WO2019146512A1 - Method for manufacturing thin film battery element - Google Patents
Method for manufacturing thin film battery element Download PDFInfo
- Publication number
- WO2019146512A1 WO2019146512A1 PCT/JP2019/001399 JP2019001399W WO2019146512A1 WO 2019146512 A1 WO2019146512 A1 WO 2019146512A1 JP 2019001399 W JP2019001399 W JP 2019001399W WO 2019146512 A1 WO2019146512 A1 WO 2019146512A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- layer
- laser
- active material
- material layer
- absorption layer
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K26/00—Working by laser beam, e.g. welding, cutting or boring
- B23K26/18—Working by laser beam, e.g. welding, cutting or boring using absorbing layers on the workpiece, e.g. for marking or protecting purposes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/04—Processes of manufacture in general
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
- H01M4/139—Processes of manufacture
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/38—Selection of substances as active materials, active masses, active liquids of elements or alloys
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/48—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
- H01M4/485—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/48—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
- H01M4/50—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
- H01M4/505—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/48—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
- H01M4/52—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
- H01M4/525—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/64—Carriers or collectors
- H01M4/66—Selection of materials
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Definitions
- Various aspects and embodiments of the present disclosure relate to methods of manufacturing a thin film battery element.
- the thin film type all solid battery is formed by laminating elements such as electrodes and electrolyte layers constituting the all solid battery using a shadow mask for each element. For example, physical vapor deposition (PVD) is used to form the element.
- PVD physical vapor deposition
- PVD using a shadow mask is difficult to mass-produce because it takes time and effort to manage, align and clean the shadow mask.
- patterning elements such as an electrode and an electrolyte layer, by laser ablation (for example, refer following patent document 1).
- lithium transition metal complex oxide is often used as a material used as an active material. Therefore, when processing is performed to increase the surface area of the active material layer using reactive ion etching used in the manufacture of semiconductors, transition metal reactants with low vapor pressure are formed, and microprocessing is difficult. .
- Lithium ion is an unstable material and easily reacts with moisture. Therefore, when wet etching using pure water, development, peeling, and cleaning processes are performed, lithium in the active material is eluted and the performance as the electrode layer is degraded. In addition, in the case of processing an active material layer having a thickness of several ⁇ m or more, the etching rate is very small in the ion milling method, and the productivity is low. Furthermore, in the ion milling method, the active material is amorphized by ion bombardment, causing a decrease in power and energy density.
- the processing width of the second harmonic laser beam is about several tens of ⁇ m, so that fine processing is difficult.
- the laser beam of the third harmonic is used for laser ablation, although the processing width can be miniaturized to about several ⁇ m, the spot diameter of the laser beam becomes smaller, so the range which can be removed at one time by the laser beam is small. And productivity is significantly reduced.
- One aspect of the present disclosure is a method of manufacturing a thin film battery element, and includes a pattern forming step, a laminate forming step, and an opening forming step.
- a pattern formation step a laser absorption layer of a predetermined pattern is formed on the collector electrode layer.
- the laminate formation step the active material layer is laminated on the collecting electrode layer and the laser absorption layer to form a laminate.
- the opening forming step the laminated body is irradiated with laser light to evaporate the laser absorption layer, thereby forming an opening corresponding to a predetermined pattern in the active material layer.
- productivity of the thin film battery element can be improved.
- FIG. 1 is a flowchart showing an example of the manufacturing procedure of the thin film battery element in the first embodiment.
- FIG. 2 is a cross-sectional view showing an example of the laminate.
- FIG. 3 is a cross-sectional view showing an example of the laminate.
- FIG. 4 is a cross-sectional view showing an example of the laminate.
- FIG. 5 is a diagram showing an example of a laser irradiation apparatus.
- FIG. 6 is a cross-sectional view showing an example of the laminate.
- FIG. 7 is a cross-sectional view showing an example of the laminate.
- FIG. 8 is a cross-sectional view showing an example of a laminate.
- FIG. 9 is a cross-sectional view showing an example of a laminate.
- FIG. 1 is a flowchart showing an example of the manufacturing procedure of the thin film battery element in the first embodiment.
- FIG. 2 is a cross-sectional view showing an example of the laminate.
- FIG. 3 is a cross-sectional view
- FIG. 10 is a cross-sectional view showing an example of a laminate.
- FIG. 11 is a flowchart showing an example of a manufacturing procedure of the thin film battery element in the second embodiment.
- FIG. 12 is a cross-sectional view showing an example of the laminate.
- FIG. 13 is a cross-sectional view showing an example of a laminate.
- FIG. 14 is a cross-sectional view showing an example of a laminate.
- FIG. 15 is a cross-sectional view showing an example of a laminate.
- FIG. 16 is a cross-sectional view showing an example of a laminate.
- FIG. 17 is a cross-sectional view showing an example of a laminate.
- FIG. 18 is a view showing another example of the laser light irradiation method.
- FIG. 19 is a view showing another example of the laser light irradiation method.
- FIG. 20 is a diagram showing another example of the laser light irradiation method.
- FIG. 1 is a flowchart showing an example of the manufacturing procedure of the thin film battery element in the first embodiment.
- 2 to 4 and 6 to 10 are cross-sectional views showing an example of the laminate 10.
- the lower collector electrode layer 12 is stacked on the substrate 11 (S100).
- the substrate 11 is made of, for example, a material having silicon, glass, or stainless steel as a main component
- the lower collector electrode layer 12 is made of, for example, a material having titanium, platinum, gold, copper, aluminum, or nickel as a main component.
- the substrate 11 is made of, for example, a material containing silicon as a main component
- the lower collector electrode layer 12 is made of, for example, an alloy containing titanium and platinum.
- the lower collector electrode layer 12 is laminated on the substrate 11 by vapor deposition, sputtering or the like.
- the laser absorption layer 13 is stacked on the lower collector electrode layer 12 (S101).
- the laser absorption layer 13 is made of, for example, a material mainly composed of amorphous silicon or amorphous germanium.
- the laser absorption layer 13 is made of, for example, a material mainly composed of amorphous silicon.
- the laser absorption layer 13 is stacked on the lower collector electrode layer 12 by chemical vapor deposition (CVD), sputtering or the like. As a result, for example, as shown in FIG. 2, a stacked body 10 in which the lower collector electrode layer 12 and the laser absorption layer 13 are stacked on the substrate 11 is formed.
- the laser absorption layer 13 is patterned into a predetermined pattern, for example, as shown in FIG. 3 (S102).
- the patterning of the laser absorption layer 13 is performed by, for example, photolithography, imprint lithography, wet etching, dry etching, or lift-off.
- Step S102 is an example of a pattern formation process.
- the laser absorption layer 13 is patterned so that the linear laser absorption layer 13 having a predetermined width (for example, about 1 ⁇ m) is disposed on the lower collector electrode layer 12 at a predetermined interval (for example, about 1 ⁇ m).
- the patterning of the laser absorption layer 13 is not limited to a linear shape, and may be a zigzag shape, a meander shape, a lattice shape, a dot shape, or the like.
- the active material layer 14 is stacked on the lower collector electrode layer 12 and the laser absorption layer 13 so as to cover the patterned laser absorption layer 13 (S103). Thereby, for example, a laminate 10 as shown in FIG. 4 is formed.
- the active material layer 14 functions as a cathode electrode
- the active material layer 14 is made of, for example, a material containing lithium cobaltate (LCO) or lithium manganate (LMO) as a main component.
- the active material layer 14 functions as an anode electrode
- the active material layer 14 is made of, for example, a material containing lithium titanate (LTO) or silicon as a main component.
- the active material layer 14 is made of, for example, a material containing LCO as a main component, and functions as a cathode electrode.
- the active material layer 14 is stacked on the lower collector electrode layer 12 and the laser absorption layer 13 by CVD or sputtering. Note that, after the stacked body 10 is formed in step S103, an annealing step may be performed for the purpose of improving the film quality of the stacked body 10. Since the active material layer 14 immediately after film formation is amorphous and unstable, it is desirable to improve film quality by annealing and crystallizing within a predetermined time after film formation of the active material layer 14.
- the laminate 10 be annealed, for example, within one hour after the active material layer 14 is laminated.
- the annealing temperature is preferably a temperature within a range of 400 ° C. to 700 ° C., for example.
- Step S103 is an example of a layered product formation process.
- FIG. 5 is a view showing an example of the laser irradiation apparatus 100.
- the laser irradiation apparatus 100 used in the present embodiment includes, for example, a laser oscillator 101, a light guiding unit 102, an emission head 103, a stage 104, and a moving table 105, as shown in FIG.
- the laser oscillator 101 generates a laser beam.
- the laser absorption layer 13 and the active material layer 14 are irradiated with laser light to cause laser ablation selectively to the laser absorption layer 13.
- the wavelength of the laser beam irradiated to the laminate 10 lambda (nm) is E the optical band gap of the laser absorbing layer 13 g, LA (eV), the optical band gap of the active material layer 14 E g, In the case of CE (eV), it is necessary to satisfy the following relational expression (1).
- the laser oscillator 101 generates laser light of wavelength ⁇ (nm) which satisfies the following relational expression (1).
- “1240” in the above equation (1) is the value of the product of the Planck constant h (eV ⁇ s) and the speed of light c (m / s) when the unit of the light wavelength ⁇ is expressed in nm. It is.
- the laser absorption layer 13 is formed of a material containing amorphous silicon as a main component
- the optical band gaps E g and LA of the laser absorption layer 13 are approximately 1.7 (eV).
- the active material layer 14 is made of a material having LCO as a main component
- the optical band gaps E g and CE of the active material layer 14 are about 2.4 (eV). Therefore, in the present embodiment, as the laser light of wavelength ⁇ (nm) satisfying 516 (nm) ⁇ ⁇ 729 (nm), for example, the second harmonic ( ⁇ ) of YAG (Yttrium Aluminum Garnet) laser is used. A laser beam of 532 (nm) is generated.
- the optical band gaps E g and LA of the laser absorption layer 13 are about 1.0 (eV).
- the light guiding unit 102 propagates the laser beam generated by the laser oscillator 101 to the emission head 103.
- the emission head 103 condenses the laser light propagated through the light guide portion 102 and irradiates the laminated body 10 with the laser light.
- the emission head 103 condenses laser light having a Gaussian distribution in intensity and irradiates the laminated body 10 with spot light of a predetermined size.
- the stack 10 is placed on the stage 104.
- the moving table 105 moves the stack 10 on the stage 104 in the X-axis direction and the Y-axis direction by moving the stage 104 in the X-axis direction and the Y-axis direction.
- the laser beam irradiated onto the stack 10 from the emission head 103 is scanned on the stack 10.
- the laser beam emitted onto the laminate 10 may be scanned on the laminate 10 by moving the radiation head 103 relative to the laminate 10.
- the wavelength ⁇ (nm) of the laser beam irradiated onto the stack 10 from the emission head 103 satisfies ⁇ ⁇ 1240 / Eg, LA (nm) as described above. Therefore, the energy of the laser beam irradiated from the emission head 103 onto the stack 10 is E g, LA ⁇ 1240 / ⁇ (eV), and is absorbed by the laser absorption layer 13.
- E g, LA ⁇ 1240 / ⁇ (eV) the energy of the laser beam irradiated from the emission head 103 onto the stack 10 is E g, LA ⁇ 1240 / ⁇ (eV), and is absorbed by the laser absorption layer 13.
- laser ablation occurs in which the portion of the laser absorption layer 13 irradiated with the laser light is transpirationally explosively dissipated.
- the active material layer 14 stacked on the laser absorption layer 13 is blown upward by the impact of explosive transpiration of the laser absorption layer 13.
- a hole according to the pattern of the laser absorption layer 13 is formed in the active material layer 14 by scanning the laser light on the laminate 10. Ru. That is, when the laser beam is scanned on the laminate 10, an opening corresponding to the pattern of the laser absorption layer 13 is formed in the active material layer 14.
- the irradiation range of the laser beam from the emission head 103 is scanned on the laminate 10 in the direction of the arrow in FIG. Material layer 14 is removed. Thereby, a plurality of grooves 140 are formed in the active material layer 14.
- the emission head 103 condenses the laser light, but the focal plane 110 of the laser light is formed at a position away from the laser absorption layer 13 (above the laser absorption layer 13 in the example of FIG. 6). Be done.
- the laser beam output from the emission head 103 is irradiated below the focal plane 110 in a range wider than the irradiation range of the laser beam formed at the position of the focal plane 110.
- the width of the laser light irradiation area in the direction perpendicular to the scanning direction on the surface of the laser absorption layer 13 is wider than the width of the groove 140.
- the width of the irradiation area of the laser light in the direction perpendicular to the scanning direction on the surface of the laser absorption layer 13 corresponds to the pattern of the laser absorption layer 13. It is wider than the diameter of the formed hole.
- the laser beam output from the emission head 103 can evaporate the laser absorption layer 13 in a wider area, and the plurality of grooves 140 can be formed in the active material layer 14 more efficiently.
- the focal plane 110 of the laser light may be formed on the opposite side of the emission head 103 with respect to the laser absorption layer 13 (below the laser absorption layer 13 in the example of FIG. 6).
- step S104 When step S104 is finished, the laminate 10 is in a state as shown in FIG. 7, for example. Note that after step S104, before the next step S105 is performed, a process of removing so-called burrs formed on the active material layer 14 by laser ablation is performed by air knife or solvent ultrasonic cleaning or the like. It is also good.
- the solid electrolyte layer 15 is stacked on the active material layer 14 so as to cover the plurality of grooves 140 formed in the active material layer 14 in step S104 (S105).
- a laminate 10 as shown in FIG. 8 is formed.
- the solid electrolyte layer 15 is made of, for example, a material having lithium phosphate oxynitride (LiPON) as a main component.
- the solid electrolyte layer 15 is formed by a film forming method having good step coverage such as CVD or ALD (Atomic Layer Deposition).
- the temperature of the laminate 10 is in the range of 250 to 700 ° C., preferably in the range of 400 to 600 ° C.
- the pressure in the chamber is in the range of 10 to 2000 Pa, preferably in the range of 10 to 500 Pa.
- lithium tertiary butoxide Li (t-OBu)
- Li (TMHD) lithium 2,2,6,6-tetramethyl-3,5-heptanedionate
- HMDS hexamer Methyldisilazane lithium
- the temperature of the supply bottle is, for example, 70 to 230 ° C. in the case of Li (t-OBu), for example 200 to 310 ° C. in the case of Li (TMHD), and for example 90 to 180 ° C. in the case of Li (HMDS) .
- TMP trimethyl phosphate
- TMOP trimethyl phosphate
- TEOP triethyl phosphate
- TEP triethyl phosphate
- TDMAP triethyl phosphate
- TDMAPO tris (dimethylamino) phosphine oxide
- the temperature of the supply bottle is, for example, 25 to 60 ° C. in the case of TMP, 25 to 70 ° C. in the case of TMOP, for example 25 to 120 ° C. in the case of TEOP, for example 25 to 150 ° C.
- the temperature is, eg, 80 to 160 ° C.
- the active material layer 16 is stacked on the solid electrolyte layer 15 stacked in step S105 (S106). Thereby, for example, a laminate 10 as shown in FIG. 9 is formed.
- the active material layer 16 functions as a cathode electrode
- the active material layer 16 is made of, for example, a material containing LCO or LMO as a main component.
- the active material layer 16 functions as an anode electrode
- the active material layer 16 is made of, for example, a material containing LTO or silicon as a main component.
- the active material layer 16 is made of, for example, a material containing silicon as a main component, and functions as an anode electrode.
- the active material layer 16 is stacked on the solid electrolyte layer 15 by CVD or sputtering.
- an annealing process may be performed for the purpose of improving the film quality of the stacked body 10. Since the active material layer 16 immediately after film formation is amorphous and unstable, it is desirable to improve film quality by annealing and crystallizing within a predetermined time after film formation of the active material layer 16. Therefore, it is preferable that the laminate 10 be annealed, for example, within one hour after the active material layer 16 is laminated.
- the annealing temperature is preferably a temperature within a range of 400 ° C. to 700 ° C., for example.
- the upper collector electrode layer 17 is stacked on the active material layer 16 (S107). Thereby, for example, a laminate 10 as shown in FIG. 10 is formed.
- the upper collector electrode layer 17 is made of, for example, a material containing titanium, platinum, gold, copper, aluminum, nickel, or the like as a main component.
- the upper collector electrode layer 17 is made of, for example, a material containing copper as a main component.
- the upper collector electrode layer 17 is laminated on the active material layer 16 by vapor deposition, sputtering or the like.
- the laminate 10 shown in FIG. 10 functions as a thin film battery element.
- the active material layer 14 at the position corresponding to the pattern of the laser absorption layer 13 is removed by scanning the irradiation range of the laser light on the laminate 10.
- the plurality of grooves 140 can be formed efficiently. Therefore, the productivity of the thin film battery element can be improved.
- the laser absorption layer 13 is irradiated with the laser light from the active material layer 14 side.
- the laser absorption layer is irradiated with the laser light from the substrate side.
- the laser absorption layer irradiated with the laser light evaporates explosively, and the portion of the active material layer corresponding to the position of the laser absorption layer is blown away in the direction opposite to the emission head 103 side across the substrate. This can suppress adhesion of the blown laser absorbing layer, the active material layer, and the like to the emission head 103. Therefore, the cleaning cycle of the emission head 103 can be made long, and the productivity of the thin film battery element can be further improved.
- FIG. 11 is a flowchart showing an example of a manufacturing procedure of the thin film battery element in the second embodiment.
- 12 to 17 are cross-sectional views showing an example of the laminated body 20.
- FIG. 11 is a flowchart showing an example of a manufacturing procedure of the thin film battery element in the second embodiment.
- 12 to 17 are cross-sectional views showing an example of the laminated body 20.
- the lower collector electrode layer 22 is stacked on the substrate 21 (S200).
- the substrate 21 is made of, for example, glass, quartz, or sapphire, and the lower collector electrode layer 22 is made of, for example, zinc oxide (ZnO), tin oxide (SnO 2), or indium tin oxide (ITO).
- the substrate 21 is made of, for example, glass, and the lower collector electrode layer 22 is made of, for example, ZnO.
- the lower collector electrode layer 22 is stacked on the substrate 21 by sputtering or CVD.
- the laser absorption layer 23 is stacked on the lower collector electrode layer 22 (S201).
- the laser absorption layer 23 is made of, for example, the same material as the laser absorption layer 13 of the first embodiment. As a result, for example, as shown in FIG. 12, a laminate 20 in which the lower collector electrode layer 22 and the laser absorption layer 23 are laminated on the substrate 21 is formed.
- the laser absorption layer 23 is patterned into a predetermined pattern by, for example, photolithography (S202).
- the shape of the patterning of the laser absorption layer 23 is the same as that of the first embodiment.
- Step S202 is an example of a pattern formation process.
- the blocking layer 24 is laminated on the lower collector electrode layer 22 and the laser absorption layer 23 so as to cover the patterned laser absorption layer 23 (S203). Thereby, for example, a laminate 20 as shown in FIG. 13 is formed.
- the blocking layer 24 is made of, for example, a material containing platinum or gold as a main component.
- the blocking layer 24 is made of, for example, a material containing platinum as a main component.
- the thickness of the blocking layer 24 is, for example, several nm.
- Step S203 is an example of a blocking layer formation process.
- the active material layer 25 is stacked on the blocking layer 24 (S204). Thereby, for example, a laminate 20 as shown in FIG. 14 is formed.
- the active material layer 25 is made of, for example, the same material as the active material layer 14 of the first embodiment.
- the blocking layer 24 is provided between the lower collector electrode layer 22 and the active material layer 25
- lithium ions contained in the active material layer 25 are diffused into the lower collector electrode layer 22. Can be prevented.
- the active material layer 25 is stacked on the blocking layer 24 by CVD or sputtering. Note that, after the stacked body 10 is formed in step S204, an annealing step may be performed for the purpose of improving the film quality of the stacked body 10.
- the active material layer 25 immediately after film formation is amorphous and unstable, it is desirable to improve film quality by annealing and crystallizing within a predetermined time after film formation of the active material layer 25. Therefore, it is preferable that the laminate 10 be annealed, for example, within one hour after the active material layer 25 is laminated.
- the annealing temperature is preferably in the range of 400 ° C. to 700 ° C., for example.
- Step S204 is an example of a layered product formation process.
- a plurality of grooves 250 are formed in the active material layer 25 (S205).
- the irradiation range of the laser light irradiated to the laser absorption layer 23 from the substrate 21 side is scanned in the direction of the arrow in FIG.
- the laser absorption layer 23 irradiated with the laser light evaporates explosively.
- the active material layer 25 in a portion corresponding to the laser absorption layer 23 is blown away, and a plurality of grooves 250 corresponding to the pattern of the laser absorption layer 23 are formed in the active material layer 25.
- the thickness of the blocking layer 24 is several nm, the blocking layer 24 of the part corresponding to the laser absorption layer 23 is also blown away with the active material layer 25 by explosive evaporation of the laser absorption layer 23.
- the wavelength ⁇ (nm) of the laser light irradiated to the stacked body 20 is a laser
- the optical band gap of the absorption layer 23 is E g, LA (eV)
- the optical band gap of the lower collector electrode layer 22 is E g, BC (eV)
- the following relational expression (2) needs to be satisfied.
- the laser absorption layer 23 is irradiated with the laser light of wavelength ⁇ (nm) satisfying the following relational expression (2) from the substrate 21 side. (1240 / E g, BC ) (nm) ⁇ ⁇ (1240 / E g, LA ) (nm) (2)
- the blocking layer 24 is provided between the lower collector electrode layer 22 and the active material layer 25, most of the laser light transmitted through the lower collector electrode layer 22 is reflected by the blocking layer 24. Ru. Therefore, the laser beam transmitted through the lower collector electrode layer 22 hardly reaches the active material layer 25. Therefore, the absorption by the active material layer 25 may not be considered in the required range of the wavelength ⁇ (nm) of the laser light.
- the optical band gaps E g and LA of the laser absorption layer 23 are approximately 1.0 (eV).
- the range of the wavelength ⁇ (nm) required for the laser light irradiated to the stacked body 20 is 365 (nm) ⁇ ⁇ 1240 (nm).
- the focal plane 110 of the laser light is formed at a position distant from the laser absorption layer 23 (below the laser absorption layer 23 in the example of FIG. 15). Therefore, the laser beam output from the emission head 103 is irradiated above the focal plane 110 in a range wider than the irradiation range of the laser beam formed at the position of the focal plane 110. Therefore, the laser beam output from the emission head 103 can evaporate the laser absorption layer 23 in a wider area, and the plurality of grooves 250 can be formed in the active material layer 25 more efficiently.
- the focal plane 110 of the laser light may be formed on the opposite side of the emission head 103 (above the laser absorption layer 23 in the example of FIG. 15) with the laser absorption layer 23 interposed therebetween.
- the solid electrolyte layer 26 is stacked on the active material layer 25 so as to cover the plurality of grooves 250 formed in the active material layer 25 in step S205 (S206). Thereby, for example, a laminate 20 as shown in FIG. 16 is formed.
- the solid electrolyte layer 26 is made of, for example, the same material as the solid electrolyte layer 15 of the first embodiment.
- the solid electrolyte layer 26 is formed by a film forming method having good step coverage such as CVD or ALD, for example.
- CVD chemical vapor deposition
- ALD atomic layer deposition
- the active material layer 27 is stacked on the solid electrolyte layer 26 stacked in step S206 (S207).
- the active material layer 27 is made of, for example, the same material as the active material layer 16 of the first embodiment.
- the active material layer 27 is stacked on the solid electrolyte layer 26 by CVD or sputtering.
- an annealing step may be performed for the purpose of improving the film quality of the stacked body 10. Since the active material layer 27 immediately after film formation is amorphous and unstable, it is desirable to improve film quality by annealing and crystallizing within a predetermined time after film formation of the active material layer 27. Therefore, it is preferable that the laminate 10 be annealed, for example, within one hour after the active material layer 27 is laminated.
- the annealing temperature is preferably in the range of 400 ° C. to 700 ° C., for example.
- the upper collector electrode layer 28 is stacked on the active material layer 27 (S208). Thereby, for example, a laminate 20 as shown in FIG. 17 is formed.
- the upper collector electrode layer 28 is made of, for example, the same material as that of the upper collector electrode layer 17 of the first embodiment (for example, a material containing copper as a main component).
- the upper collector electrode layer 28 is laminated on the active material layer 27 by evaporation, sputtering or the like.
- the laminate 20 shown in FIG. 17 functions as a thin film battery element.
- the plurality of grooves 250 are formed in the active material layer 25 by laser ablation by the laser beam irradiated to the laser absorption layer 23 from the substrate 21 side.
- the active material layer 25 or the like blown off by the laser ablation can be prevented from adhering to the laser beam emission head 103. Therefore, the cleaning cycle of the emission head 103 can be made long, and the productivity of the thin film battery element can be further improved.
- FIG. 18 to FIG. 20 show another example of the laser light irradiation method.
- the emission head 103 condenses laser light whose intensity has a Gaussian distribution, and irradiates the laminate 10 with spot light of a predetermined size.
- the laser light irradiation method is not limited to this.
- the laminated body 10 may be irradiated with laser light using an emission head 103 a that outputs a flat top beam that is laser light having a substantially uniform intensity distribution in a predetermined range.
- the laser beam is applied to the laminated body 10 using the emission head 103 b that outputs a line beam that is a laser beam of substantially uniform intensity distribution in the irradiation region having the major axis and the minor axis. You may irradiate.
- a line beam is used as the laser beam, by scanning the line beam in the direction of the minor axis, the entire stack 10 can be irradiated with the laser beam with a smaller number of scans, which further improves the productivity of the thin film battery It can be done.
- the laser beam is stacked using an emission unit 106 having a plurality of emission heads 103 for condensing a laser beam having a Gaussian distribution and forming a spot beam of a predetermined size.
- the body 10 may be irradiated.
- the emission unit 106 or the stacked body 10 moves in a direction orthogonal to the arrangement direction of the plurality of emission heads 103.
- the entire stack 10 can be irradiated with laser light with a small number of scans, and the productivity of the thin film battery element can be further improved.
- the entire stack 10 may be included in the irradiation area by the plurality of emission heads 103 using the emission unit 106 in which the plurality of emission heads 103 are two-dimensionally arranged on the surface facing the stack 10. .
- the productivity of the thin film battery element can be further improved.
- the other example of the irradiation method of the laser beam demonstrated using FIGS. 18-20 is applicable also to 2nd Embodiment.
- the lower collector electrode layer is stacked on the substrate, but the disclosed technology is not limited thereto.
- the substrate is made of a conductive material such as titanium, the lower collector electrode layer may not be provided.
Landscapes
- Chemical & Material Sciences (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- Engineering & Computer Science (AREA)
- Inorganic Chemistry (AREA)
- Materials Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Plasma & Fusion (AREA)
- Mechanical Engineering (AREA)
- Battery Electrode And Active Subsutance (AREA)
- Secondary Cells (AREA)
Abstract
This method for manufacturing a thin film battery element comprises a pattern forming step, a laminate forming step, and an opening forming step. In the pattern forming step, a laser absorbing layer of a predetermined pattern is formed on a collector electrode layer. In the laminate forming step, a laminate is formed by laminating an active material layer on the collector electrode layer and the laser absorbing layer. In the opening forming step, an opening corresponding to a predetermined pattern is formed in the active material layer by irradiating the laminate with a laser and evaporating and dispersing the laser absorbing layer.
Description
本開示の種々の側面および実施形態は、薄膜電池素子の製造方法に関する。
Various aspects and embodiments of the present disclosure relate to methods of manufacturing a thin film battery element.
ウェアラブル、メディカル、IoTデバイス用のマイクロバッテリーや、電気自動車などの駆動電源および家庭用蓄電池などに用いられる大型のリチウムイオン電池の開発が進められている。なかでも、電極および電解質が全て固体からなる全固体電池は、安全性、高エネルギー密度、および長寿命の点で、近年注目されている。全固体電池には、薄膜型とバルク型がある。薄膜型の全固体電池は、全固体電池を構成する電極や電解質層等の素子が、素子毎のシャドーマスクを用いて積層されることにより形成される。素子の形成には、例えばPVD(Physical Vapor Deposition)が用いられる。
Development of large-sized lithium ion batteries used for wearables, medicals, micro batteries for IoT devices, driving power sources for electric vehicles and storage batteries for home use, etc. is being promoted. Among them, all solid batteries in which the electrode and the electrolyte are all solid are recently attracting attention in terms of safety, high energy density and long life. There are thin film type and bulk type in all solid state batteries. The thin film type all solid battery is formed by laminating elements such as electrodes and electrolyte layers constituting the all solid battery using a shadow mask for each element. For example, physical vapor deposition (PVD) is used to form the element.
しかし、シャドーマスクを用いたPVDでは、シャドーマスクの管理や位置合わせ、洗浄等の手間がかかるため、大量生産が難しい。そこで、電極や電解質層等の素子をレーザーアブレーションによりパターニングすることにより、薄膜型の全固体電池を製造する技術が知られている(例えば、下記特許文献1参照)。
However, PVD using a shadow mask is difficult to mass-produce because it takes time and effort to manage, align and clean the shadow mask. Then, the technique which manufactures a thin film type all-solid-state battery is known by patterning elements, such as an electrode and an electrolyte layer, by laser ablation (for example, refer following patent document 1).
ところで、全固体電池において、高出力密度および高エネルギー密度を両立させるためには、正極または負極を構成する活物質層の表面積を増加させる必要がある。しかし、活物質として利用される材料としては、リチウム遷移金属複合酸化物が用いられることが多い。そのため、半導体の製造において用いられる反応性イオンエッチングを用いて、活物質層の表面積を増加させるための加工を行った場合、低蒸気圧の遷移金属反応物が形成されてしまい、微細加工が難しい。
By the way, in an all solid state battery, in order to make high power density and high energy density compatible, it is necessary to increase the surface area of the active material layer which constitutes a positive electrode or a negative electrode. However, lithium transition metal complex oxide is often used as a material used as an active material. Therefore, when processing is performed to increase the surface area of the active material layer using reactive ion etching used in the manufacture of semiconductors, transition metal reactants with low vapor pressure are formed, and microprocessing is difficult. .
また、リチウムイオンは、不安定な材料であり、水分と反応しやすい。そのため、純水を使用したウエットエッチングや現像、剥離、洗浄プロセスを行った場合には、活物質中のリチウムが溶出し、電極層としての性能が劣化する。また、数μm以上の膜厚の活物質層を加工する場合、イオンミリング法ではエッチングレートが非常に小さく、生産性が低い。さらに、イオンミリング法では、イオン衝撃によって、活物質が非晶質化してしまい、出力およびエネルギー密度の低下を引き起こす。
Lithium ion is an unstable material and easily reacts with moisture. Therefore, when wet etching using pure water, development, peeling, and cleaning processes are performed, lithium in the active material is eluted and the performance as the electrode layer is degraded. In addition, in the case of processing an active material layer having a thickness of several μm or more, the etching rate is very small in the ion milling method, and the productivity is low. Furthermore, in the ion milling method, the active material is amorphized by ion bombardment, causing a decrease in power and energy density.
また、活物質層をレーザーアブレーションにより加工する場合、第2高調波のレーザー光の加工幅は数十μm程度であるため、微細加工が難しい。また、レーザーアブレーションに第3高調波のレーザー光を用いた場合、加工幅を数μm程度まで微細化できるものの、レーザー光のスポット径が小さくなった分、レーザー光により一度に除去できる範囲が小さくなり、生産性が著しく低下する。
In addition, when the active material layer is processed by laser ablation, the processing width of the second harmonic laser beam is about several tens of μm, so that fine processing is difficult. When the laser beam of the third harmonic is used for laser ablation, although the processing width can be miniaturized to about several μm, the spot diameter of the laser beam becomes smaller, so the range which can be removed at one time by the laser beam is small. And productivity is significantly reduced.
本開示の一側面は、薄膜電池素子の製造方法であって、パターン形成工程と、積層体形成工程と、開口形成工程とを含む。パターン形成工程は、集電極層上に所定パターンのレーザー吸収層を形成する。積層体形成工程は、集電極層およびレーザー吸収層上に活物質層を積層することにより、積層体を形成する。開口形成工程は、積層体にレーザー光を照射してレーザー吸収層を蒸散させることにより、活物質層に所定パターンに応じた開口を形成する。
One aspect of the present disclosure is a method of manufacturing a thin film battery element, and includes a pattern forming step, a laminate forming step, and an opening forming step. In the pattern formation step, a laser absorption layer of a predetermined pattern is formed on the collector electrode layer. In the laminate formation step, the active material layer is laminated on the collecting electrode layer and the laser absorption layer to form a laminate. In the opening forming step, the laminated body is irradiated with laser light to evaporate the laser absorption layer, thereby forming an opening corresponding to a predetermined pattern in the active material layer.
本開示の種々の側面および実施形態によれば、薄膜電池素子の生産性を向上させることができる。
According to various aspects and embodiments of the present disclosure, productivity of the thin film battery element can be improved.
以下に、開示する薄膜電池素子の製造方法の実施形態について、図面に基づいて詳細に説明する。なお、以下の実施形態により、開示される薄膜電池素子の製造方法が限定されるものではない。
Hereinafter, an embodiment of a method of manufacturing a thin film battery element to be disclosed will be described in detail based on the drawings. In addition, the manufacturing method of the thin film battery element disclosed is not limited by the following embodiment.
(第1の実施形態)
[薄膜電池素子の製造手順]
図1は、第1の実施形態における薄膜電池素子の製造手順の一例を示すフローチャートである。図2~図4および図6~図10は、積層体10の一例を示す断面図である。 First Embodiment
[Production procedure of thin film battery element]
FIG. 1 is a flowchart showing an example of the manufacturing procedure of the thin film battery element in the first embodiment. 2 to 4 and 6 to 10 are cross-sectional views showing an example of thelaminate 10.
[薄膜電池素子の製造手順]
図1は、第1の実施形態における薄膜電池素子の製造手順の一例を示すフローチャートである。図2~図4および図6~図10は、積層体10の一例を示す断面図である。 First Embodiment
[Production procedure of thin film battery element]
FIG. 1 is a flowchart showing an example of the manufacturing procedure of the thin film battery element in the first embodiment. 2 to 4 and 6 to 10 are cross-sectional views showing an example of the
まず、基板11上に下部集電極層12が積層される(S100)。基板11は、例えばシリコン、ガラス、またはステンレス等を主成分とする材料により構成され、下部集電極層12は、例えばチタン、白金、金、銅、アルミニウム、またはニッケル等を主成分とする材料により構成される。本実施形態において、基板11は、例えばシリコンを主成分とする材料により構成され、下部集電極層12は、例えばチタンおよび白金を含む合金により構成される。下部集電極層12は、蒸着またはスパッタリング等により基板11上に積層される。
First, the lower collector electrode layer 12 is stacked on the substrate 11 (S100). The substrate 11 is made of, for example, a material having silicon, glass, or stainless steel as a main component, and the lower collector electrode layer 12 is made of, for example, a material having titanium, platinum, gold, copper, aluminum, or nickel as a main component. Configured In the present embodiment, the substrate 11 is made of, for example, a material containing silicon as a main component, and the lower collector electrode layer 12 is made of, for example, an alloy containing titanium and platinum. The lower collector electrode layer 12 is laminated on the substrate 11 by vapor deposition, sputtering or the like.
次に、下部集電極層12上にレーザー吸収層13が積層される(S101)。レーザー吸収層13は、例えばアモルファスシリコンまたはアモルファスゲルマニウム等を主成分とする材料により構成される。本実施形態において、レーザー吸収層13は、例えばアモルファスシリコンを主成分とする材料により構成される。レーザー吸収層13は、CVD(Chemical Vapor Deposition)またはスパッタリング等により下部集電極層12上に積層される。これにより、例えば図2に示されるように、基板11上に下部集電極層12およびレーザー吸収層13が積層された積層体10が形成される。
Next, the laser absorption layer 13 is stacked on the lower collector electrode layer 12 (S101). The laser absorption layer 13 is made of, for example, a material mainly composed of amorphous silicon or amorphous germanium. In the present embodiment, the laser absorption layer 13 is made of, for example, a material mainly composed of amorphous silicon. The laser absorption layer 13 is stacked on the lower collector electrode layer 12 by chemical vapor deposition (CVD), sputtering or the like. As a result, for example, as shown in FIG. 2, a stacked body 10 in which the lower collector electrode layer 12 and the laser absorption layer 13 are stacked on the substrate 11 is formed.
次に、レーザー吸収層13が、例えば図3に示されるように、所定のパターンにパターニングされる(S102)。レーザー吸収層13のパターニングは、例えばフォトリソグラフィー、インプリントリソグラフィー、ウエットエッチング、ドライエッチング、またはリフトオフ等により行われる。ステップS102は、パターン形成工程の一例である。
Next, the laser absorption layer 13 is patterned into a predetermined pattern, for example, as shown in FIG. 3 (S102). The patterning of the laser absorption layer 13 is performed by, for example, photolithography, imprint lithography, wet etching, dry etching, or lift-off. Step S102 is an example of a pattern formation process.
本実施形態では、所定幅(例えば1μm程度)の直線状のレーザー吸収層13が所定間隔(例えば1μm程度)で下部集電極層12上に配置されるようにレーザー吸収層13がパターニングされる。なお、レーザー吸収層13のパターニングは、直線状に限られず、ジグザグ状、ミアンダ状、格子状、またはドット状等であってもよい。
In the present embodiment, the laser absorption layer 13 is patterned so that the linear laser absorption layer 13 having a predetermined width (for example, about 1 μm) is disposed on the lower collector electrode layer 12 at a predetermined interval (for example, about 1 μm). The patterning of the laser absorption layer 13 is not limited to a linear shape, and may be a zigzag shape, a meander shape, a lattice shape, a dot shape, or the like.
次に、パターニングされたレーザー吸収層13を覆うように、下部集電極層12およびレーザー吸収層13上に活物質層14が積層される(S103)。これにより、例えば図4に示されるような積層体10が形成される。活物質層14がカソード電極として機能する場合、活物質層14は、例えばコバルト酸リチウム(LCO)またはマンガン酸リチウム(LMO)等を主成分とする材料により構成される。また、活物質層14がアノード電極として機能する場合、活物質層14は、例えばチタン酸リチウム(LTO)またはシリコン等を主成分とする材料により構成される。本実施形態において、活物質層14は、例えばLCOを主成分とする材料により構成され、カソード電極として機能する。活物質層14は、CVDまたはスパッタリングにより下部集電極層12およびレーザー吸収層13上に積層される。なお、ステップS103において積層体10が形成された後に、積層体10の膜質の改善を目的としたアニール工程が行われてもよい。成膜直後の活物質層14はアモルファスであり不安定なため、活物質層14の成膜後は所定時間以内にアニールして結晶化させることにより膜質を改善させることが望ましい。従って、活物質層14が積層された後、例えば1時間以内に積層体10がアニールされることが好ましい。また、アニール温度は、例えば400℃から700℃の範囲内の温度であることが好ましい。ステップS103は、積層体形成工程の一例である。
Next, the active material layer 14 is stacked on the lower collector electrode layer 12 and the laser absorption layer 13 so as to cover the patterned laser absorption layer 13 (S103). Thereby, for example, a laminate 10 as shown in FIG. 4 is formed. When the active material layer 14 functions as a cathode electrode, the active material layer 14 is made of, for example, a material containing lithium cobaltate (LCO) or lithium manganate (LMO) as a main component. When the active material layer 14 functions as an anode electrode, the active material layer 14 is made of, for example, a material containing lithium titanate (LTO) or silicon as a main component. In the present embodiment, the active material layer 14 is made of, for example, a material containing LCO as a main component, and functions as a cathode electrode. The active material layer 14 is stacked on the lower collector electrode layer 12 and the laser absorption layer 13 by CVD or sputtering. Note that, after the stacked body 10 is formed in step S103, an annealing step may be performed for the purpose of improving the film quality of the stacked body 10. Since the active material layer 14 immediately after film formation is amorphous and unstable, it is desirable to improve film quality by annealing and crystallizing within a predetermined time after film formation of the active material layer 14. Therefore, it is preferable that the laminate 10 be annealed, for example, within one hour after the active material layer 14 is laminated. The annealing temperature is preferably a temperature within a range of 400 ° C. to 700 ° C., for example. Step S103 is an example of a layered product formation process.
次に、活物質層14に複数の溝が形成される(S104)。本実施形態では、レーザーアブレーションにより活物質層14に溝が形成される。ステップS104は、開口形成工程の一例である。図5は、レーザー照射装置100の一例を示す図である。本実施形態において用いられるレーザー照射装置100は、例えば図5に示されるように、レーザー発振器101、導光部102、出射ヘッド103、ステージ104、および移動台105を備える。レーザー発振器101は、レーザー光を発生させる。
Next, a plurality of grooves are formed in the active material layer 14 (S104). In the present embodiment, the grooves are formed in the active material layer 14 by laser ablation. Step S104 is an example of an opening formation process. FIG. 5 is a view showing an example of the laser irradiation apparatus 100. As shown in FIG. The laser irradiation apparatus 100 used in the present embodiment includes, for example, a laser oscillator 101, a light guiding unit 102, an emission head 103, a stage 104, and a moving table 105, as shown in FIG. The laser oscillator 101 generates a laser beam.
本実施形態では、レーザー吸収層13および活物質層14にレーザー光を照射し、レーザー吸収層13に対して選択的にレーザーアブレーションを発生させる。そのためには、積層体10に照射されるレーザー光の波長λ(nm)は、レーザー吸収層13の光学バンドギャップをEg,LA(eV)、活物質層14の光学バンドギャップをEg,CE(eV)とした場合、以下の関係式(1)を満たす必要がある。レーザー発振器101は、下記の関係式(1)を満たす波長λ(nm)のレーザー光を発生させる。
(1240/Eg,CE)(nm)<λ<(1240/Eg,LA)(nm) ・・・(1)
ここで、光の波長λ(nm)は、プランク定数h(eV・s)、光の速度c(m/s)、および光のバンドギャップEg(eV)を用いて、λ=hc/Eg(nm)と表される。また、上記の式(1)における「1240」は、光の波長λの単位をnmで表した場合のプランク定数h(eV・s)と光の速度c(m/s)との積の値である。 In the present embodiment, thelaser absorption layer 13 and the active material layer 14 are irradiated with laser light to cause laser ablation selectively to the laser absorption layer 13. For this purpose, the wavelength of the laser beam irradiated to the laminate 10 lambda (nm) is E the optical band gap of the laser absorbing layer 13 g, LA (eV), the optical band gap of the active material layer 14 E g, In the case of CE (eV), it is necessary to satisfy the following relational expression (1). The laser oscillator 101 generates laser light of wavelength λ (nm) which satisfies the following relational expression (1).
(1240 / E g, CE ) (nm) <λ <(1240 / E g, LA ) (nm) (1)
Here, the wavelength λ (nm) of light is λ = hc / E, using Planck's constant h (eV · s), speed of light c (m / s), and band gap E g (eV) of light. It is expressed as g (nm). Further, “1240” in the above equation (1) is the value of the product of the Planck constant h (eV · s) and the speed of light c (m / s) when the unit of the light wavelength λ is expressed in nm. It is.
(1240/Eg,CE)(nm)<λ<(1240/Eg,LA)(nm) ・・・(1)
ここで、光の波長λ(nm)は、プランク定数h(eV・s)、光の速度c(m/s)、および光のバンドギャップEg(eV)を用いて、λ=hc/Eg(nm)と表される。また、上記の式(1)における「1240」は、光の波長λの単位をnmで表した場合のプランク定数h(eV・s)と光の速度c(m/s)との積の値である。 In the present embodiment, the
(1240 / E g, CE ) (nm) <λ <(1240 / E g, LA ) (nm) (1)
Here, the wavelength λ (nm) of light is λ = hc / E, using Planck's constant h (eV · s), speed of light c (m / s), and band gap E g (eV) of light. It is expressed as g (nm). Further, “1240” in the above equation (1) is the value of the product of the Planck constant h (eV · s) and the speed of light c (m / s) when the unit of the light wavelength λ is expressed in nm. It is.
本実施形態において、レーザー吸収層13はアモルファスシリコンを主成分とする材料により構成されるため、レーザー吸収層13の光学バンドギャップEg,LAは、約1.7(eV)である。また、本実施形態において、活物質層14はLCOを主成分とする材料により構成されるため、活物質層14の光学バンドギャップEg,CEは、約2.4(eV)である。そのため、本実施形態において、レーザー発振器101は、516(nm)<λ<729(nm)を満たす波長λ(nm)のレーザー光として、例えばYAG(Yttrium Aluminum Garnet)レーザーの第2高調波(λ=532(nm))のレーザー光を発生させる。
In the present embodiment, since the laser absorption layer 13 is formed of a material containing amorphous silicon as a main component, the optical band gaps E g and LA of the laser absorption layer 13 are approximately 1.7 (eV). Further, in the present embodiment, since the active material layer 14 is made of a material having LCO as a main component, the optical band gaps E g and CE of the active material layer 14 are about 2.4 (eV). Therefore, in the present embodiment, as the laser light of wavelength λ (nm) satisfying 516 (nm) <λ <729 (nm), for example, the second harmonic (λ) of YAG (Yttrium Aluminum Garnet) laser is used. A laser beam of 532 (nm) is generated.
なお、レーザー吸収層13が例えばアモルファスゲルマニウムを主成分とする材料により構成される場合、レーザー吸収層13の光学バンドギャップEg,LAは、約1.0(eV)である。その場合、レーザー発振器101は、516(nm)<λ<1240(nm)を満たす波長λ(nm)のレーザー光として、例えばYAGレーザーの基本波(λ=1064(nm))のレーザー光を発生させてもよい。
When the laser absorption layer 13 is made of, for example, a material containing amorphous germanium as a main component, the optical band gaps E g and LA of the laser absorption layer 13 are about 1.0 (eV). In that case, the laser oscillator 101 generates, for example, a laser beam of a fundamental wave (λ = 1064 (nm)) of a YAG laser as a laser beam of a wavelength λ (nm) satisfying 516 (nm) <λ <1240 (nm) You may
導光部102は、レーザー発振器101で発生したレーザー光を出射ヘッド103へ伝搬させる。出射ヘッド103は、導光部102を伝搬したレーザー光を集光して積層体10へ照射する。本実施形態において、出射ヘッド103は、強度がガウシアン分布となるレーザー光を集光して所定の大きさのスポット光として積層体10に照射する。ステージ104上には、積層体10が載置される。移動台105は、ステージ104をX軸方向およびY軸方向に移動させることにより、ステージ104上の積層体10をX軸方向およびY軸方向に移動させる。これにより、出射ヘッド103から積層体10上に照射されたレーザー光が、積層体10上で走査される。なお、積層体10に対して出射ヘッド103の方を移動させることにより、積層体10上に照射されたレーザー光が積層体10上で走査されてもよい。
The light guiding unit 102 propagates the laser beam generated by the laser oscillator 101 to the emission head 103. The emission head 103 condenses the laser light propagated through the light guide portion 102 and irradiates the laminated body 10 with the laser light. In the present embodiment, the emission head 103 condenses laser light having a Gaussian distribution in intensity and irradiates the laminated body 10 with spot light of a predetermined size. The stack 10 is placed on the stage 104. The moving table 105 moves the stack 10 on the stage 104 in the X-axis direction and the Y-axis direction by moving the stage 104 in the X-axis direction and the Y-axis direction. Thereby, the laser beam irradiated onto the stack 10 from the emission head 103 is scanned on the stack 10. The laser beam emitted onto the laminate 10 may be scanned on the laminate 10 by moving the radiation head 103 relative to the laminate 10.
ここで、出射ヘッド103から積層体10上に照射されるレーザー光の波長λ(nm)は、前述のようにλ<1240/Eg,LA(nm)を満たす。そのため、出射ヘッド103から積層体10上に照射されるレーザー光のエネルギーは、Eg,LA<1240/λ(eV)となり、レーザー吸収層13において吸収される。これにより、レーザー光が照射されたレーザー吸収層13の部分が爆発的に蒸散するレーザーアブレーションが発生する。この時、レーザー吸収層13の上に積層された活物質層14がレーザー吸収層13の爆発的な蒸散の衝撃で上方に吹き飛ばされる。これにより、活物質層14にレーザー吸収層13のパターンに応じた溝が形成される。また、本実施形態では、1以上の高いアスペクト比の溝を活物質層14に形成することが可能である。
Here, the wavelength λ (nm) of the laser beam irradiated onto the stack 10 from the emission head 103 satisfies λ <1240 / Eg, LA (nm) as described above. Therefore, the energy of the laser beam irradiated from the emission head 103 onto the stack 10 is E g, LA <1240 / λ (eV), and is absorbed by the laser absorption layer 13. As a result, laser ablation occurs in which the portion of the laser absorption layer 13 irradiated with the laser light is transpirationally explosively dissipated. At this time, the active material layer 14 stacked on the laser absorption layer 13 is blown upward by the impact of explosive transpiration of the laser absorption layer 13. Thereby, a groove corresponding to the pattern of the laser absorption layer 13 is formed in the active material layer 14. Moreover, in the present embodiment, it is possible to form a groove with one or more high aspect ratios in the active material layer 14.
なお、レーザー吸収層13がドット状にパターニングされている場合には、レーザー光が積層体10上で走査されることにより、活物質層14にレーザー吸収層13のパターンに応じた穴が形成される。即ち、レーザー光が積層体10上で走査されることにより、活物質層14には、レーザー吸収層13のパターンに応じた開口が形成される。
In addition, when the laser absorption layer 13 is patterned in the shape of a dot, a hole according to the pattern of the laser absorption layer 13 is formed in the active material layer 14 by scanning the laser light on the laminate 10. Ru. That is, when the laser beam is scanned on the laminate 10, an opening corresponding to the pattern of the laser absorption layer 13 is formed in the active material layer 14.
例えば図6に示されるように、出射ヘッド103からのレーザー光の照射範囲が積層体10上で図6の矢印の方向に走査されることにより、レーザー吸収層13のパターンに応じた位置の活物質層14が除去される。これにより、活物質層14に複数の溝140が形成される。本実施形態において、出射ヘッド103は、レーザー光を集光するが、レーザー光の焦点面110は、レーザー吸収層13から離れた位置(図6の例では、レーザー吸収層13の上方)に形成される。
For example, as shown in FIG. 6, the irradiation range of the laser beam from the emission head 103 is scanned on the laminate 10 in the direction of the arrow in FIG. Material layer 14 is removed. Thereby, a plurality of grooves 140 are formed in the active material layer 14. In the present embodiment, the emission head 103 condenses the laser light, but the focal plane 110 of the laser light is formed at a position away from the laser absorption layer 13 (above the laser absorption layer 13 in the example of FIG. 6). Be done.
そのため、出射ヘッド103から出力されたレーザー光は、焦点面110の下方において、焦点面110の位置に形成されるレーザー光の照射範囲よりも広い範囲に照射される。例えば、レーザー吸収層13の表面において走査方向と垂直な方向におけるレーザー光の照射領域の幅は、溝140の幅よりも広い。また、レーザー吸収層13がドット状にパターニングされている場合には、レーザー吸収層13の表面において走査方向と垂直な方向におけるレーザー光の照射領域の幅は、レーザー吸収層13のパターンに応じて形成される穴の直径よりも広い。そのため、出射ヘッド103から出力されたレーザー光は、より広い領域のレーザー吸収層13を蒸散させることができ、より効率よく活物質層14に複数の溝140を形成することができる。なお、レーザー光の焦点面110は、レーザー吸収層13を挟んで出射ヘッド103と反対側(図6の例では、レーザー吸収層13の下方)に形成されてもよい。
Therefore, the laser beam output from the emission head 103 is irradiated below the focal plane 110 in a range wider than the irradiation range of the laser beam formed at the position of the focal plane 110. For example, the width of the laser light irradiation area in the direction perpendicular to the scanning direction on the surface of the laser absorption layer 13 is wider than the width of the groove 140. When the laser absorption layer 13 is patterned in a dot shape, the width of the irradiation area of the laser light in the direction perpendicular to the scanning direction on the surface of the laser absorption layer 13 corresponds to the pattern of the laser absorption layer 13. It is wider than the diameter of the formed hole. Therefore, the laser beam output from the emission head 103 can evaporate the laser absorption layer 13 in a wider area, and the plurality of grooves 140 can be formed in the active material layer 14 more efficiently. The focal plane 110 of the laser light may be formed on the opposite side of the emission head 103 with respect to the laser absorption layer 13 (below the laser absorption layer 13 in the example of FIG. 6).
ステップS104が終了すると、積層体10は、例えば図7に示されるような状態となる。なお、ステップS104の後、次のステップS105が実行される前に、エアーナイフまたは溶媒超音波洗浄等により、レーザーアブレーションにより活物質層14に形成された、いわゆるバリを除去する工程が実行されてもよい。
When step S104 is finished, the laminate 10 is in a state as shown in FIG. 7, for example. Note that after step S104, before the next step S105 is performed, a process of removing so-called burrs formed on the active material layer 14 by laser ablation is performed by air knife or solvent ultrasonic cleaning or the like. It is also good.
図1に戻って説明を続ける。次に、ステップS104によって活物質層14に形成された複数の溝140を覆うように、活物質層14上に固体電解質層15が積層される(S105)。これにより、例えば図8に示されるような積層体10が形成される。本実施形態において、固体電解質層15は、例えばリン酸リチウムオキシナイトライド(LiPON)を主成分とする材料により構成される。また、固体電解質層15は、例えばCVDまたはALD(Atomic Layer Deposition)等のステップカバレッジが良好な成膜方法により形成される。
Returning to FIG. 1, the description will be continued. Next, the solid electrolyte layer 15 is stacked on the active material layer 14 so as to cover the plurality of grooves 140 formed in the active material layer 14 in step S104 (S105). Thereby, for example, a laminate 10 as shown in FIG. 8 is formed. In the present embodiment, the solid electrolyte layer 15 is made of, for example, a material having lithium phosphate oxynitride (LiPON) as a main component. In addition, the solid electrolyte layer 15 is formed by a film forming method having good step coverage such as CVD or ALD (Atomic Layer Deposition).
固体電解質層15がCVDにより形成される場合のCVDの主な処理条件の一例を挙げるならば、例えば以下の通りである。積層体10の温度は、250~700℃の範囲内であり、好ましくは400~600℃の範囲内である。また、チャンバ内の圧力は、10~2000Paの範囲内であり、好ましくは10~500Paの範囲内である。
The following is an example of main processing conditions of CVD in the case where the solid electrolyte layer 15 is formed by CVD. The temperature of the laminate 10 is in the range of 250 to 700 ° C., preferably in the range of 400 to 600 ° C. Also, the pressure in the chamber is in the range of 10 to 2000 Pa, preferably in the range of 10 to 500 Pa.
リチウムの原料としては、例えば、リチウムターシャリーブトキシド(Li(t-OBu))、リチウム2,2,6,6-テトラメチル-3,5-ヘプタンジオナート(Li(TMHD))、または、ヘキサメチルジシラザンリチウム(Li(HMDS))等が用いられる。また、供給ボトルの温度は、Li(t-OBu)の場合、例えば70~230℃、Li(TMHD)の場合、例えば200~310℃、Li(HMDS)の場合、例えば90~180℃である。
As a raw material of lithium, for example, lithium tertiary butoxide (Li (t-OBu)), lithium 2,2,6,6-tetramethyl-3,5-heptanedionate (Li (TMHD)), or hexamer Methyldisilazane lithium (Li (HMDS)) or the like is used. Further, the temperature of the supply bottle is, for example, 70 to 230 ° C. in the case of Li (t-OBu), for example 200 to 310 ° C. in the case of Li (TMHD), and for example 90 to 180 ° C. in the case of Li (HMDS) .
また、リンの原料としては、例えば、リン酸トリメチル(TMP)、トリメチルホスフェート(TMOP)、トリエチルホスフェート(TEOP)、リン酸トリエチル(TEP)、トリス(ジメチルアミノ)ホスフィン(TDMAP)、または、トリス(ジメチルアミノ)ホスフィンオキシド(TDMAPO)等が用いられる。また、供給ボトルの温度は、TMPの場合、例えば25~60℃、TMOPの場合、例えば25~70℃、TEOPの場合、例えば25~120℃、TEPの場合、例えば25~150℃、TDMAPの場合、例えば30~110℃、TDMAPOの場合、例えば80~160℃である。
Moreover, as a raw material of phosphorus, for example, trimethyl phosphate (TMP), trimethyl phosphate (TMOP), triethyl phosphate (TEOP), triethyl phosphate (TEP), tris (dimethylamino) phosphine (TDMAP), or tris ( Dimethylamino) phosphine oxide (TDMAPO) or the like is used. Also, the temperature of the supply bottle is, for example, 25 to 60 ° C. in the case of TMP, 25 to 70 ° C. in the case of TMOP, for example 25 to 120 ° C. in the case of TEOP, for example 25 to 150 ° C. In the case of, eg, 30 to 110 ° C., in the case of TDMAPO, the temperature is, eg, 80 to 160 ° C.
次に、ステップS105によって積層された固体電解質層15の上に活物質層16が積層される(S106)。これにより、例えば図9に示されるような積層体10が形成される。活物質層16がカソード電極として機能する場合、活物質層16は、例えばLCOまたはLMO等を主成分とする材料により構成される。また、活物質層16がアノード電極として機能する場合、活物質層16は、例えばLTOまたはシリコン等を主成分とする材料により構成される。本実施形態において、活物質層16は、例えばシリコンを主成分とする材料により構成され、アノード電極として機能する。活物質層16は、CVDまたはスパッタリングにより固体電解質層15上に積層される。なお、ステップS106において積層体10が形成された後に、積層体10の膜質の改善を目的としたアニール工程が行われてもよい。成膜直後の活物質層16はアモルファスであり不安定なため、活物質層16の成膜後は所定時間以内にアニールして結晶化させることにより膜質を改善させることが望ましい。従って、活物質層16が積層された後、例えば1時間以内に積層体10がアニールされることが好ましい。また、アニール温度は、例えば400℃から700℃の範囲内の温度であることが好ましい。
Next, the active material layer 16 is stacked on the solid electrolyte layer 15 stacked in step S105 (S106). Thereby, for example, a laminate 10 as shown in FIG. 9 is formed. When the active material layer 16 functions as a cathode electrode, the active material layer 16 is made of, for example, a material containing LCO or LMO as a main component. When the active material layer 16 functions as an anode electrode, the active material layer 16 is made of, for example, a material containing LTO or silicon as a main component. In the present embodiment, the active material layer 16 is made of, for example, a material containing silicon as a main component, and functions as an anode electrode. The active material layer 16 is stacked on the solid electrolyte layer 15 by CVD or sputtering. In addition, after the stacked body 10 is formed in step S106, an annealing process may be performed for the purpose of improving the film quality of the stacked body 10. Since the active material layer 16 immediately after film formation is amorphous and unstable, it is desirable to improve film quality by annealing and crystallizing within a predetermined time after film formation of the active material layer 16. Therefore, it is preferable that the laminate 10 be annealed, for example, within one hour after the active material layer 16 is laminated. The annealing temperature is preferably a temperature within a range of 400 ° C. to 700 ° C., for example.
次に、活物質層16上に上部集電極層17が積層される(S107)。これにより、例えば図10に示されるような積層体10が形成される。上部集電極層17は、例えばチタン、白金、金、銅、アルミニウム、またはニッケル等を主成分とする材料により構成される。本実施形態において、上部集電極層17は、例えば銅を主成分とする材料により構成される。上部集電極層17は、蒸着またはスパッタリング等により活物質層16上に積層される。図10に示された積層体10は、薄膜電池素子として機能する。
Next, the upper collector electrode layer 17 is stacked on the active material layer 16 (S107). Thereby, for example, a laminate 10 as shown in FIG. 10 is formed. The upper collector electrode layer 17 is made of, for example, a material containing titanium, platinum, gold, copper, aluminum, nickel, or the like as a main component. In the present embodiment, the upper collector electrode layer 17 is made of, for example, a material containing copper as a main component. The upper collector electrode layer 17 is laminated on the active material layer 16 by vapor deposition, sputtering or the like. The laminate 10 shown in FIG. 10 functions as a thin film battery element.
以上、第1の実施形態について説明した。上記説明から明らかなように、本実施形態によれば、レーザー光の照射範囲を積層体10上で走査させることにより、レーザー吸収層13のパターンに応じた位置の活物質層14を除去することができ、複数の溝140を効率よく形成することができる。そのため、薄膜電池素子の生産性を向上させることができる。
The first embodiment has been described above. As apparent from the above description, according to the present embodiment, the active material layer 14 at the position corresponding to the pattern of the laser absorption layer 13 is removed by scanning the irradiation range of the laser light on the laminate 10. The plurality of grooves 140 can be formed efficiently. Therefore, the productivity of the thin film battery element can be improved.
(第2の実施形態)
第1の実施形態では、活物質層14に複数の溝140を形成する場合、例えば図6に示されたように、活物質層14側からレーザー吸収層13にレーザー光が照射される。これに対し、本実施形態では、基板側からレーザー吸収層にレーザー光が照射される。そして、レーザー光が照射されたレーザー吸収層は爆発的に蒸散し、レーザー吸収層の位置に対応する活物質層の部分が、基板を挟んで出射ヘッド103側と反対側の方向へ吹き飛ばされる。これにより、吹き飛ばされたレーザー吸収層および活物質層等が出射ヘッド103に付着することを抑制できる。そのため、出射ヘッド103のクリーニング周期を長くとることができ、薄膜電池素子の生産性をさらに向上させることができる。 Second Embodiment
In the first embodiment, when the plurality ofgrooves 140 are formed in the active material layer 14, for example, as shown in FIG. 6, the laser absorption layer 13 is irradiated with the laser light from the active material layer 14 side. On the other hand, in the present embodiment, the laser absorption layer is irradiated with the laser light from the substrate side. Then, the laser absorption layer irradiated with the laser light evaporates explosively, and the portion of the active material layer corresponding to the position of the laser absorption layer is blown away in the direction opposite to the emission head 103 side across the substrate. This can suppress adhesion of the blown laser absorbing layer, the active material layer, and the like to the emission head 103. Therefore, the cleaning cycle of the emission head 103 can be made long, and the productivity of the thin film battery element can be further improved.
第1の実施形態では、活物質層14に複数の溝140を形成する場合、例えば図6に示されたように、活物質層14側からレーザー吸収層13にレーザー光が照射される。これに対し、本実施形態では、基板側からレーザー吸収層にレーザー光が照射される。そして、レーザー光が照射されたレーザー吸収層は爆発的に蒸散し、レーザー吸収層の位置に対応する活物質層の部分が、基板を挟んで出射ヘッド103側と反対側の方向へ吹き飛ばされる。これにより、吹き飛ばされたレーザー吸収層および活物質層等が出射ヘッド103に付着することを抑制できる。そのため、出射ヘッド103のクリーニング周期を長くとることができ、薄膜電池素子の生産性をさらに向上させることができる。 Second Embodiment
In the first embodiment, when the plurality of
[薄膜電池素子の製造手順]
図11は、第2の実施形態における薄膜電池素子の製造手順の一例を示すフローチャートである。図12から図17は、積層体20の一例を示す断面図である。 [Production procedure of thin film battery element]
FIG. 11 is a flowchart showing an example of a manufacturing procedure of the thin film battery element in the second embodiment. 12 to 17 are cross-sectional views showing an example of thelaminated body 20. FIG.
図11は、第2の実施形態における薄膜電池素子の製造手順の一例を示すフローチャートである。図12から図17は、積層体20の一例を示す断面図である。 [Production procedure of thin film battery element]
FIG. 11 is a flowchart showing an example of a manufacturing procedure of the thin film battery element in the second embodiment. 12 to 17 are cross-sectional views showing an example of the
まず、基板21上に下部集電極層22が積層される(S200)。基板21は、例えばガラス、石英、またはサファイア等により構成され、下部集電極層22は、例えば酸化亜鉛(ZnO)、酸化スズ(SnO2)、または酸化インジウムスズ(ITO)等により構成される。本実施形態において、基板21は、例えばガラスにより構成され、下部集電極層22は、例えばZnOにより構成される。下部集電極層22は、スパッタリングまたはCVD等により基板21上に積層される。
First, the lower collector electrode layer 22 is stacked on the substrate 21 (S200). The substrate 21 is made of, for example, glass, quartz, or sapphire, and the lower collector electrode layer 22 is made of, for example, zinc oxide (ZnO), tin oxide (SnO 2), or indium tin oxide (ITO). In the present embodiment, the substrate 21 is made of, for example, glass, and the lower collector electrode layer 22 is made of, for example, ZnO. The lower collector electrode layer 22 is stacked on the substrate 21 by sputtering or CVD.
次に、下部集電極層22上にレーザー吸収層23が積層される(S201)。レーザー吸収層23は、例えば第1の実施形態のレーザー吸収層13と同様の材料で構成される。これにより、例えば図12に示されるように、基板21上に下部集電極層22およびレーザー吸収層23が積層された積層体20が形成される。
Next, the laser absorption layer 23 is stacked on the lower collector electrode layer 22 (S201). The laser absorption layer 23 is made of, for example, the same material as the laser absorption layer 13 of the first embodiment. As a result, for example, as shown in FIG. 12, a laminate 20 in which the lower collector electrode layer 22 and the laser absorption layer 23 are laminated on the substrate 21 is formed.
次に、レーザー吸収層23が、例えばフォトリソグラフィー等により、所定のパターンにパターニングされる(S202)。レーザー吸収層23のパターニングの形状は、第1の実施形態と同様である。ステップS202は、パターン形成工程の一例である。
Next, the laser absorption layer 23 is patterned into a predetermined pattern by, for example, photolithography (S202). The shape of the patterning of the laser absorption layer 23 is the same as that of the first embodiment. Step S202 is an example of a pattern formation process.
次に、パターニングされたレーザー吸収層23を覆うように、下部集電極層22およびレーザー吸収層23上にブロッキング層24が積層される(S203)。これにより、例えば図13に示されるような積層体20が形成される。ブロッキング層24は、例えば白金または金等を主成分とする材料により構成される。本実施形態において、ブロッキング層24は、例えば白金を主成分とする材料により構成される。ブロッキング層24の厚さは、例えば数nmである。ステップS203は、ブロッキング層形成工程の一例である。
Next, the blocking layer 24 is laminated on the lower collector electrode layer 22 and the laser absorption layer 23 so as to cover the patterned laser absorption layer 23 (S203). Thereby, for example, a laminate 20 as shown in FIG. 13 is formed. The blocking layer 24 is made of, for example, a material containing platinum or gold as a main component. In the present embodiment, the blocking layer 24 is made of, for example, a material containing platinum as a main component. The thickness of the blocking layer 24 is, for example, several nm. Step S203 is an example of a blocking layer formation process.
次に、ブロッキング層24上に活物質層25が積層される(S204)。これにより、例えば図14に示されるような積層体20が形成される。活物質層25は、例えば第1の実施形態の活物質層14と同様の材料で構成される。本実施形態では、下部集電極層22と活物質層25との間にブロッキング層24が設けられているため、活物質層25に含まれるリチウムイオンが下部集電極層22内に拡散してしまうことを防止することができる。活物質層25は、CVDまたはスパッタリングによりブロッキング層24上に積層される。なお、ステップS204において積層体10が形成された後に、積層体10の膜質の改善を目的としたアニール工程が行われてもよい。成膜直後の活物質層25はアモルファスであり不安定なため、活物質層25の成膜後は所定時間以内にアニールして結晶化させることにより膜質を改善させることが望ましい。従って、活物質層25が積層された後、例えば1時間以内に積層体10がアニールされることが好ましい。また、アニール温度は、例えば400℃から700℃の範囲であることが好ましい。ステップS204は、積層体形成工程の一例である。
Next, the active material layer 25 is stacked on the blocking layer 24 (S204). Thereby, for example, a laminate 20 as shown in FIG. 14 is formed. The active material layer 25 is made of, for example, the same material as the active material layer 14 of the first embodiment. In the present embodiment, since the blocking layer 24 is provided between the lower collector electrode layer 22 and the active material layer 25, lithium ions contained in the active material layer 25 are diffused into the lower collector electrode layer 22. Can be prevented. The active material layer 25 is stacked on the blocking layer 24 by CVD or sputtering. Note that, after the stacked body 10 is formed in step S204, an annealing step may be performed for the purpose of improving the film quality of the stacked body 10. Since the active material layer 25 immediately after film formation is amorphous and unstable, it is desirable to improve film quality by annealing and crystallizing within a predetermined time after film formation of the active material layer 25. Therefore, it is preferable that the laminate 10 be annealed, for example, within one hour after the active material layer 25 is laminated. The annealing temperature is preferably in the range of 400 ° C. to 700 ° C., for example. Step S204 is an example of a layered product formation process.
次に、活物質層25に複数の溝250が形成される(S205)。本実施形態では、例えば図15に示されるように、基板21側からレーザー吸収層23に照射されたレーザー光の照射範囲が積層体20の基板21上で図15の矢印の方向に走査され、レーザー光が照射されたレーザー吸収層23が爆発的に蒸散する。これにより、レーザー吸収層23に対応する部分の活物質層25が吹き飛ばされ、活物質層25にレーザー吸収層23のパターンに対応する複数の溝250が形成される。なお、ブロッキング層24の厚さは数nmであるため、レーザー吸収層23の爆発的な蒸散により、レーザー吸収層23に対応する部分のブロッキング層24も活物質層25と共に吹き飛ばされる。
Next, a plurality of grooves 250 are formed in the active material layer 25 (S205). In the present embodiment, for example, as shown in FIG. 15, the irradiation range of the laser light irradiated to the laser absorption layer 23 from the substrate 21 side is scanned in the direction of the arrow in FIG. The laser absorption layer 23 irradiated with the laser light evaporates explosively. Thereby, the active material layer 25 in a portion corresponding to the laser absorption layer 23 is blown away, and a plurality of grooves 250 corresponding to the pattern of the laser absorption layer 23 are formed in the active material layer 25. In addition, since the thickness of the blocking layer 24 is several nm, the blocking layer 24 of the part corresponding to the laser absorption layer 23 is also blown away with the active material layer 25 by explosive evaporation of the laser absorption layer 23.
下部集電極層22およびレーザー吸収層23のうち、レーザー吸収層23に対して選択的にレーザーアブレーションを発生させるためには、積層体20に照射されるレーザー光の波長λ(nm)は、レーザー吸収層23の光学バンドギャップをEg,LA(eV)、下部集電極層22の光学バンドギャップをEg,BC(eV)とした場合、以下の関係式(2)を満たす必要がある。基板21側からレーザー吸収層23へは、以下の関係式(2)を満たす波長λ(nm)のレーザー光が照射される。
(1240/Eg,BC)(nm)<λ<(1240/Eg,LA)(nm) ・・・(2) Of the lowercollector electrode layer 22 and the laser absorption layer 23, in order to cause laser ablation selectively to the laser absorption layer 23, the wavelength λ (nm) of the laser light irradiated to the stacked body 20 is a laser Assuming that the optical band gap of the absorption layer 23 is E g, LA (eV) and the optical band gap of the lower collector electrode layer 22 is E g, BC (eV), the following relational expression (2) needs to be satisfied. The laser absorption layer 23 is irradiated with the laser light of wavelength λ (nm) satisfying the following relational expression (2) from the substrate 21 side.
(1240 / E g, BC ) (nm) <λ <(1240 / E g, LA ) (nm) (2)
(1240/Eg,BC)(nm)<λ<(1240/Eg,LA)(nm) ・・・(2) Of the lower
(1240 / E g, BC ) (nm) <λ <(1240 / E g, LA ) (nm) (2)
なお、本実施形態では、下部集電極層22と活物質層25との間にブロッキング層24が設けられているため、下部集電極層22を透過したレーザー光の大半がブロッキング層24で反射される。そのため、下部集電極層22を透過したレーザー光は活物質層25にほとんど届かない。従って、レーザー光の波長λ(nm)の要求範囲において、活物質層25による吸収を考慮しなくてもよい。
In the present embodiment, since the blocking layer 24 is provided between the lower collector electrode layer 22 and the active material layer 25, most of the laser light transmitted through the lower collector electrode layer 22 is reflected by the blocking layer 24. Ru. Therefore, the laser beam transmitted through the lower collector electrode layer 22 hardly reaches the active material layer 25. Therefore, the absorption by the active material layer 25 may not be considered in the required range of the wavelength λ (nm) of the laser light.
また、本実施形態において、レーザー吸収層23はアモルファスシリコンを主成分とする材料により構成されるため、レーザー吸収層23の光学バンドギャップEg,LAは、約1.7(eV)である。また、本実施形態において、下部集電極層22はZnOにより構成されるため、下部集電極層22の光学バンドギャップEg,BCは、約3.4(eV)である。そのため、本実施形態において、積層体20に照射されるレーザー光に要求される波長λの範囲は、365(nm)<λ<729(nm)である。このようなレーザー光としては、例えばYAGレーザーの第2高調波(λ=532(nm))を用いることができる。
Further, in the present embodiment, since the laser absorption layer 23 is made of a material having amorphous silicon as a main component, the optical band gaps E g and LA of the laser absorption layer 23 are approximately 1.7 (eV). Further, in the present embodiment, since the lower collector electrode layer 22 is made of ZnO, the optical band gaps Eg and BC of the lower collector electrode layer 22 are about 3.4 (eV). Therefore, in the present embodiment, the range of the wavelength λ required for the laser light irradiated to the stacked body 20 is 365 (nm) <λ <729 (nm). As such a laser beam, for example, the second harmonic (λ = 532 (nm)) of a YAG laser can be used.
なお、レーザー吸収層23が例えばアモルファスゲルマニウムを主成分とする材料により構成される場合、レーザー吸収層23の光学バンドギャップEg,LAは、約1.0(eV)である。その場合、積層体20に照射されるレーザー光に要求される波長λ(nm)の範囲は、365(nm)<λ<1240(nm)である。このようなレーザー光としては、例えばYAGレーザーの基本波(λ=1064(nm))を用いることもできる。
When the laser absorption layer 23 is made of, for example, a material containing amorphous germanium as a main component, the optical band gaps E g and LA of the laser absorption layer 23 are approximately 1.0 (eV). In that case, the range of the wavelength λ (nm) required for the laser light irradiated to the stacked body 20 is 365 (nm) <λ <1240 (nm). As such a laser beam, for example, a fundamental wave (λ = 1064 (nm)) of a YAG laser can also be used.
本実施形態においても、レーザー光の焦点面110は、レーザー吸収層23から離れた位置(図15の例では、レーザー吸収層23の下方)に形成される。そのため、出射ヘッド103から出力されたレーザー光は、焦点面110の上方において、焦点面110の位置に形成されるレーザー光の照射範囲よりも広い範囲に照射される。そのため、出射ヘッド103から出力されたレーザー光は、より広い領域のレーザー吸収層23を蒸散させることができ、より効率よく活物質層25に複数の溝250を形成することができる。なお、レーザー光の焦点面110は、レーザー吸収層23を挟んで出射ヘッド103と反対側(図15の例では、レーザー吸収層23の上方)に形成されてもよい。
Also in the present embodiment, the focal plane 110 of the laser light is formed at a position distant from the laser absorption layer 23 (below the laser absorption layer 23 in the example of FIG. 15). Therefore, the laser beam output from the emission head 103 is irradiated above the focal plane 110 in a range wider than the irradiation range of the laser beam formed at the position of the focal plane 110. Therefore, the laser beam output from the emission head 103 can evaporate the laser absorption layer 23 in a wider area, and the plurality of grooves 250 can be formed in the active material layer 25 more efficiently. The focal plane 110 of the laser light may be formed on the opposite side of the emission head 103 (above the laser absorption layer 23 in the example of FIG. 15) with the laser absorption layer 23 interposed therebetween.
図11に戻って説明を続ける。次に、ステップS205によって活物質層25に形成された複数の溝250を覆うように、活物質層25上に固体電解質層26が積層される(S206)。これにより、例えば図16に示されるような積層体20が形成される。固体電解質層26は、例えば第1の実施形態の固体電解質層15と同様の材料で構成される。また、固体電解質層26は、例えばCVDまたはALD等のステップカバレッジが良好な成膜方法により形成される。固体電解質層26がCVDにより形成される場合のCVDの主な処理条件の一例は、第1の実施形態と同様である。
Returning to FIG. 11, the description will be continued. Next, the solid electrolyte layer 26 is stacked on the active material layer 25 so as to cover the plurality of grooves 250 formed in the active material layer 25 in step S205 (S206). Thereby, for example, a laminate 20 as shown in FIG. 16 is formed. The solid electrolyte layer 26 is made of, for example, the same material as the solid electrolyte layer 15 of the first embodiment. In addition, the solid electrolyte layer 26 is formed by a film forming method having good step coverage such as CVD or ALD, for example. One example of the main processing conditions of CVD when the solid electrolyte layer 26 is formed by CVD is the same as in the first embodiment.
次に、ステップS206によって積層された固体電解質層26の上に活物質層27が積層される(S207)。活物質層27は、例えば第1の実施形態の活物質層16と同様の材料で構成される。活物質層27は、CVDまたはスパッタリングにより固体電解質層26上に積層される。なお、ステップS207において積層体10が形成された後に、積層体10の膜質の改善を目的としたアニール工程が行われてもよい。成膜直後の活物質層27はアモルファスであり不安定なため、活物質層27の成膜後は所定時間以内にアニールして結晶化させることにより膜質を改善させることが望ましい。従って、活物質層27が積層された後、例えば1時間以内に積層体10がアニールされることが好ましい。また、アニール温度は、例えば400℃から700℃の範囲であることが好ましい。
Next, the active material layer 27 is stacked on the solid electrolyte layer 26 stacked in step S206 (S207). The active material layer 27 is made of, for example, the same material as the active material layer 16 of the first embodiment. The active material layer 27 is stacked on the solid electrolyte layer 26 by CVD or sputtering. Note that, after the stacked body 10 is formed in step S207, an annealing step may be performed for the purpose of improving the film quality of the stacked body 10. Since the active material layer 27 immediately after film formation is amorphous and unstable, it is desirable to improve film quality by annealing and crystallizing within a predetermined time after film formation of the active material layer 27. Therefore, it is preferable that the laminate 10 be annealed, for example, within one hour after the active material layer 27 is laminated. The annealing temperature is preferably in the range of 400 ° C. to 700 ° C., for example.
次に、活物質層27上に上部集電極層28が積層される(S208)。これにより、例えば図17に示されるような積層体20が形成される。上部集電極層28は、例えば第1の実施形態の上部集電極層17と同様の材料(例えば銅を主成分とする材料)で構成される。上部集電極層28は、蒸着またはスパッタリング等により活物質層27上に積層される。図17に示された積層体20は、薄膜電池素子として機能する。
Next, the upper collector electrode layer 28 is stacked on the active material layer 27 (S208). Thereby, for example, a laminate 20 as shown in FIG. 17 is formed. The upper collector electrode layer 28 is made of, for example, the same material as that of the upper collector electrode layer 17 of the first embodiment (for example, a material containing copper as a main component). The upper collector electrode layer 28 is laminated on the active material layer 27 by evaporation, sputtering or the like. The laminate 20 shown in FIG. 17 functions as a thin film battery element.
以上、第2の実施形態について説明した。上記説明から明らかなように、本実施形態によれば、基板21側からレーザー吸収層23に照射されたレーザー光によるレーザーアブレーションによって、活物質層25に複数の溝250が形成される。これにより、レーザーアブレーションにより吹き飛ばされた活物質層25等がレーザー光の出射ヘッド103に付着することを抑制できる。そのため、出射ヘッド103のクリーニング周期を長くとることができ、薄膜電池素子の生産性をさらに向上させることができる。
The second embodiment has been described above. As apparent from the above description, according to the present embodiment, the plurality of grooves 250 are formed in the active material layer 25 by laser ablation by the laser beam irradiated to the laser absorption layer 23 from the substrate 21 side. Thus, the active material layer 25 or the like blown off by the laser ablation can be prevented from adhering to the laser beam emission head 103. Therefore, the cleaning cycle of the emission head 103 can be made long, and the productivity of the thin film battery element can be further improved.
[その他]
なお、本明細書に開示された技術は、上記した実施形態に限定されるものではなく、その要旨の範囲内で数々の変形が可能である。 [Others]
Note that the technology disclosed in the present specification is not limited to the above-described embodiment, and various modifications are possible within the scope of the present invention.
なお、本明細書に開示された技術は、上記した実施形態に限定されるものではなく、その要旨の範囲内で数々の変形が可能である。 [Others]
Note that the technology disclosed in the present specification is not limited to the above-described embodiment, and various modifications are possible within the scope of the present invention.
図18~図20は、レーザー光の照射方法の他の例を示す図である。例えば、上記した第1の実施形態において、出射ヘッド103は、強度がガウシアン分布となるレーザー光を集光して所定の大きさのスポット光として積層体10に照射する。しかし、レーザー光の照射方法は、これに限られない。例えば図18に示されるように、所定範囲において略均一な強度分布のレーザー光であるフラットトップビームを出力する出射ヘッド103aを用いて、積層体10にレーザー光を照射してもよい。
FIG. 18 to FIG. 20 show another example of the laser light irradiation method. For example, in the above-described first embodiment, the emission head 103 condenses laser light whose intensity has a Gaussian distribution, and irradiates the laminate 10 with spot light of a predetermined size. However, the laser light irradiation method is not limited to this. For example, as shown in FIG. 18, the laminated body 10 may be irradiated with laser light using an emission head 103 a that outputs a flat top beam that is laser light having a substantially uniform intensity distribution in a predetermined range.
また、例えば図19に示されるように、長軸と短軸とを有する照射領域において略均一な強度分布のレーザー光であるラインビームを出力する出射ヘッド103bを用いて、積層体10にレーザー光を照射してもよい。レーザー光としてラインビームが用いられる場合、短軸の方向にラインビームを走査することにより、少ない走査回数で積層体10全体にレーザー光を照射することができ、薄膜電池素子の生産性をさらに向上させることができる。
For example, as shown in FIG. 19, the laser beam is applied to the laminated body 10 using the emission head 103 b that outputs a line beam that is a laser beam of substantially uniform intensity distribution in the irradiation region having the major axis and the minor axis. You may irradiate. When a line beam is used as the laser beam, by scanning the line beam in the direction of the minor axis, the entire stack 10 can be irradiated with the laser beam with a smaller number of scans, which further improves the productivity of the thin film battery It can be done.
また、例えば図20に示されるように、強度がガウシアン分布となるレーザー光を集光して所定の大きさのスポット光とする出射ヘッド103を複数有する出射ユニット106を用いて、レーザー光を積層体10に照射してもよい。図20の例では、出射ユニット106または積層体10は、複数の出射ヘッド103の配列方向に直交する方向へ移動する。これにより、少ない走査回数で積層体10全体にレーザー光を照射することができ、薄膜電池素子の生産性をさらに向上させることができる。
For example, as shown in FIG. 20, the laser beam is stacked using an emission unit 106 having a plurality of emission heads 103 for condensing a laser beam having a Gaussian distribution and forming a spot beam of a predetermined size. The body 10 may be irradiated. In the example of FIG. 20, the emission unit 106 or the stacked body 10 moves in a direction orthogonal to the arrangement direction of the plurality of emission heads 103. As a result, the entire stack 10 can be irradiated with laser light with a small number of scans, and the productivity of the thin film battery element can be further improved.
また、積層体10に対向する面に複数の出射ヘッド103が2次元に配列された出射ユニット106を用いて、複数の出射ヘッド103によって積層体10全体が照射領域に含まれるようにしてもよい。この場合、出射ユニット106を走査させる必要がなくなるため、薄膜電池素子の生産性をさらに向上させることができる。なお、図18から図20を用いて説明したレーザー光の照射方法の他の例は、第2の実施形態に対しても適用可能である。
Alternatively, the entire stack 10 may be included in the irradiation area by the plurality of emission heads 103 using the emission unit 106 in which the plurality of emission heads 103 are two-dimensionally arranged on the surface facing the stack 10. . In this case, since it is not necessary to scan the emitting unit 106, the productivity of the thin film battery element can be further improved. In addition, the other example of the irradiation method of the laser beam demonstrated using FIGS. 18-20 is applicable also to 2nd Embodiment.
また、上記した各実施形態では、基板上に下部集電極層が積層されたが、開示の技術はこれに限られない。例えば、基板がチタン等の導電性の材料により構成される場合、下部集電極層は設けられなくてもよい。
In each of the above-described embodiments, the lower collector electrode layer is stacked on the substrate, but the disclosed technology is not limited thereto. For example, when the substrate is made of a conductive material such as titanium, the lower collector electrode layer may not be provided.
10 積層体
11 基板
12 下部集電極層
13 レーザー吸収層
14 活物質層
140 溝
15 固体電解質層
16 活物質層
17 上部集電極層
20 積層体
21 基板
22 下部集電極層
23 レーザー吸収層
24 ブロッキング層
25 活物質層
250 溝
26 固体電解質層
27 活物質層
28 上部集電極層
100 レーザー照射装置
101 レーザー発振器
102 導光部
103 出射ヘッド
104 ステージ
105 移動台
106 出射ユニット
110 焦点面 DESCRIPTION OFSYMBOLS 10 stacked body 11 substrate 12 lower collecting electrode layer 13 laser absorption layer 14 active material layer 140 groove 15 solid electrolyte layer 16 active material layer 17 upper collecting electrode layer 20 laminated body 21 substrate 22 lower collecting electrode layer 23 laser absorption layer 24 blocking layer Reference Signs List 25 active material layer 250 groove 26 solid electrolyte layer 27 active material layer 28 upper collector electrode layer 100 laser irradiation device 101 laser oscillator 102 light guiding unit 103 emission head 104 stage 105 moving table 106 emission unit 110 focal plane
11 基板
12 下部集電極層
13 レーザー吸収層
14 活物質層
140 溝
15 固体電解質層
16 活物質層
17 上部集電極層
20 積層体
21 基板
22 下部集電極層
23 レーザー吸収層
24 ブロッキング層
25 活物質層
250 溝
26 固体電解質層
27 活物質層
28 上部集電極層
100 レーザー照射装置
101 レーザー発振器
102 導光部
103 出射ヘッド
104 ステージ
105 移動台
106 出射ユニット
110 焦点面 DESCRIPTION OF
Claims (10)
- 集電極層上に所定パターンのレーザー吸収層を形成するパターン形成工程と、
前記集電極層および前記レーザー吸収層上に活物質層を積層することにより、積層体を形成する積層体形成工程と、
前記積層体にレーザー光を照射して前記レーザー吸収層を蒸散させることにより、前記活物質層に前記所定パターンに応じた開口を形成する開口形成工程と
を含む薄膜電池素子の製造方法。 Forming a laser absorption layer of a predetermined pattern on the collecting electrode layer;
A laminate forming step of forming a laminate by laminating an active material layer on the collecting electrode layer and the laser absorption layer;
And a step of forming an opening corresponding to the predetermined pattern in the active material layer by irradiating the laminated body with laser light to evaporate the laser absorption layer. - 前記開口形成工程では、前記活物質層側から前記積層体に前記レーザー光が照射され、 前記レーザー光の波長λ(nm)は、
前記レーザー吸収層の光学バンドギャップをEg,LA(eV)、前記活物質層の光学バンドギャップをEg,CE(eV)とした場合、(1240/Eg,CE)(nm)<λ<(1240/Eg,LA)(nm)を満たす請求項1に記載の薄膜電池素子の製造方法。 In the opening forming step, the laminated body is irradiated with the laser light from the side of the active material layer, and the wavelength λ (nm) of the laser light is
Assuming that the optical band gap of the laser absorption layer is E g, LA (eV) and the optical band gap of the active material layer is E g, CE (eV), (1240 / E g, CE ) (nm) <λ The manufacturing method of the thin film battery element of Claim 1 which satisfy | fills <(1240 / Eg, LA ) (nm). - 前記集電極層は、基板上に積層され、
前記集電極層と前記基板とは、レーザー光を透過する材料により形成され、
前記パターン形成工程の後に、前記集電極層および前記レーザー吸収層の上に、ブロッキング層を形成するブロッキング層形成工程をさらに含み、
前記積層体形成工程では、前記ブロッキング層の上に前記活物質層が積層されることにより、前記積層体が形成され、
前記開口形成工程では、前記基板側から前記積層体にレーザー光が照射される請求項1に記載の薄膜電池素子の製造方法。 The collecting electrode layer is laminated on a substrate,
The collector electrode layer and the substrate are formed of a material that transmits laser light,
And forming a blocking layer on the collecting electrode layer and the laser absorption layer after the patterning step.
In the laminate forming step, the active material layer is laminated on the blocking layer to form the laminate.
The method for manufacturing a thin film battery element according to claim 1, wherein the laminated body is irradiated with a laser beam from the substrate side in the opening forming step. - 前記レーザー光の波長λ(nm)は、
前記レーザー吸収層の光学バンドギャップをEg,LA(eV)、前記集電極層の光学バンドギャップをEg,BE(eV)とした場合、(1240/Eg,BE)(nm)<λ<(1240/Eg,LA)(nm)を満たす請求項1に記載の薄膜電池素子の製造方法。 The wavelength λ (nm) of the laser light is
Assuming that the optical band gap of the laser absorption layer is E g, LA (eV) and the optical band gap of the collecting electrode layer is E g, BE (eV), (1240 / E g, BE ) (nm) <λ The manufacturing method of the thin film battery element of Claim 1 which satisfy | fills <(1240 / Eg, LA ) (nm). - 前記レーザー吸収層は、アモルファスシリコンまたはアモルファスゲルマニウムを含む請求項1に記載の薄膜電池素子の製造方法。 The method of claim 1, wherein the laser absorption layer comprises amorphous silicon or amorphous germanium.
- 前記活物質層は、コバルト酸リチウム、マンガン酸リチウム、チタン酸リチウム、シリコン、またはリチウムの少なくともいずれかを含む請求項1に記載の薄膜電池素子の製造方法。 The method for manufacturing a thin film battery element according to claim 1, wherein the active material layer contains at least one of lithium cobaltate, lithium manganate, lithium titanate, silicon, or lithium.
- 前記集電極層は、チタン、白金、金、銅、アルミニウム、またはニッケルの少なくともいずれかを含む請求項1に記載の薄膜電池素子の製造方法。 The method for manufacturing a thin film battery element according to claim 1, wherein the collecting electrode layer contains at least one of titanium, platinum, gold, copper, aluminum, or nickel.
- 前記開口形成工程において、前記レーザー光を集光させる光学系は、前記レーザー吸収層から離れた位置が焦点となるように前記レーザー光を集光させる請求項1に記載の薄膜電池素子の製造方法。 The method for manufacturing a thin film battery element according to claim 1, wherein in the opening forming step, an optical system for condensing the laser light condenses the laser light such that a position away from the laser absorption layer is a focal point. .
- 前記パターン形成工程では、前記集電極層上に前記所定パターンの前記レーザー吸収層が複数配置され、
前記開口形成工程では、前記積層体に照射される前記レーザー光が、前記積層体上で走査されることにより、前記レーザー吸収層が配置されたそれぞれの位置において前記活物質層に前記所定パターンに応じた開口が形成される請求項1に記載の薄膜電池素子の製造方法。 In the pattern forming step, a plurality of the laser absorbing layers of the predetermined pattern are disposed on the collecting electrode layer,
In the opening forming step, the laser light irradiated to the laminated body is scanned on the laminated body to form the predetermined pattern on the active material layer at each position where the laser absorbing layer is disposed. The method for manufacturing a thin film battery element according to claim 1, wherein a corresponding opening is formed. - 前記開口形成工程では、前記レーザー吸収層を蒸散させることにより、前記所定パターンに応じた溝が前記活物質層に形成され、
前記レーザー吸収層の表面において前記レーザー光の走査方向と垂直な方向における前記レーザー光の照射領域の幅は、前記溝の幅よりも広い請求項9に記載の薄膜電池素子の製造方法。 In the opening forming step, a groove corresponding to the predetermined pattern is formed in the active material layer by evaporating the laser absorption layer.
The method of manufacturing a thin film battery element according to claim 9, wherein a width of an irradiation area of the laser light in a direction perpendicular to a scanning direction of the laser light on the surface of the laser absorption layer is wider than a width of the groove.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018010135 | 2018-01-25 | ||
JP2018-010135 | 2018-01-25 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019146512A1 true WO2019146512A1 (en) | 2019-08-01 |
Family
ID=67394784
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2019/001399 WO2019146512A1 (en) | 2018-01-25 | 2019-01-18 | Method for manufacturing thin film battery element |
Country Status (2)
Country | Link |
---|---|
TW (1) | TW201933665A (en) |
WO (1) | WO2019146512A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2021012840A (en) * | 2019-07-09 | 2021-02-04 | ローム株式会社 | Thin-film all-solid-state battery, electronic device, and manufacturing method of thin-film all-solid-state battery |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02303696A (en) * | 1989-05-17 | 1990-12-17 | Matsushita Electric Works Ltd | Machining method utilizing laser beam |
US20070092637A1 (en) * | 2005-09-15 | 2007-04-26 | Plastic Logic Limited | Forming holes using laser energy |
JP2014520369A (en) * | 2011-06-17 | 2014-08-21 | アプライド マテリアルズ インコーポレイテッド | Maskless manufacturing of thin film batteries |
JP2017523559A (en) * | 2014-05-27 | 2017-08-17 | アップル インコーポレイテッド | Devices and methods for reducing battery defects |
-
2019
- 2019-01-14 TW TW108101318A patent/TW201933665A/en unknown
- 2019-01-18 WO PCT/JP2019/001399 patent/WO2019146512A1/en active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02303696A (en) * | 1989-05-17 | 1990-12-17 | Matsushita Electric Works Ltd | Machining method utilizing laser beam |
US20070092637A1 (en) * | 2005-09-15 | 2007-04-26 | Plastic Logic Limited | Forming holes using laser energy |
JP2014520369A (en) * | 2011-06-17 | 2014-08-21 | アプライド マテリアルズ インコーポレイテッド | Maskless manufacturing of thin film batteries |
JP2017523559A (en) * | 2014-05-27 | 2017-08-17 | アップル インコーポレイテッド | Devices and methods for reducing battery defects |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2021012840A (en) * | 2019-07-09 | 2021-02-04 | ローム株式会社 | Thin-film all-solid-state battery, electronic device, and manufacturing method of thin-film all-solid-state battery |
JP7319114B2 (en) | 2019-07-09 | 2023-08-01 | ローム株式会社 | Thin-film type all-solid-state battery, electronic device, and method for manufacturing thin-film type all-solid-state battery |
Also Published As
Publication number | Publication date |
---|---|
TW201933665A (en) | 2019-08-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN103636025B (en) | The maskless manufacture of hull cell | |
US9077000B2 (en) | Thin film battery and localized heat treatment | |
TWI618278B (en) | Mask-less fabrication of vertical thin film batteries | |
WO2012090929A1 (en) | Manufacturing method for thin film lithium secondary battery, and thin film lithium secondary battery | |
US6168968B1 (en) | Method of fabricating integrated thin film solar cells | |
US9257695B2 (en) | Localized heat treatment of battery component films | |
US12109651B2 (en) | Laser processing method for thin film structures | |
EP2912713B1 (en) | Diffractive optical elements and methods for patterning thin film electrochemical devices | |
US20050079418A1 (en) | In-line deposition processes for thin film battery fabrication | |
JP2006332453A (en) | Thin film solar battery and method for manufacturing the same | |
JP4022038B2 (en) | Thin film solar panel manufacturing method and manufacturing apparatus | |
EP2410584B1 (en) | Method for manufacturing thermoelectric cell | |
JP2019153591A (en) | Method and coating arrangement | |
KR20170078795A (en) | Integration of laser processing with deposition of electrochemical device layers | |
JP2007184421A (en) | Solar cell module and method of manufacturing same | |
WO2019146512A1 (en) | Method for manufacturing thin film battery element | |
JP2017524251A (en) | Method of manufacturing back contact system for silicon thin film solar cell | |
KR20170068064A (en) | An etching method for substarate and a secondary battery comprising substrate ethched by the same | |
WO2011027533A1 (en) | Method and apparatus for manufacturing a thin-film solar battery | |
JP2004183078A (en) | Laminated thin film, its manufacturing method and all-solid lithium-ion secondary battery using the same | |
US20120295391A1 (en) | Method of manufacturing a solar cell | |
JPH0399479A (en) | Manufacture of solar cell | |
US20110305846A1 (en) | Apparatus and method for surface processing | |
JP2012115844A (en) | Laser machining method | |
JP2014112584A (en) | Method of manufacturing solar battery cell and solar battery cell |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19744146 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 19744146 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: JP |