WO2019146022A1 - Motor control device - Google Patents

Motor control device Download PDF

Info

Publication number
WO2019146022A1
WO2019146022A1 PCT/JP2018/002165 JP2018002165W WO2019146022A1 WO 2019146022 A1 WO2019146022 A1 WO 2019146022A1 JP 2018002165 W JP2018002165 W JP 2018002165W WO 2019146022 A1 WO2019146022 A1 WO 2019146022A1
Authority
WO
WIPO (PCT)
Prior art keywords
circuit
switching element
inrush current
current suppression
control device
Prior art date
Application number
PCT/JP2018/002165
Other languages
French (fr)
Japanese (ja)
Inventor
昂司 岡川
彰 畑井
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2018/002165 priority Critical patent/WO2019146022A1/en
Priority to JP2019510981A priority patent/JP6567223B1/en
Publication of WO2019146022A1 publication Critical patent/WO2019146022A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/02Conversion of ac power input into dc power output without possibility of reversal
    • H02M7/04Conversion of ac power input into dc power output without possibility of reversal by static converters
    • H02M7/12Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes

Definitions

  • the present invention relates to a motor control device having a function of suppressing inrush current.
  • a mechanical device used for smoke exhaust in a building or a factory is required to operate the motor to smoke in an emergency.
  • a converter and a power converter including a capacitor on the output side of the converter are used in a motor controller incorporated in such a mechanical device.
  • an inrush current suppression circuit is often provided.
  • an inrush current suppression circuit configured of a diode and a resistor connected in series with each other is connected between the AC power supply and the converter circuit of the power conversion device.
  • the present invention has been made in view of the above, and an object thereof is to obtain a motor control device capable of suppressing generation of standby power in a rush current suppression circuit.
  • the present invention is composed of upper and lower arms having a first switching element in either the upper arm or the lower arm, and converts AC power into DC power. And a resistor circuit connected in series to the second switching element and the second switching element, and an inrush current suppression circuit connected in parallel to the first switching element. Furthermore, the present invention comprises a capacitor connected in parallel with the converter circuit on the output side of the converter circuit, and a control circuit for controlling the first switching element and the second switching element.
  • the motor control device has the effect of being able to suppress the generation of standby power in the inrush current suppression circuit.
  • FIG. 1 is a diagram showing the configuration of a mechanical device 1 according to a first embodiment of the present invention.
  • a specific example of the mechanical device 1 is a mechanical device for smoke exhaust.
  • the mechanical device 1 includes a motor control device 2 that converts power supplied from an AC power supply, and a motor 3 driven by the motor control device 2. That is, a three-phase or single-phase AC power supply is connected to the input end of the motor control device 2, and the motor 3 is connected to the output end of the motor control device 2.
  • the motor control device 2 includes an inrush current suppression circuit 4, a converter circuit 5 for converting AC power to DC power, an inverter circuit 6 for converting DC power to AC power to drive the motor 3, and a control circuit 7. It has the capacitor
  • FIG. 5 Although converter circuit 5 is described below as converting three-phase AC power to DC power, converter circuit 5 may convert single-phase AC power to DC power.
  • the inrush current suppression circuit 4 is a circuit for suppressing the inrush current at the time of charging which flows into the capacitor 8 immediately after the AC power supply is turned on.
  • the control circuit 7 controls the inrush current suppression circuit 4, the converter circuit 5 and the inverter circuit 6. Further, as described later, when the control circuit 7 receives an emergency signal indicating that the exhaust gas start is required from the host controller 17 provided outside the mechanical device 1, the inrush current suppression circuit 4 and the converter circuit 5 are Transmit control signals to Here, the control circuit 7 uses the voltage value measured by the voltage measurement unit 30 in order to determine the completion of charging of the capacitor 8.
  • the input terminals 101, 102, and 103 of the converter circuit 5 are provided corresponding to each of the R phase, S phase, and T phase of the AC power supply. Then, signals of R-phase, S-phase, and T-phase of the AC power supply are input to the input terminals 101, 102, and 103, respectively.
  • converter circuit 5 has an upper arm constituted by switching elements 11, 12, 13 which are first switching elements, and a lower arm constituted by diode elements 14, 15, 16.
  • the R-phase upper and lower arms are composed of the R-phase upper arm which is the switching element 11 and the R-phase lower arm which is the diode element 14, and the R-phase upper arm and the R-phase lower arm are connected in series with each other.
  • the input terminal 101 is connected to the electrical connection point between the R-phase upper arm and the R-phase lower arm.
  • the S-phase upper and lower arms and the T-phase upper and lower arms have the same configuration, and the R-phase upper and lower arms, the S-phase upper and lower arms, and the T-phase upper and lower arms are connected in parallel with each other to form a three-phase upper and lower arm.
  • the inrush current suppression circuit 4 includes a switching element 9 which is a second switching element, and a resistor 10 which is a resistor connected in series to the switching element 9. Further, inrush current suppression circuit 4 is connected between a terminal connected to an AC power supply and positive electrode side output terminal 201 of converter circuit 5. That is, the inrush current suppression circuit 4 is connected in parallel with the switching element of the upper arm of the converter circuit 5. Note that one terminal of the inrush current suppression circuit 4 may be physically connected not to the positive electrode side output terminal 201 itself but to a connection point at which the positive electrode side output terminal 201 is at the same electrical potential. Although the inrush current suppression circuit 4 is connected in parallel with the switching element 11 of the R-phase upper arm in FIG.
  • the inrush current suppression circuit 4 may be connected in parallel to the switching element of the upper arm constituting the converter circuit 5 without being limited to the R phase.
  • Input terminals 61 and 62 of the inverter circuit 6 and both terminals of the smoothing capacitor 8 are connected to the positive output terminal 201 and the negative output terminal 202 of the converter circuit 5, respectively. That is, the capacitor 8 is connected in parallel with the converter circuit 5 on the output side of the converter circuit 5.
  • the motor 3 is connected to the output terminal of the inverter circuit 6.
  • the inrush current flowing to the capacitor 8 immediately after the AC power is turned on is suppressed by the inrush current suppression circuit 4.
  • converter circuit 5 converts the first AC power input from the AC power supply to input terminals 101, 102, 103 into DC power, and the DC power is output from positive electrode side output terminal 201 and negative electrode side output terminal 202.
  • the inverter circuit 6 converts the DC power output from the converter circuit 5 to the positive electrode side output terminal 201 and the negative electrode side output terminal 202 into second AC power, and supplies the second AC power to the motor 3.
  • the control circuit 7 can variably control the frequency of the second AC power generated by the inverter circuit 6.
  • the control circuit 7 controls the energization of the inrush current suppression circuit 4 by transmitting a control signal to the gate electrode of the switching element 9 of the inrush current suppression circuit 4. That is, when the control signal for turning on the switching element 9 is transmitted, the inrush current suppression circuit 4 is energized, and if the control signal for turning off the switching element 9 is transmitted, the inrush current suppression circuit 4 is electrically disconnected.
  • a control for the on operation a positive voltage may be applied to the gate electrode of the switching element 9 as a control signal, and for a control for the off operation, a control signal applied to the gate electrode of the switching element 9 It is sufficient to change the positive voltage at the time of on operation to 0V.
  • switching element 9 of inrush current suppression circuit 4 is rendered conductive in response to a control signal corresponding to the on operation from control circuit 7.
  • a conduction path is formed between the AC power supply and the capacitor 8 via the switching element 9 and the resistor 10, charging of the capacitor 8 becomes possible, and charging is started.
  • FIG. 1 shows the case where a thyristor element is used as the switching element 9.
  • the thyristor element is cut off after a control signal corresponding to the OFF operation is transmitted from the control circuit 7 to the gate electrode of the thyristor element, after a conduction maintaining time determined from the electrical characteristics of the thyristor element.
  • the control circuit 7 controls the switching elements 11, 12, 13 which are the first switching elements constituting the converter circuit 5 and the switching element 9 which is the second switching element which constitutes the inrush current suppression circuit 4. Then, control circuit 7 interrupts electrical conduction between inrush current suppression circuit 4 and converter circuit 5 in normal operation. Specifically, since switching elements 9, 11, 12, 13 are elements capable of interrupting electrical conduction by the control signal, control circuit 7 normally switches the control signal for the OFF operation to switching element 9 , 11, 12, and 13 are applied to the gate electrodes. Then, when receiving an emergency signal indicating that exhaust gas start is necessary from the host controller 17 in an emergency, the control circuit 7 outputs a control signal for energization, that is, a control signal for on operation to the switching elements 9, 11, 12. , 13 are applied to the gate electrodes. Since the control circuit 7 needs to be always operated, although not shown, a dedicated power supply of the control circuit 7 is provided in the motor control device 2.
  • control circuit 7 In a normal state in which mechanical device 1 does not perform the smoke exhaust operation, control circuit 7 outputs a control signal for the off operation to inrush current suppression circuit 4 and converter circuit 5, and switching element 9 and switching elements 11 and 12. , 13 in the shutoff state. As a result, no current flow path is formed in any of inrush current suppression circuit 4 and converter circuit 5, and current does not flow from capacitor AC and inverter circuit 6 from the AC power supply.
  • control circuit 7 In an emergency where the mechanical device 1 carries out a smoke exhausting operation, the control circuit 7 outputs a control signal for the on operation to the inrush current suppression circuit 4 to make the switching element 9 conductive, thereby switching the switching element 9. And the current to the capacitor 8 through the resistor 10.
  • Control circuit 7 determines that charging of capacitor 8 is completed based on the measurement result of voltage measurement unit 30, and then outputs a control signal for the on operation to converter circuit 5 to switch switching elements 11, 12, and 13 Is turned on.
  • converter circuit 5 can convert the input AC voltage into a DC voltage and output it.
  • the capacitor 8 and the inverter circuit 6 are energized from the AC power supply via the converter circuit 5.
  • the motor control device 2 includes the inrush current suppression function, and in parallel with the switching elements 11, 12, and 13 constituting the upper and lower arms of the converter circuit 5, in order to reduce standby power.
  • the inrush current suppression circuit 4 having the switching element 9 is provided.
  • the inrush current to the capacitor 8 can be suppressed by turning on the switching element 9 of the inrush current suppression circuit 4 while the switching element 11 of the converter circuit 5 is turned off. Since both the switching elements 11, 12 and 13 of the converter circuit 5 and the switching element 9 of the inrush current suppression circuit 4 are turned off, the current to the converter circuit 5 and the inrush current suppression circuit 4 is cut off. Generation of standby power can be suppressed. That is, the inrush current suppression circuit 4 can be energized from the AC power supply only when the motor 3 needs to be operated, and the inrush current suppression circuit 4 can be electrically disconnected when it is not necessary.
  • the motor control device 2 when the motor control device 2 according to the first embodiment is not used, consider, for example, a case where the motor control device is configured with a diode, which is not a switching element, connected in series with the resistance of the inrush current suppression circuit 4. .
  • the motor control device 2 according to the first embodiment since the energization of the inrush current suppression circuit 4 is continued even when the motor is not in operation, the temperature of the parts rises due to the generation of the standby power, which leads to a decrease in the life of the parts.
  • generation of the standby power of the inrush current suppression circuit 4 can be suppressed when the motor is not in operation, so that the component temperature rise can be suppressed. As a result, it is possible to prevent the deterioration of the parts due to the temperature rise of the parts and to realize the long life.
  • a mechanical device for exhausting smoke that can shut off the current at normal times without using a contactor can be configured, so that the number of steps can be reduced, the size can be reduced, and the size can be reduced. Cost can be realized.
  • FIG. 2 is a diagram showing the configuration of a mechanical device 1A according to a second embodiment of the present invention.
  • a specific example of the mechanical device 1A is a mechanical device for smoke exhaust.
  • the mechanical device 1A according to the second embodiment differs from the mechanical device 1 according to the first embodiment in the configuration of the motor control device.
  • the configuration of inrush current suppression circuit 4 differs between motor control device 2A according to the second embodiment and motor control device 2 according to the first embodiment.
  • the switching element 18 incorporates a resistor. That is, the resistor 10 of the inrush current suppression circuit 4 of the first embodiment corresponds to the on resistance of the switching element 18 in the second embodiment.
  • the other configuration is the same as that of the first embodiment, and the same components as those in the first embodiment are denoted by the same reference numerals and redundant description will be omitted.
  • the switching element 18 which is the second switching element according to the second embodiment can shut off the current by the gate signal indicating the gate voltage, and adjusts the on-resistance by changing the value of the gate voltage.
  • FIG. 2 shows an example in which an IGBT (Insulated Gate Bipolar Transistor) element is used as the switching element 18. That is, inrush current suppression circuit 4 according to the second embodiment is formed of an IGBT as switching element 18 and the on resistance of this IGBT.
  • IGBT Insulated Gate Bipolar Transistor
  • control circuit 7 In a normal state in which mechanical device 1A does not perform the smoke exhausting operation, control circuit 7 outputs a control signal for off operation to inrush current suppression circuit 4 and converter circuit 5, and switching element 18 and switching elements 11, 12 , 13 in the shutoff state. As a result, no current flow path is formed in any of inrush current suppression circuit 4 and converter circuit 5, and current does not flow from capacitor AC and inverter circuit 6 from the AC power supply.
  • the control circuit 7 outputs a control signal for the on operation to the inrush current suppression circuit 4 to make the switching element 18 conductive.
  • Conduction of switching element 18 forms a conduction path between AC power supply and capacitor 8 via switching element 18, and capacitor 8 can be charged by the current suppressed by the on resistance of switching element 18. It becomes.
  • the IGBT element is used as the switching element 18, the IGBT element has a characteristic that the on resistance is changed by the voltage inputted to the gate, so the gate voltage is adjusted to charge the capacitor 8 Inrush current can be suppressed. That is, the motor control device 2A according to the second embodiment obtains the same rush current suppression effect as the motor control device 2 having the configuration in which the switching element 9 and the resistor 10 described in the first embodiment are connected in series. Can.
  • the control circuit 7 outputs the gate voltage in a pulse shape, so that the current flowing through the IGBT element is also in a pulse shape, so the average conduction current can be reduced. .
  • the temperature rise of the IGBT element can be suppressed.
  • the average conduction current of the IGBT element can be adjusted by adjusting the magnitude of the voltage amplitude of the gate voltage in accordance with the electrical characteristics of the IGBT element. As a result, the temperature of the IGBT element can be controlled.
  • the switching element 18 may use an element other than the IGBT element as long as the on resistance can be adjusted by the gate signal.
  • rush current suppression circuit 4 is formed of only IGBT elements. It goes without saying that inrush current suppression circuit 4 may be provided with a resistance connected in series to the IGBT elements. Yes.
  • the switching element 18 can be provided with a reverse breakdown voltage characteristic or an element capable of preventing reverse conduction represented by a diode. It is necessary to connect in series with the switching element 18.
  • the gate of the switching element 18 constituting the inrush current suppression circuit 4 for suppressing the inrush current flowing to the capacitor 8 immediately after the AC power supply is turned on.
  • the on resistance of the switching element 18 can be adjusted. Further, it is possible to suppress the temperature rise by outputting the gate voltage in a pulse shape, or to control the temperature of the element by adjusting the voltage amplitude of the gate voltage.
  • the switching element 18 may be a MOSFET (Metal-Oxide-Semiconductor Field-Effect Transistor). That is, the switching element 18 may be any switching element whose resistance value of the on resistance is adjusted by the control signal from the control circuit 7.
  • FIG. 3 is a diagram showing the configuration of a mechanical device 1B according to a third embodiment of the present invention.
  • a specific example of the mechanical device 1B is a mechanical device for smoke exhaust.
  • the mechanical device 1B according to the third embodiment differs from the mechanical device 1 according to the first embodiment in the configuration of the motor control device.
  • the motor control device 2B according to the third embodiment differs from the motor control device 2 according to the first embodiment in the configuration of the converter circuit, the configuration of the rush current suppression circuit, and the connection point.
  • converter circuit 5 is replaced with converter circuit 5B
  • inrush current suppression circuit 4 is replaced with inrush current suppression circuit 19, and the other configuration is similar to that of the first embodiment,
  • the same reference numerals are given to constituent elements, and duplicate explanations are omitted.
  • the motor control device 2B includes an inrush current suppression circuit 19, a converter circuit 5B, an inverter circuit 6, a control circuit 7, a smoothing capacitor 8, and a voltage measurement unit 30.
  • Converter circuit 5B has an upper arm formed of diode elements 22, 23, 24, and a lower arm formed of switching elements 25, 26, 27 which are first switching elements.
  • the R-phase upper and lower arms are composed of an R-phase upper arm which is a diode element 22 connected in series with each other and an R-phase lower arm which is a switching element 25.
  • the input terminal 101 is connected to the target connection point.
  • the S-phase upper and lower arms and the T-phase upper and lower arms have the same configuration, and the R-phase upper and lower arms, the S-phase upper and lower arms, and the T-phase upper and lower arms are connected in parallel with each other to form a three-phase upper and lower arm.
  • the control circuit 7 controls the inrush current suppression circuit 19, the converter circuit 5B and the inverter circuit 6. Further, as described later, when the control circuit 7 receives an emergency signal indicating that the exhaust gas start is required from the host controller 17 provided outside the mechanical device 1B, the rush current suppression circuit 19 and the converter circuit 5B Transmit control signals to Here, the control circuit 7 uses the voltage value measured by the voltage measurement unit 30 in order to determine the completion of charging of the capacitor 8.
  • the inrush current suppression circuit 19 includes a switching element 20 which is a second switching element, and a resistor 21 which is a resistor connected in series to the switching element 20.
  • the switching element 20 is shown by a thyristor element.
  • inrush current suppression circuit 19 is connected between the terminal connected to the AC power supply and negative electrode side output terminal 202 of converter circuit 5B. That is, the inrush current suppression circuit 19 is connected in parallel with the switching element of the lower arm of the converter circuit 5B.
  • one terminal of the rush current suppression circuit 19 may be physically connected not to the negative electrode side output terminal 202 itself but to a connection point at which the negative electrode side output terminal 202 is electrically at the same potential.
  • the inrush current suppression circuit 19 is connected in parallel with the switching element 27 of the T-phase lower arm, but may be connected in parallel with the switching element 25 of the R-phase lower arm.
  • the elements 26 may be connected in parallel. That is, the inrush current suppression circuit 19 may be connected in parallel to the switching element of the lower arm constituting the converter circuit 5B as well as the T phase.
  • Input terminals 61 and 62 of the inverter circuit 6 and both terminals of the smoothing capacitor 8 are connected to the positive electrode side output terminal 201 and the negative electrode side output terminal 202 of the converter circuit 5B, respectively.
  • the motor 3 is connected to the output terminal of the inverter circuit 6.
  • the inrush current flowing to the capacitor 8 immediately after the AC power is turned on is suppressed by the inrush current suppression circuit 19.
  • the switching element 20 of the inrush current suppression circuit 19 conducts in response to the control signal corresponding to the on operation from the control circuit 7.
  • the conduction of the switching element 20 forms an electric conduction path between the AC power supply and the capacitor 8 via the switching element 20 and the resistor 21 so that the capacitor 8 can be charged and charging is started.
  • the control circuit 7 controls the switching elements 25, 26 and 27 which are the first switching elements constituting the converter circuit 5 B and the switching element 20 which is the second switching element which constitutes the inrush current suppression circuit 19. Then, control circuit 7 interrupts electrical conduction between inrush current suppression circuit 19 and converter circuit 5B in normal operation. Specifically, since switching elements 20, 25, 26, and 27 are elements that can cut off electrical conduction by a control signal, control circuit 7 normally switches the control signal for the off operation to switching element 20. , 25, 26, and 27 are applied to the gate electrodes. Then, when receiving an emergency signal indicating that exhaust gas start is required from the host controller 17 in an emergency, the control circuit 7 outputs a control signal for energizing, that is, a control signal for on operation, to the switching elements 20, 25, 26. , 27 gate electrodes.
  • control circuit 7 In a normal state in which mechanical device 1B does not perform the smoke exhaust operation, control circuit 7 outputs a control signal for the off operation to inrush current suppression circuit 19 and converter circuit 5B, and switching element 20 and switching elements 25, 26. , 27 in the shutoff state. As a result, no current flow path is formed in any of inrush current suppression circuit 19 and converter circuit 5B, and current does not flow from capacitor AC and inverter circuit 6 from the AC power supply.
  • control circuit 7 In an emergency where the mechanical device 1B performs a smoke exhausting operation, the control circuit 7 outputs a control signal for the on operation to the inrush current suppression circuit 19 to make the switching element 20 conductive, thereby switching the switching element 20. And the current to the capacitor 8 through the resistor 21. Control circuit 7 determines that charging of capacitor 8 is completed based on the measurement result of voltage measurement unit 30, and then outputs a control signal for the on operation to converter circuit 5B to switch switching elements 25, 26, 27. Is turned on. Thus, converter circuit 5B can convert the input AC voltage into a DC voltage and output it. Thus, after the charging of the capacitor 8 is completed, the capacitor 8 and the inverter circuit 6 are energized from the AC power supply through the converter circuit 5B.
  • the motor control device 2B according to the third embodiment is configured such that the inrush current suppression circuit is connected in parallel with the switching element of the lower arm, so that the motor control device 2B is implemented after having the inrush current suppression function.
  • the small and simple configuration other than the mode 1 makes it possible to deenergize the AC power supply and to cut off electricity.
  • FIG. 4 is a diagram showing the configuration of a mechanical device 1C according to a fourth embodiment of the present invention.
  • a specific example of the mechanical device 1C is a mechanical device for smoke exhaust.
  • the mechanical device 1C according to the fourth embodiment differs from the mechanical device 1 according to the first embodiment in the configuration of the motor control device.
  • the motor control device 2C according to the fourth embodiment differs from the motor control device 2 according to the first embodiment in the configuration of the converter circuit.
  • converter circuit 5 is replaced with converter circuit 5C, and the other configuration is the same as that of the first embodiment, and the same components are assigned the same reference numerals and duplicated. The description is omitted.
  • the motor control device 2C includes an inrush current suppression circuit 4, a converter circuit 5C, an inverter circuit 6, a control circuit 7, a smoothing capacitor 8, a voltage measuring unit 30, and a capacitance for noise suppression. And the capacitive element 28.
  • the capacitive element 28 has a configuration in which a capacitive element between the input terminal 61 of the inverter circuit 6 and the ground and a capacitive element between the input terminal 62 of the inverter circuit 6 and the ground are connected in parallel. Therefore, the capacitive element 28 is connected to the capacitor 8.
  • Control circuit 7 controls inrush current suppression circuit 4, converter circuit 5 C and inverter circuit 6. Further, as described later, when the control circuit 7 receives an emergency signal indicating that the exhaust gas start is required from the host controller 17 provided outside the mechanical device 1C, the rush current suppression circuit 4 and the converter circuit 5C Transmit control signals to Here, the control circuit 7 uses the voltage value measured by the voltage measurement unit 30 in order to determine the completion of charging of the capacitor 8.
  • Input terminals 101, 102, and 103 of converter circuit 5C are provided corresponding to the respective phases of the AC power supply. Further, the rush current suppression circuit 4 is connected between the input terminal 101 to which the R-phase signal of the AC power supply is input and the positive electrode side output terminal 201 of the converter circuit 5C.
  • the terminal connected to the AC power supply of the rush current suppression circuit 4 may be connected to the input terminal 102 and the input terminal 103 instead of or in addition to the input terminal 101. That is, the inrush current suppression circuit 4 is connected between the positive electrode side output terminal 201 and the input terminal corresponding to at least one phase of the AC power supply as well as the R phase.
  • the input terminals 61 and 62 of the inverter circuit 6 and both terminals of the smoothing capacitor 8 are connected to the positive electrode side output terminal 201 and the negative electrode side output terminal 202 of the converter circuit 5C, respectively.
  • the motor 3 is connected to the output terminal of the inverter circuit 6.
  • the inrush current suppression circuit 4 includes a switching element 9 and a resistor 10 connected in series.
  • Converter circuit 5C has an upper arm constituted by switching elements 11, 12 and 13 which are first switching elements, and a lower arm constituted by switching elements 25 26 and 27 which are third switching elements.
  • the R-phase upper and lower arms are composed of the R-phase upper arm which is the switching element 11 and the R-phase lower arm which is the switching element 25 connected in series with each other.
  • the input terminal 101 is connected to the target connection point.
  • the S-phase upper and lower arms and the T-phase upper and lower arms have the same configuration, and the R-phase upper and lower arms, the S-phase upper and lower arms, and the T-phase upper and lower arms are connected in parallel with each other to form a three-phase upper and lower arm.
  • the inrush current suppression circuit 4 is connected in parallel with the switching element 11 of the R-phase upper arm.
  • the inrush current suppression circuit 4 may be connected between at least one of the input terminals 101, 102, and 103 and the positive electrode side output terminal 201, the inrush current The suppression circuit 4 may be connected in parallel with the switching element of the upper arm of at least one of the R-phase upper arm, the S-phase upper arm and the T-phase upper arm.
  • the control circuit 7 is a second switching element constituting the inrush current suppression circuit 4 and the switching elements 11, 12, 13, 25, 26, 27 which are the first and third switching elements constituting the converter circuit 5C.
  • the switching element 9 is to be controlled.
  • control circuit 7 interrupts electrical conduction between inrush current suppression circuit 4 and converter circuit 5C in normal operation.
  • switching elements 9, 11, 12, 13, 25, 26, and 27 are elements that can cut off electrical conduction by a control signal, control circuit 7 normally operates for off operation.
  • a control signal is applied to the gate electrodes of the switching elements 9, 11, 12, 13, 25, 26 and 27.
  • control circuit 7 upon receiving an emergency signal indicating that exhaust gas start is required from the host controller 17 in an emergency, the control circuit 7 generates a control signal for energizing, that is, a control signal for on operation, the switching element 9 and the switching element 11. , 12, 13, 25, 26, and 27 are applied to the gate electrodes.
  • the capacitor 8 In the normal state where the mechanical device 1C does not perform the exhaust operation, the charge of the capacitor 8 is not consumed, so the capacitor 8 may be charged by the above current path.
  • the capacitor 8 being charged in an ordinary state in which the motor 3 is not operated and having an unintended voltage may cause a malfunction or destruction of the motor control device 2C. Therefore, the motor control device 2C needs to operate so that the capacitor 8 is not charged in normal operation.
  • control circuit 7 In a normal state in which mechanical device 1C does not carry out a smoke exhausting operation, control circuit 7 outputs a control signal for off operation to inrush current suppression circuit 4 and converter circuit 5C, switching element 9 and switching elements 11 and 12 , 13, 25, 26, 27 in the shutoff state. As a result, no current flow path is formed in any of inrush current suppression circuit 4 and converter circuit 5C, and current does not flow from capacitor AC and inverter circuit 6 from the AC power supply.
  • control circuit 7 In an emergency where the mechanical device 1C performs a smoke exhausting operation, the control circuit 7 outputs a control signal for the on operation to the inrush current suppression circuit 4 to make the switching element 9 conductive, thereby switching the switching element 9 And the current to the capacitor 8 through the resistor 10.
  • Control circuit 7 determines that charging of capacitor 8 is completed based on the measurement result of voltage measurement unit 30, and then stops the control signal to inrush current suppression circuit 4 to put switching element 9 in the cutoff state.
  • a control signal for the on operation is output to converter circuit 5C to make switching elements 11, 12, 13, 25, 26, 27 conductive.
  • converter circuit 5C can convert the input AC voltage into a DC voltage and output it.
  • the capacitor 8 and the inverter circuit 6 are energized from the AC power supply via the converter circuit 5C.
  • capacitor 8 and AC power supply described above are used.
  • the energization operation to the inverter circuit 6 can be implemented without any problem.
  • the inrush current suppression circuit 4 is connected between the input terminal corresponding to at least one phase of the AC power supply and the positive electrode side output terminal 201, but the rush current
  • the rush current suppression circuit 19 is connected between the input terminal corresponding to at least one phase of the AC power supply and the negative output terminal 202 without connecting the suppression circuit 4 to this point. It does not matter if it is provided.
  • switching elements 25, 26 and 27 connected in parallel with rush current suppression circuit 19 are used as the first switching elements, and the remaining switching elements 11, 12 and 13 of converter circuit 5C are used as the third switching elements.
  • the inrush current suppression circuit 4 or the inrush current suppression circuit 19 may be configured using the switching element 18 whose ON resistance can be adjusted based on the gate signal.
  • the motor control device 2C As described above, according to the motor control device 2C according to the fourth embodiment, even when the capacitive element 28 for noise reduction is provided, the motor control device 2C is small and simple with the inrush current suppression function. Depending on the configuration, energization from the AC power supply and electrical disconnection can be achieved.
  • the configuration shown in the above embodiment shows an example of the contents of the present invention, and can be combined with another known technique, and one of the configurations is possible within the scope of the present invention. Parts can be omitted or changed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Inverter Devices (AREA)
  • Rectifiers (AREA)

Abstract

This motor control device (2) is provided with: a convertor circuit (5) which converts AC power to DC power and comprises upper and lower arms, a first switching element being provided on either the upper arm or the lower arm; a surge current suppression circuit (4) which is connected in parallel to the first switching element and has a second switching element and a resistor connected in series to the second switching element; a capacitor (8) connected in parallel to the converter circuit (5) on the output side of the converter circuit (5); and a control circuit (7) for controlling the first switching element and the second switching element.

Description

モータ制御装置Motor controller
 本発明は、突入電流を抑制する機能を備えたモータ制御装置に関する。 The present invention relates to a motor control device having a function of suppressing inrush current.
 ビルまたは工場等で非常時の排煙に用いる機械装置は、非常時にだけモータを動作させて排煙を行うことが求められる。一般に、このような機械装置に内蔵されるモータ制御装置には、コンバータとコンバータの出力側にコンデンサを備える電力変換装置が使用される。ここで、電力変換装置を起動するとき、すなわち、交流電源の投入時には突入電流が流れるのを防止するために、突入電流抑制回路を備えていることが多い。 A mechanical device used for smoke exhaust in a building or a factory is required to operate the motor to smoke in an emergency. In general, a converter and a power converter including a capacitor on the output side of the converter are used in a motor controller incorporated in such a mechanical device. Here, in order to prevent the inrush current from flowing when the power conversion device is activated, that is, when the AC power is turned on, an inrush current suppression circuit is often provided.
 特許文献1に記載の電力変換装置においては、交流電源と電力変換装置のコンバータ回路との間に、互いに直列接続されたダイオードおよび抵抗器から構成された突入電流抑制回路が接続されている。 In the power conversion device described in Patent Document 1, an inrush current suppression circuit configured of a diode and a resistor connected in series with each other is connected between the AC power supply and the converter circuit of the power conversion device.
特開2001-238459号公報JP 2001-238459 A
 しかし、突入電流抑制回路を備えた、特許文献1に記載のモータ制御装置では、非常時以外の待機状態において突入電流抑制回路で通電が継続されるために待機電力が発生してしまうという問題があった。 However, in the motor control device described in Patent Document 1 having the inrush current suppression circuit, there is a problem that standby power is generated because energization is continued in the inrush current suppression circuit in a standby state other than an emergency. there were.
 本発明は、上記に鑑みてなされたものであって、突入電流抑制回路での待機電力の発生を抑制可能なモータ制御装置を得ることを目的とする。 The present invention has been made in view of the above, and an object thereof is to obtain a motor control device capable of suppressing generation of standby power in a rush current suppression circuit.
 上述した課題を解決し、目的を達成するために、本発明は、上アームもしくは下アームのいずれか一方に、第1のスイッチング素子を有する上下アームから構成され、交流電力を直流電力に変換するコンバータ回路と、第2のスイッチング素子および第2のスイッチング素子に直列接続された抵抗を有し、第1のスイッチング素子に並列接続された突入電流抑制回路と、を備える。さらに、本発明は、コンバータ回路の出力側においてコンバータ回路と並列接続されたコンデンサと、第1のスイッチング素子および第2のスイッチング素子を制御するための制御回路と、を備える。 In order to solve the problems described above and to achieve the object, the present invention is composed of upper and lower arms having a first switching element in either the upper arm or the lower arm, and converts AC power into DC power. And a resistor circuit connected in series to the second switching element and the second switching element, and an inrush current suppression circuit connected in parallel to the first switching element. Furthermore, the present invention comprises a capacitor connected in parallel with the converter circuit on the output side of the converter circuit, and a control circuit for controlling the first switching element and the second switching element.
 本発明にかかるモータ制御装置は、突入電流抑制回路での待機電力の発生を抑制できるという効果を奏する。 The motor control device according to the present invention has the effect of being able to suppress the generation of standby power in the inrush current suppression circuit.
本発明の実施の形態1にかかる機械装置の構成を示す図The figure which shows the structure of the mechanical apparatus concerning Embodiment 1 of this invention. 本発明の実施の形態2にかかる機械装置の構成を示す図The figure which shows the structure of the mechanical apparatus concerning Embodiment 2 of this invention. 本発明の実施の形態3にかかる機械装置の構成を示す図The figure which shows the structure of the mechanical apparatus concerning Embodiment 3 of this invention. 本発明の実施の形態4にかかる機械装置の構成を示す図The figure which shows the structure of the mechanical apparatus concerning Embodiment 4 of this invention.
 以下に、本発明の実施の形態にかかるモータ制御装置を図面に基づいて詳細に説明する。なお、この実施の形態によりこの発明が限定されるものではない。 Hereinafter, a motor control device according to an embodiment of the present invention will be described in detail based on the drawings. The present invention is not limited by the embodiment.
実施の形態1.
 図1は、本発明の実施の形態1にかかる機械装置1の構成を示す図である。機械装置1の具体例は、排煙用の機械装置である。機械装置1は、交流電源から供給された電力を変換するモータ制御装置2と、モータ制御装置2が駆動するモータ3とを備える。すなわち、モータ制御装置2の入力端に三相または単相の交流電源が接続され、モータ制御装置2の出力端にモータ3が接続される。
Embodiment 1
FIG. 1 is a diagram showing the configuration of a mechanical device 1 according to a first embodiment of the present invention. A specific example of the mechanical device 1 is a mechanical device for smoke exhaust. The mechanical device 1 includes a motor control device 2 that converts power supplied from an AC power supply, and a motor 3 driven by the motor control device 2. That is, a three-phase or single-phase AC power supply is connected to the input end of the motor control device 2, and the motor 3 is connected to the output end of the motor control device 2.
 モータ制御装置2は、突入電流抑制回路4と、交流電力を直流電力に変換するコンバータ回路5と、直流電力を交流電力に変換してモータ3を駆動するインバータ回路6と、制御回路7と、電解コンデンサである平滑用のコンデンサ8と、コンデンサ8の電圧を計測する電圧計測部30と、を有する。なお、以下では、コンバータ回路5は三相の交流電力を直流電力に変換するとして説明するが、単相の交流電力を直流電力に変換するものであってもかまわない。 The motor control device 2 includes an inrush current suppression circuit 4, a converter circuit 5 for converting AC power to DC power, an inverter circuit 6 for converting DC power to AC power to drive the motor 3, and a control circuit 7. It has the capacitor | condenser 8 for smoothing which is an electrolytic capacitor, and the voltage measurement part 30 which measures the voltage of the capacitor | condenser 8. FIG. Although converter circuit 5 is described below as converting three-phase AC power to DC power, converter circuit 5 may convert single-phase AC power to DC power.
 突入電流抑制回路4は、交流電源の電源投入直後にコンデンサ8へ流れる充電時の突入電流を抑制するための回路である。制御回路7は、突入電流抑制回路4、コンバータ回路5およびインバータ回路6を制御する。また、後述するように、制御回路7は、機械装置1の外部に設けられた上位コントローラ17から、排煙開始が必要であるとの非常信号を受け取ると、突入電流抑制回路4およびコンバータ回路5に制御信号を伝達する。ここで、制御回路7がコンデンサ8の充電完了を判断するために、電圧計測部30が計測した電圧値を利用する。 The inrush current suppression circuit 4 is a circuit for suppressing the inrush current at the time of charging which flows into the capacitor 8 immediately after the AC power supply is turned on. The control circuit 7 controls the inrush current suppression circuit 4, the converter circuit 5 and the inverter circuit 6. Further, as described later, when the control circuit 7 receives an emergency signal indicating that the exhaust gas start is required from the host controller 17 provided outside the mechanical device 1, the inrush current suppression circuit 4 and the converter circuit 5 are Transmit control signals to Here, the control circuit 7 uses the voltage value measured by the voltage measurement unit 30 in order to determine the completion of charging of the capacitor 8.
 次に、モータ制御装置2の回路接続の詳細を説明する。コンバータ回路5の入力端子101,102,103は、交流電源のR相,S相,T相の各相に対応して設けられている。そして、交流電源のR相,S相,T相の信号は、入力端子101,102,103にそれぞれ入力される。 Next, the circuit connection of the motor control device 2 will be described in detail. The input terminals 101, 102, and 103 of the converter circuit 5 are provided corresponding to each of the R phase, S phase, and T phase of the AC power supply. Then, signals of R-phase, S-phase, and T-phase of the AC power supply are input to the input terminals 101, 102, and 103, respectively.
 ここで、コンバータ回路5は、第1のスイッチング素子であるスイッチング素子11,12,13により構成された上アームと、ダイオード素子14,15,16により構成された下アームを有する。図1において、R相上下アームは、スイッチング素子11であるR相上アームおよびダイオード素子14であるR相下アームから構成され、R相上アームとR相下アームとは互いに直列接続されており、R相上アームとR相下アームとの電気的接続点に入力端子101が接続されている。S相上下アームおよびT相上下アームも同様の構成であり、R相上下アーム、S相上下アームおよびT相上下アームが互いに並列に接続されて三相上下アームが構成される。 Here, converter circuit 5 has an upper arm constituted by switching elements 11, 12, 13 which are first switching elements, and a lower arm constituted by diode elements 14, 15, 16. In FIG. 1, the R-phase upper and lower arms are composed of the R-phase upper arm which is the switching element 11 and the R-phase lower arm which is the diode element 14, and the R-phase upper arm and the R-phase lower arm are connected in series with each other. The input terminal 101 is connected to the electrical connection point between the R-phase upper arm and the R-phase lower arm. The S-phase upper and lower arms and the T-phase upper and lower arms have the same configuration, and the R-phase upper and lower arms, the S-phase upper and lower arms, and the T-phase upper and lower arms are connected in parallel with each other to form a three-phase upper and lower arm.
 突入電流抑制回路4は、第2のスイッチング素子であるスイッチング素子9と、スイッチング素子9に直列接続された抵抗である抵抗器10とから構成される。また、突入電流抑制回路4は、交流電源に接続される端子と、コンバータ回路5の正極側出力端子201との間に接続される。つまり、コンバータ回路5の上アームのスイッチング素子と並列に突入電流抑制回路4が接続されている。なお、突入電流抑制回路4の一方の端子は、物理的には、正極側出力端子201自体ではなく、正極側出力端子201と電気的に同電位となる接続点に接続されていればよい。図1では、R相上アームのスイッチング素子11と並列に突入電流抑制回路4が接続されているが、S相上アームのスイッチング素子12に並列接続されてもよいし、T相上アームのスイッチング素子13に並列接続されてもよい。すなわち、R相に限らず、コンバータ回路5を構成する上アームのスイッチング素子に並列に突入電流抑制回路4が接続されていればよい。コンバータ回路5の正極側出力端子201および負極側出力端子202には、インバータ回路6の入力端子61および62と、平滑用のコンデンサ8の両端子がそれぞれ接続される。すなわち、コンデンサ8は、コンバータ回路5の出力側においてコンバータ回路5と並列接続されている。そして、インバータ回路6の出力端子にモータ3が接続される。 The inrush current suppression circuit 4 includes a switching element 9 which is a second switching element, and a resistor 10 which is a resistor connected in series to the switching element 9. Further, inrush current suppression circuit 4 is connected between a terminal connected to an AC power supply and positive electrode side output terminal 201 of converter circuit 5. That is, the inrush current suppression circuit 4 is connected in parallel with the switching element of the upper arm of the converter circuit 5. Note that one terminal of the inrush current suppression circuit 4 may be physically connected not to the positive electrode side output terminal 201 itself but to a connection point at which the positive electrode side output terminal 201 is at the same electrical potential. Although the inrush current suppression circuit 4 is connected in parallel with the switching element 11 of the R-phase upper arm in FIG. 1, it may be connected in parallel with the switching element 12 of the S-phase upper arm. The elements 13 may be connected in parallel. That is, the inrush current suppression circuit 4 may be connected in parallel to the switching element of the upper arm constituting the converter circuit 5 without being limited to the R phase. Input terminals 61 and 62 of the inverter circuit 6 and both terminals of the smoothing capacitor 8 are connected to the positive output terminal 201 and the negative output terminal 202 of the converter circuit 5, respectively. That is, the capacitor 8 is connected in parallel with the converter circuit 5 on the output side of the converter circuit 5. The motor 3 is connected to the output terminal of the inverter circuit 6.
 モータ制御装置2においては、交流電源投入直後にコンデンサ8へ流れる突入電流が突入電流抑制回路4により抑制される。そして、コンバータ回路5は、交流電源より入力端子101,102,103に入力される第1の交流電力を直流電力に変換して、当該直流電力を正極側出力端子201および負極側出力端子202から出力する。インバータ回路6は、コンバータ回路5が正極側出力端子201および負極側出力端子202に出力した直流電力を第2の交流電力に変換し、第2の交流電力をモータ3に供給する。制御回路7は、インバータ回路6が生成する第2の交流電力の周波数を可変に制御することができる。 In the motor control device 2, the inrush current flowing to the capacitor 8 immediately after the AC power is turned on is suppressed by the inrush current suppression circuit 4. Then, converter circuit 5 converts the first AC power input from the AC power supply to input terminals 101, 102, 103 into DC power, and the DC power is output from positive electrode side output terminal 201 and negative electrode side output terminal 202. Output. The inverter circuit 6 converts the DC power output from the converter circuit 5 to the positive electrode side output terminal 201 and the negative electrode side output terminal 202 into second AC power, and supplies the second AC power to the motor 3. The control circuit 7 can variably control the frequency of the second AC power generated by the inverter circuit 6.
 制御回路7は、突入電流抑制回路4のスイッチング素子9のゲート電極に制御信号を送信することにより、突入電流抑制回路4の通電を制御する。すなわち、スイッチング素子9をオン動作させる制御信号を送信すれば突入電流抑制回路4は通電状態となり、スイッチング素子9をオフ動作させる制御信号を送信すれば突入電流抑制回路4は電気的に遮断状態となる。例えば、オン動作のための制御としては、スイッチング素子9のゲート電極に制御信号として正電圧を印加すればよく、オフ動作のための制御としては、スイッチング素子9のゲート電極に印加する制御信号をオン動作時の正電圧から0Vに変更すればよい。 The control circuit 7 controls the energization of the inrush current suppression circuit 4 by transmitting a control signal to the gate electrode of the switching element 9 of the inrush current suppression circuit 4. That is, when the control signal for turning on the switching element 9 is transmitted, the inrush current suppression circuit 4 is energized, and if the control signal for turning off the switching element 9 is transmitted, the inrush current suppression circuit 4 is electrically disconnected. Become. For example, as a control for the on operation, a positive voltage may be applied to the gate electrode of the switching element 9 as a control signal, and for a control for the off operation, a control signal applied to the gate electrode of the switching element 9 It is sufficient to change the positive voltage at the time of on operation to 0V.
 排煙動作開始時に、突入電流抑制回路4のスイッチング素子9は、制御回路7からオン動作に対応する制御信号を受けて導通する。スイッチング素子9が導通することにより、交流電源とコンデンサ8との間に、スイッチング素子9および抵抗器10を介した通電経路が形成され、コンデンサ8への充電が可能となり、充電が開始される。 At the start of the smoke exhaust operation, switching element 9 of inrush current suppression circuit 4 is rendered conductive in response to a control signal corresponding to the on operation from control circuit 7. When the switching element 9 becomes conductive, a conduction path is formed between the AC power supply and the capacitor 8 via the switching element 9 and the resistor 10, charging of the capacitor 8 becomes possible, and charging is started.
 図1においては、スイッチング素子9としてサイリスタ素子を用いた場合を示している。サイリスタ素子は、制御回路7からサイリスタ素子のゲート電極にオフ動作に対応する制御信号が送信されたときからサイリスタ素子の電気特性から定まる導通維持時間を経て遮断状態となる。 FIG. 1 shows the case where a thyristor element is used as the switching element 9. The thyristor element is cut off after a control signal corresponding to the OFF operation is transmitted from the control circuit 7 to the gate electrode of the thyristor element, after a conduction maintaining time determined from the electrical characteristics of the thyristor element.
 制御回路7は、コンバータ回路5を構成する第1のスイッチング素子であるスイッチング素子11,12,13および突入電流抑制回路4を構成する第2のスイッチング素子であるスイッチング素子9を制御対象としている。そして、制御回路7は、平常時において、突入電流抑制回路4およびコンバータ回路5の電気的な導通を遮断する。具体的には、スイッチング素子9,11,12,13は制御信号により電気的な導通を遮断することが可能な素子なので、平常時に制御回路7は、オフ動作のための制御信号をスイッチング素子9,11,12,13のゲート電極に印加している。そして、非常時に上位コントローラ17から排煙開始が必要であるとの非常信号を受けると、制御回路7は、通電のための制御信号すなわちオン動作のための制御信号をスイッチング素子9,11,12,13のゲート電極に印加する。なお、制御回路7は常時稼働させる必要があるため、図示していないが、モータ制御装置2の内部に制御回路7の専用電源が備えられている。 The control circuit 7 controls the switching elements 11, 12, 13 which are the first switching elements constituting the converter circuit 5 and the switching element 9 which is the second switching element which constitutes the inrush current suppression circuit 4. Then, control circuit 7 interrupts electrical conduction between inrush current suppression circuit 4 and converter circuit 5 in normal operation. Specifically, since switching elements 9, 11, 12, 13 are elements capable of interrupting electrical conduction by the control signal, control circuit 7 normally switches the control signal for the OFF operation to switching element 9 , 11, 12, and 13 are applied to the gate electrodes. Then, when receiving an emergency signal indicating that exhaust gas start is necessary from the host controller 17 in an emergency, the control circuit 7 outputs a control signal for energization, that is, a control signal for on operation to the switching elements 9, 11, 12. , 13 are applied to the gate electrodes. Since the control circuit 7 needs to be always operated, although not shown, a dedicated power supply of the control circuit 7 is provided in the motor control device 2.
 以下、排煙用の機械装置1に用いられるモータ制御装置2の動作を平常時と非常時とに分けて説明する。 Hereinafter, the operation of the motor control device 2 used for the exhaust gas mechanical device 1 will be described separately for normal and emergency.
 機械装置1が排煙動作を実施しない平常時においては、制御回路7は、突入電流抑制回路4およびコンバータ回路5にオフ動作のための制御信号を出力し、スイッチング素子9およびスイッチング素子11,12,13を遮断状態に制御する。その結果、突入電流抑制回路4およびコンバータ回路5のいずれにも通電経路は形成されず、交流電源からコンデンサ8およびインバータ回路6に通電されない状態になる。 In a normal state in which mechanical device 1 does not perform the smoke exhaust operation, control circuit 7 outputs a control signal for the off operation to inrush current suppression circuit 4 and converter circuit 5, and switching element 9 and switching elements 11 and 12. , 13 in the shutoff state. As a result, no current flow path is formed in any of inrush current suppression circuit 4 and converter circuit 5, and current does not flow from capacitor AC and inverter circuit 6 from the AC power supply.
 機械装置1が排煙動作を実施する非常時においては、制御回路7は、突入電流抑制回路4にオン動作のための制御信号を出力して、スイッチング素子9を導通状態にして、スイッチング素子9および抵抗器10を介してコンデンサ8への電流を流す。制御回路7は、電圧計測部30の計測結果に基づいて、コンデンサ8の充電が完了したと判断した後、コンバータ回路5にオン動作のための制御信号を出力してスイッチング素子11,12,13を導通状態にする。これにより、コンバータ回路5は、入力された交流電圧を直流電圧に変換して出力することが可能となる。このように、コンデンサ8の充電完了後に、コンバータ回路5を介して交流電源からコンデンサ8およびインバータ回路6に通電を行う。 In an emergency where the mechanical device 1 carries out a smoke exhausting operation, the control circuit 7 outputs a control signal for the on operation to the inrush current suppression circuit 4 to make the switching element 9 conductive, thereby switching the switching element 9. And the current to the capacitor 8 through the resistor 10. Control circuit 7 determines that charging of capacitor 8 is completed based on the measurement result of voltage measurement unit 30, and then outputs a control signal for the on operation to converter circuit 5 to switch switching elements 11, 12, and 13 Is turned on. Thus, converter circuit 5 can convert the input AC voltage into a DC voltage and output it. Thus, after the charging of the capacitor 8 is completed, the capacitor 8 and the inverter circuit 6 are energized from the AC power supply via the converter circuit 5.
 なお 、コンバータ回路5にオン動作のための制御信号を出力してスイッチング素子11,12,13が導通状態になると、突入電流抑制回路4は導通していなくとも交流電源からコンデンサ8およびインバータ回路6に通電可能となるため、スイッチング素子11,12,13が導通状態になった後にスイッチング素子9を遮断状態に制御して突入電流抑制回路4を遮断してもよい。この場合、コンバータ回路5がオン動作している間に突入電流抑制回路4で発生する待機電力をさらに削減することができる。 When control signals for on operation are output to converter circuit 5 and switching elements 11, 12 and 13 are brought into conduction, capacitor 8 and inverter circuit 6 are switched from the AC power supply even if rush current suppression circuit 4 is not conducted. Since the switching elements 9, 12 and 13 become conductive, the inrush current suppression circuit 4 may be cut off by controlling the switching element 9 to the cut off state. In this case, it is possible to further reduce the standby power generated in inrush current suppression circuit 4 while converter circuit 5 is on.
 実施の形態1にかかるモータ制御装置2は、突入電流抑制機能を備えた上で待機電力の削減を図るために、コンバータ回路5の上下アームを構成するスイッチング素子11,12,13に並列に、スイッチング素子9を有する突入電流抑制回路4を備えることとした。その結果、モータ運転開始時はコンバータ回路5のスイッチング素子11をオフにした状態で突入電流抑制回路4のスイッチング素子9をオンにすることでコンデンサ8への突入電流を抑制でき、モータ非運転時は、コンバータ回路5のスイッチング素子11,12,13と突入電流抑制回路4のスイッチング素子9を両方オフにすることで、コンバータ回路5および突入電流抑制回路4のへの通電が遮断されるので、待機電力の発生を抑制できる。つまり、モータ3を動作させる必要がある時だけ交流電源から突入電流抑制回路4に通電させて、不要なときは突入電流抑制回路4を電気的に遮断することが可能となる。 The motor control device 2 according to the first embodiment includes the inrush current suppression function, and in parallel with the switching elements 11, 12, and 13 constituting the upper and lower arms of the converter circuit 5, in order to reduce standby power. The inrush current suppression circuit 4 having the switching element 9 is provided. As a result, when the motor operation is started, the inrush current to the capacitor 8 can be suppressed by turning on the switching element 9 of the inrush current suppression circuit 4 while the switching element 11 of the converter circuit 5 is turned off. Since both the switching elements 11, 12 and 13 of the converter circuit 5 and the switching element 9 of the inrush current suppression circuit 4 are turned off, the current to the converter circuit 5 and the inrush current suppression circuit 4 is cut off. Generation of standby power can be suppressed. That is, the inrush current suppression circuit 4 can be energized from the AC power supply only when the motor 3 needs to be operated, and the inrush current suppression circuit 4 can be electrically disconnected when it is not necessary.
 ここで、実施の形態1にかかるモータ制御装置2を用いない場合、例えば突入電流抑制回路4の抵抗と互いに直列接続された、スイッチング素子ではないダイオードでモータ制御装置が構成されている場合を考える。この場合、モータ非運転時でも突入電流抑制回路4の通電が継続されるため、待機電力発生により部品温度が上昇し、部品の寿命低下につながる。本実施の形態1にかかるモータ制御装置2を用いれば、モータ非運転時に突入電流抑制回路4の待機電力発生を抑制できるため、部品温度上昇を抑制することができる。その結果、部品温度上昇による部品劣化を防ぎ、長寿命化を実現できる。 Here, when the motor control device 2 according to the first embodiment is not used, consider, for example, a case where the motor control device is configured with a diode, which is not a switching element, connected in series with the resistance of the inrush current suppression circuit 4. . In this case, since the energization of the inrush current suppression circuit 4 is continued even when the motor is not in operation, the temperature of the parts rises due to the generation of the standby power, which leads to a decrease in the life of the parts. If the motor control device 2 according to the first embodiment is used, generation of the standby power of the inrush current suppression circuit 4 can be suppressed when the motor is not in operation, so that the component temperature rise can be suppressed. As a result, it is possible to prevent the deterioration of the parts due to the temperature rise of the parts and to realize the long life.
 また、待機電力による電力消費および温度上昇による部品劣化を抑制するために、電源からモータ制御装置へ必要な時にだけ通電させるためには、従来、電磁接触器、すなわちコンタクタと、コンタクタ制御用の上位コントローラを用いる場合があった。この場合、コンタクタへの配線接続の作業のための工数が必要であった。また、コンタクタのための設置スペースも必要になるが、コンタクタは大型であるので設置スペースが増大するという問題点があった。しかし、実施の形態1にかかるモータ制御装置2によれば、コンタクタを用いることなく平常時に通電を遮断することが可能な排煙用の機械装置を構成できることから、工数の削減、小型化および低コスト化が可能となる。 Also, in order to suppress power consumption due to standby power and component deterioration due to temperature rise, conventionally, in order to energize the motor control device from the power source only when necessary, a magnetic contactor, ie, a contactor, and a higher rank for contactor control There was a case to use a controller. In this case, man-hours for work of wiring connection to the contactor are required. Moreover, although the installation space for a contactor is also needed, there existed a problem that an installation space increases because a contactor is large. However, according to the motor control device 2 according to the first embodiment, a mechanical device for exhausting smoke that can shut off the current at normal times without using a contactor can be configured, so that the number of steps can be reduced, the size can be reduced, and the size can be reduced. Cost can be realized.
実施の形態2.
 図2は、本発明の実施の形態2にかかる機械装置1Aの構成を示す図である。機械装置1Aの具体例は、排煙用の機械装置である。実施の形態2にかかる機械装置1Aは、実施の形態1にかかる機械装置1とモータ制御装置の構成が異なる。実施の形態2にかかるモータ制御装置2Aと、実施の形態1にかかるモータ制御装置2とでは、突入電流抑制回路4の構成が異なる。実施の形態2にかかるモータ制御装置2Aの突入電流抑制回路4は、スイッチング素子18に抵抗が内蔵されている。すなわち、実施の形態1の突入電流抑制回路4の抵抗器10は、本実施の形態2では、スイッチング素子18のオン抵抗に対応する。それ以外の構成については、実施の形態1と同様であり、同様な構成要素には同一の符号を付して、重複する説明は省略する。
Second Embodiment
FIG. 2 is a diagram showing the configuration of a mechanical device 1A according to a second embodiment of the present invention. A specific example of the mechanical device 1A is a mechanical device for smoke exhaust. The mechanical device 1A according to the second embodiment differs from the mechanical device 1 according to the first embodiment in the configuration of the motor control device. The configuration of inrush current suppression circuit 4 differs between motor control device 2A according to the second embodiment and motor control device 2 according to the first embodiment. In the inrush current suppression circuit 4 of the motor control device 2A according to the second embodiment, the switching element 18 incorporates a resistor. That is, the resistor 10 of the inrush current suppression circuit 4 of the first embodiment corresponds to the on resistance of the switching element 18 in the second embodiment. The other configuration is the same as that of the first embodiment, and the same components as those in the first embodiment are denoted by the same reference numerals and redundant description will be omitted.
 実施の形態2にかかる第2のスイッチング素子であるスイッチング素子18は、ゲート電圧を指示するゲート信号によって電流を遮断することが可能であると共に、ゲート電圧の値を変化させることによりオン抵抗を調整することができる素子を用いる。図2では、スイッチング素子18にIGBT(Insulated Gate Bipolar Transistor)素子を用いた例を示している。すなわち、本実施の形態2における突入電流抑制回路4は、スイッチング素子18であるIGBTと、このIGBTのオン抵抗で構成される。 The switching element 18 which is the second switching element according to the second embodiment can shut off the current by the gate signal indicating the gate voltage, and adjusts the on-resistance by changing the value of the gate voltage. Use an element that can FIG. 2 shows an example in which an IGBT (Insulated Gate Bipolar Transistor) element is used as the switching element 18. That is, inrush current suppression circuit 4 according to the second embodiment is formed of an IGBT as switching element 18 and the on resistance of this IGBT.
 以下、排煙用の機械装置1Aに用いられるモータ制御装置2Aの動作を平常時と非常時とに分けて説明する。 Hereinafter, the operation of the motor control device 2A used in the smoke exhaust machine device 1A will be described separately for normal and emergency.
 機械装置1Aが排煙動作を実施しない平常時においては、制御回路7は、突入電流抑制回路4およびコンバータ回路5にオフ動作のための制御信号を出力し、スイッチング素子18およびスイッチング素子11,12,13を遮断状態に制御する。その結果、突入電流抑制回路4およびコンバータ回路5のいずれにも通電経路は形成されず、交流電源からコンデンサ8およびインバータ回路6に通電されない状態になる。 In a normal state in which mechanical device 1A does not perform the smoke exhausting operation, control circuit 7 outputs a control signal for off operation to inrush current suppression circuit 4 and converter circuit 5, and switching element 18 and switching elements 11, 12 , 13 in the shutoff state. As a result, no current flow path is formed in any of inrush current suppression circuit 4 and converter circuit 5, and current does not flow from capacitor AC and inverter circuit 6 from the AC power supply.
 機械装置1Aが排煙動作を実施する非常時においては、制御回路7は、突入電流抑制回路4にオン動作のための制御信号を出力して、スイッチング素子18を導通状態にする。スイッチング素子18が導通することにより、交流電源とコンデンサ8との間に、スイッチング素子18を介した通電経路が形成され、スイッチング素子18のオン抵抗によって抑制された電流によってコンデンサ8への充電が可能となる。スイッチング素子18にIGBT素子を用いている場合、IGBT素子はゲートに入力される電圧により、オン抵抗が変動する特性を有しているので、ゲート電圧を調整することでコンデンサ8への充電時の突入電流を抑制することが可能である。すなわち、実施の形態2にかかるモータ制御装置2Aは、実施の形態1に記載のスイッチング素子9と抵抗器10が直列に接続された構成のモータ制御装置2と同様の突入電流抑制効果を得ることができる。 In an emergency where the mechanical device 1A carries out a smoke exhausting operation, the control circuit 7 outputs a control signal for the on operation to the inrush current suppression circuit 4 to make the switching element 18 conductive. Conduction of switching element 18 forms a conduction path between AC power supply and capacitor 8 via switching element 18, and capacitor 8 can be charged by the current suppressed by the on resistance of switching element 18. It becomes. When the IGBT element is used as the switching element 18, the IGBT element has a characteristic that the on resistance is changed by the voltage inputted to the gate, so the gate voltage is adjusted to charge the capacitor 8 Inrush current can be suppressed. That is, the motor control device 2A according to the second embodiment obtains the same rush current suppression effect as the motor control device 2 having the configuration in which the switching element 9 and the resistor 10 described in the first embodiment are connected in series. Can.
 そして、スイッチング素子18にIGBT素子を用いている場合、制御回路7がゲート電圧をパルス状に出力することにより、IGBT素子を流れる電流もパルス状になるので、平均導通電流を低減することができる。その結果、IGBT素子の温度上昇を抑制することができる。また、ゲート電圧の電圧振幅の大小をIGBT素子の電気特性に合わせて調整することによりIGBT素子の平均導通電流を調整することができる。その結果、IGBT素子の温度を制御することができる。なお、スイッチング素子18は、ゲート信号でオン抵抗を調整することが可能であれば、IGBT素子以外の素子を用いてもかまわない。 Then, when an IGBT element is used as the switching element 18, the control circuit 7 outputs the gate voltage in a pulse shape, so that the current flowing through the IGBT element is also in a pulse shape, so the average conduction current can be reduced. . As a result, the temperature rise of the IGBT element can be suppressed. Further, the average conduction current of the IGBT element can be adjusted by adjusting the magnitude of the voltage amplitude of the gate voltage in accordance with the electrical characteristics of the IGBT element. As a result, the temperature of the IGBT element can be controlled. The switching element 18 may use an element other than the IGBT element as long as the on resistance can be adjusted by the gate signal.
 なお、本実施の形態においては、突入電流抑制回路4をIGBT素子のみで構成した場合を開示したが、IGBT素子に直列接続された抵抗を突入電流抑制回路4が備えていてもよいことは言うまでもない。 In the present embodiment, although the case where rush current suppression circuit 4 is formed of only IGBT elements is disclosed, it goes without saying that inrush current suppression circuit 4 may be provided with a resistance connected in series to the IGBT elements. Yes.
 また、スイッチング素子18が逆導通することで過電流破壊を起こさないようにするためには、スイッチング素子18に逆耐圧特性を持たせるか、もしくは、ダイオードを代表とする逆導通を防止できる素子をスイッチング素子18と直列に接続する必要がある。 Further, in order to prevent the occurrence of the overcurrent breakdown by causing the switching element 18 to reversely conduct, the switching element 18 can be provided with a reverse breakdown voltage characteristic or an element capable of preventing reverse conduction represented by a diode. It is necessary to connect in series with the switching element 18.
 以上説明したように、実施の形態2にかかるモータ制御装置2Aにおいては、交流電源の電源投入直後にコンデンサ8へ流れる突入電流を抑制するための突入電流抑制回路4を構成するスイッチング素子18のゲート電圧を変化させることによりスイッチング素子18のオン抵抗を調整することができる。また、ゲート電圧をパルス状に出力することにより温度上昇を抑制したり、ゲート電圧の電圧振幅調整により素子の温度を制御したりすることも可能になる。なお、本実施の形態2には、スイッチング素子18としてIGBT素子を記載したが、スイッチング素子18はMOSFET(Metal-Oxide-Semiconductor Field-Effect Transistor)であってもよい。すなわち、スイッチング素子18は制御回路7からの制御信号によりオン抵抗の抵抗値が調整されるスイッチング素子であればよい。 As described above, in the motor control device 2A according to the second embodiment, the gate of the switching element 18 constituting the inrush current suppression circuit 4 for suppressing the inrush current flowing to the capacitor 8 immediately after the AC power supply is turned on. By changing the voltage, the on resistance of the switching element 18 can be adjusted. Further, it is possible to suppress the temperature rise by outputting the gate voltage in a pulse shape, or to control the temperature of the element by adjusting the voltage amplitude of the gate voltage. Although the IGBT element is described as the switching element 18 in the second embodiment, the switching element 18 may be a MOSFET (Metal-Oxide-Semiconductor Field-Effect Transistor). That is, the switching element 18 may be any switching element whose resistance value of the on resistance is adjusted by the control signal from the control circuit 7.
実施の形態3.
 図3は、本発明の実施の形態3にかかる機械装置1Bの構成を示す図である。機械装置1Bの具体例は、排煙用の機械装置である。実施の形態3にかかる機械装置1Bは、実施の形態1にかかる機械装置1とモータ制御装置の構成が異なる。実施の形態3にかかるモータ制御装置2Bと、実施の形態1にかかるモータ制御装置2とでは、コンバータ回路の構成、突入電流抑制回路の構成および接続箇所が異なる。モータ制御装置2Bでは、コンバータ回路5がコンバータ回路5Bへ、突入電流抑制回路4が突入電流抑制回路19へそれぞれ置き換わっており、それ以外の構成については、実施の形態1と同様であり、同様な構成要素には同一の符号を付して、重複する説明は省略する。
Third Embodiment
FIG. 3 is a diagram showing the configuration of a mechanical device 1B according to a third embodiment of the present invention. A specific example of the mechanical device 1B is a mechanical device for smoke exhaust. The mechanical device 1B according to the third embodiment differs from the mechanical device 1 according to the first embodiment in the configuration of the motor control device. The motor control device 2B according to the third embodiment differs from the motor control device 2 according to the first embodiment in the configuration of the converter circuit, the configuration of the rush current suppression circuit, and the connection point. In motor control device 2B, converter circuit 5 is replaced with converter circuit 5B, inrush current suppression circuit 4 is replaced with inrush current suppression circuit 19, and the other configuration is similar to that of the first embodiment, The same reference numerals are given to constituent elements, and duplicate explanations are omitted.
 モータ制御装置2Bは、突入電流抑制回路19と、コンバータ回路5Bと、インバータ回路6と、制御回路7と、平滑用のコンデンサ8と、電圧計測部30と、を有する。 The motor control device 2B includes an inrush current suppression circuit 19, a converter circuit 5B, an inverter circuit 6, a control circuit 7, a smoothing capacitor 8, and a voltage measurement unit 30.
 コンバータ回路5Bは、ダイオード素子22,23,24により構成された上アームと、第1のスイッチング素子であるスイッチング素子25,26,27により構成された下アームを有する。図3において、R相上下アームは、互いに直列接続されたダイオード素子22であるR相上アームおよびスイッチング素子25であるR相下アームから構成され、R相上アームとR相下アームとの電気的接続点に入力端子101が接続されている。S相上下アームおよびT相上下アームも同様の構成であり、R相上下アーム、S相上下アームおよびT相上下アームが互いに並列に接続されて三相上下アームが構成される。 Converter circuit 5B has an upper arm formed of diode elements 22, 23, 24, and a lower arm formed of switching elements 25, 26, 27 which are first switching elements. In FIG. 3, the R-phase upper and lower arms are composed of an R-phase upper arm which is a diode element 22 connected in series with each other and an R-phase lower arm which is a switching element 25. The input terminal 101 is connected to the target connection point. The S-phase upper and lower arms and the T-phase upper and lower arms have the same configuration, and the R-phase upper and lower arms, the S-phase upper and lower arms, and the T-phase upper and lower arms are connected in parallel with each other to form a three-phase upper and lower arm.
 制御回路7は、突入電流抑制回路19、コンバータ回路5Bおよびインバータ回路6を制御する。また、後述するように、制御回路7は、機械装置1Bの外部に設けられた上位コントローラ17から、排煙開始が必要であるとの非常信号を受け取ると、突入電流抑制回路19およびコンバータ回路5Bに制御信号を伝達する。ここで、制御回路7がコンデンサ8の充電完了を判断するために、電圧計測部30が計測した電圧値を利用する。 The control circuit 7 controls the inrush current suppression circuit 19, the converter circuit 5B and the inverter circuit 6. Further, as described later, when the control circuit 7 receives an emergency signal indicating that the exhaust gas start is required from the host controller 17 provided outside the mechanical device 1B, the rush current suppression circuit 19 and the converter circuit 5B Transmit control signals to Here, the control circuit 7 uses the voltage value measured by the voltage measurement unit 30 in order to determine the completion of charging of the capacitor 8.
 次に、モータ制御装置2Bの回路接続の詳細を説明する。コンバータ回路5Bの入力端子101,102,103は、交流電源の各相に対応して設けられている。突入電流抑制回路19は、第2のスイッチング素子であるスイッチング素子20と、スイッチング素子20に直列接続された抵抗である抵抗器21とから構成される。図3においては、スイッチング素子20をサイリスタ素子で示している。また、突入電流抑制回路19は、交流電源に接続される端子とコンバータ回路5Bの負極側出力端子202との間に接続される。つまり、コンバータ回路5Bの下アームのスイッチング素子と並列に突入電流抑制回路19が接続されている。なお、突入電流抑制回路19の一方の端子は、物理的には、負極側出力端子202自体ではなく、負極側出力端子202と電気的に同電位となる接続点に接続されていればよい。図3では、T相下アームのスイッチング素子27と並列に突入電流抑制回路19が接続されているが、R相下アームのスイッチング素子25に並列接続されてもよいし、S相下アームのスイッチング素子26に並列接続されてもよい。すなわち、T相に限らず、コンバータ回路5Bを構成する下アームのスイッチング素子に並列に突入電流抑制回路19が接続されていればよい。コンバータ回路5Bの正極側出力端子201および負極側出力端子202には、インバータ回路6の入力端子61および62と、平滑用のコンデンサ8の両端子がそれぞれ接続される。そして、インバータ回路6の出力端子にモータ3が接続される。 Next, the circuit connection of the motor control device 2B will be described in detail. Input terminals 101, 102, and 103 of converter circuit 5B are provided corresponding to the respective phases of the AC power supply. The inrush current suppression circuit 19 includes a switching element 20 which is a second switching element, and a resistor 21 which is a resistor connected in series to the switching element 20. In FIG. 3, the switching element 20 is shown by a thyristor element. In addition, inrush current suppression circuit 19 is connected between the terminal connected to the AC power supply and negative electrode side output terminal 202 of converter circuit 5B. That is, the inrush current suppression circuit 19 is connected in parallel with the switching element of the lower arm of the converter circuit 5B. Note that one terminal of the rush current suppression circuit 19 may be physically connected not to the negative electrode side output terminal 202 itself but to a connection point at which the negative electrode side output terminal 202 is electrically at the same potential. In FIG. 3, the inrush current suppression circuit 19 is connected in parallel with the switching element 27 of the T-phase lower arm, but may be connected in parallel with the switching element 25 of the R-phase lower arm. The elements 26 may be connected in parallel. That is, the inrush current suppression circuit 19 may be connected in parallel to the switching element of the lower arm constituting the converter circuit 5B as well as the T phase. Input terminals 61 and 62 of the inverter circuit 6 and both terminals of the smoothing capacitor 8 are connected to the positive electrode side output terminal 201 and the negative electrode side output terminal 202 of the converter circuit 5B, respectively. The motor 3 is connected to the output terminal of the inverter circuit 6.
 モータ制御装置2Bにおいては、交流電源投入直後にコンデンサ8へ流れる突入電流が突入電流抑制回路19により抑制される。排煙動作開始時に、突入電流抑制回路19のスイッチング素子20は、制御回路7からのオン動作に対応する制御信号を受けて導通する。スイッチング素子20が導通することにより、交流電源とコンデンサ8との間に、スイッチング素子20および抵抗器21を介した通電経路が形成され、コンデンサ8への充電が可能となり、充電が開始される。 In the motor control device 2B, the inrush current flowing to the capacitor 8 immediately after the AC power is turned on is suppressed by the inrush current suppression circuit 19. At the start of the exhaust smoke operation, the switching element 20 of the inrush current suppression circuit 19 conducts in response to the control signal corresponding to the on operation from the control circuit 7. The conduction of the switching element 20 forms an electric conduction path between the AC power supply and the capacitor 8 via the switching element 20 and the resistor 21 so that the capacitor 8 can be charged and charging is started.
 制御回路7は、コンバータ回路5Bを構成する第1のスイッチング素子であるスイッチング素子25,26,27および突入電流抑制回路19を構成する第2のスイッチング素子であるスイッチング素子20を制御対象としている。そして、制御回路7は、平常時において、突入電流抑制回路19およびコンバータ回路5Bの電気的な導通を遮断する。具体的には、スイッチング素子20,25,26,27は制御信号により電気的な導通を遮断することが可能な素子なので、平常時に制御回路7は、オフ動作のための制御信号をスイッチング素子20,25,26,27のゲート電極に印加している。そして、非常時に上位コントローラ17から排煙開始が必要であるとの非常信号を受けると、制御回路7は、通電のための制御信号すなわちオン動作のための制御信号をスイッチング素子20,25,26,27のゲート電極に印加する。 The control circuit 7 controls the switching elements 25, 26 and 27 which are the first switching elements constituting the converter circuit 5 B and the switching element 20 which is the second switching element which constitutes the inrush current suppression circuit 19. Then, control circuit 7 interrupts electrical conduction between inrush current suppression circuit 19 and converter circuit 5B in normal operation. Specifically, since switching elements 20, 25, 26, and 27 are elements that can cut off electrical conduction by a control signal, control circuit 7 normally switches the control signal for the off operation to switching element 20. , 25, 26, and 27 are applied to the gate electrodes. Then, when receiving an emergency signal indicating that exhaust gas start is required from the host controller 17 in an emergency, the control circuit 7 outputs a control signal for energizing, that is, a control signal for on operation, to the switching elements 20, 25, 26. , 27 gate electrodes.
 以下、排煙用の機械装置1Bに用いられるモータ制御装置2Bの動作を平常時と非常時とに分けて説明する。 Hereinafter, the operation of the motor control device 2B used for the smoke exhaust machine device 1B will be described separately for normal and emergency.
 機械装置1Bが排煙動作を実施しない平常時においては、制御回路7は、突入電流抑制回路19およびコンバータ回路5Bにオフ動作のための制御信号を出力し、スイッチング素子20およびスイッチング素子25,26,27を遮断状態に制御する。その結果、突入電流抑制回路19およびコンバータ回路5Bのいずれにも通電経路は形成されず、交流電源からコンデンサ8およびインバータ回路6に通電されない状態になる。 In a normal state in which mechanical device 1B does not perform the smoke exhaust operation, control circuit 7 outputs a control signal for the off operation to inrush current suppression circuit 19 and converter circuit 5B, and switching element 20 and switching elements 25, 26. , 27 in the shutoff state. As a result, no current flow path is formed in any of inrush current suppression circuit 19 and converter circuit 5B, and current does not flow from capacitor AC and inverter circuit 6 from the AC power supply.
 機械装置1Bが排煙動作を実施する非常時においては、制御回路7は、突入電流抑制回路19にオン動作のための制御信号を出力して、スイッチング素子20を導通状態にして、スイッチング素子20および抵抗器21を介してコンデンサ8への電流を流す。制御回路7は、電圧計測部30の計測結果に基づいて、コンデンサ8の充電が完了したと判断した後、コンバータ回路5Bにオン動作のための制御信号を出力してスイッチング素子25,26,27を導通状態にする。これにより、コンバータ回路5Bは、入力された交流電圧を直流電圧に変換して出力することが可能となる。このように、コンデンサ8の充電完了後に、コンバータ回路5Bを介して交流電源からコンデンサ8およびインバータ回路6に通電を行う。 In an emergency where the mechanical device 1B performs a smoke exhausting operation, the control circuit 7 outputs a control signal for the on operation to the inrush current suppression circuit 19 to make the switching element 20 conductive, thereby switching the switching element 20. And the current to the capacitor 8 through the resistor 21. Control circuit 7 determines that charging of capacitor 8 is completed based on the measurement result of voltage measurement unit 30, and then outputs a control signal for the on operation to converter circuit 5B to switch switching elements 25, 26, 27. Is turned on. Thus, converter circuit 5B can convert the input AC voltage into a DC voltage and output it. Thus, after the charging of the capacitor 8 is completed, the capacitor 8 and the inverter circuit 6 are energized from the AC power supply through the converter circuit 5B.
 以上説明したように、実施の形態3にかかるモータ制御装置2Bは、突入電流抑制回路を下アームのスイッチング素子と並列に接続する構成としたことにより、突入電流抑制機能を備えた上で、実施の形態1とは別の小型かつ簡易な構成により交流電源からの通電および電気的遮断が可能となる。 As described above, the motor control device 2B according to the third embodiment is configured such that the inrush current suppression circuit is connected in parallel with the switching element of the lower arm, so that the motor control device 2B is implemented after having the inrush current suppression function. The small and simple configuration other than the mode 1 makes it possible to deenergize the AC power supply and to cut off electricity.
実施の形態4.
 図4は、本発明の実施の形態4にかかる機械装置1Cの構成を示す図である。機械装置1Cの具体例は、排煙用の機械装置である。実施の形態4にかかる機械装置1Cは、実施の形態1にかかる機械装置1とモータ制御装置の構成が異なる。実施の形態4にかかるモータ制御装置2Cと、実施の形態1にかかるモータ制御装置2とでは、コンバータ回路の構成が異なる。モータ制御装置2Cでは、コンバータ回路5がコンバータ回路5Cへ置き換わっており、それ以外の構成については、実施の形態1と同様であり、同様な構成要素には同一の符号を付して、重複する説明は省略する。
Fourth Embodiment
FIG. 4 is a diagram showing the configuration of a mechanical device 1C according to a fourth embodiment of the present invention. A specific example of the mechanical device 1C is a mechanical device for smoke exhaust. The mechanical device 1C according to the fourth embodiment differs from the mechanical device 1 according to the first embodiment in the configuration of the motor control device. The motor control device 2C according to the fourth embodiment differs from the motor control device 2 according to the first embodiment in the configuration of the converter circuit. In motor control device 2C, converter circuit 5 is replaced with converter circuit 5C, and the other configuration is the same as that of the first embodiment, and the same components are assigned the same reference numerals and duplicated. The description is omitted.
 モータ制御装置2Cは、突入電流抑制回路4と、コンバータ回路5Cと、インバータ回路6と、制御回路7と、平滑用のコンデンサ8と、電圧計測部30と、ノイズ対策のための静電容量を有する容量素子28と、を有する。容量素子28は、インバータ回路6の入力端子61とグランドとの間の容量素子およびインバータ回路6の入力端子62とグランドとの間の容量素子が並列接続された構成である。したがって、容量素子28はコンデンサ8に接続されている。 The motor control device 2C includes an inrush current suppression circuit 4, a converter circuit 5C, an inverter circuit 6, a control circuit 7, a smoothing capacitor 8, a voltage measuring unit 30, and a capacitance for noise suppression. And the capacitive element 28. The capacitive element 28 has a configuration in which a capacitive element between the input terminal 61 of the inverter circuit 6 and the ground and a capacitive element between the input terminal 62 of the inverter circuit 6 and the ground are connected in parallel. Therefore, the capacitive element 28 is connected to the capacitor 8.
 制御回路7は、突入電流抑制回路4、コンバータ回路5Cおよびインバータ回路6を制御する。また、後述するように、制御回路7は、機械装置1Cの外部に設けられた上位コントローラ17から、排煙開始が必要であるとの非常信号を受け取ると、突入電流抑制回路4およびコンバータ回路5Cに制御信号を伝達する。ここで、制御回路7がコンデンサ8の充電完了を判断するために、電圧計測部30が計測した電圧値を利用する。 Control circuit 7 controls inrush current suppression circuit 4, converter circuit 5 C and inverter circuit 6. Further, as described later, when the control circuit 7 receives an emergency signal indicating that the exhaust gas start is required from the host controller 17 provided outside the mechanical device 1C, the rush current suppression circuit 4 and the converter circuit 5C Transmit control signals to Here, the control circuit 7 uses the voltage value measured by the voltage measurement unit 30 in order to determine the completion of charging of the capacitor 8.
 次に、モータ制御装置2Cの回路接続の詳細を説明する。コンバータ回路5Cの入力端子101,102,103は、交流電源の各相に対応して設けられている。また、交流電源のR相の信号が入力される入力端子101とコンバータ回路5Cの正極側出力端子201との間に突入電流抑制回路4が接続される。突入電流抑制回路4の交流電源に接続される方の端子は、入力端子101に代えて、または入力端子101に加えて入力端子102,入力端子103に接続されていてもかまわない。すなわち、R相に限らず、交流電源の少なくとも一相に対応する入力端子と正極側出力端子201との間に突入電流抑制回路4が接続される。コンバータ回路5Cの正極側出力端子201および負極側出力端子202には、インバータ回路6の入力端子61および62と、平滑用のコンデンサ8の両端子がそれぞれ接続される。そして、インバータ回路6の出力端子にモータ3が接続される。突入電流抑制回路4は、互いに直列接続されたスイッチング素子9および抵抗器10から構成される。 Next, the circuit connection of the motor control device 2C will be described in detail. Input terminals 101, 102, and 103 of converter circuit 5C are provided corresponding to the respective phases of the AC power supply. Further, the rush current suppression circuit 4 is connected between the input terminal 101 to which the R-phase signal of the AC power supply is input and the positive electrode side output terminal 201 of the converter circuit 5C. The terminal connected to the AC power supply of the rush current suppression circuit 4 may be connected to the input terminal 102 and the input terminal 103 instead of or in addition to the input terminal 101. That is, the inrush current suppression circuit 4 is connected between the positive electrode side output terminal 201 and the input terminal corresponding to at least one phase of the AC power supply as well as the R phase. The input terminals 61 and 62 of the inverter circuit 6 and both terminals of the smoothing capacitor 8 are connected to the positive electrode side output terminal 201 and the negative electrode side output terminal 202 of the converter circuit 5C, respectively. The motor 3 is connected to the output terminal of the inverter circuit 6. The inrush current suppression circuit 4 includes a switching element 9 and a resistor 10 connected in series.
 コンバータ回路5Cは、第1のスイッチング素子であるスイッチング素子11,12,13により構成された上アームと、第3のスイッチング素子であるスイッチング素子25,26,27により構成された下アームを有する。図4において、R相上下アームは、互いに直列接続されたスイッチング素子11であるR相上アームおよびスイッチング素子25であるR相下アームから構成され、R相上アームとR相下アームとの電気的接続点に入力端子101が接続されている。S相上下アームおよびT相上下アームも同様の構成であり、R相上下アーム、S相上下アームおよびT相上下アームが互いに並列に接続されて三相上下アームが構成される。 Converter circuit 5C has an upper arm constituted by switching elements 11, 12 and 13 which are first switching elements, and a lower arm constituted by switching elements 25 26 and 27 which are third switching elements. In FIG. 4, the R-phase upper and lower arms are composed of the R-phase upper arm which is the switching element 11 and the R-phase lower arm which is the switching element 25 connected in series with each other. The input terminal 101 is connected to the target connection point. The S-phase upper and lower arms and the T-phase upper and lower arms have the same configuration, and the R-phase upper and lower arms, the S-phase upper and lower arms, and the T-phase upper and lower arms are connected in parallel with each other to form a three-phase upper and lower arm.
 なお、図4においては、R相上アームのスイッチング素子11と並列に突入電流抑制回路4が接続されている。ここで、突入電流抑制回路4は、前述したように、入力端子101,102,103の中の少なくとも一つの入力端子と正極側出力端子201との間に接続されていればよいので、突入電流抑制回路4は、R相上アーム、S相上アームおよびT相上アームの中の少なくとも一相の上アームのスイッチング素子と並列接続されればよい。 In FIG. 4, the inrush current suppression circuit 4 is connected in parallel with the switching element 11 of the R-phase upper arm. Here, as described above, since the inrush current suppression circuit 4 may be connected between at least one of the input terminals 101, 102, and 103 and the positive electrode side output terminal 201, the inrush current The suppression circuit 4 may be connected in parallel with the switching element of the upper arm of at least one of the R-phase upper arm, the S-phase upper arm and the T-phase upper arm.
 制御回路7は、コンバータ回路5Cを構成する第1、第3のスイッチング素子であるスイッチング素子11,12,13,25,26,27および突入電流抑制回路4を構成する第2のスイッチング素子であるスイッチング素子9を制御対象としている。そして、制御回路7は、平常時において、突入電流抑制回路4およびコンバータ回路5Cの電気的な導通を遮断する。具体的には、スイッチング素子9,11,12,13,25,26,27は制御信号により電気的な導通を遮断することが可能な素子なので、平常時に制御回路7は、オフ動作のための制御信号をスイッチング素子9,11,12,13,25,26,27のゲート電極に印加している。そして、非常時に上位コントローラ17から排煙開始が必要であるとの非常信号を受けると、制御回路7は、通電のための制御信号すなわちオン動作のための制御信号をスイッチング素子9およびスイッチング素子11,12,13,25,26,27のゲート電極に印加する。 The control circuit 7 is a second switching element constituting the inrush current suppression circuit 4 and the switching elements 11, 12, 13, 25, 26, 27 which are the first and third switching elements constituting the converter circuit 5C. The switching element 9 is to be controlled. Then, control circuit 7 interrupts electrical conduction between inrush current suppression circuit 4 and converter circuit 5C in normal operation. Specifically, since switching elements 9, 11, 12, 13, 25, 26, and 27 are elements that can cut off electrical conduction by a control signal, control circuit 7 normally operates for off operation. A control signal is applied to the gate electrodes of the switching elements 9, 11, 12, 13, 25, 26 and 27. Then, upon receiving an emergency signal indicating that exhaust gas start is required from the host controller 17 in an emergency, the control circuit 7 generates a control signal for energizing, that is, a control signal for on operation, the switching element 9 and the switching element 11. , 12, 13, 25, 26, and 27 are applied to the gate electrodes.
 ノイズ対策として容量素子28がコンデンサ8に接続されている場合、交流電源から突入電流抑制回路4、コンデンサ8および容量素子28を介してグランドに向かう電流経路と、交流電源からコンバータ回路5Cの上アーム、コンデンサ8および容量素子28を介してグランドに向かう電流経路と、交流電源からコンバータ回路5Cの下アーム、コンデンサ8および容量素子28を介してグランドに向かう電流経路と、が存在する。 When the capacitive element 28 is connected to the capacitor 8 as a noise countermeasure, a current path from the AC power source to the ground through the inrush current suppression circuit 4, the capacitor 8 and the capacitive element 28, and the upper arm of the converter circuit 5 C from the AC power source There is a current path to ground through capacitor 8 and capacitive element 28, and a current path from the AC power supply to the lower arm of converter circuit 5C, to ground through capacitor 8 and capacitive element 28.
 機械装置1Cが排煙動作を実施しない平常時においては、コンデンサ8の電荷が消費されないため、上記した電流経路によりコンデンサ8が充電される可能性がある。モータ3を動作させない平常時にコンデンサ8が充電されて意図していない電圧を有することは、モータ制御装置2Cの誤動作または破壊の原因となり得る。したがって、モータ制御装置2Cは、平常時においてコンデンサ8が充電されないように動作する必要がある。 In the normal state where the mechanical device 1C does not perform the exhaust operation, the charge of the capacitor 8 is not consumed, so the capacitor 8 may be charged by the above current path. The capacitor 8 being charged in an ordinary state in which the motor 3 is not operated and having an unintended voltage may cause a malfunction or destruction of the motor control device 2C. Therefore, the motor control device 2C needs to operate so that the capacitor 8 is not charged in normal operation.
 以下、排煙用の機械装置1Cに用いられるモータ制御装置2Cの動作を平常時と非常時とに分けて説明する。 Hereinafter, the operation of the motor control device 2C used for the smoke exhaust machine device 1C will be described separately for normal and emergency.
 機械装置1Cが排煙動作を実施しない平常時においては、制御回路7は、突入電流抑制回路4およびコンバータ回路5Cにオフ動作のための制御信号を出力し、スイッチング素子9およびスイッチング素子11,12,13,25,26,27を遮断状態に制御する。その結果、突入電流抑制回路4およびコンバータ回路5Cのいずれにも通電経路は形成されず、交流電源からコンデンサ8およびインバータ回路6に通電されない状態になる。 In a normal state in which mechanical device 1C does not carry out a smoke exhausting operation, control circuit 7 outputs a control signal for off operation to inrush current suppression circuit 4 and converter circuit 5C, switching element 9 and switching elements 11 and 12 , 13, 25, 26, 27 in the shutoff state. As a result, no current flow path is formed in any of inrush current suppression circuit 4 and converter circuit 5C, and current does not flow from capacitor AC and inverter circuit 6 from the AC power supply.
 機械装置1Cが排煙動作を実施する非常時においては、制御回路7は、突入電流抑制回路4にオン動作のための制御信号を出力して、スイッチング素子9を導通状態にして、スイッチング素子9および抵抗器10を介してコンデンサ8への電流を流す。制御回路7は、電圧計測部30の計測結果に基づいて、コンデンサ8の充電が完了したと判断した後、突入電流抑制回路4への制御信号を停止してスイッチング素子9を遮断状態にすると共に、コンバータ回路5Cにオン動作のための制御信号を出力してスイッチング素子11,12,13,25,26,27を導通状態にする。これにより、コンバータ回路5Cは、入力された交流電圧を直流電圧に変換して出力することが可能となる。このように、コンデンサ8の充電完了後に、コンバータ回路5Cを介して交流電源からコンデンサ8およびインバータ回路6に通電を行う。 In an emergency where the mechanical device 1C performs a smoke exhausting operation, the control circuit 7 outputs a control signal for the on operation to the inrush current suppression circuit 4 to make the switching element 9 conductive, thereby switching the switching element 9 And the current to the capacitor 8 through the resistor 10. Control circuit 7 determines that charging of capacitor 8 is completed based on the measurement result of voltage measurement unit 30, and then stops the control signal to inrush current suppression circuit 4 to put switching element 9 in the cutoff state. A control signal for the on operation is output to converter circuit 5C to make switching elements 11, 12, 13, 25, 26, 27 conductive. Thus, converter circuit 5C can convert the input AC voltage into a DC voltage and output it. Thus, after the charging of the capacitor 8 is completed, the capacitor 8 and the inverter circuit 6 are energized from the AC power supply via the converter circuit 5C.
 なお、交流電源とモータ制御装置2Cとの間にACリアクトルが接続されている場合、または、コンバータ回路5Cに位相制御または力率制御が適用される場合においても、上記した交流電源からコンデンサ8およびインバータ回路6への通電動作は問題なく実施可能である。 When an AC reactor is connected between the AC power supply and motor control device 2C, or when phase control or power factor control is applied to converter circuit 5C, capacitor 8 and AC power supply described above are used. The energization operation to the inverter circuit 6 can be implemented without any problem.
 また、上記では、モータ制御装置2Cにおいて、突入電流抑制回路4が接続されるのは、交流電源の少なくとも一相に対応する入力端子と正極側出力端子201との間として説明したが、突入電流抑制回路4をこの箇所に接続しないで、実施の形態3のモータ制御装置2Bのように交流電源の少なくとも一相に対応する入力端子と負極側出力端子202との間に突入電流抑制回路19を設ける構成にしてもかまわない。なお、この場合は、突入電流抑制回路19と並列接続されるスイッチング素子25,26,27を第1のスイッチング素子とし、コンバータ回路5Cの残りのスイッチング素子11,12,13を第3のスイッチング素子とする。さらに、上記の突入電流抑制回路4または突入電流抑制回路19を実施の形態2のようにゲート信号に基づいてオン抵抗が調整できるスイッチング素子18を用いて構成してもかまわない。 In the above, in the motor control device 2C, the inrush current suppression circuit 4 is connected between the input terminal corresponding to at least one phase of the AC power supply and the positive electrode side output terminal 201, but the rush current As in the motor control device 2B of the third embodiment, the rush current suppression circuit 19 is connected between the input terminal corresponding to at least one phase of the AC power supply and the negative output terminal 202 without connecting the suppression circuit 4 to this point. It does not matter if it is provided. In this case, switching elements 25, 26 and 27 connected in parallel with rush current suppression circuit 19 are used as the first switching elements, and the remaining switching elements 11, 12 and 13 of converter circuit 5C are used as the third switching elements. I assume. Furthermore, as described in the second embodiment, the inrush current suppression circuit 4 or the inrush current suppression circuit 19 may be configured using the switching element 18 whose ON resistance can be adjusted based on the gate signal.
 以上説明したように、実施の形態4にかかるモータ制御装置2Cによれば、ノイズ対策用の容量素子28が設けられている場合にも、突入電流抑制機能を備えた上で、小型かつ簡易な構成により交流電源からの通電および電気的遮断が可能となる。 As described above, according to the motor control device 2C according to the fourth embodiment, even when the capacitive element 28 for noise reduction is provided, the motor control device 2C is small and simple with the inrush current suppression function. Depending on the configuration, energization from the AC power supply and electrical disconnection can be achieved.
 以上の実施の形態に示した構成は、本発明の内容の一例を示すものであり、別の公知の技術と組み合わせることも可能であるし、本発明の要旨を逸脱しない範囲で、構成の一部を省略、変更することも可能である。 The configuration shown in the above embodiment shows an example of the contents of the present invention, and can be combined with another known technique, and one of the configurations is possible within the scope of the present invention. Parts can be omitted or changed.
 1,1A,1B,1C 機械装置、2,2A,2B,2C モータ制御装置、3 モータ、4,19 突入電流抑制回路、5,5B,5C コンバータ回路、6 インバータ回路、7 制御回路、8 コンデンサ、9,11,12,13,18,20,25,26,27 スイッチング素子、10,21 抵抗器、14,15,16,22,23,24 ダイオード素子、17 上位コントローラ、28 容量素子、30 電圧計測部。 1, 1A, 1B, 1C Machine device, 2, 2A, 2B, 2C motor control device, 3 motor, 4, 19 rush current suppression circuit, 5, 5B, 5C converter circuit, 6 inverter circuit, 7 control circuit, 8 capacitor 9, 11, 12, 13, 18, 20, 25, 26, 27 switching elements, 10, 21 resistors, 14, 15, 16, 22, 23, 24 diode elements, 17 upper controller, 28 capacitive elements, 30 Voltage measurement unit.

Claims (5)

  1.  上アームもしくは下アームのいずれか一方に、第1のスイッチング素子を有する上下アームから構成され、交流電力を直流電力に変換するコンバータ回路と、
     第2のスイッチング素子と、前記第2のスイッチング素子に直列接続された抵抗とを有し、前記第1のスイッチング素子に並列接続された突入電流抑制回路と、
     前記コンバータ回路の出力側において前記コンバータ回路と並列接続されたコンデンサと、
     前記第1のスイッチング素子および前記第2のスイッチング素子を制御するための制御回路と、
     を備えたモータ制御装置。
    A converter circuit configured of an upper arm and a lower arm, the upper and lower arms having a first switching element, and converting AC power into DC power;
    An inrush current suppression circuit having a second switching element and a resistor connected in series to the second switching element, and connected in parallel to the first switching element;
    A capacitor connected in parallel with the converter circuit on the output side of the converter circuit;
    A control circuit for controlling the first switching element and the second switching element;
    Motor controller equipped with
  2.  前記抵抗は、前記第2のスイッチング素子に内蔵されたオン抵抗であり、前記制御回路が前記オン抵抗の抵抗値を制御する請求項1に記載のモータ制御装置。 The motor control device according to claim 1, wherein the resistance is an on-resistance built in the second switching element, and the control circuit controls a resistance value of the on-resistance.
  3.  前記コンデンサとグランドとの間に接続される容量素子を備え、
     前記コンバータ回路の前記上下アームは、前記第1のスイッチング素子に直列接続される第3のスイッチング素子を有する請求項1または2に記載のモータ制御装置。
    A capacitive element connected between the capacitor and the ground;
    The motor control device according to claim 1, wherein the upper and lower arms of the converter circuit have a third switching element connected in series to the first switching element.
  4.  前記制御回路は、前記第2のスイッチング素子にパルス状の電流が流れるように制御する請求項1から3のいずれか1つに記載のモータ制御装置。 The motor control device according to any one of claims 1 to 3, wherein the control circuit controls so that a pulse current flows in the second switching element.
  5.  前記コンバータ回路は、三相の交流電力を直流電力に変換する請求項1から4のいずれか1つに記載のモータ制御装置。 The motor control device according to any one of claims 1 to 4, wherein the converter circuit converts three-phase AC power into DC power.
PCT/JP2018/002165 2018-01-24 2018-01-24 Motor control device WO2019146022A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2018/002165 WO2019146022A1 (en) 2018-01-24 2018-01-24 Motor control device
JP2019510981A JP6567223B1 (en) 2018-01-24 2018-01-24 Motor control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/002165 WO2019146022A1 (en) 2018-01-24 2018-01-24 Motor control device

Publications (1)

Publication Number Publication Date
WO2019146022A1 true WO2019146022A1 (en) 2019-08-01

Family

ID=67394936

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/002165 WO2019146022A1 (en) 2018-01-24 2018-01-24 Motor control device

Country Status (2)

Country Link
JP (1) JP6567223B1 (en)
WO (1) WO2019146022A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5928290U (en) * 1982-08-18 1984-02-22 フアナツク株式会社 inverter circuit
JPH06296363A (en) * 1993-04-09 1994-10-21 Toshiba F Ee Syst Eng Kk Power transistor overcurrent protective circuit
WO2012150649A1 (en) * 2011-05-02 2012-11-08 ダイキン工業株式会社 Power converter circuit, and air conditioner

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5928290U (en) * 1982-08-18 1984-02-22 フアナツク株式会社 inverter circuit
JPH06296363A (en) * 1993-04-09 1994-10-21 Toshiba F Ee Syst Eng Kk Power transistor overcurrent protective circuit
WO2012150649A1 (en) * 2011-05-02 2012-11-08 ダイキン工業株式会社 Power converter circuit, and air conditioner

Also Published As

Publication number Publication date
JP6567223B1 (en) 2019-08-28
JPWO2019146022A1 (en) 2020-02-06

Similar Documents

Publication Publication Date Title
JP5493902B2 (en) Power converter
WO2011118259A1 (en) Discharge control device
JP4893251B2 (en) Matrix converter and device equipped with the same
KR20040073741A (en) Power supply apparatus for motor
JP6183460B2 (en) Inverter device
JP2015159684A (en) rotary electric machine control device
JP2019213283A (en) Motor drive device having DC link capacitor short-circuit determination unit
CN111656666B (en) power conversion device
JP2018191416A (en) Converter device for optimizing initial charge time of dc link capacitor
ES2623544T3 (en) Electronic magnetic contactor
EP2958226A2 (en) Cascaded h-bridge inverter capable of operating in bypass mode
JP2019193414A (en) Driving circuit, power module, and power conversion system
JP2008172925A (en) Backup operation device of matrix converter
JP5396920B2 (en) Winding switching device for three-phase AC motor drive system
KR100512720B1 (en) power supply apparatus for motor and controlling method thereof
WO2016157391A1 (en) Drive device, matrix converter, and elevator system
WO2019146022A1 (en) Motor control device
JP5407744B2 (en) AC-DC converter
JP3680147B2 (en) Power supply
JP4466830B2 (en) AC / AC direct conversion device
JP4391339B2 (en) Auxiliary power supply for vehicle
JP6513320B1 (en) Motor control device and mechanical device
WO2022158052A1 (en) Gate drive circuit and power conversion device
JP4766241B2 (en) DC voltage step-down circuit and power converter
WO2024057504A1 (en) Power conversion device

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2019510981

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18902784

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18902784

Country of ref document: EP

Kind code of ref document: A1