WO2019144896A1 - 3d打印机的压电喷头及其工作方法以及3d打印机 - Google Patents

3d打印机的压电喷头及其工作方法以及3d打印机 Download PDF

Info

Publication number
WO2019144896A1
WO2019144896A1 PCT/CN2019/072931 CN2019072931W WO2019144896A1 WO 2019144896 A1 WO2019144896 A1 WO 2019144896A1 CN 2019072931 W CN2019072931 W CN 2019072931W WO 2019144896 A1 WO2019144896 A1 WO 2019144896A1
Authority
WO
WIPO (PCT)
Prior art keywords
nozzle
piezoelectric
zone
casing
printer
Prior art date
Application number
PCT/CN2019/072931
Other languages
English (en)
French (fr)
Inventor
张传杰
袁玉宇
邓坤学
唐学文
钟怀秋
Original Assignee
广州迈普再生医学科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201810074482.3A external-priority patent/CN108312525A/zh
Priority claimed from CN201810877875.8A external-priority patent/CN108819255B/zh
Application filed by 广州迈普再生医学科技股份有限公司 filed Critical 广州迈普再生医学科技股份有限公司
Publication of WO2019144896A1 publication Critical patent/WO2019144896A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y40/00Auxiliary operations or equipment, e.g. for material handling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/20Apparatus for additive manufacturing; Details thereof or accessories therefor
    • B29C64/205Means for applying layers
    • B29C64/209Heads; Nozzles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/10Processes of additive manufacturing
    • B29C64/106Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material
    • B29C64/112Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using individual droplets, e.g. from jetting heads
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/30Auxiliary operations or equipment
    • B29C64/364Conditioning of environment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y30/00Apparatus for additive manufacturing; Details thereof or accessories therefor

Definitions

  • the present invention relates to the field of 3D printing devices, and more particularly to a piezoelectric showerhead for a 3D printer and a method of operating the same, and to a 3D printer.
  • piezoelectric ejection is a technique that utilizes the piezoelectric effect of a piezoelectric element to convert electrical energy into mechanical energy and change the pressure in the lumen of the showerhead to form droplets at the nozzle.
  • Piezoelectric injection can be divided into two types: continuous injection and on-demand injection.
  • Continuous injection refers to the continuous generation of micro-droplets from the front end of the nozzle and the use of a deflection electric field at the rear end and a recovery device to achieve specific droplets.
  • a jetting technique that extracts and gives up.
  • On-demand injection is an on-demand injection at the nozzle based on the on and off of a particular control signal.
  • piezoelectric ejection is more common on a two-dimensional printer represented by an Epson printer.
  • nozzle clogging of piezoelectric nozzles using piezoelectric injection technology has always been an insurmountable drawback.
  • the liquid printing material to be ejected has a large viscosity value, and the existing piezoelectric head cannot eject a liquid printing material having a viscosity value exceeding 20 cps.
  • the present invention has been made based on the above-mentioned problems to be solved in the prior art. It is an object of the present invention to provide a piezoelectric showerhead and a method of operating the same that overcomes at least one of the above-described drawbacks of the prior art. Another object of the present invention is to provide a 3D printer.
  • the present invention adopts the following technical solutions.
  • the present invention provides a piezoelectric showerhead of a 3D printer, the piezoelectric showerhead comprising: a showerhead main body, an inner cavity of the showerhead main body is formed with a nozzle inner cavity, the inner cavity of the showerhead is formed into a truncated cone shape, and the a side wall of the nozzle body is formed with a feed hole penetrating the side wall, and a portion of the feed hole adjacent to the inner cavity of the head is formed as a throttle portion having a diameter smaller than a diameter of a remaining portion of the feed hole; An electric drive assembly, the piezoelectric drive assembly being mounted to the large diameter end; and a nozzle assembly fixedly mounted to a small diameter end of the shower head body.
  • the piezoelectric shower head further includes a nozzle gland, the nozzle gland is fixedly mounted on a large diameter end of the nozzle main body, and the piezoelectric driving component is interposed between the nozzle gland and the nozzle Between the subjects.
  • the piezoelectric driving assembly comprises a piezoelectric driving diaphragm which is formed by combining a single layer or a double layer piezoelectric ceramic with a single layer metal film.
  • the piezoelectric drive assembly further includes a seal ring that presses against the piezoelectric drive diaphragm to seal the inner chamber of the spray head.
  • the nozzle assembly includes: a nozzle having a nozzle inner cavity communicating with the nozzle inner cavity, the nozzle having an inner sidewall surface for forming the nozzle inner cavity, the inner sidewall surface being adjacent to the nozzle
  • the shape of a portion of the discharge port continuously and smoothly changes in the form of a curved surface such that the area of the cross section of the corresponding portion of the nozzle gradually decreases toward the discharge port; and the nozzle nut that is capable of being screwed to enable a detachable manner is mounted to the small diameter end of the head body to press against the nozzle such that the nozzle is fixed relative to the head body, and the liquid printing material in the head cavity can only pass through the nozzle
  • the inner cavity is ejected.
  • the nozzle is formed with a nozzle fixing ring that protrudes toward a radially outer side of the nozzle, and the nozzle nut is pressed against the nozzle fixing ring.
  • the nozzle is made of a glass material and the inner surface of the nozzle is subjected to a hydrophobic treatment.
  • the convergence angle of the section of the head cavity along its axial direction including the central axis is between 60 degrees and 90 degrees.
  • the diameter-depth ratio d/L of the throttle portion is between 1/6 and 1/3.
  • the piezoelectric driving diaphragm is a circular piezoelectric sheet, and an axial distance of the inner cavity of the nozzle from the circular piezoelectric sheet to the nozzle assembly and the circular pressure
  • the ratio of the diameter of the electric piece is 1/2 to 1; and/or the length of the nozzle assembly in the axial direction and the axial direction of the nozzle inner cavity from the circular piezoelectric piece to the nozzle assembly The sum of the upward distances does not exceed the diameter of the circular piezoelectric piece.
  • the invention also provides a method for operating a piezoelectric nozzle of a 3D printer according to any one of the above technical solutions, the working method comprising the steps of: passing the feeding hole to a nozzle of the nozzle body Injecting a liquid printing material into the inner cavity; applying an electrical signal to the piezoelectric driving component after filling the liquid printing material in the inner cavity of the showerhead; and driving the piezoelectric driving component to generate an ejection under the driving of the electrical signal a pressure that urges the liquid printing material in the interior of the showerhead to flow toward and out of the nozzle assembly; the piezoelectric drive assembly is retracted, driven by the electrical signal, The pressure in the interior of the showerhead is lowered to cause the liquid printing material to flow away from the nozzle assembly such that the liquid printed material that protrudes the nozzle assembly breaks to form a droplet; causing the droplet to land on the printing platform The predetermined location; and repeat the above steps until the print job is completed.
  • the waveform of the electrical signal is trapezoidal or rectangular.
  • the present invention also provides a 3D printer comprising the piezoelectric head of the 3D printer according to any one of the above aspects.
  • the 3D printer further includes a molding chamber including a housing and a fan, the interior of the housing forming a molding zone, a condensation zone, and a clean air zone that communicate with each other such that the fan is The air drawn by the forming zone flows through the condensation zone and is cooled and flows through the clean air zone to be returned to the forming zone, and the piezoelectric showerhead is disposed in the molding zone.
  • a molding chamber including a housing and a fan, the interior of the housing forming a molding zone, a condensation zone, and a clean air zone that communicate with each other such that the fan is The air drawn by the forming zone flows through the condensation zone and is cooled and flows through the clean air zone to be returned to the forming zone, and the piezoelectric showerhead is disposed in the molding zone.
  • the housing includes a housing and an inner liner disposed inside the outer casing, an inner space of the inner liner is formed as the molding zone, and the condensation zone and the clean air zone are formed in the a space between the liner and the outer casing.
  • the clean air zone is formed in a space between the top surface of the inner tank and the outer casing, and the condensation zone is formed in a space between the side surface of the inner tank and the outer casing, such that The clean air zone is located above the condensation zone and the forming zone.
  • the casing is formed at the bottom of the condensation zone with a condensate outlet that allows the condensation zone to communicate with the outside.
  • the molding chamber further includes a refrigerator disposed in the condensation zone, the refrigerator and/or the casing being formed with a flow passage for causing condensed water to flow toward a bottom of the condensation zone,
  • the extending direction of the flow path forms a predetermined angle with respect to the horizontal direction.
  • the refrigerator includes a plurality of sets of refrigerator body units arranged side by side, each refrigerator body unit is provided with a semiconductor refrigeration sheet, and the cold end of the semiconductor refrigeration sheet is coated with thermal grease and attached to the refrigerator. Body unit.
  • the flow path includes a first flow path portion respectively disposed in the refrigerator body unit and a common second flow path portion disposed in the housing and corresponding to the first flow path portion such that each The condensed water of the first flow path portion flows to the second flow path portion, and the lowest end of the second flow path portion is opposed to the condensed water outlet.
  • the included angle ranges from 5 degrees to 60 degrees.
  • the interior of the casing is further formed with a wind buffer, and air sucked from the forming zone by the fan first flows through the wind buffer and then flows through the condensation zone and the clean wind zone. .
  • the wind buffer is formed in a space between a side of the inner casing of the casing and a casing of the casing, and the casing includes a wind buffer and the condensation zone.
  • a partition between the partition and the extending direction of the flow passage, the partition is formed with a plurality of ventilation holes that communicate the wind buffer with the flow passage.
  • the molding chamber includes a filter element disposed at a clean air outlet of the clean air zone that communicates the clean air zone with the molding zone.
  • the side surface of the outer casing and the side surface of the inner casing are each formed with an open port for directly communicating the forming zone with the outside, and a clean air zone air outlet for communicating the clean air zone with the forming zone.
  • the lateral dimension is not less than the lateral dimension of the open port.
  • the molding chamber further includes an insulating layer partially surrounding the forming zone and a sterilizing device disposed in the forming zone, the insulating layer being disposed between the outer casing and the inner casing.
  • the 3D printer is a bio 3D printer for 3D printing on bioengineering.
  • the present invention provides a novel piezoelectric nozzle of a 3D printer, a working method thereof and a 3D printer.
  • the nozzle inner cavity of the piezoelectric nozzle of the 3D printer is formed into a circular truncated cone shape and a part of the feed hole is formed as a throttle portion, so that the piezoelectric nozzle of the 3D printer can reduce the flow resistance of the liquid printing material, The energy loss due to the feed hole is reduced, thereby improving the ejection capability of the piezoelectric head, so that the 3D printer having the piezoelectric head can be used for printing of a higher viscosity biomaterial, effectively preventing the problem of nozzle clogging.
  • FIG. 1 is a front elevational view of a piezoelectric showerhead in accordance with an embodiment of the present invention.
  • FIG. 2 is a schematic exploded view of the piezoelectric showerhead of FIG. 1.
  • FIG. 3 is a cross-sectional view of the piezoelectric showerhead of FIG. 1 taken along the S-S direction.
  • Fig. 4 is an enlarged schematic view showing a partial area of Fig. 3 showing the detailed structure of the feed hole.
  • FIG. 5 is a schematic view showing a waveform of an electric signal used for the piezoelectric driving assembly of the piezoelectric head in FIG. 1.
  • Figure 6 is a perspective view showing the structure of a molding chamber of a 3D printer according to the present invention.
  • Fig. 7 is a perspective view showing the internal structure of the molding chamber of Fig. 6.
  • Fig. 8 is another perspective view showing the internal structure of the molding chamber of Fig. 6.
  • Figure 9 is a perspective view showing a partial structure of the molding chamber of Figure 6.
  • axial direction means the axial direction of the nozzle inner cavity of the piezoelectric head according to the present invention (up and down directions in FIGS. 1, 3, and 4), unless otherwise stated.
  • Diadial means the radial direction of the head cavity of the piezoelectric head according to the present invention (the left and right direction in Figs. 1, 3, and 4).
  • a piezoelectric head for a 3D printer includes a head body 1, a head cover 2, a piezoelectric drive unit 3, and a nozzle unit 4 which are assembled together.
  • the head main body 1 has a substantially truncated cone shape, and the head main body 11 is formed inside the head main body 1, and the head chamber 11 is formed in a truncated cone shape in which the radial dimension is tapered.
  • the nozzle chamber 11 having the shape of a truncated cone can effectively improve the ejection capability of the piezoelectric nozzle to the large-viscosity liquid printing material, better control the flow direction of the fluid in the nozzle chamber 11, minimize the pressure loss and make all the liquid.
  • the printing materials are all gathered toward the nozzle assembly 4.
  • the convergence angle ⁇ of the section of the nozzle inner chamber 11 along its axial direction A including the central axis is between 60 and 90 degrees, that is, as shown in FIG. 3, the side wall 12 of the nozzle inner chamber 11 is formed.
  • the angle ⁇ formed by the extension line is between 60 and 90 degrees.
  • the large-diameter end portion 1a (upper end portion in FIG. 1) of the head main body 1 is for fixing the nozzle cap 2, and the end surface of the large-diameter end portion 1a of the head main body 1 is formed with a plurality of screws for screw insertion. hole.
  • the large-diameter end portion 1a of the head main body 1 is also formed with a flange portion 21 for mounting the head cover 2 and a mounting step portion 1c of the piezoelectric drive unit 3.
  • the small-diameter end portion 1b (the lower end portion in Fig. 1) of the head main body 1 is formed with a mounting recess 1d for mounting the nozzle assembly 4, and a portion of the head main body 1 for forming the mounting recess 1d is formed with an internal thread.
  • the side wall 12 of the nozzle body 1 is formed with a feeding hole 13 penetrating the side wall 12, through which the liquid printing material can be replenished into the nozzle inner chamber 11 in real time to ensure no in the nozzle inner chamber 11. Bubbles are generated, which in turn ensures that the piezoelectric jet of the piezoelectric showerhead produces continuous droplets.
  • the feed hole 13 includes a large diameter portion 13a, a transition portion 13c, and a throttle portion 13b that sequentially communicate from the radially outer side toward the radially inner side.
  • the large diameter portion 13a is formed in a cylindrical shape and the diameter of the large diameter portion 13a is larger than the diameter of the throttle portion 13b.
  • the transition portion 13c is formed in a truncated cone shape and the diameter of the transition portion 13c gradually decreases from the large diameter portion 13a toward the throttle portion 13b.
  • the throttle portion 13b is formed in a cylindrical shape and the diameter of the throttle portion 13b is the smallest among the three portions. Since the diameter (aperture) of the throttle portion 13b is small, it is possible to effectively reduce the adverse effect of the feed hole 13 on the injection pressure while ensuring that the liquid jet printing material is effectively replenished to the head cavity 11.
  • the diameter-depth ratio d/L of the throttle portion 13b is between 1/6 and 1/3. .
  • the liquid printing material first flows through the large diameter portion 13a and the transition portion 13c, and then flows into the nozzle inner chamber 11 through the throttle portion 13b, thus the piezoelectric driving assembly
  • the deformation of the piezoelectric driving diaphragm of 3 causes the loss of pressure at the feeding hole 13 to be effectively reduced when the forward injection pressure is generated in the nozzle inner chamber 11, so that the pressure is more completely transmitted to the nozzle assembly 4.
  • the head cover 2 is formed in a ring shape and the head cover 2 is formed with a screw hole corresponding to the screw hole of the head body 1.
  • the head gland 2 is fixedly attached to the large-diameter end portion 1a of the head main body 1 by a screw inserted into the screw hole of the head main body 1 and the screw hole of the head cover 2.
  • the inner edge of the head cover 2 is formed with a flange portion 21 that protrudes toward the head body 1. When the head cover 2 is fixedly attached to the head body 1, the flange portion 21 is pressed against the large diameter of the head body 1.
  • the step portion 1c of the end portion 1a is attached.
  • the piezoelectric driving assembly 3 includes a piezoelectric driving diaphragm 3 interposed between the head cover 2 and the head body 1 such that the piezoelectric driving unit 3 has a large diameter in the head body 1
  • the end portion 1a is attached to the large-diameter end portion 1a in such a manner as to seal the nozzle inner chamber 11, so that no leakage pressure is ensured.
  • the piezoelectric drive assembly 3 also preferably includes a seal ring (not shown) that presses against the piezoelectric drive diaphragm to further ensure the above-described sealing effect.
  • the piezoelectric driving diaphragm is formed by combining a single layer or a double layer piezoelectric ceramic with a single layer metal film.
  • Piezoelectric ceramic is a functional material that can transform between electrical energy and mechanical energy. The conversion of mechanical energy input into electrical energy output is called positive piezoelectric effect, and vice versa is called inverse piezoelectric effect.
  • Piezoelectric injection is utilized. Its inverse piezoelectric effect.
  • Piezoelectric ceramic materials applied to piezoelectric injection are mostly in the form of a diaphragm. When the piezoelectric driving diaphragm is driven by a specific waveform electrical signal, a specific direction of deformation is generated, and the piezoelectric ceramic is composited onto a metal diaphragm.
  • the piezoelectric driving diaphragm is packaged, and the shape variable of the piezoelectric driving diaphragm is enlarged by the metal diaphragm, so that the shape variable of the piezoelectric driving diaphragm can be improved, thereby improving the ejection capability of the piezoelectric nozzle.
  • the piezoelectric driving diaphragm By mounting the piezoelectric driving diaphragm to the head body 1 such that the head cavity 11 forms a relatively closed cavity, a deformation of the piezoelectric driving diaphragm forms a periodic pressure change in the head cavity 11, thereby pushing the head cavity 11
  • the liquid print material inside produces periodic droplet microspheres.
  • the piezoelectric driving diaphragm is a circular piezoelectric sheet
  • the distance from the circular piezoelectric sheet to the nozzle assembly 4 in the axial direction A of the nozzle inner chamber 11 and the circular piezoelectric sheet in terms of size The ratio of the diameters is 1/2 to 1, which can advantageously shorten the conduction distance of the pressure waves; and the length of the nozzle assembly 4 in the axial direction A is from the circular piezoelectric piece of the head cavity 11 to the nozzle assembly 4
  • the sum of the distances in the axial direction A preferably does not exceed the diameter of the circular piezoelectric piece, and the length of the nozzle assembly 4 in the axial direction A is from the circular piezoelectric piece of the head cavity 11 to the nozzle assembly 4.
  • the sum of the distances in the axial direction A is as short as possible within a reasonable range, so that the conduction distance of the pressure wave can also be advantageously shortened.
  • the nozzle unit 4 is fixedly attached to the mounting recess 1d of the small-diameter end portion 1b of the head main body 1.
  • the nozzle assembly 4 includes a nozzle 41 and a nozzle nut 42.
  • the nozzle 41 is made of a glass material, and the inner surface of the nozzle 41 is subjected to a hydrophobic treatment to minimize the flow resistance of the liquid printing material.
  • a so-called streamlined nozzle inner chamber 411 that penetrates the nozzle 41 in the axial direction A is formed inside the nozzle 41.
  • the nozzle 41 is partially placed in the mounting recess 1d of the small-diameter end portion 1b of the head main body 1, and the nozzle inner chamber 411 of the nozzle 41 communicates with the head chamber 11 . Since the flow path formed by the nozzle inner chamber 411 has a streamline shape, the flow resistance to the liquid printing material can be minimized.
  • the nozzle 41 has an inner wall surface for forming the nozzle inner cavity 411, and the streamlined structure is designed such that the shape of a portion of the inner wall surface adjacent to the discharge port of the nozzle 41 is continuous in the form of a curved surface. The shape is changed smoothly without a shape abrupt change (for example, a step), so that the area of the cross section of the corresponding portion of the nozzle 41 is gradually reduced.
  • the nozzle 41 is formed with a nozzle fixing ring 412 that protrudes toward the radially outer side of the nozzle 41 for pressing the nozzle nut 42. It should be noted that the nozzle fixing ring 412 can also be a separate component.
  • the nozzle nut 42 is sleeved on the nozzle 41 and the nozzle nut 42 is formed with an external thread that cooperates with the internal thread of the mounting recess 1d.
  • the nozzle nut 42 can be attached to the mounting recess 1d of the small-diameter end portion 1b of the head main body 1 and pressed against the nozzle fixing ring 412 such that the nozzle fixing ring 412 is firmly held between the nozzle nut 42 and the head main body 1.
  • the nozzle 41 is fixed relative to the head main body 1 and seals the small-diameter end portion 1b of the head main body 1, and the liquid printing material in the head chamber 11 can be ejected only through the nozzle inner chamber 411.
  • the quick replacement of the nozzle 41 can be achieved by the nozzle nut 42.
  • the working method of the piezoelectric head includes the following steps:
  • the piezoelectric driving assembly 3 Under the driving of the electric signal, the piezoelectric driving assembly 3 is deformed in the forward direction to generate a forward injection pressure (the pressure in the axial direction A toward the lower side in FIG. 1), and the injection pressure pushes the liquid printing material in the nozzle chamber 11 Flowing downward and protruding the end of the nozzle 41;
  • the piezoelectric driving assembly 3 Under the driving of the electric signal, the piezoelectric driving assembly 3 is retracted, the pressure in the nozzle inner chamber 11 is lowered and the liquid printing material flows upward, and the step S3 is forced to protrude under the pressure drop and the surface tension of the liquid printing material.
  • the liquid printing material at the end of the nozzle 41 is necked and broken to form an ellipsoidal droplet;
  • step S5 The ellipsoidal droplet obtained in step S4 flies downward, and as the ellipsoidal droplet continues to fly, a spherical micro-droplet is finally formed under the action of surface tension, and finally falls on the printing platform;
  • the generation process of one micro-droplet is a process in which the internal pressure of the nozzle inner chamber 11 is changed from small to large in a very short time.
  • the pressure in the head chamber 11 is increased from small to large, the liquid printing material in the head chamber 11 is pushed and flows toward the nozzle 41, and the liquid printing material is at the end of the nozzle 41 when the pressure reaches a maximum value.
  • a certain volume of liquid printing material is protruded, and the portion of the liquid printing material has a certain initial velocity and is consistent with the pressure direction; when the pressure in the nozzle inner chamber 11 is greatly reduced, the liquid printing material protruding from the end of the nozzle 41
  • the necking begins to occur, and the necking causes the portion of the liquid printing material to be separated from the liquid printing material in the nozzle chamber 11, and the separated liquid printing material is aggregated into the micro-droplet pellet under the action of surface tension and in the previous process.
  • the initial velocity obtained continues to be jetted forward.
  • FIG. 5 shows a waveform of a voltage v of an electric signal applied to the piezoelectric driving assembly 3 as a function of time t.
  • the waveform of the electric signal applied to the piezoelectric driving unit 3 is a trapezoidal wave.
  • the parameters to be set for the trapezoidal wave are amplitude, pulse width, frequency and even the waveform rise time t s and the fall time t d . By selecting the parameter values of the above parameters reasonably, the points of different frequencies of different viscosity biomaterials can be completed.
  • the waveform of the above electrical signal may also be a rectangle.
  • the lower limit of the ejection frequency of the piezoelectric head according to the present invention can reach 1 Hz, and the on-demand ejection can still be realized at the frequency, and the driving ability of the piezoelectric head is not affected by the temperature change of the head.
  • a 3D printer includes a molding chamber.
  • the molding chamber includes a casing 5 and a fan 6, a refrigerator 7 and a filter cartridge 8 disposed in the casing 5, so that the molding chamber integrates the temperature control function and the cleanliness control function into one whole. Moreover, the problem of mutual interference which may occur when the two coexist is overcome, and the problem that the molding chamber is easy to accumulate condensed water is also solved.
  • the casing 5 includes a casing 51, a liner 52, and two partitions 53, 54 such that the inside of the casing 5 is partitioned into a molding zone 5a that communicates with each other, a wind buffer 5b, and condensation. Zone 5c and clean wind zone 5d.
  • the wind buffer 5b, the condensing zone 5c and the clean air zone 5d form a circulation duct structure such that air from the forming zone 5a flows through the wind buffer 5b into the condensing zone 5c and is cooled and then flows into the clean wind zone 5d to be cleaned. Return to the forming zone 5a.
  • the fan 6 can suck the air of the molding zone 5a to the condensation zone 5c via the wind buffer 5b, and the water vapor in the air is condensed and liquefied in the condensation zone 5c, after condensation
  • the air enters the clean air zone 5d from the condensation zone 5c, filters dust and bacteria of a certain particle size diameter, and finally the cleaned air is returned from the clean air zone 5d to the molding zone 5a inside the liner 52 to complete the cycle.
  • the condensed water liquefied in the condensing zone 5c is concentrated at the bottom of the condensing zone 5c, and then discharged through the condensed water outlet 5h1, thereby preventing the condensed water from agglomerating behind the wall of the forming chamber, causing the electrical component to short-circuit or corrode the casing 5 Case.
  • the condensate outlet 5h1 can be connected to the pipeline, and the pipeline can be connected to the cooling system coolant tank to reduce the coolant. Temperature to achieve reuse of condensed water.
  • Both the outer casing 51 and the inner casing 52 have a substantially rectangular parallelepiped shape (for example, a cubic shape), and the inner casing 52 is housed inside the outer casing 51.
  • the inside of the inner liner 52 is formed as a molding portion 5a for performing 3D printing, and the front side surface of the outer casing 51 and the front side surface of the inner casing 52 are formed with an opening opening for directly communicating the molding portion 5a with the outside to ensure fine adjustment before printing. And print out the printed bioengineering after printing.
  • a clean air zone 5d is formed between the top surface of the liner 52 and the outer casing 51, and the clean air zone 5d communicates with the molding zone 5a and the condensation zone 5c located therebelow.
  • a rear space is formed between the rear side of the inner casing 52 and the outer casing 51 and a first partition 53 and a second partition 54 are disposed in the rear space, and the first partition 53 and the second partition 54 will This rear space is divided into a mounting area for installing the fan 6, a wind buffer 5b, and a condensing area 5c.
  • the first partition 53 partitions the rear space into an upper space and a lower space
  • the second partition 54 divides the upper space into a wind buffer 5b and a condensing area 5c that communicate with each other, and the lower space serves as an installation space. .
  • the fan air inlet 6h1 of the fan 6 communicates with the forming zone 5a and the fan air outlet 6h2 of the fan 6 communicates with the wind buffer 5b.
  • the air from the molding zone 5a sucked by the blower 6 can be sequentially flowed through the wind buffer 5b and the condensing zone 5c.
  • the structure of the first partition 53 and the second partition 54 will be described in detail below.
  • the fan 6 is located at the bottom of the rear space and is disposed in the above-described mounting area.
  • the fan air inlet 6h1 of the fan 6 is formed at the bottom of the rear side of the liner 52 and communicates with the molding zone 5a, so that the fan 6 can suck the air of the molding zone 5a.
  • the fan air outlet 6h2 of the fan 6 is formed in the first partition 53 and is located at the top of the fan 6, and the fan air outlet 6h2 communicates with the wind buffer 5b, so that the fan 6 can send the sucked air into the wind buffer 5b.
  • the refrigerator 7 is disposed in the condensation zone 5c and is fixed to the first separator 53 and the second separator 54.
  • the refrigerator 7 includes a plurality of sets of the refrigerator body units 71 arranged side by side to increase the contact area and improve the heat exchange efficiency between the air and the refrigerator 7.
  • Each of the refrigerator main units 71 is provided with a semiconductor refrigerating sheet, and the cold end of the semiconductor refrigerating sheet is coated with thermal grease and attached to the side surface of the refrigerator main unit 71.
  • the semiconductor refrigerating sheet supplies a cold source to the refrigerator 7, and the surface area of the refrigerator 7 is large, which facilitates heat exchange between the air.
  • a part of the refrigerator 7 and the first partition 53 is formed with a flow path for causing the condensed water to flow toward the bottom of the condensing zone 5c, and the extending direction of the flow path forms a predetermined angle ⁇ with respect to the horizontal direction.
  • the angle ⁇ is selected to ensure that the condensed water obtains the maximum slip speed value in the natural state, and the angle ⁇ does not cause the inner loop wind to exceed the excessive wind resistance, so the angle ⁇ is preferably in the range of 5 degrees to 60 degrees.
  • the flow path includes a first flow path portion S1 formed in the refrigerator body unit 71 and a second flow path portion S2 formed in a portion of the first partition 53 respectively, the second flow path portion S2 corresponding to all of the first flow path portions S1 It is shared by all the first flow path portions S1 such that the condensed water from each of the first flow path portions S1 flows to the second flow path portion S2.
  • the casing 5 is formed at the bottom of the condensing zone 5c with a condensed water outlet 5h1 that allows the condensing zone 5c to communicate with the outside, and the lowest end of the second runner section S2 is opposed to the condensed water outlet 5h1 formed in the casing 5, so that the first The condensed water of the second flow path portion S2 can flow from the condensed water outlet 5h1 to the outside.
  • the direction in which the second partition 54 between the wind buffer 5b and the condensing zone 5c extends is preferably orthogonal to the direction in which the flow path extends, and the second partition 54 is located higher in the first flow path portion S1 formed in the refrigerator 7.
  • One end side is formed and a plurality of preferably evenly distributed vent holes 54h are formed.
  • the wind buffer 5b communicates with each flow path from the higher one end side of each of the first flow path portions S1. Since the wind blown by the fan 6 is columnar and cannot completely cover the surface of the refrigerator 7, a wind buffer 5b is disposed between the fan air outlet 6h2 and the condensation zone 5c of the fan 6, and between the wind buffer 5b and the condensation zone 5c.
  • the extending direction of the second partition 54 is orthogonal to the extending direction of the flow path, so that the entire wind buffer 5b has an inverted trapezoidal configuration.
  • the second partition 54 is provided with evenly distributed vent holes 54h.
  • the array of vent holes 54h substantially covers the entire partition, and the fan 6 blows the air sucked from the forming portion 5a vertically upward into the wind buffer 5b and is buffered in the wind.
  • the accumulation of the zone 5b generates a wind pressure, and then flows to the second partition 54 in the horizontal direction by the wind pressure and passes through the vent hole 54h of the second partition 54, whereby the columnar wind is converted into the cover of the refrigerator 7. All refrigerator body units 71.
  • the clean air zone 5d is located above the molding zone 5a, the wind buffer zone 5b and the condensation zone 5c, and the filter element 8 is disposed in the clean air zone 5d and is preferably located in the cleanliness of the clean air zone 5d and the molding zone 5a.
  • the filter element 8 can filter dust and bacteria of a certain particle size to ensure the cleanliness of the internal environment of the liner 52 of the molding chamber.
  • the front side of the outer casing 51 and the front side of the inner casing 52 are provided with an open opening, external bacterial dust easily enters the forming zone 5a, so that the lateral dimension of the clean air outlet 5dh2 is not less than the lateral dimension of the open opening, and the clean air is provided.
  • the wind in zone 5d can be pushed vertically down the air outlet 5dh2 of the clean wind zone.
  • a wind curtain can be formed at the opening to prevent external bacteria and dust from entering the molding zone 5a, and the air curtain can also reduce heat exchange between the molding chamber and the outside.
  • the filter element 8 is disposed at a position near the top of the inner liner 52 near the open port, and the filter 8 can ensure that the wind in the clean air zone 5d is vertically downward along the clean air outlet 5dh2, thereby ensuring the effectiveness of the air curtain.
  • the cross-sectional dimension of the air curtain is the same as the size of the filter element 8 at the air outlet 5dh2 of the clean air zone, that is to say, a wind curtain is generated under the area covered by the bottom surface of the filter element 8.
  • the clean air zone air inlet 5dh1 that connects the clean air zone 5d and the condensing zone 5c is disposed directly above the condensing zone 5c.
  • the molding chamber includes an insulating layer partially surrounding the molding region 5a and a sterilizing device disposed in the molding region 5a.
  • the heat insulating layer is preferably formed by insulating cotton to reduce heat exchange between the forming zone 5a and the external environment; the ultraviolet germicidal lamp can perform internal sterilization of the inner liner 52 to further ensure the cleanliness of the internal environment of the forming zone 5a.
  • the housing 5 is further provided with a cable interface 5h2 extending through the outer casing 51 of the casing 5 and the inner casing 52.
  • the cable interface 5h2 is used to ensure the moving platform in the forming zone 5a and other devices outside the molding chamber. Smooth installation of the cable between the communications.
  • the molding chamber of the 3D printer of the present invention has the following beneficial effects:
  • the condensation zone 5c provided with the refrigerator 7 is disposed in a relatively independent space outside the molding zone 5a, the condensation zone 5c is isolated as a main formation zone of the condensed water, and the first flow path section S1 and the first portion for discharging the condensed water are designed.
  • the moisture in the forming zone 5a is collected here for condensation and is blown away from the refrigerator 7 by the wind inner circulation, so as to prevent the condensed water from freezing, and the surface of the refrigerator 7 is free from ice formation, so that the heat exchange efficiency of the refrigerator 7 is not Down, the liner 52 has no condensation water accumulation and dripping.
  • a condensed water outlet 5h1 is provided at the bottom of the condensing zone 5c, and the condensed water can be collected and utilized. There is no waste of the chilled water of the chiller 7 due to the condensed water discharged, and the reused condensed water can reduce the cooling water tank. The temperature of the medium coolant.
  • the wind buffer 5b is disposed, and the wind buffer 5b converts the columnar wind blown by the fan air outlet 6h2 of the fan 6 into all the refrigerator body units 71.
  • the surface of the refrigerator 7 has a uniform air volume, and the forced convection coverage area is wide, and no forced The convection dead zone and the natural convection zone have high heat exchange efficiency of the refrigerator 7.
  • the horizontal dimension of the air outlet 5dh2 of the clean wind zone 5d is not less than the lateral dimension of the opening of the forming zone 5a, and the wind can be pushed vertically downward along the air outlet 5dh2 of the clean wind zone to form a wind curtain, blocking the outside world.
  • the dust microorganisms enter and prevent heat exchange between the inside and the outside, and the internal space temperature of the molding zone 5a is maintained.
  • the filter element 8 is arranged in the air outlet 5dh2 of the clean air zone 5d in the clean air zone, and the ultraviolet germicidal lamp is arranged in the molding zone 5a, so that the molding zone 5a can be ensured in a sterile dust-free environment, and the biological engineering such as blood vessels to be formed is prevented from being affected. Contamination of the enclosed environment inside the molding chamber.
  • the semiconductor refrigerating sheet is used as the cold source of the refrigerator 7, the cooling is high, the temperature is constant, and the heat insulating layer formed of the insulating cotton is filled between the outer casing 51 and the inner liner 52, so that the molding zone 5a inside the molding chamber 52 is formed.
  • the temperature is controllable and consistent.
  • the 3D printer according to the present invention is preferably a bio 3D printer for performing 3D printing on bioengineering such as blood vessels.
  • the bio 3D printer includes a piezoelectric showerhead and/or a molding chamber having the above structure, and the piezoelectric showerhead is disposed in the molding region 5a of the molding chamber to perform work.

Abstract

本发明涉及3D打印设备技术领域,更具体地涉及3D打印机的压电喷头及其工作方法并且还涉及3D打印机。该3D打印机的压电喷头的喷头内腔形成为径向尺寸渐缩的圆台形状并且进料孔的靠近喷头内腔的部分形成为节流部,因此该3D打印机的压电喷头能够降低液体打印材料的流阻、降低由于进料孔导致的能量损失,从而提高压电喷头的喷射能力,使得具有该压电喷头的3D打印机能够用于较高粘度的生物材料的打印,有效地防止喷嘴堵塞的问题。另外,该3D打印机的成型室形成有循环风道结构,通过风机抽吸的成型区中的空气能够在该循环风道结构中进行循环,并且空气在循环过程中能够被制冷和清洁。

Description

3D打印机的压电喷头及其工作方法以及3D打印机 技术领域
本发明涉及3D打印设备技术领域,更具体地涉及3D打印机的压电喷头及其工作方法并且还涉及3D打印机。
背景技术
在现有技术中,压电喷射是利用压电元件的压电效应将电能转化为机械能并改变喷头内腔中的压力从而在喷嘴处形成液滴的一种技术。压电喷射按工作方式可分为连续式喷射和按需式喷射两种类型,连续式喷射是指喷嘴前端源源不断产生微液滴并利用后端的偏转电场和回收装置等实现对特定液滴的提取和放弃的一种喷射技术。按需式喷射是根据特定的控制信号的通断实现在喷嘴处的按需式喷射。
在现有技术中,压电喷射以爱普生打印机为代表在二维打印机上比较常见。但是压电喷射无论应用在二维打印还是3D打印上,采用压电喷射技术的压电喷头的喷嘴堵塞一直是一个难以克服的弊端。进一步地,在3D打印中待喷射的液体打印材料的粘度值较大,现有的压电喷头无法喷射粘度值超过20cps的液体打印材料。
发明内容
基于上述现有技术中亟需解决的问题而做出了本发明。本发明的一个发明目的在于提供一种克服上述现有技术所述的至少一种缺陷的3D打印机的压电喷头及其工作方法。本发明的另一个发明目的在于提供一种3D打印机。
为了实现上述发明目的,本发明采用如下的技术方案。
本发明提供了一种如下的3D打印机的压电喷头,所述压电喷头包括:喷头主体,所述喷头主体的内部形成有喷头内腔,所述喷头内腔形成为圆台形状,并且所述喷头主体的侧壁形成有贯通该侧壁的进料孔,所述进料孔的靠近所述喷头内腔的部分形成为直径小于所述进料孔的其余部分的直径的节流部;压电驱动组件,所述压电驱动组件安装于所述大径端部;以及喷嘴组件,所述喷嘴组件固定安装于所述喷头主体的小径端部。
优选地,所述压电喷头还包括喷头压盖,所述喷头压盖固定安装于所述喷头主体的大径端部,并且所述压电驱动组件介于所述喷头压盖与所述喷头主体之间。
优选地,所述压电驱动组件包括压电驱动膜片,所述压电驱动膜片采用单层或双层 压电陶瓷与单层金属膜片复合而成。
更优选地,所述压电驱动组件还包括密封圈,所述密封圈压抵于所述压电驱动膜片,以密封所述喷头内腔。
优选地,所述喷嘴组件包括:喷嘴,所述喷嘴的喷嘴内腔与所述喷头内腔连通,所述喷嘴具有用于形成该喷嘴内腔的内侧壁面,该内侧壁面的靠近所述喷嘴的喷出口的一部分的形状以曲面的形式连续而平滑地变化,使得所述喷嘴的对应部分的横截面的面积朝向所述喷出口逐渐减小;以及喷嘴螺母,所述喷嘴螺母通过螺纹配合以能够拆卸的方式安装于所述喷头主体的小径端部,以压抵所述喷嘴从而使得所述喷嘴相对于所述喷头主体固定,并且所述喷头内腔中的液体打印材料仅能够经由所述喷嘴内腔喷出。
更优选地,所述喷嘴形成有朝向所述喷嘴的径向外侧凸出的喷嘴固定环,所述喷嘴螺母压抵于所述喷嘴固定环。
更优选地,所述喷嘴由玻璃材质制成,并且所述喷嘴的内表面经过疏水处理。
优选地,所述喷头内腔的沿着其轴向截取的包括中心轴线的截面的收敛角在60度至90度之间。
优选地,当所述节流部的深度为L且所述节流部的直径为d时,所述节流部的径深比d/L在1/6至1/3之间。
更优选地,所述压电驱动膜片为圆形压电片,所述喷头内腔的从所述圆形压电片到所述喷嘴组件的在轴向上的距离与所述圆形压电片的直径的比为1/2至1;和/或所述喷嘴组件的在轴向上的长度与所述喷头内腔的从所述圆形压电片到所述喷嘴组件的在轴向上的距离之和不超过所述圆形压电片的直径。
本发明还提供了一种以上技术方案中任意一项技术方案所述的3D打印机的压电喷头的工作方法,所述工作方法包括如下步骤:通过所述进料孔向所述喷头主体的喷头内腔注入液体打印材料;在所述喷头内腔中充满所述液体打印材料之后向所述压电驱动组件施加电信号;在所述电信号的驱动下,所述压电驱动组件变形产生喷射压力,该喷射压力推动所述喷头内腔中的所述液体打印材料朝向所述喷嘴组件流动并且从所述喷嘴组件突出;在所述电信号的驱动下,所述压电驱动组件回缩,所述喷头内腔中的压力下降以使得所述液体打印材料远离所述喷嘴组件流动,从而使得突出所述喷嘴组件的所述液体打印材料断裂形成液滴;使所述液滴落在打印平台的预定位置;以及重复以上步骤直至打印作业完成。
优选地,所述电信号的波形为梯形或矩形。
本发明还提供了一种如下的3D打印机,所述3D打印机包括以上技术方案中任意一项技术方案所述的3D打印机的压电喷头。
优选地,所述3D打印机还包括成型室,所述成型室包括壳体和风机,所述壳体的内部形成彼此连通的成型区、冷凝区和洁净风区,使得通过所述风机从所述成型区抽吸的空气流经所述冷凝区被制冷且流经所述洁净风区被清洁之后流回所述成型区,并且所述压电喷头设置于所述成型区内。
更优选地,所述壳体包括外壳和设置于所述外壳的内部的内胆,所述内胆的内部空间形成为所述成型区并且所述冷凝区和所述洁净风区形成于所述内胆与所述外壳之间的空间。
更优选地,所述洁净风区形成于所述内胆的顶面与所述外壳之间的空间,所述冷凝区形成于所述内胆的侧面与所述外壳之间的空间,使得所述洁净风区位于所述冷凝区和所述成型区的上方。
更优选地,所述壳体在所述冷凝区的底部形成有使得所述冷凝区与外部连通的冷凝水出口。
更优选地,所述成型室还包括设置于所述冷凝区内的制冷器,所述制冷器和/或所述壳体形成有用于使得冷凝水朝向所述冷凝区的底部流动的流道,所述流道的延伸方向相对于所述水平方向形成预定的夹角。
更优选地,所述制冷器包括多组并列设置的制冷器本体单元,各制冷器本体单元设置有半导体制冷片,所述半导体制冷片的冷端涂抹导热硅脂并贴附于所述制冷器本体单元。
更优选地,所述流道包括分别设置于所述制冷器本体单元的第一流道部分以及设置于所述壳体且对应所述第一流道部分的共用的第二流道部分,使得来自各所述第一流道部分的冷凝水均流到所述第二流道部分,所述第二流道部分的最低端与冷凝水出口相对。
更优选地,所述夹角的范围为5度至60度。
优选地,所述壳体的内部还形成有风力缓冲区,通过所述风机从所述成型区抽吸的空气先流经所述风力缓冲区再流经所述冷凝区和所述洁净风区。
更优选地,所述风力缓冲区形成于所述壳体的内胆的侧面与所述壳体的外壳之间的空间,并且所述壳体包括设置于所述风力缓冲区与所述冷凝区之间且与所述流道的延伸方向正交的隔板,所述隔板形成有使所述风力缓冲区与所述流道连通的多个通风孔。
优选地,所述成型室包括设置于使所述洁净风区与所述成型区连通的洁净风区出风 口处的滤芯。
更优选地,所述外壳的侧面和所述内胆的侧面均形成有使所述成型区与外部直接连通的开放口,使所述洁净风区与所述成型区连通的洁净风区出风口的横向尺寸不小于所述开放口的横向尺寸。
更优选地,所述成型室还包括部分包围所述成型区的保温层以及设置于所述成型区的杀菌装置,所述保温层设置于所述外壳和所述内胆之间。
优选地,所述3D打印机为用于对生物工程进行3D打印的生物3D打印机。
通过采用上述技术方案,本发明提供了一种新型的3D打印机的压电喷头及其工作方法以及3D打印机。该3D打印机的压电喷头的喷头内腔形成为径向尺寸渐缩的圆台形状并且进料孔的一部分形成为节流部,因此该3D打印机的压电喷头能够降低液体打印材料的流阻、降低由于进料孔导致的能量损失,从而提高压电喷头的喷射能力,使得具有该压电喷头的3D打印机能够用于较高粘度的生物材料的打印,有效地防止喷嘴堵塞的问题。
附图说明
图1是根据本发明的一实施方式的压电喷头的主视示意图。
图2是图1中的压电喷头的分解结构示意图。
图3是图1中的压电喷头的沿着S-S方向的剖视示意图。
图4是图3中的局部区域的放大示意图,其中示出了进料孔的详细结构。
图5是示出了用于图1中的压电喷头的压电驱动组件的电信号的波形的示意图。
图6是根据本发明的3D打印机的成型室的立体结构示意图。
图7是示出了图6中的成型室的内部结构的立体图。
图8是示出了图6中的成型室的内部结构的另一立体图。
图9是图6中的成型室的局部结构立体图。
附图标记说明
1喷头主体 1a大径端部 1b小径端部 1c安装台阶部 1d安装凹部 11喷头内腔 12侧壁 13进料孔 13a大径部 13b节流部 13c过渡部 2喷头压盖 21凸缘部 3压电驱动组件 4喷嘴组件 41喷嘴 411喷嘴内腔 412喷嘴固定环 42喷嘴螺母 L节流部的深度 d节流部的直径 A轴向 R径向
5壳体 51外壳 52内胆 53第一隔板 54第二隔板 54h通风孔 5a成型区 5b风力缓冲区 5c冷凝区 5d洁净风区 5dh1洁净风区进风口 5dh2洁净风 区出风口 5h1冷凝水出口 5h2线缆接口 6风机 6h1风机进风口 6h2风机出风口 7制冷器 71制冷器本体单元 S1第一流道部分 S2第二流道部分 8滤芯
具体实施方式
以下将结合说明书附图详细说明本发明的具体实施方式。将首先结合附图说明根据本发明的一实施方式的压电喷头的结构。
(根据本发明的一实施方式的压电喷头的结构)
需要说明的是,在本发明中,如无其它说明,“轴向”是指根据本发明的压电喷头的喷头内腔的轴向(图1、图3和图4中的上下方向),“径向”是指根据本发明的压电喷头的喷头内腔的径向(图1、图3和图4中的左右方向)。
如图1至图4所示,根据本发明的一实施方式的用于3D打印机的压电喷头包括组装在一起的喷头主体1、喷头压盖2、压电驱动组件3和喷嘴组件4。
在本实施方式中,喷头主体1具有大致圆台形状并且喷头主体1的内部形成有喷头内腔11,喷头内腔11形成为径向尺寸渐缩的圆台形状。这样,具有圆台形状的喷头内腔11能够有效提高压电喷头对大粘度液体打印材料的喷射能力,更好地控制喷头内腔11中流体的流向,最大程度地减小压力损失并且使所有液体打印材料都朝向喷嘴组件4处聚集。喷头内腔11的沿着其轴向A截取的包括中心轴线的截面的收敛角α在60度至90度之间,也就是说如图3所示,形成喷头内腔11的侧壁12的延长线所形成的夹角α在60度至90度之间。
进一步地,喷头主体1的大径端部1a(图1中的上端部)用于固定安装喷头压盖2,并且喷头主体1的大径端部1a的端面形成有多个供螺钉插入的螺孔。喷头主体1的大径端部1a还形成有用于安装喷头压盖2的凸缘部21和压电驱动组件3的安装台阶部1c。喷头主体1的小径端部1b(图1中的下端部)形成有用于安装喷嘴组件4的安装凹部1d,喷头主体1的用于形成安装凹部1d的部分形成有内螺纹。
另外,喷头主体1的侧壁12形成有贯通该侧壁12的进料孔13,经由该进料孔13能够实时地向喷头内腔11中补充液体打印材料,以保证喷头内腔11中无气泡产生,进而保证压电喷头的压电喷射产生连续的微液滴。进料孔13包括从径向外侧朝向径向内侧顺次连通的大径部13a、过渡部13c和节流部13b。大径部13a形成为圆柱形状并且大径部13a的直径大于节流部13b的直径。过渡部13c形成为圆台形状并且过渡部13c的直径从大径部13a朝向节流部13b逐渐减小。节流部13b形成为圆柱形状成并且节流部13b的直径在这三部分中最小。由于该节流部13b的直径(孔径)很小,因此在保证对喷头内腔11有效补充液体打 印材料的情况下,能够有效降低进料孔13对喷射压力的不利影响。
当节流部13b的沿着径向R的深度为L且节流部13b的直径为d时,优选地,节流部13b的径深比d/L在1/6至1/3之间。在经由进料孔13进行进料和补料作业时,液体打印材料首先流经大径部13a和过渡部13c,然后通过节流部13b流入到喷头内腔11中,这样在压电驱动组件3的压电驱动膜片变形使得喷头内腔11内产生正向喷射压力时,可以有效地降低压力在进料孔13处的损失,从而使得压力更完整地传递到喷嘴组件4。
在本实施方式中,喷头压盖2形成为圆环形状并且喷头压盖2形成有与喷头主体1的螺孔对应的螺孔。通过插入喷头主体1的螺孔和喷头压盖2的螺孔的螺钉,喷头压盖2固定安装于喷头主体1的大径端部1a。喷头压盖2的内侧缘形成有朝向喷头主体1凸出的凸缘部21,在喷头压盖2固定安装于喷头主体1的情况下,该凸缘部21压抵于喷头主体1的大径端部1a的安装台阶部1c。
在本实施方式中,压电驱动组件3包括压电驱动膜片,压电驱动组件3介于喷头压盖2与喷头主体1之间,使得压电驱动组件3以在喷头主体1的大径端部1a处密封喷头内腔11的方式安装于大径端部1a,从而保证不会漏压。压电驱动组件3还优选包括密封圈(未示出),该密封圈压抵于压电驱动膜片以进一步确保上述密封效果。
进一步地,压电驱动膜片采用单层或双层压电陶瓷与单层金属膜片复合而成。压电陶瓷是一种可以在电能和机械能之间相互转化的功能性材料,将机械能输入转化为电能输出称之为正压电效应,反之则称为逆压电效应,压电喷射就是利用了其逆压电效应。应用到压电喷射的压电陶瓷材料多为膜片状,当压电驱动膜片被特定波形的电信号驱动时就会产生特定方向的形变,把压电陶瓷复合到一层金属膜片上封装成压电驱动膜片,利用金属膜片把压电驱动膜片的形变量放大,可以提高压电驱动膜片的形变量,从而提高压电喷头的喷射能力。通过将压电驱动膜片安装到喷头主体1使得喷头内腔11形成相对封闭的腔体,利用压电驱动膜片的形变在喷头内腔11内形成周期性压力变化,从而推动喷头内腔11内的液体打印材料产生周期性液滴微球。
在压电驱动膜片为圆形压电片的情况下,在尺寸方面,喷头内腔11的从圆形压电片到喷嘴组件4的在轴向A上的距离与圆形压电片的直径的比为1/2至1,这样能够有利地缩短压力波的传导距离;并且喷嘴组件4的在轴向A上的长度与喷头内腔11的从圆形压电片到喷嘴组件4的在轴向A上的距离之和优选不超过圆形压电片的直径,而且喷嘴组件4的在轴向A上的长度与喷头内腔11的从圆形压电片到喷嘴组件4的在轴向A上的距离之和在合理的范围内越短越好,这样同样能够有利地缩短压力波的传导距离。
在本实施方式中,喷嘴组件4固定安装于喷头主体1的小径端部1b的安装凹部1d。喷嘴组件4包括喷嘴41和喷嘴螺母42。
喷嘴41由玻璃材质制成,并且喷嘴41的内表面经过疏水处理,以便最大程度的减小液体打印材料的流阻。喷嘴41的内部形成沿着轴向A贯通喷嘴41的所谓的流线型的喷嘴内腔411。喷嘴41部分置于喷头主体1的小径端部1b的安装凹部1d且喷嘴41的喷嘴内腔411与喷头内腔11连通。由于该喷嘴内腔411所形成的流道具有流线型,使得能够最大程度地减小对液体打印材料的流阻。优选地,在本实施方式中,喷嘴41具有用于形成该喷嘴内腔411的内侧壁面,上述流线型的结构设计使得该内侧壁面的靠近喷嘴41的喷出口的一部分的形状以曲面的形式连续而平滑地变化而不存在形状突变(例如台阶),从而使得喷嘴41的对应部分的横截面的面积逐渐减小。进一步地,喷嘴41形成有朝向喷嘴41的径向外侧凸出的喷嘴固定环412,该喷嘴固定环412用于供喷嘴螺母42压抵。需要说明的是,该喷嘴固定环412也可以是单独的组件。
喷嘴螺母42套设于喷嘴41并且喷嘴螺母42形成有与安装凹部1d的内螺纹配合的外螺纹。通过螺纹配合,喷嘴螺母42能够安装于喷头主体1的小径端部1b的安装凹部1d并且压抵喷嘴固定环412,使得喷嘴固定环412被牢固地夹持在喷嘴螺母42和喷头主体1之间,从而喷嘴41相对于喷头主体1固定并且密封喷头主体1的小径端部1b,喷头内腔11中的液体打印材料仅能够经由喷嘴内腔411喷射出。通过该喷嘴螺母42能够实现喷嘴41的快速更换。
以上详细说明了根据本发明的一实施方式的压电喷头的结构,以下将说明该压电喷头的工作方法。
(根据本发明的一实施方式的压电喷头的工作方法)
具体地,在开启3D打印机的电源使得图1至图4所示的压电喷头处于待工作状态的情况下,该压电喷头的工作方法包括如下步骤:
S1.通过进料孔13向喷头主体1的内部的喷头内腔11中注入液体打印材料;
S2.待喷头内腔11中注满液体打印材料后,向压电驱动组件3施加电信号;
S3.在电信号的驱动下,压电驱动组件3正向变形产生正向喷射压力(沿着轴向A朝向图1中下方的压力),喷射压力推挤喷头内腔11中的液体打印材料向下流动并突出喷嘴41的末端;
S4.在电信号的驱动下,压电驱动组件3回缩,喷头内腔11中的压力下降并使得液体打印材料向上流动,在压降和液体打印材料表面张力的作用下迫使步骤S3中突出喷嘴41的末端的液体打印材料产生颈缩并断裂形成椭球形液滴;
S5.步骤S4中得到的椭球形液滴向下飞行,随着椭球形液滴继续飞行,在表面张力的作用下最终形成球形微液滴,最终落在打印平台上;以及
S6.重复步骤S1到S5,直至打印作业完成。
在以上的工作方法中,一个微液滴的产生过程就是喷头内腔11的内部压力在极短时间内由小变大再变小的过程。当喷头内腔11内的压力在由小变大的过程中,喷头内腔11内的液体打印材料被推挤并向喷嘴41处流动,压力达到最大值时,液体打印材料在喷嘴41的末端突出一定体积的液体打印材料,这部分液体打印材料具备一定的初速度并且与压力方向保持一致;当喷头内腔11内的压力由大减小的过程中,突出喷嘴41的末端的液体打印材料开始产生颈缩,颈缩使得该部分液体打印材料与喷头内腔11内的液体打印材料产生分离,分离后的液体打印材料在表面张力的作用下聚集成微液滴小球并以前一个过程中获得的初速度继续向前喷射。
图5示出了向压电驱动组件3施加的电信号的电压v随时间t变化的波形。如图5所示,在所述步骤S2中,向压电驱动组件3施加的电信号的波形为梯形波。图示梯形波需要设置的参数为幅值、脉宽、频率甚至是波形上升时间t s和下降时间t d,通过合理选择以上参数的参数值即可以完成对不同粘度生物材料进行不同频率的点阵喷射或连续堆积喷射。而且上述电信号的波形还可以是矩形。
需要说明的是,根据本发明的压电喷头的喷射频率的下限可达1Hz,在该频率下依然能够实现按需式喷射,而且压电喷头的驱动能力不受喷头温度变化的影响。
以上详细说明了根据本发明的一实施方式的压电喷头的结构及其工作方法,以下将说明3D打印机的成型室。
(根据本发明的3D打印机的成型室)
根据本发明的3D打印机包括成型室。如图6至图9所示,成型室包括壳体5和设置于壳体5内的风机6、制冷器7和滤芯8,使得该成型室将温度控制功能和洁净度控制功能集成为一个整体,并且克服了二者共存时可能产生的相互干扰的问题的同时还解决了成型室容易积存冷凝水的问题。
具体地,在本实施方式中,壳体5包括外壳51、内胆52和两个隔板53、54,使得壳体5的内部被分隔成彼此连通的成型区5a、风力缓冲区5b、冷凝区5c和洁净风区5d。该风力缓冲区5b、冷凝区5c和洁净风区5d形成循环风道结构,从而使得来自成型区5a的空气流经风力缓冲区5b进入冷凝区5c被制冷再进入洁净风区5d被清洁之后流回成型区5a。
更具体地,在该成型室在工作时,风机6可以将成型区5a的空气经由风力缓冲区5b抽 吸到冷凝区5c,空气中的水蒸气在冷凝区5c被冷凝液化,经过冷凝后的空气从冷凝区5c进入到洁净风区5d,过滤一定粒度直径的灰尘和细菌,最后洁净后的空气从洁净风区5d回到内胆52内部的成型区5a,完成循环。在这过程中,在冷凝区5c液化的冷凝水被集中在冷凝区5c的底部,然后通过冷凝水出口5h1排出,从而避免冷凝水凝聚在成型室壁面后下落造成电气元件短路或腐蚀壳体5的情况。另外,如果冷凝水直接通过冷凝水出口5h1排到外界环境中会浪费能量,因此,可以使冷凝水出口5h1连接管路,利用管路接入散热系统冷却液水箱中,用于降低冷却液的温度,实现冷凝水的再利用。
外壳51和内胆52均具有大致长方体形状(例如立方体形状),内胆52收纳在外壳51的内部。内胆52的内部形成为用于进行3D打印的成型区5a,外壳51的前侧面和内胆52的前侧面形成有使得该成型区5a与外部直接连通的开放口,以保证打印前进行微调和打印后取出打印的生物工程。内胆52的顶面与外壳51之间形成洁净风区5d,该洁净风区5d与位于其下方的成型区5a和冷凝区5c连通。进一步地,内胆52的后侧面与外壳51之间形成后部空间并且在后部空间中设置第一隔板53和第二隔板54,该第一隔板53和第二隔板54将该后部空间分隔成用于安装风机6的安装区、风力缓冲区5b和冷凝区5c。具体地,第一隔板53将该后部空间分隔成上部空间和下部空间,第二隔板54将上部空间分隔成彼此连通的风力缓冲区5b和冷凝区5c,下部空间则用作安装空间。风机6的风机进风口6h1与成型区5a连通且风机6的风机出风口6h2与风力缓冲区5b连通。这样,能够实现被风机6抽吸的来自成型区5a的空气顺次流过风力缓冲区5b和冷凝区5c。第一隔板53和第二隔板54的结构将在以下的内容中详细说明。
在本实施方式中,风机6位于后部空间的底部并设置在上述安装区中。风机6的风机进风口6h1形成于内胆52的后侧面的底部并且与成型区5a连通,使得风机6能够抽吸成型区5a的空气。风机6的风机出风口6h2形成于第一隔板53且位于风机6的顶部,该风机出风口6h2与风力缓冲区5b连通,使得风机6能够将抽吸到的空气送入风力缓冲区5b。
在本实施方式中,制冷器7设置于冷凝区5c内并且固定于第一隔板53和第二隔板54。制冷器7包括多组并列设置的制冷器本体单元71,以增加接触面积,提高空气与制冷器7的热交换效率。各制冷器本体单元71设置有半导体制冷片,半导体制冷片的冷端涂抹导热硅脂并贴附于制冷器本体单元71的侧表面上。半导体制冷片给制冷器7提供冷源,制冷器7表面积较大,有助于空气在此发生热交换。
进一步地,制冷器7和第一隔板53的一部分形成有用于使得冷凝水朝向冷凝区5c的底部流动的流道,流道的延伸方向相对于水平方向形成预定的夹角β。该夹角β的选择以保 证冷凝水在自然状态下获得最大的滑落速度的数值,同时夹角β不至于引起内循环风力过大风阻为准,因此该夹角β的范围优选为5度至60度。这样,就可以避免冷凝水长期积聚在制冷器7表面发生霜化并结冰,结冰后的制冷器7的表面热交换系数将受到严重影响而引起成型室温度上升或跳变。流道包括分别形成于制冷器本体单元71的第一流道部分S1以及形成于第一隔板53的一部分的第二流道部分S2,该第二流道部分S2对应所有的第一流道部分S1并被所有第一流道部分S1共用,使得来自各第一流道部分S1的冷凝水均流到第二流道部分S2。壳体5在冷凝区5c的底部形成有使得冷凝区5c与外部连通的冷凝水出口5h1,第二流道部分S2的最低端与形成于壳体5的冷凝水出口5h1相对,使得汇聚在第二流道部分S2的冷凝水能够从该冷凝水出口5h1流到外部。
风力缓冲区5b与冷凝区5c之间的第二隔板54的延伸方向优选与流道的延伸方向正交,该第二隔板54位于制冷器7中形成的第一流道部分S1的较高的一端侧并且形成有多个优选均匀分布的通风孔54h。风力缓冲区5b从各第一流道部分S1的较高的一端侧与各流道连通。由于风机6吹出的风为柱状,无法完全覆盖制冷器7的表面,因此风机6的风机出风口6h2和冷凝区5c之间设置了风力缓冲区5b,风力缓冲区5b与冷凝区5c之间的第二隔板54的延伸方向与流道的延伸方向正交,使得整个风力缓冲区5b呈倒梯形构造。第二隔板54设置了均匀分布的通风孔54h,通风孔54h的阵列大致布满整个隔板,风机6把从成型区5a抽吸的空气竖直向上吹入风力缓冲区5b并在风力缓冲区5b积聚产生风压,之后在风压的作用下沿水平方向向第二隔板54流动并通过第二隔板54上的通风孔54h,由此,柱状风被转化为覆盖制冷器7的所有制冷器本体单元71。
在本实施方式中,洁净风区5d位于成型区5a、风力缓冲区5b和冷凝区5c的上方,滤芯8设置于洁净风区5d内并且优选位于使洁净风区5d与成型区5a连通的洁净风区出风口5dh2处。滤芯8可以过滤一定粒度直径的灰尘和细菌,以保证成型室的内胆52内部环境的洁净度。
由于外壳51的前侧面和内胆52的前侧面设有开放口,外界细菌灰尘容易进入成型区5a,因此该洁净风区出风口5dh2的横向尺寸不小于开放口的横向尺寸,并使洁净风区5d中的风可沿着洁净风区出风口5dh2竖直向下推送。这样,当循环风道结构工作时,可在开放口处形成风幕,防止外界细菌和灰尘进入成型区5a中,同时风幕还可降低成型室与外界发生的热交换。优选地,滤芯8设在内胆52顶部靠近开放口的位置,可以通过滤芯8保证洁净风区5d中的风沿着洁净风区出风口5dh2竖直向下,保证风幕的有效性,即该风幕的横截面尺寸与洁净风区出风口5dh2处的滤芯8的尺寸一致,也就是说滤芯8底面所覆 盖的区域下方均产生有风幕。另外,使洁净风区5d与冷凝区5c连通的洁净风区进风口5dh1则设置于冷凝区5c的正上方。
进一步地,成型室包括部分包围成型区5a的保温层以及设置于成型区5a的杀菌装置。该保温层优选为保温棉形成,以减少成型区5a与外界环境的热交换;紫外杀菌灯可以进行内胆52内部灭菌处理,进一步的保证成型区5a内部环境的洁净度。
另外,壳体5上还设置有贯通该壳体5的外壳51和内胆52的线缆接口5h2,线缆接口5h2用于保证成型区5a中的运动平台与成型室的外部的其它装置之间的通讯的缆线的顺利安装。
与现有技术相比,本发明的3D打印机的成型室具有如下有益效果:
i.将设有制冷器7的冷凝区5c设置在成型区5a之外相对独立的空间,冷凝区5c作为冷凝水主要形成区被隔离且设计了便于排出冷凝水的第一流道部分S1和第二流道部分S2。将成型区5a中的湿气汇集在此进行冷凝并利用风力内循环及时吹离制冷器7,避免冷凝水冻结,制冷器7的表面无结冰现象从而使得制冷器7的热交换效率不会下降,内胆52无冷凝水积聚和滴落现象。
ii.在冷凝区5c的底部设置了冷凝水出口5h1,冷凝水可以被收集利用,不存在制冷器7的制冷量由于外排冷凝水而浪费的现象,重新利用的冷凝水又可以降低冷却水箱中冷却液的温度。
iii.设置了风力缓冲区5b,风力缓冲区5b将风机6的风机出风口6h2吹出的柱状风转化为覆盖所有制冷器本体单元71,制冷器7表面风量均匀,强制对流覆盖区域广泛,无强制对流盲区以及自然对流区,制冷器7的热交换效率高。
iv.洁净风区5d的洁净风区出风口5dh2的横向尺寸不小于成型区5a的开放口的横向尺寸,且风可沿着洁净风区出风口5dh2竖直向下推送形成风幕,阻挡外界灰尘微生物进入并防止内外产生热交换,维持成型区5a的内部空间温度不变。
v.在洁净风区5d的洁净风区出风口5dh2设置滤芯8,在成型区5a设置紫外杀菌灯,可以保证成型区5a处于无菌无尘环境,避免待成型的例如血管等的生物工程受到成型室内部封闭环境的污染。
vi.采用半导体制冷片作为制冷器7的冷源,制冷高效,温度恒定,并在外壳51和内胆52之间填充由保温棉形成的保温层,使得成型室内胆52内部的成型区5a的温度可控且一致性好。
以上详细说明了根据本发明的一实施方式的压电喷头的结构及其工作方法并且还 详细说明了根据本发明的3D打印机的成型室,以下将说明3D打印机。
(根据本发明的3D打印机的成型室)
根据本发明的3D打印机优选为用于对例如血管等的生物工程进行3D打印的生物3D打印机。该生物3D打印机包括具有如上结构的压电喷头和/或成型室,压电喷头设置于成型室的成型区5a中以进行作业。

Claims (27)

  1. 一种3D打印机的压电喷头,所述压电喷头包括:
    喷头主体(1),所述喷头主体(1)的内部形成有喷头内腔(11),所述喷头内腔(11)形成为圆台形状,并且所述喷头主体(1)的侧壁(12)形成有贯通该侧壁(12)的进料孔(13),所述进料孔(13)的靠近所述喷头内腔(11)的部分形成为直径小于所述进料孔(13)的其余部分的直径的节流部(13b);
    压电驱动组件(3),所述压电驱动组件(3)安装于所述大径端部(1a);以及
    喷嘴组件(4),所述喷嘴组件(4)固定安装于所述喷头主体(1)的小径端部(1b)。
  2. 根据权利要求1所述的3D打印机的压电喷头,其特征在于,所述压电喷头还包括喷头压盖(2),所述喷头压盖(2)固定安装于所述喷头主体(1)的大径端部(1a),并且所述压电驱动组件(3)介于所述喷头压盖(2)与所述喷头主体(1)之间。
  3. 根据权利要求1或2所述的3D打印机的压电喷头,其特征在于,所述压电驱动组件(3)包括压电驱动膜片,所述压电驱动膜片采用单层或双层压电陶瓷与单层金属膜片复合而成。
  4. 根据权利要求3所述的3D打印机的压电喷头,其特征在于,所述压电驱动组件(3)还包括密封圈,所述密封圈压抵于所述压电驱动膜片,以密封所述喷头内腔(11)。
  5. 根据权利要求1至4中任一项所述的3D打印机的压电喷头,其特征在于,所述喷嘴组件(4)包括:
    喷嘴(41),所述喷嘴(41)的喷嘴内腔(411)与所述喷头内腔(11)连通,所述喷嘴(41)具有用于形成该喷嘴内腔(411)的内侧壁面,该内侧壁面的靠近所述喷嘴(41)的喷出口的一部分的形状以曲面的形式连续而平滑地变化,使得所述喷嘴(41)的对应部分的横截面的面积朝向所述喷出口逐渐减小;以及
    喷嘴螺母(42),所述喷嘴螺母(42)通过螺纹配合以能够拆卸的方式安装于所述喷头主体(1)的小径端部(1b),以压抵所述喷嘴(41)从而使得所述喷嘴(41)相对于所述喷头主体(1)固定,并且所述喷头内腔(11)中的液体打印材料仅能够经由所述喷嘴内腔(411)喷出。
  6. 根据权利要求5所述的3D打印机的压电喷头,其特征在于,所述喷嘴(41)形成有朝向所述喷嘴(41)的径向外侧凸出的喷嘴固定环(412),所述喷嘴螺母(42)压抵于所述喷嘴固定环(412)。
  7. 根据权利要求5或6所述的3D打印机的压电喷头,其特征在于,所述喷嘴(41)由玻璃材质制成,并且所述喷嘴(41)的内表面经过疏水处理。
  8. 根据权利要求1至7中任一项所述的3D打印机的压电喷头,其特征在于,所述喷头内腔(11)的沿着其轴向(A)截取的包括中心轴线的截面的收敛角(α)在60度至90度之间。
  9. 根据权利要求1至8中任一项所述的3D打印机的压电喷头,其特征在于,当所述节流部(13b)的深度为L且所述节流部(13b)的直径为d时,所述节流部(13b)的径深比d/L在1/6至1/3之间。
  10. 根据权利要求3至9中任一项所述的3D打印机的压电喷头,其特征在于,所述压电驱动膜片为圆形压电片,
    所述喷头内腔(11)的从所述圆形压电片到所述喷嘴组件(4)的在轴向(A)上的距离与所述圆形压电片的直径的比为1/2至1;和/或
    所述喷嘴组件(4)的在轴向(A)上的长度与所述喷头内腔(11)的从所述圆形压电片到所述喷嘴组件(4)的在轴向(A)上的距离之和不超过所述圆形压电片的直径。
  11. 一种权利要求1至10中任一项所述的3D打印机的压电喷头的工作方法,所述工作方法包括如下步骤:
    通过所述进料孔(13)向所述喷头主体(1)的喷头内腔(11)注入液体打印材料;
    在所述喷头内腔(11)中充满所述液体打印材料之后向所述压电驱动组件(3)施加电信号;
    在所述电信号的驱动下,所述压电驱动组件(3)变形产生喷射压力,该喷射压力推动所述喷头内腔(11)中的所述液体打印材料朝向所述喷嘴组件(4)流动并且从所述喷嘴组件(4)突出;
    在所述电信号的驱动下,所述压电驱动组件(3)回缩,所述喷头内腔(11)中的压力下降以使得所述液体打印材料远离所述喷嘴组件(4)流动,从而使得突出所述喷嘴组件(4)的所述液体打印材料断裂形成液滴;
    使所述液滴落在打印平台的预定位置;以及
    重复以上步骤直至打印作业完成。
  12. 根据权利要求11所述的工作方法,其特征在于,所述电信号的波形为梯形或矩形。
  13. 一种3D打印机,所述3D打印机包括权利要求1至10中任一项所述的3D打印机的压电喷头。
  14. 根据权利要求13所述的3D打印机,其特征在于,所述3D打印机还包括成型室,所述成型室包括壳体(5)和风机(6),
    所述壳体(5)的内部形成彼此连通的成型区(5a)、冷凝区(5c)和洁净风区(5d),使得通过所述风机(6)从所述成型区(5a)抽吸的空气流经所述冷凝区(5c)被制冷且流经所述洁净风区(5d)被清洁之后流回所述成型区(5a),并且
    所述压电喷头设置于所述成型区(5a)内。
  15. 根据权利要求14所述的3D打印机,其特征在于,所述壳体(5)包括外壳(51)和设置于所述外壳(51)的内部的内胆(52),所述内胆(52)的内部空间形成为所述成型区(5a)并且所述冷凝区(5c)和所述洁净风区(5d)形成于所述内胆(52)与所述外壳(51)之间的空间。
  16. 根据权利要求15所述的3D打印机,其特征在于,所述洁净风区(5d)形成于所述内胆(52)的顶面与所述外壳(51)之间的空间,所述冷凝区(5c)形成于所述内胆(52)的侧面与所述外壳(51)之间的空间,使得所述洁净风区(5d)位于所述冷凝区(5c)和所述成型区(5a)的上方。
  17. 根据权利要求14至16中任一项所述的3D打印机,其特征在于,所述壳体(5)在所述冷凝区(5c)的底部形成有使得所述冷凝区(5c)与外部连通的冷凝水出口(5h1)。
  18. 根据权利要求14至17中任一项所述的3D打印机,其特征在于,所述成型室还包括设置于所述冷凝区(5c)内的制冷器(7),所述制冷器(7)和/或所述壳体(5)形成有用于使得冷凝水朝向所述冷凝区(5c)的底部流动的流道,所述流道的延伸方向相对于所述水平方向形成预定的夹角(β)。
  19. 根据权利要求18所述的3D打印机,其特征在于,所述制冷器(7)包括多组并列设置的制冷器本体单元(71),各制冷器本体单元(71)设置有半导体制冷片,所述半导体制冷片的冷端涂抹导热硅脂并贴附于所述制冷器本体单元(71)。
  20. 根据权利要求19所述的3D打印机,其特征在于,所述流道包括分别设置于所述制冷器本体单元(71)的第一流道部分(S1)以及设置于所述壳体(5)且对应所述第一流道部分(S1)的共用的第二流道部分(S2),使得来自各所述第一流道部分(S1)的冷凝水均流到所述第二流道部分(S2),所述第二流道部分(S2)的最低端与冷凝水出口(5h1)相对。
  21. 根据权利要求18至20中任一项所述的3D打印机,其特征在于,所述夹角(β)的范围为5度至60度。
  22. 根据权利要求14至21中任一项所述的3D打印机,其特征在于,所述壳体(5)的内部还形成有风力缓冲区(5b),通过所述风机(6)从所述成型区(5a)抽吸的空气先 流经所述风力缓冲区(5b)再流经所述冷凝区(5c)和所述洁净风区(5d)。
  23. 根据权利要求22所述的3D打印机,其特征在于,所述风力缓冲区(5b)形成于所述壳体(5)的内胆(52)的侧面与所述壳体(5)的外壳(51)之间的空间,并且
    所述壳体(5)包括设置于所述风力缓冲区(5b)与所述冷凝区(5c)之间且与所述流道的延伸方向正交的隔板(54),所述隔板(54)形成有使所述风力缓冲区(5b)与所述流道连通的多个通风孔(54h)。
  24. 根据权利要求14至23中任一项所述的3D打印机,其特征在于,所述成型室包括设置于使所述洁净风区(5d)与所述成型区(5a)连通的洁净风区出风口(5dh2)处的滤芯(8)。
  25. 根据权利要求15至24中任一项所述的3D打印机,其特征在于,所述外壳(51)的侧面和所述内胆(52)的侧面均形成有使所述成型区(5a)与外部直接连通的开放口,使所述洁净风区(5d)与所述成型区(5a)连通的洁净风区出风口(5dh2)的横向尺寸不小于所述开放口的横向尺寸。
  26. 根据权利要求15至25中任一项所述的3D打印机,其特征在于,所述成型室还包括部分包围所述成型区(5a)的保温层以及设置于所述成型区(5a)的杀菌装置,所述保温层设置于所述外壳(51)和所述内胆(52)之间。
  27. 根据权利要求13至26中任一项所述的3D打印机,其特征在于,所述3D打印机为用于对生物工程进行3D打印的生物3D打印机。
PCT/CN2019/072931 2018-01-25 2019-01-24 3d打印机的压电喷头及其工作方法以及3d打印机 WO2019144896A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201810074482.3A CN108312525A (zh) 2018-01-25 2018-01-25 一种生物3d打印机的压电喷头及其工作方法
CN201810074482.3 2018-01-25
CN201810877875.8 2018-08-03
CN201810877875.8A CN108819255B (zh) 2018-08-03 2018-08-03 一种具有循环风道结构的3d打印机成型室

Publications (1)

Publication Number Publication Date
WO2019144896A1 true WO2019144896A1 (zh) 2019-08-01

Family

ID=67394854

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/072931 WO2019144896A1 (zh) 2018-01-25 2019-01-24 3d打印机的压电喷头及其工作方法以及3d打印机

Country Status (1)

Country Link
WO (1) WO2019144896A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220184894A1 (en) * 2019-12-31 2022-06-16 3Dmaterials Co., Ltd. Continuous production-type 3d printing method
CN115014594A (zh) * 2022-06-16 2022-09-06 东华大学 一种压阻传感器及其制备方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020111707A1 (en) * 2000-12-20 2002-08-15 Zhimin Li Droplet deposition method for rapid formation of 3-D objects from non-cross-linking reactive polymers
CN106584854A (zh) * 2017-01-16 2017-04-26 中国计量大学 超精密3d打印设备机罩
US20170128601A1 (en) * 2015-11-05 2017-05-11 Vitae Industries, Inc. Method and apparatus for sterilized 3d printing
CN107538743A (zh) * 2017-08-24 2018-01-05 江苏天泽教育咨询有限公司 一种3d打印机的外壳
CN108312525A (zh) * 2018-01-25 2018-07-24 广州迈普再生医学科技有限公司 一种生物3d打印机的压电喷头及其工作方法
CN108819255A (zh) * 2018-08-03 2018-11-16 广州迈普再生医学科技股份有限公司 一种具有循环风道结构的3d打印机成型室
CN208180265U (zh) * 2018-01-25 2018-12-04 广州迈普再生医学科技股份有限公司 一种生物3d打印机的压电喷头

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020111707A1 (en) * 2000-12-20 2002-08-15 Zhimin Li Droplet deposition method for rapid formation of 3-D objects from non-cross-linking reactive polymers
US20170128601A1 (en) * 2015-11-05 2017-05-11 Vitae Industries, Inc. Method and apparatus for sterilized 3d printing
CN106584854A (zh) * 2017-01-16 2017-04-26 中国计量大学 超精密3d打印设备机罩
CN107538743A (zh) * 2017-08-24 2018-01-05 江苏天泽教育咨询有限公司 一种3d打印机的外壳
CN108312525A (zh) * 2018-01-25 2018-07-24 广州迈普再生医学科技有限公司 一种生物3d打印机的压电喷头及其工作方法
CN208180265U (zh) * 2018-01-25 2018-12-04 广州迈普再生医学科技股份有限公司 一种生物3d打印机的压电喷头
CN108819255A (zh) * 2018-08-03 2018-11-16 广州迈普再生医学科技股份有限公司 一种具有循环风道结构的3d打印机成型室

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
WU SENYANG: "Research on the Piezoelectric printhead of forming with micro-droplet jetting", ENGINEERING TECHNOLOGY II, CHINA MASTER'S THESES, no. 52, 15 December 2013 (2013-12-15), pages 30 - 74, ISSN: 1674-0246 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220184894A1 (en) * 2019-12-31 2022-06-16 3Dmaterials Co., Ltd. Continuous production-type 3d printing method
CN115014594A (zh) * 2022-06-16 2022-09-06 东华大学 一种压阻传感器及其制备方法
CN115014594B (zh) * 2022-06-16 2023-10-20 东华大学 一种压阻传感器及其制备方法

Similar Documents

Publication Publication Date Title
WO2019144896A1 (zh) 3d打印机的压电喷头及其工作方法以及3d打印机
JP4370580B2 (ja) 家庭用噴射式超音波洗浄器。
US7357334B2 (en) Method and apparatus for separating a solution
US20090014556A1 (en) Mist-Spraying Electric Fan
RU2010113919A (ru) Холодильник
CN106196689A (zh) 喷淋式制冷装置及控制方法
CN110381700A (zh) 一种喷雾腔与蒸汽腔一体式相变冷却装置和系统
CN101274144B (zh) 液体蒸发装置
CN109041523A (zh) 基于超声雾化的合成双射流喷雾冷却装置
JP5517025B2 (ja) 溶液の超音波霧化機
CN106123405B (zh) 一种冰箱冷凝器散热系统
CN110394269A (zh) 聚焦超声雾化装置
CN108225050A (zh) 一种喷雾冷却超声空化强化传热的装置及方法
CN210399313U (zh) 一种空调
CN219670461U (zh) 一种白酒冷却应急装置
CN213931187U (zh) 一种空调器
CN208528314U (zh) 一种循环水冷式激光焊接机
CN109163582B (zh) 一种热交换器
CN201613038U (zh) 喷雾结晶器
CN213938720U (zh) 一种大功率电力电子器件蒸发冷却装置
CN109149326B (zh) 基于管状激光增益介质散热的喷雾冷却系统
CN211563476U (zh) 雾化装置及具有其的载具
CN103219637A (zh) 半导体侧泵激光器的冷却方法和冷却装置
CN208091263U (zh) 一种喷雾冷却超声空化强化传热的装置
CN218861037U (zh) 一种喷气织机摆动双色主喷嘴

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19743134

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19743134

Country of ref document: EP

Kind code of ref document: A1