heating element may be a PTC element. Thus, easy temperature control and low power consumption can be achieved by utilizing the positive temperature characteristics of the PTC element.
 上記高耐電圧絶縁防水型車載用ヒータにおいて、封止部はシリコーン系樹脂であってもよい。これにより、筒体の開口を製造容易に封止することができる。 In the high withstand voltage insulated and waterproof vehicle-mounted heater, the sealing portion may be a silicone resin. Thereby, the opening of the cylindrical body can be easily sealed.
 本発明の一態様は、上記高耐電圧絶縁防水型車載用ヒータと、筒体の放熱面にろう付け部を介して取り付けられたフィンと、を備えた車載用ヒータユニットである。筒体の放熱面にフィンがろう付け部を介して取り付けられていることで、放熱効率が向上する。 One aspect of the present invention is an on-vehicle heater unit including the above-described high withstand voltage insulated and waterproof in-vehicle heater and a fin attached to a heat dissipation surface of a cylindrical body via a brazing portion. The heat radiation efficiency is improved by the fins being attached to the heat radiation surface of the cylindrical body via the brazing part.
 本発明の一態様は、表裏に電極層が設けられた発熱素子と、発熱素子を間に挟持し、表裏の電極層のそれぞれと導通する一対の電極部と、一対の電極部の周囲を覆う絶縁性シートと、中空部および放熱面を有し、発熱素子、一対の電極部および絶縁性シートで構成された発熱構造体を中空部内に収容する筒体と、筒体の両端の開口を封止する封止部と、筒体の放熱面にろう付け部を介して取り付けられたフィンと、を備えた車載用ヒータユニットである。このように、フィンが放熱面にろう付け部を介して取り付けられていることで、放熱効率を向上させた車載用ヒータユニットを構成することができる。 In one embodiment of the present invention, a heating element having an electrode layer provided on the front and back, a pair of electrode parts electrically connected to each of the front and back electrode layers, and a pair of electrode parts. A cylindrical body for housing a heat generating structure having an insulating sheet, a hollow portion and a heat radiating surface, and a heating element, a pair of electrode portions and an insulating sheet, and sealing the openings at both ends of the cylindrical body It is a vehicle-mounted heater unit provided with the sealing part to stop, and the fin attached to the thermal radiation surface of a cylinder via the brazing part. As described above, the fins are attached to the heat dissipating surface through the brazed portion, so that the vehicle-mounted heater unit having improved heat dissipating efficiency can be configured.
 上記車載用ヒータユニットにおいて、フィンの厚さ方向の耐荷重は、筒体の厚さ方向の耐荷重よりも大きいことが好ましい。これにより、フィンを介して加圧した場合でも、フィンの潰れを回避することができる。上記車載用ヒータユニットにおいて、筒体の側面に設けられた突出部をさらに有し、突出部の厚さ方向の長さが、筒体の厚さ方向の長さよりも長く設けられていてもよい。これにより、突出部によってフィンの側面をカバーすることができ、外気温の影響がフィンに伝わりにくくなる。 In the vehicle-mounted heater unit, it is preferable that the load resistance in the thickness direction of the fins is larger than the load resistance in the thickness direction of the cylinder. Thereby, even when pressure is applied through the fins, the fins can be prevented from being crushed. The on-vehicle heater unit may further include a protrusion provided on the side surface of the cylinder, and the length in the thickness direction of the protrusion may be longer than the length in the thickness direction of the cylinder. . Thus, the side surface of the fin can be covered by the projecting portion, and the influence of the outside air temperature is less likely to be transmitted to the fin.
 本発明の一態様は、上記の車載用ヒータユニットと、媒体の流入口と、媒体の流出口と、を有するケースと、を備えた車載用ヒータ装置である。この車載用ヒータユニットは、フィンの流路の一端を流入口および流出口のそれぞれに対向させてケース内に収容されている。また、この車載用ヒータユニットは、フィンの流路の一端を流入口に対向させ、フィンの流路の他端を流出口に対向させて、ケース内における流入口と流出口との間に収容されていてもよい。これにより、流入口からケース内に流入する媒体を効率よくフィンの流路に流して、熱交換効率を高めることができる。ここで、媒体は、水、空気、ガス、油およびゲル状物の少なくともいずれかである。 One aspect of the present invention is an on-vehicle heater device including a case having the above-described on-vehicle heater unit, a medium inlet, and a medium outlet. The on-vehicle heater unit is housed in the case with one end of the flow path of the fin facing the inlet and the outlet. Further, in the vehicle heater unit, one end of the flow path of the fin is opposed to the inflow port, and the other end of the flow path of the fin is opposed to the outflow port to be housed between the inflow port and the outflow port in the case. It may be done. As a result, the medium flowing from the inlet into the case can be efficiently flowed to the flow path of the fins to improve the heat exchange efficiency. Here, the medium is at least one of water, air, gas, oil and gel.
 上記車載用ヒータ装置において、ケースには、第1電極と導通する第1導通ケーブルを通すための第1孔と、第2電極と導通する第2導通ケーブルを通すための第2孔とが設けられ、第1孔と第1導通ケーブルとの隙間、および第2孔と第2導通ケーブルとの隙間のそれぞれに封止剤が埋め込まれていてもよい。これにより、ケースには導通ケーブルを通す小さな孔を設けるだけで済み、ケースの封止が容易となるとともに、ケースの封止性を高めることができる。 In the on-vehicle heater device, the case is provided with a first hole for passing a first conducting cable conducting to the first electrode and a second hole for passing a second conducting cable conducting to the second electrode. The sealant may be embedded in each of the gap between the first hole and the first conductive cable and the gap between the second hole and the second conductive cable. As a result, the case only needs to be provided with a small hole through which the conduction cable passes, and the case can be easily sealed, and the case can be improved in sealing performance.
 本発明の一態様は、中空部および放熱面を有する筒体の放熱面にフィンをろう付けする工程と、表裏に電極層が設けられた発熱素子を一対の電極部で挟持する工程と、一対の電極部の周囲を絶縁性シートで覆う工程と、発熱素子、一対の電極部および絶縁性シートで構成された発熱構造体を、フィンがろう付けされた筒体の中空部内に収容する工程と、フィンを介して筒体を加圧して筒体を押し潰すことにより、発熱構造体を中空部内に固定する工程と、を備えた車載用ヒータユニットの製造方法である。このような製造方法により、筒体を押し潰して中空部内に発熱構造体を固定する製造方法であっても、フィンを放熱面にろう付けで取り付けることができる。 One aspect of the present invention is a process of brazing a fin to a heat dissipation surface of a cylindrical body having a hollow portion and a heat dissipation surface, a process of sandwiching a heating element provided with an electrode layer on the front and back with a pair of electrode parts, Covering the periphery of the electrode portion with an insulating sheet, and storing the heat generating element, the heat generating structure including the pair of electrode portions and the insulating sheet, in the hollow portion of the cylindrical body to which the fin is brazed; And fixing the heat generating structure in the hollow portion by pressing the cylindrical body through the fins to crush the cylindrical body, and the method of manufacturing the on-vehicle heater unit. According to such a manufacturing method, even in the manufacturing method in which the heat generating structure is fixed in the hollow portion by crushing the cylindrical body, the fins can be attached to the heat dissipation surface by brazing.
 本発明の一態様は、表裏に電極層が設けられた発熱素子と、発熱素子を間に挟持し、表裏の電極層のそれぞれと導通する一対の電極部と、発熱素子および一対の電極部で構成された発熱部材を収容する筒体と、筒体の内部に充填され、筒体と発熱部材とを電気的に絶縁する絶縁性粉末と、筒体の少なくとも一方の開口端を封止する封止体と、一対の電極部とそれぞれ導通し、封止体を貫通して筒体の外部へ引き出される一対の導通ケーブルと、を備えた、絶縁防水型ヒータである。 One embodiment of the present invention is a heating element having an electrode layer provided on the front and back, a pair of electrode parts electrically connected to each of the front and back electrode layers, a heating element, and a pair of electrode parts. A cylindrical body for housing the heat generating member configured, and an insulating powder which is filled inside the cylindrical body to electrically insulate the cylindrical body and the heat generating member, and a seal for sealing at least one open end of the cylindrical body It is an insulation waterproof type heater provided with a stop and a pair of conducting cables which are respectively conducted to a pair of electrode parts and are pulled out of the cylindrical body through the sealing body.
 このような構成によれば、筒体の内表面と発熱部材との隙間に絶縁性粉末が埋め込まれ、発熱部材を電気的に絶縁できるとともに、発熱部材の筒部の内部での位置決めを行うことができる。 According to such a configuration, the insulating powder is embedded in the gap between the inner surface of the cylindrical body and the heat generating member, so that the heat generating member can be electrically insulated and positioning of the heat generating member inside the cylindrical portion is performed. Can.
 上記の絶縁防水型ヒータにおいて、一対の電極部のうちの一方である第1電極部は、電極層と導通するように接する第1板状部分と、第1板状部分における筒体の一方の開口側の端部に設けられた第1端子部分と、を有し、一対の電極部のうちの他方である第2電極部は、電極層と導通するように接する第2板状部分と、第2板状部分における筒体の一方の開口側の端部に設けられた第2端子部分と、を有し、一対の電極部の間で発熱素子を挟持する方向を第1方向、第1方向と直交し、筒体の延在する方向を第2方向、第1方向および第2方向と直交する方向を第3方向とした場合、第1方向にみて、第1端子部分と第2端子部分とが互いにずれた位置に配置されていてもよい。このような構成によれば、2つの端子部分を重ねて配置する場合に比べて両者の距離を長くとることができ、耐電圧を高めることができる。 In the insulating waterproof type heater described above, the first electrode portion, which is one of the pair of electrode portions, has a first plate-like portion in electrical contact with the electrode layer and one of the cylinders in the first plate-like portion. A second plate-like portion having a first terminal portion provided at an end portion on the opening side, the second electrode portion being the other of the pair of electrode portions being in electrical contact with the electrode layer; A second terminal portion provided at the end of one opening side of the cylindrical body in the second plate-like portion; a direction in which the heating element is held between the pair of electrode portions is a first direction; The first terminal portion and the second terminal viewed in the first direction, assuming that the direction in which the cylinder extends is the second direction and the direction orthogonal to the first direction and the second direction is the third direction. The parts may be disposed at mutually offset positions. According to such a configuration, the distance between the two terminal portions can be made longer than when two terminal portions are arranged in an overlapping manner, and the withstand voltage can be increased.
 上記の絶縁防水型ヒータにおいて、筒体は円筒型であり、発熱部材は板状型であってもよい。これにより、絶縁防水型ヒータの製造が容易となり、低コスト化を図ることができる。また、筒体の外表面である円周面が放熱面となって、周囲に対して均一に熱を伝えることができる。また、筒体の材料はステンレスであってもよい。これにより、耐水性、耐薬品性を高めることができる。 In the above insulation and waterproof heater, the cylinder may be cylindrical and the heat generating member may be plate-like. Thereby, manufacture of an insulation waterproof type heater becomes easy, and it can aim at cost reduction. Further, the circumferential surface, which is the outer surface of the cylindrical body, serves as a heat dissipation surface, so that heat can be uniformly transmitted to the surroundings. Also, the material of the cylinder may be stainless steel. Thereby, water resistance and chemical resistance can be improved.
 本発明によれば、複雑な構成を採用することなく、厳しい環境下であっても対応可能な車載用ヒータ、車載用ヒータユニット、車載用ヒータユニットの製造方法および絶縁防水型ヒータを提供することが可能になる。 According to the present invention, it is possible to provide an on-vehicle heater, an on-vehicle heater unit, a method for manufacturing the on-vehicle heater unit, and an insulation waterproof heater, which can cope with a severe environment without adopting a complicated configuration. Becomes possible.
本実施形態に係る車載用ヒータの構成を例示する斜視図である。It is a perspective view which illustrates the composition of the heater for vehicles concerning this embodiment. 本実施形態に係る車載用ヒータの構成を例示する分解斜視図である。It is an exploded perspective view which illustrates the composition of the heater for vehicles concerning this embodiment. 本実施形態に係る車載用ヒータの構成を例示する断面図である。FIG. 2 is a cross-sectional view illustrating the configuration of the on-vehicle heater according to the embodiment; (a)~(c)は、本実施形態に係る車載用ヒータの構成を例示する断面図である。(A) to (c) are cross-sectional views illustrating the configuration of the on-vehicle heater according to the present embodiment. 電極部の凸状延出部分について例示する拡大平面図である。It is an enlarged plan view illustrated about the convex extension part of an electrode part. 電極部の端子部分について例示する拡大平面図である。It is an enlarged plan view illustrated about a terminal portion of an electrode part. 適用例について説明する斜視図である。It is a perspective view explaining an application example. 車載用ヒータユニットの製造方法を例示するフローチャートである。It is a flowchart which illustrates the manufacturing method of a heater unit for vehicles. 複数段のフィンを備えた車載用ヒータユニットを例示する斜視図である。It is a perspective view which illustrates the vehicle-mounted heater unit provided with the fin of multiple stages. (a)および(b)は、他の適用例について説明する図である。(A) And (b) is a figure explaining another application example. 車載用ヒータ装置に用いられる車載用ヒータユニットを例示する斜視図である。It is a perspective view which illustrates the vehicle-mounted heater unit used for a vehicle-mounted heater apparatus. 車載用ヒータ装置を例示する斜視図である。It is a perspective view which illustrates a vehicle-mounted heater device. (a)および(b)は、車載用ヒータ装置を例示する断面図である。(A) And (b) is sectional drawing which illustrates a vehicle-mounted heater apparatus. 他の車載用ヒータ装置を例示する斜視図である。FIG. 7 is a perspective view illustrating another on-vehicle heater device. 車載用ヒータ装置の適用例を示す模式図である。It is a schematic diagram which shows the application example of a vehicle-mounted heater apparatus. 車載用ヒータ装置の他の適用例を示す模式図である。It is a schematic diagram which shows the other application example of a vehicle-mounted heater apparatus. ヒートポンプシステムの模式図である。It is a schematic diagram of a heat pump system. ヒートポンプシステムの模式図である。It is a schematic diagram of a heat pump system. ヒートポンプシステムに適用される車載用ヒータ装置の構成例を示す分解斜視図である。It is a disassembled perspective view which shows the structural example of the vehicle-mounted heater apparatus applied to a heat pump system. (a)および(b)は、本実施形態に係る絶縁防水型ヒータを例示する図である。(A) And (b) is a figure which illustrates the insulation waterproof type heater concerning this embodiment. 発熱部材を例示する分解斜視図である。FIG. 6 is an exploded perspective view illustrating the heat generating member. 絶縁防水型ヒータの適用例を示す斜視図である。It is a perspective view which shows the application example of an insulation waterproof type heater.
 以下、本発明の実施形態を図面に基づいて説明する。なお、以下の説明では、同一の部材には同一の符号を付し、一度説明した部材については適宜その説明を省略する。 Hereinafter, embodiments of the present invention will be described based on the drawings. In the following description, the same members are denoted by the same reference numerals, and the description of the members once described will be omitted as appropriate.
(高耐電圧絶縁防水型車載用ヒータの構成)
 図1は、本実施形態に係る高耐電圧絶縁防水型車載用ヒータ(以下、単に「車載用ヒータ」とも言う。)の構成を例示する斜視図である。
 図2は、本実施形態に係る車載用ヒータの構成を例示する分解斜視図である。
 本実施形態に係る車載用ヒータ1は、電圧印加によって発熱する装置である。特に、車載用ヒータ1は、300ボルト(V)以上の高電圧で駆動可能であるとともに、IPコード(IEC:International Electrotechnical Commission)におけるIP67をクリアする高い防水性および防塵性を有している。
 IP67は、機器の内部に粉塵が入らない防塵性能と、一時的に一定水圧の条件に水没しても内部に浸水しない程度の防水性能を有することを意味する。
(Configuration of high withstand voltage insulated waterproof vehicle heater)
FIG. 1 is a perspective view illustrating the configuration of a high-voltage insulated and waterproof vehicle-mounted heater (hereinafter, also simply referred to as “vehicle-mounted heater”) according to the present embodiment.
FIG. 2 is an exploded perspective view illustrating the configuration of the on-vehicle heater according to the present embodiment.
The on-vehicle heater 1 according to the present embodiment is a device that generates heat by voltage application. In particular, the on-vehicle heater 1 can be driven with a high voltage of 300 volts (V) or more, and has high waterproofness and dust resistance to clear IP67 in the IP code (IEC: International Electrotechnical Commission).
IP67 means that it has a dustproof performance that prevents dust from entering the inside of the device, and a waterproof performance that does not cause water immersion to the inside even if it is temporarily submerged under a constant water pressure condition.
 図1および図2に示すように、本実施形態に係る車載用ヒータ1は、発熱素子10、発熱素子10を間に挟持する一対の電極部20、絶縁性シート30、筒体50、封止部60および一対のキャップ70を備える。
 なお、本実施形態では、説明の便宜上、一対の電極部20の間で発熱素子10を挟持する方向を第1方向D1、第1方向と直交し筒体50の延在する方向を第2方向D2、第1方向D1および第2方向D2と直交する方向を第3方向D3と言うことにする。また、第1方向D1は厚さ方向、第2方向D2は長さ方向、第3方向D3は幅方向とも言うことにする。
As shown in FIGS. 1 and 2, the on-vehicle heater 1 according to this embodiment includes a heating element 10, a pair of electrode portions 20 sandwiching the heating element 10, an insulating sheet 30, a cylinder 50, and sealing. A portion 60 and a pair of caps 70 are provided.
In the present embodiment, for convenience of explanation, the direction in which the heating element 10 is held between the pair of electrode portions 20 is the first direction D1, and the direction in which the cylindrical body 50 extends orthogonal to the first direction is the second direction. A direction perpendicular to the D2, the first direction D1, and the second direction D2 is referred to as a third direction D3. The first direction D1 is also referred to as a thickness direction, the second direction D2 as a length direction, and the third direction D3 as a width direction.
 発熱素子10は、電圧の印加によって発熱する素子である。発熱素子10には、例えばPTC(Positive Temperature Coefficient)素子が用いられる。PTC素子は正温度特性を有する。すなわち、キュリー点以上の温度になると抵抗が増加して、それ以上の温度上昇が制限される。発熱素子10としてPTC素子を用いることで、温度制御の容易性および消費電力の抑制を図ることができる。 The heating element 10 is an element that generates heat by application of a voltage. For example, a PTC (Positive Temperature Coefficient) element is used as the heating element 10. The PTC element has positive temperature characteristics. That is, when the temperature is higher than the Curie point, the resistance increases, and the temperature rise beyond that is limited. By using a PTC element as the heating element 10, the ease of temperature control and suppression of power consumption can be achieved.
 PTC素子の正温度特性は、チタン酸バリウム(BaTiO)に微量の希土類などを添加することで変化する。本実施形態では複数の発熱素子10が設けられる。1つの発熱素子10は、厚さ約3ミリメートル(mm)、幅約24mm、長さ約15mmの略直方体である。 The positive temperature characteristics of the PTC element are changed by adding a trace amount of rare earth or the like to barium titanate (BaTiO 3 ). In the present embodiment, a plurality of heating elements 10 are provided. One heating element 10 is a substantially rectangular parallelepiped having a thickness of about 3 millimeters (mm), a width of about 24 mm, and a length of about 15 mm.
 本実施形態に係る車載用ヒータ1では、発熱素子10として、約300V以上の高電圧で駆動するための組成、形状およびサイズが適用される。また、本実施形態に係る車載用ヒータ1では、約500ワット(W)以上の高出力を得るとともに、省スペース化を図るため、上記の大きさの発熱素子10が第2方向D2に複数個、直列に並べられている。 In the on-vehicle heater 1 according to the present embodiment, the composition, the shape, and the size for driving at a high voltage of about 300 V or more are applied as the heating element 10. Further, in the on-vehicle heater 1 according to the present embodiment, a plurality of heating elements 10 of the above-described size are provided in the second direction D2 in order to achieve a high output of about 500 watts (W) or more and save space. , Are arranged in series.
 発熱素子10の表裏面(厚さ方向の表裏面)のそれぞれには電極層10aが設けられる。電極層10aには、銀(Ag)やアルミニウム(Al)等の金属が用いられる。これらの金属を発熱素子10の表裏面に例えば溶射することで電極層10aが形成される。電極層10aは発熱素子10とオーミックコンタクトしている。 An electrode layer 10 a is provided on each of the front and back surfaces (front and back surfaces in the thickness direction) of the heater element 10. A metal such as silver (Ag) or aluminum (Al) is used for the electrode layer 10a. The electrode layer 10 a is formed by, for example, thermal spraying these metals on the front and back surfaces of the heater element 10. The electrode layer 10 a is in ohmic contact with the heating element 10.
 発熱素子10は、一対の電極部20の間に挟持される。一対の電極部20のうちの一方は第1電極部201であり、他方は第2電極部202である。説明の便宜上、第1電極部201および第2電極部202を区別せずに示すときは、電極部20と言うことにする。第1電極部201は、発熱素子10の一方の電極層10aと導通し、第2電極部202は、発熱素子10の他方の電極層10aと導通する。 The heating element 10 is held between the pair of electrode units 20. One of the pair of electrode units 20 is the first electrode unit 201, and the other is the second electrode unit 202. For convenience of description, when the first electrode unit 201 and the second electrode unit 202 are shown without distinction, they will be referred to as the electrode unit 20. The first electrode portion 201 is electrically connected to one of the electrode layers 10 a of the heating element 10, and the second electrode portion 202 is electrically connected to the other electrode layer 10 a of the heating element 10.
 第1電極部201は、第1板状部分211、第1端子部分221および第1凸状延出部分231を有する。第2電極部202は、第2板状部分212、第2端子部分222および第2凸状延出部分232を有する。また、第1端子部分221は第1かしめ部分251を有し、第2端子部分222は第2かしめ部分252を有する。 The first electrode portion 201 has a first plate-like portion 211, a first terminal portion 221, and a first convex extension portion 231. The second electrode portion 202 has a second plate-like portion 212, a second terminal portion 222, and a second convexly extending portion 232. Also, the first terminal portion 221 has a first crimped portion 251, and the second terminal portion 222 has a second crimped portion 252.
 説明の便宜上、第1板状部分211および第2板状部分212を区別せずに示すときは、板状部分210と言うことにする。また、第1端子部分221および第2端子部分222を区別せずに示すときは、端子部分220と言うことにする。また、第1凸状延出部分231および第2凸状延出部分232を区別せずに示すときは、凸状延出部分230と言うことにする。また、第1かしめ部分251および第2かしめ部分252を区別せずに示すときは、かしめ部分250と言うことにする。 For convenience of explanation, when the first plate-like portion 211 and the second plate-like portion 212 are shown without distinction, they will be referred to as the plate-like portion 210. Further, when the first terminal portion 221 and the second terminal portion 222 are shown without distinction, they are referred to as the terminal portion 220. Moreover, when showing the 1st convex-shaped extension part 231 and the 2nd convex-shaped extension part 232 indifferently, it shall be called the convex-shaped extension part 230. FIG. Also, when the first crimped portion 251 and the second crimped portion 252 are shown without distinction, they will be referred to as crimped portions 250.
 板状部分210は、第2方向D2に延在する薄板状の部分であり、電極層10aと導通するように接する。板状部分210の第3方向D3の長さは、20mm以上30mm以下程度あるとよい。これにより、十分な発熱出力を得ることができる。端子部分220は、板状部分210における筒体50の一方の開口50a側の端部に設けられる。第1かしめ部分251には第1導通ケーブルC11がかしめによって固定され、第2かしめ部分252には第2導通ケーブルC12がかしめによって固定される。 The plate-like portion 210 is a thin plate-like portion extending in the second direction D2, and is in electrical contact with the electrode layer 10a. The length in the third direction D3 of the plate-like portion 210 may be approximately 20 mm or more and 30 mm or less. Thereby, sufficient heat generation output can be obtained. The terminal portion 220 is provided at an end of the plate-like portion 210 on the side of one opening 50 a of the cylinder 50. The first conductive cable C11 is fixed to the first caulking portion 251 by caulking, and the second conductive cable C12 is fixed to the second caulking portion 252 by caulking.
 説明の便宜上、第1導通ケーブルC11および第2導通ケーブルC12を区別せずに示すときは、導通ケーブルC10と言うことにする。導通ケーブルC10は、導線の周囲を絶縁被覆材で覆ったものである。導通ケーブルC10の先端において絶縁被覆材から露出する導線がかしめ部分250でかしめによって接続される。また、絶縁被覆材の先端部分についても、かしめ部分250でかしめによって固定されていることが望ましい。かしめによる接続では、はんだ付け、ろう付け、ねじ止めに比べて容易かつ確実に接続することができる。 For convenience of explanation, when the first conductive cable C11 and the second conductive cable C12 are shown without distinction, they will be referred to as the conductive cable C10. The conducting cable C10 is one in which the periphery of the conducting wire is covered with an insulating covering material. Conductors exposed from the insulation coating at the end of the conductive cable C10 are connected by caulking at caulking portion 250. Further, it is desirable that the front end portion of the insulating covering material is also fixed by caulking at the caulking portion 250. The caulking connection can be more easily and reliably connected than soldering, brazing or screwing.
 凸状延出部分230は、板状部分210とかしめ部分250との間に設けられる。凸状延出部分230は、板状部分210における開口50a側の端部から第2方向D2へ、開口50aに向けて凸型に延出した部分である。凸状延出部分230の先端部分から第2方向D2へ、かしめ部分250が延出している。 The convex extension portion 230 is provided between the plate-like portion 210 and the caulking portion 250. The convexly extending portion 230 is a portion protruding from the end of the plate-like portion 210 on the side of the opening 50a in the second direction D2 in a convex manner toward the opening 50a. A caulking portion 250 extends from the tip of the convex extending portion 230 in the second direction D2.
 電極部20には、例えばステンレスやアルミニウム(Al)が用いられる。板状部分210の厚さは約0.2mm以上0.5mm以下程度である。板状部分210と発熱素子10の電極層10aとは、導電性および熱伝導性に優れた例えばシリコーン系接着剤によって接着される。なお、電極層10aの表面には、発熱素子10の表面の凹凸に対応した微小な凹凸が形成されている。したがって、接着剤の導電性が低くても、電極層10aの微小な凹凸の凸部が接着剤を突き抜けて板状部分210と接し、十分な導通を得ることができる。 For example, stainless steel or aluminum (Al) is used for the electrode unit 20. The thickness of the plate-like portion 210 is about 0.2 mm or more and 0.5 mm or less. The plate-like portion 210 and the electrode layer 10 a of the heat-generating element 10 are bonded by, for example, a silicone-based adhesive excellent in conductivity and thermal conductivity. In addition, on the surface of the electrode layer 10a, minute unevenness corresponding to the unevenness of the surface of the heat generating element 10 is formed. Therefore, even if the conductivity of the adhesive is low, the minute convex and concave portions of the electrode layer 10a penetrate the adhesive and contact the plate-like portion 210, whereby sufficient conduction can be obtained.
 絶縁性シート30は、一対の電極部20の周囲を覆う絶縁性のシート材である。すなわち、絶縁性シート30は、複数の発熱素子10を間に挟持した一対の電極部20の周囲を包むように設けられる。絶縁性シート30の材料としては、可撓性、熱伝導性および電気絶縁性を有し、例えば厚さ0.05mm程度のポリイミドフィルムが好ましい。絶縁性シート30によって板状部分210、端子部分220および凸状延出部分230の全体が覆われる。絶縁性シート30の第2方向D2の両端は開口した状態となっている。 The insulating sheet 30 is an insulating sheet material that covers the periphery of the pair of electrode units 20. That is, the insulating sheet 30 is provided so as to wrap around the pair of electrode portions 20 having the plurality of heat generating elements 10 sandwiched therebetween. As a material of the insulating sheet 30, it has flexibility, heat conductivity, and electrical insulation, and, for example, a polyimide film having a thickness of about 0.05 mm is preferable. The whole of the plate-like portion 210, the terminal portion 220 and the convex extension portion 230 is covered by the insulating sheet 30. Both ends of the insulating sheet 30 in the second direction D2 are open.
 筒体50は中空部55を有し、発熱素子10、一対の電極部20および絶縁性シート30で構成された発熱構造体100を中空部55内に収容する。筒体50は、一対の放熱面51と、一対の側面53とによって内部空間が構成され、第2方向D2に延びる筒型となっている。放熱面51は平坦な面である。 The cylindrical body 50 has a hollow portion 55, and accommodates the heat generating structure 100 including the heat generating element 10, the pair of electrode portions 20 and the insulating sheet 30 in the hollow portion 55. The cylindrical body 50 has a cylindrical shape in which an internal space is formed by the pair of heat radiation surfaces 51 and the pair of side surfaces 53 and which extends in the second direction D2. The heat dissipation surface 51 is a flat surface.
 筒体50には、一方端側の開口50aと、他方端側の開口50bとが設けられる。発熱構造体100は、筒体50の例えば開口50aから筒内に挿入される。筒体50は、例えばアルミニウム(Al)によって構成され、発熱構造体100を中空部55内に収容した状態で第1方向D1に加圧される。この加圧によって押し潰され、側面53の途中が屈曲する状態となる。側面53には予め第2方向D2に溝53aを設けておいてもよい。これにより、側面53が溝53aの部分で内側に屈曲し、外側へ突出することを回避できる。 The cylindrical body 50 is provided with an opening 50a on one end side and an opening 50b on the other end side. The heat generating structure 100 is inserted into, for example, an opening 50 a of the cylinder 50 into the cylinder. The cylindrical body 50 is made of, for example, aluminum (Al), and is pressurized in the first direction D1 in a state where the heat generating structure 100 is accommodated in the hollow portion 55. By this pressure, the side surfaces 53 are bent and crushed. The groove 53a may be provided in the second direction D2 in advance on the side surface 53. Thereby, the side surface 53 can be prevented from being bent inward at the portion of the groove 53a and protruding outward.
 加圧によって筒体50が第1方向D1に押し潰されることで、上下の放熱面51の内面によって発熱構造体100を挟み込むことになる。その後、電極部20と発熱素子10との間の接着剤を硬化させる。これにより、一対の電極部20は電極層10aと確実に導通する状態となるとともに、一対の電極部20の間で発熱素子10をしっかりと挟持する状態となる。 The cylindrical body 50 is crushed in the first direction D1 by pressurization, so that the heat generating structure 100 is sandwiched by the inner surfaces of the upper and lower heat radiation surfaces 51. Thereafter, the adhesive between the electrode unit 20 and the heating element 10 is cured. As a result, the pair of electrode portions 20 is in a state of being in electrical continuity with the electrode layer 10a, and the heating element 10 is firmly held between the pair of electrode portions 20.
 ここで、電極部20の板状部分210の幅(第3方向D3の長さ)は、電極層11の幅よりも広く、発熱素子10の幅以下であることが望ましい。板状部分210の幅が電極層11の幅よりも広いことで、電極層11の全体を板状部分210と接触させることができる。一方、板状部分210の幅を発熱素子10の幅以下にすることで、板状部分210の幅方向の縁部分が発熱素子10よりも外側にはみ出ないことになる。 Here, it is desirable that the width (the length in the third direction D3) of the plate-like portion 210 of the electrode portion 20 be wider than the width of the electrode layer 11 and smaller than or equal to the width of the heating element 10. When the width of the plate-like portion 210 is wider than the width of the electrode layer 11, the entire electrode layer 11 can be in contact with the plate-like portion 210. On the other hand, by making the width of the plate-like portion 210 equal to or less than the width of the heat-generating element 10, the edge portion in the width direction of the plate-like portion 210 does not protrude outside the heat-generating element 10.
 板状部分210の縁部分が発熱素子10よりも外側にはみ出た場合、発熱構造体100を筒体50に挿入して加圧する際に、このはみ出た部分に圧力が加わって湾曲する可能性がある。この湾曲によって発熱素子10の側面部分での電極間距離が狭くなり、耐圧低下を起こす可能性が生じる。
 本実施形態のように、板状部分210の幅を発熱素子10の幅以下にすることで、加圧の際の板状部分210の縁部分の変形が抑制され、電極間距離の確保によって耐圧低下を抑制することができる。
When the edge portion of the plate-like portion 210 protrudes outside the heat generating element 10, when the heat generating structure 100 is inserted into the cylindrical body 50 and pressurized, pressure may be applied to the protruding portion to cause bending. is there. Due to this curvature, the distance between the electrodes at the side surface portion of the heat generating element 10 becomes narrow, which may cause a decrease in withstand voltage.
By making the width of the plate-like portion 210 equal to or less than the width of the heat-generating element 10 as in this embodiment, deformation of the edge portion of the plate-like portion 210 at the time of pressurization is suppressed, and withstand voltage is ensured by securing the distance between the electrodes. It is possible to suppress the decrease.
 封止部60は、筒体50の両端の開口50aおよび50bを封止する部材である。封止部60には、例えばシリコーン系樹脂やエポキシ樹脂などの耐電圧および耐熱型の封止材が用いられる。また、封止部60としては、シリコーン系ゴムなどのゴム材を開口50aに嵌め込み、筒体50の潰しによって密封性を高めた構成であってもよい。これにより、筒体50の開口50aおよび50bを製造容易に封止することができる。すなわち、硬化前の柔らかい状態のシリコーン系樹脂を開口50aおよび50bに充填した後、硬化させることで、筒体50の内部を容易かつ確実に液密状態で封止することができる。 The sealing portion 60 is a member that seals the openings 50 a and 50 b at both ends of the cylindrical body 50. For the sealing portion 60, for example, a sealing material of withstand voltage and heat resistance type such as silicone resin or epoxy resin is used. Further, as the sealing portion 60, a rubber material such as silicone rubber may be inserted into the opening 50a, and the sealing property may be enhanced by crushing the cylindrical body 50. Thus, the openings 50a and 50b of the cylindrical body 50 can be easily sealed. That is, after the silicone resin in a soft state before curing is filled into the openings 50a and 50b and then cured, the inside of the cylindrical body 50 can be sealed in a liquid tight state easily and reliably.
 本実施形態では、封止部60によって筒体50の内部への防水構造、および第1端子部分221と第2端子部分222との間における300V以上の耐電圧構造が構成される。また、封止部60としては、耐熱温度150℃以上の材料を用いることが好ましい。 In the present embodiment, the sealing portion 60 forms a waterproof structure to the inside of the cylindrical body 50 and a withstand voltage structure of 300 V or more between the first terminal portion 221 and the second terminal portion 222. Moreover, as the sealing part 60, it is preferable to use the material of 150 degreeC or more of heat-resistant temperature.
 筒体50の両端部には、それぞれキャップ70が取り付けられる。キャップ70は、電気絶縁性および発熱素子10が発する熱に対する耐熱性を有する。キャップ70は、例えばポリブチレンテレフタレート(PBT:Polybutylene Terephthalate)からなる。キャップ70は筒体50の端部が嵌め入れられる凹部70aを有する。筒体50の一方側の端部に嵌め込まれるキャップ70の凹部70aの底には、凹部70aの内外を連通させる2つの貫通孔70hが形成されている。 Caps 70 are attached to both ends of the cylindrical body 50, respectively. The cap 70 has electrical insulation and heat resistance to the heat generated by the heating element 10. The cap 70 is made of, for example, polybutylene terephthalate (PBT). The cap 70 has a recess 70 a into which the end of the cylinder 50 is fitted. At the bottom of the recess 70 a of the cap 70 fitted to the end of one side of the cylindrical body 50, two through holes 70 h communicating the inside and the outside of the recess 70 a are formed.
 キャップ70は封止材によって固定される。具体的には、キャップ70の凹部70aに、耐熱性および電気絶縁性を有する例えばシリコーン系の封止材を入れたうえで、その凹部70aに筒体50の端部を嵌め入れる。そして、封止材を硬化させることでキャップ70と筒体50とが固定される。なお、封止材は封止部60と同じ材料であってもよい。 The cap 70 is fixed by the sealing material. Specifically, for example, a silicone-based sealing material having heat resistance and electrical insulation is put in the recess 70 a of the cap 70, and then the end of the cylindrical body 50 is fitted in the recess 70 a. Then, the cap 70 and the cylindrical body 50 are fixed by curing the sealing material. The sealing material may be the same material as the sealing portion 60.
 2つの貫通孔70hにはそれぞれ導通ケーブルC10が通される。導通ケーブルC10は、貫通孔70hを通してキャップ70の外に引き出され、図示しない外部回路に接続される。 The conduction cable C10 is passed through the two through holes 70h. The continuity cable C10 is pulled out of the cap 70 through the through hole 70h and connected to an external circuit (not shown).
 導通ケーブルC10が通された貫通孔70h内にも封止材が注入され、その一部が貫通孔70hからキャップ70の外側にはみ出し、導通ケーブルC10と貫通孔70hとの隙間を覆って硬化する。 The sealing material is also injected into the through hole 70h through which the conductive cable C10 is passed, and a portion thereof protrudes from the through hole 70h to the outside of the cap 70, and covers and cures the gap between the conductive cable C10 and the through hole 70h. .
 筒体50の他方側の端部にも同様なキャップ70が設けられるが、このキャップ70には貫通孔70hは形成されていない。このようにして、筒体50の中空部55は、キャップ70および封止部60によって外部から液密に遮断される。 A similar cap 70 is provided at the other end of the cylindrical body 50, but no through hole 70h is formed in the cap 70. Thus, the hollow portion 55 of the cylindrical body 50 is liquid-tightly shut from the outside by the cap 70 and the sealing portion 60.
(電極部および封止部)
 図3および図4(a)~(c)は、本実施形態に係る車載用ヒータの構成を例示する断面図である。図3には、第1方向D1にみた車載用ヒータ1の断面図が示される。なお、図3においては、説明の便宜上、絶縁性シート30、筒体50および封止部60について厚さ方向の中央で切断した断面を示す。図4(a)には、図3のA-A線の断面図が示され、図4(b)には、図3のB-B線の断面図が示され、図4(c)には、図3のC-C線の断面図が示される。
(Electrode part and sealing part)
3 and 4 (a) to 4 (c) are cross-sectional views illustrating the configuration of the on-vehicle heater according to the present embodiment. FIG. 3 shows a cross-sectional view of the on-vehicle heater 1 as viewed in the first direction D1. In addition, in FIG. 3, the cross section which cut | disconnected the insulating sheet 30, the cylinder 50, and the sealing part 60 in the center of thickness direction is shown for convenience of explanation. 4 (a) shows a cross-sectional view taken along the line AA of FIG. 3, FIG. 4 (b) shows a cross-sectional view taken along the line BB of FIG. 3, and FIG. 4 (c) shows it. Is a cross-sectional view taken along the line CC of FIG.
 図3に示すように、第1端子部分221および第2端子部分222は筒体50の一方の開口50aの側に位置する。これにより、端子部分220から第1導通ケーブルC11および第2導通ケーブルC12をほぼ真っ直ぐに同じ開口50a側から引き出すことができる。 As shown in FIG. 3, the first terminal portion 221 and the second terminal portion 222 are located on one side of the opening 50 a of the cylindrical body 50. Thereby, the first conductive cable C11 and the second conductive cable C12 can be pulled out from the terminal portion 220 substantially straight from the same opening 50a side.
 また、第1方向D1にみた場合、第1端子部分221と第2端子部分222とは互いにずれた位置で配置される。ずれた位置とは、第1端子部分221の幅の中心と、第2端子部分222の幅の中心とが重ならないことを言う。第1方向D1にみた場合、第1端子部分221と第2端子部分222とは、互いに一部で重なっていてもよいが、全く重ならないことが望ましい。これにより、2つの端子部分を重ねて配置する場合に比べて両者の距離を長くとることができ、第1端子部分221と第2端子部分222との間の耐電圧(絶縁耐力)を高めることができる。 In addition, when viewed in the first direction D1, the first terminal portion 221 and the second terminal portion 222 are disposed at mutually offset positions. The shifted position means that the center of the width of the first terminal portion 221 and the center of the width of the second terminal portion 222 do not overlap. When viewed in the first direction D1, the first terminal portion 221 and the second terminal portion 222 may partially overlap each other, but it is preferable that they do not overlap at all. As a result, the distance between the two terminal portions can be made longer as compared to the case where two terminal portions are arranged in an overlapping manner, and the withstand voltage (dielectric strength) between the first terminal portion 221 and the second terminal portion 222 can be increased. Can.
 図4(a)に示すように、絶縁性シート30は発熱素子10を挟持する一対の電極部20の外側を囲むように覆っている。また、図3に示すように、絶縁性シート30は、第2方向D2において電極部20の全体(板状部分210、凸状延出部分230および端子部分220)を覆っている。なお、絶縁性シート30の第2方向D2の端部30aおよび30bは、筒体50の両端よりも外側には突出していない。 As shown to Fig.4 (a), the insulating sheet 30 has covered so that the outer side of a pair of electrode part 20 which clamps the heat generating element 10 may be enclosed. In addition, as shown in FIG. 3, the insulating sheet 30 covers the entire electrode portion 20 (plate-like portion 210, convex extension portion 230 and terminal portion 220) in the second direction D2. The end portions 30 a and 30 b of the insulating sheet 30 in the second direction D 2 do not protrude outward beyond both ends of the cylindrical body 50.
 絶縁性シート30を巻き付ける際、巻き付けの両端は発熱素子10の側面部分で互いに重なり合っていることが好ましい。これにより、放熱面51の内面については絶縁性シート30が重ならず、発熱素子10から放熱面51へ効率良く熱を伝えることができる。 When winding the insulating sheet 30, it is preferable that the both ends of the winding overlap each other at the side surface portion of the heat generating element 10. Thus, the insulating sheet 30 does not overlap on the inner surface of the heat dissipation surface 51, and heat can be efficiently transmitted from the heat generating element 10 to the heat dissipation surface 51.
 また、図4(b)に示すように、かしめ部分250の合口は互いに内側を向くように設けられる。これにより、かしめ部分250は第1方向D1において筒体50の内面側に突出することがなくなる。すなわち、板状部分210から凸状延出部分230およびかしめ部分250にかけて電極部20の放熱面51側はほぼ平坦となり、放熱面51の内面から電極部20に対して均一性高く押圧される。また、車載用ヒータ1の薄型化を図ることができる。 Further, as shown in FIG. 4 (b), the abutments of the caulking portions 250 are provided to face each other. As a result, the caulking portion 250 does not protrude to the inner surface side of the cylindrical body 50 in the first direction D1. That is, the heat dissipation surface 51 side of the electrode portion 20 is substantially flat from the plate-like portion 210 to the convex extension portion 230 and the caulking portion 250, and the inner surface of the heat dissipation surface 51 presses the electrode portion 20 uniformly. Moreover, thickness reduction of the vehicle heater 1 can be achieved.
 また、封止部60は、筒体50の開口50aおよび50bの内部に埋め込まれている。筒体50の開口50b側においては、開口50bの全体が封止部60によって塞がれる。筒体50の開口50a側においては、開口50aから筒体50の内部の少なくとも端子部分220まで封止部60が埋め込まれている。 In addition, the sealing portion 60 is embedded in the openings 50 a and 50 b of the cylindrical body 50. The entire opening 50 b is closed by the sealing portion 60 on the opening 50 b side of the cylindrical body 50. At the opening 50 a side of the cylindrical body 50, the sealing portion 60 is embedded from the opening 50 a to at least the terminal portion 220 inside the cylindrical body 50.
 図4(c)に示すように、開口50a側においては、第1導通ケーブルC11および第2導通ケーブルC12が封止部60を突き抜け、キャップ70の貫通孔70hを通して外方に延出する。開口50a側において、封止部60は筒体50の内面50cと密着しているとともに、キャップ70および導通ケーブルC10の絶縁被覆材と密着している。 As shown in FIG. 4C, on the opening 50a side, the first conductive cable C11 and the second conductive cable C12 pierce through the sealing portion 60 and extend outward through the through holes 70h of the cap 70. On the side of the opening 50a, the sealing portion 60 is in close contact with the inner surface 50c of the cylindrical body 50 and also in close contact with the cap 70 and the insulating covering material of the conductive cable C10.
 また、図3および図4(b)に示すように、開口50a側において、封止部60は、絶縁性シート30で囲まれる第1端子部分221および第2端子部分222を埋め込むように設けられる。端子部分220が封止部60によって埋め込まれることで、第1端子部分221および第2端子部分222の位置固定が確実となる。 Further, as shown in FIG. 3 and FIG. 4B, on the side of the opening 50a, the sealing portion 60 is provided so as to embed the first terminal portion 221 and the second terminal portion 222 surrounded by the insulating sheet 30. . Since the terminal portion 220 is embedded by the sealing portion 60, the position fixing of the first terminal portion 221 and the second terminal portion 222 is ensured.
 また、第1端子部分221と第2端子部分222との間に封止部60が介在することで、第1端子部分221と第2端子部分222との間が空間となる場合に比べて耐電圧を高めることができる。封止部60としてシリコーン系樹脂を用いることで、空間(空気)に比べて2桁以上高い絶縁耐力が得られる。 In addition, since the sealing portion 60 is interposed between the first terminal portion 221 and the second terminal portion 222, it is more resistant than when the space between the first terminal portion 221 and the second terminal portion 222 is a space. The voltage can be increased. By using a silicone-based resin as the sealing portion 60, a dielectric strength higher by two digits or more than that of a space (air) can be obtained.
 さらに、図4(b)に示すように、開口50a側において、封止部60は、絶縁性シート30と筒体50の内面50cとの隙間Gにも介在している。ここで、開口50a側において絶縁性シート30は端子部分220の全体を覆う位置まで延在している。筒体50に収容される端子部分220と、筒体50の内面50cとの導通を避けるためである。 Furthermore, as shown in FIG. 4B, the sealing portion 60 also intervenes in the gap G between the insulating sheet 30 and the inner surface 50c of the cylindrical body 50 on the opening 50a side. Here, the insulating sheet 30 extends to a position covering the entire terminal portion 220 on the opening 50 a side. This is to avoid conduction between the terminal portion 220 housed in the cylindrical body 50 and the inner surface 50 c of the cylindrical body 50.
 端子部分220に延在する絶縁性シート30と端子部分220との間には距離があり、封止部60を埋め込む前は中空状となっている。したがって、絶縁性シート30の内側に支えがなく、絶縁性シート30と筒体50の内面50cとの間に僅かな隙間Gが生じる。さらに、絶縁性シート30の折り曲げ部分と筒体50の内面50cの隅部との間にも隙間Gが生じる。封止部60はこの隙間Gを埋めるように設けられる。 There is a distance between the insulating sheet 30 extending to the terminal portion 220 and the terminal portion 220, and it is hollow before the sealing portion 60 is embedded. Therefore, there is no support inside the insulating sheet 30, and a slight gap G is generated between the insulating sheet 30 and the inner surface 50c of the cylindrical body 50. Furthermore, a gap G is also generated between the bent portion of the insulating sheet 30 and the corner of the inner surface 50 c of the cylindrical body 50. The sealing portion 60 is provided to fill the gap G.
 隙間Gに封止部60が介在することで、開口50a側における絶縁性シート30と筒体50の内面50cとの隙間Gでの防水性が高まる。すなわち、筒体50の外から筒内に向けた防水性は、湿気(水分)の浸入経路上を塞ぐ封止部60の長さが長いほど高くなる。もし、隙間Gに封止部60が介在していないと、筒体50の内面50cに沿った湿気(水分)の浸入経路上での封止部60の長さは、開口50aから絶縁性シート30の端部30aまでとなる(図3の長さL11参照)。 By interposing the sealing portion 60 in the gap G, the waterproofness in the gap G between the insulating sheet 30 and the inner surface 50 c of the cylindrical body 50 on the opening 50 a side is enhanced. That is, the waterproofness from the outside of the cylindrical body 50 toward the inside of the cylinder becomes higher as the length of the sealing portion 60 that blocks the inflow path of moisture (water) is longer. If the sealing portion 60 does not intervene in the gap G, the length of the sealing portion 60 on the permeation path of moisture (moisture) along the inner surface 50c of the cylindrical body 50 is from the opening 50a to the insulating sheet It becomes to the edge part 30a of 30 (refer length L11 of FIG. 3).
 一方、隙間Gに封止部60が介在していると、筒体50の内面50cに沿った湿気(水分)の浸入経路上での封止部60の長さは、長さL11と、絶縁性シート30の端子部分220を囲む部分の長さ(図3の長さL12参照)とを加えたものとなる。絶縁性シート30の端子部分220を囲む部分の長さL12は、開口50aから絶縁性シート30の端部30aまでの長さL11よりも十分に長い。隙間Gは長さL12の部分に生じるため、隙間Gを封止部60で埋めることによって湿気(水分)の浸入経路上を塞ぐ封止部60の長さを長くとることができ、防水性を効果的に高めることができる。 On the other hand, when the sealing portion 60 intervenes in the gap G, the length of the sealing portion 60 on the permeation path of moisture (moisture) along the inner surface 50c of the cylindrical body 50 is the length L11 and insulation The length (see length L12 in FIG. 3) of the portion surrounding the terminal portion 220 of the sexing sheet 30 is added. The length L12 of the portion surrounding the terminal portion 220 of the insulating sheet 30 is sufficiently longer than the length L11 from the opening 50a to the end 30a of the insulating sheet 30. Since the gap G is generated in the portion of the length L12, by filling the gap G with the sealing portion 60, the length of the sealing portion 60 for closing the permeation path of moisture (moisture) can be increased, and the waterproofness is improved. It can be effectively enhanced.
 なお、隙間Gにおける長さL2の範囲の一部に封止部60を埋め込むようにしてもよいが、隙間Gを埋め込む封止部60の第2方向D2の長さが長いほど防水性は高くなるため、隙間Gにおける長さL2の範囲の全体に封止部60を埋め込むことが最も好ましい。 Although the sealing portion 60 may be embedded in part of the range of the length L2 in the gap G, the longer the length in the second direction D2 of the sealing portion 60 in which the gap G is embedded, the higher the waterproofness. Therefore, it is most preferable to bury the sealing portion 60 in the entire range of the length L2 in the gap G.
 上記の例では、開口50a側における封止部60について示したが、開口50b側においても絶縁性シート30と筒体50の内面50cとの隙間に封止部60が介在していることが好ましい。 In the above example, the sealing portion 60 on the opening 50a side is shown, but it is preferable that the sealing portion 60 intervenes in the gap between the insulating sheet 30 and the inner surface 50c of the cylindrical body 50 also on the opening 50b side .
(凸状延出部分)
 図5は、電極部の凸状延出部分について例示する拡大平面図である。
 凸状延出部分230は、板状部分210の端部から第2方向D2に凸状に延出した部分である。かしめ部分250は、凸状延出部分230の先端から延出するよう設けられる。すなわち、凸状延出部分230は、板状部分210とかしめ部分250との間に設けられる部分である。
(Convex extension)
FIG. 5 is an enlarged plan view illustrating a convexly extending portion of the electrode portion.
The convex extending portion 230 is a portion extending in a convex shape in the second direction D2 from the end of the plate-like portion 210. The caulking portion 250 is provided to extend from the tip of the convex extension portion 230. That is, the convex extension portion 230 is a portion provided between the plate-like portion 210 and the caulking portion 250.
 ここで、板金加工によってかしめ部分250を形成すると、かしめ皺255が生じる。かしめ皺255とは、かしめ部分250の形成において、かしめ片250aを折り曲げる際にかしめ片250aの付け根近傍に加わる力によって金属板材が皺状に塑性変形する部分のことを言う。 Here, when the caulking portion 250 is formed by sheet metal processing, caulking flaws 255 are generated. The caulking weir 255 refers to a portion where the metal plate material is plastically deformed in the shape of a weir by the force applied near the base of the caulking piece 250a when the caulking piece 250a is bent in the formation of the caulking portion 250.
 本実施形態では、かしめ皺255は凸状延出部分230のかしめ部分250側に形成される。かしめ皺255は、かしめ片250aを折り曲げる側、すなわち、かしめの合口側に盛り上がるように形成される。このため、かしめ部分250を設けることでかしめ皺255が形成され、かしめ皺255によって盛り上がる分だけ厚さが増すことになる。 In the present embodiment, the crimped ridge 255 is formed on the crimped portion 250 side of the convex extension portion 230. The caulking weir 255 is formed to be raised on the bending side of the caulking piece 250a, that is, on the welding side of the caulking. For this reason, by providing the caulking portion 250, the caulking weir 255 is formed, and the thickness increases by the amount of swelling by the caulking weir 255.
 本実施形態では、凸状延出部分230における第2方向D2の長さL2を、かしめ皺255の第2方向D2の長さL1よりも長くしている。これにより、かしめ皺255が形成されていても、かしめ皺255による盛り上がりの影響が板状部分210には及ばないことになる。 In the present embodiment, the length L2 of the convex extending portion 230 in the second direction D2 is longer than the length L1 of the second direction D2 of the crimp rod 255. As a result, even if the crimped ridge 255 is formed, the influence of the rise by the crimped ridge 255 does not affect the plate-like portion 210.
 したがって、かしめ部分250を形成しても、板状部分210のうねりの影響を抑制することができる。板状部分210のうねりが少ないことで、一対の電極部20によって発熱素子10を挟持する際、板状部分210と電極層10aとを確実に接触させることができる。 Therefore, even if the caulking portion 250 is formed, the influence of the undulation of the plate-like portion 210 can be suppressed. When the plate-like portion 210 has less waviness, the plate-like portion 210 and the electrode layer 10 a can be reliably brought into contact when the heating element 10 is held between the pair of electrode portions 20.
 もし、凸状延出部分230が設けられていないか、凸状延出部分230の長さL2がかしめ皺255の長さL1よりも短い場合、かしめ皺255による盛り上がりの影響が板状部分210に及ぶことになる。この場合、板状部分210の平坦性が損なわれ、板状部分210と発熱素子10(電極層10a)との均一な接触の妨げとなる。この状態で筒体50を加圧して電極部20と発熱素子10とを密着させようとすると、電極部20と発熱素子10との間に加圧の応力のばらつきが生じる。 If the convex extension portion 230 is not provided or the length L2 of the convex extension portion 230 is shorter than the length L1 of the caulking ridge 255, the influence of the swelling by the caulking ridge 255 causes the plate portion 210 It will In this case, the flatness of the plate-like portion 210 is impaired, which prevents uniform contact between the plate-like portion 210 and the heating element 10 (electrode layer 10 a). If the cylinder 50 is pressurized in this state to bring the electrode unit 20 and the heating element 10 into close contact with each other, a variation in stress of pressurization occurs between the electrode unit 20 and the heating element 10.
 電極層10aの表面は発熱素子10の表面の凹凸に基づき凹凸が形成されており、電極層10aと板状部分210との接触は点接触の集まりと考えられる。電極部20と電極層10aとを密着させる際、第1方向D1にみて、単位面積あたりの板状部分210と電極層10aとの接触面積を接触密度とする。 Irregularities are formed on the surface of the electrode layer 10 a based on the irregularities of the surface of the heat generating element 10, and the contact between the electrode layer 10 a and the plate-like portion 210 is considered to be a collection of point contacts. When the electrode portion 20 and the electrode layer 10a are in close contact with each other, the contact area between the plate-like portion 210 and the electrode layer 10a per unit area in the first direction D1 is taken as the contact density.
 かしめ皺255による盛り上がりの部分に加圧の応力が集中すると、電極部20と電極層10aとの接触領域で接触密度の低下やばらつきが生じる。接触密度の低下は放熱効率の低下に繋がる。また、接触密度のばらつきは、電極部20と発熱素子10との間の電界のばらつきとなる。電極部20に印加される電圧が300V以上の高電圧になると、このような電界のばらつきによる電界集中によって、発熱素子10の耐圧に影響を与えることになる。特に、発熱素子10としてPTC素子を用いた場合には、通電初期に突入電流が発生する。300V以上の高電圧を印加した場合、過大な突入電流が局所的に発生することは極力避けたい。 When the stress of pressure is concentrated on the portion of the swelling due to the caulking flange 255, a decrease or variation in the contact density occurs in the contact region between the electrode portion 20 and the electrode layer 10a. A decrease in contact density leads to a decrease in heat dissipation efficiency. Further, the variation in the contact density is the variation in the electric field between the electrode unit 20 and the heating element 10. When the voltage applied to the electrode unit 20 is a high voltage of 300 V or more, the withstand voltage of the heat generating element 10 is affected by the electric field concentration due to the variation of the electric field. In particular, when a PTC element is used as the heating element 10, an inrush current is generated at the beginning of energization. When a high voltage of 300 V or more is applied, it is desirable to avoid the occurrence of an excessive inrush current locally.
 板状部分210におよぶかしめ皺255による影響を回避しようとした場合、板状部分210において、かしめ皺255の盛り上がりの部分を避けて発熱素子10を配置することが考えられる。しかし、この場合には避ける分だけ板状部分210を長くするか、発熱素子10を短くしなければならない。 In order to avoid the influence of the caulking wedge 255 on the plate-like portion 210, it is conceivable to dispose the heating element 10 in the plate-like portion 210 so as to avoid the swelled portion of the caulking weir 255. However, in this case, it is necessary to lengthen the plate portion 210 or to shorten the heating element 10 by the amount to be avoided.
 本実施形態のように、凸状延出部分230の長さL2を、かしめ皺255の長さL1よりも長くしておくことで、板状部分210にはかしめ皺255の影響が及ばない。したがって、板状部分210の全域について発熱素子10を配置できるとともに、かしめ皺255の盛り上がりの影響を受けずに電界分布のばらつきが抑制され、高電圧が印加された場合でも十分な耐電圧を得ることが可能となる。また、電極部20と電極層10aとの接触密度の増加によって放熱効率の向上を図ることが可能となる。 As in the present embodiment, by setting the length L2 of the convex extended portion 230 to be longer than the length L1 of the crimped ridge 255, the plate-like portion 210 is not affected by the crimped ridge 255. Therefore, while being able to arrange heating element 10 over the whole region of plate-like portion 210, variation in electric field distribution is suppressed without being affected by the rise of caulking wedge 255, and sufficient withstand voltage is obtained even when a high voltage is applied. It becomes possible. Moreover, it becomes possible to aim at the improvement of heat dissipation efficiency by the increase in the contact density of the electrode part 20 and the electrode layer 10a.
 また、凸状延出部分230の第3方向D3の長さ(幅W2)は、かしめ部分250の第3方向D3の長さ(幅W3)よりも長く設けられる。すなわち、凸状延出部分230は、かしめ部分250よりも幅広に設けられている。これにより、かしめ部分250に応力が加わった場合に凸状延出部分230でその応力を吸収して板状部分210へ伝わることを抑制できる。なお、凸状延出部分230の幅は、一定であってもよいし、かしめ部分250から板状部分210にむけて漸増(連続的または段階的に増加)してもよい。 Further, the length (width W2) of the convex extension portion 230 in the third direction D3 is longer than the length (width W3) of the third direction D3 of the caulking portion 250. That is, the convex extension portion 230 is provided wider than the caulking portion 250. Thereby, when stress is applied to the caulking portion 250, it is possible to suppress the stress from being absorbed by the convex extension portion 230 and transfer to the plate-like portion 210. The width of the convex extension portion 230 may be constant or may be gradually increased (continuously or stepwisely) from the caulking portion 250 to the plate-like portion 210.
 また、凸状延出部分230における第3方向D3の長さ(幅W2)は、板状部分210における第3方向D3の長さ(幅W1)の1/2(幅1/2W1)よりも短く設けられていてもよい。凸状延出部分230は板状部分210の中央に対して一方側に寄せた位置に設けられる。これにより、第1方向D1にみて、第1凸状延出部分231と第2凸状延出部分232とが互いに重ならないよう配置される。したがって、第1凸状延出部分231と第2凸状延出部分232との間隔が、第1凸状延出部分231と第2凸状延出部分232とが互いに重なる場合に比べて長くなり、耐電圧を向上させることができる。 Further, the length (width W2) of the convex extension 230 in the third direction D3 is more than half (width W1) of the length (width W1) of the third direction D3 in the plate-like portion 210. It may be provided short. The convex extending portion 230 is provided at a position closer to one side with respect to the center of the plate-like portion 210. Thus, the first convex extending portion 231 and the second convex extending portion 232 are arranged so as not to overlap with each other in the first direction D1. Therefore, the distance between the first convexly extending portion 231 and the second convexly extending portion 232 is longer than when the first convexly extending portion 231 and the second convexly extending portion 232 overlap with each other. And the withstand voltage can be improved.
(端子部分)
 図6は、電極部の端子部分について例示する拡大平面図である。
 本実施形態では、第1方向D1にみて、第1端子部分221と第2端子部分222とが互いに重ならないように配置される。この際、第1方向D1にみて、第1端子部分221と第2端子部分222との隙間S1は、2.5mm以上であることが好ましい。第1端子部分221と第2端子部分222との間に封止部60が介在し、隙間S1が2.5mm以上あることにより、第1端子部分221と第2端子部分222との間に例えば300V以上の電圧が印加されても十分な絶縁性を確保することができる。
(Terminal part)
FIG. 6 is an enlarged plan view illustrating the terminal portion of the electrode unit.
In the present embodiment, the first terminal portion 221 and the second terminal portion 222 are arranged so as not to overlap with each other in the first direction D1. Under the present circumstances, it is preferable that clearance gap S1 of the 1st terminal area 221 and the 2nd terminal area 222 is 2.5 mm or more seeing in the 1st direction D1. The sealing portion 60 is interposed between the first terminal portion 221 and the second terminal portion 222, and the gap S1 is 2.5 mm or more, for example, between the first terminal portion 221 and the second terminal portion 222, for example Even if a voltage of 300 V or more is applied, sufficient insulation can be ensured.
(適用例)
 図7は、適用例について説明する斜視図である。
 本実施形態に係る車載用ヒータ1は、車載用ヒータユニット1Uに適用することができる。車載用ヒータユニット1Uは、車載用ヒータ1の上下の放熱面51のそれぞれにフィン150が設けられたものである。なお、説明の便宜上、図7では、上側のフィン150を車載用ヒータ1から離間して示している。
(Example of application)
FIG. 7 is a perspective view for explaining an application example.
The on-vehicle heater 1 according to the present embodiment can be applied to an on-vehicle heater unit 1U. The on-vehicle heater unit 1U has fins 150 provided on the upper and lower heat radiation surfaces 51 of the on-vehicle heater 1, respectively. Note that, for the convenience of description, in FIG. 7, the upper fins 150 are shown separated from the on-vehicle heater 1.
 車載用ヒータユニット1Uの幅W4は、本実施形態に係る車載用ヒータ1の幅とほぼ等しい。車載用ヒータユニット1Uの幅方向の一方側から他方側に向けて空気が通過する際、車載用ヒータ1で空気が加熱され、温風を出力することができる。
 本実施形態に係る車載用ヒータ1を用いることで、車載用ヒータユニット1Uについても高耐電圧、優れた絶縁性および防水性を発揮することができる。
The width W4 of the in-vehicle heater unit 1U is substantially equal to the width of the in-vehicle heater 1 according to the present embodiment. When air passes from one side to the other side in the width direction of the in-vehicle heater unit 1U, the air is heated by the in-vehicle heater 1, and warm air can be output.
By using the on-vehicle heater 1 according to the present embodiment, it is possible to exhibit high withstand voltage, excellent insulation and waterproofness also for the on-vehicle heater unit 1U.
 フィン150は、例えばアルミニウム(Al)からなる板材を、山部と谷部とを繰り返すように折り曲げて構成されている。フィン150は、耐熱性および熱伝導性に優れた例えばシリコーン系接着剤により接続されていてもよいが、ろう付け部80を介して放熱面51にろう付け固定されていることが望ましい。フィン150の外側は、アルミニウム(Al)等のカバープレート151によって覆われている。ここで、ろう付けの場合、フィン150の車載用ヒータ1側にカバープレート151を設ける必要はない。ろう付けであれば、フィン150の山部とろう付け部80とを直接強固に接続できるためである。一方、シリコーン系接着剤を用いる場合には、フィン150の車載用ヒータ1側にカバープレート151を設けて接触面を広くしておき、このカバープレート151の面と、放熱面51とがシリコーン系接着剤によって接着される。 The fins 150 are formed by bending a plate made of, for example, aluminum (Al) so as to repeat a peak and a valley. The fins 150 may be connected by means of, for example, a silicone-based adhesive excellent in heat resistance and thermal conductivity, but it is preferable that the fins 150 be brazed and fixed to the heat dissipation surface 51 via the brazing portion 80. The outer side of the fin 150 is covered by a cover plate 151 such as aluminum (Al). Here, in the case of brazing, it is not necessary to provide the cover plate 151 on the in-vehicle heater 1 side of the fin 150. This is because, in the case of brazing, the ridges of the fins 150 and the brazing portion 80 can be directly and firmly connected. On the other hand, in the case of using a silicone-based adhesive, the cover plate 151 is provided on the side of the heater 150 of the fin 150 to widen the contact surface, and the surface of the cover plate 151 and the heat radiation surface 51 are silicone-based. Bonded by an adhesive.
 フィン150が放熱面51にろう付けされていることで、シリコーン系接着剤などの樹脂で接着されている場合に比べ、放熱面51とフィン150との間の放熱効率が向上する。すなわち、金属の熱伝導率は樹脂の熱伝導率に比べて桁違いに高い。したがって、フィン150が放熱面51にろう付けされていることで、同じ出力のヒータユニットであれば小型化を図ることができ、同じ大きさのヒータユニットであれば高出力化を図ることができる。また、ろう付けであれば、フィン150の車載用ヒータ1側のカバープレート151を設ける必要がないため、フィン構造の簡素化および低コスト化を図ることができる。 Since the fins 150 are brazed to the heat dissipation surface 51, the heat dissipation efficiency between the heat dissipation surface 51 and the fins 150 is improved as compared with the case where they are bonded with a resin such as a silicone adhesive. That is, the thermal conductivity of metal is orders of magnitude higher than the thermal conductivity of resin. Therefore, since the fins 150 are brazed to the heat dissipation surface 51, miniaturization can be achieved if the heater unit has the same output, and high output can be achieved if the heater unit has the same size. . Further, in the case of brazing, since it is not necessary to provide the cover plate 151 on the in-vehicle heater 1 side of the fin 150, the fin structure can be simplified and cost can be reduced.
 ここで、フィン150を放熱面51にろう付けする場合、次のような製造方法となる。
 図8は、車載用ヒータユニットの製造方法を例示するフローチャートである。
 先ず、筒体50の放熱面51に、フィン150をろう付けによって固定する(ステップS101)。ろう付け部80のろう材としては、例えばアルミニウム(Al)-シリコン(Si)の共晶系合金が用いられる。
Here, when the fins 150 are brazed to the heat radiation surface 51, the following manufacturing method is used.
FIG. 8 is a flowchart illustrating the method of manufacturing the on-vehicle heater unit.
First, the fin 150 is fixed to the heat dissipation surface 51 of the cylindrical body 50 by brazing (step S101). For example, a eutectic alloy of aluminum (Al) -silicon (Si) is used as the brazing material of the brazing portion 80.
 次に、発熱素子10を一対の電極部20で挟持する(ステップS102)。発熱素子10と電極部20との間には、導電性および熱伝導性に優れた例えばシリコーン系接着剤が塗布されている。 Next, the heating element 10 is sandwiched between the pair of electrode units 20 (step S102). For example, a silicone-based adhesive excellent in conductivity and thermal conductivity is applied between the heating element 10 and the electrode portion 20.
 次に、発熱素子10を挟持した一対の電極部20の周囲を絶縁性シート30で覆う(ステップS103)。絶縁性シート30には、ポリイミドフィルムが用いられる。絶縁性シート30によって電極部20の全体が覆われる。電極部20の周囲に絶縁性シート30を巻き付ける際、巻き付けの両端は発熱素子10の側面部分で互いに重なり合っていることが好ましい。 Next, the periphery of the pair of electrode units 20 holding the heating element 10 is covered with the insulating sheet 30 (step S103). A polyimide film is used for the insulating sheet 30. The whole of the electrode unit 20 is covered with the insulating sheet 30. When winding the insulating sheet 30 around the electrode portion 20, it is preferable that both ends of the winding overlap with each other at the side surface portion of the heating element 10.
 次に、絶縁性シート30で覆われた発熱構造体100を筒体50の中空部55内に収容する(ステップS104)。この際、筒体50の放熱面51には、既にフィン150がろう付けによって取り付けられている。 Next, the heat generating structure 100 covered with the insulating sheet 30 is accommodated in the hollow portion 55 of the cylindrical body 50 (step S104). At this time, the fins 150 have already been attached to the heat dissipation surface 51 of the cylindrical body 50 by brazing.
 次に、発熱構造体100が収容された筒体50を加圧する(ステップS105)。筒体50の加圧は、フィン150を介して行われる。すなわち、フィン150を介して筒体50を上下方向(第1方向D1)に加圧して筒体50を押し潰し、発熱構造体100を中空部55内に固定する。 Next, the cylinder 50 in which the heat generating structure 100 is accommodated is pressurized (step S105). The pressurization of the cylindrical body 50 is performed via the fins 150. That is, the cylinder 50 is pressurized in the vertical direction (first direction D1) via the fins 150 to crush the cylinder 50 and fix the heat generating structure 100 in the hollow portion 55.
 筒体50が押し潰される際、側面53が溝53aの部分で内側に屈曲する。筒体50が押し潰されることで、電極部20と発熱素子10とが密着して、電極部20の板状部分210と発熱素子10の電極層11とが導通する状態となる。これにより、車載用ヒータユニット1Uが完成する。 When the cylindrical body 50 is crushed, the side surface 53 is bent inward at the portion of the groove 53a. When the cylindrical body 50 is crushed, the electrode portion 20 and the heating element 10 are in close contact with each other, and the plate-like portion 210 of the electrode portion 20 and the electrode layer 11 of the heating element 10 are electrically connected. Thus, the on-vehicle heater unit 1U is completed.
 上記の製造方法では、筒体50を加圧する前に筒体50にフィン150が取り付けられている。そして、フィン150が取り付けられた筒体50の中空部55内に発熱構造体100を収容し、その後、フィン150を介して筒体50を加圧する。
 つまり、フィン150を筒体50に取り付ける際には発熱構造体100が中空部55内に収容されていない状態(空の状態)のため、フィン150の取り付けにおいては、発熱構造体100の絶縁性シート30の耐熱温度を超えたろう付けを採用することが可能となる。
In the above manufacturing method, the fins 150 are attached to the cylindrical body 50 before the cylindrical body 50 is pressurized. Then, the heat generating structure 100 is accommodated in the hollow portion 55 of the cylindrical body 50 to which the fins 150 are attached, and thereafter, the cylindrical body 50 is pressurized via the fins 150.
That is, when attaching the fin 150 to the cylindrical body 50, the insulating property of the heating structure 100 is attached when attaching the fin 150 because the heating structure 100 is not accommodated in the hollow portion 55 (empty state). It is possible to adopt brazing that exceeds the heat resistance temperature of the sheet 30.
 上記の製造方法を実現するためには、フィン150の第1方向D1の耐荷重を、筒体50の第1方向D1の耐荷重よりも大きくしておく。これにより、フィン150を介して筒体50を加圧した際、筒体50が潰れる前にフィン150が潰れてしまうことを回避することができる。 In order to realize the above manufacturing method, the load resistance in the first direction D1 of the fin 150 is made larger than the load resistance in the first direction D1 of the cylindrical body 50. Thereby, when the cylinder 50 is pressurized via the fins 150, the fins 150 can be prevented from being crushed before the cylinder 50 is crushed.
 本願発明者は、フィン150のろう付けしようとした場合の課題を解決すべく、創意工夫を重ねてきた。
 すなわち、フィン150を筒体50に取り付ける場合、放熱効率の観点からシリコーン系接着剤(樹脂)ではなく、ろう付けによって固定することが望ましい。しかし、絶縁防水型にするため電極部20を包む絶縁性シート30(ポリイミド)が用いられている場合、ろう付けの温度(約600℃)にポリイミドが耐えられない(ポリイミドの耐熱温度は280℃程度)。
The inventor of the present invention has repeatedly made ingenuity in order to solve the problem when trying to braze the fin 150.
That is, when attaching the fin 150 to the cylinder 50, it is desirable to fix by brazing instead of a silicone type adhesive (resin) from the viewpoint of heat radiation efficiency. However, when the insulating sheet 30 (polyimide) which wraps the electrode section 20 is used to make it insulating and waterproof, the polyimide can not withstand the brazing temperature (about 600 ° C.) (the heat resistance temperature of the polyimide is 280 ° C.) degree).
 一方、予め筒体50にフィン150をろう付けしておくことも考えられるが、この場合、フィン150を介して筒体50を加圧することになり、この加圧力によってフィン150の潰れや変形が生じる可能性がある。このため、筒体50を加圧して潰した後に、フィン150を絶縁性シート30(ポリイミド)の耐熱温度よりも低い温度で接着可能な接着剤で接続せざるを得なかった。 On the other hand, it is also conceivable to braze the fins 150 to the cylinder 50 in advance, but in this case, the cylinder 50 is pressurized via the fins 150, and the pressure or pressure causes the fins 150 to be crushed or deformed. It may occur. For this reason, after pressing and squeezing the cylindrical body 50, it was necessary to connect the fin 150 with an adhesive that can be adhered at a temperature lower than the heat resistance temperature of the insulating sheet 30 (polyimide).
 このように、絶縁性シート30による絶縁性の確保と、フィン150のろう付けによる放熱効率の向上との両立は困難であると考えられていた。しかし、本願発明者は、筒体50に先にフィン150をろう付けしておき、その後、筒体50に発熱構造体100を収容してフィン150を変形させずに筒体50を潰す、といった製造方法を見出し、長年の課題を解決するに至った。 As described above, it has been considered that it is difficult to simultaneously secure the insulation property by the insulating sheet 30 and the improvement of the heat radiation efficiency by brazing of the fins 150. However, the inventor of the present invention brazes the fins 150 to the cylinder 50 first, and then, the heat generating structure 100 is accommodated in the cylinder 50 and the cylinder 50 is crushed without deforming the fins 150. We found a manufacturing method and came to solve many years of problems.
 具体的には、フィン150の第1方向D1の耐荷重を、筒体50の第1方向D1の耐荷重よりも大きくしている。これにより、フィン150を筒体50に取り付けた後で加圧しても、フィン150の潰れが発生する前に筒体50を潰すことができる。このため、フィン150を予め筒体50にろう付けによって取り付けておき、フィン150を介して加圧して筒体50を潰すことが可能となり、絶縁性シート30(ポリイミド)を用いた絶縁防水型であっても、フィン150がろう付けされた車載用ヒータユニット1Uを構成することが可能となる。 Specifically, the load resistance of the fin 150 in the first direction D1 is larger than the load resistance of the cylindrical body 50 in the first direction D1. Thus, even if the fins 150 are attached to the cylindrical body 50 and then pressurized, the cylindrical body 50 can be crushed before the fins 150 are crushed. For this reason, the fins 150 are attached in advance to the cylindrical body 50 by brazing, and it becomes possible to pressurize the cylindrical body 50 through the fins 150 to crush the cylindrical body 50, and the insulation waterproof type using the insulating sheet 30 (polyimide) Even if there is, it becomes possible to configure the on-vehicle heater unit 1U to which the fins 150 are brazed.
 フィン150を筒体50にろう付けで固定できることは、シリコーン系接着剤によって固定する場合に比べて固定にかかる時間を大幅に短縮することができる。また、筒体50の加圧工程を待つことなく、予めフィン150を筒体50にろう付けしておくことができる。したがって、フィン150のろう付け工程と、筒体50の加圧工程とを並列して行うことができ、量産において製造時間の短縮化を図ることができる。 The fact that the fins 150 can be fixed by brazing to the cylindrical body 50 can significantly reduce the time required for fixing as compared with the case of fixing with a silicone-based adhesive. Moreover, the fins 150 can be brazed to the cylinder 50 in advance without waiting for the pressing process of the cylinder 50. Therefore, the process of brazing the fins 150 and the process of pressing the cylindrical body 50 can be performed in parallel, and the production time can be shortened in mass production.
 ここで、フィン150の耐荷重を高める構成として、多段式のフィン150を構成することが考えられる。
 図9は、多段式のフィンについて例示する斜視図である。
 図9に示す車載用ヒータユニット1Uは、車載用ヒータ1の上下面にそれぞれ2段のフィン150が設けられている。車載用ヒータ1と隣接するフィン150はろう付け部80によってろう付けされる。また、2段のフィン150の互いの間もろう付けされていることが放熱効率を向上する上で好ましい。フィン150を2段にすることで、間にカバープレート151が介在し、1段の場合よりも第1方向D1の耐荷重を高めることができる。
Here, as a configuration for increasing the load resistance of the fins 150, it is conceivable to configure the multi-stage fins 150.
FIG. 9 is a perspective view illustrating multistage fins.
In the in-vehicle heater unit 1U shown in FIG. 9, two stages of fins 150 are provided on the upper and lower surfaces of the in-vehicle heater 1, respectively. The fins 150 adjacent to the in-vehicle heater 1 are brazed by the brazing part 80. Further, it is preferable that the two-stage fins 150 be brazed to each other in order to improve the heat radiation efficiency. By forming the fins 150 in two stages, the cover plate 151 is interposed therebetween, and the load resistance in the first direction D1 can be increased more than in the case of one stage.
 なお、フィン150の多段としては2段よりも多い段数であってもよい。また、多段式以外であっても、フィン150の板材の肉厚を厚くしてもよいし、フィン150を低背化してもよい。また、筒体50の側面53の溝53aを調整して側面53を折れ曲がりやすくしてもよい。 The number of stages of the fins 150 may be more than two. Moreover, even if it is except a multistage type, the thickness of the board | plate material of the fin 150 may be thickened, and the fin 150 may be shortened. Further, the side surface 53 may be easily bent by adjusting the groove 53 a of the side surface 53 of the cylindrical body 50.
 このような車載用ヒータユニット1Uでは、絶縁性シート30による絶縁性、封止部60およびキャップ70による優れた防水性および高耐電圧化に加え、フィン150のろう付けによる高効率化(放熱効率の向上)を達成することが可能となる。 In such a vehicle heater unit 1U, in addition to the insulation by the insulating sheet 30, the excellent waterproofness and the high withstand voltage by the sealing portion 60 and the cap 70, the efficiency improvement by the brazing of the fins 150 (heat radiation efficiency Improvement) can be achieved.
 図10(a)および(b)は、他の適用例について説明する図である。
 図10(a)には車載用ヒータユニット1Uが示され、図10(b)には空調への適用例が示される。
 図10(a)に示す車載用ヒータユニット1Uは、複数の車載用ヒータ1およびフィン150が積層された構成を備える。図示する例では、4つの車載用ヒータ1A、1B、1Cおよび1Dのそれぞれに上下のフィン150が取り付けられ、これらが積層されている。積層構造の端部にはキャップ71および72が取り付けられる。すなわち、キャップ71および72は、積層された複数の車載用ヒータ1A、1B、1Cおよび1Dにおける端部をまとめるように取り付けられる。キャップ71の内部にはバスバー(図示せず)が設けられ、各車載用ヒータ1A、1B、1Cおよび1Dに接続された導通ケーブルC10をまとめて接続できるようになっている。キャップ71からは、各導通ケーブルC10をまとめた第1導通ケーブルC11および第2導通ケーブルC12が1本ずつ延出している。
FIGS. 10A and 10B are diagrams for explaining another application example.
FIG. 10 (a) shows a vehicle heater unit 1U, and FIG. 10 (b) shows an application example to air conditioning.
The on-vehicle heater unit 1U shown in FIG. 10A has a configuration in which a plurality of on-vehicle heaters 1 and fins 150 are stacked. In the illustrated example, upper and lower fins 150 are attached to each of the four on- vehicle heaters 1A, 1B, 1C, and 1D, and these are stacked. Caps 71 and 72 are attached to the ends of the laminated structure. That is, the caps 71 and 72 are attached so as to put together the ends of the plurality of on- vehicle heaters 1A, 1B, 1C and 1D stacked. A bus bar (not shown) is provided inside the cap 71 so that the conduction cables C10 connected to the on- vehicle heaters 1A, 1B, 1C and 1D can be collectively connected. From the cap 71, a first conductive cable C11 and a second conductive cable C12, which combine the respective conductive cables C10, extend one by one.
 図10(b)に示すように、このような車載用ヒータユニット1Uは、車内に温風などを送り込むための流路Rに配置される。流路Rの前段にはファンFが設けられており、ファンFの回転によって流路Rに空気を送る(矢印A1、A2参照)。流路Rの後段には車載用ヒータユニット1Uが配置されている。ファンFによって送られた空気は車載用ヒータユニット1Uを通過することで加熱され、温風として出力される(矢印A3参照)。
 本実施形態では、車載用ヒータユニット1Uによって3キロワット(kW)以上の出力を得ている。しかも、車載用ヒータユニット1Uの高耐電圧、優れた絶縁性および防水性によって、厳しい環境化でも使用することが可能となる。
As shown in FIG. 10 (b), such an on-vehicle heater unit 1U is disposed in a flow passage R for sending warm air or the like into the vehicle. The fan F is provided in the front | former stage of the flow path R, and air is sent to the flow path R by rotation of the fan F (refer arrow A1, A2). An on-vehicle heater unit 1U is disposed downstream of the flow path R. The air sent by the fan F is heated by passing through the on-vehicle heater unit 1U, and is output as a warm air (see arrow A3).
In the present embodiment, the on-vehicle heater unit 1U obtains an output of 3 kilowatts (kW) or more. Moreover, the high withstand voltage, the excellent insulation property and the waterproofness of the on-vehicle heater unit 1U make it possible to use even in a severe environment.
 このように、本実施形態に係る車載用ヒータ1においては、筒体50の開口50aおよび50bを封止部60で封止するといった簡単な封止構造でありながら、300V以上の耐電圧を得ることができるとともに、高い防水性および高い放熱効率を得ることができる。 As described above, in the on-vehicle heater 1 according to the present embodiment, a withstand voltage of 300 V or more can be obtained while having a simple sealing structure in which the openings 50a and 50b of the cylindrical body 50 are sealed by the sealing portion 60. As a result, high waterproofness and high heat dissipation efficiency can be obtained.
 電気自動車やハイブリッド車などは、300Vから400V程度の電圧を取り扱う。本実施形態に係る車載用ヒータ1は、このような高電圧について降圧することなく電圧を印加して使用することができる。また、車が水没したり、津波や高潮を受けたり、水没しないまでも車載用ヒータ1が水に浸かる可能性もある。本実施形態に係る車載用ヒータ1では高い防水性を備えているため、高電圧環境下でも漏電を防止することができる。さらに、本実施形態に係る車載用ヒータ1は、寒冷地や悪路、粉塵を受けるといった厳しい環境下での使用であっても十分に耐えることが可能である。しかも、高効率化によって、同じ出力であれば小型化を達成でき、同じ大きさであれば高出力化を図ることが可能となる。 Electric cars and hybrid cars handle voltages of about 300V to 400V. The on-vehicle heater 1 according to the present embodiment can be used by applying a voltage without step-down for such a high voltage. In addition, there is also a possibility that the car heater 1 may be submerged in water even if the car is submerged, suffers a tsunami or high tide, or is not submerged. Since the on-vehicle heater 1 according to the present embodiment has high waterproofness, leakage can be prevented even in a high voltage environment. Furthermore, the on-vehicle heater 1 according to the present embodiment can sufficiently withstand use in a severe environment where cold regions, bad roads, and dust are received. Moreover, with the increase in efficiency, miniaturization can be achieved if the output is the same, and high output can be achieved if the size is the same.
(車載用ヒータ装置)
 図11は、車載用ヒータ装置に用いられる車載用ヒータユニットを例示する斜視図である。
 図12は、車載用ヒータ装置を例示する斜視図である。
 図13(a)および(b)は、車載用ヒータ装置を例示する断面図であり、(a)にはフィンの流路に沿った方向にみた断面図が示され、(b)には流路と直交する方向にみた断面図が示される。
(Car heater device)
FIG. 11 is a perspective view illustrating an on-vehicle heater unit used for the on-vehicle heater device.
FIG. 12 is a perspective view illustrating the on-vehicle heater device.
13 (a) and 13 (b) are cross-sectional views illustrating the on-vehicle heater device, and FIG. 13 (a) shows a cross-sectional view seen in the direction along the flow path of the fin, and FIG. A cross-sectional view taken in the direction perpendicular to the path is shown.
 車載用ヒータユニット1Uは、複数の車載用ヒータ1と、複数のフィン150とが積層された構造を有する。図示する例では、車載用ヒータ1が3列、2段で配置され、各段の車載用ヒータ1の上下にそれぞれ2段のフィン150が積層されている。なお、車載用ヒータ1の数、フィン150の数、車載用ヒータ1とフィン150との積層数は任意であり、図示した数に限るものではない。車載用ヒータ1は、上記説明した本実施形態に係る構成を備える。 The on-vehicle heater unit 1U has a structure in which a plurality of on-vehicle heaters 1 and a plurality of fins 150 are stacked. In the example illustrated, the in-vehicle heaters 1 are arranged in three rows and two stages, and two stages of fins 150 are stacked on the upper and lower sides of the in-vehicle heaters 1 of each stage. The number of on-vehicle heaters 1, the number of fins 150, and the number of stacked on-vehicle heaters 1 and fins 150 are arbitrary and are not limited to the illustrated numbers. The on-vehicle heater 1 has the configuration according to the present embodiment described above.
 フィン150は、第2方向D2に山部と谷部とを繰り返すように折り曲げられている。これにより、フィン150の山部と谷部との隙間である流路1501の方向は第2方向D2と直交する第3方向に設けられることになる。図11に示す例では、第3方向D3に複数(例えば3つ)の車載用ヒータ1が並置されており、この3つを跨ぐようにフィン150が設けられている。したがって、流路1501の一端1501aから他端1501bにかけて通過する媒体は、複数の車載用ヒータ1から加熱作用を得ることができる。 The fin 150 is bent so as to repeat a peak and a valley in the second direction D2. Thereby, the direction of the flow path 1501 which is a gap between the peak portion and the valley portion of the fin 150 is provided in the third direction orthogonal to the second direction D2. In the example shown in FIG. 11, a plurality of (for example, three) in-vehicle heaters 1 are juxtaposed in the third direction D3, and fins 150 are provided so as to cross these three. Therefore, the medium passing from one end 1501 a to the other end 1501 b of the flow path 1501 can obtain a heating action from the plurality of on-vehicle heaters 1.
 図12に示す車載用ヒータ装置500は、図11に示す車載用ヒータユニット1Uと、ケース501とを備える。車載用ヒータユニット1Uは、ケース501の中に収容される。ケース501には、加熱対象である媒体(水や空気など)の流入口5011と流出口5012とが設けられる。流入口5011および流出口5012は例えば筒型に設けられており、ケース501の側面501sから突出するように設けられる。媒体は、流入口5011からケース501内に送られ、ケース501内の車載用ヒータユニット1Uで加熱された状態で流出口5012からケース501の外へ出て行く。 The on-vehicle heater device 500 shown in FIG. 12 includes the on-vehicle heater unit 1U shown in FIG. 11 and a case 501. The in-vehicle heater unit 1U is housed in a case 501. The case 501 is provided with an inlet 5011 and an outlet 5012 for a medium (water, air, etc.) to be heated. The inflow port 5011 and the outflow port 5012 are provided, for example, in a cylindrical shape, and are provided so as to protrude from the side surface 501s of the case 501. The medium is sent from the inflow port 5011 into the case 501 and comes out of the case 501 from the outflow port 5012 while being heated by the on-vehicle heater unit 1U in the case 501.
 本実施形態ではケース501の同じ側面501sに流入口5011と流出口5012とが並んで配置されている。このような車載用ヒータ装置500において、車載用ヒータユニット1Uは、フィン150の流路1501の一端1501aを流入口5011および流出口5012のそれぞれに対向させて、ケース501内に収容されている。 In the present embodiment, the inlet 5011 and the outlet 5012 are arranged side by side on the same side surface 501s of the case 501. In such an on-vehicle heater device 500, the on-vehicle heater unit 1 U is accommodated in the case 501 with one end 1501 a of the flow path 1501 of the fin 150 facing the inflow port 5011 and the outflow port 5012.
 図13に示すように、ケース501の内壁には車載用ヒータ1の取り付け部が設けられる。取り付け部としては、例えば凹部5015である。本実施形態では、車載用ヒータ1の両端に設けられたキャップ70のそれぞれが凹部5015に嵌め込まれる。これにより、車載用ヒータユニット1Uのケース501内での収容位置が決まる。 As shown in FIG. 13, the mounting portion of the on-vehicle heater 1 is provided on the inner wall of the case 501. The attachment portion is, for example, a recess 5015. In the present embodiment, each of the caps 70 provided at both ends of the in-vehicle heater 1 is fitted into the recess 5015. Thereby, the accommodation position in case 501 of heater unit 1U for vehicles is decided.
 ケース501には車載用ヒータ1から延出する第1導通ケーブルC11および第2導通ケーブルC12のそれぞれを通すための第1孔h1および第2孔h2が設けられる。ケース501内に収容された車載用ヒータ1の第1導通ケーブルC11は、ケース501の第1孔h1を通してケース501の外へ引き出される。また、第2導通ケーブルC12は、ケース501の第2孔h2を通してケース501の外へ引き出される。 The case 501 is provided with a first hole h1 and a second hole h2 for passing the first conduction cable C11 and the second conduction cable C12 extending from the in-vehicle heater 1 respectively. The first conduction cable C11 of the in-vehicle heater 1 housed in the case 501 is drawn out of the case 501 through the first hole h1 of the case 501. In addition, the second conductive cable C12 is pulled out of the case 501 through the second hole h2 of the case 501.
 ケース501には、流入口5011および流出口5012以外の孔として第1孔h1および第2孔h2のみが設けられる。ケース501に設ける第1孔h1および第2孔h2は、導通ケーブルC10を通すだけの径でよい。 In the case 501, only the first hole h1 and the second hole h2 are provided as holes other than the inlet 5011 and the outlet 5012. The first hole h1 and the second hole h2 provided in the case 501 may have a diameter sufficient to pass the conductive cable C10.
 第1孔h1と第1導通ケーブルC11との隙間、および第2孔h2と第2導通ケーブルC12との隙間のそれぞれには封止剤65が埋め込まれている。この封止剤65によって、ケース501内に流入した媒体が第1孔h1や第2孔h2からケース501の外へ漏れることがなくなる。 A sealant 65 is embedded in each of the gap between the first hole h1 and the first conductive cable C11 and the gap between the second hole h2 and the second conductive cable C12. The sealant 65 prevents the medium flowing into the case 501 from leaking out of the case 501 from the first hole h1 and the second hole h2.
 本実施形態に係る車載用ヒータ1の防水性は非常に高い。したがって、ケース501内に車載用ヒータ1の全体を収容することができる。例えば、媒体が液体(例えば水)の場合、ケース501内は水で満たされる。本実施形態に係る車載用ヒータ1の防水性は非常に高いため、キャップ70を含めた車載用ヒータ1の全体をケース501内に収容しても車載用ヒータ1の内部へ浸水することはない。 The waterproofness of the on-vehicle heater 1 according to the present embodiment is very high. Therefore, the whole of the on-vehicle heater 1 can be accommodated in the case 501. For example, if the medium is a liquid (eg, water), the case 501 is filled with water. Since the waterproofness of the on-vehicle heater 1 according to the present embodiment is very high, even if the entire on-vehicle heater 1 including the cap 70 is accommodated in the case 501, the inside of the on-vehicle heater 1 is not flooded. .
 このため、流入口5011および流出口5012以外でケース501に開ける孔は導通ケーブルC10を通す小さな第1孔h1および第2孔h2だけで済む。ケース501に設ける孔が小さいことで、この孔(第1孔h1および第2孔h2)と導通ケーブルC10との僅かな隙間だけを封止剤65で封止すればよく、封止が容易となる。しかも、少ない量の封止剤65であっても確実な封止を行うことができ、簡単でありながら高い封止性を実現することができる。 For this reason, the holes opened in the case 501 other than the inflow port 5011 and the outflow port 5012 are only the small first holes h1 and the second holes h2 through which the conduction cable C10 passes. Since the holes provided in the case 501 are small, only a slight gap between the holes (the first hole h1 and the second hole h2) and the conductive cable C10 may be sealed with the sealing agent 65, and the sealing is easy. Become. Furthermore, even if the amount of the sealing agent 65 is small, reliable sealing can be performed, and high sealing performance can be realized while being simple.
 車載用ヒータ装置500で媒体を加熱するには、流入口5011からケース501内に媒体を送り込む。ケース501内に流入した媒体は、フィン150の流路1501に沿って流れていく。本実施形態では、フィン150の流路1501と流入口5011の延びる方向とがほぼ一致しているため、流入した媒体が効率よくフィン150の流路1501に沿って流れていくことになる。 In order to heat the medium by the on-vehicle heater device 500, the medium is fed into the case 501 from the inflow port 5011. The medium having flowed into the case 501 flows along the flow path 1501 of the fin 150. In the present embodiment, since the flow path 1501 of the fin 150 and the extending direction of the inflow port 5011 substantially coincide with each other, the inflowing medium efficiently flows along the flow path 1501 of the fin 150.
 流路1501に沿って流れる媒体はフィン150との熱交換により加熱されて、流出口5012からケース501の外部に流出する。本実施形態では、フィン150の流路1501と流出口5012の延びる方向とがほぼ一致しているため、流路1501に沿って加熱された媒体は効率よく流出口5012から外部へ流出していく。 The medium flowing along the flow path 1501 is heated by heat exchange with the fins 150, and flows out from the outlet 5012 to the outside of the case 501. In this embodiment, since the flow path 1501 of the fin 150 and the extending direction of the outlet 5012 substantially coincide with each other, the medium heated along the flow path 1501 efficiently flows out from the outlet 5012 to the outside. .
 図14は、他の車載用ヒータ装置を例示する斜視図である。
 図14に示す車載用ヒータ装置500では、流入口5011と流出口5012とがケース501における互いに対向する位置に配置されている。流入口5011の延びる方向と流出口5012の延びる方向とはほぼ一致している。
FIG. 14 is a perspective view illustrating another on-vehicle heater device.
In the on-vehicle heater device 500 shown in FIG. 14, the inflow port 5011 and the outflow port 5012 are disposed at mutually opposing positions in the case 501. The extending direction of the inlet 5011 and the extending direction of the outlet 5012 substantially coincide with each other.
 このような車載用ヒータ装置500において、車載用ヒータユニット1Uは、フィン150の流路1501の一端1501a(図11参照)を流入口5011と対向させ、流路1501の他端1501b(図11参照)を流出口5012と対向させて、ケース501内に収容されている。 In such an on-vehicle heater device 500, the on-vehicle heater unit 1U causes one end 1501a (see FIG. 11) of the flow passage 1501 of the fin 150 to face the inflow port 5011 and the other end 1501b (see FIG. 11). And the outlet 5012 are accommodated in the case 501.
 ケース501における流入口5011および流出口5012のそれぞれが取り付けられる部分にはテーパ部5013が設けられる。流入口5011側のテーパ部5013は、流入口5011からケース501の内部に向けて徐々に断面積が拡がるように形成されている。ケース501の内部には多段のフィン150が構成された車載用ヒータユニット1Uが収容されている。テーパ部5013が設けられていることで、流入口5011から流入した媒体をケース501の内部に均一に拡散させて導くことができ、多段のフィン150の流路1501の全体に媒体を偏りなく流すことができる。これにより、高い熱交換効率を実現できる。 A tapered portion 5013 is provided at a portion of the case 501 to which each of the inlet 5011 and the outlet 5012 is attached. The tapered portion 5013 on the inflow port 5011 side is formed so that the cross-sectional area gradually expands from the inflow port 5011 toward the inside of the case 501. In the inside of the case 501, an on-vehicle heater unit 1U in which multiple fins 150 are formed is accommodated. By providing the tapered portion 5013, the medium flowing from the inflow port 5011 can be uniformly diffused and guided to the inside of the case 501, and the medium flows evenly in the entire flow path 1501 of the multistage fins 150. be able to. Thereby, high heat exchange efficiency can be realized.
 また、流出口5012側のテーパ部5013は、ケース501の内部から流出口5012に向けて徐々に断面積が狭くなるように形成されている。これにより、ケース501内に収容された車載用ヒータユニット1Uの多段のフィン150の流路1501を通過した媒体は、テーパ部5013によって効率よく流出口5012に集められ、流出口5012からケース501の外部へ流出することになる。 The tapered portion 5013 on the outlet 5012 side is formed so that the cross-sectional area gradually narrows from the inside of the case 501 toward the outlet 5012. As a result, the medium that has passed through the channels 1501 of the multi-stage fins 150 of the in-vehicle heater unit 1U housed in the case 501 is efficiently collected at the outlet 5012 by the tapered portion 5013. It will flow out.
 この車載用ヒータ装置500においても、ケース501には流入口5011および流出口5012以外の孔として第1孔h1および第2孔h2のみが設けられる。ケース501に設ける孔が小さいことで、少ない量の封止剤65であっても確実な封止性を得ることができる。 Also in the on-vehicle heater device 500, only the first hole h1 and the second hole h2 are provided in the case 501 as holes other than the inflow port 5011 and the outflow port 5012. Since the holes provided in the case 501 are small, reliable sealing performance can be obtained even with a small amount of the sealing agent 65.
 図12および図14に示すような本実施形態に係る車載用ヒータ装置500では、高耐電圧、優れた絶縁性および防水性を備えた車載用ヒータ1を用いているため、300V以上の耐電圧を得ることができるとともに、高い防水性および高い放熱効率を得ることができる。また、フィン150をろう付けすることで、高効率化(放熱効率の向上)を達成することが可能となる。したがって、同じ出力であれば車載用ヒータ装置500の小型化を達成することができ、同じ大きさであれば車載用ヒータ装置500の高出力化を図ることが可能となる。 In the on-vehicle heater device 500 according to the present embodiment as shown in FIGS. 12 and 14, since the on-vehicle heater 1 having high withstand voltage, excellent insulation and waterproofness is used, withstand voltage of 300 V or more As a result, high waterproofness and high heat dissipation efficiency can be obtained. In addition, by brazing the fins 150, it is possible to achieve high efficiency (improvement of heat dissipation efficiency). Therefore, downsizing of the on-vehicle heater device 500 can be achieved with the same output, and high output of the on-vehicle heater device 500 can be achieved with the same size.
 図15は、車載用ヒータ装置の適用例を示す模式図である。
 図15では、先に説明した車載用ヒータ装置500を自動車等のエンジン5を備えた車両に取り付けた具体例が示される。
 車載用ヒータユニット1Uを収容したケース501は、循環路6に接続される。循環路6は管路6a~6dを有する。管路6aは、ケース501とヒータコア2Hとを接続する。管路6bは、ヒータコア2Hと液圧ポンプ3とを接続する。管路6cは、液圧ポンプ3と三方弁4とを接続する。管路6dは、三方弁4とケース501とを接続する。管路6dは、ケース501の流入口5011と接続され、管路6aはケースの流出口5012と接続される。
FIG. 15 is a schematic view showing an application example of the on-vehicle heater device.
In FIG. 15, the specific example which attached the vehicle-mounted heater apparatus 500 demonstrated previously to the vehicles provided with engines 5, such as a motor vehicle, is shown.
A case 501 accommodating the in-vehicle heater unit 1U is connected to the circulation passage 6. The circulation passage 6 has conduits 6a to 6d. The conduit 6a connects the case 501 and the heater core 2H. The conduit 6 b connects the heater core 2 H and the hydraulic pump 3. The conduit 6 c connects the hydraulic pump 3 and the three-way valve 4. The conduit 6 d connects the three-way valve 4 and the case 501. The conduit 6 d is connected to the inlet 5011 of the case 501, and the conduit 6 a is connected to the outlet 5012 of the case.
 また、循環路6およびケース501は、管路7a、7bを介してエンジン5とも接続されている。三方弁4が管路6cと管路7aとの間を遮断し、管路6cと管路6dとの間を連通させた状態のとき、液圧ポンプ3が駆動されると、ケース501内および循環路6を、図15に示す矢印A11で示す方向に液体が循環する。 Further, the circulation passage 6 and the case 501 are also connected to the engine 5 via the conduits 7a and 7b. When the hydraulic pump 3 is driven in a state where the three-way valve 4 shuts off between the pipeline 6c and the pipeline 7a and brings the pipeline 6c and the pipeline 6d into communication, the inside of the case 501 and The liquid circulates in the circulation path 6 in the direction indicated by the arrow A11 shown in FIG.
 このとき、車両に搭載されたバッテリーから、ケース501内の車載用ヒータユニット1Uに電力を供給することで車載用ヒータユニット1Uが発熱し、ケース501内の液体が過熱される。この過熱により生成された温水は流出口5012および管路6aを通ってヒータコア2Hに供給される。 At this time, by supplying power from the battery mounted on the vehicle to the on-vehicle heater unit 1U in the case 501, the on-vehicle heater unit 1U generates heat, and the liquid in the case 501 is overheated. The hot water generated by this superheating is supplied to the heater core 2H through the outlet 5012 and the pipe line 6a.
 ヒータコア2Hに供給された温水はヒータコア2Hに具備された管を流れる。ヒータコア2Hには送風装置8から気体(空気)が送風される。ヒータコア2Hの管を流れる温水の熱は、ヒータコア2Hに具備されたフィンなどの熱伝達面を介して、送風装置8から送風された気体に伝達される。これにより、車内に温風が送風される。このモードは、例えばエンジン5の始動時など、エンジン5の排熱を利用できない場合に選択される。 Hot water supplied to the heater core 2H flows through a pipe provided in the heater core 2H. Gas (air) is blown from the blower 8 to the heater core 2H. The heat of the hot water flowing through the tube of the heater core 2H is transferred to the gas blown from the blower 8 through a heat transfer surface such as a fin provided on the heater core 2H. Thus, the warm air is blown into the car. This mode is selected when exhaust heat of the engine 5 can not be used, for example, at the start of the engine 5.
 エンジン5が始動後、三方弁4を切り替えて、管路6cと管路7aとを連通させ、管路6cと管路6dとを遮断すれば、液体はエンジン5に供給されエンジン5の冷却水として機能する。このときの液体の流れを図15の矢印A12に示す。エンジン5を通過しエンジン5との熱交換により温められた温水は管路7b、6d、流入口5011、ケース501内、流出口5012および管路6aを介してヒータコア2Hに供給される。したがって、このモードの場合には、車載用ヒータユニット1Uを通電(発熱)させなくてもヒータコア2Hに温水を供給でき、送風装置8を駆動させることで、車内に温風を送ることができる。 After the engine 5 is started, the three-way valve 4 is switched to connect the pipe line 6c and the pipe line 7a and to shut off the pipe line 6c and the pipe line 6d. Act as. The flow of the liquid at this time is shown by arrow A12 in FIG. Hot water passing through the engine 5 and warmed by heat exchange with the engine 5 is supplied to the heater core 2H via the conduits 7b and 6d, the inlet 5011, the inside of the case 501, the outlet 5012 and the conduit 6a. Therefore, in this mode, warm water can be supplied to the heater core 2H without energizing (heating) the on-vehicle heater unit 1U, and hot air can be sent into the vehicle by driving the blower 8.
 本実施形態に係る車載用ヒータ装置500は、エンジン5の排熱によって加熱された冷却水を利用した既存の車載温水生成システムにそのまま組み込んで使用することができる。 The on-vehicle heater device 500 according to the present embodiment can be incorporated as it is into an existing on-vehicle hot water generation system using cooling water heated by the exhaust heat of the engine 5.
 図16は、車載用ヒータ装置の他の適用例を示す模式図である。
 図16では、先に説明した車載用ヒータ装置500を、電気自動車等のエンジン5を備えていない車両に取り付けた具体例が示される。
 電気自動車等のエンジン5を備えていない車両では、エンジン5の代わりに駆動源としてモータMが用いられる。この場合、車載用ヒータユニット1Uを収容したケース501は、循環路6に接続される。循環路6には、図15に示すような三方弁4や管路7a、7bは接続されていない。
FIG. 16 is a schematic view showing another application example of the on-vehicle heater device.
FIG. 16 shows a specific example in which the on-vehicle heater device 500 described above is attached to a vehicle such as an electric vehicle that does not have the engine 5.
In a vehicle not equipped with the engine 5 such as an electric car, a motor M is used as a drive source instead of the engine 5. In this case, the case 501 accommodating the in-vehicle heater unit 1U is connected to the circulation passage 6. The three-way valve 4 and the conduits 7a and 7b as shown in FIG. 15 are not connected to the circulation passage 6.
 モータMの排熱を利用しないため、先に説明したエンジン5の始動時などのエンジン5の排熱を利用できない場合に選択されるモードと同様な動作で車内に温風が送られる。すなわち、液圧ポンプ3が駆動されると、ケース501内および循環路6を、図16に示す矢印A13で示す方向に液体が循環する。 Since the exhaust heat of the motor M is not used, the warm air is sent into the vehicle in the same operation as the mode selected when the exhaust heat of the engine 5 can not be utilized at the start of the engine 5 described above. That is, when the hydraulic pump 3 is driven, the liquid circulates in the case 501 and the circulation path 6 in the direction indicated by the arrow A13 shown in FIG.
 このとき、車両に搭載されたバッテリーから、ケース501内の車載用ヒータユニット1Uに電力を供給することで車載用ヒータユニット1Uが発熱し、ケース501内の液体が過熱される。この過熱により生成された温水は流出口5012および管路6aを通ってヒータコア2Hに供給される。そして、ヒータコア2Hの管を流れる温水の熱が送風装置8から送風された気体に伝達され、車内に温風が送風される。 At this time, by supplying power from the battery mounted on the vehicle to the on-vehicle heater unit 1U in the case 501, the on-vehicle heater unit 1U generates heat, and the liquid in the case 501 is overheated. The hot water generated by this superheating is supplied to the heater core 2H through the outlet 5012 and the pipe line 6a. Then, the heat of the hot water flowing through the tube of the heater core 2H is transmitted to the gas blown from the blower 8 and the warm air is blown into the car.
 本実施形態に係る車載用ヒータ装置500は、エンジン5を利用しない電気自動車等の車両の温風生成システムに組み込んで使用することができる。 The on-vehicle heater device 500 according to the present embodiment can be used by being incorporated into a warm air generation system of a vehicle such as an electric car that does not use the engine 5.
(ヒートポンプシステム) (Heat pump system)
 図17は、ヒートポンプシステムの模式図である。このヒートポンプシステムは、2つの熱交換器101、105と、膨張弁103と、圧縮機107と、前述した実施形態の車載用ヒータ装置500とを含む。 FIG. 17 is a schematic view of a heat pump system. The heat pump system includes two heat exchangers 101 and 105, an expansion valve 103, a compressor 107, and the on-vehicle heater device 500 of the embodiment described above.
 このシステム内を冷媒(ノンフロンガスなどの媒体)が循環する。冷媒は、圧縮機107で圧縮されて、高温高圧ガスの状態で配管108を通じて熱交換器101に送られる。そして、熱交換器101における、加熱対象の流体(空気や液体)との熱交換により、上記冷媒は凝縮され、高温高圧の液体の状態で、配管102を通じて膨張弁103に送られる。 A refrigerant (a medium such as non-fluorocarbon gas) circulates in the system. The refrigerant is compressed by the compressor 107 and is sent to the heat exchanger 101 through the pipe 108 in the state of high-temperature high-pressure gas. Then, the refrigerant is condensed by heat exchange with the fluid (air or liquid) to be heated in the heat exchanger 101, and is sent to the expansion valve 103 through the pipe 102 in the state of a high-temperature high-pressure liquid.
 膨張弁で膨張された冷媒は、低温低圧の液体の状態で、配管104を通じて熱交換器105に送られる。熱交換器105における大気などとの熱交換により、上記冷媒は蒸発され、低温低圧ガスの状態で、配管106を通じて圧縮機107に送られ、以上説明したサイクルが繰り返される。 The refrigerant expanded by the expansion valve is sent to the heat exchanger 105 through the pipe 104 in the form of a low temperature and low pressure liquid. By the heat exchange with the atmosphere or the like in the heat exchanger 105, the refrigerant is evaporated and sent to the compressor 107 through the pipe 106 in the state of low-temperature low-pressure gas, and the cycle described above is repeated.
 本実施形態に係る車載用ヒータ装置500は、熱交換器105と圧縮機107との間の配管106に接続され、熱交換器105から圧縮機107に送られる低圧ガスを加熱する。すなわち、車載用ヒータ装置500は、熱交換器105と圧縮機107との間の経路における冷媒加熱を補助する。 The on-vehicle heater device 500 according to the present embodiment is connected to the pipe 106 between the heat exchanger 105 and the compressor 107 and heats the low pressure gas sent from the heat exchanger 105 to the compressor 107. That is, the on-vehicle heater device 500 assists the refrigerant heating in the path between the heat exchanger 105 and the compressor 107.
 車載用ヒータ装置500内においては、前述した流路1501内を低圧ガスが流れ、そのガスは発熱素子10によって加熱される。すなわち、車載用ヒータ装置500は、液体に限らず、気体の加熱にも有効である。 In the on-vehicle heater device 500, the low pressure gas flows in the flow path 1501 described above, and the gas is heated by the heating element 10. That is, the on-vehicle heater device 500 is effective not only for the liquid but also for heating the gas.
 また、車載用ヒータ装置500は、図18に示すように、圧縮機107と熱交換器101との間の配管108に接続して、その配管108を流れる液体を加熱してもよい。また、図示しないが、車載用ヒータ装置500は、配管102に接続してもよい。また、ヒートポンプシステムにおいて、2つ以上の車載用ヒータ装置500を適宜の配管に接続してもよい。車載用ヒータ装置500は、ヒートポンプシステムにおけるいずれの配管102、106および108に接続されていてもよいが、低圧の配管106に接続されていることが好ましい。 Further, as shown in FIG. 18, the on-vehicle heater device 500 may be connected to the pipe 108 between the compressor 107 and the heat exchanger 101 to heat the liquid flowing through the pipe 108. Further, although not shown, the on-vehicle heater device 500 may be connected to the pipe 102. Further, in the heat pump system, two or more on-vehicle heater devices 500 may be connected to appropriate pipes. The on-vehicle heater device 500 may be connected to any of the pipes 102, 106 and 108 in the heat pump system, but is preferably connected to the low pressure pipe 106.
 図19は、ヒートポンプシステムに適用される車載用ヒータ装置の構成例を示す一部分解斜視図である。
 図19では、ケース501の一方側のテーパ部5013を外した状態が示される。
 図19に示す車載用ヒータ装置500において、フィン150の流路1501の方向が流入口5011と流出口5012とを結ぶ方向に延びるよう設けられている。すなわち、この車載用ヒータ装置500では、ケース501内に収容される車載用ヒータユニット1Uの長さ方向が、フィン150の流路1501の方向と一致している。これにより、流入口5011からケース501内に流入した冷媒等の媒体は、自然にフィン150の流路1501に流れていき、流路1501から出た媒体は、自然に流出口5012から流出していくことになる。
FIG. 19 is a partially exploded perspective view showing a configuration example of a vehicle-mounted heater device applied to the heat pump system.
FIG. 19 shows a state in which the taper portion 5013 on one side of the case 501 is removed.
In the on-vehicle heater device 500 shown in FIG. 19, the direction of the flow path 1501 of the fin 150 is extended in the direction connecting the inflow port 5011 and the outflow port 5012. That is, in the on-vehicle heater device 500, the longitudinal direction of the on-vehicle heater unit 1U accommodated in the case 501 matches the direction of the flow path 1501 of the fin 150. Thus, the medium such as the refrigerant that has flowed into the case 501 from the inflow port 5011 naturally flows into the flow path 1501 of the fin 150, and the medium that has flowed out of the flow path 1501 naturally flows out from the outflow port 5012 It will go.
 この車載用ヒータユニット1Uにおいては、筒体50の側面53に突出部530が設けられている。突出部530は、幅方向においてフィン150よりも外側に突出している。図19に示す例では、筒体50の左右の側面53のそれぞれに突出部530が設けられる。 In the on-vehicle heater unit 1U, a protrusion 530 is provided on the side surface 53 of the cylindrical body 50. The protrusion 530 protrudes outward beyond the fin 150 in the width direction. In the example shown in FIG. 19, the protrusion 530 is provided on each of the left and right side surfaces 53 of the cylindrical body 50.
 ケース501の対向する内壁のそれぞれには一対の凸部5021が設けられており、車載用ヒータユニット1Uをケース501内に収容する際、この一対の凸部5021の間に筒体50の突出部530が挿入される。これにより、ケース501内に車載用ヒータユニット1Uを収容する際、突出部530が支えとなるため、フィン150に力をかけることなく、ケース501内の所定位置に車載用ヒータユニット1Uを位置決めすることができる。 Each of the opposing inner walls of the case 501 is provided with a pair of convex portions 5021. When the on-vehicle heater unit 1U is accommodated in the case 501, a projection of the cylindrical body 50 is formed between the pair of convex portions 5021 530 is inserted. As a result, when the in-vehicle heater unit 1U is accommodated in the case 501, the projection 530 serves as a support, and thus the in-vehicle heater unit 1U is positioned at a predetermined position in the case 501 without applying a force to the fins 150. be able to.
 この突出部530の厚さ方向の長さ(高さ)は、筒体50の厚さ方向の長さよりも長い。突出部530の高さは、フィン150の高さと等しいか、僅かに大きくなっていることが好ましい。これにより、突出部530によってフィン150の側面がカバーされることになる。フィン150の側面が突出部530によってカバーされていると、ケース501の外側の温度の影響がケース501内のフィン150に伝わることを抑制することができる。例えば、寒冷地や温暖地のように、気温の影響が大きい環境で使用する場合、突出部530によってフィン150の側面がカバーされていることで、外気温の影響がフィン150に伝わりにくくなり、車載用ヒータユニット1Uによる加熱性能を発揮しやすくなる。 The length (height) of the protrusion 530 in the thickness direction is longer than the length of the cylindrical body 50 in the thickness direction. It is preferable that the height of the protrusion 530 be equal to or slightly larger than the height of the fin 150. Thus, the side surface of the fin 150 is covered by the protrusion 530. When the side surface of the fin 150 is covered by the protrusion 530, the influence of the temperature outside the case 501 can be suppressed from being transmitted to the fin 150 in the case 501. For example, when used in an environment where the influence of air temperature is large, such as in a cold area or a warm area, the side surface of the fin 150 is covered by the projecting portion 530, so that the influence of the outside air temperature becomes difficult to be transmitted to the fin 150, It becomes easy to exhibit the heating performance by heater unit 1U for vehicles.
 なお、突出部530は、筒体50の側面53と一体に設けられていてもよいし、筒体50とは別体に設けられ、側面53に取り付けられていてもよい。また、突出部530が設けられた車載用ヒータユニット1Uは、図19に示す例のほか、図12および図14に示す車載用ヒータ装置500にも適用可能である。 The protrusion 530 may be provided integrally with the side surface 53 of the cylindrical body 50, may be provided separately from the cylindrical body 50, and may be attached to the side surface 53. In addition to the example shown in FIG. 19, the on-vehicle heater unit 1U provided with the projecting portion 530 is also applicable to the on-vehicle heater device 500 shown in FIGS. 12 and 14.
 以上説明したように、実施形態によれば、複雑な構成を採用することなく、厳しい環境下であっても対応可能な車載用ヒータ1を提供することが可能となる。 As described above, according to the embodiment, it is possible to provide the on-vehicle heater 1 that can cope with a severe environment without adopting a complicated configuration.
(絶縁防水型ヒータ)
 図20(a)および(b)は、本実施形態に係る絶縁防水型ヒータを例示する図である。図20(a)には絶縁防水型ヒータ2の斜視図が示され、図20(b)には(a)のD-D線の拡大断面図が示される。
 図21は、発熱部材を例示する分解斜視図である。
 本実施形態に係る絶縁防水型ヒータ2は、筒型であって防水性および電気的絶縁性を備えた温度調整装置である。絶縁防水型ヒータ2は、発熱素子10、一対の電極部20、筒体50、絶縁性粉末40、封止体90および一対の導通ケーブルC10を備える。
(Insulated waterproof heater)
FIG. 20A and FIG. 20B are views exemplifying the insulated waterproof heater according to the present embodiment. FIG. 20 (a) shows a perspective view of the insulated waterproof heater 2, and FIG. 20 (b) shows an enlarged cross-sectional view taken along the line DD of (a).
FIG. 21 is an exploded perspective view illustrating the heat generating member.
The insulation and waterproof type heater 2 according to the present embodiment is a tubular temperature control device having waterproofness and electrical insulation. The insulated waterproof heater 2 includes a heating element 10, a pair of electrode units 20, a cylinder 50, an insulating powder 40, a sealing body 90, and a pair of conductive cables C10.
 発熱素子10の表裏には電極層10aが設けられる。発熱素子10には、例えばPTC素子が用いられる。一対の電極部20の間には発熱素子10が挟持される。これにより、発熱素子10の表裏の電極層10aのそれぞれと一対の電極部20のそれぞれとが導通する状態になる。 Electrode layers 10 a are provided on the front and back of the heater element 10. For example, a PTC element is used for the heating element 10. The heating element 10 is held between the pair of electrode portions 20. As a result, each of the front and back electrode layers 10a of the heat generating element 10 and each of the pair of electrode portions 20 are brought into conduction.
 この発熱素子10および一対の電極部20により発熱部材200が構成される。図21に示すように、発熱部材200は上記説明した発熱構造体100(図2参照)と同様な構成であることが好ましい。ただし、発熱部材200は、絶縁性シート30が設けられていない点で発熱構造体100と相違する。 The heat generating element 200 and the pair of electrode parts 20 constitute a heat generating member 200. As shown in FIG. 21, the heat generating member 200 preferably has the same configuration as the heat generating structure 100 (see FIG. 2) described above. However, the heat generating member 200 is different from the heat generating structure 100 in that the insulating sheet 30 is not provided.
 筒体50は発熱部材200を内部に収容する。筒体50は、例えば円筒型に設けられる。筒体50は円筒型以外でもよいが、円筒型であれば製造が容易であり、低コスト化しやすい。 The cylindrical body 50 accommodates the heat generating member 200 inside. The cylinder 50 is provided, for example, in a cylindrical shape. The cylindrical body 50 may be other than a cylindrical shape, but if it is a cylindrical shape, manufacture is easy and cost can be easily reduced.
 筒体50には、例えばステンレスが用いられる。ステンレスは耐水性、耐薬品性が高いため、絶縁防水型ヒータ2を水や液体に浸漬して使用する場合に高い耐久性を得ることができる。 For example, stainless steel is used for the cylindrical body 50. Since stainless steel has high water resistance and chemical resistance, high durability can be obtained when the insulated waterproof heater 2 is used by being immersed in water or liquid.
 筒体50の外表面は放熱面51となる。筒体50が円筒型であれば、放熱面51が円周面となって周囲に対して均一に熱を伝えることができる。放熱面51は平坦でもよいし、凹凸や溝(螺旋溝など)が設けられていてもよい。放熱面51にはフィンが設けられていてもよい。凹凸、溝およびフィンが設けられることで、放熱面51が平坦な場合に比べて放熱効率を高めることができる。 The outer surface of the cylindrical body 50 is a heat dissipation surface 51. If the cylindrical body 50 is cylindrical, the heat dissipation surface 51 becomes a circumferential surface, and heat can be uniformly transmitted to the periphery. The heat radiation surface 51 may be flat, or may be provided with asperities or grooves (such as spiral grooves). The heat dissipating surface 51 may be provided with fins. By providing the asperities, the grooves, and the fins, the heat radiation efficiency can be enhanced as compared with the case where the heat radiation surface 51 is flat.
 筒体50の内部には、絶縁性粉末40が充填される。絶縁性粉末40は、筒体50と、筒体50の内部に収容される発熱部材200とを電気的に絶縁する役目を果たす。すなわち、筒体50の内表面と発熱部材200との隙間に絶縁性粉末40が埋め込まれる。これにより、筒体50と発熱部材300とが直接接触することを防止している。なお、絶縁性粉末40が充填される前、筒体50は中空部55を有する。絶縁性粉末40によって中空部55の全てが埋め込まれてもよいし、絶縁性粉末40の充填後、中空部55の一部が残っていてもよい。 The inside of the cylindrical body 50 is filled with the insulating powder 40. The insulating powder 40 serves to electrically insulate the cylindrical body 50 and the heat generating member 200 accommodated in the cylindrical body 50. That is, the insulating powder 40 is embedded in the gap between the inner surface of the cylindrical body 50 and the heat generating member 200. Thereby, the direct contact between the cylindrical body 50 and the heat generating member 300 is prevented. The cylindrical body 50 has the hollow portion 55 before the insulating powder 40 is filled. The whole of the hollow portion 55 may be embedded with the insulating powder 40, or a part of the hollow portion 55 may remain after the filling of the insulating powder 40.
 絶縁性粉末40としては、例えば酸化マグネシウム(MgO)が用いられる。筒体50の内部に絶縁性粉末40が充填されることで、発熱部材200は筒体50の内表面と接触しないように内部の中央付近に位置決めされる。発熱部材200は板状型であり、円筒型の中空部55に発熱部材200を収容する際、発熱部材200と筒体50の内表面との隙間に絶縁性粉末40が充填される。これにより、発熱部材200の筒体50の内部での位置が固定される。したがって、絶縁性粉末40は、電気的な絶縁性とともに発熱部材200を筒体50の内部で位置決めする役目も果たす。 For example, magnesium oxide (MgO) is used as the insulating powder 40. By filling the inside of the cylindrical body 50 with the insulating powder 40, the heat-generating member 200 is positioned near the center of the inside of the cylindrical body 50 so as not to be in contact with the inner surface of the cylindrical body 50. The heat generating member 200 is a plate-like mold, and when the heat generating member 200 is housed in the cylindrical hollow portion 55, the gap between the heat generating member 200 and the inner surface of the cylindrical body 50 is filled with the insulating powder 40. Thus, the position of the heat generating member 200 inside the cylindrical body 50 is fixed. Therefore, the insulating powder 40 also serves to position the heat generating member 200 inside the cylindrical body 50 as well as electrically insulating.
 筒体50の開口端には封止体90が設けられる。例えば、筒体50として両端が開口している場合には両端の開口端に封止体90が設けられ、一端が開口し、他端が閉じている場合には一端の開口端に封止体90が設けられる。封止体90は、キャップでもよいし、埋め込み材であってもよい。 A sealing body 90 is provided at the open end of the cylindrical body 50. For example, in the case where both ends of the cylindrical body 50 are open, the sealing body 90 is provided at the opening ends of both ends, one end is open, and the other end is closed, the sealing body is provided at one end. 90 are provided. The sealing body 90 may be a cap or an embedding material.
 キャップの場合には、封止体90として金属(例えば、ステンレス)や樹脂が用いられる。キャップによる封止体90は筒体50の開口端に嵌め込まれ、溶接や接着などによって封止固定される。また、埋め込み材の場合には、封止体90としてシリコーン樹脂などが用いられる。埋め込み材による封止体90は筒体50の開口端から筒内に埋め込まれ、筒内を封止する。 In the case of a cap, metal (for example, stainless steel) or resin is used as the sealing body 90. The sealing body 90 by the cap is fitted to the open end of the cylindrical body 50 and sealed and fixed by welding, adhesion or the like. In the case of the embedding material, a silicone resin or the like is used as the sealing body 90. The sealing body 90 made of the embedding material is embedded in the cylinder from the open end of the cylinder 50 and seals the inside of the cylinder.
 一対の導通ケーブルC10は、一対の電極部20とそれぞれ導通し、封止体90を貫通して筒体50の外部へ引き出される。導通ケーブルC10の先端において絶縁被覆材から露出する導線がかしめ部分250でかしめによって接続されることが好ましい。 The pair of conductive cables C10 are respectively conducted to the pair of electrode portions 20, penetrate the sealing body 90, and are drawn out of the cylindrical body 50. It is preferable that the lead exposed from the insulation coating material at the end of the conductive cable C10 be connected by caulking at the caulking portion 250.
(絶縁防水型ヒータの適用例)
 図22は、絶縁防水型ヒータの適用例を示す斜視図である。
 本実施形態に係る絶縁防水型ヒータ2の外装形状は筒体50の形状(例えば、円筒型)になっている。したがって、例えば容器Vに筒体50を差し込むようにして、容器V内の対象物を加熱(温度調整)することができる。例えば、液体LQを容器Vに送り込み、容器V内で液体LQを加熱して送り出すシステムの場合、容器Vの略中央部に絶縁防水型ヒータ2の筒体50を差し込むようにする。
(Example of application of insulation and waterproof type heater)
FIG. 22 is a perspective view showing an application example of the insulating waterproof heater.
The exterior shape of the insulation and waterproof type heater 2 according to the present embodiment is the shape of the cylindrical body 50 (for example, a cylindrical shape). Therefore, for example, as the cylindrical body 50 is inserted into the container V, the object in the container V can be heated (temperature control). For example, in the case of a system in which the liquid LQ is fed into the container V and the liquid LQ is heated and delivered in the container V, the cylindrical body 50 of the insulating waterproof heater 2 is inserted into the approximate center of the container V.
 容器V内の液体LQの温度が所定の閾値より低くなった場合、導通ケーブルC10から発熱部材200に電圧を印加する。これにより、発熱素子10が発熱して筒体50の放熱面51を介して容器V内の液体LQが加熱される。発熱素子10がPTC素子の場合、正温度特性を有している。これにより、一定の温度になると抵抗値の増加によって電流が抑制される。したがって、液体LQを加熱する際に一定の温度以上にならないように制御することができる。特に、液体LQが薬品であって必要以上の温度上昇を抑制したい場合や温度による変質を防止したい場合、本実施形態に係る絶縁防水型ヒータ2を用いることで、簡単な構成で的確な温度制御を実現することが可能となる。 When the temperature of the liquid LQ in the container V becomes lower than a predetermined threshold value, a voltage is applied to the heat generating member 200 from the conduction cable C10. Thereby, the heat generating element 10 generates heat, and the liquid LQ in the container V is heated via the heat dissipation surface 51 of the cylindrical body 50. When the heating element 10 is a PTC element, it has positive temperature characteristics. Thereby, when the temperature reaches a certain temperature, the current is suppressed by the increase of the resistance value. Therefore, when heating the liquid LQ, it can control so that it does not become more than fixed temperature. In particular, when the liquid LQ is a medicine and it is desired to suppress the temperature rise more than necessary or when it is desired to prevent the deterioration due to the temperature, the temperature control can be accurately performed with a simple configuration by using the insulation waterproof heater 2 according to the present embodiment. It is possible to realize
 なお、上記に本実施形態およびその適用例(変形例、具体例)を説明したが、本発明はこれらの例に限定されるものではない。例えば、導通ケーブルC10を接続する端子としてかしめ部分250の例を示したが、平板状に延出する端子部分であってもよい。この場合、導通ケーブルC10を、はんだ付け、ろう付け、ねじ止めで接続してもよいし、コネクタで接続してもよい。また、発熱素子10としてPTC素子を用いる例を示したが、PTC素子以外の素子(例えば、アルミナや窒化珪素などのセラミックス)を用いてもよい。また、加熱対象の媒体は水、空気、ガスのほか、油やゲル状物などの他の物体(これらの少なくともいずれかの混合物を含む。)であってもよい。また、絶縁性シート30の材料としては、ポリイミドフィルムのほか、アルミナ板、絶縁セラミックス板、その他の絶縁性の材料であってもよい。また、前述の各実施形態またはその適用例(変形例、具体例)に対して、当業者が適宜、構成要素の追加、削除、設計変更を行ったものや、各実施形態の特徴を適宜組み合わせたものも、本発明の要旨を備えている限り、本発明の範囲に包含される。 In addition, although this embodiment and its application example (modification, concrete example) were described above, the present invention is not limited to these examples. For example, although the example of the caulking part 250 was shown as a terminal which connects the conduction | electrical_connection cable C10, the terminal part extended in flat form may be sufficient. In this case, the conductive cable C10 may be connected by soldering, brazing, screwing, or may be connected by a connector. Further, although an example in which a PTC element is used as the heating element 10 is shown, an element other than the PTC element (for example, a ceramic such as alumina or silicon nitride) may be used. Further, the medium to be heated may be water, air, gas, and other objects such as oil and gel (including a mixture of at least one of them). The material of the insulating sheet 30 may be an alumina plate, an insulating ceramic plate, or another insulating material other than a polyimide film. In addition, those skilled in the art appropriately add, delete, or change the design elements of the above-described embodiments or their application examples (modifications and specific examples) as appropriate, and appropriately combine the features of the embodiments Are also included in the scope of the present invention as long as they include the subject matter of the present invention.
 本発明は、自動車(電気自動車、ハイブリッド車など)のほか、電車その他の移動体、産業用装置の加熱用など、300V以上の高電圧で駆動する加熱装置として好適に利用可能である。 INDUSTRIAL APPLICABILITY The present invention can be suitably used as a heating device driven by a high voltage of 300 V or more, such as heating of vehicles (electric vehicles, hybrid vehicles, etc.), trains and other mobile objects, and industrial devices.
1,1A,1B,1C,1D…車載用ヒータ
2…絶縁防水型ヒータ
1U…車載用ヒータユニット
10…発熱素子
10a…電極層
20…電極部
30…絶縁性シート
30a,30b…端部
40…絶縁性粉末
50…筒体
50a,50b…開口
50c…内面
51…放熱面
53…側面
53a…溝
55…中空部
60…封止部
70,71,72…キャップ
70a…凹部
70h…貫通孔
80…ろう付け部
90…封止体
100…発熱構造体
101、105…熱交換器
102,104、106、108…配管
103…膨張弁
107…圧縮機
150…フィン
151…カバープレート
200…発熱部材
201…第1電極部
202…第2電極部
210…板状部分
211…第1板状部分
212…第2板状部分
220…端子部分
221…第1端子部分
222…第2端子部分
230…凸状延出部分
231…第1凸状延出部分
232…第2凸状延出部分
250…かしめ部分
250a…かしめ片
251…第1かしめ部分
252…第2かしめ部分
255…かしめ皺
500…車載用ヒータ装置
1501…流路
1501a…一端
1501b…他端
5011…流入口
5012…流出口
A1,A2,A3,A11,A12,A13…矢印
C10…導通ケーブル
C11…第1導通ケーブル
C12…第2導通ケーブル
D1…第1方向
D2…第2方向
D3…第3方向
F…ファン
G…隙間
h1…第1孔
h2…第2孔
LQ…液体
R…流路
V…容器
1, 2A, 1B, 1C, 1D: In-vehicle heater 2: Insulated waterproof type heater 1U: In-vehicle heater unit 10: Heating element 10a: Electrode layer 20: Electrode portion 30: Insulating sheet 30a, 30b: End 40 Insulating powder 50: cylinder 50a, 50b: opening 50c: inner surface 51: heat dissipation surface 53: side surface 53a: groove 55: hollow portion 60: sealing portion 70, 71, 72: cap 70a: recess 70h: through hole 80 Brazed portion 90: Sealed body 100: Heating structure 101, 105: Heat exchangers 102, 104, 106, 108: Piping 103: Expansion valve 107: Compressor 150: Fin 151: Cover plate 200: Heating plate 201: Heating member 201 First electrode portion 202 Second electrode portion 210 Plate-like portion 211 First plate-like portion 212 Second plate-like portion 220 Terminal portion 221 First terminal portion 222 Second terminal portion 2 0 ... convex extension part 231 ... first convex extension part 232 ... second convex extension part 250 ... caulking part 250a ... caulking piece 251 ... first caulking part 252 ... second caulking part 255 ... caulking collar 500 ... car heater device 1501 ... flow path 1501a ... one end 1501b ... other end 5011 ... inflow port 5012 ... outflow port A1, A2, A3, A11, A12, A13 ... arrow C10 ... conductive cable C11 ... first conductive cable C12 ... first 2 Conduction cable D1 ... first direction D2 ... second direction D3 ... third direction F ... fan G ... gap h1 ... first hole h2 ... second hole LQ ... liquid R ... flow path V ... container

Claims (26)

  1.  表裏に電極層が設けられた発熱素子と、
     前記発熱素子を間に挟持し、前記表裏の電極層のそれぞれと導通する一対の電極部と、
     前記一対の電極部の周囲を覆う絶縁性シートと、
     中空部および放熱面を有し、前記発熱素子、前記一対の電極部および前記絶縁性シートで構成された発熱構造体を前記中空部内に収容する筒体と、
     前記筒体の両端の開口を封止する封止部と、
     凹部を有し、前記凹部に前記筒体の両端部がそれぞれ嵌め入れられて前記中空部を閉塞する一対のキャップと、
     を備えた高耐電圧絶縁防水型車載用ヒータであって、
     前記一対の電極部のうちの一方である第1電極部は、
      前記電極層と導通するように接する第1板状部分と、
      前記第1板状部分における前記筒体の一方の開口側の端部に設けられた第1端子部分と、を有し、
     前記一対の電極部のうちの他方である第2電極部は、
      前記電極層と導通するように接する第2板状部分と、
      前記第2板状部分における前記筒体の一方の開口側の端部に設けられた第2端子部分と、を有し、
     前記一対の電極部の間で前記発熱素子を挟持する方向を第1方向、前記第1方向と直交し、前記筒体の延在する方向を第2方向、前記第1方向および前記第2方向と直交する方向を第3方向とした場合、
     前記第1方向にみて、前記第1端子部分と前記第2端子部分とは互いにずれた位置で配置され、
     前記筒体の前記一方の開口を封止する前記封止部は、前記絶縁性シートで囲まれる前記第1端子部分および前記第2端子部分を埋め込むよう設けられるとともに、前記絶縁性シートと前記筒体の内面との隙間に介在するよう設けられ、
     前記一対の電極部は、前記キャップおよび前記封止部によって密閉された前記筒体の前記中空部内に収容され、前記筒体の外に露出していない、高耐電圧絶縁防水型車載用ヒータ。
    A heating element provided with an electrode layer on the front and back;
    A pair of electrode parts sandwiching the heat generating element between them and electrically conducting to each of the front and back electrode layers;
    An insulating sheet covering the periphery of the pair of electrode parts;
    A cylindrical body which has a hollow portion and a heat radiation surface, and which accommodates a heat generating structure constituted by the heat generating element, the pair of electrode portions, and the insulating sheet in the hollow portion;
    A sealing portion sealing the openings at both ends of the cylindrical body;
    A pair of caps which have a recess and in which both ends of the cylinder are respectively fitted in the recess to close the hollow portion;
    High withstand voltage insulated and waterproof type automotive heater provided with
    The first electrode portion which is one of the pair of electrode portions is
    A first plate-like portion in electrical contact with the electrode layer;
    And a first terminal portion provided at one open end of the cylinder in the first plate-like portion;
    The second electrode portion, which is the other of the pair of electrode portions,
    A second plate-like portion in electrical contact with the electrode layer;
    And a second terminal portion provided at one open end of the cylinder in the second plate-like portion;
    A direction in which the heating element is held between the pair of electrode portions is a first direction, which is orthogonal to the first direction, and a direction in which the cylinder extends is a second direction, the first direction, and the second direction. If the direction orthogonal to
    When viewed in the first direction, the first terminal portion and the second terminal portion are disposed at mutually offset positions,
    The sealing portion for sealing the one opening of the cylinder is provided to embed the first terminal portion and the second terminal portion surrounded by the insulating sheet, and the insulating sheet and the cylinder are provided. It is provided to intervene in the gap with the inner surface of the body,
    The high withstand voltage insulated and waterproof vehicle-mounted heater which is accommodated in the hollow portion of the cylindrical body sealed by the cap and the sealing portion and which is not exposed outside the cylindrical body.
  2.  前記封止部によって、前記筒体の内部への防水構造、および前記第1端子部分と前記第2端子部分との間における300ボルト以上の耐電圧構造が構成された、請求項1記載の高耐電圧絶縁防水型車載用ヒータ。 A high-pressure structure according to claim 1, wherein the sealing portion constitutes a waterproof structure to the inside of the cylinder and a withstand voltage structure of 300 volts or more between the first terminal portion and the second terminal portion. Withstand voltage insulated waterproof vehicle heater.
  3.  前記封止部は、耐熱温度150℃以上の材料によって構成された、請求項1または2に記載の高耐電圧絶縁防水型車載用ヒータ。 The high withstand voltage insulated and waterproof vehicle-mounted heater according to claim 1, wherein the sealing portion is made of a material having a heat-resistant temperature of 150 ° C. or higher.
  4.  前記第1端子部分は第1かしめ部分を有し、
     前記第2端子部分は第2かしめ部分を有し、
     前記第1電極部は、前記第1板状部分と前記第1かしめ部分との間に設けられた第1凸状延出部分を有し、
     前記第2電極部は、前記第2板状部分と前記第2かしめ部分との間に設けられた第2凸状延出部分を有し、
     前記第1凸状延出部分における前記第2方向の長さは、前記第1かしめ部分における前記第1凸状延出部分側のかしめ皺の前記第2方向の長さよりも長く、
     前記第2凸状延出部分における前記第2方向の長さは、前記第2かしめ部分における前記第2凸状延出部分側のかしめ皺の前記第2方向の長さよりも長い、請求項1から3のいずれか1項に記載の高耐電圧絶縁防水型車載用ヒータ。
    The first terminal portion has a first caulking portion,
    The second terminal portion has a second caulking portion,
    The first electrode portion has a first convex extending portion provided between the first plate portion and the first caulking portion,
    The second electrode portion has a second convexly extending portion provided between the second plate-like portion and the second caulking portion,
    The length in the second direction of the first projecting extension portion is longer than the length in the second direction of the caulking weir on the side of the first projecting extension portion in the first caulking portion,
    The length in the second direction of the second convexly extending portion is longer than the length in the second direction of the crimped ridge on the second convexly extending portion side of the second crimped portion. 3. The high withstand voltage insulated and waterproof vehicle heater according to any one of 3. to 3.
  5.  前記第1凸状延出部分における前記第3方向の長さは、前記第1かしめ部分における前記第3方向の長さよりも長く、
     前記第2凸状延出部分における前記第3方向の長さは、前記第2かしめ部分における前記第3方向の長さよりも長い、請求項4記載の高耐電圧絶縁防水型車載用ヒータ。
    The length in the third direction of the first convex extension portion is longer than the length in the third direction of the first caulking portion,
    The high withstand voltage insulated and waterproof vehicle heater according to claim 4, wherein the length in the third direction of the second convexly extending portion is longer than the length in the third direction of the second caulking portion.
  6.  前記第1凸状延出部分における前記第3方向の長さは、前記第1板状部分における前記第3方向の長さの1/2よりも短く、
     前記第2凸状延出部分における前記第3方向の長さは、前記第2板状部分における前記第3方向の長さの1/2よりも短く、
     前記第1方向にみて、前記第1凸状延出部分と前記第2凸状延出部分とは互いに重ならないように配置された、請求項4または5に記載の高耐電圧絶縁防水型車載用ヒータ。
    The length in the third direction of the first convex extension portion is shorter than half of the length in the third direction of the first plate-like portion,
    The length in the third direction of the second convexly extending portion is shorter than half of the length in the third direction of the second plate-like portion,
    The high withstand voltage insulated waterproof vehicle according to claim 4, wherein the first convex extending portion and the second convex extending portion are disposed so as not to overlap with each other when viewed in the first direction. Heater for.
  7.  前記発熱素子の厚さは3ミリメートル以上である、請求項1から6のいずれか1項に記載の高耐電圧絶縁防水型車載用ヒータ。 The high withstand voltage insulated and waterproof vehicle heater according to any one of claims 1 to 6, wherein a thickness of the heat generating element is 3 mm or more.
  8.  前記第1方向にみて、前記第1端子部分と前記第2端子部分との隙間は2.5ミリメートル以上である、請求項1から7のいずれか1項に記載の高耐電圧絶縁防水型車載用ヒータ。 The high withstand voltage insulated waterproof vehicle according to any one of claims 1 to 7, wherein a gap between the first terminal portion and the second terminal portion is 2.5 mm or more when viewed in the first direction. Heater for.
  9.  前記第1板状部分の前記第3方向の長さ、および前記第2板状部分の前記第3方向の長さは、前記電極層の前記第3方向の長さよりも長く、前記発熱素子の前記第3方向の長さ以下である、請求項1から8のいずれか1項に記載の高耐電圧絶縁防水型車載用ヒータ。 The length in the third direction of the first plate-like portion and the length in the third direction of the second plate-like portion are longer than the length in the third direction of the electrode layer, and The high withstand voltage insulated and waterproof vehicle-mounted heater according to any one of claims 1 to 8, which is equal to or less than the length in the third direction.
  10.  前記第1板状部分の前記第3方向の長さ、および前記第2板状部分の前記第3方向の長さは、20ミリメートル以上30ミリメートル以下である、請求項1から9のいずれか1項に記載の高耐電圧絶縁防水型車載用ヒータ。 The length in the third direction of the first plate-like portion and the length in the third direction of the second plate-like portion are 20 millimeters or more and 30 millimeters or less. The high withstand voltage insulated and waterproof type vehicle heater according to Item.
  11.  前記絶縁性シートにおける巻き付けの両端は、前記発熱素子の側面部分で互いに重なり合っている、請求項1から10のいずれか1項に記載の高耐電圧絶縁防水型車載用ヒータ。 The high withstand voltage insulated waterproof vehicle heater according to any one of claims 1 to 10, wherein both ends of the winding in the insulating sheet overlap each other at side portions of the heat generating element.
  12.  前記発熱素子は、PTC(Positive Temperature Coefficient)素子である、請求項1から11のいずれか1項に記載の高耐電圧絶縁防水型車載用ヒータ。 The high withstand voltage insulated and waterproof vehicle heater according to any one of claims 1 to 11, wherein the heating element is a PTC (Positive Temperature Coefficient) element.
  13.  前記封止部はシリコーン系樹脂である、請求項1から12のいずれか1項に記載の高耐電圧絶縁防水型車載用ヒータ。 The high withstand voltage insulated and waterproof vehicle-mounted heater according to any one of claims 1 to 12, wherein the sealing portion is a silicone resin.
  14.  請求項1から13のいずれか1項に記載の高耐電圧絶縁防水型車載用ヒータと、
     前記筒体の前記放熱面にろう付け部を介して取り付けられたフィンと、
     を備えた車載用ヒータユニット。
    The high voltage-resistant insulation waterproof vehicle-mounted heater according to any one of claims 1 to 13,
    A fin attached to the heat dissipation surface of the cylindrical body via a brazing portion;
    In-vehicle heater unit equipped with
  15.  表裏に電極層が設けられた発熱素子と、
     前記発熱素子を間に挟持し、前記表裏の電極層のそれぞれと導通する一対の電極部と、
     前記一対の電極部の周囲を覆う絶縁性シートと、
     中空部および放熱面を有し、前記発熱素子、前記一対の電極部および前記絶縁性シートで構成された発熱構造体を前記中空部内に収容する筒体と、
     前記筒体の両端の開口を封止する封止部と、
     前記筒体の前記放熱面にろう付け部を介して取り付けられたフィンと、
     を備えた車載用ヒータユニット。
    A heating element provided with an electrode layer on the front and back;
    A pair of electrode parts sandwiching the heat generating element between them and electrically conducting to each of the front and back electrode layers;
    An insulating sheet covering the periphery of the pair of electrode parts;
    A cylindrical body which has a hollow portion and a heat radiation surface, and which accommodates a heat generating structure constituted by the heat generating element, the pair of electrode portions, and the insulating sheet in the hollow portion;
    A sealing portion sealing the openings at both ends of the cylindrical body;
    A fin attached to the heat dissipation surface of the cylindrical body via a brazing portion;
    In-vehicle heater unit equipped with
  16.  前記フィンの厚さ方向の耐荷重は、前記筒体の厚さ方向の耐荷重よりも大きい、請求項14または15に記載の車載用ヒータユニット。 The in-vehicle heater unit according to claim 14 or 15, wherein a load resistance in a thickness direction of the fin is larger than a load resistance in a thickness direction of the cylinder.
  17.  前記筒体の側面に設けられた突出部をさらに有し、
     前記突出部の厚さ方向の長さは、前記筒体の厚さ方向の長さよりも長い、請求項14から16のいずれか1項に記載の車載用ヒータユニット。
    It further has a projection provided on the side of the cylinder,
    The in-vehicle heater unit according to any one of claims 14 to 16, wherein a length in a thickness direction of the protrusion is longer than a length in a thickness direction of the cylinder.
  18.  請求項14から17のいずれか1項に記載の車載用ヒータユニットと、
     媒体の流入口と、前記媒体の流出口と、を有するケースと、
     を備え、
     前記車載用ヒータユニットは、前記フィンの流路の一端を前記流入口および前記流出口のそれぞれに対向させて前記ケース内に収容された、車載用ヒータ装置。
    An on-vehicle heater unit according to any one of claims 14 to 17.
    A case having an inlet for the medium and an outlet for the medium;
    Equipped with
    The on-vehicle heater device is accommodated in the case with one end of the flow path of the fin facing each of the inlet and the outlet.
  19.  請求項14から17のいずれか1項に記載の車載用ヒータユニットと、
     媒体の流入口と前記媒体の流出口とを有するケースと、
     を備え、
     前記車載用ヒータユニットは、前記フィンの流路の一端を前記流入口に対向させ、前記流路の他端を前記流出口に対向させて、前記ケース内における前記流入口と前記流出口との間に収容された、車載用ヒータ装置。
    An on-vehicle heater unit according to any one of claims 14 to 17.
    A case having an inlet for the medium and an outlet for the medium;
    Equipped with
    The in-vehicle heater unit has one end of the flow path of the fin opposed to the inflow port, and the other end of the flow path opposed to the outflow port, and the inflow port and the outflow port in the case. In-vehicle heater device housed between.
  20.  前記ケースには、前記第1電極部と導通する第1導通ケーブルを通すための第1孔と、前記第2電極部と導通する第2導通ケーブルを通すための第2孔とが設けられ、
     前記第1孔と前記第1導通ケーブルとの隙間、および前記第2孔と前記第2導通ケーブルとの隙間のそれぞれに封止剤が埋め込まれた、請求項18または19に記載の車載用ヒータ装置。
    The case is provided with a first hole for passing a first conducting cable conducting to the first electrode portion, and a second hole for passing a second conducting cable conducting to the second electrode portion,
    20. The on-vehicle heater according to claim 18, wherein a sealant is embedded in each of a gap between the first hole and the first conductive cable and a gap between the second hole and the second conductive cable. apparatus.
  21.  前記媒体は、水、空気、ガス、油およびゲル状物の少なくともいずれかである、請求項18から20のいずれか1項に記載の車載用ヒータ装置。 21. The on-vehicle heater device according to any one of claims 18 to 20, wherein the medium is at least one of water, air, gas, oil and gel.
  22.  中空部および放熱面を有する筒体の前記放熱面にフィンをろう付けする工程と、
     表裏に電極層が設けられた発熱素子を一対の電極部で挟持する工程と、
     前記一対の電極部の周囲を絶縁性シートで覆う工程と、
     前記発熱素子、前記一対の電極部および前記絶縁性シートで構成された発熱構造体を、前記フィンがろう付けされた前記筒体の前記中空部内に収容する工程と、
     前記フィンを介して前記筒体を加圧して前記筒体を押し潰すことにより、前記発熱構造体を前記中空部内に固定する工程と、
     を備えた車載用ヒータユニットの製造方法。
    Brazing a fin to the heat dissipation surface of a cylindrical body having a hollow portion and a heat dissipation surface;
    Sandwiching a heating element provided with an electrode layer on the front and back with a pair of electrode parts;
    Covering the periphery of the pair of electrode portions with an insulating sheet;
    Housing the heat-generating structure constituted by the heat-generating element, the pair of electrode parts, and the insulating sheet in the hollow portion of the cylinder to which the fin is brazed;
    Securing the heat generating structure in the hollow portion by pressing the cylinder through the fins to crush the cylinder;
    Method of manufacturing an on-vehicle heater unit provided with
  23.  表裏に電極層が設けられた発熱素子と、
     前記発熱素子を間に挟持し、前記表裏の電極層のそれぞれと導通する一対の電極部と、
     前記発熱素子および前記一対の電極部で構成された発熱部材を収容する筒体と、
     前記筒体の内部に充填され、前記筒体と前記発熱部材とを電気的に絶縁する絶縁性粉末と、
     前記筒体の少なくとも一方の開口端を封止する封止体と、
     前記一対の電極部とそれぞれ導通し、前記封止体を貫通して前記筒体の外部へ引き出される一対の導通ケーブルと、
     を備えた、絶縁防水型ヒータ。
    A heating element provided with an electrode layer on the front and back;
    A pair of electrode parts sandwiching the heat generating element between them and electrically conducting to each of the front and back electrode layers;
    A cylindrical body for accommodating a heat generating member constituted by the heat generating element and the pair of electrode portions;
    Insulating powder which is filled in the inside of the cylinder and which electrically insulates the cylinder and the heat generating member;
    A sealing body for sealing at least one open end of the cylindrical body;
    A pair of conducting cables which are respectively conducted to the pair of electrode parts and are drawn out of the cylindrical body through the sealing body;
    Insulated waterproof heater.
  24.  前記一対の電極部のうちの一方である第1電極部は、
      前記電極層と導通するように接する第1板状部分と、
      前記第1板状部分における前記筒体の一方の開口側の端部に設けられた第1端子部分と、を有し、
     前記一対の電極部のうちの他方である第2電極部は、
      前記電極層と導通するように接する第2板状部分と、
      前記第2板状部分における前記筒体の一方の開口側の端部に設けられた第2端子部分と、を有し、
     前記一対の電極部の間で前記発熱素子を挟持する方向を第1方向、前記第1方向と直交し、前記筒体の延在する方向を第2方向、前記第1方向および前記第2方向と直交する方向を第3方向とした場合、
     前記第1方向にみて、前記第1端子部分と前記第2端子部分とは互いにずれた位置で配置された、請求項23記載の絶縁防水型ヒータ。
    The first electrode portion which is one of the pair of electrode portions is
    A first plate-like portion in electrical contact with the electrode layer;
    And a first terminal portion provided at one open end of the cylinder in the first plate-like portion;
    The second electrode portion, which is the other of the pair of electrode portions,
    A second plate-like portion in electrical contact with the electrode layer;
    And a second terminal portion provided at one open end of the cylinder in the second plate-like portion;
    A direction in which the heating element is held between the pair of electrode portions is a first direction, which is orthogonal to the first direction, and a direction in which the cylinder extends is a second direction, the first direction, and the second direction. If the direction orthogonal to
    The insulation / water proof heater according to claim 23, wherein the first terminal portion and the second terminal portion are disposed at mutually offset positions as viewed in the first direction.
  25.  前記筒体は円筒型であり、
     前記発熱部材は板状型である、請求項23または24に記載の絶縁防水型ヒータ。
    The cylinder is cylindrical,
    The insulation and waterproof type heater according to claim 23 or 24, wherein the heat generating member is a plate-like type.
  26.  前記筒体の材料はステンレスである、請求項23から25のいずれか1項に記載の絶縁防水型ヒータ。
     
    The insulation and waterproof heater according to any one of claims 23 to 25, wherein a material of the cylinder is stainless steel.
PCT/JP2019/002208 2018-01-25 2019-01-24 Insulated waterproof vehicle-mounted heater having high withstand voltage, vehicle-mounted heater unit, vehicle-mounted heater device, method for manufacturing vehicle-mounted heater unit, and insulated waterproof heater WO2019146675A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019534431A JP6627058B2 (en) 2018-01-25 2019-01-24 High withstand voltage insulation waterproof type automotive heater and automotive heater unit

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2018010533 2018-01-25
JP2018-010533 2018-01-25
JP2018-086713 2018-04-27
JP2018086713 2018-04-27
JP2018-172944 2018-09-14
JP2018172944 2018-09-14

Publications (1)

Publication Number Publication Date
WO2019146675A1 true WO2019146675A1 (en) 2019-08-01

Family

ID=67394814

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/002208 WO2019146675A1 (en) 2018-01-25 2019-01-24 Insulated waterproof vehicle-mounted heater having high withstand voltage, vehicle-mounted heater unit, vehicle-mounted heater device, method for manufacturing vehicle-mounted heater unit, and insulated waterproof heater

Country Status (2)

Country Link
JP (1) JP6627058B2 (en)
WO (1) WO2019146675A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021060172A1 (en) * 2019-09-27 2021-04-01 サンデン・オートモーティブクライメイトシステム株式会社 Vehicle heat medium heating device and vehicle air conditioning device
KR20210150688A (en) * 2020-06-04 2021-12-13 (주)하이엘 Heat module of vehicle

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102439262B1 (en) * 2022-01-04 2022-08-31 김형은 Dissimilar metal heating electrode plate for electric vehicle heater and manufacturing method thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08148265A (en) * 1994-11-17 1996-06-07 Matsushita Electric Ind Co Ltd Sheathed heater
JP2007128720A (en) * 2005-11-02 2007-05-24 Koshiro Taguchi Insulated waterproof heater
WO2012011295A1 (en) * 2010-07-21 2012-01-26 Taguchi Koshiro Highly efficient, hot water generating, car-mounted heater with internal liquid flow path

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08148265A (en) * 1994-11-17 1996-06-07 Matsushita Electric Ind Co Ltd Sheathed heater
JP2007128720A (en) * 2005-11-02 2007-05-24 Koshiro Taguchi Insulated waterproof heater
WO2012011295A1 (en) * 2010-07-21 2012-01-26 Taguchi Koshiro Highly efficient, hot water generating, car-mounted heater with internal liquid flow path

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021060172A1 (en) * 2019-09-27 2021-04-01 サンデン・オートモーティブクライメイトシステム株式会社 Vehicle heat medium heating device and vehicle air conditioning device
KR20210150688A (en) * 2020-06-04 2021-12-13 (주)하이엘 Heat module of vehicle
KR102374345B1 (en) * 2020-06-04 2022-03-16 (주)하이엘 Heat module of vehicle

Also Published As

Publication number Publication date
JP6627058B2 (en) 2020-01-08
JPWO2019146675A1 (en) 2020-02-06

Similar Documents

Publication Publication Date Title
WO2019146675A1 (en) Insulated waterproof vehicle-mounted heater having high withstand voltage, vehicle-mounted heater unit, vehicle-mounted heater device, method for manufacturing vehicle-mounted heater unit, and insulated waterproof heater
WO2012011198A1 (en) Highly efficient, hot water generating, car-mounted heater with internal liquid flow path
US9863663B2 (en) Heat exchanger
CN103201584B (en) Heat medium heating apparatus using the laminated heat exchanger, and in-vehicle air-conditioning apparatus using the laminated heat exchanger
JP6106078B2 (en) Heater and heat pump system
JP4579282B2 (en) Electric heater device
US8084721B2 (en) Electrical heating apparatus, method of manufacturing heat generator unit and pressing jig for use in manufacturing thereof
US20160069588A1 (en) Heat medium heating device, method of manufacturing same, and vehicle air conditioning device using same
CN203310082U (en) Heat exchanger
WO2011086911A1 (en) Heating device
WO2011086909A1 (en) Heating device
EP2695756A1 (en) Heat medium heating device and vehicle air conditioner provided with same
JP2005526223A (en) Heat exchanger especially for car heating or air conditioning
JP4455473B2 (en) Automotive heater
JP7315946B2 (en) Insulated and waterproof heater and manufacturing method thereof
US11092358B1 (en) Electrical heating device
KR100864842B1 (en) Heat exchanger for heating
JP2023045947A (en) Heater case, heater device and on-vehicle heater unit
JP3138207U (en) Automotive fluid heater
US20210144813A1 (en) Heat generator
JP4417412B2 (en) Manufacturing method of heating unit and press jig
CN114501798A (en) Control device of water heating heater, water heating heater and automobile
JP2009049157A (en) Film capacitor
JP2012081803A (en) Heating-medium heater and air conditioner for vehicle including the same

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2019534431

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19743962

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19743962

Country of ref document: EP

Kind code of ref document: A1