WO2019145654A1 - Procédé et système de traitement d'oxydation par voie humide - Google Patents

Procédé et système de traitement d'oxydation par voie humide Download PDF

Info

Publication number
WO2019145654A1
WO2019145654A1 PCT/FR2019/050172 FR2019050172W WO2019145654A1 WO 2019145654 A1 WO2019145654 A1 WO 2019145654A1 FR 2019050172 W FR2019050172 W FR 2019050172W WO 2019145654 A1 WO2019145654 A1 WO 2019145654A1
Authority
WO
WIPO (PCT)
Prior art keywords
block
liquid
oxidant
organic element
organic
Prior art date
Application number
PCT/FR2019/050172
Other languages
English (en)
Inventor
Jean Simon
Emeric SIMON
Original Assignee
Constructions Mécaniques Consultants
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Constructions Mécaniques Consultants filed Critical Constructions Mécaniques Consultants
Publication of WO2019145654A1 publication Critical patent/WO2019145654A1/fr

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G7/00Incinerators or other apparatus for consuming industrial waste, e.g. chemicals
    • F23G7/003Incinerators or other apparatus for consuming industrial waste, e.g. chemicals for used articles
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21FPROTECTION AGAINST X-RADIATION, GAMMA RADIATION, CORPUSCULAR RADIATION OR PARTICLE BOMBARDMENT; TREATING RADIOACTIVELY CONTAMINATED MATERIAL; DECONTAMINATION ARRANGEMENTS THEREFOR
    • G21F9/00Treating radioactively contaminated material; Decontamination arrangements therefor
    • G21F9/28Treating solids
    • G21F9/30Processing
    • G21F9/32Processing by incineration
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G2209/00Specific waste
    • F23G2209/18Radioactive materials

Definitions

  • the invention relates to the wet oxidation treatment, and more particularly to the recovery of an element contained in a coating of organic material. State of the art
  • radioactive waste such as uranium, plutonium or other radioactive elements can be stored in drums.
  • the drums are usually metal cylinders.
  • bait barrum it may be necessary to want to recover this waste for further processing, such as reuse or improved repackaging.
  • International applications WO95 / 25698 and WO / 96/13463 disclose processes for the treatment of effluents loaded with organic matter by oxidation in a humid medium with recycling of solid residues.
  • the organic material is present in a soluble manner and / or in suspension in a liquid placed in a reactor. But these processes are intended to treat soluble or suspended effluents, they are not suitable for treating compact coatings.
  • French patent application FR 2840601 may also be cited which discloses a device for the wet oxidation of industrial effluents loaded with organic matter and / or nitrogen compounds.
  • the effluents to be oxidized are introduced into a liquid phase contained in a vessel of a reactor.
  • the liquid phase consists of effluents that are dissolved or suspended in the water.
  • a diffuser disperses an oxidant in the liquid phase so as to contact the oxidant and the effluents.
  • the diffuser makes it possible to split the oxidant into a multitude of bubbles, creating a large contact surface between the oxidant and the liquid phase of the effluents, allowing efficient and fast material transfer.
  • this device is suitable for destroying effluents suspended in water. It is not efficient enough to destroy a compact coating, such as for example a bituminous drum.
  • French patent application FR2897674 which discloses a method of destroying an organic material, such as animal carcasses, in ground form, comprising flameless combustion at a temperature of 240 to 400 ° C., under a pressure, is also disclosed. from 100 to 300 bars, in the presence of an oxygenated oxidant, for at least 20 minutes, while agitating the medium.
  • the organic material is in reduced form, namely in the form of pieces having a particle size less than 20 mm.
  • Such a process aims to destroy an organic material in the form of a slurry and requires stirring of this slurry using a blade system. It is not suitable for destroying oil drums whose granulometry is significantly greater than 20 mm.
  • An object of the invention is to overcome the aforementioned problems, and more particularly to provide an effective means for destroying a compact coating of organic material.
  • Another object of the invention is to recover an element contained in a compact coating.
  • a wet oxidation treatment method of a block comprising an organic element the method comprising:
  • Such a method makes it possible to destroy a compact coating of organic material in the form of a block.
  • the process makes it possible to efficiently treat bituminous barrels by flameless combustion using an injection of an oxygenated oxidant into a liquid.
  • the process further allows the treatment of bitumens containing minerals, such as gravel. These bitumens coating minerals are particularly used to build roads. The method thus makes it possible to recover the mineral elements for later reuse while allowing the destruction of the organic elements to be destroyed.
  • the injection can be performed from at least one injector provided with a channel receiving the oxidant in which a necking is formed, and a head ejecting the oxidant in a jet form.
  • the block may comprise an inorganic element, and the method comprises, after the burning step, a recovery of the inorganic element isolated from the organic element.
  • the organic element may comprise a bituminous compound.
  • the organic element may comprise a bituminous compound and the inorganic element comprises a radioactive metal.
  • the method makes it possible to recover a radioactive waste contained in a bitumen, in order to be able to repackage or reuse the radioactive waste.
  • the organic element may comprise ethylene vinyl acetate.
  • the organic element may further include carbon fibers.
  • a wet oxidation treatment system of a block comprising an organic element comprising:
  • At least one injector configured to inject a jet of an oxygenated oxidant into the liquid and towards said at least part of the block located in the liquid, for a flame-free combustion of the organic element in contact with the oxygenated oxidant.
  • Each injector may comprise a channel for receiving the oxidant in which a necking is formed, and a shaped head for ejecting the oxidant in a jet form.
  • the system may comprise several injectors and the system comprises a support on which the block is placed, several through orifices being formed in the support and placed respectively opposite the injectors.
  • the block may comprise an inorganic element.
  • FIG. 1 schematically illustrates a sectional view of an embodiment of a wet oxidation treatment system of a block according to the invention
  • FIG. 6 schematically illustrates a top view of an embodiment of a support for placing a block.
  • FIG. 1 shows a wet oxidation treatment system 1 of a block 2.
  • a wet oxidation corresponds to a contacting of the block 2 with an oxygenated oxidant 3 in a liquid 4.
  • Block 2 is a compact compound whose particle size is greater than 20 mm, preferably greater than 20 cm. In general, block 2 is in solid form. A block 2 forms a single piece, but the system 1 is adapted to treat several blocks 2.
  • a block 2 can be composed of the same element or of several elements of different chemical compositions.
  • the block 2 comprises one or more organic elements.
  • An organic element is an element comprising at least one carbon atom.
  • Block 2 may further comprise one or more inorganic elements.
  • An inorganic element is an element free of carbon atoms, for example an element comprising exclusively metal atoms, such as iron or copper, or else be an element free of carbon atoms and metal atoms, for example quartz, or silica.
  • An inorganic element can to be encapsulated, that is to say included, within an organic element. The organic element is then said to form a coating encompassing the inorganic element. The inorganic element can also be laid or glued on the organic element. More generally, the block 2 can comprise an organic element in compact form, with the presence of inorganic elements that can be embedded in the inorganic element or placed on the surface of the inorganic element, or a combination of both.
  • the group formed by the inorganic element and the organic element form a block 2.
  • the organic element may comprise a bitumen, that is to say a bituminous compound, a tar, pitch, carbon fibers, vinyl chloride, ethylene-vinyl acetate, polyethylene, more generally a plastic.
  • the inorganic element comprises, for example, quartz, or silica, a metal, or more particularly a radioactive metal, or a radioactive salt, for example barium sulfate.
  • Bitumen is a product derived from a distillation of oil or coal. Bitumen is a naturally occurring element in the environment or can be manufactured industrially after distillation of certain crude oils. Bitumen is a mixture of hydrocarbons. A hydrocarbon consists only of carbon and hydrogen.
  • the hydrocarbons of the bitumen may be aliphatic, that is to say linear carbon chain, such as alien or branched, for example isooctane, or be naphthenic, that is to say, cyclic saturated, such as cyclohexanes or else be aromatic, that is to say cyclic structure and flat unsaturated, such as benzene.
  • the aliphatic bitumen may comprise crystallizable linear alkanes, such as paraffins.
  • Tar is a residue from the distillation of organic matter. Tar has a variable consistency from viscous liquid to solid. Pitch is a residue from the distillation of tars or bitumen.
  • the system 1 further comprises a tank 5 for receiving the liquid 4, and a liquid inlet pipe 5a for injecting the liquid 4 into the tank 5.
  • the tank 5 acts as a container, and contains the liquid 4.
  • the block 2 is placed at least part within the liquid 4. Preferably, the block 2 is placed entirely within the liquid 4 so as to be embedded in the liquid 4.
  • the system 1 is provided with heating means for bringing the liquid 4 to a temperature between 150 ° C and 400 ° C. Pressurizing means are also provided to bring a gas 4a, located in the tank 5, at a pressure between 50 bar and 300 bar.
  • the system 1 comprises a lid 6 for closing the tank 5.
  • the tank assembly 5 and lid 6 form a reactor containing the gas 4a and the liquid 4.
  • Gaskets 7 are provided between the tank 5 and the lid 6 to close the tank 5 tightly. Under these conditions of temperature and pressure, the block 2 can be oxidized so as to cause the flameless combustion of the organic elements of the block 2.
  • the system 1 comprises injection means 8 configured to inject a jet of the oxygenated oxidant 3 into the liquid 4.
  • injection means 8 configured to inject a jet of the oxygenated oxidant 3 into the liquid 4.
  • the oxidant 3 comes into contact with the block 2 and leads to the oxidation of the block 2.
  • the specific temperature and pressure conditions are a temperature and a pressure whose values are located around the critical point of the liquid 4.
  • the liquid 4 is preferably water.
  • the critical point of the water corresponds to a temperature equal to 374 ° C and a pressure equal to 221 bar.
  • the injection means 8 are configured to produce a jet under pressure in order to increase the efficiency of the oxidation of the block 2.
  • the jet offers a large contact area between the block 2 and the oxidant 3, which promotes combustion without flame.
  • the injection means 8 comprise a supply duct 9 connected to a source 10 of the oxygenated oxidant 3.
  • the source 10 makes it possible to supply the oxygenated oxidant 3 under pressure.
  • the oxygenated oxidant 3 can be air, oxygen-enriched air, oxygen or hydrogen peroxide. In the case of hydrogen peroxide, the oxygenated oxidant 3 is in liquid form. In other cases, it is in gaseous form.
  • the injection means 8 can be housed in a wall of the tank 5.
  • the injection means 8 are located within the liquid 4.
  • the injection means 8 are placed in the tank 5 so directing at least one jet of oxidant 3 towards the portion of the block 2 which is located within the liquid 4.
  • the injection means 8 comprise one or more injectors 11.
  • FIGS. 2 to 5 show different embodiments of the injectors 11.
  • each injector 11 comprises a channel 12 for receiving the oxygenated oxidant 3, and a shaped head 13 for ejecting the oxidant 3 in a form of a jet.
  • a necking 40 may be formed in the channel 12 of the injector 11 to accelerate the flow of the oxidant 3, as shown in Figures 3 to 5.
  • a necking corresponds to a transverse narrowing of the channel 12 located on a part of the length of the channel 12.
  • the channel 12 has a first end connected to the supply duct 9 and having a conical shape flaring towards the supply duct 9, and the channel 12 has a second end opposed to the first and having a conical shape flaring in the direction opposite to the supply duct 9.
  • the constriction 40 of the channel 12 is located between the two ends of the channel 12.
  • the channel 12 has a first end connected to the supply duct 9 and having a conical shape flaring towards the supply duct 9, and a second end opposite to the first end. nt a cylindrical shape.
  • the jet may be liquid or gaseous or a mixture of both.
  • the head 13 has a single outlet having a cylindrical shape and the injector 11 ejects the oxidizer 3 in the form of a single jet.
  • the head 13 has a plurality of outlet orifices and the injector 11 ejects the oxidizer 3 in the form of several jets directed in the same direction.
  • the head 13 has a convex shape from the outside and also has several outlet orifices, and the injector 11 ejects the oxidizer 3 in the form several jets directed in several different directions.
  • the injector 11 comprises an additional conduit 14 opening into the channel 12.
  • the additional conduit 14 makes it possible to bring a liquid, preferably the liquid 4 contained in the tank 5, to eject the oxygenated oxidant and the liquid 4 in the tank 5.
  • the additional conduit 14 can be placed within the liquid 4 contained in the tank 5. Thus, one can stir the liquid of the tank 5 to improve the contact of the oxidant 3 with the block 2.
  • the system 1 is particularly suitable for destroying block 2 comprising a bitumen.
  • the bitumen is preferably in the solid state.
  • the block 2 may comprise at least one radioactive waste encapsulated within the bitumen.
  • the wet oxidation of an organic element converts the organic element into main gaseous residues, carbon dioxide, water vapor, and nitrogen, and into liquid secondary residues, such as example acetic acid.
  • the oxidation of the organic elements of the block 2 causes their destruction, that is to say their transformation into compounds in gaseous or liquid form.
  • the excess oxygenated oxidant 3 not participating in the oxidation of the block 2 is diffused in the liquid 4 of the tank 5.
  • the main gaseous residues can be evacuated via an evacuation pipe 15.
  • the main gaseous residues can to be treated via a filter and a cooler, connected to the discharge pipe 15. Probes 16 and 17 make it possible to control and maintain the level of the liquid 4 in the tank 5.
  • the secondary residues are mixed together in the liquid 4.
  • the elements which are not transformed, in particular the inorganic elements are recovered.
  • the inorganic elements remain in the tank 5.
  • the system 1 comprises a support 19 on which the block 2 is placed.
  • several through orifices 20 are formed in the support 19 and are respectively placed opposite the injectors 11, as shown in Figures 1 and 6.
  • the system 1 may further comprise a container 19a for recovering the inorganic elements isolated from the organic elements destroyed after combustion.
  • the container 19a is advantageously placed at the bottom of the tank 5 under the injection means 8 and under the support 19 of the block 2.
  • the elements of large particle size, for example greater than 2 cm, remain in the support 19 and recover the fine elements in the container 19a.
  • the lid 6 can be opened.
  • the system 1 comprises a first pressurized airlock 21 containing a first liquid 23 and provided with a first door 22 for introducing the block 2, with or without the support 19, in the first liquid 23 (or leaving the block 2 of the first liquid out of the system 1), and a second door 24 to pass the block 2 of the first liquid 23 to the second liquid 4, corresponding to the liquid 4 contained in the tank 5 (and vice versa).
  • the pressure of the first chamber 21 corresponds to the pressure of the tank 5.
  • the first airlock 21 is also equipped with a liquid inlet duct 25 for introducing the first liquid 23 into the airlock 21 and pressurizing or depressurizing the first airlock 21.
  • the container 19a is placed in the tank 5 (and it leaves the tank 5) with the aid of a second chamber 30.
  • the second sas 30 contains a third liquid 32 and is provided with a first door 31 for passing the container 19a of the second liquid 4 to the third liquid 32 (or vice versa), and a second door 33 to exit the container 19a of the third liquid 32 to the outside of the system 1 (or to introduce the container 19a in the third liquid 32).
  • the second airlock 30 is also pressurized, preferably at the same pressure as that of the tank 5.
  • the second airlock 30 is equipped with a liquid inlet duct 34 for introducing the third liquid 32 into the outlet airlock 30 and for pressurizing or depressurizing the second airlock 30.
  • the method of treating a block 2 by wet oxidation can be implemented by the system 1 which has just been described. More particularly, the method comprises the following main steps: placement of at least part of the block 2 in the liquid 4, injection of a jet of the oxidant oxidant 3 into the liquid and towards the part of the block present in the liquid 4, for flameless combustion of the organic elements of the block 2. Thanks to the method and the wet oxidation system which have just been described, it is possible to process electronic cards containing inorganic elements, such as than metals such as copper, gold, lead, aluminum, destroying organic elements, such as ethylene-vinyl acetate and recovering the undestroyed metals. It is also possible to treat carbon fibers to produce energy, the system 1 is then coupled to a steam turbine type energy recuperator or to a heat exchanger for heating another liquid. Tars used to make roads can also be treated to recover rocks, sands, gravel.
  • Such a device and method of wet oxidation treatment makes it possible to efficiently treat the bitumen by advantageously using an inexpensive oxygenated oxidant such as air.
  • an oxygenated oxidant jet makes it possible to oxidize compact blocks.

Landscapes

  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Processing Of Solid Wastes (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)

Abstract

Procédé de traitement d'oxydation par voie humide d'un bloc (2) comprenant un élément organique, le procédé comprenant : - un placement d'au moins une partie du bloc (2) au sein d'un liquide (4); - une injection d'au moins un jet d'un comburant oxygéné (3) au sein du liquide (4) et en direction de ladite au moins une partie du bloc (2) située au sein du liquide (4); et - une combustion sans flamme de l'élément organique en contact avec le comburant oxygéné (3).

Description

Procédé et système de traitement d’oxydation par voie humide
Domaine technique de l'invention
L'invention concerne le traitement d’oxydation par voie humide, et plus particulièrement la récupération d’un élément contenu dans un revêtement en matière organique. État de la technique
Actuellement, des déchets radioactifs, tels que l’uranium, le plutonium ou autres éléments radioactifs, peuvent être stockés dans des fûts. Les fûts sont généralement des cylindres métalliques. Afin de confiner ces déchets, on les enrobe dans un bitume et l’ensemble est introduit dans le fût, appelé fût bitumineux. Cependant, on peut être amené à vouloir récupérer ces déchets pour un traitement ultérieur, par exemple une réutilisation ou un reconditionnement amélioré. On peut citer les demandes internationales W095/25698 et WO/96/13463 qui divulguent des procédés de traitement d’effluents chargés en matière organique par oxydation en milieu humide avec recyclage des résidus solides. La matière organique est présente de manière soluble et/ou en suspension dans un liquide placé au sein d’un réacteur. Mais ces procédés sont destinés à traiter des effluents solubles ou en suspension, ils ne sont pas adaptés pour traiter des revêtements compacts.
On peut également citer la demande de brevet français FR2840601 qui divulgue un dispositif d’oxydation par voie humide d’effluents industriels chargés en matière organique et/ou en composés azotés. Les effluents à oxyder sont introduits dans une phase liquide contenue dans une cuve d’un réacteur. La phase liquide est constituée par des effluents dissous ou en suspension dans de l’eau. Un diffuseur permet de disperser un oxydant dans la phase liquide de manière à mettre en contact l’oxydant et les effluents. En particulier, le diffuseur permet de fractionner l’oxydant en une multitude de bulles, créant une surface de contact importante entre l’oxydant et le phase liquide des effluents, permettant un transfert de matière efficace et rapide.
Cependant ce dispositif est adapté à détruire des effluents en suspension dans l’eau. Il n’est pas suffisamment efficace pour détruire un revêtement compact, tel que par exemple un fût bitumineux.
On peut également citer la demande de brevet français FR2897674 qui divulgue un procédé de destruction d’une matière organique, telle que des carcasses animales, sous forme broyée, comprenant une combustion sans flamme à une température de 240 à 400°C, sous une pression de 100 à 300 bars, en présence d’un comburant oxygéné, pendant au moins 20 minutes, tout en procédant à l’agitation du milieu. La matière organique est sous forme réduite, à savoir sous forme de morceaux ayant une granulométrie inférieure à 20 mm. Un tel procédé vise à détruire une matière organique se présentant sous forme d’une bouillie pâteuse et nécessite une agitation de cette bouillie à l’aide d’un système à pales. Il n’est pas adapté à détruire des fûts bitumineux dont la granulométrie est nettement supérieure à 20 mm.
Objet de l'invention
Un objet de l’invention consiste à pallier les problématiques précitées, et plus particulièrement à fournir un moyen efficace pour détruire un revêtement compact en matière organique.
Un autre objet de l’invention consiste à récupérer un élément contenu dans un revêtement compact. Selon un aspect de l’invention, il est proposé un procédé de traitement d’oxydation par voie humide d’un bloc comprenant un élément organique, le procédé comprenant :
- un placement d’au moins une partie du bloc au sein d’un liquide ;
- une injection d’au moins un jet d’un comburant oxygéné au sein du liquide et en direction de ladite au moins une partie du bloc située au sein du liquide ; et
- une combustion sans flamme de l’élément organique en contact avec le comburant oxygéné.
Un tel procédé permet de détruire un revêtement compact en matière organique sous la forme d’un bloc. Avantageusement, le procédé permet de traiter efficacement des fûts bitumineux par une combustion sans flamme utilisant une injection d’un comburant oxygéné au sein d’un liquide. Le procédé permet, en outre, de traiter des bitumes contenant des minéraux, comme du gravier. Ces bitumes enrobant des minéraux sont particulièrement utilisés pour réaliser des routes. Le procédé permet ainsi de récupérer les éléments minéraux pour une réutilisation ultérieure tout en permettant la destruction des éléments organiques à détruire.
L’injection peut être effectuée à partir d’au moins un injecteur muni d’un canal recevant le comburant dans lequel une striction est formée, et d’une tête éjectant le comburant sous une forme d’un jet.
Le bloc peut comprendre un élément inorganique, et le procédé comprend, après l’étape de combustion, une récupération de l’élément inorganique isolé de l’élément organique.
L’élément organique peut comprendre un composé bitumineux. Selon un autre mode de mise en œuvre, l’élément organique peut comprendre comprend un composé bitumineux et l’élément inorganique comprend un métal radioactif.
Ainsi, le procédé permet de récupérer un déchet radioactif contenu dans un bitume, afin de pouvoir reconditionner ou réutiliser le déchet radioactif.
L’élément organique peut comprendre de l’éthylène-acétate de vinyle.
L’élément organique peut, en outre, comprendre des fibres de carbone.
Selon un autre aspect de l’invention, il est proposa un système de traitement d’oxydation par voie humide d’un bloc comprenant un élément organique, le système comprenant :
- une cuve contenant un liquide et le bloc situé au moins en partie au sein du liquide ; et
- au moins un injecteur configuré pour injecter un jet d’un comburant oxygéné au sein du liquide et en direction de ladite au moins une partie du bloc situé au sein du liquide, pour une combustion sans flamme de l’élément organique en contact avec le comburant oxygéné.
Chaque injecteur peut comporter un canal pour recevoir le comburant dans lequel une striction est formée, et une tête conformée pour éjecter le comburant sous une forme d’un jet.
Le système peut comprendre plusieurs injecteurs et le système comporte un support sur lequel le bloc est placé, plusieurs orifices traversants étant formés au sein du support et placés respectivement en regard des injecteurs. Le bloc peut comprendre un élément inorganique. Description sommaire des dessins
D'autres avantages et caractéristiques ressortiront plus clairement de la description qui va suivre de modes particuliers de mise en œuvre et de réalisation de l'invention donnés à titre d'exemples non limitatifs et représentés aux dessins annexés, dans lesquels :
- la figure 1 , illustre schématiquement une vue en coupe d’un mode de réalisation d’un système de traitement d’oxydation par voie humide d’un bloc selon l’invention ;
- les figures 2 à 5, illustrent schématiquement des vues en coupe de différents modes de réalisation d’un injecteur ; et
- la figure 6, illustre schématiquement une vue de dessus d’un mode de réalisation d’un support pour placer un bloc.
Description détaillée
Sur la figure 1 , on a représenté un système 1 de traitement d’oxydation par voie humide d’un bloc 2. Une oxydation par voie humide correspond à une mise en contact du bloc 2 avec un comburant oxygéné 3 au sein d’un liquide 4. Le bloc 2 est un composé compact dont la granulométrie est supérieure à 20 mm, de préférence supérieur à 20 cm. De manière générale, le bloc 2 est sous une forme solide. Un bloc 2 forme une seule pièce, mais le système 1 est adapté pour traiter plusieurs blocs 2. Un bloc 2 peut être composé d’un même élément ou de plusieurs éléments de compositions chimiques différentes. En particulier, le bloc 2 comporte un ou plusieurs éléments organiques. Un élément organique est un élément comprenant au moins un atome de carbone. Le bloc 2 peut, en outre, comprendre un ou plusieurs éléments inorganiques. Un élément inorganique est un élément dépourvu d’atomes de carbones, par exemple un élément comprenant exclusivement des atomes métalliques, comme le fer ou le cuivre, ou encore être un élément dépourvu d’atomes de carbone et d’atomes métalliques, par exemple du quartz, ou de la silice. Un élément inorganique peut être encapsulé, c’est-à-dire inclus, au sein d’un élément organique. On dit alors que l’élément organique forme un revêtement englobant l’élément inorganique. L’élément inorganique peut également être posé, ou collé, sur l’élément organique. Plus généralement, le bloc 2 peut comprendre un élément organique sous forme compacte, avec la présence d’éléments inorganiques qui peuvent être noyés au sein de l’élément inorganique ou posés sur la surface de l’élément inorganique, ou une combinaisons des deux. On dit également que l’ensemble formé par l’élément inorganique et l’élément organique forme un bloc 2. Par exemple, l’élément organique peut comprendre un bitume, c’est-à-dire un composé bitumineux, un goudron, du brai, des fibres de carbone, du chlorure de vinyle, de Péthylène-acétate de vinyle, du polyéthylène, plus généralement un plastique. L’élément inorganique comprend, par exemple, du quartz, ou de la silice, un métal, ou plus particulièrement un métal radioactif, ou un sel radioactif, par exemple le sulfate de baryum.
Le bitume est un produit issu d’une distillation du pétrole ou du charbon. Le bitume est un élément présent naturellement dans l’environnement ou pouvant être fabriqué industriellement après distillation de certains pétroles bruts. Le bitume est un mélange d’hydrocarbures. Un hydrocarbure est constitué uniquement de carbone et d’hydrogène. Les hydrocarbures du bitume peuvent être aliphatiques, c’est-à-dire à chaîne carbonée linéaire, tels les aliènes ou ramifiée, par exemple l’isooctane, ou être naphténiques, c’est-à-dire cycliques saturés, tels que les cyclohexanes, ou encore être aromatiques, c’est-à-dire à structure cyclique et plane non saturée, comme le benzène. Par exemple, le bitume aliphatique peut comprendre des alcanes linéaires cristallisables, telles des paraffines. Le goudron est un résidu provenant de la distillation de matières organiques. Le goudron a une consistance variable de liquide visqueux à solide. Le brai est un résidu de la distillation des goudrons ou du bitume.
Le système 1 comporte en outre une cuve 5 pour recevoir le liquide 4, et un conduit d’entrée de liquide 5a pour injecter le liquide 4 dans la cuve 5. La cuve 5 fait office de récipient, et contient le liquide 4. Le bloc 2 est placé au moins en partie au sein du liquide 4. De préférence, le bloc 2 est placé entièrement au sein du liquide 4 de manière à être noyé dans le liquide 4.
Le système 1 est pourvu de moyens de chauffage permettant d’amener le liquide 4 à une température comprise entre 150°C et 400°C. Des moyens de pressurisation sont également prévus pour amener un gaz 4a, situé dans la cuve 5, sous une pression comprise entre 50 bars et 300 bars. Le système 1 comporte un couvercle 6 pour fermer la cuve 5. L’ensemble cuve 5 et couvercle 6 forme un réacteur renfermant le gaz 4a et le liquide 4. Des joints 7 sont prévus entre la cuve 5 et le couvercle 6 pour fermer la cuve 5 de manière étanche. Dans ces conditions de température et de pression, on peut oxyder le bloc 2 de manière à entraîner la combustion sans flamme des éléments organiques du bloc 2.
Le système 1 comporte des moyens d’injection 8 configurés pour injecter un jet du comburant oxygéné 3 au sein du liquide 4. Ainsi, lorsque le comburant oxygéné 3 est injecté au sein du liquide 4, le comburant 3 vient au contact du bloc 2 et entraîne l’oxydation du bloc 2. Plus particulièrement, dans des conditions spécifiques de température du liquide 4 et de pression du gaz 4a, l’oxydation des éléments organiques du bloc 2 entraîne leur combustion. Les conditions de température et de pression spécifiques sont une température et une pression dont les valeurs sont situées autour du point critique du liquide 4. Le liquide 4 est de préférence l’eau. Le point critique de l’eau correspond à une température égale à 374°C et une pression égale à 221 bars.
En particulier, les moyens d’injection 8 sont configurés pour produire un jet sous pression afin d’augmenter le rendement de l’oxydation du bloc 2. Le jet offre une grande surface de contact entre le bloc 2 et le comburant 3, ce qui favorise la combustion sans flamme. Les moyens d’injection 8 comportent un conduit d’alimentation 9 relié à une source 10 du comburant oxygéné 3. Avantageusement, la source 10 permet de fournir le comburant oxygéné 3 sous pression. Le comburant oxygéné 3 peut être de l’air, de l’air enrichi en oxygène, de l’oxygène ou du peroxyde d’hydrogène. Dans le cas du peroxyde d’hydrogène, le comburant oxygéné 3 se présente sous forme liquide. Dans les autres cas, il se présente sous forme gazeuse. Les moyens d’injection 8 peuvent être logés dans une paroi de la cuve 5. Préférentiellement, les moyens d’injection 8 sont situés au sein du liquide 4. De préférence, les moyens d’injection 8 sont placés dans la cuve 5 de manière à diriger au moins un jet de comburant 3 en direction de la partie du bloc 2 qui est située au sein du liquide 4. Par exemple, les moyens d’injection 8 comportent un ou plusieurs injecteurs 11.
On a représenté aux figures 2 à 5, différents modes de réalisation des injecteurs 11. De manière générale, chaque injecteur 11 comporte un canal 12 pour recevoir le comburant oxygéné 3, et une tête 13 conformée pour éjecter le comburant 3 sous une forme d’un jet. Par ailleurs, une striction 40 peut être formée dans le canal 12 de l’injecteur 11 pour accélérer le flux du comburant 3, comme illustré au figures 3 à 5. Une striction correspond à un rétrécissement transversal du canal 12 localisé sur une partie de la longueur du canal 12. En d’autre termes, le canal 12 comporte une première extrémité reliée au conduit d’alimentation 9 et ayant une forme conique s’évasant en direction du conduit d’alimentation 9, et le canal 12 comporte une deuxième extrémité opposée à la première et ayant une forme conique s’évasant dans la direction opposée au conduit d’alimentation 9. La striction 40 du canal 12 est située entre les deux extrémités du canal 12. Selon un autre mode de réalisation illustré à la figure 2, le canal 12 comporte une première extrémité reliée au conduit d’alimentation 9 et ayant une forme conique s’évasant en direction du conduit d’alimentation 9, et une deuxième extrémité opposée à la première ayant une forme cylindrique. Par ailleurs, le jet peut être liquide ou gazeux ou un mélange des deux. Sur la figure 2, la tête 13 comporte un seul orifice de sortie ayant une forme cylindrique et l’injecteur 11 éjecte le comburant 3 sous la forme d’un seul jet. Sur la figure 3, la tête 13 comporte plusieurs orifices de sortie et l’injecteur 11 éjecte le comburant 3 sous la forme de plusieurs jets dirigés selon un même direction. Sur la figure 4, la tête 13 a une forme convexe depuis l’extérieur et comporte également plusieurs orifices de sortie, et l’injecteur 11 éjecte le comburant 3 sous la forme de plusieurs jets dirigés selon plusieurs directions différentes. Sur la figure 5, l’injecteur 11 comporte un conduit supplémentaire 14 débouchant dans le canal 12. Le conduit supplémentaire 14 permet d’amener un liquide, de préférence le liquide 4 contenu dans la cuve 5, pour éjecter le comburant oxygéné et le liquide 4 au sein de la cuve 5. Le conduit supplémentaire 14 peut être placé au sein du liquide 4 contenu dans la cuve 5. Ainsi, on peut brasser le liquide de la cuve 5 pour améliorer le contact du comburant 3 avec le bloc 2.
Le système 1 est particulièrement adapté pour détruire bloc 2 comprenant un bitume. Le bitume est de préférence à l’état solide. En outre, le bloc 2 peut comprendre au moins un déchet radioactif encapsulé au sein du bitume.
En outre, l’oxydation par voie humide d’un élément organique transforme l’élément organique en résidus principaux gazeux, du dioxyde de carbone, de la vapeur d’eau, et de l’azote, et en résidus secondaires liquides, comme par exemple l’acide acétique. De manière générale, l’oxydation des éléments organiques du bloc 2 entraîne leur destruction, c’est-à-dire leur transformation en composés sous forme gazeuse ou liquide. L’excédent de comburant oxygéné 3 ne participant pas à l’oxydation du bloc 2 est diffusé dans le liquide 4 de la cuve 5. Les résidus principaux gazeux peuvent être évacués par une canalisation d’évacuation 15. De plus les résidus principaux gazeux peuvent être traités par l’intermédiaire d’un filtre et par un refroidisseur, connectés à la canalisation d’évacuation 15. Des sondes 16 et 17 permettent de contrôler et de maintenir le niveau du liquide 4 dans la cuve 5. Les résidus secondaires se mélangent dans le liquide 4. Lors de l’oxydation du bloc 2, les éléments qui ne sont pas transformés, notamment les éléments inorganiques, sont récupérés. Les éléments inorganiques restent dans la cuve 5. Ainsi, on peut récupérer les éléments radioactifs isolés du bitume dans lequel ils étaient préalablement encapsulés, afin de pouvoir les traiter ultérieurement.
Afin de faciliter la récupération du ou des éléments inorganiques présents dans le bloc 2, le système 1 comporte un support 19 sur lequel le bloc 2 est placé. En outre, plusieurs orifices traversants 20 sont formés au sein du support 19 et sont placés respectivement en regard des injecteurs 11 , comme illustré aux figures 1 et 6. Le système 1 peut en outre comporter un récipient 19a pour récupérer les éléments inorganiques isolés des éléments organiques détruits après combustion. Le récipient 19a est avantageusement placé au fond de la cuve 5 sous les moyens d’injection 8 et sous le support 19 du bloc 2. Les éléments de grosse granulométrie, par exemple supérieure à 2 cm, restent dans le support 19 et on récupère les éléments fins dans le récipient 19a.
Pour introduire le bloc 2 avec ou sans support 19 au sein de la cive 5, on peut ouvrir le couvercle 6. En variante, le système 1 comporte un premier sas 21 pressurisé contenant un premier liquide 23 et muni d’une première porte 22 pour introduire le bloc 2, avec ou sans le support 19, dans le premier liquide 23 (ou de sortir le bloc 2 du premier liquide vers l’extérieur du système 1 ), et d’une deuxième porte 24 pour faire passer le bloc 2 du premier liquide 23 vers le deuxième liquide 4, correspondant au liquide 4 contenu dans la cuve 5 (et inversement). La pression du premier sas 21 correspond à la pression de la cuve 5. Ainsi, on peut faire passer le bloc du premier sas 21 vers la cuve 5, et inversement. Le premier sas 21 est également équipé d’un conduit d’entrée de liquide 25 pour introduire le premier liquide 23 dans le sas d’entrée 21 et pressuriser ou dépressuriser le premier sas 21.
Afin de récupérer les élément fins après la combustion des éléments organiques du bloc 2, on place le récipient 19a au sein de la cuve 5 (et on le sort de la cuve 5) à l’aide d’un deuxième sas 30. Le deuxième sas 30 contient un troisième liquide 32 et est muni d’une première porte 31 pour faire passer le récipient 19a du deuxième liquide 4 vers le troisième liquide 32 (ou inversement), et d’une deuxième porte 33 pour sortir le récipient 19a du troisième liquide 32 vers l’extérieur du système 1 (ou pour introduire le récipient 19a dans le troisième liquide 32). Le deuxième sas 30 est également pressurisé, de préférence à la même pression que celle de la cuve 5. Le deuxième sas 30 est équipé d’un conduit d’entrée de liquide 34 pour introduire le troisième liquide 32 dans le sas de sortie 30 et pour pressuriser ou dépressuriser le deuxième sas 30.
A l’aide des premier et deuxième sas 21 , 30, on peut traiter plusieurs blocs 2, les uns après les autres, en plaçant à chaque fois un seul bloc 2, voire plusieurs blocs 2, dans la cuve 5. Ainsi, on peut traiter des blocs en continu en maintenant les conditions de température et de pression spécifiques pour entraîner la combustion. On dit que la combustion s’effectue en continu. De manière générale, le système 1 permet une combustion sans flamme auto entretenue car lorsque la combustion est démarrée, elle est exothermique et seul l’apport en comburant 3 permet la combustion. Il n’est pas nécessaire d’utiliser un autre apport énergétique. Par mesure de sécurité, un arrêt d’apport en comburant 3 arrête la combustion. Par ailleurs après la combustion des éléments organiques du bloc 2 présent dans la cuve 5, la réaction d’oxydation s’arrête.
Le procédé de traitement d’un bloc 2 par oxydation par voie humide peut être mis en œuvre par le système 1 qui vient d’être décrit. Plus particulièrement, le procédé comprend les étapes principales suivantes : un placement d’au moins une partie du bloc 2 au sein du liquide 4, une injection d’un jet du comburant oxygéné 3 au sein du liquide et en direction de la partie du bloc présente au sein du liquide 4, pour une combustion sans flamme des éléments organiques du bloc 2. Grâce au procédé et au système d’oxydation par voie humide qui viennent d’être décrits, on peut traiter des cartes électroniques contenant des éléments inorganiques, tels que des métaux comme le cuivre, l’or, le plomb, l’aluminium, en détruisant les éléments organiques, tels que l’éthylène-acétate de vinyle et en récupérant les métaux non détruits. On peut également traiter des fibres de carbones pour produire de l’énergie, le système 1 est alors couplé à un récupérateur d’énergie du type turbine à vapeur ou à un échangeur de chaleur pour le chauffage d’un autre liquide. On peut en outre traiter les goudrons utilisés pour fabriquer des routes afin de récupérer les roches, sables, graviers.
Un tel dispositif et procédé de traitement d’oxydation par voie humide permet de traiter efficacement le bitume en utilisant avantageusement un comburant oxygéné peu coûteux tel que l’air. En outre, l’utilisation d’un jet de comburant oxygéné permet d’oxyder des blocs compacts.

Claims

Revendications
1. Procédé de traitement d’oxydation par voie humide d’un bloc (2) comprenant un élément organique, le procédé comprenant :
- un placement d’au moins une partie du bloc (2) au sein d’un liquide (4) ;
- une injection d’au moins un jet d’un comburant oxygéné (3) au sein du liquide (4) et en direction de ladite au moins une partie du bloc (2) située au sein du liquide (4) ; et
- une combustion sans flamme de l’élément organique en contact avec le comburant oxygéné (3).
2. Procédé selon la revendication 1 , dans lequel l’injection est effectuée à partir d’au moins un injecteur (11) muni d’un canal (12) recevant le comburant (3) dans lequel une striction (40) est formée, et d’une tête (13) éjectant le comburant (3) sous une forme d’un jet.
3. Procédé selon la revendication 1 ou 2, dans lequel le bloc (2) comprend un élément inorganique, et le procédé comprend, après l’étape de combustion, une récupération de l’élément inorganique isolé de l’élément organique.
4. Procédé selon l’une des revendications 1 à 3, dans lequel l’élément organique comprend un composé bitumineux.
5. Procédé selon la revendication 3, dans lequel l’élément organique comprend un composé bitumineux et l’élément inorganique comprend un métal radioactif.
6. Procédé selon l’une des revendications 1 à 5, dans lequel l’élément organique comprend de l’éthylène-acétate de vinyle.
7. Procédé selon l’une des revendications 1 à 6, dans lequel l’élément organique comprend des fibres de carbone.
8. Système de traitement d’oxydation par voie humide d’un bloc (2) comprenant un élément organique, le système comprenant :
- une cuve (5) contenant un liquide (4) et le bloc (2) situé au moins en partie au sein du liquide (4) ; et
- au moins un injecteur (11 ) configuré pour injecter un jet d’un comburant oxygéné (3) au sein du liquide (4) et en direction de ladite au moins une partie du bloc (2) situé au sein du liquide (4), pour une combustion sans flamme de l’élément organique en contact avec le comburant oxygéné (3).
9. Système selon la revendication 8, dans lequel chaque injecteur (11 ) comporte un canal (12) pour recevoir le comburant (3) dans lequel une striction (40) est formée, et une tête (13) conformée pour éjecter le comburant (3) sous une forme d’un jet.
10. Système selon la revendication 8 ou 9, comprenant plusieurs injecteurs (11 ) et le système comporte un support (19) sur lequel le bloc (2) est placé, plusieurs orifices traversants (20) étant formés au sein du support (19) et placés respectivement en regard des injecteurs (11 ).
11. Système selon l’une des revendications 8 à 10, dans lequel le bloc (2) comprend un élément inorganique.
12. Système selon l’une des revendications 8 à 11 , dans lequel l’élément organique comprend un composé bitumineux.
13. Système selon la revendication 11 , dans lequel l’élément organique comprend un composé bitumineux et l’élément inorganique comprend un métal radioactif.
14. Système selon l’une des revendications 8 à 13, dans lequel l’élément organique comprend de Péthylène-acétate de vinyle.
15. Système selon l’une des revendications 8 à 14, dans lequel l’élément organique comprend des fibres de carbone.
PCT/FR2019/050172 2018-01-26 2019-01-25 Procédé et système de traitement d'oxydation par voie humide WO2019145654A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1850648A FR3077368B1 (fr) 2018-01-26 2018-01-26 Procede et systeme de traitement d'oxydation par voie humide
FR1850648 2018-01-26

Publications (1)

Publication Number Publication Date
WO2019145654A1 true WO2019145654A1 (fr) 2019-08-01

Family

ID=63490515

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2019/050172 WO2019145654A1 (fr) 2018-01-26 2019-01-25 Procédé et système de traitement d'oxydation par voie humide

Country Status (2)

Country Link
FR (1) FR3077368B1 (fr)
WO (1) WO2019145654A1 (fr)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0125933A1 (fr) * 1983-02-17 1984-11-21 Commissariat A L'energie Atomique Procédé de combustion du bitume
WO1995025698A1 (fr) 1994-03-21 1995-09-28 Otv Omnium De Traitements Et De Valorisation Procede et installation de traitement d'effluents charges en matiere organique, notamment par oxydation en milieu humide, avec recyclage interne des residus solides, et station d'epuration correspondante
EP0679612A1 (fr) * 1994-04-26 1995-11-02 Commissariat A L'energie Atomique Installation pour le traitement de déchets hétérogènes par oxydation en voie humide mise en oeuvre au moyen d'un autoclave
WO1996013463A1 (fr) 1994-10-27 1996-05-09 Otv Omnium De Traitements Et De Valorisation Procede et installation de traitement d'effluents par oxydation en presence d'un catalyseur heterogene
FR2840601A1 (fr) 2002-06-11 2003-12-12 Const Mecaniques Consultants Dispositif de traitement d'oxydation en voie humide d'effluents industriels, urbains, agricoles ou petroliers
FR2897674A1 (fr) 2006-02-20 2007-08-24 Univ D Aix Marseille I Procede d'elimination de matieres organiques et de production d'energie
WO2014198006A1 (fr) * 2013-06-13 2014-12-18 Granit Technologies S.A. Procede et installation de traitement par oxydation par voie humide de dechets organiques dangereux, notamment radioactifs, contenant des charges minerales
FR3016536A1 (fr) * 2014-01-21 2015-07-24 Innoveox Dispositif d'injection d'oxydant pour une installation de traitement d'un effluent aqueux par oxydation hydrothermale

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0125933A1 (fr) * 1983-02-17 1984-11-21 Commissariat A L'energie Atomique Procédé de combustion du bitume
WO1995025698A1 (fr) 1994-03-21 1995-09-28 Otv Omnium De Traitements Et De Valorisation Procede et installation de traitement d'effluents charges en matiere organique, notamment par oxydation en milieu humide, avec recyclage interne des residus solides, et station d'epuration correspondante
EP0679612A1 (fr) * 1994-04-26 1995-11-02 Commissariat A L'energie Atomique Installation pour le traitement de déchets hétérogènes par oxydation en voie humide mise en oeuvre au moyen d'un autoclave
WO1996013463A1 (fr) 1994-10-27 1996-05-09 Otv Omnium De Traitements Et De Valorisation Procede et installation de traitement d'effluents par oxydation en presence d'un catalyseur heterogene
FR2840601A1 (fr) 2002-06-11 2003-12-12 Const Mecaniques Consultants Dispositif de traitement d'oxydation en voie humide d'effluents industriels, urbains, agricoles ou petroliers
FR2897674A1 (fr) 2006-02-20 2007-08-24 Univ D Aix Marseille I Procede d'elimination de matieres organiques et de production d'energie
WO2014198006A1 (fr) * 2013-06-13 2014-12-18 Granit Technologies S.A. Procede et installation de traitement par oxydation par voie humide de dechets organiques dangereux, notamment radioactifs, contenant des charges minerales
FR3016536A1 (fr) * 2014-01-21 2015-07-24 Innoveox Dispositif d'injection d'oxydant pour une installation de traitement d'un effluent aqueux par oxydation hydrothermale

Also Published As

Publication number Publication date
FR3077368A1 (fr) 2019-08-02
FR3077368B1 (fr) 2020-09-11

Similar Documents

Publication Publication Date Title
CA2519847C (fr) Procede d'hydroconversion d'une charge lourde avec un catalyseur disperse
CA1259577A (fr) Procede et appareil pour craquage catalytique en lit fluide
EP0751914B1 (fr) Procede et installation de traitement d'effluents charges en matiere organique, notamment par oxydation en milieu humide, avec recyclage interne des residus solides, et station d'epuration correspondante
FR2740131A1 (fr) Procede de production d'acetylene et de gaz de synthese
CA2195742C (fr) Procede de recyclage des bois traites et l'installation de mise en oeuvre du procede
WO2019145654A1 (fr) Procédé et système de traitement d'oxydation par voie humide
EP3413989B1 (fr) Procede et installation de traitement d'un lixiviat ou d'un concentrat de lixiviat charge en constituants mineraux et organiques
FR2694567A1 (fr) Procédé pour la gestion de déchets solides et liquides selon un processus de gazéification sous pression sur lit solide.
EP0491620B1 (fr) Procédé de destruction d'effluents organiques toxiques par incinération en phase aqueuse et installation en faisant application
CA2250342A1 (fr) Procede et dispositif de vaporisation selective des charges d'hydrocarbures en craquage catalytique
WO2017158024A1 (fr) Dispositif de transformation par voie biologique de gaz de pyrogazéification en biogaz
EP1414742B1 (fr) Procede de decomposition du peroxyde d'hydrogene sous pression et dispositif pour rechauffer un equipement
EP1235889B1 (fr) Procede de gazeification de composes carbones
FR3131922A1 (fr) Procede de gazeification de la biomasse
WO2018210960A1 (fr) Dispositif de transformation de matières organiques en mélanges de méthane (ch4) et/ou d'hydrogène (h2) et/ou de dixoyde de carbone (co2), par couplage de procédés thermochimiques et biologiques
WO2024068896A1 (fr) Procede de traitement de dechets organiques
FR3132235A1 (fr) Dispositif de traitement hydrothermal de composés organiques amélioré et procédé associé.
FR3034098B1 (fr) Procede de gazeification de combustibles en utilisant un bain de metal fondu et dispositif de gazeification mettant en oeuvre un tel procede
EP0819156A1 (fr) Procede et dispositif de production de combustible par pyrolyse en continu de dechets broyes ou pateux
WO2024008756A1 (fr) Séparateur de sels intégré, comprenant une vis sans fin creuse et des billes formant des supports de précipitation et d'évacuation de sels, installation de gazéification de biomasse associée.
FR2624877A1 (fr) Procede et dispositif pour le craquage catalytique de charges lourdes comportant un second strippage en lit fluide
EP3009495A1 (fr) Procédé et dispositif pour la pyro-gazéification d'une matière carbonée comprenant un bain de cendres en fusion
FR2820753A1 (fr) Procede de transformation de farines animales et autres matieres organiques en hydrocarbures liquides combustibles
FR2899597A1 (fr) Procede de production d'hydrogene et/ou de gaz combustibles par un plasma inductif a partir de dechets liquides, pulverulents ou gazeux
FR2718726A1 (fr) Traitement de courants contenant du soufre.

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19710025

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19710025

Country of ref document: EP

Kind code of ref document: A1