WO2019145550A1 - Bocal de dégazage pour circuit de refroidissement automobile - Google Patents

Bocal de dégazage pour circuit de refroidissement automobile Download PDF

Info

Publication number
WO2019145550A1
WO2019145550A1 PCT/EP2019/052039 EP2019052039W WO2019145550A1 WO 2019145550 A1 WO2019145550 A1 WO 2019145550A1 EP 2019052039 W EP2019052039 W EP 2019052039W WO 2019145550 A1 WO2019145550 A1 WO 2019145550A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid
heating element
heat exchange
jar
control unit
Prior art date
Application number
PCT/EP2019/052039
Other languages
English (en)
Inventor
Valentin MAZET
Original Assignee
Renault S.A.S
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Renault S.A.S filed Critical Renault S.A.S
Priority to CN201980013771.5A priority Critical patent/CN111727308A/zh
Priority to EP19701366.7A priority patent/EP3746647B1/fr
Publication of WO2019145550A1 publication Critical patent/WO2019145550A1/fr

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P11/00Component parts, details, or accessories not provided for in, or of interest apart from, groups F01P1/00 - F01P9/00
    • F01P11/02Liquid-coolant filling, overflow, venting, or draining devices
    • F01P11/029Expansion reservoirs
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P11/00Component parts, details, or accessories not provided for in, or of interest apart from, groups F01P1/00 - F01P9/00
    • F01P11/14Indicating devices; Other safety devices
    • F01P11/18Indicating devices; Other safety devices concerning coolant pressure, coolant flow, or liquid-coolant level
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P2070/00Details
    • F01P2070/04Details using electrical heating elements

Definitions

  • the subject of the invention is thermal fluid exchange circuits.
  • the boiling of a coolant in such a circuit causes premature erosion of the fluid ducts of the circuit, resulting in a risk of leakage of liquid.
  • the invention proposes a rapid pressurization of the complete cooling circuit to limit the risk of boiling in the cooling circuit, in particular in the EGR exchangers, and therefore the need for coolant flow rate.
  • a heat exchange circuit may include:
  • a degassing jar connected to the piping circuit, configured to reserve an expansion volume in which said liquid is surmounted by a volume of gas.
  • the volume of gas is preferably configured to allow dilatations of the liquid to be absorbed within the temperature range of use of said liquid.
  • the heat exchange circuit is advantageously further configured so that it can be closed vis-à-vis the external environment so as to be sealed to said liquid and said gas, while permitting circulation of the liquid in a loop from the degassing jar to the jar degassing, preferably through at least one heat exchanger.
  • the degassing jar is equipped with a heating element, the heating element being placed so as to remain out of the liquid under the intended conditions of use, and being configured to directly heat the gas overcoming the liquid, preferably without be in contact with the liquid.
  • At least the heating element is configured for, over the range of use of the circuit of exchange, provoke when activated, a faster rise in the temperature of the gas that it causes the temperature of the liquid circulating in the exchange circuit to rise.
  • the heating element can typically comprise an electrical resistance, but other types of heating elements are possible, for example a heat exchanger with a second circulation of a second fluid.
  • the jar may include a closure cap in the upper part of the jar, the cap carrying the heating element.
  • At least a portion of the heating element is placed at a portion of the wall of the jar distinct from the plug.
  • the circuit may further include: a heat exchanger traversed by the liquid;
  • the liquid pressure sensor is closer to the heat exchanger than the degassing jar.
  • the electronic control unit can be configured to actuate the heating element when the pressure sensor transmits a measurement deviation from a pressure setpoint, or when the boiling is detected via a predefined profile of the heating element. pressure waves.
  • high-frequency pressure waves may be indicative of a beginning of boiling of the liquid, which it is desired to avoid, in order to limit the erosion of the thermal exchange circuit by cavitation.
  • the circuit may further include a liquid temperature sensor or estimator connected to the control unit.
  • the liquid pressure sensor is closer to the heat exchanger than the degassing jar.
  • the temperature estimator may comprise a temperature sensor, placed for example on the liquid circuit.
  • the electronic control unit can be configured to initiate heating by the heating element if a pair of values (temperature pressure) obtained with the aid of the temperature estimator and with the aid of the pressure sensor is on a predefined side of a recorded threshold curve, on the higher temperature side and lower pressures with respect to the threshold curve.
  • the threshold curve may correspond to a threshold curve of boiling of the liquid.
  • the electronic control unit can be configured to, when activating the heating element, cause the sending of a constant heating power of predefined level, during a preset heating time.
  • the heating element can thus transmit a given quantity of energy before a new evaluation by the control unit, and before, if necessary, triggering the sending of another equivalent quantity of energy if the risk of boiling of the liquid remains effective.
  • the electronic control unit can be configured to estimate the position of a pair of values (temperature pressure) obtained with the aid of the temperature estimator and the using the pressure sensor, with respect to a mapping comprising a series of threshold curves or comprising a threshold surface, and the control unit can be configured for, during the activation of the heating element, causing the sending at least two different heating powers for at least two different positions of the point on the map.
  • the different heating powers can be obtained, on average, for example by sending several successive quantities of energy, each quantity corresponding to the supply of the heating element with the same electrical power for the same duration, the number of quantities and the interval of time separating the quantities, being adapted to obtain on average the desired heating power.
  • the different heating powers can be obtained by supplying the heating element, for a predefined duration, to an electrical power which is adapted according to the heating power determined from the mapping.
  • FIG. 1 illustrates a heat exchange circuit, more particularly a cooling circuit of an EGR exchanger according to the invention
  • FIG. 2 illustrates a degassing jar of another variant embodiment of a heat exchange circuit according to the invention.
  • a heat exchange circuit according to the invention comprises a heat exchanger 10 through which a liquid 8, which is fed through lines 2, with a pump 14, the heat exchanger 10 to a degassing jar 3 of the circuit, then back to the heat exchanger 10.
  • the liquid 8 passes through at least one second heat exchanger (not shown in FIG. the figures), in order to transfer / respectively recover at least a portion of the calories stored / respectively transferred, at the level of the exchanger 10.
  • said second heat exchanger may be a heater that heats a pulsed air to the passenger compartment of the vehicle.
  • the jar 3 comprises a closure cap 4.
  • the jar 3 is equipped with a heating element, designated by the reference 5 in FIG. In the embodiment of FIG. 1, the heating element is carried by the plug 4.
  • the heating element designated by reference 6 in FIG. 2
  • the heating element can be carried by walls of the jar, above the level of the liquid 8.
  • the degassing jar is sized, and is placed in the thermal circuit so that the liquid 8 present in this jar is surmounted by a gaseous volume 9.
  • the heating element here referenced 5
  • the heating element is connected to an electronic control unit 7 which triggers and / or which regulates the power supply of the heating element as a function of values, respectively P, T , delivered by a pressure sensor 11 and by a temperature sensor 12.
  • the setpoint Qcons sent by the electronic control unit 7 to the heating element 5, is used to trigger a rise in temperature and pressure of the gas volume 9 , therefore a rapid pressurization of the liquid 8, in order to delay the boiling thereof.
  • the electronic control unit 7 can for this purpose compare the values P, T to values recorded in a map 13, to determine whether the liquid 8 is in conditions close to boiling, or not.
  • the heat exchange circuit 1 may comprise a cooling circuit of a motor (not shown motor) which is connected to the heat exchanger 10. Therefore, the liquid 8 flowing in the degassing jar may be liquid flowing through the vehicle engine to exchange calories.
  • the heat exchange circuit equipped with a degassing jar according to the invention makes it possible to tolerate use of the heat transfer liquid at a higher temperature, thus limiting the flow rate thereof, which in the end makes it possible to limit the consumption. in fuel of the vehicle equipped with the heat exchange circuit.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Air-Conditioning For Vehicles (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

Un circuit (1) d'échange thermique selon l'invention comprend : -un circuit de canalisations (2) dans lesquelles circule un liquide (8) destiné au à transporter des calories en vue d'une régulation thermique; -un bocal de dégazage (3) connecté au circuit de canalisations (2), configuré pour réserver un volume d'expansion dans lequel ledit liquide se trouve surmonté d'un volume de gaz (9). Le bocal de dégazage (3) est avantageusement équipé d'un élément chauffant (5,6), l'élément chauffant étant placé de manière à rester hors du liquide (8) dans les conditions prévues d'utilisation, et étant configuré pour permettre de chauffer directement le gaz (9) surmontant le liquide (8).

Description

Bocal de dégazage pour circuit de refroidissement automobile
L’invention a pour objet les circuits d'échanges thermiques par fluide. L'ébullition d'un fluide caloporteur dans un tel circuit provoque une érosion prématurée des conduits de fluide du circuit, d'où un risque de fuite de liquide. Il existe un besoin pour permettre de retarder l'ébullition d'un liquide caloporteur dans un tel circuit.
Par exemple, il faut limiter l’ébullition du liquide de refroidissement dans les circuits de refroidissement des moteurs thermiques. De nombreux composants présents sur le circuit de refroidissement apportent localement beaucoup d’énergie thermique, ce qui augmente le risque d’ébullition . Un exemple est le système EGR (Exhaust Gas Recirculation) utilisé pour réduire la production de NOx (oxydes d’azote) lors de la combustion. Ce système EGR nécessite de refroidir les gaz d’échappement recirculés. Le risque d’ébullition dans les échangeurs thermiques est élevé, ce qui nécessite d’avoir des débits de liquide de refroidissement dans ces échangeurs conséquents. L'augmentation du débit accroît la consommation globale en énergie du véhicule, et sa consommation en carburant. A cette fin, l'invention propose une mise sous pression rapide du circuit de refroidissement complet pour limiter le risque d’ébullition dans le circuit de refroidissement, en particulier dans les échangeurs EGR, et donc le besoin en débit de liquide de refroidissement.
A cette fin un circuit d'échange thermique, peut comprendre :
-un circuit de canalisations dans lesquelles circule un liquide destiné à transporter des calories en vue d'une régulation thermique ;
-un bocal de dégazage connecté au circuit de canalisations, configuré pour réserver un volume d'expansion dans lequel ledit liquide se trouve surmonté d'un volume de gaz. Le volume de gaz est de préférence configuré pour permettre d'absorber des dilatations du liquide dans la plage d'utilisation en température dudit liquide.
Le circuit d'échange thermique est avantageusement en outre configuré pour pouvoir être fermé vis-à-vis du milieu extérieur de manière à être étanche audit liquide et audit gaz, tout en autorisation une circulation du liquide en boucle du bocal de dégazage vers le bocal de dégazage, de préférence au travers d'au moins un échangeur thermique. Le bocal de dégazage est équipé d'un élément chauffant, l'élément chauffant étant placé de manière à rester hors du liquide dans les conditions prévues d'utilisation, et étant configuré pour permettre de chauffer directement le gaz surmontant le liquide, de préférence sans être en contact avec le liquide. Selon un mode de réalisation, si l'élément chauffant ne reste pas intégralement hors du liquide pour toute la plage d'utilisation du circuit d'échange, du moins l'élément chauffant est configuré pour, sur la plage d'utilisation du circuit d'échange, provoquer lorsqu'il est activé, une élévation plus rapide de la température du gaz qu'il ne provoque d'élévation de la température du liquide circulant dans le circuit d'échange.
L'élément chauffant peut typiquement comprendre une résistance électrique, mais d'autres types d'éléments chauffant sont envisageable, par exemple un échangeur thermique avec une seconde circulation d'un second fluide.
Le bocal peut comprendre un bouchon de fermeture en partie supérieure du bocal, le bouchon portant l'élément chauffant.
Selon un autre mode de réalisation, qui peut se combiner au précédent, au moins une portion de l'élément chauffant est placée au niveau d'une portion de paroi du bocal distincte du bouchon.
Le circuit peut comprendre en outre : -un échangeur thermique traversé par le liquide ;
-un capteur de pression du liquide ;
-une unité de commande électronique connectée à l'élément chauffant et au capteur de pression. De manière préférentielle, le capteur de pression de liquide se trouve plus proche de l'échangeur thermique que du bocal de dégazage.
L'unité de commande électronique peut être configurée pour actionner l'élément chauffant lorsque le capteur de pression lui transmet une mesure en écart par rapport à une valeur de consigne de pression, ou bien lorsque l’ébullition est détectée via un profil prédéfini d'ondes de pressions.
Des ondes de pression haute fréquence peuvent être par exemple indicatives d'un début d'ébullition du liquide, que l'on souhaite éviter, afin de limiter l'érosion du circuit d'échange thermique par cavitation. Le circuit peut comprendre en outre un capteur ou un estimateur de température du liquide, connecté à l'unité de commande.
De manière préférentielle, le capteur de pression de liquide se trouve plus proche de l'échangeur thermique que du bocal de dégazage. L'estimateur de température peut comprendre un capteur de température, placé par exemple sur le circuit de liquide.
L'unité de commande électronique peut être configurée pour déclencher un chauffage par l'élément chauffant si un couple de valeurs (pression température) obtenu à l'aide de l'estimateur de température et à l'aide du capteur de pression, se trouve d'un côté prédéfini d'une courbe seuil enregistrée, du côté des températures supérieures et des pressions inférieures par rapport à la courbe seuil . La courbe seuil peut correspondre à une courbe seuil d'ébullition du liquide.
Par exemple, l'unité de commande électronique peut être configurée pour, lors de l'activation de l'élément chauffant, provoquer l'envoi d'une puissance de chauffe constante de niveau prédéfini, pendant un temps de chauffe prédéfini. L'élément chauffant peut ainsi transmettre une quantité d'énergie donnée avant une nouvelle évaluation par l'unité de commande, et avant au besoin le déclenchement de l'envoi d'une autre quantité d'énergie équivalente si le risque d'ébullition du liquide reste effectif.
Selon un autre mode de réalisation qui peut se combiner au précédent, l'unité de commande électronique peut être configurée pour estimer la position d'un couple de valeurs (pression température) obtenu à l'aide de l'estimateur de température et à l'aide du capteur de pression, par rapport à une cartographie comprenant une suite de courbes seuils ou comprenant une surface seuil, et l'unité de commande peut être configurée pour, lors de l'activation de l'élément chauffant, provoquer l'envoi d'au moins deux puissances de chauffe différentes pour au moins deux positions différentes du point sur la cartographie.
Les différentes puissances de chauffe peuvent être obtenues, en moyenne, par exemple en envoyant plusieurs quantités d'énergie successives, chaque quantité correspondant à l'alimentation de l'élément chauffant avec une même puissance électrique pendant une même durée, le nombre de quantités et l'intervalle de temps séparant les quantités, étant adaptés pour obtenir en moyenne la puissance de chauffe désirée.
Selon un autre mode de réalisation, les différentes puissances de chauffe peuvent être obtenues en alimentant l'élément chauffant, pendant une durée prédéfinie, à une puissance électrique qui est adaptée en fonction de la puissance de chauffe déterminée à partir de la cartographie.
L'invention concerne également un véhicule automobile avec système de recirculation des gaz brûlés, le système de recirculation des gaz brûlés étant refroidi par un circuit d'échange thermique tel que décrit précédemment. Quelques buts, caractéristiques et avantages de l’invention apparaîtront à la lecture de la description suivante, donnée uniquement à titre d’exemple non limitatif, et faite en référence aux dessins annexés sur lesquels : La figure 1 illustre un circuit d'échange thermique, plus particulièrement un circuit de refroidissement d'un échangeur EGR selon l'invention;
La figure 2 illustre un bocal de dégazage d'une autre variante de réalisation d'un circuit d'échange thermique selon l'invention . Tel qu'illustré sur la figure 1 , un circuit d'échange thermique selon l'invention comprend un échangeur thermique 10 traversé par un liquide 8, qui est amené par des canalisations 2, à l'aide d'une pompe 14, de l'échangeur thermique 10 vers un bocal de dégazage 3 du circuit, puis de nouveau vers l'échangeur thermique 10. De manière préférentielle, dans le circuit d'échange thermique 1 , le liquide 8 traverse au moins un deuxième échangeur thermique (non représenté sur les figures), afin de céder / respectivement récupérer au moins une partie des calories emmagasinées / respectivement cédées, au niveau de l'échangeur 10.
A titre d’exemple, ledit deuxième échangeur thermique peut être un aérotherme qui permet de réchauffer un air pulsé vers l’habitacle du véhicule.
Le bocal 3 comprend un bouchon de fermeture 4. Le bocal 3 est équipé d'un élément chauffant, désigné par la référence 5 sur la figure 1 . Dans le mode de réalisation de la figure 1 , l'élément chauffant est porté par le bouchon 4.
Selon un autre mode de réalisation illustré en figure 2, l'élément chauffant, désigné par la référence 6 sur la figure 2, peut être porté par des parois du bocal, au dessus du niveau du liquide 8.
Sur les figures 1 et 2, le bocal de dégazage est dimensionné, et est placé dans le circuit thermique de manière à ce que le liquide 8 présent dans ce bocal soit surmonté d'un volume gazeux 9. Pour revenir à la figure 1 , l'élément chauffant, ici référencé 5, est connecté à une unité de commande électronique 7 qui déclenche et/ou qui régule l'alimentation électrique de l'élément chauffant en fonction de valeurs, respectivement P, T, délivrées par un capteur de pression 1 1 et par un capteur de température 12. La consigne Qcons envoyée par l'unité de commande électronique 7 à l'élément chauffant 5, permet de déclencher une élévation de température et de pression du volume gazeux 9, donc une mise en pression rapide du liquide 8, afin de retarder l'ébullition de celui-ci. L'unité de commande électronique 7 peut à cet effet comparer les valeurs P, T à des valeurs enregistrées dans une cartographie 13, afin de déterminer si le liquide 8 est dans des conditions proches de l'ébullition, ou non.
Selon un mode de réalisation, le circuit d’échange thermique 1 peut comprendre un circuit de refroidissement d’un moteur (moteur non représenté) qui est connectée à l’échangeur thermique 10. Par conséquent, le liquide 8 circulant dans le bocal de dégazage peut être du liquide circulant au travers du moteur du véhicule pour échanger des calories. Le circuit d'échange thermique équipé d'un bocal de dégazage selon l'invention, permet de tolérer une utilisation à plus haute température du liquide caloporteur, donc de limiter le débit de celui-ci, ce qui au final permet de limiter la consommation en carburant du véhicule équipé du circuit d'échange thermique .

Claims

REVENDICATIONS
1 . Circuit (1 ) d'échange thermique, comprenant :
-un circuit de canalisations (2) dans lesquelles circule un liquide (8) destiné à transporter des calories en vue d'une régulation thermique ;
-un bocal de dégazage (3) connecté au circuit de canalisations (2), configuré pour réserver un volume d'expansion dans lequel ledit liquide se trouve surmonté d'un volume de gaz (9),
caractérisé en ce que le bocal de dégazage (3) est équipé d'un élément chauffant (5,6), l'élément chauffant étant placé de manière à rester hors du liquide (8) dans les conditions prévues d'utilisation, et étant configuré pour permettre de chauffer directement le gaz (9) surmontant le liquide (8).
2. Circuit d'échange thermique selon la revendication 1 , le bocal
(3) comprenant un bouchon de fermeture (4) en partie supérieure du bocal, le bouchon (4) portant l'élément chauffant (5).
3. Circuit d'échange thermique selon les revendications 1 ou 2, dans lequel le bocal (3) comprend un bouchon de fermeture (4) en partie supérieure du bocal, et dans lequel au moins une portion de l'élément chauffant (6) est placée au niveau d'une portion de paroi du bocal distincte du bouchon (4).
4. Circuit d'échange thermique selon l'une des revendications 1 à 3, comprenant en outre :
-un échangeur thermique (10) traversé par le liquide ;
-un capteur de pression du liquide (1 1 ) ;
-une unité de commande électronique (7) connectée à l'élément chauffant (5) et au capteur de pression (1 1 ).
5. Circuit d'échange thermique selon la revendication 4, dans lequel l'unité de commande électronique (7) est configurée pour actionner l'élément chauffant (5, 6) lorsque le capteur de pression (1 1 ) lui transmet une mesure d'un profil prédéfini d'ondes de pressions.
6. Circuit d'échange thermique selon l'une des revendications 4 ou 5, comprenant en outre un capteur (12) ou un estimateur de température du liquide, connecté à l'unité de commande électronique (7).
7. Circuit d'échange thermique selon la revendication 6, dans lequel l'unité de commande électronique (7) est configurée pour déclencher un chauffage par l'élément chauffant (5, 6) si un couple de valeurs de pression et de température (P, T) obtenu à l'aide de l'estimateur de température (12) et à l'aide du capteur de pression (1 1 ), se trouve d'un côté prédéfini d'une courbe seuil enregistrée dans une cartographie (13), du côté des températures supérieures et des pressions inférieures par rapport à la courbe seuil .
8. Circuit d'échange thermique selon l'une des revendications 4 à
7, dans lequel l'unité de commande électronique (7) est configurée pour, lors de l'activation de l'élément chauffant (5, 6), provoquer l'envoi d'une puissance de chauffe constante de niveau prédéfini, pendant un temps de chauffe prédéfini.
9. Circuit d'échange thermique selon la revendication 7, dans lequel l'unité de commande électronique (7) est configurée pour estimer la position d'un couple de valeurs de pression et de température (P, T) obtenu à l'aide de l'estimateur de température (12) et à l'aide du capteur de pression (1 1 ), par rapport à une cartographie (13) comprenant une suite de courbes seuils ou comprenant une surface seuil, et l'unité de commande (7) est configurée pour, lors de l'activation de l'élément chauffant (5, 6), provoquer l'envoi d'au moins deux puissances de chauffe différentes pour au moins deux positions différentes du point (P, T) sur la cartographie.
10. Véhicule automobile avec système de recirculation des gaz brûlés, le système de recirculation des gaz brûlés comprenant un circuit d'échange thermique (1 ) selon l'une quelconque des revendications précédentes pout refroidir le système de recirculation de gaz brûlés.
PCT/EP2019/052039 2018-01-29 2019-01-29 Bocal de dégazage pour circuit de refroidissement automobile WO2019145550A1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201980013771.5A CN111727308A (zh) 2018-01-29 2019-01-29 机动车辆冷却回路的脱气罐
EP19701366.7A EP3746647B1 (fr) 2018-01-29 2019-01-29 Bocal de dégazage pour circuit de refroidissement automobile

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1850650A FR3077332B1 (fr) 2018-01-29 2018-01-29 Bocal de degazage pour circuit de refroidissement automobile
FR1850650 2018-01-29

Publications (1)

Publication Number Publication Date
WO2019145550A1 true WO2019145550A1 (fr) 2019-08-01

Family

ID=61656031

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2019/052039 WO2019145550A1 (fr) 2018-01-29 2019-01-29 Bocal de dégazage pour circuit de refroidissement automobile

Country Status (4)

Country Link
EP (1) EP3746647B1 (fr)
CN (1) CN111727308A (fr)
FR (1) FR3077332B1 (fr)
WO (1) WO2019145550A1 (fr)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2923261A1 (fr) * 2007-11-06 2009-05-08 Renault Sas Vase d'expansion pressurise et moteur a combustion interne comprenant un tel vase d'expansion
FR2949509A1 (fr) * 2009-09-03 2011-03-04 Peugeot Citroen Automobiles Sa Moteur a combustion interne presentant un circuit de refroidissement muni d'un conduit de derivation
DE102011108041A1 (de) * 2011-07-19 2013-01-24 Daimler Ag Vorrichtung zum Steuern des Systemdrucks in einem Kühlmittelkreislauf für eine Brennkraftmaschine
FR2979693A1 (fr) * 2011-09-06 2013-03-08 Valeo Systemes Thermiques Dispositif de chauffage electrique pour vehicule automobile, et appareil de chauffage et/ou de climatisation associe

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2693763B1 (fr) * 1992-07-17 1994-09-02 Peugeot Perfectionnements apportés aux circuits de refroidissement des moteurs à combustion interne.
SE530868C2 (sv) * 2007-02-09 2008-09-30 Volvo Lastvagnar Ab Kylsystem
CN202789250U (zh) * 2012-08-27 2013-03-13 亚普汽车部件股份有限公司 一种能控制内部温度的燃油箱

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2923261A1 (fr) * 2007-11-06 2009-05-08 Renault Sas Vase d'expansion pressurise et moteur a combustion interne comprenant un tel vase d'expansion
FR2949509A1 (fr) * 2009-09-03 2011-03-04 Peugeot Citroen Automobiles Sa Moteur a combustion interne presentant un circuit de refroidissement muni d'un conduit de derivation
DE102011108041A1 (de) * 2011-07-19 2013-01-24 Daimler Ag Vorrichtung zum Steuern des Systemdrucks in einem Kühlmittelkreislauf für eine Brennkraftmaschine
FR2979693A1 (fr) * 2011-09-06 2013-03-08 Valeo Systemes Thermiques Dispositif de chauffage electrique pour vehicule automobile, et appareil de chauffage et/ou de climatisation associe

Also Published As

Publication number Publication date
FR3077332A1 (fr) 2019-08-02
EP3746647B1 (fr) 2024-01-24
CN111727308A (zh) 2020-09-29
EP3746647A1 (fr) 2020-12-09
FR3077332B1 (fr) 2020-05-01

Similar Documents

Publication Publication Date Title
FR2509380A1 (fr) Installation de rechauffage de combustible injecte dans un moteur diesel
EP2142775A2 (fr) Ensemble de refroidissement d'un moteur a combustion interne
EP3746647B1 (fr) Bocal de dégazage pour circuit de refroidissement automobile
FR2890697A1 (fr) Moteur de vehicule comprenant un circuit de gaz recircules refroidis a basse temperature
EP2959121A1 (fr) Système de récupération de chaleur des gaz d'échappement dans un moteur à combustion interne
FR3077377A1 (fr) Procede de controle d'un systeme de traitement thermique d'un element d'une chaine de traction electrique de vehicule
FR2934319A1 (fr) Dispositif de refroidissement d'un moteur a combustion interne par circulation inversee
FR2914027A1 (fr) Dispositif d'admission d'air d'un moteur a combustion interne, vehicule comportant un tel dispositif et utilisation d'un tel dispositif.
FR2953889A1 (fr) Circuit d'echange de calories et procede de regulation thermique d'un fluide caloporteur circulant dans un moteur thermique d'un vehicule automobile
EP2494161A1 (fr) Systeme et procede de commande du circuit de refroidissement d'un moteur a combustion interne
FR2944321A1 (fr) Procede d'utilisation du circuit de refroidissement d'un moteur thermique
EP3250810B1 (fr) Système d'admission d'air et procédé de gestion thermique d'air d'admission
FR2921866A3 (fr) Dispositif et procede de montee en temperature d'un moteur et du chauffage d'un habitacle de vehicule.
WO2017144312A1 (fr) Dispositif de gestion thermique d'un refroidisseur d'air de suralimentation
FR2908156A3 (fr) Methode de diagnostic appliquee a un groupe motopropulseur
FR3073935A1 (fr) Circuit de fluide refrigerant pour vehicule
FR2880652A1 (fr) Circuit de refroidissement d'un moteur thermique sur un vehicule
WO2020074217A1 (fr) Systeme de refroidissement pour moteur a combustion interne et procede de pilotage associe
WO2014064178A1 (fr) Module de refroidissement d'un moteur de vehicule automobile, et procede de pilotage correspondant
EP2914827A1 (fr) Gestion du refroidissement d'un systeme de moteur equipe d'un dispositif de recirculation partielle des gaz d'echappement
EP2796807B1 (fr) Procédé de protection d'un condenseur contre la surchauffe
FR3096404B1 (fr) Dispositif de régulation de la température d’au moins un élément d'un moteur thermique suralimenté
FR3001413A1 (fr) Dispositif de conditionnement thermique pour vehicule automobile et installation de chauffage, ventilation et/ou climatisation correspondante
FR2934318A1 (fr) Dispositif de refroidissement d'un moteur a combustion interne
EP3660415A1 (fr) Appareil de régulation thermique d'un bâtiment, installation et procédé de régulation associés

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19701366

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019701366

Country of ref document: EP

Effective date: 20200831