WO2019145059A1 - Versorgungseinrichtung mit einer brennstoffzelleeinrichtung und einer batterie sowie verfahren für den froststart einer versorgungseinrichtung - Google Patents

Versorgungseinrichtung mit einer brennstoffzelleeinrichtung und einer batterie sowie verfahren für den froststart einer versorgungseinrichtung Download PDF

Info

Publication number
WO2019145059A1
WO2019145059A1 PCT/EP2018/079404 EP2018079404W WO2019145059A1 WO 2019145059 A1 WO2019145059 A1 WO 2019145059A1 EP 2018079404 W EP2018079404 W EP 2018079404W WO 2019145059 A1 WO2019145059 A1 WO 2019145059A1
Authority
WO
WIPO (PCT)
Prior art keywords
fuel cell
voltage
cell device
battery
frost
Prior art date
Application number
PCT/EP2018/079404
Other languages
English (en)
French (fr)
Inventor
Martin Breu
Maximilian SCHIEDERMEIER
Original Assignee
Audi Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Audi Ag filed Critical Audi Ag
Priority to CN201880087890.0A priority Critical patent/CN111630696A/zh
Priority to US16/965,937 priority patent/US11508977B2/en
Publication of WO2019145059A1 publication Critical patent/WO2019145059A1/de

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04223Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids during start-up or shut-down; Depolarisation or activation, e.g. purging; Means for short-circuiting defective fuel cells
    • H01M8/04268Heating of fuel cells during the start-up of the fuel cells
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/75Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using propulsion power supplied by both fuel cells and batteries
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/30Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling fuel cells
    • B60L58/31Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling fuel cells for starting of fuel cells
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/30Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling fuel cells
    • B60L58/32Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling fuel cells for controlling the temperature of fuel cells, e.g. by controlling the electric load
    • B60L58/34Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling fuel cells for controlling the temperature of fuel cells, e.g. by controlling the electric load by heating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/40Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for controlling a combination of batteries and fuel cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04007Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids related to heat exchange
    • H01M8/04037Electrical heating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04223Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids during start-up or shut-down; Depolarisation or activation, e.g. purging; Means for short-circuiting defective fuel cells
    • H01M8/04253Means for solving freezing problems
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/0432Temperature; Ambient temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04858Electric variables
    • H01M8/04865Voltage
    • H01M8/04873Voltage of the individual fuel cell
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04858Electric variables
    • H01M8/04865Voltage
    • H01M8/0488Voltage of fuel cell stacks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M16/00Structural combinations of different types of electrochemical generators
    • H01M16/003Structural combinations of different types of electrochemical generators of fuel cells with other electrochemical devices, e.g. capacitors, electrolysers
    • H01M16/006Structural combinations of different types of electrochemical generators of fuel cells with other electrochemical devices, e.g. capacitors, electrolysers of fuel cells with rechargeable batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2250/00Fuel cells for particular applications; Specific features of fuel cell system
    • H01M2250/20Fuel cells in motive systems, e.g. vehicle, ship, plane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/40Application of hydrogen technology to transportation, e.g. using fuel cells

Definitions

  • Supply device with a fuel cell device and a battery and method for the frost start of a supply device
  • the invention relates to a supply device for the electrical supply at least one consumer, with a primary power network in which a fuel cell device is present. Furthermore, the supply device comprises a secondary current network in which there is a battery which has an operating voltage range which is bounded at the top by a maximum voltage and at the bottom by a minimum voltage. In addition, the battery has an operating current range for supplying current to the at least one consumer.
  • a frost start element is provided, which is designed to bring about heating of the fuel cell device. Furthermore, the invention relates to a method for the frost start of a supply device.
  • the supply device is used in motor vehicles, it is subject to a wide variety of weather conditions. In this case, low temperatures, which are below the freezing point of water, known to bring considerable problems when starting a fuel cell device in a supply device with it.
  • frost conditions the anode chambers and / or the cathode chambers of ice may be blocked so that operating media are not available to the desired extent at the anodes and / or cathodes of the fuel cell device.
  • frost can lead to faulty functions of actuators, such as flaps, valves or the like, or cause clogging of the lines carrying the operating media.
  • the fuel cell device and thus the supply device comprising it are operated in a frost start mode before they can switch to normal operation.
  • the frost start element is used to allow a frost start of the fuel cell device or the supply device and thus to cause heating of the fuel cell device.
  • DE 10 2015 109 502 A1 describes an apparatus and a method for heating a fuel cell stack.
  • the fuel cell device is connected in parallel with an IGBT (Insulated Gate Bipolar Transistor) to draw current from the fuel cell device, thereby generating heat for the fuel cell device.
  • IGBT Insulated Gate Bipolar Transistor
  • a tube carrying a medium is positioned around the IGBT so that the medium is heated therein. The tube extends around the fuel cell stack, using the heated medium to heat the fuel cell stack.
  • an open circuit voltage of the fuel cell device corresponds at most to the maximum voltage of the battery.
  • the frost start element in turn serves to heat the fuel cell device, which can be electrically connected to the secondary power supply of the battery without a DC / DC converter. This makes it possible to provide a compact module of a supply device which has a simplified structure.
  • a drive device with a drive unit is considered. If it is electrically connected to the secondary power grid, it can serve to drive a motor vehicle, in so far as providing a driving torque directed to the driving of the motor vehicle.
  • the drive device has at least one drive unit, which is designed as an electric machine, and can be supplied with electrical energy via the primary power supply network and / or the secondary power supply system.
  • the drive device can be configured as a hybrid drive device and to this extent have, in addition to the drive unit, at least one further drive unit, which is of a different type than the drive unit.
  • the further drive unit is present, for example, as an internal combustion engine or the like.
  • the primary power network and the secondary power network preferably form an electrical system of the motor vehicle or represent at least one area of such an electrical system.
  • a first power source in the form of the fuel cell device is provided and in the secondary power network, a second power source is provided in the form of the battery ,
  • the fuel cell device may be in the form of a single fuel cell or, alternatively, as a fuel cell stack (fuel cell stack) with a plurality of fuel cells.
  • the fuel cell device is used for the reliable supply of the on-board network with electrical energy.
  • the battery also serves to reliably supply the vehicle electrical system with electrical energy and is provided for temporarily storing the energy, in particular energy that has been provided by means of the fuel cell device.
  • the load and therefore the electric machine, is electrically connected to the secondary power supply and is preferably permanently electrically connected to the battery during a driving operation of the motor vehicle.
  • the connection of the consumer in the form of a drive unit to the secondary power grid can be realized, for example, via a converter, in particular a pulse-controlled inverter.
  • the frost start element is connected in parallel to the fuel cell device, and if the frost start element is designed to remove a current from the fuel cell device for lowering the fuel cell voltage below a, preferably predetermined or predeterminable, voltage limit value .
  • the low voltage of the fuel cell device produces more heat from the individual fuel cells per gram of Fl 2 .
  • the frost starting element is used to increase the voltage within the fuel cell device below the voltage limit lower, so that an automatic heating of the fuel cell device takes place.
  • the primary power network preferably has a first primary power network connection and a second primary power network connection, wherein the frost start element is connected at one end to the first primary power supply connection and at the other end to the second primary power supply connection.
  • the secondary power network has a first secondary power supply connection and a second secondary power supply connection, wherein the first primary power supply connection and the first secondary power supply connection are connected directly to one another via a blocking diode and the second primary power supply connection and the second secondary power supply connection.
  • the same electrical potential is present at the second primary power supply connection and the second secondary power supply connection.
  • the first primary current network connection and the first secondary electricity network connection are only indirectly connected to one another via the blocking diode.
  • the fuel cell device and the battery are matched to each other and allow extremely efficient operation of the supply device, which is also characterized by a very simple and cost-effective design, since a voltage converter is eliminated. In this context, it has therefore proved to be advantageous if the primary power grid is connected voltage transformer free to the secondary power grid.
  • the blocking diode preferably has its forward direction from the primary power network in the direction of the secondary current network. Accordingly, at sufficiently high voltage in the primary power network, electrical energy can pass from the primary power network into the secondary power network. By contrast, the reverse transmission direction is excluded so that no current flows from the battery into the fuel cell device. A loading of the primary power network with an inadmissibly high voltage is avoided.
  • a development of the invention provides that the battery has a certain number of battery cells and / or the fuel cell device has a certain number of fuel cells, wherein the number of battery cells and / or the number of fuel cells is selected such that the open circuit voltage of the fuel cell device of Maximum voltage of the battery corresponds.
  • the no-load voltage of the fuel cell device essentially corresponds to at least 85% of the maximum voltage, preferably 90% of the maximum voltage, furthermore preferably to 95% of the maximum voltage of the battery.
  • the voltage-current characteristics of the fuel cell device and the battery can be adjusted by means of the number of battery cells and / or the number of fuel cells of the fuel cell device.
  • different types of battery cells for example with different nominal voltages, can be used to match the characteristic curve of the battery to that of the fuel cell device.
  • the fuel cell voltage provided by the fuel cell device the operating current range is greater than the minimum voltage of the battery.
  • the tuning of the fuel cell device and the battery to one another takes place in this respect only by simply implementing measures in the design of the fuel cell device and the battery terie.
  • the frost start element is formed as a high-voltage resistor which can be switched on and off.
  • the high-voltage resistor is switched on, so that a high current flow takes place from the fuel cell device, which leads to self-heating of the individual cells of the fuel cell device.
  • the fuel cell device thus supplies a high voltage which, with the high-voltage resistor, can be lowered below a voltage limit, which leads to automatic heating.
  • PTC positive temperature coefficient
  • This PTC heating element may be formed as a PTC resistor that can generate heat when absorbing the energy from the fuel cell device. Through thermal contact between the PTC heating element and the fuel cell device, the heat generated in the PTC heating element can be used to heat the fuel cell device; in addition to the automatic heating of the fuel cell device due to the low voltage present therein.
  • the voltage in the fuel cell device can also be lowered by a frost-starting element, which is formed as a Zener diode. It is characterized by the fact that it can withstand a high current flow, which may be necessary in order to lower the fuel cell voltage below a, preferably predetermined or predefinable, voltage limit value and thus to bring about the automatic heating.
  • a frost-starting element which is formed as a Zener diode. It is characterized by the fact that it can withstand a high current flow, which may be necessary in order to lower the fuel cell voltage below a, preferably predetermined or predefinable, voltage limit value and thus to bring about the automatic heating.
  • the frost start element is formed as a power semiconductor switch which can be operated in a linear mode.
  • a large current decrease from the fuel cell device is possible, which leads to a lowering of the fuel cell voltage and to an automatic heating of the fuel cell device.
  • a Determining a condition of a frost start
  • b Lowering a fuel cell voltage below a voltage limit by activating the frost start element connected in parallel to the fuel cell device
  • the determination of a condition of a frost start is preferably realized by means of a temperature sensor of a vehicle. After deactivating the frost start element, the normal operation of the fuel cell device or the supply device is initiated or started.
  • FIG. 1 shows a schematic representation of a supply device for the electrical supply of at least one consumer in the form of a drive device with drive unit for driving a motor vehicle
  • FIG. 2 shows a voltage-current characteristic diagram in which voltage-current characteristics are plotted for a battery with different charging states as well as voltage-current characteristics of a fuel cell device.
  • FIG. 1 shows a schematic representation of a supply device 1 for the electrical supply of a first consumer 2 and a second consumer 3 is shown.
  • the present supply device 1 may preferably also supply other consumers, not shown, with electrical shear energy.
  • the supply device 1 comprises a primary power network 4, in which a fuel cell device 5 is present.
  • the supply device 1 comprises a secondary current network 6, in which a battery 7 is present has an operating voltage range, which is limited to the top of a maximum voltage U ma x and down from a minimum voltage U m in.
  • the battery 7 has an operating current intensity range which is limited to the bottom by a minimum current intensity l min and to the top by a maximum current intensity l max .
  • the battery 7 is designed to charge the consumers 2, 3.
  • the consumer 2 comprises a drive unit 8, which is in the form of an electric machine.
  • This electric machine is typically operable by means of a three-phase alternating current and is preferably designed as a drive motor for a motor vehicle.
  • the primary current network 4 and also the secondary current network 6 supply a floating voltage and a direct current
  • the inverter 2 is additionally assigned the inverter 9, which converts the direct current into the three-phase alternating current.
  • the drive unit 8 can also be used as a generator, so that, for example, energy generated by the drive unit 8 during braking can be re-supplied to the battery 7 via the inverter 9.
  • the consumer 3 may also be connected to the electrical system formed from the primary power network 4 and 6 secondary power system.
  • consumers 3 for example, ancillary components of the fuel cell device 5, a charger, a 12V DC-DC converter, a high-voltage heater, an electric air conditioning compressor or the like into consideration.
  • the primary current network 4 is connected to the secondary current network 6 in a transformer-free or voltage-transformer-free manner.
  • the fuel cell device 5 has a first primary power supply connection 10 and a second primary power supply connection 1 1.
  • the battery 7 in the secondary power network 6 accordingly has a first secondary power supply connection 12 and a second secondary power supply connection 13.
  • the first primary power supply connection 10 is connected via a blocking diode 14 to the first secondary power supply connection 12.
  • a passage Direction of the blocking diode 14 is in a direction from the primary power network 4 to the secondary power network 6 before.
  • the second primary-current network connection 11 is electrically connected directly to the second secondary-current network connection 13.
  • the frost-starting element 15 is connected in parallel with the fuel cell device 5 and designed to remove a current from the fuel cell device 5, in the primary power network 4 there is a frost-starting element 15 which is designed to bring about heating of the fuel cell device 5. to lower a fuel cell voltage below a voltage limit. Due to the low fuel cell voltage in the fuel cell device 5, the fuel cell device 5 is heated automatically.
  • the frost start element 15 is on one end electrically connected to the first primary power supply connection 10 and the other end electrically connected to the second primary power supply connection 11. In this case, both connections are direct, so that, in particular, the blocking diode 14 has no influence on the frost-starting element 15.
  • the frost-starting element 15 may be formed as a PTC-Fleizelement, as a Zener diode, as a linearly operable power semiconductor switch or as a high-voltage resistor which can be switched on and off. In any case, the fuel cell voltage of the fuel cell device 5 is lowered below a voltage limit value by the frost start element 15, as a result of which the automatic heating of the fuel cells within the fuel cell device 5 is brought about.
  • FIG. 2 shows a voltage-current characteristic diagram in which a voltage-current characteristic 16 of the fuel cell device 5 with inactive or deactivated frost-starting element 15 is shown. Furthermore, a first voltage-current characteristic 17 and a second voltage-current characteristic 21 of the fuel cell device 5 with, preferably different but active frost start element 15 are shown dotted.
  • the voltage-current characteristic 18 shows the state of the battery 7 with a high or with a maximum state of charge and the voltage-current characteristic curve 19 shows a low state of charge of the battery 7, in particular a minimum. paint charge level.
  • the voltage-current characteristic 20 of the battery 7 exhibits an intermediate, in particular average, charge state of the battery 7.
  • the map comprises on the one hand an operating voltage range and on the other hand an operating current intensity range.
  • the operating voltage range is limited by a minimum voltage U m in downward and by a maximum voltage U max upwards.
  • the operating current intensity range is limited downwards by a minimum current intensity l min and upwards by a maximum current intensity l max .
  • the voltage provided by the battery 7 should always be sufficiently large in order to operate at least one of the two consumers 2, 3 as intended.
  • the characteristic curves 16, 17, 21 of the fuel cell device 5 are in the present case tuned to the operating voltage range and the operating current intensity range of the battery 7. This can be achieved by a predetermined number of battery cells and / or a predetermined number of fuel cells within the fuel cell device 5. Alternatively or additionally, different types of battery cells can be used to cause a corresponding vote. In particular, corresponds to an open circuit voltage of the fuel cell device 5 not more than the maximum voltage U max of the battery 7, in particular, it corresponds exactly to the maxi malschreib U max of the battery 7. Conversely, the functionality provided by the fuel cell device 5 fuel cell voltage over the operating amperage range of time always or in most cases greater than the minimum voltage U min of the battery 7.
  • the characteristic curves 17, 21 of the fuel cell device 5 show the state with the active frost start element 15.
  • Curve 16 thus shows, for example, the normal operation of the supply device 1 or whose fuel cell device 5, wherein the characteristic curve 17 corresponds to a frost start operation, in which the fuel cell voltage does not fall below the voltage level of the battery 7.
  • the characteristic curve 21 shows a fuel cell voltage which drops below the voltage level of the battery 7, whereby it even falls below the minimum voltage U m in the battery in certain areas.
  • the characteristic curves 17, 21 thus have a larger voltage drop of the fuel cell voltage than is the case with the characteristic line 16 corresponding to the normal operation.
  • the fuel cell voltage is subject to a greater drop compared to the fuel cell voltage during normal operation.
  • the fuel cell device 5 automatically heats up.
  • the frost start element 15 can be switched inactive, so that the characteristic curve 16 is established and the supply device from the frost start operation goes into normal operation.
  • Voltage-current characteristic fuel cell / frost-starting element active
  • Voltage-current characteristic battery / high charge

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Power Engineering (AREA)
  • Fuel Cell (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

Die Erfindung betrifft eine Versorgungseinrichtung (1) für die elektrische Versorgung mindestens eines Verbrauchers (2, 3), mit einem Primärstromnetz (4), in dem eine Brennstoffzelleneinrichtung (5) vorliegt, mit einem Sekundärstromnetz (6), in dem eine Batterie (7) vorliegt, die einen Betriebsspannungsbereich aufweist, der nach oben von einer Maximalspannung (Umax) und nach unten von einer Minimalspannung (Umin) begrenzt ist, und die einen Betriebsstromstärkenbereich zur Bestromung des mindestens einen Verbrauchers (2, 3) aufweist, und mit einem im Primärstromnetz (4) vorgesehenen Froststartelement (15), das ausgebildet ist, eine Erwärmung der Brennstoffzelleneinrichtung (5) herbeizuführen. Eine Leerlaufspannung der Brennstoffzelleneinrichtung (5) entspricht höchstens der Maximalspannung der Batterie (7). Außerdem betrifft die Erfindung ein Verfahren für den Froststart einer Versorgungseinrichtung (1).

Description

Versorgungseinrichtung mit einer Brennstoffzelleeinrichtung und einer Batterie sowie Verfahren für den Froststart einer Versorgungseinrichtung
BESCHREIBUNG:
Die Erfindung betrifft eine Versorgungseinrichtung für die elektrische Versor- gung mindestens eines Verbrauchers, mit einem Primärstromnetz, in dem eine Brennstoffzelleneinrichtung vorliegt. Weiterhin umfasst die Versor- gungseinrichtung ein Sekundärstromnetz, in dem eine Batterie vorliegt, die einen Betriebsspannungsbereich aufweist, der nach oben von einer Maxi- malspannung und nach unten von einer Minimalspannung begrenzt ist. Fer- ner weist die Batterie einen Betriebsstromstärkenbereich zur Bestromung des mindestens einen Verbrauchers auf. Im Primärstromnetz ist ein Frost- startelement vorgesehen, das ausgebildet ist, eine Erwärmung der Brenn- Stoffzelleneinrichtung herbeizuführen. Ferner betrifft die Erfindung ein Ver- fahren für den Froststart einer Versorgungseinrichtung.
Wenn die Versorgungseinrichtung in Kraftfahrzeugen eingesetzt wird, unter- liegt sie den unterschiedlichsten Witterungsbedigungen. Dabei können tiefe Temperaturen, die unter dem Gefrierpunkt von Wasser liegen, bekanntlich erhebliche Probleme beim Starten einer Brennstoffzelleneinrichtung in einer Versorgungseinrichtung mit sich bringen. Beispielsweise können beim Vor- liegen von Frostbedingungen die Anodenräume und/oder die Kathodenräu- me von Eis blockiert sein, so dass Betriebsmedien nicht im gewünschten Ausmaß an den Anoden und/oder Kathoden der Brennstoffzelleneinrichtung zur Verfügung stehen. Aber auch eintritts- und austrittsseitig der Brennstoff- zelleinrichtung kann Frost zu fehlerhaften Funktionen von Stellgliedern, wie Klappen, Ventilen oder dergleichen führen oder Verstopfungen der die Be- tiebsmedien führenden Leitungen hervorrufen. Sofern also die Vorraussetzungen der Gefahr eines Froststarts erfüllt sind, beispielsweise dann, wenn die Umgebungstemperatur unter 5 Grad Celsius liegt, wird die Brennstoffzelleneinrichtung und damit die diese umfassende Versorgungseinrichtung in einem Froststartmodus betrieben, bevor sie in einen Normalbetrieb übergehen kann. Das Froststartelement wird dabei dazu verwendet, um einen Froststart der Brennstoffzelleneinrichtung bzw. der Versorgungseinrichtung zu ermöglichen und damit eine Erwärmung der Brennstoffzelleneinrichtung zu bewirken.
Die DE 10 2015 206 423 A1 beschäftigt sich ebenfalls mit dem Problem des Froststarts, wobei ein Element vorgesehen ist, das dem Kurzschließen der Kathode mit der Anode innerhalb der Brennstoffzelleneinrichtung dient. Durch dieses Kurzschließen kann eine Umpolung einzelner Zellen der Brennstoffzelleneinrichtung herbeigeführt werden, wenn infolge von Eisbil dung Flusskanäle der Anode oder der Kathode verstopft wurden.
In der DE 10 2015 109 502 A1 sind eine Vorrichtung und ein Verfahren zum Erwärmen eines Brennstoffzellenstapels beschrieben. Hierbei ist der Brenn- stoffzelleneinrichtung ein IGBT (Bipolartransistor mit isoliertem Gate) parallel geschaltet, um der Brennstoffzelleneinrichtung Strom zu entnehmen, und um dadurch Wärme für die Brennstoffzelleneinrichtung zu erzeugen. Eine Röhre, die ein Medium führt, ist dabei so um den IGBT herum positioniert, dass das Medium darin erwärmt wird. Die Röhre erstreckt sich um den Brennstoffzel- lenstapel herum, womit das erwärmte Medium zum Erwärmen des Brenn- stoffzellenstapels genutzt wird.
Diese bekannten Lösungen zur Realisierung eines Froststarts sehen ein Primärstromnetz vor, das stets über einen DC/DC-Wandler (Spannungs- wandler oder Umrichter) mit dem Sekundärstromnetz verbunden ist. Der Ein- satz des Spannungswandlers führt aber zu zusätzlichem Gewicht und zu- sätzlichem Bauraum, der für die Versorgungseinrichtung bereitgestellt wer- den muss. Es ist daher die Aufgabe der vorliegenden Erfindung, eine Versorgungsein- richtung für die elektrische Versorgung mindestens eines Verbrauchers an- zugeben, die einen möglichst einfachen Aufbau aufweist und zugleich einen zuverlässigen Froststart ermöglicht. Ferner ist es Aufgabe der vorliegenden Erfindung, ein Verfahren für den Froststart einer Brennstoffzelleneinrichtung einer solchen Versorgungseinrichtung anzugeben, das die Versorgungsein- richtung auf einfache Weise in dem Normalbetrieb überführt.
Die die Versorgungseinrichtung betreffende Aufgabe wird durch eine Versor- gungseinrichtung gemäß Anspruch 1 gelöst. Vorteilhafte Ausgestaltung mit zweckmäßigen Weiterbildungen der Erfindung sind in den abhängigen An- sprüchen angegeben. Dabei entspricht insbesondere eine Leerlaufspannung der Brennstoffzelleneinrichtung höchstens der Maximalspannung der Batte- rie.
Das Froststartelement dient hierbei wiederum der Erwärmung der Brenn- stoffzelleneinrichtung, die ohne einen DC/DC-Wandler mit dem Sekundär- stromnetz der Batterie elektrisch verbunden werden kann. Damit lässt sich ein kompaktes Modul einer Versorgungseinrichtung bereitstellen, das einen vereinfachten Aufbau aufweist.
Als Verbraucher kommt im Rahmen der Erfindung beispielsweise eine An- triebseinrichtung mit einem Antriebsaggregat infrage. Wenn sie elektrisch an das Sekundärstromnetz angeschlossen ist, kann sie dem Antreiben eines Kraftfahrzeugs dienen, insoweit also dem Bereitstellen eines dem Antreiben des Kraftfahrzeugs gerichteten Antriebsdrehmoments. Die Antriebseinrich- tung verfügt hierzu über wenigstens ein Antriebsaggregat, welches als elekt- rische Maschine ausgestaltet ist, und über das Primärstromnetz und/oder das Sekundärstromnetz mit elektrischer Energie versorgt werden kann. Selbstverständlich kann die Antriebseinrichtung als eine Hybridantriebsein- richtung ausgestaltet sein und insoweit zusätzlich zu dem Antriebsaggregat wenigstens ein weiteres Antriebsaggregat aufweisen, welches von einem anderen Typ ist als das Antriebsaggregat. Das weitere Antriebsaggregat liegt beispielsweise als Brennkraftmaschine oder dergleichen vor. Das Primärstromnetz und das Sekundärstromnetz bilden vorzugsweise ein Bordnetz des Kraftfahrzeugs oder stellen zumindest einen Bereich eines sol- chen Bordnetzes dar. In dem Primärstromnetz ist eine erste Stromquelle in Form der Brennstoffzelleneinrichtung vorgesehen und in dem Sekundär- stromnetz ist eine zweite Stromquelle in Form der Batterie vorgesehen. Die Brennstoffzelleneinrichtung kann in Form einer einzigen Brennstoffzelle vor- liegen oder alternativ als Brennstoffzellenstapel (Brennstoffzellenstack) mit mehreren Brennstoffzellen. Die Brennstoffzelleneinrichtung dient der zuver- lässigen Versorgung des Bordnetzes mit elektrischer Energie. Die Batterie dient ebenfalls der zuverlässigen Versorgung des Bordnetzes mit elektri scher Energie und ist zur Zwischenspeicherung der Energie vorgesehen, insbesondere von Energie, die mittels der Brennstoffzelleneinrichtung bereit- gestellt wurde.
Der Verbraucher, mithin die elektrische Maschine, ist elektrisch an das Se- kundärstromnetz angeschlossen und vorzugsweise während eines Fahrbe- triebs des Kraftfahrzeugs permanent mit der Batterie elektrisch verbunden. Die Anbindung des Verbrauchers in Form eines Antriebsaggregat an das Sekundärstromnetz kann beispielsweise über einen Umrichter, insbesondere einen Pulswechselrichter, realisiert sein.
Im Rahmen der Erfindung hat es sich als vorteilhaft erwiesen, wenn das Froststartelement parallel zur Brennstoffzelleneinrichtung geschaltet ist, und wenn das Froststartelement ausgebildet ist, einen Strom von der Brennstoff- zelleneinrichtung abzunehmen zur Senkung der Brennstoffzellenspannung unter einen, vorzugsweise vorgegebenen oder vorgebbaren, Spannungs- grenzwert. Durch die niedrige Spannung der Brennstoffzelleneinrichtung wird mehr Wärme von den einzelnen Brennstoffzellen pro Gramm Fl2 produziert. Bisher war es möglich, mit einem DC/DC-Konverter große Ströme aus der Brennstoffzelleneinrichtung abzunehmen, um das innere Erwärmen der Brennstoffzelleneinrichtung aufgrund der niedrigen Spannung herbeizufüh- ren. Da aber der Spannungswandler vorzugsweise bei der vorliegenden Er- findung entfällt, wird das Froststartelement eingesetzt, um die Spannung in- nerhalb der Brennstoffzelleneinrichtung unter den Spannungsgrenzwert zu senken, so dass eine selbsttätige Erwärmung der Brennstoffzelleneinrichtung erfolgt.
Vorzugsweise weist das Primärstromnetz einen ersten Primärstromnetzan- schluss und einen zweiten Primärstromnetzanschluss auf, wobei das Frost- startelement einenends an den ersten Primärstromnetzanschluss und ande- renends an den zweiten Primärstromnetzanschluss angeschlossen ist. Wei- terhin weist das Sekundärstromnetz einen ersten Sekundärstromnetzan- schluss und einen zweiten Sekundärstromnetzanschluss auf, wobei der erste Primärstromnetzanschluss und der erste Sekundärstromnetzanschluss über eine Sperrdiode und der zweite Primärstromnetzanschluss und der zweite Sekundärstromnetzanschluss unmittelbar aneinander angeschlossen sind. Damit liegt an dem zweiten Primärstromnetzanschluss und dem zweiten Se- kundärstromnetzanschluss insoweit dasselbe elektrische Potenzial vor. Der erste Primärstromnetzanschluss und der erste Sekundärstromnetzanschluss sind hingegen lediglich mittelbar über die Sperrdiode aneinander ange- schlossen. Die Brennstoffzelleneinrichtung und die Batterie sind aufeinander abgestimmt und ermöglichen ein äußerst effizientes Betreiben der Versor- gungseinrichtung, die sich zudem durch einen sehr einfachen und kosten- günstigen Aufbau auszeichnet, da ein Spannungswandler entfällt. In diesem Zusammenhang hat es sich also als vorteilhaft erwiesen, wenn das Primär- stromnetz spannungswandlerfrei an das Sekundärstromnetz angeschlossen ist.
Vorzugsweise weist die Sperrdiode ihre Durchlassrichtung von dem Primär- stromnetz in Richtung des Sekundärstromnetz auf. Entsprechend kann bei ausreichend hoher Spannung in dem Primärstromnetz elektrische Energie aus dem Primärstromnetz in das Sekundärstromnetz gelangen. Die umge- kehrte Übertragungsrichtung ist demgegenüber ausgeschlossen, so dass kein Strom aus der Batterie in die Brennstoffzelleneinrichtung fließt. Eine Be- aufschlagung des Primärstromnetz mit einer unzulässig hohen Spannung wird vermieden. Eine Weiterbildung der Erfindung sieht vor, dass die Batterie eine bestimmte Anzahl an Batteriezellen aufweist und/oder die Brennstoffzelleneinrichtung eine bestimmte Anzahl an Brennstoffzellen aufweist, wobei die Anzahl der Batteriezellen und/oder die Anzahl der Brennstoffzellen derart gewählt ist, dass die Leerlaufspannung der Brennstoffzelleneinrichtung der Maximal- spannung der Batterie entspricht. Vorzugsweise entspricht jedoch die Leer- laufspannung der Brennstoffzelleneinrichtung im Wesentlichen mindestens 85 % der Maximalspannung, vorzugsweise 90 % der Maximalspannung, wei- terhin vorzugsweise 95 % der Maximalspannung der Batterie. Durch eine derartige Konfiguration kann eine Abstimmung der Spannung-Strom- Kennlinien von Brennstoffzelleneinrichtung und Batterie erfolgen, und zwar über die Anzahl der Batteriezellen und/oder die Anzahl der Brennstoffzellen der Brennstoffzelleneinrichtung. Alternativ oder ergänzend können unter- schiedliche Typen an Batteriezellen, beispielsweise mit unterschiedlichen Nennspannungen, zur Abstimmung der Kennlinie der Batterie auf diejenige der Brennstoffzelleneinrichtung herangezogen werden.
Weiterhin wird durch die entsprechende Wahl des Betriebsstromstärkenbe- reich und/oder wiederum durch die Auswahl der Anzahl und Ausführungs- form von Batteriezellen und/oder die Anzahl und Ausführungsform der Brennstoffzellen bzw. des Typs der Batteriezellen sichergestellt, dass die von der Brennstoffzelleneinrichtung bereitgestellte Brennstoffzellenspannung über den Betriebstromstärkenbereich hinweg größer ist als die Minimalspan- nung der Batterie. Die Abstimmung der Brennstoffzelleneinrichtung und der Batterie aufeinander erfolgt insoweit allein durch einfach umzusetzende Maßnahmen bei der Auslegung der Brennstoffzelleneinrichtung und der Bat- terie.
Um aus der Brennstoffzelleneinrichtung einen großen Strom abzunehmen, hat es sich als vorteilhaft erwiesen, wenn das Froststartelement als ein zu- und abschaltbarer Hochspannungswiderstand gebildet ist. Im Froststartbe- trieb wird der Hochspannungswiderstand zugeschaltet, so dass ein hoher Stromfluss aus der Brennstoffzelleneinrichtung erfolgt, was zu einer selbsttä- tigen Erwärmung der Einzelzellen der Brennstoffzelleinrichtung führt. In die- sem Zusammenhang liefert die Brennstoffzelleneinrichtung also eine Hoch- spannung, die mit dem Hochspannungswiderstand unter einen Spannungs- grenzwert abgesenkt werden kann, der zur selbsttätigen Erwärmung führt.
In einer alternativen Ausführungsform der Erfindung ist die Versorgungsein- richtung, dadurch gekennzeichnet, dass das Froststartelement als ein PTC-, Heizelement gebildet ist (PTC=positiver Temperatur-Koeffizient). Dieses PTC-Heizelement kann als ein PTC-Widerstand gebildet sein, der beim Ab- sorbieren der Energie aus der Brennstoffzelleneinrichtung Wärme erzeugen kann. Durch einen thermischen Kontakt zwischen PTC-Heizelement und Brennstoffzelleneinrichtung kann die im PTC-Heizelement erzeugte Wärme genutzt werden, um die Brennstoffzelleneinrichtung zu erwärmen; und zwar zusätzlich zu dem selbsttätigen Erwärmen der Brennstoffzelleneinrichtung aufgrund der darin vorliegenden niedrigen Spannung.
Alternativ oder ergänzend kann die Spannung in der Brennstoffzelleneinrich- tung auch durch ein Froststartelement gesenkt werden, das als eine Z-Diode gebildet ist. Sie zeichnet sich dadurch aus, dass sie einem hohen Stromfluss standhält, der nötig sein kann, um die Brennstoffzellenspannung unter einen, vorzugsweise vorgegebenen oder vorgebbaren, Spannungsgrenzwert abzu- senken und um damit die selbsttätige Erwärmung herbeizuführen.
Weiterhin hat es sich als vorteilhaft erwiesen, wenn das Froststartelement als ein in einem Linearbetrieb betreibbarer Leistungshalbleiterschalter gebildet ist. Auch hierdurch ist eine große Stromabnahme aus der Brennstoffzellen- einrichtung möglich, die zu einem Senken der Brennstoffzellenspannung und zu einem selbsttätigen Erwärmen der Brennstoffzelleneinrichtung führt.
Die das Verfahren betreffende Aufgabe wird durch ein Verfahren mit dem Merkmalsbestand des Anspruchs 10 gelöst, welches sich insbesondere durch die folgenden Schritte auszeichnet:
a. Feststellen einer Bedingung eines Froststarts, b. Absenken einer Brennstoffzellenspannung unter einen Span- nungsgrenzwert durch Aktivieren des parallel zur Brennstoffzel- leneinrichtung geschalteten Froststartelements, und
c. Deaktivieren des Froststartelements bei Erreichen einer Normal- temperatur der Brennstoffzelleneinrichtung.
Das Feststellen einer Bedingung eines Froststarts wird vorzugsweise mittels eines Temperatursensors eines Fahrzeugs realisiert. Nach dem Deaktivieren des Froststartelements wird der Normalbetrieb der Brennstoffzelleneinrich- tung beziehungsweise der Versorgungseinrichtung eingeleitet oder gestartet.
Weitere Vorteile, Merkmale und Einzelheiten der Erfindung ergeben sich aus den Ansprüchen, der nachfolgenden Beschreibung bevorzugte Ausführungs- form und sowie anhand der Zeichnungen. Dabei zeigen:
Figur 1 eine schematische Darstellung einer Versorgungseinrichtung für die elektrische Versorgung mindestens eines Verbrauchers in Form einer Antriebseinrichtung mit Antriebsaggregat zum antrei- ben eines Kraftfahrzeugs, und
Figur 2 ein Spannungs-Strom-Kennfeld, in dem Spannung-Strom- Kennlinien für eine Batterie mit unterschiedlichen Ladeständen sowie Spannungs-Strom-Kennlinien einer Brennstoffzelleneinrich- tung aufgetragen sind.
In Figur 1 ist eine schematische Darstellung einer Versorgungseinrichtung 1 für die elektrische Versorgung eines ersten Verbrauchers 2 und eines zwei- ten Verbrauchers 3 gezeigt. Die vorliegende Versorgungseinrichtung 1 kann vorzugsweise auch weitere nicht näher dargestellte Verbraucher mit elektri scher Energie versorgen.
Die Versorgungseinrichtung 1 umfasst ein Primärstromnetz 4, in dem eine Brennstoffzelleneinrichtung 5 vorliegt. Außerdem umfasst die Versorgungs- einrichtung 1 ein Sekundärstromnetz 6, in dem eine Batterie 7 vorliegt, die einen Betriebsspannungsbereich aufweist, der nach oben von einer Maxi- malspannung Umax und nach unten von einer Minimalspannung Umin begrenzt ist. Zudem weist die Batterie 7 einen Betriebsstromstärkenbereich auf, der nach unten von einer Minimalstromstärke lmin und nach oben von einer ma- ximal Stromstärke lmax begrenzt ist. Die Batterie 7 ist ausgelegt, die Verbrau- cher 2, 3 zu bestromen.
Der Verbraucher 2 umfasst ein Antriebsaggregat 8, welches in Form einer elektrischen Maschine vorliegt. Diese elektrische Maschine ist typischer- weise mittels eines Drei-Phasen-Wechselstroms betreibbar und ist Vorzug s- weise als Fahrmotor für ein Kraftfahrzeug gebildet. Da das Primärstromnetz 4 und auch das Sekundärstromnetz 6 eine Flochspannung und einen Gleich- strom liefern, ist dem Verbraucher 2 zusätzlich der Wechselrichter 9 zuge- ordnet, der den Gleichstrom in den Drei-Phasen-Wechselstrom wandelt. In einer Weiterbildung des Verbrauchers 2 kann das Antriebsaggregat 8 auch als Generator eingesetzt werden, so dass beispielsweise beim Bremsvor- gang durch das Antriebsaggregat 8 erzeugte Energie der Batterie 7 über den Wechselrichter 9 wieder zugeführt werden kann.
Der Verbraucher 3 kann ebenfalls an das aus dem Primärstromnetz 4 und Sekundärstromnetz 6 gebildete Bordnetz angeschlossen sein. Als Verbrau- cher 3 kommen beispielsweise Nebenaggregate der Brennstoffzelleneinrich- tung 5, ein Ladegerät, ein 12V-Gleichstrom-Gleichstromwandler, ein Hoch- spannungs-Heizer, ein elektrischer Klimakompressor oder dergleichen in Betracht.
Wie sich der Figur 1 entnehmen lässt, ist das Primärstromnetz 4 an das Se- kundärstromnetz 6 wandlerlos oder spannungswandlerfrei angeschlossen. Die Brennstoffzelleneinrichtung 5 weist einen ersten Primärstromnetzan- schluss 10 und einen zweiten Primärstromnetzanschluss 1 1 auf. Die Batterie 7 im Sekundärstromnetz 6 weist dementsprechend einen ersten Sekundär- stromnetzanschluss 12 und einen zweiten Sekundärstromnetzanschluss 13 auf. Der erste Primärstromnetzanschluss 10 ist über eine Sperrdiode 14 an den ersten Sekundärstromnetzanschluss 12 angeschlossen. Eine Durchlass- richtung der Sperrdiode 14 liegt dabei in einer Richtung von dem Primär- stromnetz 4 zu dem Sekundärstromnetz 6 vor. Der zweite Primärstromnetz- anschluss 11 ist hingegen unmittelbar mit dem zweiten Sekundärstromnetz Anschluss 13 elektrisch verbunden.
Im Primärstromnetz 4 liegt außerdem ein Froststartelement 15 vor, das aus- gebildet ist, eine Erwärmung der Brennstoffzelleneinrichtung 5 herbeizufüh- ren. Vorliegend ist das Froststartelement 15 parallel zur Brennstoffzellenein- richtung 5 geschaltet und ausgebildet, einen Strom von der Brennstoffzellen- einrichtung 5 abzunehmen, um eine Brennstoffzellenspannung unter einen Spannungsgrenzwert abzusenken. Durch die niedrige Brennstoffzellenspan- nung in der Brennstoffzelleneinrichtung 5 erwärmt sich die Brennstoffzellen- einrichtung 5 selbsttätig. Vorzugsweise ist das Froststartelement 15 einen- ends an dem ersten Primärstromnetzanschluss 10 elektrisch angeschlossen und anderenends mit dem zweiten Primärstromnetzanschluss 11 elektrisch verbunden. Beide Verbindungen sind hierbei unmittelbar, so dass insbeson- dere die Sperrdiode 14 keinen Einfluss auf das Froststartelement 15 nimmt. Das Froststartelement 15 kann als ein PTC-Fleizelement, als eine Z-Diode, als ein in einem Linearbetrieb betreibbarer Leistungshalbleiterschalter oder als ein zu-und abschaltbarer Hochspannungswiderstand gebildet sein. Je- denfalls wird durch das Froststartelement 15 die Brennstoffzellenspannung der Brennstoffzelleneinrichtung 5 unter einen Spannungsgrenzwert abge- senkt, wodurch das selbsttätige Erwärmen der Brennstoffzellen innerhalb der Brennstoffzelleneinrichtung 5 hervorgerufen wird.
In Figur 2 ist ein Spannungs-Strom-Kennfeld gezeigt, in welchem eine Span- nungs-Strom-Kennlinie 16 der Brennstoffzelleneinrichtung 5 mit inaktiven oder deaktivierten Froststartelement 15 gezeigt ist. Weiterhin sind eine erste Spannungs-Strom-Kennlinie 17 und eine zweite Spannungs-Strom-Kennlinie 21 der Brennstoffzelleneinrichtung 5 mit, vorzugsweise unterschiedlichichem aber aktivem Froststartelement 15 gepunktet dargestellt. Zudem zeigt die Spannungs-Strom-Kennlinie 18 den Zustand der Batterie 7 mit einem hohen bzw. mit einem maximalem Ladestand und die Spannungs-Strom-Kennlinie 19 zeigt einen niedrigen Ladestand der Batterie 7, insbesondere einen mini- malen Ladestand. Zudem zeigt die Spannungs-Strom-Kennlinie 20 der Batte- rie 7 einen intermediären, insbesondere mittleren Ladestand der Batterie 7 auf.
Das Kennfeld umfasst einerseits einen Betriebsspannungsbereich und ande- rerseits einen Betriebsstromstärkenbereich. Der Betriebsspannungsbereich wird von einer Minimalspannung Umin nach unten und von einer Maximal- spannung Umax nach oben begrenzt. Der Betriebsstromstärkenbereich wird nach unten von einer Minimalstromstärke lmin und nach oben von einer Ma- ximalstromstärke lmax begrenzt. Innerhalb des Betriebsstromstärkenbereich soll die von der Batterie 7 bereitgestellte Spannung stets hinreichend groß sein, um wenigstens einen der beiden Verbraucher 2, 3 bestimmungsgemäß zu betreiben. Innerhalb des Betriebstromstärkenbereich liegt also stets eine entsprechende Minimalspannung Umin vor.
Die Kennlinien 16, 17, 21 der Brennstoffzelleneinrichtung 5 sind vorliegend auf den Betriebsspannungsbereich und den Betriebsstromstärkenbereich der Batterie 7 abgestimmt. Dies lässt sich erreichen durch eine vorgegebene Anzahl an Batteriezellen und/oder eine vorgegebene Anzahl an Brennstoff- zellen innerhalb der Brennstoffzelleneinrichtung 5. Alternativ oder ergänzend können unterschiedliche Typen an Batteriezellen eingesetzt werden, um eine entsprechende Abstimmung hervorzurufen. Insbesondere entspricht eine Leerlaufspannung der Brennstoffzelleneinrichtung 5 höchstens der Maximal- spannung Umax der Batterie 7, insbesondere entspricht sie genau der Maxi- malspannung Umax der Batterie 7. Umgekehrt ist die von der Brennstoffzel- leneinrichtung 5 bereitgestellte Brennstoffzellenspannung über den Be- triebstromstärkenbereich hinweg stets oder meistens größer als die Minimal- spannung Umin der Batterie 7. Dies muss aber im speziellen Falle des Frost- starts nicht zwingend so sein, denn dann kann die Brennstoffzellenspannung auch unter die minimale Spannung Umin der Batterie 7 fallen, was bei der Kennlinie 21 abschnittsweise der Fall ist. In einem solchen Fall kann es aber Vorkommen, dass die Batterie 7 dann ihre Schütze öffnet. Selbst wenn die Schütze der Batterie 7 nicht geöffnet werden, besteht aber ein Schutz der Brennstoffzelleneinrichtung 5 aufgrund der im Primärstromnetz 4 vorgesehe- nen Sperrdiode 14. Mit steigendem Stromfluss nähert sich die Brennstoffzel- lenspannung vorzugsweise der Kennlinie 19 der Batterie 7 für den kleinsten hier dargestellten Ladestand asymptomatisch an.
Während die durchgezogen dargestellte Kennlinie 16 der Brennstoffzellen- einrichtung 5 den Zustand zeigt, bei dem das Froststartelement 15 inaktiv ist, zeigen die Kennlinien 17, 21 der Brennstoffzelleneinrichtung 5 den Zustand mit aktivem Froststartelement 15. Kennlinie 16 zeigt somit beispielsweise den Normalbetrieb der Versorgungseinrichtung 1 bzw. deren Brennstoffzel- leneinrichtung 5, wobei die Kennlinie 17 einem Froststartbetrieb entspricht, bei der die Brennstoffzellenspannung nicht unter das Spannungsniveau der Batterie 7 sinkt. Die Kennlinie 21 zeigt eine Brennstoffzellenspannung, die unter das Spannungsniveau der Batterie 7 absinkt, wobei sie sogar die Mi- nimalspannung Umin der Batterie bereichsweise unterschreitet. Die Kennli- nien 17, 21 weisen also einen größeren Spannungsabfall der Brennstoffzel- lenspannung auf, als dies bei der dem Normalbetrieb entsprechenden Kenn- linie 16 der Fall ist. Mithin unterliegt also bei aktivem Froststartelement 15 die Brennstoffzellenspannung einem stärkeren Abfall gegenüber der Brennstoff- zellenspannung im Normalbetrieb. Dies führt dazu, dass sich die Brennstoff- zelleneinrichtung 5 selbsttätig erwärmt. Bei Erreichen einer vorgegebenen Temperatur, zum Beispiel bei Erreichen von 5 Grad Celcius, kann das Frost- startelement 15 inaktiv geschalten werden, so dass sich die Kennlinie 16 einstellt und die Versorgungseinrichtung aus dem Froststartbetrieb in den Normalbetrieb übergeht.
Mit einer derartigen Ausgestaltung kann ein sehr effizienter Betrieb der Ver- sorgungseinrichtung 1 sichergestellt werden. Entsprechendes gilt also für eine Antriebseinrichtung, die mit einer solchen Versorgungseinrichtung 1 mit elektrischer Energie versorgt wird. Außerdem kann die Versorgungseinrich- tung 1 sehr einfach ausgeführt sein, so dass sich beim Einsatz in einem Kraftfahrzeug Bauraum- und Kostenvorteile ergeben. BEZUGSZEICHENLISTE:
1 Versorgungseinrichtung
2 Verbraucher
3 (zweiter) Verbraucher
4 Primärstromnetz
5 Brennstoffzelleneinrichtung
6 Sekundärstromnetz
7 Batterie
8 Antriebsaggregat
9 Wechselrichter
10 erster Primärstromnetzanschluss
11 zweiter Primärstromnetzanschluss
12 erste Sekundärstromnetzanschluss
13 zweiter Sekundärstromnetzanschluss
14 Sperrdiode
15 Froststartelement
16 Spannungs-Strom-Kennlinie (Brennstoffzelle/Froststartelement inaktiv)
17 Spannungs-Strom-Kennlinie (Brennstoffzelle/Froststartelement aktiv) 18 Spannungs-Strom-Kennlinie (Batterie/Ladestand hoch).
19 Spannungs-Strom-Kennlinie (Batterie/Ladestand niedrig)
20 Spannungs-Strom-Kennlinie (Batterie/intermediärer Ladestand)
21 Spannungs-Strom-Kennlinie (Brennstoffzelle/Froststartelement aktiv)

Claims

ANSPRÜCHE:
Versorgungseinrichtung (1 ) für die elektrische Versorgung mindestens eines Verbrauchers (2,3), mit einem Primärstromnetz (4), in dem eine Brennstoffzelleneinrichtung (5) vorliegt, mit einem Sekundärstromnetz (6), in dem eine Batterie (7) vorliegt, die einen Betriebsspannungsbe- reich aufweist, der nach oben von einer Maximalspannung (Umax) und nach unten von einer Minimalspannung (Umin) begrenzt ist, und die ei- nen Betriebsstromstärkenbereich zur Bestromung des mindestens ei- nen Verbrauchers (2,3) aufweist, wobei eine Leerlaufspannung der Brennstoffzelleneinrichtung (5) höchstens der Maximalspannung der Batterie (7) entspricht, dadurch gekennzeichnet, dass im Primärstrom- netz (4) ein Froststartelement (15) vorgesehen ist, das ausgebildet ist, eine selbsttätige Erwärmung der Brennstoffzelleneinrichtung (5) herbei- zuführen, und dass das Froststartelement (15) parallel zur Brennstoff- zelleneinrichtung (5) geschaltet und ausgebildet ist, einen Strom von der Brennstoffzelleneinrichtung (5) abzunehmen zur Senkung der Brennstoffzellenspannung unter einen Spannungsgrenzwert.
Versorgungseinrichtung (1 ) nach Anspruch 1 , dadurch gekennzeichnet, dass das Primärstromnetz (4) einen ersten Primärstromnetzanschluss (11 ) und einen zweiten Primärstromnetzanschluss (12) aufweist, dass das Froststartelement (15) einenends an den ersten Primärstromnetz- anschluss (11 ) und anderenends an den zweiten Primärstromnetzan- schluss (12) angeschlossen ist, dass das Sekundärstromnetz (6) einen ersten Sekundärstromnetzanschluss (12) und einen zweiten Sekundär- stromnetzanschluss (13) aufweist, und dass der erste Primärstromnetz- anschluss (10) und der erste Sekundärstromnetzanschluss (12) über eine Sperrdiode (14) und der zweite Primärstromnetzanschluss (11 ) und der zweite Sekundärstromnetzanschluss (13) unmittelbar aneinan- der angeschlossen sind.
3. Versorgungseinrichtung (1 ) nach Anspruch 1 oder 2, dadurch gekenn- zeichnet, dass das Primärstromnetz (4) spannungswandlerfrei an das Sekundärstromnetz (6) angeschlossen ist. 4. Versorgungseinrichtung (1 ) nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass die Batterie (7) eine bestimmte Anzahl an Batte- riezellen aufweist und/oder die Brennstoffzelleneinrichtung (5) eine be- stimmte Anzahl an Brennstoffzellen aufweist, wobei die Anzahl der Bat- teriezellen und/oder die Anzahl der Brennstoffzellen derart gewählt ist, dass die Leerlaufspannung der Brennstoffzelleneinrichtung (5) der Ma- ximalspannung (U max ) entspricht.
5. Versorgungseinrichtung (1 ) nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass das Froststartelement (15) als ein zu- und ab- schaltbarer Hochspannungswiderstand gebildet ist.
6. Versorgungseinrichtung (1 ) nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass das Froststartelement (15) als ein PTC- Heizelement gebildet ist.
7. Versorgungseinrichutng (1 ) nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass das Froststartelement (15) als eine Z-Diode ge- bildet ist. 8. Versorgungseinrichtung (1 ) nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass das Froststartelement (15) als ein in einem Line- arbetrieb betreibbarer Leistungshalbleiterschalter gebildet ist.
9. Verfahren für den Froststart einer Brennstoffzelleneinrichtung (5) einer Versorgungseinrichtung (1 ) nach einem der Ansprüche 1 bis 8, gekenn- zeichnet durch folgende Schritte:
a. Feststellen einer Bedingung eines Froststarts, b. Absenken einer Brennstoffzellenspannung unter einen Span- nungsgrenzwert durch Aktivieren des parallel zur Brennstoffzel- leneinrichtung (5) geschalteten Froststartelements (15), und c. Deaktivieren des Froststartelements (15) bei Erreichen einer Nor- maltemperatur der Brennstoffzelleneinrichtung (5).
10. Verfahren nach Anspruch 9, dadurch gekennzeichnet, dass das Fest- steilen der Bedingung eines Froststarts mittels eines Temperatu r- sensors eines Fahrzeugs erfolgt.
PCT/EP2018/079404 2018-01-29 2018-10-26 Versorgungseinrichtung mit einer brennstoffzelleeinrichtung und einer batterie sowie verfahren für den froststart einer versorgungseinrichtung WO2019145059A1 (de)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201880087890.0A CN111630696A (zh) 2018-01-29 2018-10-26 具有燃料电池装置和电池组的供应装置以及用于供应装置的冰冻启动的方法
US16/965,937 US11508977B2 (en) 2018-01-29 2018-10-26 Supply device having a fuel cell device and a battery, and method for frost-starting a supply device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102018201260.1 2018-01-29
DE102018201260.1A DE102018201260B3 (de) 2018-01-29 2018-01-29 Versorgungseinrichtung mit einer Brennstoffzelleeinrichtung und einer Batterie sowie Verfahren für den Froststart einer Versorgungseinrichtung

Publications (1)

Publication Number Publication Date
WO2019145059A1 true WO2019145059A1 (de) 2019-08-01

Family

ID=64332003

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2018/079404 WO2019145059A1 (de) 2018-01-29 2018-10-26 Versorgungseinrichtung mit einer brennstoffzelleeinrichtung und einer batterie sowie verfahren für den froststart einer versorgungseinrichtung

Country Status (4)

Country Link
US (1) US11508977B2 (de)
CN (1) CN111630696A (de)
DE (1) DE102018201260B3 (de)
WO (1) WO2019145059A1 (de)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102019202485A1 (de) * 2019-02-25 2020-08-27 Audi Ag Verfahren zum Starten eines einen elektrischen Traktionsmotor aufweisenden Kraftfahrzeuges unter Froststartbedingungen sowie Kraftfahrzeug
DE102021206592A1 (de) * 2021-06-25 2022-12-29 Robert Bosch Gesellschaft mit beschränkter Haftung Brennstoffzellensystem mit Gefrierstartschaltung

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1068998A2 (de) * 1999-07-14 2001-01-17 DaimlerChrysler AG Verfahren und Schaltungsanordnung zur Versorgung eines Bordnetzes eines Kraftfahrzeugs mit elektrischer Energie
US20080187802A1 (en) * 2006-10-16 2008-08-07 Gm Global Technology Operations, Inc. Ptc element as a self regulating start resistor for a fuel cell stack
US20080241608A1 (en) * 2007-04-02 2008-10-02 Gm Global Technology Operations, Inc. Method of starting up a fuel cell under conditions in which water may freeze
DE102015109502A1 (de) 2014-06-20 2015-12-24 Ford Global Technologies, Llc Vorrichtung und Verfahren zum Erwärmen eines Brennstoffzellenstapels
DE102015206423A1 (de) 2015-04-10 2016-10-13 Volkswagen Aktiengesellschaft Membran-Elektroden-Einheit mit einem elektrisch leitfähigen Element

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2531510A (en) 2014-10-15 2016-04-27 Intelligent Energy Ltd Fuel cell and battery
DE102014224574A1 (de) 2014-12-02 2016-06-02 Robert Bosch Gmbh Eigensichere Bleed-Down-Schaltung und Regelstrategie für Brennstoffzellen-systeme

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1068998A2 (de) * 1999-07-14 2001-01-17 DaimlerChrysler AG Verfahren und Schaltungsanordnung zur Versorgung eines Bordnetzes eines Kraftfahrzeugs mit elektrischer Energie
US20080187802A1 (en) * 2006-10-16 2008-08-07 Gm Global Technology Operations, Inc. Ptc element as a self regulating start resistor for a fuel cell stack
US20080241608A1 (en) * 2007-04-02 2008-10-02 Gm Global Technology Operations, Inc. Method of starting up a fuel cell under conditions in which water may freeze
DE102015109502A1 (de) 2014-06-20 2015-12-24 Ford Global Technologies, Llc Vorrichtung und Verfahren zum Erwärmen eines Brennstoffzellenstapels
DE102015206423A1 (de) 2015-04-10 2016-10-13 Volkswagen Aktiengesellschaft Membran-Elektroden-Einheit mit einem elektrisch leitfähigen Element

Also Published As

Publication number Publication date
CN111630696A (zh) 2020-09-04
US11508977B2 (en) 2022-11-22
DE102018201260B3 (de) 2019-04-25
US20210075037A1 (en) 2021-03-11

Similar Documents

Publication Publication Date Title
DE112012005937T5 (de) Elektrofahrzeug
WO2007140798A1 (de) Zwischenschaltkreis, brennstoffzellensystem mit zwischenschaltkreis sowie verfahren zur ansteuerung des zwischenschaltkreises
DE102018101851A1 (de) Fehlererfassung einer Bypassdiode in einem Wandlungssystem für variable Spannung
DE102011083945A1 (de) Steuervorrichtung für Halbleiterschalter eines Wechselrichters und Verfahren zum Ansteuern eines Wechselrichters
DE102018208358B4 (de) Elektrisches Bordnetz, Fortbewegungsmittel und elektrische Schaltung zum Heizen einer Batterie
EP3720733B1 (de) Verfahren zum steuern einer elektrischen anlage eines elektrisch antreibbaren kraftfahrzeugs mit mehreren batterien sowie elektrische anlage eines elektrisch antreibbaren kraftfahrzeugs
DE102017128131A1 (de) Antriebssystem und Fahrzeug
DE102021001678A1 (de) Elektrisches Bordnetz für ein Kraftfahrzeug und Diagnoseverfahren für einen in diesem Bordnetz angeordneten Batterie-Schutzschalter
WO2019145059A1 (de) Versorgungseinrichtung mit einer brennstoffzelleeinrichtung und einer batterie sowie verfahren für den froststart einer versorgungseinrichtung
DE102014209267A1 (de) Heizeinrichtung und Verfahren zum Abbau einer Überspannung in einem Bordnetz eines Fortbewegungsmittels
DE102016004285A1 (de) Verfahren zum Überwachen einer elektrischen Kühlmittelpumpe
WO2020020524A1 (de) Versorgungseinrichtung mit einer brennstoffzelleneinrichtung und verfahren zur spannungssenkung bei einer brennstoffzelleneinrichtung
DE102007005359A1 (de) Fahrzeug mit einem Brennstoffzellensystem, Brennstoffzellensystem und Verfahren zum Betreiben des Brennstoffzellensystems
DE102018221989A1 (de) Hochvoltbordnetzanordnung für ein Kraftfahrzeug, Kraftfahrzeug und Verfahren zum Betreiben einer Hochvoltbordnetzanordnung
DE102017214972A1 (de) Antriebseinrichtung für ein Kraftfahrzeug sowie Verfahren zum Betreiben einer Antriebseinrichtung für ein Kraftfahrzeug
DE102014016239A1 (de) Gleichspannungswandler für ein Kraftfahrzeug und Verfahren zum Betreiben eines derartigen Gleichspannungswandlers
DE102014111517A1 (de) Verfahren zum Betrieb eines Fahrzeugs und Fahrzeug
EP3830927B1 (de) Versorgungseinrichtung mit einer brennstoffzelleneinrichtung und einer batterie, brennstoffzellenfahrzeug sowie verfahren zum starten einer versorgungseinrichtung
DE102018212130B4 (de) Elektrisches Energiesystem und Verfahren zum Betreiben des Energiesystems
DE102018212885A1 (de) Betrieb eines Antriebsstrangs mit Brennstoffzellenanordnung
DE102012220795B4 (de) Leistungswandler mit einem Stromversorgungsausgang für eine Diagnoseeinheit
DE102017205081A1 (de) Kühlvorrichtung und Verfahren zur Kühlung einer Batterie in einem Fahrzeug mittels eines Kühlmittels sowie Fahrzeug mit einer solchen Kühlvorrichtung
DE102018218327A1 (de) Versorgungseinrichtung mit einer Brennstoffzelleneinrichtung und einer Batterie sowie Verfahren für den Betrieb einer Versorgungseinrichtung
DE102019135090A1 (de) Verfahren zum Betreiben einer Abgasanlage
DE102021127940A1 (de) Verfahren zum Beheizen eines elektrischen Energiespeichers eines zumindest teilweise elektrisch betriebenen Kraftfahrzeugs, Computerprogrammprodukt, Heizvorrichtung sowie elektrischer Energiespeicher

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18803876

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 18803876

Country of ref document: EP

Kind code of ref document: A1