WO2019144879A1 - 用于电动汽车的电动机驱动系统、加工方法、电动车和车辆外壳 - Google Patents

用于电动汽车的电动机驱动系统、加工方法、电动车和车辆外壳 Download PDF

Info

Publication number
WO2019144879A1
WO2019144879A1 PCT/CN2019/072807 CN2019072807W WO2019144879A1 WO 2019144879 A1 WO2019144879 A1 WO 2019144879A1 CN 2019072807 W CN2019072807 W CN 2019072807W WO 2019144879 A1 WO2019144879 A1 WO 2019144879A1
Authority
WO
WIPO (PCT)
Prior art keywords
drive motor
motor
sub
drive
driven vehicle
Prior art date
Application number
PCT/CN2019/072807
Other languages
English (en)
French (fr)
Inventor
王志林
Original Assignee
王志林
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 王志林 filed Critical 王志林
Priority to CN201980009633.XA priority Critical patent/CN111629925A/zh
Publication of WO2019144879A1 publication Critical patent/WO2019144879A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/32Control or regulation of multiple-unit electrically-propelled vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Definitions

  • the present application relates to the field of power equipment, and more particularly to drive systems, processing methods, and vehicle and vehicle housings.
  • the technical problem mainly solved by a technical solution provided by the present application includes providing a motor drive system for an electric vehicle, which is connected to a rectifier by diffusing a neutral point of a three-phase winding of the AC motor so as to flow through the three-phase winding.
  • the alternating current forms a direct current output to the direct current motor to form a synchronous drive between the direct current motor and the alternating current motor.
  • the high torque output characteristic of the direct current motor is utilized to improve the power utilization rate.
  • the first object of one of the solutions provided by the present application includes: driving the front and rear axles of the vehicle by setting AC drive motors and DC drive motors of different speeds, respectively, on the front and/or rear axles of the vehicle.
  • the maximum running speed of the car is greater than 100km/h.
  • the low speed of the DC motor at low voltage and high current is used.
  • the torque output characteristic obtains sufficient starting torque; after the vehicle is running at a high speed, the high-speed AC motor is used for high-speed output at a low current input, thereby effectively saving power.
  • the second object of one of the solutions provided by the present application includes: electrically connecting the AC drive motor and the DC drive motor of different characteristics into the electric vehicle in series, and the three-phase inside the AC drive motor when the vehicle is running at a high speed.
  • the output voltage of the winding is low and the current is large, and the DC motor can be driven at a minimum voltage of 5V, so that the high-speed vehicle can obtain sufficient driving force when inputting lower electric energy, so the vehicle is more Energy saving.
  • the third objective of a certain solution provided by the present application includes: by setting different speed motors, the automobile can automatically shift the output electric energy between the motors by changing the resistance when driving at different speeds, thereby realizing the transmission vehicle. Automatic shifting function.
  • one technical solution adopted by the present application is:
  • An electric motor drive system for an electric vehicle comprising: a battery, a controller, at least one AC sub-drive motor, at least one rectifier, and at least one DC sub-drive motor; the controller is connected to the battery to output an alternating current; the AC sub-drive At least three-phase windings are disposed in the motor, and a first end of each of the three-phase windings is connected to the controller, and a tail end of each phase winding of the three-phase winding is separated from each other; the rectifier includes a three-phase input port and a DC An output port; a tail end of each of the three-phase windings of the AC sub-drive motor is respectively connected to a three-phase input port of the rectifier, and a DC output port of the rectifier is electrically connected to the DC sub-drive motor.
  • the AC sub-drive motor and the DC sub-drive motor are respectively made to have different rated rotational speeds, and the electric energy output by the controller is freely proportioned according to the load on the AC sub-drive motor and the DC sub-drive motor. .
  • the AC sub-drive motor and the DC sub-drive motor are respectively connected to reducers of different speed ratios, and the electric energy output by the controller is freely matched according to the load on the AC sub-drive motor and the DC sub-drive motor. ratio.
  • the DC sub-drive motor is a brushed permanent magnet DC motor
  • the brushed permanent magnet DC motor comprises a stator, a rotor, a slip ring and a brush, a permanent magnet and a brush are arranged on the stator, and an armature winding is arranged on the rotor.
  • the direct current output of the rectifier enters the armature winding through the brush and the slip ring to generate the armature current, and the magnetic field generated by the armature current interacts with the stator permanent magnet to generate electromagnetic torque, so that the motor rotates to drive the load; or the stator
  • the armature winding is arranged, and a permanent magnet is arranged on the rotor; the first end of the armature winding is connected with the slip ring, and the tail ends of the armature winding are connected to form a loop.
  • the DC sub-drive motor is a series-excited motor.
  • the AC sub-drive motor is an AC asynchronous motor or an AC synchronous motor.
  • the AC sub-drive motor and the DC sub-drive motor are coaxially connected to drive the front axle or the rear axle of the automobile.
  • the AC sub-drive motor and the DC sub-drive motor are respectively connected to drive the front axle and the rear axle of the automobile.
  • an electric vehicle with a maximum traveling speed greater than 100 km/h is further included, the electric vehicle includes a front axle and a rear axle, and the front axle and/or the rear axle are provided with a reduction gearbox and a differential connected to each other.
  • the AC sub-drive motor and/or the DC sub-drive motor are connected to drive the reduction gear box, and the reduction ratio of the reduction gear box is 2.2-4.5.
  • an electric vehicle with a maximum traveling speed greater than 100 km/h includes a front axle and a rear axle, and the front axle and/or the rear axle are provided with a reduction gearbox and a differential connected to each other.
  • the AC sub-drive motor and/or the DC sub-drive motor are connected to drive the reduction gear box, and the reduction ratio of the reduction gear box is 2.8-3.8.
  • a three-phase diode rectifier bridge is disposed in the rectifier, and the three-phase diode rectifier bridge includes three electrically parallel single-phase diode rectifier circuits, and the tail ends of each of the three-phase windings are respectively electrically connected.
  • Single-phase diode rectifier circuit two ends of three single-phase diode rectifier circuits are respectively connected to two DC output ports of the rectifier, and the DC drive motor or/and the power storage device are connected to two DC output ports, three The two ends of the single-phase diode rectifier circuit are connected to form a loop, so that the DC output port becomes the neutral point required for the three-phase winding star connection.
  • DC drive motors including a first DC drive motor and a second DC drive motor electrically connected in series or in parallel with each other.
  • the AC sub-drive motor, the first DC sub-drive motor, and the second DC sub-drive motor are respectively made to have different rated rotational speeds, and the output power of the controller is driven by the AC sub-motor and the first DC
  • the load size on the split drive motor and the second DC split drive motor is freely proportioned.
  • the AC sub-drive motor, the first DC sub-drive motor, and the second DC sub-drive motor are respectively connected to reducers of different speed ratios, and the electric energy output by the controller drives the motor according to the AC minute, the first straight The load size on the fraction drive motor and the second DC drive motor is freely proportioned.
  • the first DC drive motor and the second DC drive motor are brushed permanent magnet DC motors or series excitation motors.
  • the first DC drive motor and the second DC drive motor are respectively a brushed permanent magnet DC motor and a series excitation motor
  • the brushed permanent magnet DC motor includes a stator, a rotor, a slip ring and a brush, and a permanent magnet is arranged on the stator.
  • the brush, the armature winding and the slip ring are arranged on the rotor, and the direct current outputted by the rectifier enters the armature winding through the brush and the slip ring to generate the armature current, and the magnetic field generated by the armature current interacts with the stator permanent magnet to generate the electromagnetic torque.
  • the motor is rotated to drive the load; the first end of the armature winding is connected to the slip ring, and the tail end of the armature winding is separated, and the series excitation motor is connected as the electric energy input of the series excitation motor, so that the AC sub-drive motor and the first DC sub-driver are driven.
  • the motor and the second DC drive motor are driven synchronously in series.
  • the AC sub-drive motor is an AC asynchronous motor or an AC synchronous motor.
  • DC drive motors including a first DC drive motor, a second DC drive motor, and a third DC drive motor electrically connected in series or in parallel with each other.
  • the AC sub-drive motor, the first DC sub-drive motor, the second DC sub-drive motor, and the third DC sub-drive motor are respectively made to have different rated rotational speeds, and the electrical energy output by the controller is based on the AC
  • the load size on the drive motor, the first DC split drive motor, the second DC split drive motor, and the third DC split drive motor are freely proportioned.
  • the AC sub-drive motor, the first DC sub-drive motor, the second DC sub-drive motor, and the third DC sub-drive motor are respectively connected to reducers of different speed ratios, and the output power of the controller is according to the AC The load size on the split drive motor, the first DC split drive motor, the second DC split drive motor, and the third DC split drive motor are freely proportioned.
  • the first DC split drive motor, the second DC split drive motor, and the third DC split drive motor are brushed permanent magnet DC motors or series excitation motors.
  • the AC sub-drive motor is an AC asynchronous motor or an AC synchronous motor.
  • DC drive motors including a first DC drive motor, a second DC drive motor, a third DC drive motor, and a fourth DC drive motor electrically connected in series with each other.
  • the AC sub-drive motor and the first DC sub-drive motor are coaxially connected to drive the front axle of the automobile, and the second DC sub-drive motor, the third DC sub-drive motor, and the fourth DC sub-drive motor are coaxially connected and driven.
  • the rear axle of the car is coaxially connected to drive the front axle of the automobile.
  • an electric vehicle with a maximum traveling speed greater than 100 km/h includes a front axle and a rear axle, and the front axle and/or the rear axle are provided with a reduction gearbox and a differential connected to each other.
  • the AC sub-drive motor and the first DC sub-drive motor are coaxially connected to drive the reduction gear box, and the reduction ratio of the reduction gear box is 2.2-4.5.
  • an electric vehicle with a maximum traveling speed greater than 100 km/h includes a front axle and a rear axle, and the front axle and/or the rear axle are provided with a reduction gearbox and a differential connected to each other.
  • the AC sub-drive motor and the first DC sub-drive motor are coaxially connected to drive the reduction gear box, and the reduction ratio of the reduction gear box is 2.5-3.7.
  • the AC sub-drive motor is provided with two, including a first AC sub-drive motor and a second AC sub-drive motor electrically connected in series, and the tail end of each phase winding in the first AC sub-drive motor is directly A first end of each phase winding in the second AC sub-drive motor is connected, and a tail end of each phase winding in the second AC sub-drive motor is connected to the three-phase input port of the rectifier.
  • the first AC sub-drive motor and the second AC sub-drive motor are coaxially connected in series.
  • the first AC sub-drive motor and the second AC sub-drive motor are AC asynchronous motors or AC synchronous motors.
  • the driving voltage of the DC sub-driving motor during operation is not less than 5V. Further, the driving voltage of the DC sub-driving motor during operation is 5-96V.
  • the advantages of the present application include: different speeds of the axles are realized by setting motors with different rated speeds and gearboxes with different output speeds; by connecting the ends of the three-phase windings of the AC sub-motors in series The DC sub-drive motor is arranged, so that the input electric energy can simultaneously drive the AC sub-drive motor and the DC sub-drive motor to realize the auxiliary drive of the DC sub-drive motor;
  • the DC motor can be used to provide a large torque output when the vehicle starts, achieving a fast start.
  • the AC sub-drive motor consumes less driven vehicles and reduces driving power consumption;
  • the car can automatically transfer the output electric energy between the DC drive motors by changing the resistance when driving at different speeds, so as to realize the automatic shifting function of the transmission vehicle.
  • An embodiment of the present application provides a driving system for driving an electric motor vehicle.
  • the system mainly aims to achieve the following technical effects by dispersing the neutral point of the three-phase winding of the AC sub-drive motor and dispersing the
  • the tail end of each winding is connected to the input end of the rectifier, so that the alternating current flowing through the three-phase winding forms a direct current in the rectifier and is output to the DC sub-drive motor, thereby forming a synchronization between the DC sub-drive motor and the AC sub-drive motor.
  • Drive, and the AC drive motor and the DC drive motor are connected to the same drive object (like a vehicle).
  • the system is arranged such that in the AC-DC conversion process, that is, the high-torque output characteristic of the DC-driven motor is utilized, and the high-speed characteristic of the AC-splitting motor is utilized, so that the driving object uses DC at a low speed.
  • the sub-driver motor provides a higher percentage of power, and the use of AC sub-drive motors at higher speeds provides a higher percentage of power and improves power utilization.
  • the driving system provided by the embodiment of the present application includes: an AC motor group, a rectifying component, and a DC motor group; the AC motor group includes at least one AC sub-drive motor; and the DC motor group includes at least one DC sub-driving motor;
  • the rectifier assembly includes at least one rectifier; at least one AC drive motor, at least one rectifier, and at least one DC drive motor are sequentially connected to form a drive line; the rectifier includes a multi-phase input terminal, a DC output terminal, and a DC input terminal.
  • the AC drive motor has at least a multi-phase winding, and the first end of each phase winding of the multi-phase winding is configured to be connected with the power input end; the target DC drive motor is electrically connected to the DC output end of the target rectifier and the DC Between the input terminals; the end of each phase winding of the target AC drive motor is connected to the multi-phase input port of the target rectifier; the target AC drive motor, the target rectifier and the target DC drive motor are all driven by the same drive. line. Furthermore, when the system is in operation, when the vehicle is at different speeds, the system can adaptively shift the current between the DC drive motor and the AC drive motor, thereby utilizing the characteristics of the AC motor and the DC motor. In turn, energy is effectively saved.
  • the target DC drive motor is one of the DC drive motors
  • the target AC drive motor is one of the AC drive motors
  • FIG. 1 is a schematic structural view of a motor drive system for an electric vehicle connected to a single DC drive motor according to the present application;
  • FIG. 2 is a schematic structural view of a motor drive system connecting capacitor group and a single DC sub-drive motor for an electric vehicle according to the present application;
  • FIG. 3 is a schematic view showing the structure of a loading application of the front and rear axle differentials of the embodiment of FIG. 1;
  • FIG. 4 is a schematic view showing the application structure of the front and rear axle differentials of the coaxial connection of the embodiment of FIG. 1;
  • Figure 5 is a front elevational view of the embodiment of Figure 4.
  • Figure 6 is a schematic view showing the structure of the coaxial direct connection wheel of the embodiment of Figure 1;
  • FIG. 7 is a schematic diagram of electrical connection of an AC sub-drive motor and a DC sub-drive motor for a motor drive system of an electric vehicle according to the present application;
  • FIG. 8 is a schematic diagram showing the rotation of an AC sub-drive motor for a motor drive system of an electric vehicle according to the present application
  • FIG. 9 is a schematic diagram showing the generation of a combined magnetic field in an AC sub-drive motor of a motor drive system for an electric vehicle according to the present application.
  • FIG. 10 is an internal circuit diagram of a rectifier for a motor drive system of an electric vehicle according to the present application.
  • FIG. 11 is a rectification waveform diagram of a rectifier for a motor drive system of an electric vehicle according to the present application.
  • FIG. 12 is a schematic structural view of a connected motor for a motor drive system of an electric vehicle according to the present application.
  • FIG. 13 is a schematic diagram of electrical connection of a connected motor for a motor drive system of an electric vehicle according to the present application
  • FIG. 14 is a schematic diagram showing the internal structure of a connected motor for a motor drive system of an electric vehicle according to the present application.
  • FIG. 15 is a schematic structural view of a front and rear axle of an AC sub-drive motor connected to a dual DC drive motor for driving a motor drive system of an electric vehicle according to the present application;
  • 16 is a schematic structural view of an AC split drive motor and a dual DC split drive motor for driving a front axle of a motor drive system for an electric vehicle according to the present application;
  • Figure 17 is a front elevational view of the embodiment of Figure 16;
  • FIG. 18 is a schematic view showing the internal structure of a reduction gear box for an electric motor drive system of an electric vehicle according to the present application;
  • 19 is a schematic structural view of a reduction gear connecting motor for a motor drive system of an electric vehicle according to the present application.
  • 20 is a schematic structural view of a motor drive system for an electric vehicle connected to a three-DC split drive motor according to the present application;
  • 21 is a schematic diagram of another embodiment of a motor drive system for an electric vehicle connected to a three-DC drive motor according to the present application;
  • 22 is a schematic diagram of another embodiment of a motor drive system for an electric vehicle connected to a single DC drive motor according to the present application;
  • FIG. 23 is a schematic structural view of a back charge source of the embodiment of FIG. 1;
  • FIG. 24 is a schematic structural view of a motor drive system for an electric vehicle using a dual AC drive motor according to the present application
  • 25 is a schematic structural view of another embodiment of a motor drive system for an electric vehicle using a dual AC drive motor according to the present application;
  • 26 is a schematic structural diagram of a multi-channel charging of an AC sub-drive motor for a motor drive system of an electric vehicle according to the present application;
  • FIG. 27 is a schematic diagram of loading of a motor drive system for an electric vehicle using a dual AC drive motor according to the present application
  • FIG. 28 is a schematic structural diagram of a multi-channel charging capacity of a motor drive system for an electric vehicle according to the present application.
  • FIG. 29 is a schematic structural view of the embodiment of FIG. 4 connecting a one-way bearing
  • Figure 30 is a schematic view showing the structure of the embodiment of Figure 29 connecting an additional metal-air battery
  • 31 is a schematic structural view of a motor drive system for an electric vehicle using a dual AC sub-drive motor for simultaneous return charging capacity
  • 32 is a schematic structural view of a motor drive system for an electric vehicle using four DC drive motors according to the present application;
  • 33 is a schematic structural view of a single brushed permanent magnet DC motor used in an electric motor drive system for an electric vehicle according to the present application;
  • 34 is a schematic structural view of a brushed permanent magnet DC motor for a motor drive system of an electric vehicle connected to a series excitation motor according to the present application;
  • 35 is a schematic structural view of a brushed permanent magnet DC motor for connecting a two series excitation motor for an electric motor drive system of an electric vehicle according to the present application;
  • 36 is a schematic structural view of a two-wheeled electric vehicle driven by a drive system in a drive system provided by the present application;
  • FIG. 37 is a structural schematic view showing an example of driving a vehicle using the drive system provided in the present application example
  • 38 is a structural schematic view showing an experimental example 13 in which a vehicle is driven using the drive system provided by the present application;
  • 39 is a structural schematic view showing an experimental example 15 in which a vehicle is driven using the drive system provided by the present application;
  • 40-43 are structural schematic views of Experimental Example 14 and Embodiment 16 when the vehicle is driven by using the driving system provided by the present application;
  • the first set of comparison files :
  • a motor group consisting of a plurality of three-phase AC motors, the outputs of a plurality of three AC motors being connected to the same load.
  • the gear transmission structure is mainly used to replace the sensor in the conventional scheme for detecting whether the wire is disconnected on the three-phase AC motor, so as to achieve the following technical effects: when the wiring of a certain motor is broken, the motor group The driven parts will not continue to be driven in an abnormal state.
  • the motor unit includes a plurality of three-phase AC motors, and the output shafts of the plurality of motors are coupled to one of the driven components.
  • Multiple motors are electrically connected in series. Since a plurality of motors are electrically connected in series, when the wiring of one of the motors is broken, all the motors stop rotating. When the wiring of one of the motors is broken, the driven part will not be rotated by the remaining motor, thereby avoiding the overload of the motor and ensuring the life of the motor.
  • the energy-saving motor combination is composed of two three-phase asynchronous motors with the same nameplate data, two motors are connected in series; the insulated enameled wires in the stator windings of the two motors are respectively wound in two lines Re-winding into three-phase windings, the number of turns of each phase winding is 1/2 of the original motor, and the ends of each of the two insulated enameled wires in the stator slot are connected in parallel and then connected to the junction box;
  • the input terminals U1, V1, W1 cannot be connected to each other, and the output terminals W2, U2, V2 are respectively connected to the input terminals U1, V1, W1 in the junction box of the motor 2; the output terminals W2, U2 in the junction box of the motor 2 are V2 is connected in parallel.
  • the technical effect of this application is to consume only half of the electrical energy when converted to the same amount of mechanical energy.
  • CN200880118077.1-Motor set and gear transmission device and CN200410017157.1 - an energy-saving motor combination and manufacturing method both of which disclose two AC motor series connection schemes, but after the applicant's actual verification and inspection related materials
  • the technology will encounter new problems in the implementation process.
  • the parameters between two or more AC motors are difficult to ensure the same (mainly refers to the difference in the manufacturing process to the motor, not the setting
  • this causes the current AC motor to start, the stator of the latter AC motor can not provide the correct phase angle, resulting in the latter AC motor can not start, even if the controller is added, Not very good control.
  • An electric vehicle drive having a first motor/generator, a second motor/generator, and a set of wheels.
  • the gear set connects the first and second motor/generators to the set of wheels such that the total wheel torque is selectively separated between the first and second motor/generators.
  • the torque calculator selects the total torque target in response to the operator speed input.
  • the torque splitter substantially first and secondly divides the total torque target into first and second torque targets of the first and second motor/generators according to a ratio selected in response to the instantaneous motor/generator speed and the total torque target The overall efficiency of the motor/generator is maximized.
  • the torque distributor is added, and the corresponding relationship between the speed range and the total torque range is found by establishing a lookup table and using a look-up table when needed, and the corresponding result is adjusted by using the found result.
  • the relationship between the two motors is not limited in this solution, and the means for achieving the purpose of improving work efficiency is realized by internally applying a control signal, which is different from the application scheme provided by the present application (DC is not disclosed)
  • the scheme of connecting the motor and the AC motor in series The scheme utilizes the physical structure formed by the series connection of the AC motor and the DC motor, and automatically achieves the purpose of improving efficiency.
  • An electric drive system for driving an output analyzes the relationship between the motor output angular velocity and the input current in the application document, and specifically provides a drive system that is less prone to stall and more efficient when traveling at low speed.
  • the purpose of the electric drive system is to control the two motors by adding controllers, and then controlling the two motors.
  • the controller uses the internal generation of electrical signals for trigger control to more accurately control the motor. Obviously, this is different from the scheme of this scheme. There is no internal independent control signal in this scheme.
  • a method for optimizing the asymmetric power distribution efficiency of a dual motor the purpose of which is to solve the technical problem that the single-motor direct drive scheme cannot balance low speed and high speed efficiency in the prior art.
  • the method is specifically: setting two sets of motors with different driving efficiencies to form a power group, which are respectively a first motor and a second motor, and the two motors output torque in parallel, and obtain respective efficiency values of the two sets of motors.
  • the power group has different output torque requirements, the torque is distributed between the two sets of motors through optimization calculation to achieve the highest efficiency value of the power group.
  • the scheme adopts a method in which two motors are connected in parallel, and the torque distribution of the motor is adjusted by means of internal control, thereby optimizing the driving efficiency in different speeds and torque regions, and improving the motor in the high speed region.
  • the drive power increases the overall efficiency and performance of the electric drive system.
  • the content disclosed in the scheme illustrates that the two motors are connected in parallel, and the torque is adjusted according to the output speed (rpm) of the motor to achieve the purpose of improving work efficiency.
  • JP2000217393A - A variable speed drive system capable of PAM control in a low speed region, discloses:
  • a vehicle drive system using a pulse amplitude modulation technology specifically discloses that a DC motor and an AC motor are connected in parallel to form a motor group, and the motor group can drive the electric vehicle.
  • a hybrid vehicle consisting of an internal combustion engine, a traction motor, a starter motor, a battery and a battery pack, and controlled by a microprocessor to control the instantaneous torque of the motor according to the speed of the vehicle, so that the motor only operates under high efficiency conditions.
  • the load is at least equal to 30%, the engine will output according to the maximum torque.
  • a turbocharger can help, only when the load exceeds the maximum torque output of the engine for a period of time; then the dual speed may further expand the car's operating range.
  • the solution specifically discloses that the vehicle is powered by a DC motor at a low speed by using a controller, and is powered by an AC motor at a high speed.
  • the third set of comparison documents (other comparison documents):
  • a three-phase electromagnetic brake motor comprising a three-phase motor with a star winding, the common end of the three-phase motor star winding is disconnected, and directly connected in series to a three-phase full-wave rectifier module Three AC inputs, and the two DC outputs of the three-phase full-wave rectifier module are connected to both ends of a coil of an electromagnet. Further, the following technical effects are achieved, the braking torque is large, the starting and stopping speeds are fast, the positioning is accurate, and the adjustment is convenient.
  • the specification of the document discloses a three-phase motor star-rectifier-rectifier-coil solution, and the main relationship between the solution and the present application is that it discloses that the three-phase winding of the motor is dispersed and connected to the next electronic component through the rectifier. .
  • the technical problem that is expected to be solved is different from the present solution.
  • the technical problem that it is expected to solve is that due to the action of the inductance, the electromagnet action is delayed, and the electromagnetic brake three-phase motor starts and stops for a long time. This problem does not exist in this solution, so there is a lack of technical implications for the formation of this solution.
  • the scheme of two motors in series is not disclosed in the scheme, and therefore, the core content of the scheme is not disclosed.
  • a power device for refrigeration of a fishing boat mainly refers to a power device that directly drives the refrigeration system to work safely by the main engine of the fishing boat.
  • the utility model is characterized in that it comprises an alternator G, a silicon rectifier UR, a regulating constant voltage device AR, a motor starter KS and a direct current motor M, the purpose of which is to provide a power device of a fishing vessel refrigeration system with low cost and small occupation position.
  • the scheme of connecting an alternator and a direct current motor is disclosed, that is, the electric power generated by the alternator can directly supply the electric power to the direct current motor.
  • the present application adopts a structure in which two motors are connected in series, and the structure is not disclosed.
  • the patent is different from the technical problem that the technical solution of the present application is expected to solve.
  • a multi-motor series continuously variable speed engine which adopts a gearbox with a star structure, that is, through the adjustment of the gear ratio, repeatedly utilizes the efficient working area of the motor, so that the electric motor in the electric vehicle can be more Efficient work area work, better use of the motor.
  • the solution discloses a desire to utilize more efficient work areas, but the technical solution itself is greatly different from the present application.
  • Second set of comparative documents disclose solutions that are expected to improve motor performance/efficiency using a technical solution that achieves a work strategy transition by paralleling the motors and setting up separate controllers for the motors.
  • the applicant has obtained the following schemes for improving the electric power utilization efficiency of the electric vehicle by analyzing the above-described scheme and by a large number of experiments.
  • the DC sub-drive motor and the DC sub-drive motor mentioned in the present application refer to an electric motor that converts DC electric energy into mechanical energy.
  • the controller referred to in this application refers to a controller for controlling an AC sub-drive motor.
  • the electric energy output by the controller is freely proportioned according to the load on the AC sub-drive motor and the DC sub-drive motor.
  • the controller is capable of driving the AC sub-distribution according to the external load condition (a load condition that can be applied to the controller).
  • the motor is controlled to adjust the power ratio of the AC sub-drive motor and the DC sub-drive motor.
  • the function of the reducer or reduction gearbox mentioned in the present application is to adjust the ratio of the output shaft speed of the drive motor (AC motor or DC motor) to the actual output of the drive motor to the wheel speed.
  • the drive motor AC drive motor or DC drive motor
  • the drive motor is connected to a gear unit or gearbox with a specified reduction ratio (speed ratio), which is basically equivalent to a drive motor with a reduction ratio of the specified value.
  • the front axle refers to the device that transmits the mutual force between the frame and the front wheel and the bending moment and torque generated by the front axle; similarly, the rear axle refers to the mutual force between the transmission frame and the rear wheel. And the device for generating the bending moment and torque.
  • the drive motor (AC drive motor or DC drive motor) connects/drives the front axle, which means that the drive motor can drive the two front wheels of the vehicle at the same time; similarly, the drive motor (AC drive motor or DC drive motor) is connected.
  • the rear axle which means that the drive motor can drive the two rear wheels of the vehicle at the same time.
  • the series connection of two AC sub-drive motors refers to the coaxial connection of the output shafts of the two AC sub-drive motors.
  • the present application provides a basic solution of a driving system, including:
  • the AC motor set includes at least one AC sub-drive motor;
  • the DC motor group includes at least one DC sub-drive motor;
  • the rectification assembly includes at least one rectifier; at least one AC sub-drive motor, at least one rectifier, and at least one DC sub-drive motor are sequentially connected Forming a drive line;
  • the rectifier comprises a multi-phase input terminal, a DC output terminal and a DC input terminal, wherein the AC sub-driver motor is provided with at least a multi-phase winding, and the first end of each phase winding of the multi-phase winding is configured to be connected with the power input end;
  • the target DC drive motor is electrically connected between the DC output end of the target rectifier and the DC input terminal; the tail end of each phase winding of the target AC drive motor is respectively connected to the multi-phase input port of the target rectifier;
  • the AC sub-drive motor, the target rectifier, and the target DC sub-driver motor all belong to the same drive line.
  • the motor parameter of the target AC drive motor and the motor parameter of the target DC drive motor are set according to a preset value, so that the power of the target DC drive motor accounts for about 1.5%-40% of the total power;
  • the power is the sum of the power of the target DC drive motor and the power of the target AC drive motor;
  • the motor parameters of the target AC drive motor include at least one or more of the following, the rated speed and the reduction ratio;
  • the motor parameters include one or more of the following, rated speed and reduction ratio.
  • the power ratio of the target DC drive motor is greater than the power share of the target DC drive motor when the vehicle is at a constant speed; the power ratio is the power of the target DC drive motor to the total power. Percentage; total power is the sum of the power of the target DC drive motor and the power of the target AC drive motor; the motor parameters of the target AC drive motor include at least one or more of the following, rated speed and reduction ratio; target DC The motor parameters of the drive motor include one or more of the following, rated speed and reduction ratio.
  • the motor parameter of the target AC drive motor and the motor parameter of the target DC drive motor are set according to preset values, so that under different load conditions, the power usage of the target DC drive motor and the target AC drive are driven.
  • the electric energy usage rate of the motor can be automatically adjusted;
  • the motor parameters of the target AC sub-drive motor include at least one or more of the following, the rated speed and the reduction ratio;
  • the motor parameters of the target DC sub-drive motor include one or more of the following, Rated speed and reduction ratio;
  • the motor parameters of the target AC drive motor and the motor parameters of the target DC drive motor are set according to preset values, so that under different load conditions, the power supplied by the power input terminal is at least partially in the target DC drive motor and The target AC drive motor is shifted between the motor; the motor parameters of the target AC drive motor include at least one or more of the following, the rated speed and the reduction ratio; the motor parameters of the target DC drive motor include one or more of the following: , rated speed and reduction ratio.
  • the motor parameter of the target AC drive motor and the motor parameter of the target DC drive motor are set according to preset values, so that the apparent power of the target DC drive motor is about 70w-800w;
  • the apparent power of the motor is about 3000w-4500w;
  • the motor parameters include one or more of the following, rated speed and reduction ratio.
  • At least one of the DC drive motor and the at least one AC drive motor of the same drive line have different reduction ratios/rated speeds
  • the actual output speed of at least one of the DC drive motors in the same drive line is greater than the actual output speed of the at least one AC drive motor
  • the peak value of the actual output speed of at least one of the DC drive motors in the same drive line is greater than the peak value of the actual output speed of the at least one AC drive motor.
  • the AC motor set provided by the present application includes one AC sub-drive motor.
  • the embodiment of the present application provides a first possible implementation manner of the first aspect, wherein the target AC drive motor is coupled to the front/rear axle of the driven vehicle through the reducer to be simultaneously driven The two front wheels or the two rear wheels of the vehicle provide power.
  • the embodiment of the present application provides a second possible implementation manner of the first aspect, wherein the DC motor group includes one DC drive motor;
  • the DC sub-drive motor is coupled to the front/rear axle of the driven vehicle through a speed reducer to simultaneously power the two front wheels or the two rear wheels of the driven vehicle.
  • an embodiment of the present application provides a third possible implementation of the first aspect, wherein the output shaft of the target AC drive motor is configured to be coupled to a designated one of the wheels to provide power to a designated one of the wheels .
  • the embodiment of the present application provides a fourth possible implementation manner of the first aspect, wherein the target AC drive motor is an in-wheel motor.
  • the AC motor set provided by the present application includes a first AC sub-drive motor and a second AC sub-drive motor, and the rectification assembly includes a first rectifier and a second rectifier;
  • the first end of each phase winding of the multi-phase winding in the first AC sub-drive motor is configured to be connected to the power input end; the tail end of each phase winding of the first AC sub-drive motor is respectively connected to the first end a multiphase input port of the rectifier;
  • a first end of each phase winding of the multi-phase winding in the second AC sub-drive motor is configured to be connected to the power input end; and a tail end of each phase winding of the second AC sub-drive motor is respectively connected to the second end a multiphase input port of the rectifier;
  • the DC motor group is electrically connected between the DC output terminal of the first rectifier and the DC input terminal, and the DC motor group is electrically connected between the DC output terminal of the second rectifier and the DC input terminal.
  • the embodiment of the present application provides a first possible implementation manner of the second aspect, wherein the first AC minute driving motor is connected to the front axle/rear axle of the driven vehicle through the speed reducer to simultaneously Driving the two front wheels or the two rear wheels of the vehicle to provide power;
  • the second AC minute drive motor is coupled to the rear axle/front axle of the driven vehicle through a speed reducer to simultaneously power the two rear wheels or the two front wheels of the driven vehicle.
  • the embodiment of the present application provides a second possible implementation manner of the second aspect, wherein an output shaft of the first AC sub-drive motor is configured to be coupled to the first wheel to provide power to the first wheel;
  • An output shaft of the second AC minute drive motor is configured to be coupled to the second wheel to provide power to the second wheel.
  • an embodiment of the present application provides a third possible implementation of the second aspect, wherein the first wheel and the second wheel are different wheels.
  • the embodiment of the present application provides a fourth possible implementation of the second aspect, wherein the first wheel is one wheel on the left side and the second wheel is one wheel on the right side.
  • the embodiment of the present application provides a fifth possible implementation manner of the second aspect, wherein the first wheel is a left front wheel, and the second wheel is a right front wheel;
  • the first wheel is a left rear wheel and the second wheel is a right rear wheel.
  • the embodiment of the present application provides a sixth possible implementation manner of the second aspect, wherein the first wheel and the second wheel are both left wheels, or both right wheels .
  • the embodiment of the present application provides the seventh possible implementation manner of the second aspect, wherein at least one of the AC drive motor and the second AC drive motor is an in-wheel motor.
  • the AC motor set provided by the present application includes a third AC sub-drive motor and a fourth AC sub-drive motor
  • the rectification assembly includes a third rectifier and a fourth rectifier
  • the DC motor group includes a third DC motor group and a a fourth DC motor group
  • a third AC sub-drive motor, a third rectifier, and a third DC motor group are sequentially connected to form a first driving circuit
  • the fourth AC sub-drive motor, the fourth rectifier, and the fourth DC motor group are sequentially connected to form a second driving circuit
  • the first end of each phase winding of the multi-phase winding in the third AC sub-drive motor is configured to be connected to the power input end; the tail end of each phase winding of the third AC sub-drive motor is respectively connected to the third end a multiphase input port of the rectifier;
  • the first end of each phase winding of the multi-phase winding in the fourth AC sub-drive motor is configured to be connected to the power input end; the tail end of each phase winding of the fourth AC sub-drive motor is respectively connected to the fourth end a multiphase input port of the rectifier;
  • the third DC motor group is electrically connected between the DC output terminal of the third rectifier and the DC input terminal
  • the fourth DC motor group is electrically connected between the DC output terminal of the fourth rectifier and the DC input terminal
  • the embodiment of the present application provides a first possible implementation manner of the third aspect, wherein the third AC sub-drive motor is connected to the front/rear bridge of the driven vehicle through the reducer to simultaneously Driving the two front wheels or the two rear wheels of the vehicle to provide power;
  • the fourth AC minute drive motor is coupled to the rear axle/front axle of the driven vehicle through a speed reducer to simultaneously power the two rear wheels or the two front wheels of the driven vehicle.
  • the embodiment of the present application provides a second possible implementation manner of the third aspect, wherein an output shaft of the third AC minute driving motor is configured to be coupled to the first wheel to provide power to the first wheel;
  • An output shaft of the fourth AC minute drive motor is configured to be coupled to the second wheel to provide power to the second wheel.
  • an embodiment of the present application provides a third possible implementation of the third aspect, wherein the first wheel and the second wheel are different wheels.
  • an output shaft of the third AC minute driving motor is configured to provide power to drive a left front wheel of the driven vehicle;
  • the output shaft of the DC drive motor is configured to provide power to the right rear wheel of the driven vehicle;
  • the output shaft of the fourth AC drive motor is configured to provide power to the right front wheel of the driven vehicle;
  • the fourth DC drive motor The output shaft is configured to power the left rear wheel that drives the driven vehicle;
  • An output shaft of the third AC minute drive motor is configured to provide power to a right front wheel that drives the driven vehicle; an output shaft of the third DC minute drive motor is configured to provide power to a left rear wheel that drives the driven vehicle; An output shaft of the drive motor is configured to provide power to a left front wheel that drives the driven vehicle; an output shaft of the fourth DC minute drive motor is configured to provide power to a right rear wheel that drives the driven vehicle;
  • An output shaft of the third AC minute drive motor is configured to provide power to a left rear wheel that drives the driven vehicle; an output shaft of the third DC minute drive motor is configured to provide power to a right front wheel that drives the driven vehicle; An output shaft of the drive motor is configured to provide power to a right rear wheel that drives the driven vehicle; an output shaft of the fourth DC minute drive motor is configured to provide power to a left front wheel that drives the driven vehicle;
  • An output shaft of the third AC minute drive motor is configured to provide power to a right rear wheel that drives the driven vehicle; an output shaft of the third DC minute drive motor is configured to provide power to a left front wheel that drives the driven vehicle; The output shaft of the drive motor is configured to power the left rear wheel that drives the driven vehicle; the output shaft of the fourth DC minute drive motor is configured to power the right front wheel that drives the driven vehicle.
  • an output shaft of the third AC minute driving motor is configured to provide power to drive a left front wheel of the driven vehicle;
  • the output shaft of the DC sub-drive motor is configured to provide power to the left rear wheel of the driven vehicle;
  • the output shaft of the fourth AC sub-drive motor is configured to provide power to the right front wheel of the driven vehicle;
  • the fourth DC sub-drive motor The output shaft is configured to power the right rear wheel that drives the driven vehicle;
  • An output shaft of the third AC minute drive motor is configured to provide power to a right front wheel that drives the driven vehicle; an output shaft of the third DC minute drive motor is configured to provide power to a right rear wheel that drives the driven vehicle; An output shaft of the drive motor is configured to provide power to a left front wheel that drives the driven vehicle; an output shaft of the fourth DC minute drive motor is configured to provide power to a left rear wheel that drives the driven vehicle;
  • An output shaft of the third AC minute drive motor is configured to provide power to a left rear wheel that drives the driven vehicle; an output shaft of the third DC minute drive motor is configured to provide power to a left front wheel that drives the driven vehicle; An output shaft of the drive motor is configured to provide power to a right rear wheel that drives the driven vehicle; an output shaft of the fourth DC minute drive motor is configured to power a right front wheel that drives the driven vehicle;
  • An output shaft of the third AC minute drive motor is configured to provide power to a right rear wheel that drives the driven vehicle; an output shaft of the third DC minute drive motor is configured to provide power to a right front wheel that drives the driven vehicle; The output shaft of the drive motor is configured to power the left rear wheel that drives the driven vehicle; the output shaft of the fourth DC minute drive motor is configured to power the left front wheel that drives the driven vehicle.
  • an output shaft of the third AC sub-drive motor is configured to provide power to drive a left front wheel of the driven vehicle;
  • the output shaft of the DC drive motor is configured to provide power to the right front wheel of the driven vehicle;
  • the output shaft of the fourth AC drive motor is configured to provide power to the right rear wheel of the driven vehicle;
  • the fourth DC drive motor The output shaft is configured to power the left rear wheel that drives the driven vehicle;
  • An output shaft of the third AC minute drive motor is configured to provide power to a right front wheel that drives the driven vehicle; an output shaft of the third DC minute drive motor is configured to provide power to a left front wheel that drives the driven vehicle; An output shaft of the drive motor is configured to provide power to a left rear wheel that drives the driven vehicle; an output shaft of the fourth DC minute drive motor is configured to provide power to a right rear wheel that drives the driven vehicle;
  • An output shaft of the third AC minute drive motor is configured to provide power to a left rear wheel that drives the driven vehicle; an output shaft of the third DC minute drive motor is configured to provide power to a right rear wheel that drives the driven vehicle; An output shaft of the drive motor is configured to provide power to a right front wheel that drives the driven vehicle; an output shaft of the fourth DC minute drive motor is configured to provide power to a left front wheel that drives the driven vehicle;
  • An output shaft of the third AC minute drive motor is configured to provide power to a right rear wheel that drives the driven vehicle; an output shaft of the third DC minute drive motor is configured to provide power to a left rear wheel that drives the driven vehicle; The output shaft of the drive motor is configured to power the left front wheel that drives the driven vehicle; the output shaft of the fourth DC minute drive motor is configured to power the right front wheel that drives the driven vehicle.
  • the embodiment of the present application provides a seventh possible implementation manner of the third aspect, wherein at least one of the third alternating minute drive motor and the fourth alternating minute drive motor is an in-wheel motor.
  • the embodiment of the present application further provides the following preferred solutions:
  • the reduction ratio of the AC sub-drive motor is about 1:1-12:1; the reduction ratio of the DC sub-drive motor is about 1:1-8:1;
  • the rated speed of the AC drive motor is about 500-1000r/min; if the AC drive motor is a permanent magnet motor, the rated speed of the AC drive motor is about 3000r/min-7000r. /min; If the DC drive motor is a hub motor, the rated speed of the DC drive motor is about 500-1000r/min. If the DC drive motor is a permanent magnet motor, the rated speed of the DC drive motor is about 1000r/ Min-3000r/min.
  • the ratio of the reduction ratio of the AC sub-drive motor to the DC sub-drive motor is about 0.8:1 to 1.2:1;
  • the ratio of the rated speed of the AC sub-drive motor to the DC sub-drive motor is approximately 1:1 to 3:1.
  • the reduction ratio of the AC sub-drive motor is about 1:1 - 6.4: 1; the reduction ratio of the DC sub-drive motor is about 1:1 - 7: 1;
  • the rated speed of the AC sub-drive motor is about 4000r/min-6500r/min; the rated speed of the DC sub-drive motor is about 2500r/min-3000r/min.
  • the reduction ratio of the first AC sub-drive motor is about 1:1-12:1; the reduction ratio of the second AC sub-drive motor is about 1:1-12:1; the reduction ratio of the DC sub-drive motor is about For 1:1-8:1;
  • the rated speed of the first AC sub-drive motor is about 500-1000 r/min; if the second AC-segment drive motor is a hub motor, the rated speed of the second AC sub-drive motor About 500-1000r/min;
  • the rated speed of the first AC sub-drive motor is about 3000r/min-7000r/min; if the second AC drive motor is a permanent magnet motor, the second AC drive The rated speed of the motor is about 3000r/min-7000r/min;
  • the rated speed of the DC drive motor is about 500-1000r/min. If the DC drive motor is a permanent magnet motor, the rated speed of the DC drive motor is about 1000r/min-3000r. /min.
  • the reduction ratio of the third AC sub-drive motor is about 1:1-12:1; the reduction ratio of the fourth AC sub-drive motor is about 1:1-12:1; the deceleration of the third DC sub-drive motor The ratio is about 1:1-8:1; the reduction ratio of the fourth DC drive motor is about 1:1-8:1;
  • the rated speed of the third AC sub-drive motor is about 500-1000 r/min; if the fourth AC-segment drive motor is a hub motor, the rated speed of the fourth AC sub-drive motor About 500-1000r/min;
  • the rated speed of the third AC drive motor is about 3000r/min-7000r/min; if the fourth AC drive motor is a permanent magnet motor, the fourth AC drive The rated speed of the motor is about 3000r/min-7000r/min;
  • the rated speed of the third DC drive motor is about 500-1000 r/min. If the third DC drive motor is a permanent magnet motor, the third DC drive motor is rated. The speed is about 1000r/min-3000r/min;
  • the rated speed of the fourth DC drive motor is about 500-1000 r/min. If the fourth DC drive motor is a permanent magnet motor, the fourth DC drive motor is rated. The speed is about 1000r/min-3000r/min.
  • the rectifier is provided with a multi-phase diode rectifier bridge
  • the multi-phase diode rectifier bridge comprises three electrically parallel single-phase diode rectifier circuits, and the tail ends of each phase winding in the multi-phase winding are respectively electrically connected Single-phase diode rectification circuit, two ends of three single-phase diode rectification circuits are respectively connected to two DC output ports of the rectifier, and the DC sub-drive motor turns on two DC output ports to make three single-phase diodes rectify
  • the two ends of the circuit are connected to form a loop, so that the DC output becomes the neutral point required for the multiphase winding to be connected.
  • the DC sub-drive motor is any one of the following two types:
  • the AC sub-drive motor is any one of the following two types:
  • the embodiment of the present application further provides a multi-wheel electric vehicle including at least three wheels, and further comprising the driving system according to claims 108-141, wherein at least one AC sub-drive motor is configured to directly or indirectly to at least one wheel Driving; at least one DC drive motor is configured to drive directly or indirectly to at least one of the wheels.
  • the embodiment of the present application further provides a two-wheeled electric vehicle, two wheels, and a driving system according to claim 1-126, characterized in that at least one AC sub-drive motor is configured to directly or at least one wheel Indirect driving; at least one DC sub-drive motor is configured to drive directly or indirectly to at least one of the wheels.
  • the two wheels are set back and forth, or left and right.
  • the embodiment of the present application further provides a processing method of a driving system, including:
  • the first winding is located in the AC sub-drive motor, and the number of phases of the first winding is at least Multiphase
  • a DC sub-drive motor is connected between the DC output of the rectifier and the DC input.
  • the embodiment of the present application further provides a vehicle casing, including a main body skeleton, and a receiving cavity is disposed in the main body frame, and the receiving cavity is configured to place the driving system provided in the foregoing.
  • the DC drive motor and the AC drive motor are all configured to drive the wheels in the same vehicle (the wheels driven by the DC drive motor)
  • the wheels driven by the AC sub-drive motor may be the same or different wheels; or the output shaft of the DC sub-drive motor and the output shaft of the AC sub-drive motor are directly or indirectly connected to the corresponding wheels.
  • the wheel driven by the DC drive motor and the wheel driven by the AC drive motor are located on the same car or configured to drive the same car to move.
  • a motor drive system for an electric vehicle includes an AC sub-drive motor a and is configured to drive an AC sub-drive motor a.
  • the power component includes an electrically connected power source 12 and a controller 14, the input port of the controller 14 is electrically connected to the power source 12, the power source 12 is a plurality of battery packs connected in series, and the three-phase output port of the controller 14 is electrically connected to the AC point.
  • the driving motor a further includes a DC sub-drive motor b electrically connected in series with the AC sub-drive motor a.
  • the AC sub-drive motor a is an AC synchronous motor or an asynchronous motor, and the preferred AC sub-drive motor a uses a permanent magnet synchronous motor;
  • the driving motor b adopts a brushed permanent magnet DC motor with good starting performance, and the DC minute driving motor b can also be one of a shunt motor, a series excitation motor, a hybrid excitation motor and a separately excited motor.
  • the brushed permanent magnet DC motor comprises a stator and a rotor.
  • the stator is provided with a permanent magnet and a brush.
  • the armature winding and the slip ring are arranged on the rotor.
  • the first end of the armature winding is connected with the slip ring, and the tail ends of the armature winding are connected to form a loop.
  • the direct current output from the rectifier enters the armature winding through the brush and the slip ring to generate the armature current.
  • the magnetic field generated by the armature current interacts with the stator permanent magnet to generate electromagnetic torque, so that the motor rotates to drive the load; or the armature is arranged on the stator. Winding, permanent magnets are placed on the rotor.
  • the stator 2 of the AC sub-drive motor a is provided with three-phase windings, including U phase, V phase and W phase, and the first end (61, 62, 63) of each phase winding is connected to the controller 14; unlike the conventional motor, the AC The tail ends (64, 65, 66) of each phase winding of the split drive motor a do not form a star-connected neutral point in the body.
  • each phase winding is separated from each other and Leading out to the AC sub-drive motor a, the tail end of each phase winding respectively corresponds to the three-phase input port of the electrical connection rectifier 17, and the DC output port of the rectifier 17 is electrically connected to the DC sub-drive motor b, and the two motors are connected in series to form a synchronous input and crossover. Interchanged power output, when one motor is blocked due to load, the remaining motor accelerates output power.
  • Each single-phase winding is formed by stacking a plurality of complete enameled wires. The leading end of the enameled wire is all connected with the three-phase output port of the controller 14, and the position sensor used in the AC sub-drive motor a is a Hall sensor. .
  • the working principle of the permanent magnet synchronous motor is as follows: the stator cores of the AC sub-drive motor are placed with the same three-phase windings U, V, W, and the phase windings are spatially different from each other by 120° electrical angle to the three-phase winding.
  • a symmetrical three-phase alternating current is supplied, the current in the U phase is IU, the current in the V phase is Iv, and the current in the W phase is Iw.
  • the IU, Iv, Iw form three different induced magnetic fields in the three-phase winding.
  • Three directed magnetic fields form a combined magnetic field to provide a driving force to the rotor 3.
  • the magnitude and direction of the three-phase alternating current vary sinusoidally, the magnitude and direction of the combined magnetic field change with the alternating current, and the alternating current
  • the synthesized magnetic field rotates once a week for each change of current. If the input three-phase alternating current is 50 Hz, the generated combined magnetic field is rotated for 50 weeks per second, and the combined magnetic field drives the rotor 3 in the rotational change.
  • the rectification process of the rectifier 17 is as follows: the alternating current outputted from the tail end of the three-phase winding of the alternating current driving motor a is full-wave rectified by the rectifier bridge circuit in the rectifier 17, forming a continuous peak pulsating direct current output, that is, the pulsating direct current always maintains an alternating current
  • the peak voltage derived from the known formula, the average value of the rectified output voltage Ud of the three-phase current after full-wave rectification by the rectifier bridge is 2.34 times of the phase voltage (Ua, Ub, Uc), so that the DC drive motor b can
  • the multiplied pulsating DC current is obtained, and the DC drive motor b is a brushed permanent magnet DC motor.
  • the rectifier 17 is provided with a three-phase diode rectifier bridge, and the three-phase diode rectifier bridge comprises three electrically parallel single-phase diode rectifier circuits, and the tail ends of each phase winding of the three-phase windings are respectively electrically connected to the single-phase diode rectifier circuit, three single The two ends of the phase diode rectifying circuit are respectively connected to the two DC output ports of the rectifier 17, and the two DC output ports at this time are open circuits, and the circuit required for forming the three-phase winding star connection is not provided, and the DC sub-drive motor b is internally provided. There are armature windings and field windings (series excitation motors) connected in series with each other.
  • the two ends of the armature windings are electrically connected to two DC output ports respectively, so that the two DC output ports are electrically connected, which is equivalent to three single phases.
  • the two ends of the diode rectifier circuit are connected to form a loop, and the DC output port at this time becomes a neutral point required for the three-phase winding star connection. Since the three-phase winding of the star connection must form a loop through the neutral point, after rectification The pulsating direct current will inevitably drive the armature winding and the exciting winding in the motor b through the direct current driving, and drive the direct current driving motor b to output power.
  • the pulsating DC current is started by the rectifier 17 through the DC drive motor b and returned to the rectifier 17, and the winding coil in the DC drive motor b forms an alternating current star circuit, and the pulsating DC current is driven through the star circuit.
  • the DC-driven motor b has an accompanying magnetic field, and the magnitude of the incident magnetic field is proportional to the magnitude of the pulsating DC current, so that the DC-driven motor b has a high torque output.
  • the AC sub-drive motor a rotor uses a permanent magnet to generate a constant magnetic field.
  • the stator is provided with a stator coil composed of three-phase lines. When the three-phase line is connected to the alternating current, a three-phase magnetic field is formed on the stator, and a rotating stator is formed according to the vector sum.
  • the constant magnetic field of the rotor interacts with the rotating stator combined magnetic field, the same polarity repels, and the opposite sex attracts, so that the rotor rotates following the rotor combined magnetic field to form a continuous rotation.
  • the current flowing from any phase line of the AC sub-drive motor a passes through the neutral point of the three-phase line and flows out of the motor from the other phase lines of the AC sub-drive motor a.
  • the DC sub-drive motor b stator uses a permanent magnet or uses an excitation coil.
  • a constant magnetic field like the permanent magnet is generated in the excitation coil.
  • the rotor of the motor is wound with a coil.
  • the rotor coil generates a constant magnetic field.
  • the stator magnetic field interacts with the rotor magnetic field, and the same polarity repels, and the opposite sex attracts and drives the rotor to rotate.
  • the rectifier 17 converts the three-phase current into a direct current, and the output direct current is equivalent to 2.34 times the single-phase alternating current.
  • the rated speed between the AC sub-drive motor a and the DC sub-drive motor b is set differently, forming a combination of low speed, high torque and high speed and low torque, so that automatic differential speed can be realized during the driving process; the vehicle starts or climbs, etc.
  • the DC drive motor b with lower speed can generate enough high torque when the power supply outputs a small current; because the rated speed of each motor is different, when the electric vehicle is at different speeds, Automatically switch to the motor of the corresponding speed for driving, which is equivalent to automatic shifting of the fuel car to save energy.
  • the AC sub-drive motor a and the DC sub-drive motor b can select different rated speeds according to the speed torque requirement, or use the same rated speed rotation speed motor, because the series connection naturally forms a difference speed difference.
  • the AC sub-drive motor a is a three-phase AC permanent magnet synchronous motor
  • the DC sub-drive motor b is a DC series-excited motor
  • the power source used is a battery pack.
  • the DC sub-drive motor b has the characteristics of low starting voltage and wide voltage adaptation range. It can be operated at a minimum of 5V, with low rotational speed and large torque.
  • the AC sub-drive motor has high speed and small torque, and is suitable for high-speed driving.
  • the DC drive motor b and the rectifier act as the neutral point circuit of the AC drive motor, so that the current flowing into the AC drive motor must pass through the DC drive motor b, and the DC drive motor b and the rectifier form a DC loop when the controller inputs the current.
  • the stator magnetic field is generated, and under the action of the electromagnetic force, a push-pull action is formed with the rotor magnetic pole to drive the rotor of the motor to rotate.
  • the current flowing through one phase of the motor enters the DC drive motor b through the rectifier, and the excitation magnetic field and the armature magnetic field are formed in the DC drive motor b.
  • the excitation magnetic field and the armature magnetic field interact to drive the rotor of the excitation motor to rotate.
  • the current through the DC drive motor b is returned to the AC drive motor by the rectifier and the other phases of the AC drive motor flow out of the motor to form a complete current loop.
  • the relay 4 and the capacitor group 24 are added at the DC output port of the rectifier 17, specifically, the power source 12 is connected to the power input terminal of the controller 14, and the controller 14
  • the three-phase AC output terminal is connected to the first end of the three-phase winding of the AC sub-drive motor a, and the neutral point of the three-phase winding is opened to form three tail ends, and the tail end of the three-phase winding is connected to the three-phase input port of the rectifier 17,
  • the three-phase input port of the rectifier 17 is also connected in parallel with a shorting relay 4, the shorting relay 4 is controlled by the control switch 5, the DC output port of the rectifier 17 is connected to the DC sub-drive motor b, and the DC output port of the rectifier 17 is connected in parallel with the capacitor group 24 Configured as regulated filter, the rectifier 17 is configured to convert the alternating current input by the controller and through the three-phase winding of the AC drive motor into direct current, and the current or voltage of the output direct current is
  • the AC drive motor a and the DC drive motor b are respectively connected to the front and rear axles of the electric vehicle, and the front and rear axles of the vehicle use different motors, and the AC drive is set.
  • the rated speeds of the motor a and the DC sub-drive motor b are different, forming a natural differential speed, and setting the front and rear bridges of different differential ratios, setting the AC sub-drive motor a to be a high-speed motor, using a differential bridge with a large reduction ratio, Set the DC sub-drive motor b to be a low-speed motor and use a differential bridge with a smaller reduction ratio to form a differential drive of the vehicle.
  • the AC drive motor a receives a large driving resistance.
  • the controller 14 needs to increase the input of the drive current, and the current can reach the normal drive current of 10 More than double, the electric energy accumulates in the motor, causing the motor to start to be severely heated, and the AC sub-drive motor a consumes power at a high power, causing the mileage of the vehicle to decrease.
  • the AC sub-drive motor a and the DC sub-drive motor b are connected in series, and the current input to the AC sub-drive motor a must be driven by the DC sub-drive motor b, so that the DC sub-drive motor b and the AC sub-drive motor a are simultaneously operated.
  • the DC sub-drive motor b is a low-speed high-torque motor.
  • the AC sub-drive motor a is heavily loaded and the speed is low.
  • the electric energy input to the AC sub-drive motor a is mainly transferred to the DC sub-drive motor b, and the DC sub-drive motor is driven.
  • the controller 14 does not need or only needs to increase a small amount of current. Can drive the vehicle well.
  • the driving resistance of the AC sub-drive motor a is gradually reduced, the input power of the AC sub-drive motor a is gradually increased, and the output is gradually transferred to the AC sub-drive motor a.
  • the vehicle speed reaches the equilibrium value, the vehicle is in the vehicle.
  • the DC drive motor b and the AC drive motor a are output together to drive the vehicle forward.
  • the vehicle runs at high speed.
  • the DC drive motor b is empty. Carrying operation, avoiding reverse dragging of the AC sub-drive motor a, the input power is all loaded on the AC sub-drive motor a, and the AC sub-drive motor a performs high-speed low-torque output.
  • the AC sub-drive motor a tail series DC drive motor b
  • the electric energy of the input motor is realized, and the motor is automatically freely distributed according to the difference between the traveling speed of the vehicle and the load resistance, so that the DC sub-drive motor b and the AC sub-drive motor a Automatically adapt to the load for output, provide suitable driving force and speed output, realize the gear shifting function of the traditional internal combustion engine vehicle.
  • the AC sub-drive motor and the DC sub-drive motor are connected in series and output power at the same time.
  • the DC sub-drive motor is used as the main output
  • the AC sub-drive motor is used for auxiliary propulsion.
  • the AC sub-drive motor is mainly used.
  • the output, DC sub-drive motor assists the vehicle to advance, balances the vehicle driving friction and wind resistance, reduces the driving force of the AC sub-drive motor, and greatly reduces the AC sub-drive motor drive current, forming a boosting mutual push effect.
  • the motor consumes a large amount of electric energy during the start of the vehicle, causing severe heat generation and waste of energy.
  • the low-speed high-torque motor is used purely, the maximum speed of the vehicle cannot be increased, and At high speed, power is consumed in a large amount, which also causes severe heat generation and energy waste.
  • the increased power input is much smaller than that of a pure high-speed motor.
  • the power consumption is also less than pure.
  • Vehicles with low-speed motors, and the speed of the vehicle is higher.
  • the driving power consumption of the present application is relatively stable, and has better gliding ability, which can save 30-50% of power consumption compared with the conventional electric vehicle, and effectively extend the mileage of the vehicle.
  • a motor drive system for an electric vehicle includes a front/rear axle with a reduction gearbox 30, an AC sub-drive motor a, and a configuration.
  • the rated speed between the AC sub-drive motor a and the DC sub-drive motor b differs by at least 50%.
  • the rated rotational speed of the AC sub-drive motor a is set to 6000 rpm
  • the rated rotational speed of the DC sub-drive motor b is set to 2800 rpm
  • the AC sub-drive motor a and the DC sub-drive motor b are symmetrically connected coaxially.
  • the reduction ratio of the input and output of the reduction gearbox 30 is 2.2-4.5
  • the preferred reduction ratio is 2.5-3.7. Due to the difference in rotational speed, when the vehicle starts at a low speed, a large torque is required. At this time, the low-speed DC drive motor b is used to drive the main, and the AC drive motor a is assisted to obtain a larger starting torque.
  • the driving main force automatically switches to the AC drive motor a of higher speed to obtain faster speed increase, and the DC drive motor b assists the push.
  • the AC sub-drive motor a and the DC sub-drive motor b are coaxially connected to form a single-wheel direct drive assembly, and the single-wheel direct drive assembly directly drives the axle.
  • the single-sided wheel, in particular, the AC sub-drive motor a can adopt a flat motor with a large rotor diameter, and the number of single-wheel direct drive assemblies can be freely set, such as 1, 2, 3 or 4, this Two sets are included in the plan, including the first single-wheel direct drive assembly and the second single-wheel direct drive assembly with the same component structure and electrical connection, the first single-wheel direct drive assembly and the second single-wheel direct drive assembly.
  • the first single-wheel direct drive assembly Connected to different wheels on both sides of the front axle or the rear axle, the first single-wheel direct drive assembly includes an AC sub-drive motor a, a DC sub-drive motor b, a first controller 14 and a first one electrically connected according to the above connection method.
  • the rectifier 17 and the second single-wheel direct drive assembly include an AC drive motor a', a DC drive motor b', a second controller 14' and a second rectifier 17' that are also connected.
  • the rated speed between the first single-wheel direct drive assembly and the second single-wheel direct drive assembly is different or the rated speed between the different motors is different.
  • the first single-wheel direct drive assembly is set to communicate.
  • the sub-drive motor a is different from the rated speed of the AC sub-drive motor a' of the second single-wheel direct drive assembly, or the DC drive motor b and the second single-wheel direct drive of the first single-wheel direct drive assembly are set.
  • the rated speed of the DC drive motor b' is different; or the rated speed between the AC drive motor a of the first single-wheel direct drive assembly and the DC drive motor b' of the second single-wheel direct drive assembly Differently, the rated speed between the DC drive motor b of the first single-wheel direct drive assembly and the AC drive motor a' of the second single-wheel direct drive assembly is different.
  • the AC sub-drive motor a and the DC sub-drive motor b form a connected motor of a two-stage rotor and a stator, and the number of the connected motors can be There are 1 group, 2 groups, 3 groups or 4 groups.
  • the two-stage stator winding includes an AC sub-drive winding M3 and a DC sub-drive winding M4 electrically connected to the AC sub-drive winding M3.
  • the multi-stage rotor includes at least a first rotor segment M1 and a second rotor segment M2 that are coaxially disposed and have the same diameter/different
  • the AC sub-drive winding M3 and the DC sub-drive winding M4 respectively drive the first rotor segment M1 and the second rotor segment M2.
  • the AC sub-drive winding M3 is at least a three-phase winding, and the first end of each phase winding of the three-phase winding is connected to the controller; the three-phase input port of the rectifier is separated and connected between the tail ends of each phase winding of the three-phase winding, the rectifier The DC output port is connected to the driving winding M4; the AC sub-drive winding M3 comprises a U phase, a V phase and a W phase, and the first end of each phase winding is electrically connected to the first controller 14; unlike the conventional motor, the AC sub-drive winding M3 The tail ends of each phase winding are separated from each other and respectively correspond to three-phase input ports electrically connected to the first rectifier 17, and the three-phase output ports of the first rectifier 17 are electrically connected to the DC sub-drive windings M4, so that the AC sub-drive windings M3 are three The tail end of the phase winding forms a star-connected neutral point in the DC-divided drive winding M4; that is, the
  • the multi-segment rotor directly drives the wheels on one side of the axle; the rated speeds of the multi-segment rotors of several single-wheel direct drive assemblies are different to form different speed drives for the wheels.
  • the first rotor segment M1 is provided with a permanent magnet or a first rotor winding
  • the second rotor segment M2 is provided with a second rotor winding
  • the end of the second rotor winding is connected with the commutator M22
  • the commutator M22 Two carbon brushes M21 are connected on both sides;
  • the DC divided drive winding M4 and the second rotor winding constitute one of a shunt winding, a series excitation winding, a hybrid excitation winding and a separately excited winding.
  • the first rotor segment M1 A permanent magnet is arranged thereon, and the DC drive winding M4 and the second rotor winding form a series winding.
  • the diameter of the first rotor segment M1 is greater than or equal to the diameter of the second rotor segment M2.
  • the connected motor is provided with two groups, including a first connected motor M and a second connected motor M' having the same structure and electrical connection, and the first connected motor M and the second connected motor M' are respectively connected. Drive different wheels on both sides of the axle.
  • a first permanent magnet is disposed on the first rotor segment M1 of the first connected motor M and the second connected motor M′, and a second rotor winding is disposed on the second rotor segment M2, and the DC divided drive winding M4 and the second rotor winding are disposed.
  • the electrical connection forms a series excitation winding; the main DC division of the first connected motor M drives the winding M3.
  • the rated speed of the rotor segment is different between the first conjoined motor M and the isotropic winding of the second conjoined motor M' or between the different windings.
  • the rated speed between the first connected motor M and the first rotor segment M1 of the second connected motor M′ is set to be different or the rated speed between the second rotor segments M2 is different, or the first connected motor is set.
  • the rated rotational speed between the first rotor segment M1 of M and the second rotor segment M2 of the second connected motor M' is different, or the first rotor segment M2 and the second connected motor M of the first connected motor M are set.
  • the rated speed between the second rotor segments M1 is different.
  • the DC drive motor includes a first DC drive motor b and a second DC drive motor c, and the first DC drive motor b and the AC minute.
  • the output shaft 10 of the drive motor a is coaxially connected to the reduction gear box 30 of the front axle, and the input and output reduction ratio of the front axle reduction gearbox 30 is 2.2-4.5, the preferred reduction ratio is 2.5-3.7, and the output of the second DC drive motor c is The shaft is connected to the electric vehicle rear axle differential through the second reduction gear box 30', and the input and output reduction ratio of the rear axle second reduction gear box 30' is 2.05:1.
  • each phase winding of the AC sub-drive motor a is divided into two line groups, and the two line groups respectively correspond to three-phase input ports electrically connecting the first rectifier 17 and the second rectifier 17', and the first rectifier 17 and the second
  • the DC output ports of the rectifier 17' are electrically connected to the first DC drive motor b and the second DC drive motor c, respectively, such that the first DC drive motor b and the second DC drive motor c form an electrical parallel structure.
  • the second DC drive motor c is a DC series motor, and the rated speed of the second DC drive motor c is set to 3500 rpm.
  • first DC drive motor b and the second DC drive motor c may also be connected in series, and the first DC drive motor b and the second DC drive motor c are respectively brushed.
  • Magnetic DC motor and DC series motor, brushed permanent magnet DC motor including stator, rotor, slip ring and brush, permanent magnet and brush are arranged on the stator, armature winding and slip ring are arranged on the rotor, and DC output from the rectifier is passed.
  • the brush and the slip ring enter the armature winding to generate armature current.
  • the magnetic field generated by the armature current interacts with the stator permanent magnet to generate electromagnetic torque, so that the motor rotates to drive the load; or the armature winding is arranged on the stator, and the rotor is placed on the rotor. a magnet; the first end of the armature winding is connected to the slip ring, and the tail end of the armature winding is separated, and the series excitation motor is connected as the electric energy input of the series excitation motor, so that the AC sub-drive motor a, the first DC sub-drive motor b and the The two DC drive motors c are synchronously driven in series.
  • the current divided by the AC drive motor a mainly passes through the first DC drive motor b with a large torque, and the large current output by the controller 14 causes the AC drive motor a to be in a semi-start state.
  • the first DC drive motor b that is coupled to drive is sufficient to generate the torque required for the vehicle to start.
  • the current in the AC drive motor a is mainly distributed to the first DC drive motor b through the first rectifier 17;
  • the AC drive motor a is full speed
  • the first DC drive motor b rotates coaxially at a high speed.
  • the characteristics of the brushed permanent magnet DC motor show that the low speed first DC drive motor b is almost unnecessary due to the high speed.
  • the current is driven.
  • the current in the AC sub-drive motor a is mainly distributed to the second DC-segment drive motor c through the second rectifier 17', and the second DC-splitter drive motor c is driven at a higher speed and AC.
  • the drive motor a outputs a high rotational speed in common.
  • the speed of the DC sub-drive motor in series with the AC sub-drive motor will increase, and the AC drive motor will be more resistant, and the DC drive motor will increase in speed, when one or more of them
  • the excess current of the blocked current will be distributed to the unimpeded motor in real time, so that the speed of the blocked DC drive motor decreases, while the speed of the unblocked AC drive motor and DC drive motor Torque boost.
  • the speed of the blocked motor decreases, the torque output does not decrease, the electric energy output by the electric vehicle controller is greatly reduced, and the cruising range of the electric vehicle is improved.
  • the control experiment is as follows: Take an ordinary electric vehicle that does not use the method of the embodiment of the present application as an example, the vehicle has a weight of 1.3-1.5 tons, a power supply voltage of 300V, and the AC sub-drive motor a is a three-phase synchronous motor, and the reduction ratio of the axle is 6: 1, the wheel circumference is 1.65m, when the AC minute drive motor a rated speed is 6000rpm, the wheel speed is 1000rpm, the vehicle travel speed is 99km/h, and the above-mentioned car is driven at a constant speed of 40km/h, the car The driving current exceeds 12A, the power reaches 3.6kw, and when the car runs at a constant speed of 60km/h, the driving current of the car exceeds 20A, the power reaches 6kw, and the driving current of the car when the car runs at a constant speed of 80km/h.
  • the power reaches 10.5kw.
  • the reduction ratio of the axle is reduced to 3:1, the rest is configured according to the above specifications.
  • the motor speed reaches 3000 rpm, the vehicle can reach 90 km/h. Because the power is constant, the higher the vehicle speed, the smaller the driving force. Therefore, this configuration is insufficiently motivated when the vehicle starts or climbs, and the current at the start or climb is far beyond the normal operating current.
  • the car has a weight of 1.5 tons, the maximum speed of the car exceeds 100km/h, the power supply voltage is 300V, and the wheel circumference is 1.65m.
  • the AC drive motor a is a three-phase synchronous motor, and the AC drive is driven.
  • the rated speed of the motor a is 6000 rpm
  • the first DC drive motor b is coaxially connected with the AC drive motor a
  • the rated speed of the first DC drive motor b is 2800 rpm
  • the rated speed of the second DC drive motor c is 2 It is 3500 rpm
  • the input-output reduction ratio of the front axle reduction gearbox 30 is 3.2:1
  • the input-output reduction ratio of the rear axle second reduction gearbox 30' is 2.05:1.
  • the rotational speeds of the wheels reach 1875 rpm, 875 rpm and 1707 rpm, respectively, and the driving speed of the vehicle can reach 185 km/h, respectively.
  • km/h km/h
  • the excitation motor has the characteristics of low rotation speed, large torque and wide voltage input.
  • the AC drive motor a and the second DC drive motor c have higher rotation speed and less torque.
  • the DC sub-drive motor b has a low rotation speed and a large torque as the main power output, and the AC drive motor a decelerates 6 times output with the same driving force, and is driven by the AC sub-drive motor a and the second DC sub-drive motor c.
  • the motor needs small torque and high speed output.
  • the AC sub-drive motor a and the second DC sub-drive motor c are used as the main power output, and the first DC sub-drive motor b Light-load auxiliary output or no-load operation to drive the vehicle at high speed.
  • the maximum energy efficiency range of the motor is about 1/3 of the rated speed.
  • the axle reduction ratio used in this application is lower.
  • the AC sub-drive motor a runs at a lower speed.
  • the operating speed of the AC sub-drive motor a is only 1/3 of that of the ordinary vehicle, the motor is more energy efficient, and the excitation motor of different parameters is connected in series through the tail to form different gear outputs, realizing low-speed, high-torque and high-speed and small-torque output. , to achieve the shift function of ordinary cars.
  • the driving force of the motor changes with the change of the resistance of the motor, the electric energy is automatically distributed in the motor to realize the stepless variable speed drive, and the high-efficiency output of the motor is always maintained.
  • the vehicle of the above scheme is tested.
  • the driving current of the car is 6.5-8A.
  • the driving current of the car is 10- 14A, when the car runs at a constant speed of 80 km/h, the driving current of the car is 18-22A, which can save about 50% of the power consumption of the vehicle using the electric drive system of the embodiment compared with the conventional vehicle. Fewer, loading the car with the same capacity can double the distance traveled by the vehicle.
  • the parameters of the excitation motor were changed and tested.
  • the vehicle has a weight of 1.5 tons, a power supply voltage of 300V, and a wheel circumference of 1.65 meters.
  • the AC sub-drive motor a is a three-phase synchronous motor.
  • the rated speed of the driving motor a is 6000 rpm
  • the first DC minute driving motor b is coaxially connected with the AC minute driving motor a
  • the rated speed of the first DC minute driving motor b is 2800 rpm
  • the rated speed of the second DC minute driving motor c is 2800 rpm
  • front axle reduction gearbox 30 input and output reduction ratio is 3.2:1
  • the output shaft of the second DC sub-drive motor c is connected to the electric vehicle rear axle differential through the second reduction gearbox 30'
  • the second reduction gearbox 30' is input.
  • the output reduction ratio is 2.05:1.
  • the rotational speeds of the wheels reach 1875 rpm, 875 rpm and 1365 rpm, respectively, and the driving speed of the vehicle can reach 185 km/h, respectively.
  • the AC minute drive motor a and the second DC minute drive motor c have a higher rotation speed and a smaller torque
  • the first DC minute drive motor b has a lower rotation speed
  • the torque is a main power output.
  • the equivalent driving force when the AC sub-drive motor a is decelerated by 6 times is obtained, and is driven by the AC sub-drive motor a and the second auxiliary motor to realize rapid acceleration or climbing of the vehicle. After the vehicle speed is increased, it only needs to resist wind resistance and friction. The motor needs small torque and high speed output. At this time, the AC sub-drive motor a and the second DC sub-drive motor c are used as the main power output, and the first DC sub-drive motor b Light-load auxiliary output or no-load operation to drive the vehicle at high speed.
  • the maximum energy efficiency range of the motor is about 1/3 of the rated speed. Compared with the axle of an ordinary vehicle, the axle reduction ratio used in this application is lower.
  • the AC sub-drive motor a runs at a lower speed.
  • the operating speed of the AC sub-drive motor a is only 1/3 of that of the ordinary vehicle, the motor is more energy efficient, and the excitation motor of different parameters is connected in series through the tail to form different gear outputs, realizing low-speed, high-torque and high-speed and small-torque output. , to achieve the shift function of ordinary cars.
  • the driving force of the motor changes with the change of the resistance of the motor, the electric energy is automatically distributed in the motor to realize the stepless variable speed drive, and the high-efficiency output of the motor is always maintained.
  • the vehicle of the above scheme is tested. When the car is running at a constant speed of 40 km/h, the driving current of the car is 6.5-8A.
  • the driving current of the car is 10- 14A
  • the driving current of the car is 18-22A.
  • the vehicle powered by the scheme can save about 50% of electricity and consume less power. Loading the same capacity battery can double the distance traveled by the vehicle.
  • the excitation motor parameters and the axle transmission ratio were changed and tested.
  • the vehicle has a weight of 1.5 tons, a power supply voltage of 300V, a wheel circumference of 1.65 meters, and an AC sub-drive motor a of three.
  • Phase synchronous motor, AC sub-drive motor a rated speed is 6000 rpm
  • the first DC sub-drive motor b is coaxially connected with the AC sub-drive motor a
  • the rated speed of the first DC sub-drive motor b is 2800 rpm
  • the second DC sub-score The rated speed of the drive motor c is 2800 rpm
  • the input-output reduction ratio of the front axle reduction gearbox 30 is 3.2:1
  • the input reduction ratio of the second reduction gearbox 30' is 1.64:1.
  • the rotational speeds of the wheels reach 1875 rpm, 875 rpm and 1707 rpm, respectively, and the driving speed of the vehicle can reach 185 km/h, respectively.
  • km/h km/h
  • the excitation motor has the characteristics of low rotation speed, large torque and wide voltage input.
  • the AC drive motor a and the second DC drive motor c have higher rotation speed and less torque.
  • the DC sub-drive motor b has a low rotation speed and a large torque as the main power output, and the same driving force can be obtained when the AC sub-drive motor a decelerates 6 times, and is driven by the AC sub-drive motor a and the second auxiliary motor. Rapid acceleration or climbing of the vehicle. After the vehicle speed is increased, it only needs to resist wind resistance and friction. The motor needs small torque and high speed output. At this time, the AC sub-drive motor a and the second DC sub-drive motor c are used as the main power output, and the first DC sub-drive motor b Light-load auxiliary output or no-load operation to drive the vehicle at high speed. The maximum energy efficiency range of the motor is about 1/3 of the rated speed.
  • the axle reduction ratio used in this application is lower.
  • the AC sub-drive motor a runs at a lower speed.
  • the operating speed of the AC sub-drive motor a is only 1/3 of that of the ordinary vehicle, the motor is more energy efficient, and the excitation motor of different parameters is connected in series through the tail to form different gear outputs, realizing low-speed, high-torque and high-speed and small-torque output. , to achieve the shift function of ordinary cars.
  • the driving force of the motor changes with the change of the resistance of the motor, the electric energy is automatically distributed in the motor to realize the stepless variable speed drive, and the high-efficiency output of the motor is always maintained.
  • the vehicle of the above scheme is tested.
  • the driving current of the car is 6.5-8A.
  • the driving current of the car is 10- 14A, when the car is driving at a constant speed of 80 kilometers per hour, the driving current of the car is 18-22A.
  • the vehicle using the solution can save more than 50% of electricity and consume less power.
  • the same capacity battery is loaded, which can greatly extend the mileage of the vehicle.
  • the AC sub-drive motor a, the DC sub-drive motor b, and the second DC sub-drive motor c are connected to the reduction gear box 30 of the front axle at the same time.
  • the gears of different speed ratios, the output shafts of the AC sub-drive motor a and the DC sub-drive motor b are coaxially connected to the gear with an input-output reduction ratio of 3.2:1, and the output shaft of the second DC-divided drive motor c is connected to the input-output reduction ratio.
  • the three motors realize different speed driving of the front axle by connecting gears of different speed ratios in the same reduction gear box 30, and the electric drive system of the present embodiment can achieve the same energy saving effect in FIG.
  • the DC drive motor includes a first DC drive motor b, a second DC drive motor c, and a third DC drive motor d.
  • the three are electrically connected in series, that is, the DC output port of the rectifier 17 is connected to the third DC drive motor d, and then the second DC drive motor c and the first DC drive motor b are sequentially connected in series with the third DC drive motor d.
  • the DC output port of the rectifier 17 is connected to the first DC sub-drive motor b, and then the second DC sub-drive motor c and the third DC-divided drive motor d are sequentially connected in series with the first DC-divided drive motor b.
  • the DC drive motor includes a first DC drive motor b, a second DC drive motor c, a third DC drive motor d, and a fourth DC.
  • the sub-drive motor e, the four are electrically connected in series, the first DC sub-drive motor b and the AC sub-drive motor a are coaxially connected in series to drive the reduction gear box on the front axle of the automobile, and the reduction ratio of the reduction gear box is 2.5-3.7;
  • the DC output port of the rectifier 17 is connected to the first DC drive motor b, and then the second DC drive motor c, the third DC drive motor d and the fourth DC drive motor e are electrically connected in series, and the first DC drive is driven.
  • the motor b, the third DC divided drive motor d and the fourth DC divided drive motor e are coaxially connected in series to drive the rear axle of the automobile.
  • the difference of the solution is that the DC output port of the rectifier 17 is connected with the first DC drive motor b, the second DC drive motor c and the third DC drive motor d.
  • the first DC sub-drive motor b, the second DC sub-drive motor c, and the third DC sub-drive motor d are electrically connected in series.
  • the rectifier 17 and the DC sub-drive motor constitute a three-phase winding central node of the AC sub-drive motor, that is, a neutral point of the three-phase winding Y, the current is input from the three-phase input port of the rectifier 17, and the current is sequentially connected in series with the rectifier 17 a DC drive motor b, a second DC drive motor c and a third DC drive motor d, and a first DC drive motor b, a second DC drive motor c and a third DC drive motor d
  • the rotor rotates the output, and the current through the first DC drive motor b, the second DC drive motor c, and the third DC drive motor d returns to the rectifier 17 and enters the AC drive motor a.
  • the rated speed of the AC sub-drive motor a can be set to 1200 rpm
  • the rated speed of the first DC sub-drive motor b can be set to 1200 rpm
  • the rated speed of the second DC-divided drive motor c can be set to 2400 rpm
  • the third DC The rated speed of the sub-drive motor d can be set to 3600 rpm.
  • the output shaft 10 of the AC sub-drive motor a is coaxially connected to the tail end of the first DC sub-drive motor b.
  • the output shaft of the first DC sub-drive motor b is coaxially connected to a generator 31 through the main shaft 35, and the AC sub-drive motor a coaxially drives the generator 31 coaxially with the first DC drive motor b, and the output shafts of the second DC drive motor c and the third DC drive motor d drive the spindle 35 through a pulley having a reduction ratio, having a reduction ratio
  • the pulley causes the second DC drive motor c and the third DC drive motor d to be driven at the same speed as the spindle.
  • the second DC drive motor c and the third DC drive motor d function to reduce and increase the torque.
  • the AC sub-drive motor a is driven together with the DC sub-drive motor to drive the generator 31.
  • the generator 31 can also be replaced with an axle or other mechanical load.
  • the AC sub-drive motor a uses a permanent magnet AC synchronous motor
  • the AC sub-drive motor a uses an inductor as a Hall sensor
  • a first DC sub-drive motor b uses an inductor as a Hall sensor
  • a second DC sub-drive motor c uses an inductor as a Hall sensor
  • the sub-drive motor d uses a DC series excitation motor and a brushed permanent magnet DC motor.
  • the first DC sub-drive motor b, the second DC sub-drive motor c and the third DC sub-drive motor d can also use a shunt motor. Excitation motor and compound excitation motor.
  • the AC sub-drive motor a rotor uses a permanent magnet to generate a constant magnetic field.
  • the stator is provided with a stator coil composed of three-phase windings. When the three-phase winding is connected to the alternating current, a three-phase magnetic field is formed on the stator, and a rotating stator is formed according to the vector sum.
  • the constant magnetic field of the rotor interacts with the rotating stator combined magnetic field, the same polarity repels, and the opposite sex attracts, so that the rotor rotates following the rotor combined magnetic field to form a continuous rotation.
  • the current flowing from any phase line of the AC sub-drive motor a passes through the neutral point of the three-phase winding and flows out of the motor from the other phase lines of the motor.
  • the DC motor stator uses permanent magnets or uses an excitation coil.
  • the excitation coil is supplied with constant DC current, a constant magnetic field like the permanent magnet is generated in the excitation coil.
  • the rotor of the motor is wound with a coil.
  • the rotor coil generates a constant magnetic field.
  • the stator magnetic field interacts with the rotor magnetic field, and the same polarity repels, and the opposite sex attracts and drives the rotor to rotate.
  • the rectifier 17 converts the three-phase current into a direct current, and the output direct current is equivalent to 2.34 times the single-phase alternating current.
  • the current flowing through the first motor and the second motor is the same, and the torque power is conventionally distributed.
  • the DC drive motor is serially connected to the rear end of the AC drive motor a, the AC drive motor a
  • the neutral point opens the connection rectifier 17 and the DC sub-drive motor b, so that the current flowing into the AC sub-drive motor a must pass through the rectifier 17 and the DC sub-drive motor b, and the rectifier 17 and the serial-connected DC drive motor form a neutral point.
  • the current loop generates an additional magnetic field in the DC sub-drive motor to drive the DC drive motor rotor to rotate.
  • the three-phase rectifier 17 is used to convert the three-phase electric current into a unidirectional direct current, and the output current is 2.34 times that of the single-phase current.
  • High-output and high-efficiency output at the same time, the rectifier 17 and the DC sub-drive motor constitute an external neutral point of the three-phase AC sub-drive motor a to ensure the normal drive of the motor.
  • the AC sub-driver motor a and the DC sub-driver motor can select different rated speeds according to the speed and torque requirements, or use the same rated speed and speed of the motor, because the series connection naturally forms a difference in rotational speed.
  • the difference of the scheme is that the AC sub-drive motor a is connected in series with a single DC sub-drive motor b, and the rated speed of the AC sub-drive motor a can be set to 1200 rpm, and the DC sub-drive motor b
  • the rated speed can be set to 2400 rpm, specifically: the output shaft 3 of the AC sub-drive motor a is connected to the generator 31 through the main shaft 35, and the output shaft of the DC sub-drive motor b is connected to the main shaft 35 through a pulley having a reduction ratio, of course, Generator 31 can also be replaced with an axle or other mechanical load.
  • the AC sub-drive motor a adopts a permanent magnet AC synchronous motor
  • the AC sub-drive motor a adopts an inductor as a Hall sensor
  • the DC sub-drive motor adopts a DC series-excited motor.
  • the DC sub-drive motor can also adopt a shunt motor, which is an excitation motor.
  • compound excitation motor can also adopt a shunt motor, which is an excitation motor.
  • the difference in this scheme is that a set of rectifiers 17 are arranged in parallel, and the output of the rectifier 17 is connected to a battery for recharging.
  • the power source 12 is connected to the input end of the power source 12 of the controller 14, and the three-phase AC output end of the controller 14 is connected to the first end of the three-phase winding of the AC sub-drive motor a, and the neutral point of the three-phase winding is opened to form three Single-phase tail ends, each tail end is divided into two groups, forming two three-phase tail ends (64, 65, 66) and (67, 68, 69), and two three-phase tail ends are respectively connected to one rectifier 17, wherein The output of one rectifier 17 is connected to a DC divided drive motor, the output of the other rectifier 17 is connected to a battery, and the rectifier 17 is configured to convert the alternating current input by the controller 14 through the three-phase winding of the AC drive motor a into direct current, and the
  • the difference of this embodiment is that two AC drive motors are provided, specifically: the power source 12 is connected to the input of the controller 14, and the output of the controller 14 is connected to the first.
  • the three-phase input of the AC sub-drive motor a, the tail end of the three-phase winding in the first AC sub-drive motor a is connected to the three-phase input of the second AC sub-drive motor a', and the output shaft of the first AC sub-drive motor a
  • the output shaft of the second AC sub-drive motor a' is coaxially connected in series; the structure of the second AC sub-drive motor a' is identical to that of the first AC sub-drive motor a, and the tail of the three-phase winding in the second AC sub-drive motor a'
  • the terminal is connected to the three-phase input port of the three-phase rectifier 17, the DC output port of the three-phase rectifier 17 is connected with a DC sub-drive motor b, and a DC-shaped capacitor group 24 is also connected in parallel
  • the difference of the present scheme is that the first AC sub-drive motor a has three rectifiers connected to the tail end of the three-phase winding.
  • the power source 12 is connected to the input of the controller 14, the output of the controller 14 is connected to the three-phase input of the first AC minute drive motor a, and the three-phase neutral point of the first AC minute drive motor a is turned on to form three
  • a single tail end output line is divided into two groups, one of which is connected to a set of inputs of the second AC sub-drive motor a' which is identical to the motor structure, and the remaining set of lines are connected to the first rectifier 17,
  • the DC output port of the first rectifier 17 is connected to the power source 12, and the other input of the second AC drive motor a' is connected to the second rectifier 17'.
  • the second rectifier 17' is connected to the second DC drive motor.
  • the three-phase winding tail end of the second AC sub-drive motor a' is connected to the three-phase input of the third rectifier 17", and the third rectifier 17" output is connected to the first DC-divided drive motor b.
  • the first rectifier 17 is short-circuited by the battery to form a partial neutral point of the first AC-segment drive motor a, and the other neutral point of the first AC-segment drive motor a is composed of a neutral point of the second AC-segment drive motor a'.
  • the output of the three rectifiers 17" is short-circuited by the first DC-splitting drive motor b to constitute a neutral point of the second AC-segment drive motor a.
  • the difference in this embodiment is that the three-phase tails of the AC sub-drive motor a are connected in parallel with the plurality of rectifiers 17. Specifically, the power source 12 is connected to the input of the controller 14, the output of the controller 14 is connected to the three-phase input of the AC sub-drive motor a, and the neutral point of the three-phase winding of the AC sub-drive motor a is opened to form three three-phase tails.
  • Each tail end line is divided into 4 groups to form 4 sets of three-phase tail ends, and four sets of three-phase tail ends are respectively connected with three-phase inputs of four rectifiers 17, wherein one of the rectifier DC output ports is connected to the DC sub-drive motor b, and the remaining The output of the rectifier 17 is respectively connected to a farad capacitor group 24, and the three farad capacitor groups 24 are connected in series and then connected in parallel to both ends of the power source 12.
  • the rectifier 17 constitutes a partial neutral point circuit of the AC sub-drive motor a through the DC sub-drive motor b, and the other part of the neutral point circuit is constituted by the Farad capacitor group 24 and the power source 12 connected by the rectifier 17.
  • the three rectifiers 17 independently charge the Farad capacitor bank 24, and then increase the overall voltage of the capacitor bank 24 by series connection, and charge the power source 12 in parallel with the power source 12.
  • the AC sub-drive motor a adopts a permanent magnet AC synchronous motor
  • the AC sub-drive motor a adopts an inductor as a Hall sensor
  • the DC sub-drive motor adopts a DC series-excited motor.
  • the DC sub-drive motor can also adopt a shunt motor, which is an excitation motor.
  • compound excitation motor can also adopt a shunt motor, which is an excitation motor.
  • the output shaft of the first AC sub-drive motor a is connected to the front axle of the vehicle, the second AC sub-drive motor a' is connected to the rear axle of the vehicle, and the three-phase windings of the first AC sub-drive motor a are three independent single-phase In the line structure, 5% of the three-phase windings are used as the power generation line, and the remaining line is used as the drive line.
  • the three-phase output of the first controller 14 is connected to the three-phase drive line of the first AC drive motor a, three-phase The other end of the drive line is connected to a node, three power lines of the three-phase winding are connected to the three-phase input port of the rectifier 17, the DC output port of the rectifier 17 is connected to the Farad capacitor group 24, and the second AC drive motor a' is Three independent single-phase windings, the input and output lines of each winding are taken out from the casing, the input end of the second controller 14' is connected with a speed regulating pedal 29, and the three-phase output of the second controller 14' is connected to The two-phase input line of the second AC-driven motor a', the three-phase output line of the second AC-segment drive motor a' is connected to the farad capacitor group 24 through the rectifier 17, and the Farad capacitor group 24 is provided with two and the two are connected in series , after the series of Farah Capacitor bank 24 is coupled to the DC input of second controller 14
  • the battery 12 supplies power to the first AC drive motor a, and drives the first AC drive motor a to operate.
  • the power line of the first AC drive motor a sends power, and is rectified and output to the Farad capacitor.
  • the voltage in the Farah capacitor group is low, and the second AC drive motor a' cannot be driven to run at the same speed.
  • the second AC drive motor a rotates due to the drag of the rear axle, due to the cutting in the process.
  • the magnetic induction line generates power, and the power is sent through the rectifier 17 to flow into the farad capacitor group 24.
  • the difference of the scheme is that the three-phase winding tail end of the AC sub-drive motor a is connected in parallel with the plurality of rectifiers 17.
  • the DC output port of the rectifier 17 is connected to the Farad capacitor group 24, specifically:
  • the power source 12 is connected to the DC input terminal of the controller 14, the three-phase AC output of the controller 14 is connected to the three-phase input of the AC sub-drive motor a, and the three-phase windings in the AC sub-drive motor a are three independent single-phase windings.
  • the other end of the three-phase winding of the AC sub-drive motor a is taken out from the casing to form three independent output lines.
  • Each of the three independent output lines is divided into two lines of 20% and 80%, of which 80%
  • the three single-phase lines are taken out and connected to the three-phase input port of a rectifier 17, and the three-phase input port of the rectifier 17 is also connected with a short-circuit switch 26, and the output of the rectifier 17 is connected to a farad capacitor group 24.
  • the remaining 20% of the three single-phase lines are connected to two secondary rectifiers.
  • the two secondary rectifiers are defined as a first rectifier 17' and a second rectifier 17", respectively, and the three-phase windings are respectively named U-phase. , V phase, W phase, wherein U phase and V phase are respectively connected to the input end of the first rectifier 17' and the input end of the second rectifier 17", wherein the W phase line is further divided by 50% and 50%, respectively Connected to the other input terminal of the first rectifier 17' and the second rectifier 17".
  • a short circuit switch 26 is connected, and the short circuit switch 26 is connected to the U phase.
  • the AC sub-drive motor a uses a permanent magnet AC synchronous motor, and the AC sub-drive motor a uses an inductor as a Hall sensor.
  • the AC sub-drive motor a and the DC sub-drive motor b are coaxially connected, and the axle differential 30 is synchronously driven.
  • the output of the differential 30 is respectively connected with a one-way bearing 33, 33', and the output of the differential 30 is passed through a single
  • the bearings 33 are connected to the wheels of the vehicle, and the AC drive motor a, the DC drive motor b, the differential 30, the one-way bearings 33, 33' and the wheels constitute the front axle drive or the rear axle drive of the vehicle.
  • the motor used in the AC sub-drive motor a is a DC brushless permanent magnet synchronous motor, and the DC sub-drive motor b uses a DC series-excited motor.
  • the AC sub-drive motor a can also use an AC asynchronous motor, and the DC sub-drive motor b can also use a DC. Shunt motor, its excitation motor or hybrid motor.
  • the vehicle By providing the one-way bearings 33, 33' at both ends of the differential 30, when the throttle is released, the vehicle enters a coasting state, at which time the motor does not transmit between the wheels due to the action of the one-way bearings 33, 33'.
  • the conventional driving structure is prevented from driving the motor through the gearbox when the vehicle is coasting, so that the motor has a serious drag effect on the wheel, so that the vehicle speed is rapidly decreased, the vehicle sliding distance is reduced, the mileage of the vehicle is reduced, and energy is wasted.
  • the AC sub-drive motor a and the DC sub-drive motor b are electrically connected in series, when driving, the current is driven by the AC sub-drive motor a, and then converted into DC power in the rectifier 17 to enter the DC sub-drive motor b, in the DC sub-drive motor
  • the path magnetic field is established in b to drive the DC drive motor b.
  • the rectifier 17 and the DC drive motor b constitute an external neutral point of the AC drive motor a, so that the AC drive motor a can be driven normally.
  • the AC minute drive motor a is subjected to a large driving resistance, and at this time, the controller 14 needs to increase the input of the drive current, and the current input to the AC drive motor a passes through the DC.
  • the sub-drive motor b, the DC sub-drive motor b is a low-speed high-torque motor.
  • the input power is mainly distributed to the DC sub-drive motor b, and the DC-driven motor b outputs the main power.
  • the AC sub-drive motor a The driving resistance received is gradually reduced, the input power of the AC sub-drive motor a is gradually increased, and the output is gradually transferred to the AC sub-drive motor a.
  • the DC-drive motor b When the vehicle speed reaches the critical value, the DC-drive motor b is running at no load. The input power is all loaded on the AC sub-drive motor a, and the output is realized by the AC sub-drive motor a. In this way, automatic free distribution of the drive power is realized.
  • the motor consumes a large amount of electric energy during the start of the vehicle, causing severe heat generation and energy waste.
  • the low-speed motor is used purely, the maximum speed of the vehicle cannot be increased, and the speed is high.
  • electricity is consumed in a large amount, it also causes serious heat generation and energy waste.
  • the drive system of this scheme at low speed, the increased power input is much smaller than that of a pure high-speed motor.
  • the power consumption is also smaller than that of a pure low-speed motor.
  • Vehicles, and the speed of the vehicle is higher.
  • the driving power consumption of the present application is relatively stable, and has better gliding ability, which can save 30-50% of power consumption compared with the conventional electric vehicle, and effectively extend the mileage of the vehicle.
  • the difference between this solution is that the DC drive motor b is also directly powered by the metal air battery 12, and the DC output port of the metal air battery 12 is also connected to the DC terminal of the rectifier 17.
  • a part of the power supply 12 of the DC sub-drive motor b is supplied from the metal-air battery 12, and the other part is from the current flowing through the AC-segment drive motor a.
  • the DC sub-drive motor b and the controller 14 constitute a neutral point required for the three-phase winding of the AC sub-drive motor a.
  • the AC sub-drive motor a is a three-phase AC permanent magnet synchronous motor
  • the DC sub-drive motor b is a DC series-excited motor.
  • the DC sub-drive motor b can also use a shunt motor, an excitation motor and a hybrid excitation motor.
  • 12 is a battery pack.
  • the excitation motor has a low starting voltage, a wide voltage adaptation range, and can operate at a minimum of 5V. It can be directly driven by a metal air battery 12, and has a low rotational speed and a large torque for auxiliary driving.
  • the AC sub-drive motor has a high rotational speed and a small torque. At high speeds, it is powered by batteries.
  • the power source 12 is connected to the DC input of the controller 14, and the signal input end of the controller 14 is connected to a speed regulating pedal 29, and the three-phase windings of the first AC minute driving motor a are three independent single-phase line structures, each phase winding
  • the input line and the output line are taken out from the casing, and the three-phase output of the controller 14 is connected to the three-phase input line of the first AC sub-drive motor a, and the three three-phase output lines are connected with a short-circuit switch 26, and three three-phase
  • the output head is also connected in parallel to the three-phase input port of the controller 14 to the rectifier 17, the DC output port of the rectifier 17 is connected to the Farad capacitor group 24; the signal input end of the second controller 14' is connected to the same speed regulating pedal 29,
  • the three-phase output of the second controller 14' is connected to the three-phase input line of the second AC-segment drive motor a', and the second AC-segment drive motor a' has three independent
  • the short circuit switch 26 Before the first AC minute drive motor a is started, the short circuit switch 26 is connected, so that the tail ends of the three-phase windings of the AC sub-drive motor a are connected together to form a central node of the three-phase winding of the AC sub-drive motor a, when the first AC minute After the driving motor a is started, the short-circuiting switch 26 is turned off, and the alternating current of the driving motor a through the alternating current is converted into direct current through the rectifier 17 and flushed into the farad capacitor group 24. After a period of time, the voltage in the farad capacitor group 24 is increased.
  • the short circuit switch 26 is disconnected, and the second AC minute drive motor a' is powered by the Farad capacitor group 24, which saves power of the power source 12 and can be boosted, and the rectifier 17 and the second AC drive motor a' constitute the first AC.
  • the neutral point circuit of the driving motor a is divided so that the first AC minute driving motor a can be driven normally, and the second AC minute driving motor a' is formed by the rectifier 17 and the second controller 14' to form a neutral point circuit to ensure the second AC drive motor a' normal drive.
  • the application provides a drive system including an AC motor unit, a rectifier assembly, and a DC motor group;
  • a drive system comprising: an AC motor unit, a rectifier assembly and a DC motor group; the AC motor group includes at least one AC sub-drive motor; the DC motor group includes at least one DC sub-drive motor; and the rectification assembly includes at least one a rectifier; at least one AC sub-drive motor, at least one rectifier, and at least one DC sub-drive motor are sequentially connected to form a drive line; the rectifier includes a multi-phase input terminal, a DC output terminal, and a DC input terminal, and the AC sub-drive motor At least a multi-phase winding is provided, wherein a first end of each phase winding of the multi-phase winding is configured to be connected to the power input end; the target DC drive motor is electrically connected between the DC output end of the target rectifier and the DC input end; The end of each phase winding of the AC sub-driver is connected to the multi-phase input port of the target rectifier; the target AC drive motor, the target rectifier and the target DC drive motor all belong to the same drive line
  • the power input end may be any kind of power source (such as a mobile power source such as a battery, and some chemical batteries); the power input end may also be a connecting device (such as a plug that can be connected to the power source and obtain power from the power source). , electrical connectors, etc.).
  • a mobile power source such as a battery, and some chemical batteries
  • the power input end may also be a connecting device (such as a plug that can be connected to the power source and obtain power from the power source). , electrical connectors, etc.).
  • the DC input terminal and the DC output terminal refer to the inflow end of the current and the outflow end of the current, respectively.
  • the DC output terminal may be a connection line at the upper portion of the load
  • the DC input terminal may be a connection line at the lower portion of the load.
  • the AC sub-drive motor, the rectifier and the DC sub-drive motor are sequentially connected in sequence, and both refer to the electric energy output end of the AC sub-drive motor and the three-phase (multi-phase) input end of the rectifier.
  • the connection, the DC drive motor is electrically connected between the DC output and the DC input.
  • the power supplied by the battery (power supply) is usually in the form of direct current.
  • the target AC sub-drive motor, the target rectifier and the target DC sub-drive motor are sequentially connected to form a drive line.
  • the target AC drive motor can be one or two, or more, and each target AC drive motor should be equipped with a separate rectifier, that is, if there are two target AC motors, Then the target rectifier should also be two, and each target AC motor should be connected to the corresponding target rectifier respectively (the head end of each phase winding of the target AC motor is connected to the power input terminal).
  • the number of DC drive motors may be one or more.
  • the target DC drive motor may be a DC motor, or may be connected, connected, and mixed by multiple DC motors.
  • AC drive motor A and AC drive motor B two rectifiers (rectifier A and rectifier B) should be configured; further, the AC drive motor A is in the multiphase winding.
  • the first end of each phase winding is configured to be connected to the power input end of the rectifier A; the first end of each phase winding of the AC drive motor B is configured to be connected to the power input end of the rectifier B; the electrical connection of the DC drive motor Between the DC output of the rectifier A and the DC input, and the DC drive motor are electrically connected between the DC output of the rectifier B and the DC input.
  • the AC sub-drive motor and the DC sub-drive motor are connected by a rectifier, so that the AC sub-drive motor and the DC sub-drive motor can form a circuit similar to the series. Further, when the AC drive motor and the DC drive motor simultaneously drive the same vehicle (driving the wheels in the same vehicle), the ratio of the actual output power of the AC drive motor to the output power of the DC drive motor will vary with the environment. Change and automatically adjust. Furthermore, the drive system provided by the present application can simultaneously utilize the characteristics of the AC sub-drive motor and the DC sub-drive motor to improve overall efficiency.
  • the technical purpose of the drive system provided by the present application is to enable the power usage of the target DC drive motor and the power usage of the target AC drive motor to be automatically adjusted under different load conditions.
  • the load condition may refer to the force or control signal of the drive motor (AC drive motor, and/or DC drive motor) to any one or more external environments to the drive motor.
  • the above effects can be achieved by setting the motor parameters of the target AC drive motor and the motor parameters of the target DC drive motor.
  • the motor parameters of the target AC drive motor and the motor parameters of the target DC drive motor it is also possible to achieve the power supplied by the power input terminal at least partially in the target DC drive motor under different load conditions.
  • the target AC is driven between the drive motors.
  • the power of the DC motor group (or the power of the target DC drive motor) can be appropriately limited to improve the efficiency of the entire drive system. .
  • the power of the DC motor group should not be too large.
  • the vehicle speed is 20 in the general motion state (the drive system drives the vehicle).
  • the power of the target DC drive motor is about 1.5%-40% of the total power; wherein, the total power is the sum of the power of the target DC drive motor and the power of the target AC drive motor;
  • the motor parameters of the target AC drive motor include at least one or more of the following, the rated speed and the reduction ratio; the motor parameters of the target DC drive motor include one or more of the following, the rated speed and the reduction ratio.
  • the overall system has higher energy utilization and higher driving force. More preferably, the overall efficiency is higher when the power of the target DC drive motor is about 5%-20% of the total power.
  • the power ratio of the target DC drive motor is greater than the power share of the target DC drive motor when the vehicle is at a constant speed. It is also to adjust the overall performance of the drive system as much as possible, so that the overall system has higher energy utilization and higher driving force.
  • the present application also provides a reasonable value of the apparent power of the target DC drive motor and the target AC drive motor, that is, the apparent power of the target DC drive motor. It is about 70w-800w; so that the apparent power of the target AC drive motor is about 3000w-4500w (when the vehicle speed driven by the drive system is about 20-140KM/h, the target DC drive motor and the target AC drive motor) The apparent power is the above value).
  • the apparent power of the constrained target DC drive motor and the target AC drive motor can also be achieved by setting the motor parameters of the target AC drive motor and the motor parameters of the target DC drive motor.
  • the working performance of the driving system can be improved by performing any one or two or three of the following three limited manners.
  • the first limitation is that the speed reduction ratio/rated speed of the at least one DC drive motor and the at least one AC drive motor in the same drive line are different;
  • the reduction ratio of the DC drive motor and the AC drive motor is different, or the rated speed is different, or the reduction ratio and rated speed of the DC drive motor and the AC drive motor are set according to a certain rule, and the drive system can be guaranteed.
  • the overall efficiency of the work is different, or the rated speed is different, or the reduction ratio and rated speed of the DC drive motor and the AC drive motor are set according to a certain rule, and the drive system can be guaranteed.
  • the actual output speed of at least one of the DC drive motors in the same drive line is greater than the actual output speed of the at least one AC drive motor;
  • the peak value of the actual output speed of at least one of the DC drive motors in the same drive line is greater than the peak value of the actual output speed of the at least one AC drive motor.
  • the actual output speed may refer to the average value of the output speed or the real-time output value of the speed; the peak value of the actual output speed refers to the maximum value of the real-time output value of the speed.
  • the focus of the drive system provided by the present application is that the AC sub-drive motor, the rectifier and the DC sub-drive motor are sequentially connected in order to form a turbulent flow (at different load conditions, at least part of the electric energy provided by the electric energy input end is at the target).
  • the system architecture of the DC drive motor and the target AC drive motor is shifted to some extent, and the advantages of the AC drive motor and the DC drive motor are utilized at the same time, for example, the acceleration process of the vehicle In the middle, the DC drive motor can provide more torque, so that the AC drive motor can more easily increase the speed.
  • the drive system provided by the present application can be used on any type of vehicle, such as a two-wheeled vehicle, a tricycle, a four-wheeled vehicle, or a vehicle having a number of wheels greater than or equal to five.
  • vehicle such as a two-wheeled vehicle, a tricycle, a four-wheeled vehicle, or a vehicle having a number of wheels greater than or equal to five.
  • the following paragraphs will explain the driving method of a driving circuit including the sequential connection of the AC sub-drive motor, the rectifier and the DC sub-drive motor.
  • the AC sub-drive motor and the DC sub-drive motor described in the following paragraphs are Belongs to the drive line.
  • the driving system provided by the present application is a two-wheeled vehicle that drives the front and rear wheels (the two wheels are arranged in the order of the forward direction of the vehicle, or the connection between the two wheels is parallel to the advancing direction of the vehicle),
  • the AC sub-drive motor It can drive any wheel of a two-wheeled vehicle.
  • the DC drive motor can also drive any wheel of the two-wheeled vehicle (AC drive motor and DC drive motor can drive either wheel at the same time).
  • the AC sub-drive motor can drive either of the two-wheeled vehicles.
  • the wheel and DC drive motor can also drive any one of the two wheels (AC drive motor and DC drive motor can drive either wheel at the same time); or AC drive motor and DC drive motor can drive both Parallel wheels (AC split drive motor and DC split drive motor are connected to the two parallel wheels by the same reducer and drive the two wheels).
  • the driving system provided by the present application is a driving type tricycle (the three wheels of the tricycle are arranged in a shape of a figure in a bird's-eye view), the AC sub-drive motor can drive any one of the wheels of the tricycle, and the DC sub-drive motor can also drive the tricycle.
  • AC drive motor and DC drive motor can drive either wheel at the same time
  • AC drive motor can drive two parallel wheels of the tricycle
  • DC drive motor can also drive two parallel wheels of the tricycle
  • AC drive motor and DC drive motor can drive these two parallel wheels at the same time
  • AC drive motor can drive two parallel wheels
  • DC drive motor can drive a separate wheel (three-wheel drive in parallel) One wheel outside the two wheels); or the DC drive motor can drive two parallel wheels, and the AC drive motor can drive a separate wheel (one wheel other than the parallel two wheels in the tricycle).
  • the driving system provided by the present application is to drive a linear tricycle (the three wheels of the tricycle are arranged in a straight line in a bird's-eye view)
  • the AC sub-drive motor can drive any one of the wheels of the tricycle
  • the DC sub-drive motor can also drive the tricycle. Any one of the wheels (AC drive motor and DC drive motor can drive either wheel at the same time).
  • the AC sub-drive motor can drive any one of the four-wheeled vehicles (left front wheel, left rear wheel, right front) Wheel or right rear wheel), DC drive motor can also drive any wheel of a four-wheeled vehicle.
  • AC drive motor and DC drive motor can drive one wheel at the same time. It can also be AC drive motor to drive four-wheel drive.
  • Two parallel wheels (such as driving the left front wheel and the right front wheel at the same time, or driving the left rear wheel and the right rear wheel at the same time, when the AC drive motor is connected to the front/rear axle of the driven vehicle through the reducer
  • a similar DC drive motor can also drive two parallel wheels of the four-wheel drive, that is, the AC drive motor and the DC drive motor. It is possible to drive the specified two parallel wheels at the same time; of course, the AC sub-drive motor can drive any one of the four-wheeled vehicles, and the DC-drive motor can also drive two parallels of the four-wheeled vehicle. Or the DC drive motor can drive any wheel of a four-wheeled vehicle, and the AC drive motor can also drive two parallel wheels of a four-wheel drive.
  • the AC minute driving motor and the DC minute driving motor can drive any one of the wheels, or an AC minute, as described above. Both the drive motor and the DC drive motor can drive any two parallel wheels.
  • the DC drive motor refers to a DC motor or a motor group composed of at least two DC motors, and at least one of the drive lines and the motor group.
  • the two DC motors may be connected in series between the DC input terminal and the DC output terminal of the same rectifier; or may be connected in parallel between the DC input terminal and the DC output terminal of the same rectifier; or may be a hybrid connection Between the DC input and the DC output of the same rectifier.
  • the driving method of the DC drive motor and the AC drive motor in a certain drive line may have two or more drive lines.
  • the driving method of the DC sub-drive motor and the AC sub-drive motor in each drive line can be set in the manner described in the above paragraphs. It should be noted that regardless of the number of driving lines, in general, each AC sub-drive motor should be equipped with a separate rectifier (a rectifier can only be connected to one AC sub-drive motor).
  • the content in the above paragraphs is merely a general list of driving methods, and there may be other equivalent driving methods to achieve similar solutions, but these equivalent methods are all within the scope of the application idea of the solution provided by the present application.
  • the specific use cases will be described separately. From the perspective of the driven vehicle, it can be divided into three cases, namely, driving a two-wheeled vehicle, driving a tricycle, and driving a four-wheeled vehicle, which will be separately described below.
  • the two-wheeler is driven.
  • the drive system When the drive system provided by the present application is applied to a two-wheeled vehicle, if the two wheels of the two-wheeled vehicle are disposed back and forth (such as the two-wheeled electric vehicle shown in FIG. 36), the drive system usually has only one drive line (usually In this case, the number of drive lines in any of the embodiments mentioned in the present solution is merely exemplary. For example, there is only one drive line as described in this paragraph, and in fact, there may be two or more drive lines. However, the increase in the number of drive lines does not substantially improve the overall performance. Therefore, only one drive line is used to drive the vehicle. When there are multiple drive lines, the publicly available drive line settings can be referred to.
  • the setting circuit comprises an AC sub-drive motor, a rectifier and a DC sub-drive motor; an AC sub-drive motor, a rectifier and a DC sub-drive motor are sequentially connected in sequence;
  • the specific driving method may be that the AC sub-drive motor drives the front wheel of the two-wheeled vehicle (the output shaft of the AC sub-drive motor is directly or indirectly connected to the front wheel of the vehicle, and the drive motor (DC sub-drive motor) mentioned in this application Or AC drive motor) driving a certain wheel means that the output shaft of the drive motor is directly or indirectly connected to the axle of the wheel, so that the drive motor can directly or indirectly power the wheel, or Directly or indirectly output power to the wheel); the DC drive motor drives the rear wheel of the two-wheeled vehicle (the output shaft of the DC drive motor is directly or indirectly connected to the rear wheel of the vehicle);
  • the AC sub-drive motor drives the rear wheel of the two-wheeled vehicle;
  • the DC sub-drive motor drives the front wheel of the two-wheeled vehicle;
  • the AC sub-drive motor and the DC sub-drive motor simultaneously drive the rear wheels of the two-wheeled vehicle;
  • the two drive motors mentioned in the solution provided by the present application (the two drive motors can all be AC drive motors) It can also be a DC drive motor. It can also be an AC drive motor.
  • a DC drive motor. Driving a certain wheel at the same time means that the two drive motors are connected to the rear wheel through the same reducer, or two. The output shafts of the drive motors are coaxially connected;
  • AC sub-drive motor and the DC sub-drive motor simultaneously drive the front wheels of the two-wheeled vehicle.
  • the drive system When the drive system provided by the present application is applied to a two-wheeled vehicle, if the two wheels of the two-wheeled vehicle are disposed on the left and right (such as a balance car, an electric wheelchair, etc.), the drive system usually has only one drive line, and this drive line
  • the utility model comprises an AC sub-drive motor, a rectifier and a DC sub-drive motor; an AC sub-drive motor, a rectifier and a DC sub-drive motor are sequentially connected in sequence;
  • the specific driving method may be that the AC sub-drive motor drives the left wheel of the two-wheeled vehicle; the DC sub-drive motor drives the right wheel of the two-wheeled vehicle (in the solution provided by the present application, when one wheel has only one drive motor (AC drive) When the motor and the DC sub-drive motor are driven, the drive motor is preferably a hub motor);
  • the AC sub-drive motor drives the right wheel of the two-wheeled vehicle
  • the DC sub-drive motor drives the left wheel of the two-wheeled vehicle
  • AC sub-drive motor and the DC sub-drive motor simultaneously drive the right wheel of the two-wheeled vehicle
  • AC sub-drive motor and the DC sub-drive motor simultaneously drive the left wheel of the two-wheeled vehicle
  • the AC sub-drive motor and the DC sub-drive motor simultaneously drive two wheels of the two-wheeled vehicle (the AC sub-drive motor and the DC sub-drive motor are simultaneously connected by the same reducer and drive the left and right wheels).
  • the driving mode of the AC sub-drive motor and the DC sub-drive motor (which wheel is driven by the AC sub-drive motor, and which wheel the DC-drive motor drives) is arbitrary, when the two drive motors are driven.
  • the two drive motors need to be coaxially connected into one connected motor; when two drive motors / one drive motor need to drive two wheels at the same time (the two wheels must be symmetrically set) , you need to connect at the same time through the reducer and drive the two wheels.
  • the following describes the driving mode of the three-wheeled vehicle in several cases.
  • the three wheels of the tricycle are arranged in a shape of a character.
  • only the front wheel and the two rear wheels of the tricycle are described.
  • the driving modes of the two front wheels and one rear wheel tricycle can be referred to.
  • the manner disclosed in this example is defined before and after the vehicle's heading direction.
  • There are various driving methods for driving a tricycle which are described below.
  • the drive system has only one drive line, and the drive line includes an AC sub-drive motor, a rectifier and a DC sub-drive motor; an AC sub-drive motor, a rectifier and a DC sub-drive motor are sequentially connected in sequence;
  • the AC sub-drive motor drives the front wheel of the vehicle, and the DC sub-drive motor drives the left rear wheel or the right rear wheel of the vehicle;
  • the DC sub-drive motor drives the front wheel of the vehicle
  • the AC sub-drive motor drives the left rear wheel or the right rear wheel of the vehicle
  • the AC sub-drive motor drives the front wheel of the vehicle
  • the DC sub-drive motor simultaneously drives the left rear wheel and the right rear wheel of the vehicle
  • a driving motor in the embodiment of the present application simultaneously drives two wheels on the vehicle, referring to It is the drive motor that drives the two wheels simultaneously through the reducer, and the two wheels that are simultaneously driven are usually the front wheels or both are rear wheels
  • the DC sub-drive motor drives the front wheel of the vehicle, and the AC sub-drive motor simultaneously drives the left rear wheel and the right rear wheel of the vehicle;
  • the AC sub-drive motor and the DC sub-drive motor simultaneously drive the front/left rear/right rear wheels of the vehicle;
  • the AC sub-drive motor and the DC sub-drive motor simultaneously drive the two rear wheels of the vehicle (the AC sub-drive motor and the DC sub-drive motor are simultaneously connected through the same reducer and drive the two rear wheels);
  • the second way: the drive system has only one drive line.
  • This drive line includes two AC drive motors (first AC drive motor, second AC drive motor) and two rectifiers (first rectifier and second rectifier).
  • a DC sub-drive motor the first AC sub-drive motor, the first rectifier and the DC sub-drive motor are sequentially connected; the second AC sub-drive motor, the second rectifier and the DC sub-drive motor are sequentially connected; the DC sub-drive motor is electrically connected Between the DC output terminal of the first rectifier and the DC input terminal, and the DC sub-drive motor is electrically connected between the DC output terminal of the second rectifier and the DC input terminal;
  • the first AC minute drive motor is connected to the rear axle of the driven vehicle through a speed reducer (the first AC minute drive motor is connected to the two rear wheels of the driven vehicle through the speed reducer) to simultaneously power the two rear wheels of the driven vehicle.
  • the second AC sub-drive motor is connected to the rear axle of the driven vehicle through the speed reducer to simultaneously supply power to the two rear wheels of the driven vehicle (the first AC sub-drive motor and the second AC sub-drive motor can share the same a speed reducer);
  • the DC drive motor can be connected to any one of the wheels (such as the front wheel, the left rear wheel or the right rear wheel) to provide power to the wheel, or the DC drive motor can also be driven by the reducer and the driven vehicle.
  • the two rear wheels are connected to simultaneously supply power to the two rear wheels of the driven vehicle; at this time, the driving motors (AC sub-drive motor and DC sub-drive motor) that simultaneously drive the two rear wheels can share the same reducer;
  • the first AC minute drive motor is coupled to the left rear wheel of the driven vehicle through a speed reducer to provide power to the left rear wheel of the driven vehicle; and the second AC minute drive motor is coupled to the right rear wheel of the driven vehicle.
  • the DC sub-drive motor can be connected to any one of the wheels to provide power to the wheel; at this time, drive the drive motor of one of the rear wheels at the same time (an AC sub-drive motor) And DC drive motor) can share the same reducer;
  • the first AC minute drive motor is coupled to the right rear wheel of the driven vehicle through a speed reducer to provide power to the right rear wheel of the driven vehicle; and the second AC minute drive motor is coupled to the left rear wheel of the driven vehicle.
  • the DC sub-drive motor can be connected to any one of the wheels (such as the front wheel, the left rear wheel or the right rear wheel) to provide power to the wheel;
  • a rear wheel drive motor (an AC sub-drive motor and a DC sub-drive motor) can share the same reducer;
  • the first AC minute drive motor is coupled to the front wheel of the driven vehicle to provide power to the front wheel of the driven vehicle; and the second AC minute drive motor is coupled to the front wheel of the driven vehicle to the driven vehicle
  • the front wheel provides power;
  • the DC drive motor can be connected to any one of the wheels to power the wheel, or the DC drive motor can be simultaneously connected to the two rear wheels of the driven vehicle through the reducer to be driven simultaneously
  • the two rear wheels of the vehicle provide power; at this time, the drive motors (AC split drive motor and DC split drive motor) that drive the two rear wheels at the same time can share the same reducer;
  • AC sub-drive motor to the front wheel to provide power to the front wheel of the driven vehicle; and another AC sub-drive motor to connect with any other wheel (left rear/right rear wheel) to correspond The wheels provide power.
  • the DC drive motor is set in the same way as in the previous paragraph (the DC drive motor can be connected to any one of the wheels and power the wheel).
  • the drive system has two drive lines (a first drive line and a second drive line), and the first drive line includes a first AC drive motor, a first rectifier and a first DC drive that are sequentially connected in sequence a second driving circuit comprising a second AC sub-drive motor, a second rectifier and a second DC sub-drive motor sequentially connected in sequence;
  • the first DC sub-drive motor is electrically connected to the DC output of the first rectifier and the DC input Between the ends, and the second DC sub-drive motor is electrically connected between the DC output end of the second rectifier and the DC input end;
  • the first AC minute drive motor is connected to the rear axle of the driven vehicle through a speed reducer (the first AC minute drive motor is connected to the two rear wheels of the driven vehicle through the speed reducer) to simultaneously power the two rear wheels of the driven vehicle.
  • the second AC sub-drive motor is connected to the rear axle of the driven vehicle through the speed reducer to simultaneously supply power to the two rear wheels of the driven vehicle (the first AC sub-drive motor and the second AC sub-drive motor can share the same a speed reducer);
  • the first DC drive motor can be connected to any one of the wheels (such as the front wheel, the left rear wheel or the right rear wheel) to provide power to the wheel, or the first DC drive motor can also pass
  • the speed reducer is coupled to the two rear wheels of the driven vehicle to simultaneously supply power to the two rear wheels of the driven vehicle;
  • the second DC minute drive motor can be coupled to any one of the wheels (such as the front wheel, the left rear wheel or the right rear wheel) To power the wheel, or the second DC drive motor can also be connected to the two rear
  • the first AC minute drive motor is coupled to the left rear wheel of the driven vehicle to provide power to the left rear wheel of the driven vehicle; and the second AC minute drive motor is coupled to the right rear wheel of the driven vehicle to The right rear wheel of the driven vehicle is powered;
  • the first DC minute drive motor can be coupled to any one of the wheels (such as the front wheel, the left rear wheel or the right rear wheel) to provide power to the wheel;
  • the second DC minute drive motor It can be connected to any one of the wheels (such as the front wheel, the left rear wheel or the right rear wheel) to power the wheel; at this time, the driving motors (AC drive motor and DC drive motor) that drive the two rear wheels at the same time can Sharing the same reducer;
  • first AC minute drive motor is coupled to the right rear wheel of the driven vehicle to provide power to the right rear wheel of the driven vehicle
  • second AC minute drive motor is coupled to the left rear wheel of the driven vehicle to The left rear wheel of the driven vehicle is powered
  • first DC minute drive motor can be coupled to any one of the wheels (such as the front wheel, the left rear wheel or the right rear wheel) to provide power to the wheel
  • the second DC minute drive motor It can be connected to any one of the wheels (such as the front wheel, the left rear wheel or the right rear wheel) to power the wheel; at this time, the driving motors (AC drive motor and DC drive motor) that drive the two rear wheels at the same time can Sharing the same reducer;
  • the first AC minute drive motor is coupled to the front wheel of the driven vehicle to provide power to the front wheel of the driven vehicle; and the second AC minute drive motor is coupled to the front wheel of the driven vehicle to the driven vehicle
  • the front wheel provides power;
  • the first DC drive motor can be connected to any one of the wheels (such as the front wheel, the left rear wheel or the right rear wheel) to provide power to the wheel;
  • the second DC drive motor can be combined with either Wheels (such as the front wheel, left rear wheel or right rear wheel) are connected to provide power to the wheel; at this time, the driving motors (AC sub-drive motor and DC sub-drive motor) that simultaneously drive the two rear wheels can share the same deceleration Device
  • the first AC minute drive motor is coupled to the front wheel of the driven vehicle to provide power to the front wheel of the driven vehicle; and the second AC minute drive motor is coupled to the left rear wheel/right rear wheel of the driven vehicle, Providing power to the left rear wheel/right rear wheel of the driven vehicle;
  • the first DC minute drive motor may be coupled to any one of the wheels (such as the front wheel, the left rear wheel or the right rear wheel) to provide power to the wheel;
  • the second DC drive motor can be connected to any one of the wheels (such as the front wheel, the left rear wheel or the right rear wheel) to provide power to the wheel; at this time, the drive motors of the two rear wheels are simultaneously driven (AC drive motor and DC sub-drive motors can share the same reducer.
  • the four-wheeler is driven.
  • the four-wheeled vehicle includes four wheels (the structure of the four-wheeled vehicle is the same as that of the conventional home-type sedan, train, etc. on the market, and the wheel top view structure of the four-wheeled vehicle can be as shown in FIG. Shown) are the left front wheel, the right front wheel, the left rear wheel and the right rear wheel, respectively, wherein the left front wheel and the right front wheel are arranged in parallel.
  • driving methods for driving a four-wheeled vehicle which are described below.
  • the drive system has only one drive line, and the drive line includes an AC sub-drive motor, a rectifier and a DC sub-drive motor; an AC sub-drive motor, a rectifier and a DC sub-drive motor are sequentially connected in sequence;
  • the AC sub-drive motor drives any one of the wheels of the vehicle (left front wheel, right front wheel, left rear wheel or right rear wheel), and the DC sub-drive motor drives any one of the wheels of the vehicle (left front wheel, right front wheel, left rear wheel) Or right rear wheel).
  • the AC sub-drive motor simultaneously drives the left front wheel and the right front wheel of the vehicle
  • the DC sub-drive motor simultaneously drives the left front wheel and the right front wheel of the vehicle (may be an AC sub-drive motor and a DC sub-drive motor through the same reducer) Simultaneously driving the left front wheel and the right front wheel of the vehicle);
  • the AC sub-drive motor simultaneously drives the left rear wheel and the right rear wheel of the vehicle;
  • the DC sub-drive motor simultaneously drives the left rear wheel and the right rear wheel of the vehicle (the AC sub-drive motor and the DC sub-drive motor may pass through the same reducer) Simultaneously driving the left rear wheel and the right rear wheel of the vehicle);
  • the AC sub-drive motor simultaneously drives the left front wheel and the right front wheel of the vehicle;
  • the DC sub-drive motor simultaneously drives the left rear wheel and the right rear wheel of the vehicle (may be an AC sub-drive motor that simultaneously drives the left front of the vehicle through a reducer) a wheel and a right front wheel; and, the DC drive motor simultaneously drives the left rear wheel and the right rear wheel of the vehicle through a reducer;
  • the AC sub-drive motor simultaneously drives the left rear wheel and the right rear wheel of the vehicle;
  • the DC sub-drive motor simultaneously drives the left front wheel and the right front wheel of the vehicle (may be an AC sub-drive motor that simultaneously drives the left rear of the vehicle through a reducer) a wheel and a right rear wheel; and, the DC drive motor simultaneously drives the left front wheel and the right front wheel of the vehicle through a reducer;
  • the AC sub-drive motor simultaneously drives two wheels parallel to the vehicle (such as the left rear wheel and the right rear wheel; or the left front wheel and the right front wheel); the DC sub-drive motor drives any one of the wheels of the vehicle;
  • the DC sub-drive motor simultaneously drives two wheels parallel to the vehicle (such as the left rear wheel and the right rear wheel; or the left front wheel and the right front wheel); the AC sub-drive motor drives any one of the wheels of the vehicle.
  • the second way: the drive system has only one drive line.
  • This drive line includes two AC drive motors (first AC drive motor, second AC drive motor) and two rectifiers (first rectifier and second rectifier).
  • a DC sub-drive motor the first AC sub-drive motor, the first rectifier and the DC sub-drive motor are sequentially connected; the second AC sub-drive motor, the second rectifier and the DC sub-drive motor are sequentially connected; the DC sub-drive motor is electrically connected Between the DC output terminal of the first rectifier and the DC input terminal, and the DC sub-drive motor is electrically connected between the DC output terminal of the second rectifier and the DC input terminal;
  • the first AC minute drive motor drives any one of the wheels of the vehicle (left front wheel, right front wheel, left rear wheel or right rear wheel);
  • the second AC minute drive motor drives any one of the wheels of the vehicle (left front wheel, right front wheel) , the left rear wheel or the right rear wheel);
  • the DC sub-drive motor drives any one of the wheels of the vehicle (left front wheel, right front wheel, left rear wheel or right rear wheel), or the DC sub-drive motor simultaneously drives the two front wheels, or Drive both rear wheels at the same time.
  • the first AC minute driving motor drives the left front wheel of the vehicle
  • the second AC minute driving motor drives the right front wheel of the vehicle
  • the DC minute driving motor drives the two rear wheels
  • the first AC minute driving motor drives the left of the vehicle.
  • the rear wheel, the second AC sub-drive motor drives the right rear wheel of the vehicle, and the DC sub-drive motor drives the two front wheels.
  • the three motors are preferably hub motors.
  • the first AC minute drive motor is coupled to the rear axle of the driven vehicle through the speed reducer (the first AC minute drive motor is coupled to the two rear wheels of the driven vehicle through the speed reducer) to simultaneously drive the two rear wheels of the driven vehicle.
  • the second AC minute drive motor is coupled to the rear axle of the driven vehicle through the speed reducer to simultaneously supply power to the two rear wheels of the driven vehicle (the first AC minute drive motor and the second AC minute drive motor may Sharing the same reducer);
  • the DC drive motor can be connected to the two front wheels/two rear wheels of the driven vehicle through the reducer to simultaneously supply power to the two front wheels/two rear wheels of the driven vehicle;
  • the drive motors AC split drive motor and DC split drive motor that drive the two front wheels/two rear wheels can share the same reducer;
  • the first AC minute drive motor is coupled to the front axle of the driven vehicle through the speed reducer (the first AC minute drive motor is coupled to the two front wheels of the driven vehicle through the speed reducer) to simultaneously drive the two front wheels of the driven vehicle.
  • the second AC minute drive motor is coupled to the front axle of the driven vehicle through the speed reducer to simultaneously supply power to the two front wheels of the driven vehicle (the first AC minute drive motor and the second AC minute drive motor may be Sharing the same reducer);
  • the DC drive motor can be connected to the two front wheels/two rear wheels of the driven vehicle through the reducer to simultaneously supply power to the two front wheels/two rear wheels of the driven vehicle;
  • the drive motors AC split drive motor and DC split drive motor that drive the two front wheels/two rear wheels can share the same reducer;
  • the first AC minute drive motor is coupled to the front axle of the driven vehicle through the speed reducer (the first AC minute drive motor is coupled to the two front wheels of the driven vehicle through the speed reducer) to simultaneously drive the two front wheels of the driven vehicle.
  • the second AC minute drive motor is coupled to the rear axle of the driven vehicle through the speed reducer to simultaneously supply power to the two rear wheels of the driven vehicle (the first AC minute drive motor and the second AC minute drive motor may Sharing the same reducer);
  • the DC drive motor can be connected to the two front wheels/two rear wheels of the driven vehicle through the reducer to simultaneously supply power to the two front wheels/two rear wheels of the driven vehicle;
  • the drive motors AC split drive motor and DC split drive motor that drive the two front wheels/two rear wheels can share the same reducer;
  • the first AC minute drive motor is coupled to the rear axle of the driven vehicle through the speed reducer (the first AC minute drive motor is coupled to the two rear wheels of the driven vehicle through the speed reducer) to simultaneously drive the two rear wheels of the driven vehicle.
  • Providing power; and a second AC minute drive motor is coupled to one of the two front wheels of the driven vehicle to provide power to the front wheel;
  • the DC minute drive motor is coupled to one of the two front wheels of the driven vehicle To provide power to the front wheel;
  • the first AC minute drive motor is coupled to the front axle of the driven vehicle through the speed reducer (the first AC minute drive motor is coupled to the two front wheels of the driven vehicle through the speed reducer) to simultaneously drive the two front wheels of the driven vehicle.
  • Providing power; and a second AC minute drive motor is coupled to one of the two rear wheels of the driven vehicle to provide power to the rear wheel;
  • the DC minute drive motor is coupled to one of the two rear wheels of the driven vehicle To provide power to the rear wheel;
  • the drive system has two drive lines (a first drive line and a second drive line), and the first drive line includes a first AC drive motor, a first rectifier and a first DC drive that are sequentially connected in sequence a second driving circuit comprising a second AC sub-drive motor, a second rectifier and a second DC sub-drive motor sequentially connected in sequence;
  • the first DC sub-drive motor is electrically connected to the DC output of the first rectifier and the DC input Between the ends, and the second DC sub-drive motor is electrically connected between the DC output end of the second rectifier and the DC input end;
  • the first AC sub-drive motor drives any one of the wheels of the vehicle (left front wheel, right front wheel, left rear wheel or right rear wheel), or the first AC sub-drive motor simultaneously drives the two front wheels or simultaneously drives the two rear wheels;
  • the second AC sub-drive motor drives any one of the wheels of the vehicle (left front wheel, right front wheel, left rear wheel or right rear wheel), or the second AC sub-drive motor simultaneously drives the two front wheels or simultaneously drives the two rear wheels;
  • the first DC sub-drive motor drives any one of the wheels of the vehicle (left front wheel, right front wheel, left rear wheel or right rear wheel) or DC sub-drive motor to simultaneously drive the two front wheels or simultaneously drive the two rear wheels;
  • the DC sub-drive motor drives any one of the wheels of the vehicle (left front wheel, right front wheel, left rear wheel or right rear wheel), or the DC sub-drive motor simultaneously drives the two front wheels or simultaneously drives the two rear wheels.
  • the first AC minute drive motor is coupled to the rear axle of the driven vehicle through the speed reducer (the first AC minute drive motor is coupled to the two rear wheels of the driven vehicle through the speed reducer) to simultaneously drive the two rear wheels of the driven vehicle.
  • the second AC minute drive motor is coupled to the rear axle of the driven vehicle through the speed reducer to simultaneously supply power to the two rear wheels of the driven vehicle (the first AC minute drive motor and the second AC minute drive motor may Sharing the same reducer;
  • the first DC drive motor can be connected to the two front wheels/two rear wheels of the driven vehicle through the reducer to simultaneously provide power to the two front wheels/two rear wheels of the driven vehicle;
  • the two DC drive motor can be connected to the two front wheels/two rear wheels of the driven vehicle through the reducer to simultaneously supply power to the two front wheels/two rear wheels of the driven vehicle; at this time, the two front wheels/two are simultaneously driven.
  • the rear wheel drive motor (AC split drive motor and DC split drive motor) can share the same reducer;
  • the first AC minute drive motor is coupled to the front axle of the driven vehicle through the speed reducer (the first AC minute drive motor is coupled to the two front wheels of the driven vehicle through the speed reducer) to simultaneously drive the two front wheels of the driven vehicle.
  • the second AC minute drive motor is coupled to the front axle of the driven vehicle through the speed reducer to simultaneously supply power to the two front wheels of the driven vehicle (the first AC minute drive motor and the second AC minute drive motor may be Sharing the same reducer;
  • the first DC drive motor can be connected to the two front wheels/two rear wheels of the driven vehicle through the reducer to simultaneously provide power to the two front wheels/two rear wheels of the driven vehicle;
  • the two DC drive motor can be connected to the two front wheels/two rear wheels of the driven vehicle through the reducer to simultaneously supply power to the two front wheels/two rear wheels of the driven vehicle; at this time, the two front wheels/two are simultaneously driven.
  • the rear wheel drive motor (AC split drive motor and DC split drive motor) can share the same reducer;
  • the first AC minute drive motor is coupled to the front axle of the driven vehicle through the speed reducer (the first AC minute drive motor is coupled to the two front wheels of the driven vehicle through the speed reducer) to simultaneously drive the two front wheels of the driven vehicle.
  • the second AC minute drive motor is coupled to the rear axle of the driven vehicle through the speed reducer to simultaneously supply power to the two rear wheels of the driven vehicle (the first AC minute drive motor and the second AC minute drive motor may Sharing the same reducer;
  • the first DC drive motor can be connected to the two front wheels/two rear wheels of the driven vehicle through the reducer to simultaneously provide power to the two front wheels/two rear wheels of the driven vehicle;
  • the two DC drive motor can be connected to the two front wheels/two rear wheels of the driven vehicle through the reducer to simultaneously supply power to the two front wheels/two rear wheels of the driven vehicle; at this time, the two front wheels/two are simultaneously driven.
  • the rear wheel drive motor (AC split drive motor and DC split drive motor) can share the same reducer;
  • the first AC minute drive motor is coupled to the front axle of the driven vehicle through the speed reducer (eg, the first AC minute drive motor is coupled to the two front wheels of the driven vehicle through the speed reducer) to simultaneously drive to the front of the driven vehicle.
  • the wheel is powered;
  • the second AC minute drive motor may be coupled to one of the two rear wheels of the driven vehicle or the two front wheels to provide power to the rear wheel/two front wheels;
  • the first DC minute drive motor It may be connected to one of the two rear wheels of the driven vehicle or the two front wheels to power the rear wheel/two front wheels;
  • the second DC minute drive motor may be in the two rear wheels of the driven vehicle One rear wheel or two front wheels are connected to provide power to the rear wheel/two front wheels;
  • the first AC minute drive motor is coupled to the rear axle of the driven vehicle through the speed reducer (eg, the first AC minute drive motor is coupled to the two rear wheels of the driven vehicle through the speed reducer) to simultaneously drive the two sides of the driven vehicle.
  • the wheel is powered;
  • the second AC minute drive motor can be coupled to one of the two front wheels of the driven vehicle or the two rear wheels to provide power to the front wheel/two rear wheels;
  • the first DC minute drive motor It may be connected to one of the two front wheels or the two rear wheels of the driven vehicle to provide power to the front wheel/two rear wheels;
  • the second DC minute drive motor may be in the two front wheels of the driven vehicle One front wheel or two rear wheels are connected to power the front wheel/two rear wheels.
  • the first AC minute drive motor is coupled to the left front wheel of the driven vehicle to provide power to the left front wheel
  • the second AC minute drive motor is coupled to the right front wheel of the driven vehicle to the right front
  • the wheel provides power
  • the first DC minute drive motor is coupled to the right rear wheel of the driven vehicle to provide power to the right rear wheel
  • the second AC minute drive motor is coupled to the left rear wheel of the driven vehicle to the left
  • the rear wheel provides power; preferably the four motors are hub motors;
  • the first AC minute drive motor is coupled to the left rear wheel of the driven vehicle to provide power to the left rear wheel
  • the second AC minute drive motor is coupled to the right rear wheel of the driven vehicle to provide the right rear wheel Power
  • the first DC minute drive motor is coupled to the right front wheel of the driven vehicle to provide power to the right front wheel
  • the second AC minute drive motor is coupled to the left front wheel of the driven vehicle to the left front wheel Power is provided; preferably all four motors are hub motors.
  • the number of AC sub-drive motors is generally set according to the manner disclosed in the foregoing implementation manner; the number of DC sub-drive motors may be increased based on the disclosure of the foregoing solution, such as DC points.
  • the number of driving motors may be plural (such as 2, 3, 4, 5 or more).
  • each DC drive motor may be as disclosed in the above scheme.
  • the drive mode of the DC drive motor is set (for example, any DC drive motor can drive either wheel or two front wheels or two rear wheels).
  • the drive system drives the four-wheeled vehicle. (including the left front wheel, the right front wheel, the left rear wheel and the right rear wheel).
  • the motor is usually a hub motor.
  • the motor is usually a non-hub motor:
  • the data of the driving test data and the comparative example in a state of a constant speed of 40 km/h are shown.
  • the drive system is for vehicles weighing 1.2t.
  • the driving system comprises: a serially connected battery, an AC sub-drive motor, a rectifier and three DC sub-drive motors sequentially connected in sequence, and three DC sub-drive motors are connected in series between the DC input end of the rectifier and the DC output end.
  • the AC sub-drive motor and one DC sub-drive motor drive the first two wheels simultaneously through the same reducer, and the other two DC drive motors jointly drive the left rear wheel.
  • the string indicates that the motors are connected in series
  • the tail end indicates that the tail ends of each phase winding in the three-phase winding are separated from each other.
  • the tail ends of each phase winding of the three-phase winding of the AC sub-drive motor are respectively connected to the three-phase of the rectifier.
  • An input port, the DC output port of the rectifier is electrically connected to the DC sub-drive motor. That is, the DC drive motor is connected through a rectifier by means of AC driving the tail section of the motor.
  • the DC drive motor is equivalent to the DC drive motor
  • the AC drive motor is equivalent to the AC drive motor.
  • the drive system is applied to a 1.2t heavy vehicle
  • the reduction ratio of the AC sub-drive motor is 1:3.8; the reduction ratios of the three DC sub-drive motors are 1:1, 1:1 and 1:3.8 (first line data), respectively, or 1:1, 1: 3.8 and 1:1 (second line of data);
  • the rated power of the AC sub-drive motor is 20KW; the rated power of the three DC sub-drive motors is 4KW;
  • the rated speed of the AC sub-drive motor is 3500r/min; the rated speed of the three DC sub-drive motors is 2800r/min.
  • the original vehicle data as compared with Table 1 is: The original car is only equipped with an AC sub-drive motor.
  • the AC sub-drive motor has a rated power of 20 kW, a rated speed of 3500 r/min, and a reduction ratio of 1:6.4.
  • the power consumption per 100 kilometers is: the energy consumption is 9.76Kwh/100km.
  • the driving system comprises: a serially connected battery, an AC sub-drive motor, a rectifier and two DC sub-drive motors (the first DC sub-drive motor and the second DC sub-drive motor) are sequentially connected in sequence, and two DCs are connected.
  • the sub-drive motor is connected in series between the DC input end of the rectifier and the DC output end; the AC sub-drive motor drives the first two wheels simultaneously through the reducer, and the other two DC drive motor output shafts are coaxially connected to jointly drive the right rear wheel.
  • the drive system is applied to a 1.6t heavy vehicle; the AC sub-drive motor has a rated power of 42 kW, a rated speed of 4500 r/min, and a reduction ratio of 1:8.
  • Table 3 the data of the driving test data and the comparative example in a state of uniform speed of 40 km/h are shown.
  • the drive system is for a 1.6t heavy vehicle.
  • the driving system comprises: a serially connected battery, an AC sub-drive motor, a rectifier and three DC sub-drive motors sequentially connected in sequence, and three DC sub-drive motors are connected in series between the DC input end and the DC output end of the rectifier
  • the AC sub-drive motor drives the first two wheels simultaneously through the reducer, and the three DC sub-drive motor output shafts are coaxially connected to drive the right rear wheel.
  • the reduction ratios of the three DC drive motors are 1:1, the rated power is 4KW, and the speed is 2800r/min.
  • the AC power of the AC drive motor is 42 kW, the rated speed is 4500 r/min, and the reduction ratio is 1:8.
  • the three DC drive motors are series-excited motors.
  • Table 4 the data of the driving test data and the comparative example in a state of a constant speed of 40 km/h are shown.
  • the drive system is for a 1.8t heavy vehicle.
  • the driving system comprises: a serially connected battery, an AC sub-drive motor, a rectifier and a DC sub-drive motor sequentially connected in sequence, and a DC sub-drive motor is connected in series between the DC input end and the DC output end of the rectifier.
  • the AC sub-drive motor drives the first two wheels simultaneously through the reducer, and one DC sub-drive motor drives the latter two wheels simultaneously through the reducer.
  • the AC sub-drive motor has a front-end power of 45 kW, a rated speed of 4500 r/min, and a reduction ratio of 1:6.4.
  • Comparative example The original car only uses the above-mentioned AC sub-drive motor to drive the wheels.
  • the power consumption per 100 kilometers is: 13.5Kwh/100km.
  • the driving system comprises: a serially connected battery, an AC sub-drive motor, a rectifier and two DC sub-drive motors (the first DC sub-drive motor and the second DC sub-drive motor) are sequentially connected in sequence, and two DCs are connected.
  • the sub-drive motor is connected in series between the DC input end of the rectifier and the DC output end; the AC sub-drive motor drives the first two wheels simultaneously through the reducer, and the two DC drive motors simultaneously drive the latter two wheels through the reducer.
  • the AC sub-drive motor has a front-end power of 45 kW, a rated speed of 4500 r/min, and a reduction ratio of 1:8.
  • Comparative example The original car only uses the above-mentioned AC sub-drive motor to drive the wheels, and the power consumption per 100 kilometers is: 9.5Kwh/100km.
  • Table 6 the data of the driving test data and the comparative example in a state of a constant speed of 60 km/h are shown.
  • the drive system is for vehicles weighing 1.4t.
  • the driving system comprises: a serially connected battery, an AC sub-drive motor, a rectifier and a DC sub-drive motor sequentially connected in sequence, and a DC sub-drive motor is connected in series between the DC input end and the DC output end of the rectifier.
  • the AC sub-drive motor drives the first two wheels simultaneously through the reducer, and one DC sub-drive motor drives the latter two wheels simultaneously through the reducer.
  • the AC sub-drive motor has a front-end power of 45 kW, a rated speed of 4500 r/min, and a reduction ratio of 1:6.4.
  • Comparative example The original car only uses the above-mentioned AC sub-drive motor (rated power 75KW, rated speed 6000r/min, reduction ratio 1:9.5) to drive the wheels.
  • the power consumption per 100 kilometers is: 9.5Kwh/100km.
  • the driving system comprises two driving lines (the first driving line and the second driving line) and a battery;
  • the first driving line comprises: one AC sub-driving motor (the first AC sub-driving motor) sequentially connected in series, a rectifier (first rectifier) and a DC sub-drive motor (first AC sub-drive motor);
  • the second drive line includes: one AC sub-drive motor (second AC sub-drive motor) sequentially connected in series, a rectifier (second rectifier) and a DC sub-drive motor (second AC sub-drive motor);
  • the first DC sub-drive motor is connected in series between the DC input terminal of the first rectifier and the DC output;
  • the second DC The sub-drive motor is connected in series between the DC input end of the second rectifier and the DC output end;
  • the first AC sub-drive motor drives the left front wheel;
  • the second AC sub-drive motor drives the right front wheel;
  • the first DC sub-drive motor drives the right Rear wheel;
  • the second DC drive motor drives the left rear wheel.
  • Comparative example The original car only uses the above first AC drive motor to drive the wheels, and the power consumption per 100 kilometers is: 9.5Kwh/100km.
  • the driving system comprises: a serially connected battery, an AC sub-drive motor, a rectifier and two DC sub-drive motors (the first DC sub-drive motor and the second DC sub-drive motor) are sequentially connected in sequence, and two DCs are connected.
  • the sub-drive motor is connected in parallel between the DC input end of the rectifier and the DC output end; the AC sub-drive motor and the first DC sub-drive motor are coaxially connected, and the two front wheels are driven together, and the second DC sub-drive motor passes through the reducer Drive the rear two wheels at the same time.
  • Comparative example The original car only uses the AC sub-drive motor (rated power 20KW, rated speed 3500r/min, reduction ratio 1:6.4) to drive the wheels.
  • the power consumption per 100 kilometers is 11.73Kwh/100km.
  • the driving system comprises: a serially connected battery, an AC sub-drive motor, a rectifier and two DC sub-drive motors (the first DC sub-drive motor and the second DC sub-drive motor) are sequentially connected in sequence, and two DCs are connected.
  • the sub-drive motor is connected in series between the DC input end of the rectifier and the DC output end; the AC sub-drive motor drives the front axle connection through the reducer at the same time, and the two DC drive motors simultaneously drive the rear two wheels through the reducer.
  • Comparative example The original car only uses the AC sub-drive motor (rated power 20KW, rated speed 3500r/min, reduction ratio 1:6.4) to drive the wheels.
  • the power consumption per 100 kilometers is 11.73Kwh/100km.
  • the data of the driving test data and the comparative example in a state of a constant speed of 60 km/h are shown.
  • the drive system is for a 1.6t heavy vehicle.
  • the driving system comprises: a serially connected battery, an AC sub-drive motor, a rectifier and two DC sub-drive motors (the first DC sub-drive motor and the second DC sub-drive motor) are sequentially connected in sequence, and two DCs are connected.
  • the sub-drive motor is connected in series between the DC input end of the rectifier and the DC output end; the AC sub-drive motor drives the first two wheels simultaneously through the reducer, and the other two DC drive motor output shafts are coaxially connected to jointly drive the right rear wheel.
  • the AC sub-drive motor has a rated power of 42 kW, a rated speed of 4500 r/min, and a reduction ratio of 1:8.
  • Comparative example The original car only uses the above AC drive motor to drive the two front wheels.
  • the power consumption per 100 kilometers is 10.2Kwh/100km.
  • the first DC drive motor and the second DC drive motor are respectively a permanent magnet carbon brush motor and a series excitation motor;
  • the first DC drive motor and the second DC drive motor are respectively a permanent magnet motor and a series excitation motor; the first DC drive motor and the second DC drive motor pass through the chain Wheel drive
  • the first DC drive motor and the second DC drive motor are respectively a series excitation motor and a permanent magnet motor;
  • the first DC drive motor and the second DC drive motor are respectively a permanent magnet motor and a series excitation motor;
  • the first DC drive motor and the second DC drive motor are respectively a permanent magnet motor and a permanent magnet motor;
  • the first DC drive motor and the second DC drive motor are respectively a series excitation motor and a permanent magnet motor;
  • the first DC drive motor and the second DC drive motor are respectively a series excitation motor and a series excitation motor;
  • the first DC drive motor and the second DC drive motor are respectively a permanent magnet motor and a series excitation motor.
  • the data of the driving test data and the comparative example in a state of a constant speed of 60 km/h are shown.
  • the drive system is for a 1.8t heavy vehicle.
  • the driving system comprises: a serially connected battery, an AC sub-drive motor, a rectifier and two DC sub-drive motors (the first DC sub-drive motor and the second DC sub-drive motor) are sequentially connected in sequence, and two DCs are connected.
  • the sub-drive motor is connected in series between the DC input end of the rectifier and the DC output end; the AC sub-drive motor drives the first two wheels simultaneously through the reducer, and the two DC drive motors simultaneously drive the two rear wheels through the reducer.
  • the AC sub-drive motor has a rated power of 45 kW, a rated speed of 4500 r/min, and a reduction ratio of 1:6.4.
  • Comparative example The original car only uses the above AC drive motor to drive the two front wheels.
  • the power consumption per 100 kilometers is 15.6Kwh/100km.
  • Table 12 the data of the driving test data and the comparative example in a state of a constant speed of 80 km/h are shown.
  • the drive system is for vehicles weighing 1.4t.
  • the driving system comprises two driving lines (the first driving line and the second driving line) and a battery;
  • the first driving line comprises: one AC sub-driving motor (the first AC sub-driving motor) sequentially connected in series, a rectifier (first rectifier) and a DC sub-drive motor (first AC sub-drive motor);
  • the second drive line includes: one AC sub-drive motor (second AC sub-drive motor) sequentially connected in series, a rectifier (second rectifier) and a DC sub-drive motor (second AC sub-drive motor);
  • the first DC sub-drive motor is connected in series between the DC input terminal of the first rectifier and the DC output;
  • the second DC The sub-drive motor is connected in series between the DC input end of the second rectifier and the DC output end;
  • the first AC sub-drive motor drives the left front wheel;
  • the second AC sub-drive motor drives the right front wheel;
  • the first DC sub-drive motor drives the right Rear wheel;
  • the second DC drive motor drives the left rear wheel.
  • Comparative example The original car uses only the first AC drive motor to drive the two front wheels at the same time.
  • the power consumption per 100 kilometers is: 9.98kwh/100km.
  • the driving system comprises: a battery, two AC sub-drive motors (a first AC sub-drive motor and a second AC sub-drive motor), two rectifiers (a first rectifier and a second rectifier), and a DC sub-drive motor; An AC sub-drive motor, a first rectifier and a DC sub-drive motor are sequentially connected; the second AC sub-drive motor, the second rectifier and the DC sub-drive motor are sequentially connected; the first AC sub-drive motor and the second AC sub-drive motor Driving the left rear wheel and the right rear wheel respectively (both motors are hub motors); the DC sub-drive motor simultaneously drives the two front wheels; the DC sub-drive motor is connected in parallel between the DC input end of the rectifier and the DC output end;
  • Comparative example The original car only uses the AC sub-drive motor (rated power 20KW, rated speed 3500r/min, reduction ratio 1:6.4) to drive the two front wheels.
  • the power consumption per 100km is 10.4Kwh/100km.
  • the driving system comprises two driving lines (the first driving line and the second driving line) and a battery;
  • the first driving line comprises: one AC sub-driving motor (the first AC sub-driving motor) sequentially connected in series, a rectifier (first rectifier) and a DC sub-drive motor (first AC sub-drive motor);
  • the second drive line includes: one AC sub-drive motor (second AC sub-drive motor) sequentially connected in series, a rectifier (second rectifier) and a DC sub-drive motor (second AC sub-drive motor);
  • the first DC sub-drive motor is connected in series between the DC input terminal of the first rectifier and the DC output;
  • the second DC The sub-drive motor is connected in series between the DC input end of the second rectifier and the DC output end;
  • the first AC sub-drive motor drives the left front wheel;
  • the second AC sub-drive motor drives the right front wheel;
  • the first DC sub-drive motor drives the right Rear wheel;
  • the second DC drive motor drives the left rear wheel.
  • Comparative example The original car only uses the AC sub-drive motor (rated power 20KW, rated speed 3500r/min, reduction ratio 1:6.4) to drive the two front wheels.
  • the power consumption per 100km is 10.4Kwh/100km.
  • the drive system includes: a battery, two AC sub-drive motors (a first AC sub-drive motor and a second AC sub-drive motor), two rectifiers (a first rectifier and a second rectifier), and two DC sub-drive motors (No. a DC drive motor and a second DC drive motor; the first AC drive motor, the first rectifier, the first DC drive motor and the first DC drive motor are sequentially connected; the second AC drive The motor, the second rectifier, the first DC split drive motor and the first DC split drive motor are sequentially connected in sequence (ie, the first DC split drive motor and the second DC split drive motor are connected in series to the DC input of the first rectifier) Between the end and the DC output terminal, and the first DC sub-drive motor and the second DC sub-drive motor are connected in series between the DC input end and the DC output end of the second rectifier; the first AC sub-drive motor and the first The two AC sub-drive motors respectively drive the left rear wheel and the right rear wheel (the two AC sub-drive motors are outer rotor motors); the
  • Comparative example The original car only uses the AC sub-drive motor (rated power 20KW, rated speed 3500r/min, reduction ratio 1:6.4) to drive the two front wheels.
  • the power consumption per 100km is 10.4Kwh/100km.
  • the driving system comprises two driving lines (the first driving line and the second driving line) and a battery;
  • the first driving line comprises: one AC sub-driving motor (the first AC sub-driving motor) sequentially connected in series, a rectifier (first rectifier) and a DC sub-drive motor (first AC sub-drive motor);
  • the second drive line includes: one AC sub-drive motor (second AC sub-drive motor) sequentially connected in series, a rectifier (second rectifier) and a DC sub-drive motor (second AC sub-drive motor);
  • the first DC sub-drive motor is connected in series between the DC input terminal of the first rectifier and the DC output;
  • the second DC The sub-drive motor is connected in series between the DC input end of the second rectifier and the DC output end;
  • the first AC sub-drive motor drives the left rear wheel;
  • the second AC sub-drive motor drives the right rear wheel;
  • the first DC sub-drive motor drives the right Front wheel;
  • the second DC drive motor drives the left front wheel.
  • Comparative example The original car only uses the AC sub-drive motor (rated power 20KW, rated speed 3500r/min, reduction ratio 1:6.4) to drive the two front wheels.
  • the power consumption per 100km is 10.4Kwh/100km.
  • Table 17 the data of the running test data and the comparative example in a state of uniform speed of 80 km/h are shown.
  • the drive system is for a 1.6t heavy vehicle.
  • the drive system comprises: a serially connected battery, an AC sub-drive motor, a rectifier and two DC sub-drive motors (a first DC sub-drive motor and a second DC sub-drive motor, respectively, a series-excited motor and a permanent
  • the magnetic motor is sequentially connected in sequence, and two DC drive motors are connected in series between the DC input terminal and the DC output terminal of the rectifier; the AC drive motor drives the first two wheels simultaneously through the reducer, and the two DC drive motors pass through the reducer. Drive both rear wheels at the same time.
  • the AC sub-drive motor has a rated power of 42 kW, a rated speed of 4500 r/min, and a reduction ratio of 1:8.
  • Comparative example The original car only uses the above AC drive motor to drive the two front wheels.
  • the power consumption per 100 kilometers is: 11.25kwh/100km.
  • the data of the driving test data and the comparative example in a state of a constant speed of 80 km/h are shown.
  • the drive system is for a 1.6t heavy vehicle.
  • the drive system comprises: a serially connected battery, an AC sub-drive motor, a rectifier and two DC sub-drive motors (a first DC sub-drive motor and a second DC sub-drive motor, respectively, a series-excited motor and a permanent
  • the magnetic motor is sequentially connected in sequence, and two DC drive motors are connected in parallel between the DC input terminal and the DC output terminal of the rectifier; the AC drive motor drives the first two wheels simultaneously through the reducer, and the two DC drive motors pass through the reducer. Drive both rear wheels at the same time.
  • the AC sub-drive motor has a rated power of 42 kW, a rated speed of 4500 r/min, and a reduction ratio of 1:8.
  • Comparative example The original car only uses the above AC drive motor to drive the two front wheels.
  • the power consumption per 100 kilometers is: 11.25kwh/100km.
  • the data of the driving test data and the comparative example in a state of a constant speed of 80 km/h are shown.
  • the drive system is for a 1.6t heavy vehicle.
  • the drive system comprises: a serially connected battery, an AC sub-drive motor, a rectifier and three DC sub-drive motors (a first DC sub-drive motor, a second DC sub-drive motor and a third DC sub-drive motor)
  • three DC drive motors are connected in series between the DC input terminal and the DC output terminal; the AC drive motor drives the first two wheels simultaneously through the reducer, and the two DC drive motors simultaneously drive the two through the reducer.
  • the rated power of the AC sub-drive motor is 42KW, the rated speed is 4500r/min, and the reduction ratio is 1:8.
  • the parameters of the three DC sub-drive motors are the same, the reduction ratio is 1:1, the rated power is 4kw, rated The speed is 2800r/min.
  • Comparative example The original car only uses the above AC drive motor to drive the two front wheels.
  • the power consumption per 100 kilometers is: 11.25kwh/100km.
  • the data of the driving test data and the comparative example in a state of a constant speed of 80 km/h are shown.
  • the drive system is for a 1.8t heavy vehicle.
  • the driving system comprises: a serially connected battery, an AC sub-drive motor, a rectifier and a DC sub-drive motor sequentially connected in sequence, and a DC sub-drive motor is connected in series between the DC input end and the DC output end of the rectifier.
  • the AC sub-drive motor drives the left front wheel, and the DC sub-drive motor drives the right rear wheel.
  • the AC sub-drive motor has a front-end power of 45 kW, a rated speed of 4500 r/min, and a reduction ratio of 1:6.4.
  • Comparative example The original car only uses the above-mentioned AC sub-drive motor (rated power 45KW, rated speed 4500r/min, reduction ratio 1:6.4) to drive the wheels.
  • the power consumption per 100 kilometers is 15.75Kwh/100km.
  • the data of the driving test data and the comparative example in a state of a constant speed of 80 km/h are shown.
  • the drive system is for a 1.8t heavy vehicle.
  • the drive system comprises: a serially connected battery, an AC sub-drive motor, a rectifier and two DC sub-drive motors (a first DC sub-drive motor and a second DC sub-drive motor, respectively, a series-excited motor and a permanent
  • the magnetic motor is sequentially connected in sequence, and two DC drive motors are connected in series between the DC input terminal and the DC output terminal of the rectifier; the AC drive motor drives the first two wheels simultaneously through the reducer, and the two DC drive motors pass through the reducer. Drive both rear wheels at the same time.
  • the AC sub-drive motor has a rated power of 45 kW, a rated speed of 4500 r/min, and a reduction ratio of 1:6.4.
  • Comparative example The original car only uses the above AC drive motor to drive the left front wheel, and the power consumption per 100 kilometers is 15.75Kwh/100km.
  • the drive system comprises: a serially connected battery, an AC sub-drive motor, a rectifier and two DC sub-drive motors (a first DC sub-drive motor and a second DC sub-drive motor, respectively, a series-excited motor and a permanent
  • the magnetic motor is sequentially connected in sequence, and two DC drive motors are connected in parallel between the DC input terminal and the DC output terminal of the rectifier; the AC drive motor drives the first two wheels simultaneously through the reducer, and the two DC drive motors pass through the reducer. Drive both rear wheels at the same time.
  • the AC sub-drive motor has a rated power of 45 kW, a rated speed of 4500 r/min, and a reduction ratio of 1:6.4.
  • Comparative example The original car only uses the above AC drive motor to drive the two front wheels.
  • the power consumption per 100 kilometers is 15.75Kwh/100km.
  • the above experimental examples 14 and 16 have the best effect.
  • the automatic differential can be realized, the differential is not required in the vehicle, the mechanical loss is reduced, the space inside the vehicle is saved, and the safety is improved.
  • the AC split drive motor and the DC split drive motor in the same drive line can also drive the left front wheel and the right rear wheel respectively, and the two electrodes can drive the right front wheel and the left respectively.
  • the rear wheel, or the right rear wheel and the left front wheel, or the left rear wheel and the right front wheel, respectively, can perform well.
  • the technical scheme adopts a series series excitation motor, and the rotor winding and the stator winding of the series excitation motor are connected in series, and there is no position switching problem, so the synchronous and the same speed driving can be effectively performed without causing the driving chaos.
  • the present application also provides a processing method of the drive system based on the above structure, which has two main steps, respectively:
  • Step 1 the tail ends of each phase winding in the first winding are respectively electrically connected to the three-phase input end of the rectifier; the first winding is located in the AC sub-drive motor, and the number of phases of the first winding At least three phases;
  • step 2 a DC sub-drive motor is connected between the DC output terminal and the DC input terminal of the rectifier.
  • Step 1 may be performed first, and then step 2 may be performed first, or step 2 may be performed first, and then step 1 is performed.
  • the step of adding the first speed reducer and the second speed reducer to the AC sub-drive motor and the DC sub-drive motor respectively, the first reducer and the The reduction ratio of the second reducer is 2.2-2.45:1 and 2.05:1, respectively.
  • first speed reducer and the second speed reducer may be the same speed reducer, or may be the front axle reducer and the rear axle reducer of the vehicle respectively. Since the method is based on the above-described method, nothing disclosed in the method can be referred to herein for the description of the system, system and vehicle.
  • the present application also provides a vehicle housing including a main body skeleton in which a receiving cavity is disposed, the receiving cavity being configured to place the driving system disclosed in the foregoing.
  • the main skeleton refers to the upper object of the vehicle, and in some cases may also include the chassis of the vehicle.
  • the motor used for the AC sub-drive motor is an AC permanent magnet synchronous motor, and of course, an AC asynchronous motor can also be used.

Abstract

一种驱动系统,涉及动力设备领域,该系统包括:依次顺序连接的交流电机组、整流组件和直流电机组;交流电机组包括至少一个交流驱动电机(a),直流电机组包括至少一个直流驱动电机(b);整流组件包括至少一个整流器(17),整流器(17)包括三相输入端、直流输出端和直流输入端,直流电机组电气连接在直流输出端和直流输入端之间;交流驱动电机(b)的输出端与三相输入端口连接。该系统工作时,在不同的负载条件下,系统消耗的电能至少部分的在直流电机组和交流电机组之间窜移,从而同时利用了交流驱动电机(b)和直流驱动电机(a)的特性,进而提高整体系统的电能利用率。

Description

用于电动汽车的电动机驱动系统、加工方法、电动车和车辆外壳
相关申请交叉引用
本申请要求于2018年01月23日提交中国专利局的申请号为201810065817.5、名称为“用于电动汽车的电动机驱动系统、加工方法、电动车和车辆外壳”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及动力设备领域,特别是涉及驱动系统、加工方法,及车辆和车辆外壳。
背景技术
由于石油等化石燃料资源的日益枯竭,大量燃烧的化石燃料对环境造成严重破坏,电动车作为绿色能源车辆,由于污染小,被国家大力推广,但由于当前技术水平局限,电机性能、电池容量、体积、车辆外形设计和电力系统设计都严重制约了电动汽车的发展。
为解决电机性能问题,本领域技术人员采取了多种不同的方式来提高电机整体性能,比如改进工作方式、改进电路连接关系等等。
但发明人发现,当前技术中已经出现的这些方式仍然有一定的不足。
发明内容
本申请所提供的一个技术方案主要解决的技术问题包括,提供一种用于电动汽车的电动机驱动系统,通过将交流电机三相绕组的中性点散开连接整流器,使得流过三相绕组的交流电形成直流输出给直流电机,形成直流电机与交流电机的同步驱动,在交--直流转换过程中,利用直流电机的高扭矩输出的特性,提高电能利用率。
本申请所提供的某一个方案的第一个目的包括,:通过设置不同转速的交流分驱动电机和直流分驱动电机分别驱动汽车前桥和后桥,同时在汽车前桥和/或后桥上设置减速比低于6的减速箱,优选的采用减速比为2.2-4.5的减速箱,汽车的最高行驶速度大于100km/h;在车辆起步时,利用直流电机在低电压高电流下的低速高扭矩输出特性而获得足够的启动扭矩;在车辆高速行驶后,利用高转速的交流电机在低电流输入下高速输出,有效节省电能。
本申请所提供的某一个方案的第二个目的包括,:通过将不同特性的交流分驱动电机和直流分驱动电机电气串联用于电动车,在车辆高速行驶时,交流分驱动电机内三相绕组的输出电压较低而电流较大,而直流电机能够在最低电压为5V的情况下即能被驱动,使得高速行驶的车辆能够在输入较低电能下获得足够的驱动力,因而车辆更为节能省电。
本申请所提供的某一个方案的第三个目的包括,:通过设置不同速的电机,使得汽车在行驶在不同速度时,通过阻力变化,实现输出电能在电机间的自动窜移,实现传动车辆的自动变速功能。
解决上述技术问题中的至少一个技术问题,本申请采用的一个技术方案是:
一种用于电动车的电动机驱动系统,包括电池、控制器、至少一个交流分驱动电机、至少一个整流器和至少一个直流分驱动电机;所述控制器连接电池以输出交流电;所述交流分驱动电机内至少设有三相绕组,所述三相绕组中每相绕组的首端均连接控制器,三相绕组中每相绕组的尾端之间相互分离;所述整流器包括三相输入端口和直流输出端口;所述交流分驱动电机的三相绕组中每相绕组的尾端分别连接所述整流器的三相输入端口,所述整流器的直流输出端口电气连接直流分驱动电机。
可选地,所述交流分驱动电机和直流分驱动电机分别制成不同的额定转速,所述控制器输出的电能根据所述交流分驱动电机和直流分驱动电机上的负载大小进行自由配比。
可选地,所述交流分驱动电机和直流分驱动电机分别连接不同速比的减速器,所述控制器输出的电能根据所述交流分驱动电机和直流分驱动电机上的负载大小进行自由配比。
可选地,所述直流分驱动电机为有刷永磁直流电机,有刷永磁直流电机包括定子、转子、滑环和电刷,定子上设置永磁体和电刷,转子上设置电枢绕组和滑环,整流器输出的直流电通过电刷和滑环进入电枢绕组,产生电枢电流,电枢电流产生的磁场与定子永磁体相互作用产生电磁转矩,使电机旋转带动负载;或者定子上设置电枢绕组,转子上设置永磁体;电枢绕组的首端连接滑环,电枢绕组的尾端相连接形成回路。
可选地,所述直流分驱动电机为串励电机。
可选地,所述交流分驱动电机为交流异步电机或交流同步电机。
可选地,所述交流分驱动电机和直流分驱动电机同轴连接驱动汽车前桥或后桥。
可选地,所述交流分驱动电机和直流分驱动电机分别连接驱动汽车前桥和后桥。
可选地,还包括最高行驶速度大于100km/h的电动车,所述电动车包括前桥和后桥,所述前桥和/或后桥上设有相互连接传动的减速箱和差速器,所述交流分驱动电机和/或直流分驱动电机连接传动所述减速箱,所述减速箱的减速比为2.2-4.5。
可选地,还包括最高行驶速度大于100km/h的电动车,所述电动车包括前桥和后桥,所述前桥和/或后桥上设有相互连接传动的减速箱和差速器,所述交流分驱动电机和/或直流分驱动电机连接传动所述减速箱,所述减速箱的减速比为2.8-3.8。
可选地,所述整流器内设有三相二极管整流桥,所述三相二极管整流桥包括三个电气并联的单相二极管整流电路,所述三相绕组中的每相绕组的尾端分别电气连接单相二极管整流电路,三个单相二极管整流电路的两端分别同时连接于整流器的两个直流输出端口,所述直流分驱动电机或/和储电能装置接通两个直流输出端口后,三个单相二极管整流电路的两端连接导通形成回路,使得直流输出端口成为三相绕组星接所需的中性点。
可选地,所述直流分驱动电机有2个,包括相互电气串联或并联的第一直流分驱动电机和第二直流分驱动电机。
可选地,所述交流分驱动电机、第一直流分驱动电机和第二直流分驱动电机分别制成不同的额定转速,所述控制器输出的电能根据交流分驱动电机、第一直流分驱动电机和第二直流分驱动电机上的负载大小进行自由配比。
可选地,所述交流分驱动电机、第一直流分驱动电机和第二直流分驱动电机分别连接不同速比的减速器,所述控制器输出的电能根据交流分驱动电机、第一直流分驱动电机和第二直流分驱动电机上的负载大小进行自由配比。
可选地,所述第一直流分驱动电机和第二直流分驱动电机为有刷永磁直流电机或串励电机。第一直流分驱动电机和第二直流分驱动电机可分别为有刷永磁直流电机和串励电机,有刷永磁直流电机包括定子、转子、滑环和电刷,定子上设置永磁体和电刷,转子上设置电枢绕组和滑环,整流器输出的直流电通过电刷和滑环进入电枢绕组,产生电枢电流,电枢电流产生的磁场与定子永磁体相互作用产生电磁转矩,使电机旋转带动负载;电枢绕组的首端连接滑环,电枢绕组的尾端相分离后连接串励电机作为串励电机的电能输入,使得交流分驱动电机、第一直流分驱动电机和第二直流分驱动电机被串联同步驱动。
可选地,所述交流分驱动电机为交流异步电机或交流同步电机。
可选地,所述直流分驱动电机有3个,包括相互电气串联或并联的第一直流分驱动电机、第二直流分驱动电机和第三直流分驱动电机。
可选地,所述交流分驱动电机、第一直流分驱动电机、第二直流分驱动电机和第三直流分驱动电机分别制成不同的额定转速,所述控制器输出的电能根据交流分驱动电机、第一直流分驱动电机、第二直流分驱动电机和第三直流分驱动电机上的负载大小进行自由配比。
可选地,所述交流分驱动电机、第一直流分驱动电机、第二直流分驱动电机和第三直流分驱动电机分别连接不同速比的减速器,所述控制器输出的电能根据交流分驱动电机、第一直流分驱动电机、第二直流分驱动电机和第三直流分驱动电机上的负载大小进行自由配比。
可选地,所述第一直流分驱动电机、第二直流分驱动电机和第三直流分驱动电机为有刷永磁直流电机或串励电机。
可选地,所述交流分驱动电机为交流异步电机或交流同步电机。
可选地,所述直流分驱动电机有4个,包括相互电气串联的第一直流分驱动电机、第二直流分驱动电机、第三直流分驱动电机和第四直流分驱动电机。
可选地,所述交流分驱动电机和第一直流分驱动电机同轴连接驱动汽车前桥,第二直流分驱动电机、第三直流分驱动电机和第四直流分驱动电机同轴连接驱动汽车后桥。
可选地,还包括最高行驶速度大于100km/h的电动车,所述电动车包括前桥和后桥,所述前桥和/或后桥上设有相互连接传动的减速箱和差速器,所述交流分驱动电机和第一直流分驱动电机同轴连接传动所述减速箱,所述减速箱的减速比为2.2-4.5。
可选地,还包括最高行驶速度大于100km/h的电动车,所述电动车包括前桥和后桥,所述前桥和/或后桥上设有相互连接传动的减速箱和差速器,所述交流分驱动电机和第一直流分驱动电机同轴连接传动所述减速箱,所述减速箱的减速比为2.5-3.7。
可选地,所述交流分驱动电机设有2个,包括相互电气串联连接第一交流分驱动电机和第二交流分驱动电机,所述第一交流分驱动电机内每相绕组的尾端直接连接第二交流分驱动电机内每相绕组的首端,第二交流分驱动电机内每相绕组的尾端连接所述整流器的三相输入端口。
可选地,所述第一交流分驱动电机和第二交流分驱动电机同轴串联连接。
可选地,所述第一交流分驱动电机和第二交流分驱动电机为交流异步电机或交流同步电机。
可选地,直流分驱动电机运转时的驱动电压为不少于5V。进一步的,直流分驱动电机运转时的驱动电压为5-96V。
与现有技术相比,本申请的优势包括:通过设置不同额定转速的电机和使用不同输出转速的减速箱,实现对车桥的不同速驱动;通过在交流分驱动电机三相绕组尾端串联设置直流分驱动电机,使得输入的电能能同时驱动交流分驱动电机和直流分驱动电机运行,实现直流分驱动电机的辅助驱动;
通过在交流分驱动电机三相绕组尾端串联设置低转速的直流分驱动电机,并设置较低速比的车桥,使得车辆起步时,可依靠直流电机提供大扭力输出,实现快速起步,在高速行驶时,交流分驱动电机消耗更低的驱动车辆,降低行驶功耗;
通过在交流分驱动电机三相绕组尾端连接多个直流电机,当其中一个电机受阻时,电能自行窜移到其他电机,使得电能自动以最佳配比驱动其他电机,提高电能利用率;
通过设置不同速的电机,使得汽车在行驶在不同速度时,通过阻力变化,实现输出电能在直流分驱动电机间的自动转移,实现传动车辆的自动变速功能。
本申请某个实施例提供了一种用于驱动电动机车的驱动系统,该系统主要为了实现如下技术效果,通过将交流分驱动电机三相绕组的中性点散开,并将散开后的每一项绕组的尾端均连接至整流器的输入端,使得流过三相绕组的交流电在整流器中形成直流电,并输出给直流分驱动电机,进而形成直流分驱动电机与交流分驱动电机的同步驱动,并且这交流分驱动电机和直流分驱动电机是连接在同一个驱动对象(如同一个车辆中)的。如此设置该系统,使得在交--直流转换过程中,即利用直流分驱动电机的高扭矩输出的特性,又利用了交流分驱动电机的高转速特性,使得驱动对象在低速的情况下使用直流分驱动电机提供动力的比例更高,以及在高速情况下使用交流分驱动电机提供动力的比例更高,提高电能利用率。
某个实现方式下,本申请实施例所提供的驱动系统,包括:交流电机组、整流组件和直流电机组;交流电机组包括至少一个交流分驱动电机;所述直流电机组包括至少一个直流分驱动电机;所述整流组件包括至少一个整流器;至少一个交流分驱动电机、至少一个整流器和至少一个直流分驱动电机顺序连接形成一条驱动线路;所述整流器包括多相输入端、直流输出端 和直流输入端,所述交流分驱动电机内至少设有多相绕组,多相绕组中每相绕组的首端均配置为与电能输入端连接;目标直流分驱动电机电气连接在目标整流器的所述直流输出端和直流输入端之间;目标交流分驱动电机的多相绕组中每相绕组的尾端分别连接目标整流器的多相输入端口;目标交流分驱动电机、目标整流器和目标直流分驱动电机均属于同一条驱动线路。进而,该系统在工作时,当车辆处于不同速度的时候,系统能够自适应的使电流在直流分驱动电机和交流分驱动电机之间发生偏移,从而利用了交流电机和直流电机的特性,进而有效的节省了电能。
本申请所提供的方案中,目标直流分驱动电机是直流分驱动电机中的一个,目标交流分驱动电机是交流分驱动电机中的一个。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其它的附图,其中:
图1是本申请一种用于电动汽车的电动机驱动系统连接单一直流分驱动电机的结构示意图;
图2是本申请一种用于电动汽车的电动机驱动系统连接电容组和单一直流分驱动电机的结构示意图;
图3是图1实施方案连接前后车桥差速器的装车应用结构示意图;
图4是图1实施方案的同轴连接前后车桥差速器的装车应用结构示意图;
图5是图4实施方案的主视图;
图6是图1实施方案同轴直接连接车轮的结构示意图;
图7是本申请一种用于电动汽车的电动机驱动系统的交流分驱动电机与直流分驱动电机的电气连接示意图;
图8是本申请一种用于电动汽车的电动机驱动系统的交流分驱动电机的转动原理图;
图9是本申请一种用于电动汽车的电动机驱动系统的交流分驱动电机内合成磁场的生成示意图;
图10是本申请一种用于电动汽车的电动机驱动系统的整流器的内部电路图;
图11是本申请一种用于电动汽车的电动机驱动系统的整流器的整流波形图;
图12是本申请一种用于电动汽车的电动机驱动系统的连体电机的结构示意图;
图13是本申请一种用于电动汽车的电动机驱动系统的连体电机的电气连接示意图;
图14是本申请一种用于电动汽车的电动机驱动系统的连体电机的内部结构示意图;
图15是本申请一种用于电动汽车的电动机驱动系统的交流分驱动电机连接双直流分驱动电机驱动前后车桥的结构示意图;
图16是本申请一种用于电动汽车的电动机驱动系统的交流分驱动电机与双直流分驱动电机同时驱动前桥的结构示意图;
图17是图16实施方案的主视图;
图18是本申请一种用于电动汽车的电动机驱动系统的减速箱的内部结构示意图;
图19是本申请一种用于电动汽车的电动机驱动系统的减速箱连接电机的结构示意图;
图20是本申请一种用于电动汽车的电动机驱动系统连接三直流分驱动电机的结构示意图;
图21是本申请一种用于电动汽车的电动机驱动系统连接三直流分驱动电机的另一方案示意图;
图22是本申请一种用于电动汽车的电动机驱动系统连接单一直流分驱动电机的另一方案示意图;
图23是图1实施方案同时回充电源的结构示意图;
图24是本申请一种用于电动汽车的电动机驱动系统采用双交流分驱动电机的结构示意图;
图25是本申请一种用于电动汽车的电动机驱动系统采用双交流分驱动电机的另一方案的结构示意图;
图26是本申请一种用于电动汽车的电动机驱动系统的交流分驱动电机分多路充电的结构示意图;
图27是本申请一种用于电动汽车的电动机驱动系统采用双交流分驱动电机的装车示意图;
图28是本申请一种用于电动汽车的电动机驱动系统分多路充电容的结构示意图;
图29是图4实施方案连接单向轴承的结构示意图;
图30是图29实施方案连接额外金属空气电池的结构示意图;
图31是本申请一种用于电动汽车的电动机驱动系统采用双交流分驱动电机同时回充电容的结构示意图;
图32是本申请一种用于电动汽车的电动机驱动系统采用4个直流分驱动电机的结构示意图;
图33是本申请一种用于电动汽车的电动机驱动系统的采用单一有刷永磁直流电机的结构示意图;
图34是本申请一种用于电动汽车的电动机驱动系统的有刷永磁直流电机连接1个串励电机的结构示意图;
图35是本申请一种用于电动汽车的电动机驱动系统的有刷永磁直流电机连接2个串励电机的结构示意图;
图36是本申请所提供的驱动系统中驱动系统所驱动的一种两轮电动车的结构示意图;
图37是实验例1中,使用本申请所提供的驱动系统对车辆进行驱动时的一种结构性示意图;
图38是实验例13中,使用本申请所提供的驱动系统对车辆进行驱动时的一种结构性示意图;
图39是实验例15中,使用本申请所提供的驱动系统对车辆进行驱动时的一种结构性示意图;
图40-43是实验例14、实施例16中,使用本申请所提供的驱动系统对车辆进行驱动时的一种结构性示意图;
附图中各部件的标记如下:
a、交流分驱动电机,b、b’、直流分驱动电机,c、第二直流分驱动电机,d、第三直流分驱动电机,1、线圈,2、定子,3、转子,4、继电器,5、控制开关,10、输出轴,12、电源,14、控制器,17、整流器,23、驱动电机,24、电容组,26、短路开关,29、调速踏板,30、减速箱,31、发电机,30’、第二减速箱,33、33’、单向轴承,35、主轴。
具体实施方式
下面将对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅是本申请的一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其它实施例,都属于本申请保护的范围。
相关技术中已经存在了大量的电动车和设置在其内部的驱动系统,这些驱动系统通常是以交流电动机或直流电动机作为核心驱动部件。随着技术的发展,出现了一定的改进方案,下面对与本申请所提供的技术方案有相关性的其它技术方案进行简要说明。这些技术方案可以分为多组对比文件。
第一组对比文件:
CN200880118077.1-电动机组和齿轮传动装置公开了:
一种电动机组,该电动机组由多个三相交流电机组成,多个三项交流电机的输出连接到同一个负载上。该方案中,主要采用齿轮传动结构来替代了传统方案中在三相交流电机上设置检测是否断线的传感器,以实现如下技术效果:其中某个电机的配线产生断线时,该电动机组不会在异常状态下继续驱动从动部件。
简单来看该方案的结构,该电动机组包括多个三相交流电机,多个电机的输出轴与1个从动部件连接。多个电机串联电连接。由于多个电机之间是串联电连接的,所以当其中某个电机的配线产生断线时,所有电机都会停止转动。当其中某个电机的配线产生断线时,不会由剩下的电机继续转动从动部件,以此避免电机超载的情况发生,保证了电机的寿命。
上述CN200880118077.1-电动机组和齿轮传动装置,与本方案的关联性在于,这篇文献中公开了使用多个交流电机串联的方案,但这与本方案的核心相比,仍然未公开交流电机与直流电机串联的这一特征。
CN200410017157.1-一种节能电动机组合及制造方法,公开了:
一种节能电动机组合及制造方法,该节能电动机组合由两台相同铭牌数据的三相异步电动机组成,两台电动机串联连接;两台电动机定子线槽内的绝缘漆包线以两线并绕的方式分别 重新绕成三相绕组,每相绕组的匝数为原电动机的1/2匝数,定子线槽内每两根绝缘漆包线端部并联在一起,而后接到接线盒上;电动机1接线盒中的输入端U1、V1、W1不能相互接通,输出端W2、U2、V2分别接到电动机2接线盒中的输入端U1、V1、W1;将电动机2接线盒中的输出端W2、U2、V2并联在一起。该申请的技术效果是转换成同量机械能时,仅消耗一半电能。
CN200880118077.1-电动机组和齿轮传动装置和CN200410017157.1-一种节能电动机组合及制造方法,这两个专利均公开了两个交流电机串联的方案,但经过申请人的实际验证和查阅相关资料,其技术在实现过程中会遇到新的问题,比如两个或多个三项交流电机的之间的参数难以保证完全相同(主要指制造工艺上给电机所带来的差别,并非是设置参数时要求两个电机参数不同),这就造成了当前一个交流电机能够启动的时候,后一个交流电机的定子无法提供正确的相位角,导致后一个交流电机无法启动,即使增加控制器,也无法很好的进行控制。
并且,这两个专利中也并未公开相应的技术启示,来说明直流电机和交流电机能够串联。
第二组对比文件:
CN201510179619.8-具有效率优化动力分配的双马达电动车辆驱动,公开了:
一种电动车辆驱动器,该驱动器具有第一马达/发电机、第二马达/发电机以及一组车轮。齿轮组将第一和第二马达/发电机与这组车轮连接使得总车轮扭矩在第一和第二马达/发电机之间有选择地分开。扭矩计算器响应操作者速度输入选择总扭矩目标。扭矩分配器根据响应瞬时马达/发电机速度和总扭矩目标选择的比率,通过将总扭矩目标分成第一和第二马达/发电机的第一和第二扭矩目标实质上使第一和第二马达/发电机的综合效率最大化。
该文献背景技术的最后一段公开了其方案所期望达到的技术目的是“保持电动车辆的马达/发电机在接近它的峰值效率点工作”。也就是,该文献期望使电动车辆的驱动器尽量保持较高的工作效率。
为了解决该技术问题,其增加了扭矩分配器,通过建立查找表,并且在需要的时候采用查表的方式来查找速度范围和总扭矩范围的对应关系,并采用查找到的结果来对应的调整每二个马达的扭矩。
该方案中并未限定两个马达之间的关系,并且其为了达到提高工作效率的目的的手段是通过内部施加控制信号的方式来实现,这与本申请所提供的申请方案不同(未公开直流电机和交流电机串联的方案)。本方案利用了交流电机和直流电机串联所形成的物理结构,自动的达到了提高效率的目的。
CN201480022954.0-电驱动系统,公开了:
一种用于驱动输出的电驱动系统。其在申请文件中分析了电机输出角速度和输入电流之间的关系,并且针对性的提供了一种以低速行驶时不易于失速停止且更有效率的驱动系统。
该电驱动系统的目的在于通过增加控制器,进而,通过控制器对两个电动机进行控制,控制可以分为两个阶段,在第一阶段中,将第一输入轴和第二输入轴驱动到第一初步角速度 ω1,p和第二初步角速度ω2,p,以使aω1,p≈bω2,p;随后在第二阶段中,改变第一角速度ω1、或者第二角速度ω2、或者改变这两者,以使aω1≠bω2,并且从ωout=0开始驱动输出。
与上一篇文献类似的,其发现了与本方案有一定相似度的技术问题,即电动机效率不够高的问题,但其采用的解决方式与前一篇专利的思路相似,均是采用内增控制器,采用内部生成电信号进行触发控制的机制来对电机进行更为精确的控制,很明显,这与本方案的方式不同,本方案中并没有内部独立的控制信号。
CN201710081544.9-双电机非对称动力分配效率优化方法及系统,公开了:
一种双电机非对称动力分配效率优化方法,该方法的目的是为了解决了现有技术中单电机直驱方案不能兼顾低速和高速效率的技术问题。该方法具体为:设置两组驱动效率不等的电机组成一个动力组,分别为第一电机和第二电机,这两个电机并联对外输出转矩,获得两组电机各自的效率值,在所述动力组有不同的输出转矩需求时,通过优化计算在两组电机之间分配转矩,以使动力组最高效率值。
即,该方案采用了两个电机并联的方式,通过内部控制的方式来调节电机的转矩分配情况,进而实现在不同转速、转矩区域下驱动效率的最优化,并提高了电机在高速区域的驱动功率,使得电驱动系统的总体效率和性能得以提高。
该方案所公开的内容中,说明了采用两个电机并联的方式,根据电机的输出转速(rpm)来调节转矩,以达到提高工作效率的目的。
很明显,该方案与本方案中,电机之间的连接方式不同,并且,其仍然需要内部增加控制器的方式来调节电机的转矩,进而提高整体效率。虽然该方案与本方案的技术问题类似,但并未公开足够得到本方案的技术启示。
JP2000217393A-一种能够在低速区域进行PAM控制的变速驱动系统,公开了:
一种采用脉幅调制技术的车辆驱动系统,该方案具体公开了采用直流电机和交流电机并联的方式来组成电动机组,并且,该电动机组能够驱动电动车。
但其仅仅公开了电机并联的工作方式,两电机并联是一种很传统的连接方式,增加了脉幅调制技术,一定程度上提高了控制精度,提高了效率。但该方案与本申请的方案仍然在电机连接方面存在着本质上的区别。
US20060229762-Hybrid vehicles,公开了:
混合动力汽车,该汽车由内燃机、牵引电机、起动电动机,电池和一个蓄电池组组成,并由微处理器控制按照车辆的速度来控制电机的瞬时转矩,这样电机只运行效率高的条件下,通常只有当负载至少等于30%时,发动机才会按照最大扭矩输出。在一些情况下,涡轮增压器可以提供帮助,只有当负载超过发动机的最大扭矩输出一段时间;而后双转速可能会进一步扩大汽车的工作范围。
US20080179123A-电动汽车AC/DC系统,公开了:
同时使用直流和交流电机的工作机制,该方案具体公开了通过使用控制器,使得汽车在低速情况下通过直流电机提供动力,并且在汽车在高速情况下通过交流电机提供动力。
US20060229762-Hybrid vehicles和US20080179123A-电动汽车AC/DC系统,这两个方案公开了在车辆处于不同状态(主要指的是速度)下,采用不同的驱动策略来工作,进而提高整体驱动系统的利用效率。
但这两个方案虽然公开了在不同的速度情况下,使用对应的策略来工作,但其仍然需要采用内加控制器的方式来实现其技术目的,这部分与本申请的方案不同,并且,其仍然没有公开直流电机和交流电机串联的方案。
第三组对比文件(其他对比文件):
CN200620000915.3-三相电磁制动电动机,公开了:
一种三相电磁制动电动机,该电动机包括一台星形绕组的三相电动机,该三相电动机星形绕组的公共端断开后,并且分别直接串接在一块三相全波整流模块的三个交流输入端,而该三相全波整流模块的两个直流输出端连接一个电磁铁的线圈两端。进而达到如下技术效果,制动力矩大,起动、停止速度快且定位准确,同时调节方便。
具体的,该文献的说明书中公开了三相电动机星形绕组-整流器-线圈的方案,该方案与本申请主要的关系在于其公开了电机的三相绕组散开后通过整流器连接下一个电子元件。但该文献中,所期望解决的技术问题与本方案不同,其期望解决的技术问题是由于电感的作用,使电磁铁动作滞后而造成电磁制动三相电动机起动和停止时间较长。本方案中并不存在该问题,因此缺乏形成本方案的技术启示。同时,该方案中也没有公开两电机串联的方案,因此,并未公开本方案的核心内容。
CN00237228.2-渔船制冷系统的电力装置,公开了:
渔船制冷的电力装置,该电力装置主要指一种由渔船主机直接带动制冷系统安全工作的电力装置。特征在于它包含有交流发电机G、硅整流器UR、调节恒压器AR、电机起动器KS、直流电动机M,其目的是为了提供一种成本低、占用位置小的渔船制冷系统的电力装置。
其具体公开了采用交流发电机与直流电动机进行连接的方案,也就是交流发电机所产生的电能够直接给直流电动机进行电能的供给。
该方案与本申请的技术方案相比,本申请采用的是两个电动机串联的结构,该结构并未被公开。同时该专利与本申请的技术方案所期望解决的技术问题是不相同的。
CN201611083787.8-一种超级多电机串联无级变速发动机,公开了:
一种多电机串联无级变速发动机,该发动机通过设置星型结构的变速箱,即通过齿轮速比的调节,反复利用电机的高效工作区,从而使得电动车中的电动机能够更多的在其高效工作区工作,更好的利用了电动机。
该方案与本申请的技术方案相比,公开了期望更多的利用高效工作区的意愿,但技术方案本身与本申请有较大的差别。
经过上述论述可见,目前技术中,有些技术(第一组对比文件)公开了两个交流电动机串联的方案,但申请人试验后发现效果并不理想(主要是无法良好的控制相位角,导致串联的交流电机无法同时启动和工作)。
有些技术(第二组对比文件)公开了期望对电动机性能/效率进行改进的方案,其采用的技术方案是通过电动机并联,并且为电动机设置独立的控制器的方式来实现工作策略的转换。
还有些技术方案(其他对比文件)则是公开了少量的特征,但由于技术目的或技术本身与本方案相去甚远。
进而,申请人通过对上述方案进行分析,以及通过大量实验得到了如下提高电动车电能利用效率的方案。
下面通过如下实施例对本申请所提供的技术方案进行说明。首先需要说明的是本申请文件中所提及的直流分驱动电机和直流分驱动电机均是指将直流电能转换为机械能的电动机。
本申请中所提及的控制器指的是用来控制交流分驱动电机的控制器。控制器输出的电能根据所述交流分驱动电机和直流分驱动电机上的负载大小进行自由配比指的是控制器能够根据外界负载情况(能够作用到控制器上的负载情况)对交流分驱动电机进行控制,进而调节交流分驱动电机和直流分驱动电机上的电能配比程度。
本申请中所提及的减速器或减速箱的作用是用来调节驱动电机(交流电机或直流电机)的输出轴转速与驱动电机实际输出到车轮转速的比例。驱动电机(交流分驱动电机或直流分驱动电机)连接指定减速比(速比)的减速器或减速箱的结构,基本等同于减速比为指定数值的驱动电机。
前桥指的是传递车架与前轮之间各向作用力及其所产生的弯矩和转矩的装置;类似的,后桥指的是传递车架与后轮之间各向作用力及其所产生的弯矩和转矩的装置。驱动电机(交流分驱动电机或直流分驱动电机)连接/驱动前桥,则说明驱动电机能够同时驱动车辆的两个前轮;类似的,驱动电机(交流分驱动电机或直流分驱动电机)连接/驱动后桥,则说明驱动电机能够同时驱动车辆的两个后轮。
两个交流分驱动电机串联连接指的是这两个交流分驱动电机的输出轴同轴连接。
针对现有技术中的一些技术缺陷,本申请提供了一种驱动系统的基础方案,包括:
交流电机组、整流组件和直流电机组;
交流电机组包括至少一个交流分驱动电机;所述直流电机组包括至少一个直流分驱动电机;所述整流组件包括至少一个整流器;至少一个交流分驱动电机、至少一个整流器和至少一个直流分驱动电机顺序连接形成一条驱动线路;
所述整流器包括多相输入端、直流输出端和直流输入端,所述交流分驱动电机内至少设有多相绕组,多相绕组中每相绕组的首端均配置为与电能输入端连接;目标直流分驱动电机电气连接在目标整流器的所述直流输出端和直流输入端之间;目标交流分驱动电机的多相绕组中每相绕组的尾端分别连接目标整流器的多相输入端口;目标交流分驱动电机、目标整流器和目标直流分驱动电机均属于同一条驱动线路。
优选的,目标交流分驱动电机的电机参数和目标直流分驱动电机的电机参数按照预设数值设定,以使目标直流分驱动电机的功率占总功率的百分比约为1.5%-40%;总功率是目标直流分驱动电机的功率与目标交流分驱动电机的功率之和;目标交流分驱动电机的电机参数至少 包括以下的一种或多种,额定转速和减速比;目标直流分驱动电机的电机参数包括以下的一种或多种,额定转速和减速比。
优选的,车辆处于加速状态时,目标直流分驱动电机的功率占比大于车辆处于匀速状态时,目标直流分驱动电机的功率占比;功率占比是目标直流分驱动电机的功率占总功率的百分比;总功率是目标直流分驱动电机的功率与目标交流分驱动电机的功率之和;目标交流分驱动电机的电机参数至少包括以下的一种或多种,额定转速和减速比;目标直流分驱动电机的电机参数包括以下的一种或多种,额定转速和减速比。
优选的,目标交流分驱动电机的电机参数和目标直流分驱动电机的电机参数按照预设数值设定,以使在不同的负载条件下,目标直流分驱动电机的电能使用率和目标交流分驱动电机的电能使用率能自动调整;目标交流分驱动电机的电机参数至少包括以下的一种或多种,额定转速和减速比;目标直流分驱动电机的电机参数包括以下的一种或多种,额定转速和减速比;
或,
目标交流分驱动电机的电机参数和目标直流分驱动电机的电机参数按照预设数值设定,以使在不同的负载条件下,电能输入端所提供的电能至少部分的在目标直流分驱动电机和目标交流分驱动电机之间窜移;目标交流分驱动电机的电机参数至少包括以下的一种或多种,额定转速和减速比;目标直流分驱动电机的电机参数包括以下的一种或多种,额定转速和减速比。
优选的,目标交流分驱动电机的电机参数和目标直流分驱动电机的电机参数按照预设数值设定,以使目标直流分驱动电机的视在功率约为70w-800w;以使目标交流分驱动电机的视在功率约为3000w-4500w;电机参数包括以下的一种或多种,额定转速和减速比。
优选的,同一个驱动线路中的至少一个直流分驱动电机和至少一个交流分驱动电机的减速比/额定转速不同;
和/或,同一个驱动线路中的至少一个直流分驱动电机的实际输出转速大于至少一个交流分驱动电机的实际输出转速;
和/或,同一个驱动线路中的至少一个直流分驱动电机的实际输出转速的峰值大于至少一个交流分驱动电机的实际输出转速的峰值。
第一方面,结合基础方案,本申请所提供的交流电机组包括1个交流分驱动电机。
结合第一方面,本申请实施例提供了第一方面的第一种可能的实施方式,其中,目标交流分驱动电机通过减速器与被驱动车辆的前桥/后桥连接,以同时向被驱动车辆的两前轮或两后轮提供动力。
结合第一方面,本申请实施例提供了第一方面的第二种可能的实施方式,其中,直流电机组包括1个直流分驱动电机;
直流分驱动电机通过减速器与被驱动车辆的前桥/后桥连接,以同时向被驱动车辆的两前轮或两后轮提供动力。
结合第一方面,本申请实施例提供了第一方面的第三种可能的实施方式,其中,目标交流分驱动电机的输出轴配置为与指定的一个车轮连接,以向指定的一个车轮提供动力。
结合第一方面,本申请实施例提供了第一方面的第四种可能的实施方式,其中,目标交流分驱动电机为轮毂电机。
第二方面,结合基础方案,本申请所提供的交流电机组包括第一交流分驱动电机和第二交流分驱动电机,整流组件包括第一整流器和第二整流器;
第一交流分驱动电机内的多相绕组中每相绕组的首端均配置为与电能输入端连接;第一交流分驱动电机的多相绕组中每相绕组的尾端分别连接所述第一整流器的多相输入端口;
第二交流分驱动电机内的多相绕组中每相绕组的首端均配置为与电能输入端连接;第二交流分驱动电机的多相绕组中每相绕组的尾端分别连接所述第二整流器的多相输入端口;
直流电机组电气连接在所述第一整流器直流输出端和直流输入端之间,以及,直流电机组电气连接在所述第二整流器直流输出端和直流输入端之间。
结合第二方面,本申请实施例提供了第二方面的第一种可能的实施方式,其中,第一交流分驱动电机通过减速器与被驱动车辆的前桥/后桥连接,以同时向被驱动车辆的两前轮或两后轮提供动力;
第二交流分驱动电机通过减速器与被驱动车辆的后桥/前桥连接,以同时向被驱动车辆的两后轮或两前轮提供动力。
结合第二方面,本申请实施例提供了第二方面的第二种可能的实施方式,其中,第一交流分驱动电机的输出轴配置为与第一车轮连接,以向第一车轮提供动力;
第二交流分驱动电机的输出轴配置为与第二车轮连接,以向第二车轮提供动力。
结合第二方面,本申请实施例提供了第二方面的第三种可能的实施方式,其中,第一车轮和第二车轮为不同的车轮。
结合第二方面,本申请实施例提供了第二方面的第四种可能的实施方式,其中,所述第一车轮为左侧的一个车轮,所述第二车轮为右侧的一个车轮。
结合第二方面,本申请实施例提供了第二方面的第五种可能的实施方式,其中,所述第一车轮为左前轮,所述第二车轮为右前轮;
或,所述第一车轮为左后轮,所述第二车轮为右后轮。
结合第二方面,本申请实施例提供了第二方面的第六种可能的实施方式,其中,所述第一车轮和所述第二车轮均为左侧的车轮,或均为右侧的车轮。
结合第二方面,本申请实施例提供了第二方面的第七种可能的实施方式,其中,一交流分驱动电机和第二交流分驱动电机中的至少一个为轮毂电机。
第三方面,结合基础方案,本申请所提供的交流电机组包括第三交流分驱动电机和第四交流分驱动电机,整流组件包括第三整流器和第四整流器;直流电机组包括第三直流电机组和第四直流电机组;第三交流分驱动电机、第三整流器和第三直流电机组顺序连接形成第一驱动线路;第四交流分驱动电机、第四整流器和第四直流电机组顺序连接形成第二驱动线路;
第三交流分驱动电机内的多相绕组中每相绕组的首端均配置为与电能输入端连接;第三交流分驱动电机的多相绕组中每相绕组的尾端分别连接所述第三整流器的多相输入端口;
第四交流分驱动电机内的多相绕组中每相绕组的首端均配置为与电能输入端连接;第四交流分驱动电机的多相绕组中每相绕组的尾端分别连接所述第四整流器的多相输入端口;
第三直流电机组电气连接在所述第三整流器的直流输出端和直流输入端之间,以及,第四直流电机组电气连接在所述第四整流器的直流输出端和直流输入端之间。
结合第三方面,本申请实施例提供了第三方面的第一种可能的实施方式,其中,第三交流分驱动电机通过减速器与被驱动车辆的前桥/后桥连接,以同时向被驱动车辆的两前轮或两后轮提供动力;
第四交流分驱动电机通过减速器与被驱动车辆的后桥/前桥连接,以同时向被驱动车辆的两后轮或两前轮提供动力。
结合第三方面,本申请实施例提供了第三方面的第二种可能的实施方式,其中,第三交流分驱动电机的输出轴配置为与第一车轮连接,以向第一车轮提供动力;
第四交流分驱动电机的输出轴配置为与第二车轮连接,以向第二车轮提供动力。
结合第三方面,本申请实施例提供了第三方面的第三种可能的实施方式,其中,第一车轮和第二车轮为不同的车轮。
结合第三方面,本申请实施例提供了第三方面的第四种可能的实施方式,其中,第三交流分驱动电机的输出轴配置为向驱动被驱动车辆的左前轮提供动力;第三直流分驱动电机的输出轴配置为向驱动被驱动车辆的右后轮提供动力;第四交流分驱动电机的输出轴配置为向驱动被驱动车辆的右前轮提供动力;第四直流分驱动电机的输出轴配置为向驱动被驱动车辆的左后轮提供动力;
或,
第三交流分驱动电机的输出轴配置为向驱动被驱动车辆的右前轮提供动力;第三直流分驱动电机的输出轴配置为向驱动被驱动车辆的左后轮提供动力;第四交流分驱动电机的输出轴配置为向驱动被驱动车辆的左前轮提供动力;第四直流分驱动电机的输出轴配置为向驱动被驱动车辆的右后轮提供动力;
或,
第三交流分驱动电机的输出轴配置为向驱动被驱动车辆的左后轮提供动力;第三直流分驱动电机的输出轴配置为向驱动被驱动车辆的右前轮提供动力;第四交流分驱动电机的输出轴配置为向驱动被驱动车辆的右后轮提供动力;第四直流分驱动电机的输出轴配置为向驱动被驱动车辆的左前轮提供动力;
或,
第三交流分驱动电机的输出轴配置为向驱动被驱动车辆的右后轮提供动力;第三直流分驱动电机的输出轴配置为向驱动被驱动车辆的左前轮提供动力;第四交流分驱动电机的输出轴配置为向驱动被驱动车辆的左后轮提供动力;第四直流分驱动电机的输出轴配置为向驱动被驱动车辆的右前轮提供动力。
结合第三方面,本申请实施例提供了第三方面的第五种可能的实施方式,其中,第三交流分驱动电机的输出轴配置为向驱动被驱动车辆的左前轮提供动力;第三直流分驱动电机的输出轴配置为向驱动被驱动车辆的左后轮提供动力;第四交流分驱动电机的输出轴配置为向驱动被驱动车辆的右前轮提供动力;第四直流分驱动电机的输出轴配置为向驱动被驱动车辆的右后轮提供动力;
或,
第三交流分驱动电机的输出轴配置为向驱动被驱动车辆的右前轮提供动力;第三直流分驱动电机的输出轴配置为向驱动被驱动车辆的右后轮提供动力;第四交流分驱动电机的输出轴配置为向驱动被驱动车辆的左前轮提供动力;第四直流分驱动电机的输出轴配置为向驱动被驱动车辆的左后轮提供动力;
或,
第三交流分驱动电机的输出轴配置为向驱动被驱动车辆的左后轮提供动力;第三直流分驱动电机的输出轴配置为向驱动被驱动车辆的左前轮提供动力;第四交流分驱动电机的输出轴配置为向驱动被驱动车辆的右后轮提供动力;第四直流分驱动电机的输出轴配置为向驱动被驱动车辆的右前轮提供动力;
或,
第三交流分驱动电机的输出轴配置为向驱动被驱动车辆的右后轮提供动力;第三直流分驱动电机的输出轴配置为向驱动被驱动车辆的右前轮提供动力;第四交流分驱动电机的输出轴配置为向驱动被驱动车辆的左后轮提供动力;第四直流分驱动电机的输出轴配置为向驱动被驱动车辆的左前轮提供动力。
结合第三方面,本申请实施例提供了第三方面的第六种可能的实施方式,其中,第三交流分驱动电机的输出轴配置为向驱动被驱动车辆的左前轮提供动力;第三直流分驱动电机的输出轴配置为向驱动被驱动车辆的右前轮提供动力;第四交流分驱动电机的输出轴配置为向驱动被驱动车辆的右后轮提供动力;第四直流分驱动电机的输出轴配置为向驱动被驱动车辆的左后轮提供动力;
或,
第三交流分驱动电机的输出轴配置为向驱动被驱动车辆的右前轮提供动力;第三直流分驱动电机的输出轴配置为向驱动被驱动车辆的左前轮提供动力;第四交流分驱动电机的输出轴配置为向驱动被驱动车辆的左后轮提供动力;第四直流分驱动电机的输出轴配置为向驱动被驱动车辆的右后轮提供动力;
或,
第三交流分驱动电机的输出轴配置为向驱动被驱动车辆的左后轮提供动力;第三直流分驱动电机的输出轴配置为向驱动被驱动车辆的右后轮提供动力;第四交流分驱动电机的输出轴配置为向驱动被驱动车辆的右前轮提供动力;第四直流分驱动电机的输出轴配置为向驱动被驱动车辆的左前轮提供动力;
或,
第三交流分驱动电机的输出轴配置为向驱动被驱动车辆的右后轮提供动力;第三直流分驱动电机的输出轴配置为向驱动被驱动车辆的左后轮提供动力;第四交流分驱动电机的输出轴配置为向驱动被驱动车辆的左前轮提供动力;第四直流分驱动电机的输出轴配置为向驱动被驱动车辆的右前轮提供动力。
结合第三方面,本申请实施例提供了第三方面的第七种可能的实施方式,其中,第三交流分驱动电机和第四交流分驱动电机中的至少一个是轮毂电机。
结合上述第一方面、第二方面或第三方面,本申请实施例进一步提供了如下优选方案:
所述交流分驱动电机的减速比约为1:1-12:1;所述直流分驱动电机的减速比约为1:1-8:1;
若交流分驱动电机为轮毂电机,则交流分驱动电机的额定转速约为500-1000r/min;若交流分驱动电机为永磁电机,则交流分驱动电机的额定转速约为3000r/min-7000r/min;若直流分驱动电机为轮毂电机,则直流分驱动电机的额定转速约为500-1000r/min,若直流分驱动电机为永磁电机,则直流分驱动电机的额定转速约为1000r/min-3000r/min。
结合上述第一方面,本申请实施例进一步提供了如下优选方案:
交流分驱动电机与直流分驱动电机的减速比的比值约为0.8:1~1.2:1;
交流分驱动电机与直流分驱动电机的额定转速之比约为1:1~3:1。
进一步,所述交流分驱动电机的减速比约为1:1-6.4:1;所述直流分驱动电机的减速比约为1:1-7:1;
交流分驱动电机的额定转速约为4000r/min-6500r/min;直流分驱动电机的额定转速约为2500r/min-3000r/min。
结合上述第二方面,本申请实施例进一步提供了如下优选方案:
所述第一交流分驱动电机的减速比约为1:1-12:1;第二交流分驱动电机的减速比约为1:1-12:1;所述直流分驱动电机的减速比约为1:1-8:1;
若第一交流分驱动电机为轮毂电机,则第一交流分驱动电机的额定转速约为500-1000r/min;若第二交流分驱动电机为轮毂电机,则第二交流分驱动电机的额定转速约为500-1000r/min;
若第一交流分驱动电机为永磁电机,则第一交流分驱动电机的额定转速约为3000r/min-7000r/min;若第二交流分驱动电机为永磁电机,则第二交流分驱动电机的额定转速约为3000r/min-7000r/min;
若直流分驱动电机为轮毂电机,则直流分驱动电机的额定转速约为500-1000r/min,若直流分驱动电机为永磁电机,则直流分驱动电机的额定转速约为1000r/min-3000r/min。
结合上述第三方面,本申请实施例进一步提供了如下优选方案:
所述第三交流分驱动电机的减速比约为1:1-12:1;第四交流分驱动电机的减速比约为1:1-12:1;所述第三直流分驱动电机的减速比约为1:1-8:1;所述第四直流分驱动电机的减速比约为1:1-8:1;
若第三交流分驱动电机为轮毂电机,则第三交流分驱动电机的额定转速约为500-1000r/min;若第四交流分驱动电机为轮毂电机,则第四交流分驱动电机的额定转速约为500-1000r/min;
若第三交流分驱动电机为永磁电机,则第三交流分驱动电机的额定转速约为3000r/min-7000r/min;若第四交流分驱动电机为永磁电机,则第四交流分驱动电机的额定转速约为3000r/min-7000r/min;
若第三直流分驱动电机为轮毂电机,则第三直流分驱动电机的额定转速约为500-1000r/min,若第三直流分驱动电机为永磁电机,则第三直流分驱动电机的额定转速约为1000r/min-3000r/min;
若第四直流分驱动电机为轮毂电机,则第四直流分驱动电机的额定转速约为500-1000r/min,若第四直流分驱动电机为永磁电机,则第四直流分驱动电机的额定转速约为1000r/min-3000r/min。
具体的,所述整流器内设有多相二极管整流桥,所述多相二极管整流桥包括三个电气并联的单相二极管整流电路,所述多相绕组中的每相绕组的尾端分别电气连接单相二极管整流电路,三个单相二极管整流电路的两端分别同时连接于整流器的两个直流输出端口,所述直流分驱动电机接通两个直流输出端口后,使得三个单相二极管整流电路的两端连接导通形成回路,使得直流输出端成为多相绕组星接所需的中性点。
具体的,所述直流分驱动电机为以下两种中的任一种:
串励电机、有刷永磁直流电机;
和/或,
所述交流分驱动电机为以下两种中的任一种:
交流永磁电机、交流异步电机、交流同步电机。
本申请实施例还提供了一种多轮电动车,包括至少三个车轮,还包括如权利要求108-141所述的驱动系统,至少一个交流分驱动电机配置为向至少一个车轮直接或间接的进行驱动;至少一个直流分驱动电机配置为向至少一个车轮直接或间接的进行驱动。
本申请实施例还提供了一种两轮电动车,两个车轮,还包括如权利要求1-126所述的驱动系统,其特征在于,至少一个交流分驱动电机配置为向至少一个车轮直接或间接的进行驱动;至少一个直流分驱动电机配置为向至少一个车轮直接或间接的进行驱动。
其中,两个车轮前后设置,或左右设置。
本申请实施例还提供了一种驱动系统的加工方法,包括:
使第一绕组中的每一相绕组的尾端均与对应的整流器的多相输入端电性连接;所述第一绕组位于交流分驱动电机中,且所述第一绕组的相数至少为多相;
在所述整流器的直流输出端和直流输入端之间连接直流分驱动电机。
本申请实施例还提供了一种车辆外壳,包括主体骨架,所述主体骨架中设置有容置腔,所述容置腔配置为放置前文中所提供的驱动系统。
通过下述实施例的说明,能够看出,本申请所提供的驱动系统中,直流分驱动电机和交流分驱动电机均是配置为驱动同一辆车中的车轮(直流分驱动电机所驱动的车轮和交流分驱动电机所驱动的车轮可以是同一个,也可以是不同的车轮);或者说,直流分驱动电机的输出轴和交流分驱动电机的输出轴均直接或间接的与对应的车轮连接,以驱动对应的车轮,并且,直流分驱动电机所驱动的车轮和交流分驱动电机所驱动的车轮是位于同一个车上,或配置为带动同一个车进行运动的。下面,通过如下实例来说明上述方案的合理性。
实施例1
如图1、图7、图8、图9、图10、图11、图33所示,一种用于电动汽车的电动机驱动系统,包括交流分驱动电机a和配置为驱动交流分驱动电机a的电源组件,电源组件包括电气连接的电源12和控制器14,控制器14的输入端口电气连接电源12,电源12为多个串联的电池组,控制器14的三相输出端口电气连接交流分驱动电机a,还包括与交流分驱动电机a电气串联连接的直流分驱动电机b,交流分驱动电机a为交流同步电机或异步电机,优选的交流分驱动电机a采用永磁同步电机;直流分驱动电机b采用启动性能较好的有刷永磁直流电机,直流分驱动电机b还可为并励电机、串励电机、混励电机和他励电机中的一种。
有刷永磁直流电机包括定子、转子,定子上设置永磁体和电刷,转子上设置电枢绕组和滑环,电枢绕组的首端连接滑环,电枢绕组的尾端相连接形成回路,整流器输出的直流电通过电刷和滑环进入电枢绕组,产生电枢电流,电枢电流产生的磁场与定子永磁体相互作用产生电磁转矩,使电机旋转带动负载;或者定子上设置电枢绕组,转子上设置永磁体。
交流分驱动电机a的定子2内设有三相绕组,包括U相、V相和W相,每相绕组的首端(61、62、63)连接控制器14;不同于传统电机的是,交流分驱动电机a的每相绕组的尾端(64、65、66)没有在机体内形成星接中性点,具体的,每相绕组的尾端(64、65、66)之间相互分离并引出至交流分驱动电机a外,每相绕组的尾端分别对应电气连接整流器17的三相输入端口,而整流器17直流输出端口电气连接直流分驱动电机b,两个电机串联形成同步输入、交叉互换的动力输出,其中一个电机因负载受阻时,剩余电机加速输出动力。每个单相绕组都是由若干完整的漆包线叠绕而成,漆包线的首端全部与控制器14的三相输出端口对应连接,交流分驱动电机a内使用的位置感应器为霍尔感应器。
永磁同步电机的工作原理如下:交流分驱动电机的定子铁芯中放置三相结构完全相同的绕组U、V、W,各相绕组在空间上互差120°电角度,向这三相绕组通入对称的三相交流电,U相中的电流为IU,V相中的电流为Iv,W相中的电流为Iw,IU、Iv、Iw在三相绕组中形成三个指向不同的感应磁场,三个指向不同的感应磁场形成合成磁场进而给转子3供驱动力,由于三相交流电流的大小和方向是呈正弦曲线变化的,该合成磁场的大小和方向随交流电流相应的变化,交流电流每变化一周合成磁场旋转一周,如果输入的三相交流电是50赫兹,产生的合成磁场是每秒旋转50周,合成磁场在旋转变化中带动转子3。
整流器17的整流过程如下:由交流分驱动电机a三相绕组的尾端输出的交流电流经过整流器17内的整流桥电路全波整流后,形成连续峰值的脉动直流电输出,即脉动直流电始终保 持交流电的峰值电压;由已知公式推导可知,三相电流经整流桥全波整流后的整流输出电压Ud的平均值为相电压(Ua、Ub、Uc)的2.34倍,从而直流分驱动电机b能够获得倍增的脉动直流电流,直流分驱动电机b为有刷永磁直流电机,由励磁电机的特性可知,直流分驱动电机b的转子在脉动直流电的作用下始终受到较大的磁场力而旋转,无需矢量相加的合成磁场,因而能最大程度的利用电能,输出比交流分驱动电机a更大的动力。
整流器17内设有三相二极管整流桥,三相二极管整流桥包括三个电气并联的单相二极管整流电路,三相绕组中的每相绕组的尾端分别电气连接单相二极管整流电路,三个单相二极管整流电路的两端分别同时连接于整流器17的两个直流输出端口,此时的两个直流输出端口是开路,没有形成三相绕组星接所需的回路,直流分驱动电机b内设有相互串联的电枢绕组和励磁绕组(串励电机),电枢绕组的两端分别电气连接两个直流输出端口,使得两个直流输出端口之间电气导通,相当于将三个单相二极管整流电路的两端连接导通形成回路,此时的直流输出端口即成为三相绕组星接所需的中性点,由于星接的三相绕组必须通过中性点形成回路,因而整流后的脉动直流电必然会通过直流分驱动电机b内的电枢绕组和励磁绕组,驱动直流分驱动电机b输出动力。
脉动直流电流由整流器17出发经过直流分驱动电机b又回到整流器17的过程中,由直流分驱动电机b内的绕组线圈形成交流电的星接回路,脉动直流电流经过该星接回路时产生驱动直流分驱动电机b转子的附带磁场,该附带磁场的大小与脉动直流电流的大小成正比,使得直流分驱动电机b高扭矩输出。
交流分驱动电机a转子使用永磁体,产生恒定的磁场,定子上设置有三相线构成的定子线圈,当三相线通入交流电,定子上形成三相磁场,并按照矢量和构成一个转动的定子合磁场,转子的恒定磁场与转动的定子合磁场相互作用,同性相斥,异性相吸,使得转子跟随转子合磁场旋转,形成连续转动。
在三相电机星形接法中,从交流分驱动电机a任意一相线流入的电流,都会通过三相线的中性点,并从交流分驱动电机a的其他相线中流出电机。
直流分驱动电机b定子使用永磁体或使用励磁线圈,当励磁线圈通入恒定直流电时,在励磁线圈产生一个同永磁体一样的恒定磁场。电机转子绕制有线圈,当电机的转子通入恒定直流电时转子线圈产生一个恒定的磁场,定子磁场与转子磁场相互作用,同性相斥,异性相吸,驱动转子旋转。当定子磁场与转子磁场处于平衡位置时,由于换向器作用,使得转子中电流换向,形成的磁场也反向,形成连续的同性相斥,异性相吸作用,驱动转子持续旋转。
交流电通入整流器17后,由于二极管的单项导通作用,只允许相对于二极管正向的电流通过二极管,将交流电变成直流电,在桥式整流中,由于二极管构成桥式电路,当交流电处于正半周期时,电流从二极管整流器17的正向桥臂通过,当交流电处于负半周期时,电流从二极管整流器17的负向桥臂通过,将交流电变成脉动的直流电。在三相桥式整流中,整流器17将三相电流转换为直流电流,输出的直流电流相当于2.34倍的单相交流电流。
交流分驱动电机a与直流分驱动电机b中的一个电机因接收负载而降速时,电流自动加载至转动阻力较小的另一个电机,另一个电机因而加速输出。设定交流分驱动电机a与直流分驱动电机b之间的额定转速不同,形成低速高扭矩和高速低扭矩的相互配合,因而能够在驱动过程中实现自动差速;车辆起步或遇爬坡等受阻较大时,速度较低的直流分驱动电机b在电源输出较小电流的情况下,即可产生足够的大扭矩;由于各电机额定转速不同,在电动车处于不同速度状态下时,能自动切换至相应转速的电机进行驱动,相当于燃油车自动换挡,节省电能。
交流分驱动电机a和直流分驱动电机b可根据转速转矩要求选用不同的额定转速,或者使用相同额定转速转速的电机,由于串联连接自然形成差转速差。
在装车驱动车辆时,交流分驱动电机a为三相交流永磁同步电机,直流分驱动电机b为直流串励电机,使用的电源为电池组。直流分驱动电机b具有启动电压低,电压适应范围宽泛的特点,最低5V就可以运转,转速低扭力大,交流分驱动电机转速高、扭力小,适合高速行驶。
直流分驱动电机b和整流器作为交流分驱动电机的中性点回路,使得流入交流分驱动电机的电流必然通过直流分驱动电机b,直流分驱动电机b和整流器形成直流回路,当控制器输入电流时,电流通过交流分驱动电机的三相线圈,产生定子磁场,在电磁力的作用下,与转子磁极形成推拉作用,带动电机的转子旋转。流过电机某一相的电流通过在整流器进入直流分驱动电机b,在直流分驱动电机b内形成励磁磁场和电枢磁场,励磁磁场和电枢磁场相互作用,连带驱动励磁电机的转子旋转。通过直流分驱动电机b的电流由整流器回到交流分驱动电机并由交流分驱动电机的其他相流出电机,构成完整的电流回路。
作为本实施例的一个衍生方案,如图2所示,在整流器17直流输出端口处增加了继电器4和电容组24,具体为,电源12连接到控制器14的电源输入端,控制器14的三相交流输出端连接到交流分驱动电机a的三相绕组首端,三相绕组的中性点打开,形成三个尾端,三相绕组的尾端连接到整流器17的三相输入端口,整流器17的三相输入端口还并联有一个短接继电器4,短接继电器4由控制开关5控制,整流器17的直流输出端口连接直流分驱动电机b,整流器17的直流输出端口并联有电容组24,配置为稳压滤波,整流器17配置为将由控制器输入并经过交流分驱动电机三相绕组的交流电转化为直流电,且输出的直流电的电流或电压提高到单相交流电的2.34倍。
作为本实施例的一个实施方案,如图3所示,交流分驱动电机a和直流分驱动电机b分别连接驱动电动车的前后桥,车辆的前后桥使用不同性电机,且设定交流分驱动电机a和直流分驱动电机b的额定转速不同,形成自然差速,并设定不同差速比的前后桥,设定交流分驱动电机a为高速电机,使用较大减速比的差速桥,设定直流分驱动电机b为低速电机,使用较小减速比的差速桥,形成车辆的差速驱动。在交流分驱动电机a和直流分驱动电机b中任意一个电机运行受阻时,该电机的转速下降,由于交流分驱动电机a与直流分驱动电机b串联连接,受电气耦合联动作用影响(当其中一个电机转速转矩变化会影响其他电机的转矩转速),未受阻的电机的转速和转矩会提升。比如当交流分驱动电机a运行受阻时,受阻的电流多余电量会 实时分配传输到未受阻的电机,与交流分驱动电机a串联的直流分驱动电机的转速会提升,且交流分驱动电机a受阻力越大,直流分驱动电机b转速提升越多,使得受阻的交流分驱动电机a的转速下降,而未受阻直流分驱动电机的转速转矩提升。并且,受阻的电机转速下降时,其扭力输出不减小,大大减少电动车控制器输出的电能,提高电动车续航里程。
在车辆起步时,需要低速大扭矩的输出,此时,交流分驱动电机a受到的驱动阻力大,传统驱动结构中,控制器14需要加大驱动电流的输入,电流可达到正常驱动电流的10倍以上,电能在电机内堆积,造成电机起步严重发热,交流分驱动电机a以大功率耗电,造成车辆行驶里程下降。本方案中,交流分驱动电机a和直流分驱动电机b串联连接,输入给交流分驱动电机a的电流必然通过直流分驱动电机b,使得直流分驱动电机b和交流分驱动电机a同时运行,直流分驱动电机b是低速高扭矩电机,起步时,交流分驱动电机a重载,转速低,输入到交流分驱动电机a的电能主要被转移分配到直流分驱动电机b,由直流分驱动电机b输作为主要动力输出大扭力,同时由于交流电机和直流电机串联,使得电机整体的短路电阻提高,也进一步限制了启动电流的大电流输入,控制器14不必或者仅需增加少量的电流,就能良好的驱动车辆起步。当车速提升时,交流分驱动电机a受到的驱动阻力逐步减小,交流分驱动电机a被分配的输入功率逐步提高,输出逐步转移至交流分驱动电机a,当车速达到平衡值时,车辆中速行驶,此时直流分驱动电机b和交流分驱动电机a共同输出,一同驱动车辆前进,当车速继续提升,达到直流空载临界速度时,车辆以高速运行,此时直流分驱动电机b空载运行,避免反向拖动交流分驱动电机a,输入功率全部加载在交流分驱动电机a上,由交流分驱动电机a进行高速低扭力输出。通过交流分驱动电机a尾端串联直流分驱动电机b,实现输入电机的电能,随着车辆行驶速度和受到的负载阻力不同的而进行自动自由分配,使得直流分驱动电机b和交流分驱动电机a自动适应负载进行输出,提供合适的驱动力和转速输出,实现传统内燃机车辆变速箱换档功能。交流分驱动电机和直流分驱动电机串联连接并同时输出动力,起步时,需要大扭力加速,直流分驱动电机作主要输出,交流分驱动电机进行辅助推动,高速行驶时,交流分驱动电机作主要输出,直流分驱动电机辅助推动车辆前进,平衡车辆驱动摩擦和风阻,降低交流分驱动电机的驱动力,大幅降低交流分驱动电机驱动电流,形成助力互推效应。
相比于传统的单电机方案,在纯粹使用高速电机时,在车辆起步时电机会大量消耗电能造成发热严重和能源浪费,在纯粹使用低速高扭电机时,车辆在的最高速度无法提升,并在高速时电力被大量消耗,同样造成严重的发热和能源浪费,使用本方案的驱动系统时,在低速时,增加的电力输入远小于纯高速电机的车辆,在高速时,电力消耗也小于纯低速电机的车辆,且车辆的行驶速度更高。相比于传统驱动方式,本申请的驱动电力消耗相对平稳,且具有更好的滑行能力,相比于传统电动车可节约30-50%的电力消耗,有效延长车辆行驶里程。
作为本实施例的另一种实施方案,如图4、图5所示,一种用于电动汽车的电动机驱动系统,包括带有减速箱30的前/后桥、交流分驱动电机a和配置为驱动交流分驱动电机a的电源组件,为保证电动车的顺利起步和高速运行,交流分驱动电机a与直流分驱动电机b之间的额定转速至少相差50%。具体到本实施例中,交流分驱动电机a的额定转速设定为6000rpm, 直流分驱动电机b的额定转速设定为2800rpm,交流分驱动电机a与直流分驱动电机b左右对称的同轴连接在减速箱30上,减速箱30的输入输出减速比为2.2-4.5,优选的减速比为2.5-3.7。由于存在转速差,当车辆低速启动时,需要较大的扭矩,此时利用低转速的直流分驱动电机b来主推动,而交流分驱动电机a则辅助推动,获得较大的启动扭矩;当车辆开始加速运行时,驱动主力自动切换至较高转速的交流分驱动电机a,获得较快的提速,直流分驱动电机b辅助推动。
作为本实施例的另一种实施方案,如图6所示,交流分驱动电机a和直流分驱动电机b同轴连接形成单轮直驱总成,该单轮直驱总成直接驱动车桥单侧的车轮,特别的,交流分驱动电机a可采用转子直径较大的扁平式电机,单轮直驱总成的数量可以自由设置,如1个、2个、3个或4个,本方案中设置2个,包括部件结构和电气接法相同的第一单轮直驱总成和第二单轮直驱总成,第一单轮直驱总成和第二单轮直驱总成分别连接驱动前桥或后桥两侧不同的车轮,第一单轮直驱总成包括按上述接法电气连接的交流分驱动电机a、直流分驱动电机b、第一控制器14和第一整流器17,而第二单轮直驱总成包括同样接法的交流分驱动电机a’、直流分驱动电机b’、第二控制器14’和第二整流器17’。第一单轮直驱总成与第二单轮直驱总成的同性电机之间额定转速不同或者不同性电机之间额定转速不同,具体的,设定第一单轮直驱总成的交流分驱动电机a与第二单轮直驱总成的交流分驱动电机a’的额定转速不同,或者设定第一单轮直驱总成的直流分驱动电机b与第二单轮直驱总成的直流分驱动电机b’的额定转速不同;或者设定第一单轮直驱总成的交流分驱动电机a与第二单轮直驱总成的直流分驱动电机b’之间额定转速不同,或者设定第一单轮直驱总成的直流分驱动电机b与第二单轮直驱总成的交流分驱动电机a’之间的额定转速不同。
作为本实施例图6的一种衍生方案,如图12、13、14所示,交流分驱动电机a和直流分驱动电机b形成双段转子和定子的连体电机,连体电机的数量可设置有1组、2组、3组或4组。双段定子绕组包括交流分驱动绕组M3和与交流分驱动绕组M3电气连接的直流分驱动绕组M4,多段转子至少包括同轴设置且直径相同/不同的第一转子段M1和第二转子段M2,交流分驱动绕组M3和直流分驱动绕组M4分别对应驱动第一转子段M1和第二转子段M2。交流分驱动绕组M3至少为三相绕组,三相绕组中每相绕组的首端均连接控制器;三相绕组中每相绕组的尾端之间分离并连接整流器的三相输入端口,整流器的直流输出端口连接驱动绕组M4;交流分驱动绕组M3包括U相、V相和W相,每相绕组的首端电气连接第一控制器14;不同于传统电机的是,交流分驱动绕组M3的每相绕组的尾端之间相互分离并分别对应电气连接第一整流器17的三相输入端口,而第一整流器17三相输出端口电气连接直流分驱动绕组M4,使得交流分驱动绕组M3的三相绕组的尾端在直流分驱动绕组M4中形成星接中性点;即两个转子段串联同步驱动,形成同步输入、交叉互换的动力输出,当其中一个绕组因车轮负载不足以驱动转子段提供相应动力时,另一绕组驱动转子段加速输出动力。
多段转子直接驱动车桥单侧的车轮;若干单轮直驱总成的多段转子之间的额定转速不同以形成对车轮的不同速驱动。
具体的,第一转子段M1上设有永磁体或第一转子绕组,第二转子段M2上设有第二转子绕组,第二转子绕组的端头连接换向器M22,换向器M22的两侧连接两个碳刷M21;直流分驱动绕组M4与第二转子绕组构成并励绕组、串励绕组、混励绕组和他励绕组中的一种,本实施例中,第一转子段M1上设有永磁体,直流分驱动绕组M4与第二转子绕组构成串励绕组。第一转子段M1的直径大于或等于第二转子段M2的直径。
具体的,连体电机设有两组,包括结构和电气接法相同的第一连体电机M和第二连体电机M’,第一连体电机M和第二连体电机M’分别连接驱动车桥两侧不同的车轮。第一连体电机M与第二连体电机M’内的第一转子段M1上设有永磁体、第二转子段M2上设有第二转子绕组,直流分驱动绕组M4与第二转子绕组电气连接形成串励绕组;第一连体电机M的主直流分驱动绕组M3。
第一连体电机M与第二连体电机M’的同性绕组之间或不同性绕组之间驱动转子段的额定转速不同。具体的,设定第一连体电机M与第二连体电机M’的第一转子段M1之间额定转速不同或者第二转子段M2之间额定转速不同,或者设定第一连体电机M的第一转子段M1与第二连体电机M’的第二转子段M2之间的额定转速不同,或者设定第一连体电机M的第一转子段M2与第二连体电机M’的第二转子段M1之间的额定转速不同。
作为本实施例的另一种实施方案,如图15所示,直流分驱动电机包括第一直流分驱动电机b和第二直流分驱动电机c,第一直流分驱动电机b与交流分驱动电机a的输出轴10同轴连接至前桥的减速箱30,前桥减速箱30输入输出减速比为2.2-4.5,优选的减速比为2.5-3.7,第二直流分驱动电机c的输出轴通过第二减速箱30’连接电动车后桥差速器,后桥第二减速箱30’输入输出减速比为2.05:1。交流分驱动电机a每相绕组的尾端分为两股线组,两股线组分别对应电气连接第一整流器17和第二整流器17’的三相输入端口,而第一整流器17和第二整流器17’的直流输出端口分别电气连接第一直流分驱动电机b和第二直流分驱动电机c,使得第一直流分驱动电机b和第二直流分驱动电机c形成电气并联结构。第二直流分驱动电机c采用的是直流串励电机,第二直流分驱动电机c的额定转速设定为3500rpm。
当然,如图34所示,第一直流分驱动电机b和第二直流分驱动电机c还可串联连接,第一直流分驱动电机b和第二直流分驱动电机c分别为有刷永磁直流电机和直流串励电机,有刷永磁直流电机包括定子、转子、滑环和电刷,定子上设置永磁体和电刷,转子上设置电枢绕组和滑环,整流器输出的直流电通过电刷和滑环进入电枢绕组,产生电枢电流,电枢电流产生的磁场与定子永磁体相互作用产生电磁转矩,使电机旋转带动负载;或者定子上设置电枢绕组,转子上设置永磁体;电枢绕组的首端连接滑环,电枢绕组的尾端相分离后连接串励电机作为串励电机的电能输入,使得交流分驱动电机a、第一直流分驱动电机b和第二直流分驱动电机c被串联同步驱动。
车辆起步时,由交流分驱动电机a内分出的电流主要通过扭矩较大的第一直流分驱动电机b,控制器14输出的较大电流使得交流分驱动电机a处于半启动状态时,被连带驱动的第一直流分驱动电机b足以产生车辆起步所需扭矩,此时交流分驱动电机a内的电流主要经过第 一整流器17分配至第一直流分驱动电机b;车辆高速行驶时,交流分驱动电机a满速带动第一直流分驱动电机b同轴高速转动,由有刷永磁直流电机的特性可知低速的第一直流分驱动电机b因转速高而几乎不需要电流带动,此时,交流分驱动电机a内的电流主要经过第二整流器17’分配至第二直流分驱动电机c,被连带驱动的第二直流分驱动电机c则以较高速度与交流分驱动电机a共同输出高转速。
在交流分驱动电机尾端通过整流器串联多个直流分驱动电机时,当其中任意一个电机运行受阻时,该电机的转速下降,由于交流分驱动电机与多个直流分驱动电机串联成一体,受电气耦合联动作用影响(当其中一个电机转速转矩变化会影响其他电机的转矩转速),其他未受阻的电机的转速和转矩会提升。比如当交流分驱动电机运行受阻时,与交流分驱动电机串联的直流分驱动电机的转速会提升,且交流分驱动电机受阻力越大,直流分驱动电机转速提升越多,当其中一个或多个直流分驱动电机运行受阻时,受阻的电流多余电量会实时分配传输到未受阻的电机,使得受阻的直流分驱动电机的转速下降,而未受阻的交流分驱动电机和直流分驱动电机的转速转矩提升。并且,受阻的电机转速下降时,其扭力输出不减小,大大减少电动车控制器输出的电能,提高电动车续航里程。
对照实验如下:以没有采用本申请实施例接法的普通电动车为例,汽车自重1.3-1.5吨,电源电压300V,交流分驱动电机a为三相同步电机,车桥的减速比为6:1,车轮周长1.65m,当交流分驱动电机a额定转速为6000rpm时,车轮转速为1000rpm,车辆行驶速度为99公里每小时,上述配置的汽车以40公里每小时的恒定车速行驶时,汽车的驱动电流超过12A,功率达到3.6kw,汽车以60公里每小时的恒定车速行驶时,汽车的驱动电流超过20A,功率达到6kw,汽车以80公里每小时的恒定车速行驶时,汽车的驱动电流为35A,功率达到10.5kw。当把车桥的减速比降低至3:1时,其余部分按上述规格配置,当电机转速达到3000rpm时,车辆即可达到90公里每小时,由于功率恒定,车速越高,驱动力越小,因此,该配置在车辆起步或爬坡时动力不足,起步或爬坡时的电流远远超出正常运行电流。
采用图15实施方案电机配置的一个实验中,汽车自重1.5吨,汽车最高速度超过100km/h,电源电压300V,车轮周长为1.65m,交流分驱动电机a为三相同步电机,交流分驱动电机a的额定转速为6000rpm,第一直流分驱动电机b与交流分驱动电机a同轴连接,第一直流分驱动电机b的额定转速为2800rpm,第二直流分驱动电机c的额定转速为3500rpm;前桥减速箱30输入输出减速比为3.2:1,后桥第二减速箱30’输入输出减速比为2.05:1。当交流分驱动电机a、第一直流分驱动电机b、第二直流分驱动电机c分别驱动时,车轮的转速分别达到1875rpm,875rpm和1707rpm,汽车行驶速度可分别达到185公里每小时,86公里每小时和168公里每小时。励磁电机具有转速低,扭力大、支持宽幅电压输入的特点,在车辆低速起步或爬坡时,交流分驱动电机a和第二直流分驱动电机c的转速较高,扭矩较小,第一直流分驱动电机b转速低,扭矩大作为主要动力输出,可获得交流分驱动电机a减速6倍输出时同等驱动力,并通过与交流分驱动电机a和第二直流分驱动电机c配合驱动,实现车辆的快速加速或爬坡。在车辆速度提升后,只需抵抗风阻和摩擦,电机需要小扭力,高转速输出,此时, 交流分驱动电机a和第二直流分驱动电机c作为主要动力输出,第一直流分驱动电机b进行轻载辅助输出或空载运行,驱动车辆高速行驶。电机的最高能效范围在额定速度的1/3左右,相比于普通车辆的车桥,本申请使用的车桥减速比更低,在高速行驶时,交流分驱动电机a的运行速度更低,使得交流分驱动电机a的运行速度仅为普通车辆的1/3,电机能效更高,并通过尾部串接不同参数的励磁电机,形成不同档位输出,实现低速大扭矩和高速小扭矩的输出,实现普通汽车的换挡功能。此外由于电机驱动力随电机阻力的变化而变化,电能在电机中自动自由分配,实现无级变速驱动,始终保持电机的高效能输出。将上述方案的车辆进行测试,当汽车以40公里每小时的恒定车速行驶时,汽车的驱动电流为6.5-8A,当汽车以60公里每小时的恒定车速行驶时,汽车的驱动电流为10-14A,当汽车以80公里每小时的恒定车速行驶时,汽车的驱动电流为18-22A,相比于与传统车辆,利用本实施例的电动驱动系统的车辆可节电约50%,电能消耗更少,以相同容量电池装车,可使得车辆行驶距离提升一倍。
在图15实施方案的另一个实验中,改变励磁电机参数,进行测试,其中,汽车自重1.5吨,电源电压300V,车轮周长为1.65米,交流分驱动电机a为三相同步电机,交流分驱动电机a额定转速为6000rpm,第一直流分驱动电机b与交流分驱动电机a同轴连接,第一直流分驱动电机b的额定转速为2800rpm,第二直流分驱动电机c的额定转速为2800rpm;前桥减速箱30输入输出减速比为3.2:1,第二直流分驱动电机c的输出轴通过第二减速箱30’连接电动车后桥差速器,第二减速箱30’输入输出减速比为2.05:1。当交流分驱动电机a、第一直流分驱动电机b、第二直流分驱动电机c分别驱动时,车轮的转速分别达到1875rpm,875rpm和1365rpm,汽车行驶速度可分别达到185公里每小时,86公里每小时和135公里每小时。在车辆低速起步或爬坡时,交流分驱动电机a和第二直流分驱动电机c的转速较高,扭矩较小,第一直流分驱动电机b转速低,扭矩大作为主要动力输出,可获得交流分驱动电机a减速6倍输出时的同等驱动力,并通过与交流分驱动电机a和第二辅助电机配合驱动,实现车辆的快速加速或爬坡。在车辆速度提升后,只需抵抗风阻和摩擦,电机需要小扭力,高转速输出,此时,交流分驱动电机a和第二直流分驱动电机c作为主要动力输出,第一直流分驱动电机b进行轻载辅助输出或空载运行,驱动车辆高速行驶。电机的最高能效范围在额定速度的1/3左右,相比于普通车辆的车桥,本申请使用的车桥减速比更低,在高速行驶时,交流分驱动电机a的运行速度更低,使得交流分驱动电机a的运行速度仅为普通车辆的1/3,电机能效更高,并通过尾部串接不同参数的励磁电机,形成不同档位输出,实现低速大扭矩和高速小扭矩的输出,实现普通汽车的换挡功能。此外由于电机驱动力随电机阻力的变化而变化,电能在电机中自动自由分配,实现无级变速驱动,始终保持电机的高效能输出。将上述方案的车辆进行测试,当汽车以40公里每小时的恒定车速行驶时,汽车的驱动电流为6.5-8A,当汽车以60公里每小时的恒定车速行驶时,汽车的驱动电流为10-14A,当汽车以80公里每小时的恒定车速行驶时,汽车的驱动电流为18-22A,相比于与传统车辆,利用该方案动力的车辆可节电约50%,电能消耗更少,以相同容量电池装车,可使得车辆行驶距离提升一倍。
在图15实施方案的第三个实验中,改变励磁电机参数和车桥传动比,进行测试,其中,汽车自重1.5吨,电源电压300V,车轮周长为1.65米,交流分驱动电机a为三相同步电机,交流分驱动电机a额定转速为6000rpm,第一直流分驱动电机b与交流分驱动电机a同轴连接,第一直流分驱动电机b的额定转速为2800rpm,第二直流分驱动电机c的额定转速为2800rpm,前桥减速箱30输入输出减速比为3.2:1,第二减速箱30’输入输出减速比为1.64:1。当交流分驱动电机a、第一直流分驱动电机b、第二直流分驱动电机c分别驱动时,车轮的转速分别达到1875rpm,875rpm和1707rpm,汽车行驶速度可分别达到185公里每小时,86公里每小时和169公里每小时。励磁电机具有转速低,扭力大、支持宽幅电压输入的特点,在车辆低速起步或爬坡时,交流分驱动电机a和第二直流分驱动电机c的转速较高,扭矩较小,第一直流分驱动电机b转速低,扭矩大作为主要动力输出,可获得交流分驱动电机a减速6倍输出时的同等驱动力,并通过与交流分驱动电机a和第二辅助电机配合驱动,实现车辆的快速加速或爬坡。在车辆速度提升后,只需抵抗风阻和摩擦,电机需要小扭力,高转速输出,此时,交流分驱动电机a和第二直流分驱动电机c作为主要动力输出,第一直流分驱动电机b进行轻载辅助输出或空载运行,驱动车辆高速行驶。电机的最高能效范围在额定速度的1/3左右,相比于普通车辆的车桥,本申请使用的车桥减速比更低,在高速行驶时,交流分驱动电机a的运行速度更低,使得交流分驱动电机a的运行速度仅为普通车辆的1/3,电机能效更高,并通过尾部串接不同参数的励磁电机,形成不同档位输出,实现低速大扭矩和高速小扭矩的输出,实现普通汽车的换挡功能。此外由于电机驱动力随电机阻力的变化而变化,电能在电机中自动自由分配,实现无级变速驱动,始终保持电机的高效能输出。将上述方案的车辆进行测试,当汽车以40公里每小时的恒定车速行驶时,汽车的驱动电流为6.5-8A,当汽车以60公里每小时的恒定车速行驶时,汽车的驱动电流为10-14A,当汽车以80公里每小时的恒定车速行驶时,汽车的驱动电流为18-22A,相比于与传统车辆,利用该方案的车辆可节电约50%以上,电能消耗更少,以相同容量电池装车,可大幅延长车辆的行驶里程。
作为本实施例的另一种实施方案,如图16至图19所示,交流分驱动电机a、直流分驱动电机b和第二直流分驱动电机c分左右同时连接前桥的减速箱30内不同速比的齿轮,交流分驱动电机a和直流分驱动电机b的输出轴同轴连接至输入输出减速比为3.2:1的齿轮,第二直流分驱动电机c的输出轴连接输入输出减速比为2.05:1的齿轮,三个电机通过连接同一减速箱30内不同速比的齿轮来实现对前桥的不同速驱动,本实施方案的电动驱动系统可达到图15中同样的节能效果。
作为本实施例的另一种实施方案,如图20、图35所示,直流分驱动电机包括第一直流分驱动电机b、第二直流分驱动电机c和第三直流分驱动电机d,三者呈电气串联连接,即整流器17的直流输出端口连接第三直流分驱动电机d,而后第二直流分驱动电机c、第一直流分驱动电机b依次与第三直流分驱动电机d串联,或者整流器17的直流输出端口连接第一直流分驱动电机b,而后第二直流分驱动电机c、第三直流分驱动电机d依次与第一直流分驱动电机b串联。
作为本实施例的另一种实施方案,如图32所示,直流分驱动电机包括第一直流分驱动电机b、第二直流分驱动电机c、第三直流分驱动电机d和第四直流分驱动电机e,四者呈电气串联连接,第一直流分驱动电机b与交流分驱动电机a同轴串联连接以驱动汽车前桥上的减速箱,减速箱的减速比为2.5-3.7;整流器17的直流输出端口连接第一直流分驱动电机b,而后第二直流分驱动电机c、第三直流分驱动电机d和第四直流分驱动电机e依次电气串联,第一直流分驱动电机b、第三直流分驱动电机d和第四直流分驱动电机e同轴串联连接以驱动汽车后桥。
实施例2
请参阅图21,相比于实施例1,本方案的差异在于:整流器17的直流输出端口连接有第一直流分驱动电机b、第二直流分驱动电机c和第三直流分驱动电机d,第一直流分驱动电机b、第二直流分驱动电机c和第三直流分驱动电机d电气串联连接。整流器17和直流分驱动电机构成交流分驱动电机的三相绕组中心节点,即三相绕组Y接的中性点,电流从整流器17三相输入端口输入,电流依次通过与整流器17串联连接的第一直流分驱动电机b、第二直流分驱动电机c和第三直流分驱动电机d,连带驱动第一直流分驱动电机b、第二直流分驱动电机c和第三直流分驱动电机d的转子旋转输出,经过第一直流分驱动电机b、第二直流分驱动电机c和第三直流分驱动电机d的电流回到整流器17并进入交流分驱动电机a。交流分驱动电机a的额定转速可以设定为1200rpm,第一直流分驱动电机b的额定转速可以设定为1200rpm,第二直流分驱动电机c的额定转速可以设定为2400rpm,第三直流分驱动电机d的额定转速可以设定为3600rpm。
交流分驱动电机a的输出轴10同轴连接第一直流分驱动电机b的尾端,第一直流分驱动电机b的输出轴通过主轴35同轴连接一个发电机31,交流分驱动电机a与第一直流分驱动电机b同轴同步驱动发电机31,第二直流分驱动电机c和第三直流分驱动电机d的输出轴通过具有减速比的皮带轮驱动主轴35,具有减速比的皮带轮使得第二直流分驱动电机c和第三直流分驱动电机d与主轴同速传动,实际使用中,第二直流分驱动电机c和第三直流分驱动电机d起到减速增扭的作用,使得交流分驱动电机a与直流分驱动电机一同驱动发电机31。当然,发电机31也可替换为车桥或者其他机械负载。
需要注意的是,交流分驱动电机a采用永磁交流同步电机,交流分驱动电机a采用感应器为霍尔传感器,第一直流分驱动电机b、第二直流分驱动电机c和第三直流分驱动电机d采用直流串励电机和有刷永磁直流电机,当然第一直流分驱动电机b、第二直流分驱动电机c和第三直流分驱动电机d也可以采用并励电机,它励电机和复励电机。
交流分驱动电机a转子使用永磁体,产生恒定的磁场,定子上设置有三相绕组构成的定子线圈,当三相绕组通入交流电,定子上形成三相磁场,并按照矢量和构成一个转动的定子合磁场,转子的恒定磁场与转动的定子合磁场相互作用,同性相斥,异性相吸,使得转子跟随转子合磁场旋转,形成连续转动。
在三相电机星形接法中,从交流分驱动电机a任意一相线流入的电流,都会通过三相绕组的中性点,并从电机的其他相线中流出电机。
直流电机定子使用永磁体或使用励磁线圈,当励磁线圈通入恒定直流电时,在励磁线圈产生一个同永磁体一样的恒定磁场。电机转子绕制有线圈,当电机的转子通入恒定直流电时转子线圈产生一个恒定的磁场,定子磁场与转子磁场相互作用,同性相斥,异性相吸,驱动转子旋转。当定子磁场与转子磁场处于平衡位置时,由于换向器作用,使得转子中电流换向,形成的磁场也反向,形成连续的同性相斥,异性相吸作用,驱动转子持续旋转。
交流电通入整流器17后,由于二极管的单项导通作用,只允许相对于二极管正向的电流通过二极管,将交流电变成直流电,在桥式整流中,由于二极管构成桥式电路,当交流电处于正半周期时,电流从二极管整流器17的正向桥臂通过,当交流电处于负半周期时,电流从二极管整流器17的负向桥臂通过,将交流电变成脉动的直流电。在三相桥式整流中,整流器17将三相电流转换为直流电流,输出的直流电流相当于2.34倍的单相交流电流。
当多个同性电机串接时,流过第一电机和第二电机的电流相同,扭力功率按常规分配,当直流分驱动电机串接在交流分驱动电机a后端时,交流分驱动电机a的中性点打开连接整流器17和直流分驱动电机b,使得流入交流分驱动电机a的电流必然通过整流器17和直流分驱动电机b,整流器17与串接的直流分驱动电机构成一个中性点电流回路,在直流分驱动电机中产生附加磁场,驱动直流分驱动电机转子旋转,同时由于采用三相整流器17,将三相电转为单向直流电,输出电流为单相电流的2.34倍,直流电机以高扭矩高效能输出,同时,整流器17和直流分驱动电机构成三相交流分驱动电机a的外接中性点,保证电机的正常驱动。
交流分驱动电机a和直流分驱动电机可根据转速转矩要求选用不同的额定转速,或者使用相同额定转速转速的电机,由于串联连接自然形成差转速差。
在请参阅图22,相比于图21,本方案的差异在于交流分驱动电机a串联单一的直流分驱动电机b,交流分驱动电机a的额定转速可以设定为1200rpm,直流分驱动电机b的额定转速可以设定为2400rpm,具体在于:交流分驱动电机a的输出轴3通过主轴35连接发电机31,直流分驱动电机b的输出轴通过具有减速比的皮带轮与主轴35连接,当然,发电机31也可替换为车桥或者其他机械负载。
交流分驱动电机a采用永磁交流同步电机,交流分驱动电机a采用感应器为霍尔传感器,直流分驱动电机采用直流串励电机,当然直流分驱动电机也可以采用并励电机,它励电机和复励电机。
实施例3
请参阅图23,相比于实施例1,本方案的差异在于,并联设置一组整流器17,且该整流器17的输出连接到电池,用于回充电。具体为:电源12连接到控制器14的电源12输入端,控制器14的三相交流输出端连接到交流分驱动电机a的三相绕组首端,三相绕组的中性点打开,形成三个单相尾端,每个尾端分成两组,形成两个三相尾端(64、65、66)和(67、68、69),两个三相尾端分别连接一个整流器17,其中一个整流器17的输出连接到直流分驱动电 机,另一个整流器17的输出连接到电池,整流器17配置为将由控制器14输入并经过交流分驱动电机a三相绕组的交流电转化为直流电,且输出的直流电的电流或电压提高到单相交流电的2.34倍。
实施例4
请参阅图24,相比于实施例1,本实施例的差异在于,设置有两个交流分驱动电机,具体为:电源12连接到控制器14的输入,控制器14的输出连接到第一交流分驱动电机a的三相输入,第一交流分驱动电机a内三相绕组的尾端连接到第二交流分驱动电机a’的三相输入,第一交流分驱动电机a的输出轴与第二交流分驱动电机a’的输出轴同轴串联连接;第二交流分驱动电机a’结构与第一交流分驱动电机a完全相同,第二交流分驱动电机a’内三相绕组的尾端连接到三相整流器17的三相输入端口,三相整流器17的直流输出端口连接有一个直流分驱动电机b,在整流器17的直流输出端口还并联有一个法拉电容组24,配置为对输出直流电的稳压和滤波。
实施例5
请参阅图25,相比于图24,本方案的差异在于第一交流分驱动电机a三相绕组尾端连接有两个整流器。具体为:电源12连接到控制器14的输入,控制器14的输出连接到第一交流分驱动电机a的三相输入,第一交流分驱动电机a的三相中性点打开,形成三个尾端,单个尾端的输出线分出两组,其中一组连接到与电机结构完全相同的第二交流分驱动电机a’的一组输入上,剩余一组线连接到第一整流器17上,第一整流器17的直流输出端口连接到电源12,同时第二交流分驱动电机a’的另一组输入连接有第二整流器17’,第二整流器17’输出连接有第二直流分驱动电机c,在第二交流分驱动电机a’的三相绕组尾端连接到第三整流器17”的三相输入上,第三整流器17”输出连接有第一直流分驱动电机b。
第一整流器17通过电池短接构成第一交流分驱动电机a的部分中性点,第一交流分驱动电机a另一部分中性点由第二交流分驱动电机a’的中性点构成,第三整流器17”的输出通过第一直流分驱动电机b形成短接,构成第二交流分驱动电机a的中性点。
实施例6
请参阅图26,相比于实施例1,本方案的差异在于,交流分驱动电机a的三相尾端并联多个整流器17。具体为:电源12连接到控制器14的输入,控制器14的输出连接到交流分驱动电机a的三相输入,交流分驱动电机a的三相绕组中性点打开形成三个三相尾端,每个尾端的线分成4组,构成4组三相尾端,四组三相尾端分别连接四个整流器17的三相输入,其中一个整流器的直流输出端口连接直流分驱动电机b,剩余整流器17的输出分别连接一个法拉电容组24,三个法拉电容组24串联后再并联到电源12两端。整流器17通过直流分驱动电机b构成交流分驱动电机a的部分中性点回路,另一部分中性点回路依靠整流器17连接的法拉电容组24和电源12构成。
三个整流器17独立给法拉电容组24充电,之后通过串联,提高电容组24整体电压,在并联到电源12上给电源12充电。
交流分驱动电机a采用永磁交流同步电机,交流分驱动电机a采用感应器为霍尔传感器,直流分驱动电机采用直流串励电机,当然直流分驱动电机也可以采用并励电机,它励电机和复励电机。
实施例7
请参阅图27,相比于实施例1,本实施例的差异在于,设置两个电气串联的交流分驱动电机,具体为:
第一交流分驱动电机a的输出轴与车辆的前桥连接,第二交流分驱动电机a’与车辆的后桥连接,第一交流分驱动电机a的三相绕组为三个独立的单相线结构,三相绕组中分出5%的线作为发电线使用,剩余线作为驱动线,第一控制器14的三相输出连接到第一交流分驱动电机a的三相驱动线,三相驱动线另一端接成一个节点,三相绕组的三个发电线连接到整流器17的三相输入端口,整流器17的直流输出端口连接到法拉电容组24;第二交流分驱动电机a’内为三个独立的单相绕组,每个绕组的输入线和输出线从机壳引出,第二控制器14’的输入端连接有调速踏板29,第二控制器14’的三相输出连接到第二交流分驱动电机a’的三相输入线,第二交流分驱动电机a’的三相输出线通过整流器17连接到法拉电容组24,法拉电容组24设置有两个且两者串联连接,串联后的法拉电容组24连接到第二控制器14’的直流输入端。
启动时,电池12给第一交流分驱动电机a供电,驱动第一交流分驱动电机a运行,在此过程中,第一交流分驱动电机a的发电线发出电力,经过整流后输出给法拉电容组,此时,法拉电容组内电压较低,无法驱动第二交流分驱动电机a’以相同速度运行,第二交流分驱动电机a由于后桥的拖动进行转动,在此过程中由于切割磁感线进行发电,发出电力经过整流器17后流入法拉电容组24,同时由控制器14输入的电能通过第二交流分驱动电机a’后,部分电力被储存在法拉电容组24中,经过一段时间后,法拉电容组24内的电容量提高,使得电压达到驱动电压后,驱动第二交流分驱动电机a’正常运行,此时,第一交流分驱动电机a的负荷大大减小,使得车辆节能运行,有效提高行驶距离。
实施例8
请参阅图28,相比于实施例1,方案的差异在于,交流分驱动电机a的三相绕组尾端并联多个整流器17,整流器17的直流输出端口连接法拉电容组24,具体为:
电源12连接到控制器14的直流输入端,控制器14的三相交流输出连接到交流分驱动电机a的三相输入,交流分驱动电机a内三相绕组为三个独立的单相绕组,交流分驱动电机a的三相绕组的另一端从机壳引出,形成三条独立的输出线,这三条独立的输出线中,每一相线均分成20%和80%两股线,其中80%的三个单相线取出来,连接到一个整流器17的三相输入端口上,整流器17的三相输入端口还并接有一个短路开关26,整流器17的输出连接到一个法拉电容组24。
剩余的20%的三个单相线连接到两个副整流器上,为方便描述,这两个副整流器分别定义为第一整流器17’和第二整流器17”,三相绕组分别命名为U相、V相、W相,其中U相和V相分别连接到第一整流器17’的输入端和第二整流器17”的输入端,其中W相的线再按照50% 和50%分出,分别连接到第一整流器17’和第二整流器17”的另一个输入端。在第一整流器17’的和第二整流器17”的输入端,连接有一个短路开关26,短路开关26一端与U相、V相、W相,三相绕组连接,短路开关26的另一端短接在一起,第一整流器17’的直流输出端口连接到一个法拉电容组24,第二整流器17”的输出端连接到另一个法拉电容组24。
交流分驱动电机a采用永磁交流同步电机,交流分驱动电机a采用感应器为霍尔传感器。
实施例9
请参阅图29,相比于图4的实施方案,本方案的差异在于,差速器30的两端连接有单向轴承33、33’。具体为:
交流分驱动电机a和直流分驱动电机b同轴连接,同步驱动车桥差速器30,差速器30两侧输出分别连接有单向轴承33、33’,差速器30的输出通过单向轴承33连接到车辆的车轮,上述的交流分驱动电机a、直流分驱动电机b、差速器30、单向轴承33、33’和车轮构成车辆的前桥驱动或后桥驱动。
交流分驱动电机a使用的电机为直流无刷永磁同步电机,直流分驱动电机b使用直流串励电机,当然交流分驱动电机a也可使用交流异步电机,直流分驱动电机b也可选用直流并励电机、它励电机或混励电机。
通过在差速器30两端设置单向轴承33、33’,当松开油门后,车辆进入滑行状态,此时由于单向轴承33、33’的作用,电机不与车轮之间产生传动,避免传统驱动结构在车辆滑行时由于车轮通过变速箱升速驱动电机,使得电机对车轮产生严重的拖动作用,使得车速快速下降,降低了车辆滑行距离,减少车辆行驶里程,造成能源浪费。
同时,由于交流分驱动电机a和直流分驱动电机b电气串联连接,在驱动时,电流通过交流分驱动电机a后,在整流器17中转化为直流电进入直流分驱动电机b,在直流分驱动电机b内建立过路磁场,实现对直流分驱动电机b的驱动,同时,整流器17和直流分驱动电机b,构成了交流分驱动电机a的外接中性点,使得交流分驱动电机a可正常驱动。此外,在这种串联连接中,在低速时,交流分驱动电机a受到的驱动阻力大,此时控制器14需要加大驱动电流的输入,输入给交流分驱动电机a的电流又会通过直流分驱动电机b,直流分驱动电机b是低速高扭矩电机,此时输入的功率主要分配到直流分驱动电机b,由直流分驱动电机b输出主要动力,当车速提升时,交流分驱动电机a受到的驱动阻力逐步减小,交流分驱动电机a被分配的输入功率逐步提高,输出逐步转移至交流分驱动电机a,当车速达到临界值时,此时直流分驱动电机b在空载运行,输入功率全部加载在交流分驱动电机a上,由交流分驱动电机a实现输出,通过该种方式实现驱动电力的自动自由分配。
相比于传统的单电机方案,在纯粹使用高速电机时,在车辆起步时电机会大量消耗电能造成发热严重和能源浪费,在纯粹使用低速电机时,车辆在的最高速度无法提升,并在高速时电力被大量消耗,同样造成严重的发热和能源浪费,使用本方案的驱动系统时,在低速时,增加的电力输入远小于纯高速电机的车辆,在高速时,电力消耗也小于纯低速电机的车辆,且车 辆的行驶速度更高。相比于传统驱动方式,本申请的驱动电力消耗相对平稳,且具有更好的滑行能力,相比于传统电动车可节约30-50%的电力消耗,有效延长车辆行驶里程。
实施例10
请查阅图30,同实施例9,本方案的差异在于,直流分驱动电机b还依靠金属空气电池12直接供能,金属空气电池12的直流输出端口也连接到整流器17的直流端上。
直流分驱动电机b的电源12一部分来自金属空气电池12的供电,另一部分来自流经交流分驱动电机a的电流。直流分驱动电机b和控制器14,构成交流分驱动电机a的三相绕组星接所需的中性点。
其中交流分驱动电机a为三相交流永磁同步电机,直流分驱动电机b为直流串励电机,当然直流分驱动电机b也可使用并励电机、它励电机和混励电机,使用的电源12为电池组。
励磁电机具有启动电压低,电压适应范围宽泛,最低5V就可以运转,可以依靠金属空气电池12直接驱动运行,转速低扭力大,用于辅助驱动,交流分驱动电机a转速高,扭力小,用于高速行驶,依靠电池供电。
实施例11
请参阅图31,相比于实施例1,本方案的差异在于使用两个交流分驱动电机。
电源12连接控制器14的直流输入,控制器14的信号输入端连接有一个调速踏板29,第一交流分驱动电机a的三相绕组为三个独立的单相线结构,每相绕组的输入线和输出线从机壳引出,控制器14的三相输出连接到第一交流分驱动电机a的三相输入线,三个三相输出线连接有一个短路开关26,同时三个三相输出头还并联连接到控制器14到整流器17的三相输入端口,整流器17的直流输出端口连接到法拉电容组24;第二控制器14’的信号输入端连接同一个调速踏板29,第二控制器14’的三相输出连接到第二交流分驱动电机a’的三相输入线,第二交流分驱动电机a’内为三个独立的单相绕组,每个绕组的输入线和输出线从机壳引出,三个三相输出头连接有一个短路开关26,同时三个三相输出头还并联连接到第二整流器17的三相输入端口,第二整流器17的直流输出端口连接到第二法拉电容组24;两个法拉电容组24串联后再连接到第二控制器14’的直流输入端,第二控制器14’的直流输入端连接到电源12。
当第一交流分驱动电机a启动前,短路开关26连接,使得交流分驱动电机a三相绕组的尾端连接到一起,形成交流分驱动电机a三相绕组的中心节点,当第一交流分驱动电机a启动后,断开短路开关26,通过交流分驱动电机a的交流电经过整流器17变为直流电并冲入法拉电容组24中,一段时间后,法拉电容组24内的电压提高,此时断开短路开关26,第二交流分驱动电机a’依靠法拉电容组24进行供电,节约电源12电能,并能实现助力推动,同时整流器17和第二交流分驱动电机a’构成了第一交流分驱动电机a的中性点回路,使得第一交流分驱动电机a可以被正常驱动,第二交流分驱动电机a’依靠整流器17、第二控制器14’构成中性点回路,保证第二交流分驱动电机a’的正常驱动。
本申请提供了一种驱动系统,该系统包括交流电机组、整流组件和直流电机组;
本身请还提供了一种驱动系统,包括:交流电机组、整流组件和直流电机组;交流电机组包括至少一个交流分驱动电机;所述直流电机组包括至少一个直流分驱动电机;所述整流组件包括至少一个整流器;至少一个交流分驱动电机、至少一个整流器和至少一个直流分驱动电机顺序连接形成一条驱动线路;所述整流器包括多相输入端、直流输出端和直流输入端,所述交流分驱动电机内至少设有多相绕组,多相绕组中每相绕组的首端均配置为与电能输入端连接;目标直流分驱动电机电气连接在目标整流器的所述直流输出端和直流输入端之间;目标交流分驱动电机的多相绕组中每相绕组的尾端分别连接目标整流器的多相输入端口;目标交流分驱动电机、目标整流器和目标直流分驱动电机均属于同一条驱动线路。
其中,电能输入端可以是任意一种电源(如电池等移动电源,又又如某些化学电池);电能输入端也可以是指能够与电源连接,并从电源获得电能的连接器件(如插头、电气连接件等)。
直流输入端和直流输出端分别是指电流的流入端和电流的流出端。如图10所示,直流输出端可以是负载上部的连接线,直流输入端可以是负载下部的连接线。本申请所提供的方案中,所提及的交流分驱动电机、整流器和直流分驱动电机依次顺序连接,均是指交流分驱动电机的电能输出端与整流器的三相(多相)输入端电气连接,直流分驱动电机电气连接在直流输出端和直流输入端之间。电池(电源)所提供的电能通常是直流电的形式,因此,如果电池需要向交流分驱动电机进行供电,则需要在电池和交流分驱动电机之间增加逆变器,以将直流电转化为交流电,但这种直交转换的方式属于本领域技术人员根据使用场景能够不付出创造性劳动就获知到的,因此,本文中不对此处进行过多说明。
目标交流分驱动电机、目标整流器和目标直流分驱动电机顺序连接,能够形成一条驱动线路。一般情况下,目标交流分驱动电机可以是一个也可以是两个,还可以是更多,对应的每个目标交流分驱动电机应当配置独立的整流器,也就是,如果目标交流电机有2个,则目标整流器也应当是两个,并且每个目标交流电机应当分别与对应的目标整流器连接(目标交流电机的多相绕组中每相绕组的首端均与电能输入端连接)。直流分驱动电机的数量可以是一个也可以是多个,本申请所提供的方案中,目标直流分驱动电机可以是指一个直流电动机,也可以是指由多个直流电动机采用串联、并联、混联的方式形成的直流电机组。
比如,当有两个交流分驱动电机时(交流分驱动电机A和交流分驱动电机B),应当配置两个整流器(整流器A和整流器B);进而,交流分驱动电机A的多相绕组中每相绕组的首端均配置为与整流器A电能输入端连接;交流分驱动电机B的多相绕组中每相绕组的首端均配置为与整流器B电能输入端连接;直流分驱动电机电气连接在整流器A的直流输出端和直流输入端之间,以及直流分驱动电机电气连接在整流器B的直流输出端和直流输入端之间。
本申请所提供的方案中通过整流器来连接了交流分驱动电机和直流分驱动电机,使得交流分驱动电机和直流分驱动电机能够形成类似于串联的电路。进而在交流分驱动电机和直流分驱动电机同时驱动同一个车辆(驱动同一个车辆中的车轮)时,交流分驱动电机的实际输出功 率与直流分驱动电机的输出功率的比值会随着环境的变化而自动的调整。进而,本申请所提供的驱动系统能够同时利用交流分驱动电机和直流分驱动电机的特性从而提高整体效率。
本申请所提供的驱动系统的技术目的是使得在不同的负载条件下,目标直流分驱动电机的电能使用率和目标交流分驱动电机的电能使用率能自动调整。负载条件可以是指驱动电机(交流分驱动电机,和/或直流分驱动电机)所受到的任何一种或多各种外界环境对驱动电机的作用力或者控制信号。通过设置目标交流分驱动电机的电机参数和目标直流分驱动电机的电机参数能够达到上述效果。类似的,通过设置目标交流分驱动电机的电机参数和目标直流分驱动电机的电机参数,还能够达到在不同的负载条件下,电能输入端所提供的电能至少部分的在目标直流分驱动电机和目标交流分驱动电机之间窜移。
实际上,经过申请人的理论分析,以及结合大量的实验数据再次进行分析,认为直流电机组的功率(或者说是目标直流分驱动电机的功率)可以进行适当的限制来提高整个驱动系统的工作效率。
某种情况下,直流电机组的功率不应当过大,通过对目标直流分驱动电机和目标交流分驱动电机的电机参数进行设定,使得在一般运动状态(驱动系统所驱动的车辆车速在20-140KM/h左右)时,目标直流分驱动电机的功率占总功率的百分比约为1.5%-40%;其中,总功率是目标直流分驱动电机的功率与目标交流分驱动电机的功率之和;目标交流分驱动电机的电机参数至少包括以下的一种或多种,额定转速和减速比;目标直流分驱动电机的电机参数包括以下的一种或多种,额定转速和减速比。当目标直流分驱动电机的功率占总功率的百分比约为1.5%-40%的情况下,整体系统的能量利用率较高,并且驱动力也较高。更优选的,当目标直流分驱动电机的功率占总功率的百分比约为5%-20%的情况下,整体效率会更高。
类似的,通过进行如下限定被驱动系统所驱动的车辆处于加速状态时,目标直流分驱动电机的功率占比大于车辆处于匀速状态时,目标直流分驱动电机的功率占比。也是为了尽量的调整驱动系统的整体效能,使得整体系统的能量利用率较高,并且驱动力也较高。
具体的,对于一般的家用车辆或者是商用车辆,本申请还提供了较为合理的目标直流分驱动电机和目标交流分驱动电机的视在功率的数值,即,目标直流分驱动电机的视在功率约为70w-800w;以使目标交流分驱动电机的视在功率约为3000w-4500w(驱动系统所驱动的车辆车速在20-140KM/h左右时,目标直流分驱动电机和目标交流分驱动电机的视在功率是上述数值)。当然,约束目标直流分驱动电机和目标交流分驱动电机的视在功率也同样可以通过设定目标交流分驱动电机的电机参数和目标直流分驱动电机的电机参数来实现。
具体的,还可以通过进行如下三种限定方式中的任意一种或两种或三种来改善驱动系统的工作效能。
具体的,第一种限定方式是:同一个驱动线路中的至少一个直流分驱动电机和至少一个交流分驱动电机的减速比/额定转速不同;
直流分驱动电机和交流分驱动电机的减速比不同,或者是额定转速不同,或者说直流分驱动电机和交流分驱动电机的减速比和额定转速按照某个规则进行设定,则能够保证驱动系统工作的整体效率。
第二种限定方式,同一个驱动线路中的至少一个直流分驱动电机的实际输出转速大于至少一个交流分驱动电机的实际输出转速;
第三种限定方式,同一个驱动线路中的至少一个直流分驱动电机的实际输出转速的峰值大于至少一个交流分驱动电机的实际输出转速的峰值。
其中,实际输出转速可以是指输出转速的平均值,或者是转速的实时输出值;实际输出转速的峰值指的是转速的实时输出值中的最大值。
本申请所提供的驱动系统的重点在于交流分驱动电机、整流器和直流分驱动电机依次顺序连接,以形成能够窜流(在不同的负载条件下,电能输入端所提供的电能至少部分的在目标直流分驱动电机和目标交流分驱动电机之间窜移)的系统架构,该系统架构某种程度上,同时利用了交流分驱动电机和直流分驱动电机各自的优势,比如,车辆在加速的过程中,直流分驱动电机能够提供更多的扭矩,这样交流分驱动电机能够更为便捷的提升转速。
本申请所提供的驱动系统可以使用在任何一种车辆上,比如二轮车、三轮车、四轮车或者的车轮数量大于或等于5的车辆。下面几段将针对某一个驱动线路的驱动方式进行说明,该驱动线路包括顺序连接交流分驱动电机、整流器和直流分驱动电机,下面几段所描述的交流分驱动电机和直流分驱动电机均是属于该驱动线路中的。
如果本申请所提供的驱动系统是驱动前后轮的两轮车(两个车轮沿车辆的前进方向依次排列,或者说,两个车轮的连线与车辆的前进方向平行),则交流分驱动电机可以驱动两轮车的任意一个车轮,直流分驱动电机也可以驱动两轮车的任意一个车轮(交流分驱动电机和直流分驱动电机可以同时驱动任一个车轮)。
如果本申请所提供的驱动系统是驱动左右轮的两轮车(两个车轮的连线与车辆的前进方向垂直,这两个车轮平行),则交流分驱动电机可以驱动两轮车的任意一个车轮,直流分驱动电机也可以驱动两轮车的任意一个车轮(交流分驱动电机和直流分驱动电机可以同时驱动任一个车轮);或者交流分驱动电机和直流分驱动电机可以同时驱动这两个平行的车轮(交流分驱动电机和直流分驱动电机通过同一个减速器与这两个平行的车轮连接,并驱动这两个车轮)。
如果本申请所提供的驱动系统是驱动品字形三轮车(俯视视角下,三轮车的三个车轮呈品字形排列),则交流分驱动电机可以驱动三轮车的任意一个车轮,直流分驱动电机也可以驱动三轮车的任意一个车轮(交流分驱动电机和直流分驱动电机可以同时驱动任一个车轮);交流分驱动电机可以驱动三轮车的两个平行的车轮,直流分驱动电机也可以驱动三轮车的两个平行的车轮(交流分驱动电机和直流分驱动电机可以同时驱动这两个平行的车轮);或者是交流分驱动电机可以驱动平行的两个车轮,直流分驱动电机可以驱动独立的一个车轮(三轮车中除平行的两个车轮外的一个车轮);或者是直流分驱动电机可以驱动平行的两个车轮,交流分驱动电机可以驱动独立的一个车轮(三轮车中除平行的两个车轮外的一个车轮)。
如果本申请所提供的驱动系统是驱动直线型三轮车(俯视视角下,三轮车的三个车轮沿一条直线排列),则交流分驱动电机可以驱动三轮车的任意一个车轮,直流分驱动电机也可以驱动三轮车的任意一个车轮(交流分驱动电机和直流分驱动电机可以同时驱动任一个车轮)。
如本申请所提供的驱动系统是驱动四轮车(车辆有两前轮和两后轮)的话,交流分驱动电机可以驱动四轮车的任意一个车轮(左前轮、左后轮、右前轮或右后轮),直流分驱动电机也可以驱动四轮车的任意一个车轮,交流分驱动电机和直流分驱动电机可以同时驱动某一个车轮;还可以是交流分驱动电机可以驱动四轮车的两个平行的车轮(如同时驱动左前轮和右前轮,或者是同时驱动左后轮和右后轮,此时交流分驱动电机通过减速器与被驱动车辆的前桥/后桥连接,以同时向被驱动车辆的两前轮或两后轮提供动力),类似的直流分驱动电机也可以驱动四轮车的两个平行的车轮,也就是交流分驱动电机和直流分驱动电机也可以是同时驱动指定的两个平行的车轮;当然,交流分驱动电机可以驱动四轮车的任意一个车轮,直流分驱动电机也可以驱动四轮车的两个平行的车轮;或者是,直流分驱动电机可以驱动四轮车的任意一个车轮,交流分驱动电机也可以驱动四轮车的两个平行的车轮。
如本申请所提供的驱动系统是驱动五轮车或者是具有更多车轮的车辆,则可以参照前文中的方式,交流分驱动电机和直流分驱动电机都可以驱动任一个车轮,或者是交流分驱动电机和直流分驱动电机都可以驱动任两个平行的车轮。
需要说明的是,本申请所提供的驱动系统,直流分驱动电机指的是一个直流电动机也可以是指至少两个直流电动机所组成的电动机组,对任一个驱动线路,电动机组的中的至少两个的直流电动机可以是串联连接在同一个整流器的直流输入端和直流输出端之间;也可以是并联连接在同一个整流器的直流输入端和直流输出端之间;还可以是混联连接在同一个整流器的直流输入端和直流输出端之间。
上面几段的内容所叙述的均是某一个驱动线路中,直流分驱动电机和交流分驱动电机的驱动方式,实际上,本申请所提供的方案,可以有两个或更多的驱动线路,每个驱动线路中的直流分驱动电机和交流分驱动电机的驱动方式都可以按照上述几段中所描述的方式设定。需要说明的是,不论驱动线路的数量如何,一般情况下,每个交流分驱动电机都应当配置独立的整流器(一个整流器只能连接一个交流分驱动电机)。上述几段中的内容仅仅是概括性的列举出驱动方式,还可能有其他等同的驱动方式可以实现类似的方案,但这些等同的方式均属于本申请所提供方案的申请思想范围内。
下面对具体使用的情况分别进行说明,从被驱动的车辆的角度来看,可以分为三种情况,分别是驱动两轮车、驱动三轮车和驱动四轮车,下面分别进行说明。
第一种情况,驱动两轮车。
当本申请所提供的驱动系统应用在两轮车上的时候,如果该两轮车的两个车轮前后设置(如图36所示的两轮电动车),驱动系统通常只有一条驱动线路(通常情况下,本方案所提及的任一个实施例中的驱动线路的数量只是示例性质的,比如本段中所说的只有一条驱动线路,实际上当然也可以有两条,或多条驱动线路,但驱动线路数量的增加,并不会本质上的改 善整体性能,因此,下面只说明一条驱动线路如何驱动车辆,当驱动线路为多条的时候,则可以参照公开说明的驱动线路的设置方式进行设置),这一条驱动线路包括一个交流分驱动电机、一个整流器和一个直流分驱动电机;一个交流分驱动电机、一个整流器和一个直流分驱动电机依次顺序连接;
具体的驱动方式可以是,交流分驱动电机驱动两轮车的前轮(交流分驱动电机的输出轴直接或间接的与车辆前轮连接,本申请中所提及的驱动电机(直流分驱动电机或交流分驱动电机)驱动某一个车轮,均是指该驱动电机的输出轴直接或间接的与该车轮的轮轴连接,以使该驱动电机能够直接或间接的向该车轮提供动力,或者说是直接或间接的向该车轮输出动力);直流分驱动电机驱动两轮车的后轮(直流分驱动电机的输出轴直接或间接的与车辆后轮连接);
还可以是,交流分驱动电机驱动两轮车的后轮;直流分驱动电机驱动两轮车的前轮;
还可以是,交流分驱动电机和直流分驱动电机同时驱动两轮车的后轮;本申请所提供的方案中所提及的两个驱动电机(这两个驱动电机可以均是交流分驱动电机,也可以均是直流分驱动电机,还可以一个是交流分驱动电机一个是直流分驱动电机)同时驱动某一个车轮是指,两个驱动电机通过同一个减速器连接后轮,或者是指两个驱动电机的输出轴同轴连接;
还可以是,交流分驱动电机和直流分驱动电机同时驱动两轮车的前轮。
当本申请所提供的驱动系统应用在两轮车上的时候,如果该两轮车的两个车轮左右设置(如平衡车、电动轮椅等),驱动系统通常只有一条驱动线路,这一条驱动线路包括一个交流分驱动电机、一个整流器和一个直流分驱动电机;一个交流分驱动电机、一个整流器和一个直流分驱动电机依次顺序连接;
具体的驱动方式可以是,交流分驱动电机驱动两轮车的左轮;直流分驱动电机驱动两轮车的右轮(本申请所提供的方案中,当某一个车轮只有一个驱动电机(交流分驱动电机和直流分驱动电机)驱动时,该驱动电机优选为轮毂电机);
还可以是,交流分驱动电机驱动两轮车的右轮;直流分驱动电机驱动两轮车的左轮;
还可以是,交流分驱动电机和直流分驱动电机同时驱动两轮车的右轮;
还可以是,交流分驱动电机和直流分驱动电机同时驱动两轮车的左轮;
还可以是,交流分驱动电机和直流分驱动电机同时驱动两轮车的两个车轮(交流分驱动电机和直流分驱动电机通过同一个减速器同时连接,并驱动左右两个车轮)。
实际上,本申请所提供的方案中,交流分驱动电机和直流分驱动电机的驱动方式(交流分驱动电机驱动哪个车轮,直流分驱动电机驱动哪个车轮)是任意的,当两个驱动电机驱动同一个车轮的时候,这两个驱动电机需要同轴连接成一个连体电机;当两个驱动电机/一个驱动电机需要同时驱动两个车轮(这两个车轮必然是左右对称设置的)的时候,则需要通过减速器同时连接,并驱动两个车轮。
上述各种驱动方式各有利弊,可以视具体的使用情况进行调整。
第二种情况,驱动三轮车。
当本申请所提供的驱动系统应用在品字形三轮车上的时候,下面分几种情况对品字形三轮车的驱动方式进行说明。俯视视角下,三轮车的三个车轮呈品字形排列,本例中仅以该三轮车有一个前轮和两个后轮的形式进行说明(两个前轮和一个后轮的三轮车的驱动方式可以参照本例中所公开的方式),此处的前后是以车辆的前进方向来定义。驱动三轮车的驱动方式有多种,下面分别进行说明。
第一种方式:驱动系统只有一条驱动线路,这一条驱动线路包括一个交流分驱动电机、一个整流器和一个直流分驱动电机;一个交流分驱动电机、一个整流器和一个直流分驱动电机依次顺序连接;
交流分驱动电机驱动车辆的前轮,直流分驱动电机驱动车辆的左后轮或右后轮;
或,直流分驱动电机驱动车辆的前轮,交流分驱动电机驱动车辆的左后轮或右后轮;
或,交流分驱动电机驱动车辆的前轮,直流分驱动电机同时驱动车辆的左后轮和右后轮(本申请实施例中所说的某驱动电机同时驱动车辆上的两个车轮,指的是该驱动电机通过减速器同时驱动这两个车轮,被同时驱动的这两个车轮通常均为前轮或均为后轮);
或,直流分驱动电机驱动车辆的前轮,交流分驱动电机同时驱动车辆的左后轮和右后轮;
或,交流分驱动电机和直流分驱动电机同时驱动车辆的前轮/左后轮/右后轮;
或,交流分驱动电机和直流分驱动电机同时驱动车辆的两后轮(交流分驱动电机和直流分驱动电机通过同一个减速器同时连接,并驱动两后轮);
第二种方式:驱动系统只有一条驱动线路,这一条驱动线路包括两个交流分驱动电机(第一交流分驱动电机、第二交流分驱动电机)、两个整流器(第一整流器和第二整流器)和一个直流分驱动电机;第一交流分驱动电机、第一整流器和直流分驱动电机顺序连接;第二交流分驱动电机、第二整流器和直流分驱动电机顺序连接;直流分驱动电机电气连接在所述第一整流器直流输出端和直流输入端之间,以及,直流分驱动电机电气连接在所述第二整流器直流输出端和直流输入端之间;
第一交流分驱动电机通过减速器与被驱动车辆的后桥连接(第一交流分驱动电机通过减速器与被驱动车辆的两后轮连接),以同时向被驱动车辆的两后轮提供动力;且,第二交流分驱动电机通过减速器与被驱动车辆的后桥连接,以同时向被驱动车辆的两后轮提供动力(第一交流分驱动电机和第二交流分驱动电机可以共用同一个减速器);直流分驱动电机可以与任意一个车轮(如前轮、左后轮或右后轮)连接,以向该车轮提供动力,或直流分驱动电机还可以通过减速器与被驱动车辆的两后轮连接,以同时向被驱动车辆的两后轮提供动力;此时,同时驱动两后轮的驱动电机(交流分驱动电机和直流分驱动电机)可以共用同一个减速器;
或者,第一交流分驱动电机通过减速器与被驱动车辆的左后轮连接,以向被驱动车辆的左后轮提供动力;且,第二交流分驱动电机与被驱动车辆的右后轮连接,以向被驱动车辆的右后轮提供动力;直流分驱动电机可以与任意一个车轮连接,以向该车轮提供动力;此时,同时驱动某一个后轮的驱动电机(某个交流分驱动电机和直流分驱动电机)可以共用同一个减速器;
或者,第一交流分驱动电机通过减速器与被驱动车辆的右后轮连接,以向被驱动车辆的右后轮提供动力;且,第二交流分驱动电机与被驱动车辆的左后轮连接,以向被驱动车辆的左后轮提供动力;直流分驱动电机可以与任意一个车轮(如前轮、左后轮或右后轮)连接,以向该车轮提供动力;此时,同时驱动某一个后轮的驱动电机(某个交流分驱动电机和直流分驱动电机)可以共用同一个减速器;
或,第一交流分驱动电机与被驱动车辆的前轮连接,以向被驱动车辆的前轮提供动力;且,第二交流分驱动电机与被驱动车辆的前轮连接,以向被驱动车辆的前轮提供动力;直流分驱动电机可以向任意一个车轮连接,以向该车轮提供动力,或直流分驱动电机还可以通过减速器同时与被驱动车辆的两后轮连接,以同时向被驱动车辆的两后轮提供动力;此时,同时驱动两后轮的驱动电机(交流分驱动电机和直流分驱动电机)可以共用同一个减速器;
还可以是一个交流分驱动电机与前轮连接,以向被驱动车辆的前轮提供动力;另一个交流分驱动电机与其他任一个车轮(左后轮/右后轮)连接,以向对应的车轮提供动力。直流分驱动电机的设置方式与前一段中的限定方式相同(直流分驱动电机可以与任意一个车轮连接,并向该车轮提供动力)。
第三种方式:驱动系统有两条驱动线路(第一驱动线路和第二驱动线路),第一驱动线路包括依次顺序连接的第一交流分驱动电机、第一整流器和第一直流分驱动电机;第二驱动线路包括依次顺序连接的第二交流分驱动电机、第二整流器和第二直流分驱动电机;第一直流分驱动电机电气连接在所述第一整流器直流输出端和直流输入端之间,以及,第二直流分驱动电机电气连接在所述第二整流器直流输出端和直流输入端之间;
第一交流分驱动电机通过减速器与被驱动车辆的后桥连接(第一交流分驱动电机通过减速器与被驱动车辆的两后轮连接),以同时向被驱动车辆的两后轮提供动力;且,第二交流分驱动电机通过减速器与被驱动车辆的后桥连接,以同时向被驱动车辆的两后轮提供动力(第一交流分驱动电机和第二交流分驱动电机可以共用同一个减速器);第一直流分驱动电机可以与任意一个车轮(如前轮、左后轮或右后轮)连接,以向该车轮提供动力,或第一直流分驱动电机还可以通过减速器与被驱动车辆的两后轮连接,以同时向被驱动车辆的两后轮提供动力;第二直流分驱动电机可以与任意一个车轮(如前轮、左后轮或右后轮)连接,以向该车轮提供动力,或第二直流分驱动电机还可以通过减速器与被驱动车辆的两后轮连接,以同时向被驱动车辆的两后轮提供动力;此时,同时驱动两后轮的驱动电机(交流分驱动电机和直流分驱动电机)可以共用同一个减速器;
或,第一交流分驱动电机与被驱动车辆的左后轮连接,以向被驱动车辆的左后轮提供动力;且,第二交流分驱动电机与被驱动车辆的右后轮连接,以向被驱动车辆的右后轮提供动力;第一直流分驱动电机可以与任意一个车轮(如前轮、左后轮或右后轮)连接,以向该车轮提供动力;第二直流分驱动电机可以与任意一个车轮(如前轮、左后轮或右后轮)连接,以向该车轮提供动力;此时,同时驱动两后轮的驱动电机(交流分驱动电机和直流分驱动电机)可以共用同一个减速器;
或,第一交流分驱动电机与被驱动车辆的右后轮连接,以向被驱动车辆的右后轮提供动力;且,第二交流分驱动电机与被驱动车辆的左后轮连接,以向被驱动车辆的左后轮提供动力;第一直流分驱动电机可以与任意一个车轮(如前轮、左后轮或右后轮)连接,以向该车轮提供动力;第二直流分驱动电机可以与任意一个车轮(如前轮、左后轮或右后轮)连接,以向该车轮提供动力;此时,同时驱动两后轮的驱动电机(交流分驱动电机和直流分驱动电机)可以共用同一个减速器;
或,第一交流分驱动电机与被驱动车辆的前轮连接,以向被驱动车辆的前轮提供动力;且,第二交流分驱动电机与被驱动车辆的前轮连接,以向被驱动车辆的前轮提供动力;第一直流分驱动电机可以与任意一个车轮(如前轮、左后轮或右后轮)连接,以向该车轮提供动力;第二直流分驱动电机可以与任意一个车轮(如前轮、左后轮或右后轮)连接,以向该车轮提供动力;此时,同时驱动两后轮的驱动电机(交流分驱动电机和直流分驱动电机)可以共用同一个减速器;
或,第一交流分驱动电机与被驱动车辆的前轮连接,以向被驱动车辆的前轮提供动力;且,第二交流分驱动电机与被驱动车辆的左后轮/右后轮连接,以向被驱动车辆的左后轮/右后轮提供动力;第一直流分驱动电机可以与任意一个车轮(如前轮、左后轮或右后轮)连接,以向该车轮提供动力;第二直流分驱动电机可以与任意一个车轮(如前轮、左后轮或右后轮)连接,以向该车轮提供动力;此时,同时驱动两后轮的驱动电机(交流分驱动电机和直流分驱动电机)可以共用同一个减速器。
第三种情况,驱动四轮车。
当本申请所提供的驱动系统应用在四轮车上的时候,下面分几种情况对四轮车的驱动方式进行说明。俯视视角下,四轮车包括四个车轮(四轮车的结构与当前市场上通用的家用型轿车、火车等车辆的车轮排布方式相同,该四轮车的车轮俯视结构可以如图12所示),分别是左前轮、右前轮、左后轮和右后轮,其中,左前轮和右前轮平行设置。驱动四轮车的驱动方式有多种,下面分别进行说明。
第一种方式,驱动系统只有一条驱动线路,这一条驱动线路包括一个交流分驱动电机、一个整流器和一个直流分驱动电机;一个交流分驱动电机、一个整流器和一个直流分驱动电机依次顺序连接;
交流分驱动电机驱动车辆的任意一个车轮(左前轮、右前轮、左后轮或右后轮),直流分驱动电机驱动车辆的任意一个车轮(左前轮、右前轮、左后轮或右后轮)。
或者,交流分驱动电机同时驱动车辆的左前轮和右前轮;直流分驱动电机同时驱动车辆的左前轮和右前轮(可以是交流分驱动电机和直流分驱动电机通过同一个减速器同时驱动车辆的左前轮和右前轮);
或者,交流分驱动电机同时驱动车辆的左后轮和右后轮;直流分驱动电机同时驱动车辆的左后轮和右后轮(可以是交流分驱动电机和直流分驱动电机通过同一个减速器同时驱动车辆的左后轮和右后轮);
或者,交流分驱动电机同时驱动车辆的左前轮和右前轮;直流分驱动电机同时驱动车辆的左后轮和右后轮(可以是交流分驱动电机通过一个减速器同时驱动车辆的左前轮和右前轮;以及,直流分驱动电机通过一个减速器同时驱动车辆的左后轮和右后轮);
或者,交流分驱动电机同时驱动车辆的左后轮和右后轮;直流分驱动电机同时驱动车辆的左前轮和右前轮(可以是交流分驱动电机通过一个减速器同时驱动车辆的左后轮和右后轮;以及,直流分驱动电机通过一个减速器同时驱动车辆的左前轮和右前轮);
或者,交流分驱动电机同时驱动车辆平行的两个车轮(如左后轮和右后轮;或者是左前轮和右前轮);直流分驱动电机驱动车辆的任意一个车轮;
或者,直流分驱动电机同时驱动车辆平行的两个车轮(如左后轮和右后轮;或者是左前轮和右前轮);交流分驱动电机驱动车辆的任意一个车轮。
第二种方式:驱动系统只有一条驱动线路,这一条驱动线路包括两个交流分驱动电机(第一交流分驱动电机、第二交流分驱动电机)、两个整流器(第一整流器和第二整流器)和一个直流分驱动电机;第一交流分驱动电机、第一整流器和直流分驱动电机顺序连接;第二交流分驱动电机、第二整流器和直流分驱动电机顺序连接;直流分驱动电机电气连接在所述第一整流器直流输出端和直流输入端之间,以及,直流分驱动电机电气连接在所述第二整流器直流输出端和直流输入端之间;
第一交流分驱动电机驱动车辆的任意一个车轮(左前轮、右前轮、左后轮或右后轮);第二交流分驱动电机驱动车辆的任意一个车轮(左前轮、右前轮、左后轮或右后轮);直流分驱动电机驱动车辆的任意一个车轮(左前轮、右前轮、左后轮或右后轮),或者直流分驱动电机同时驱动两前轮,或同时驱动两后轮。优选的,第一交流分驱动电机驱动车辆的左前轮,第二交流分驱动电机驱动车辆的右前轮,直流分驱动电机驱动两后轮;或者是第一交流分驱动电机驱动车辆的左后轮,第二交流分驱动电机驱动车辆的右后轮,直流分驱动电机驱动两前轮。当第一交流分驱动电机、第二交流分驱动电机和直流分驱动电机分别驱动不同的车轮时,这三个电机优选为轮毂电机。
或者,第一交流分驱动电机通过减速器与被驱动车辆的后桥连接(第一交流分驱动电机通过减速器与被驱动车辆的两后轮连接),以同时向被驱动车辆的两后轮提供动力;且,第二交流分驱动电机通过减速器与被驱动车辆的后桥连接,以同时向被驱动车辆的两后轮提供动力(第一交流分驱动电机和第二交流分驱动电机可以共用同一个减速器);直流分驱动电机可以通过减速器与被驱动车辆的两前轮/两后轮连接,以同时向被驱动车辆的两前轮/两后轮提供动力;此时,同时驱动两前轮/两后轮的驱动电机(交流分驱动电机和直流分驱动电机)可以共用同一个减速器;
或者,第一交流分驱动电机通过减速器与被驱动车辆的前桥连接(第一交流分驱动电机通过减速器与被驱动车辆的两前轮连接),以同时向被驱动车辆的两前轮提供动力;且,第二交流分驱动电机通过减速器与被驱动车辆的前桥连接,以同时向被驱动车辆的两前轮提供动力(第一交流分驱动电机和第二交流分驱动电机可以共用同一个减速器);直流分驱动电机可以 通过减速器与被驱动车辆的两前轮/两后轮连接,以同时向被驱动车辆的两前轮/两后轮提供动力;此时,同时驱动两前轮/两后轮的驱动电机(交流分驱动电机和直流分驱动电机)可以共用同一个减速器;
或者,第一交流分驱动电机通过减速器与被驱动车辆的前桥连接(第一交流分驱动电机通过减速器与被驱动车辆的两前轮连接),以同时向被驱动车辆的两前轮提供动力;且,第二交流分驱动电机通过减速器与被驱动车辆的后桥连接,以同时向被驱动车辆的两后轮提供动力(第一交流分驱动电机和第二交流分驱动电机可以共用同一个减速器);直流分驱动电机可以通过减速器与被驱动车辆的两前轮/两后轮连接,以同时向被驱动车辆的两前轮/两后轮提供动力;此时,同时驱动两前轮/两后轮的驱动电机(交流分驱动电机和直流分驱动电机)可以共用同一个减速器;
或者,第一交流分驱动电机通过减速器与被驱动车辆的后桥连接(第一交流分驱动电机通过减速器与被驱动车辆的两后轮连接),以同时向被驱动车辆的两后轮提供动力;且,第二交流分驱动电机与被驱动车辆的两个前轮中的一个连接,以向该前轮提供动力;直流分驱动电机与被驱动车辆的两个前轮中的一个连接,以向该前轮提供动力;
或者,第一交流分驱动电机通过减速器与被驱动车辆的前桥连接(第一交流分驱动电机通过减速器与被驱动车辆的两前轮连接),以同时向被驱动车辆的两前轮提供动力;且,第二交流分驱动电机与被驱动车辆的两个后轮中的一个连接,以向该后轮提供动力;直流分驱动电机与被驱动车辆的两个后轮中的一个连接,以向该后轮提供动力;
第三种方式:驱动系统有两条驱动线路(第一驱动线路和第二驱动线路),第一驱动线路包括依次顺序连接的第一交流分驱动电机、第一整流器和第一直流分驱动电机;第二驱动线路包括依次顺序连接的第二交流分驱动电机、第二整流器和第二直流分驱动电机;第一直流分驱动电机电气连接在所述第一整流器直流输出端和直流输入端之间,以及,第二直流分驱动电机电气连接在所述第二整流器直流输出端和直流输入端之间;
第一交流分驱动电机驱动车辆的任意一个车轮(左前轮、右前轮、左后轮或右后轮),或者第一交流分驱动电机同时驱动两前轮,或同时驱动两后轮;第二交流分驱动电机驱动车辆的任意一个车轮(左前轮、右前轮、左后轮或右后轮),或者第二交流分驱动电机同时驱动两前轮,或同时驱动两后轮;第一直流分驱动电机驱动车辆的任意一个车轮(左前轮、右前轮、左后轮或右后轮)或者直流分驱动电机同时驱动两前轮,或同时驱动两后轮;第二直流分驱动电机驱动车辆的任意一个车轮(左前轮、右前轮、左后轮或右后轮),或者直流分驱动电机同时驱动两前轮,或同时驱动两后轮。
或者,第一交流分驱动电机通过减速器与被驱动车辆的后桥连接(第一交流分驱动电机通过减速器与被驱动车辆的两后轮连接),以同时向被驱动车辆的两后轮提供动力;且,第二交流分驱动电机通过减速器与被驱动车辆的后桥连接,以同时向被驱动车辆的两后轮提供动力(第一交流分驱动电机和第二交流分驱动电机可以共用同一个减速器);第一直流分驱动电机可以通过减速器与被驱动车辆的两前轮/两后轮连接,以同时向被驱动车辆的两前轮/两后轮提 供动力;第二直流分驱动电机可以通过减速器与被驱动车辆的两前轮/两后轮连接,以同时向被驱动车辆的两前轮/两后轮提供动力;此时,同时驱动两前轮/两后轮的驱动电机(交流分驱动电机和直流分驱动电机)可以共用同一个减速器;
或者,第一交流分驱动电机通过减速器与被驱动车辆的前桥连接(第一交流分驱动电机通过减速器与被驱动车辆的两前轮连接),以同时向被驱动车辆的两前轮提供动力;且,第二交流分驱动电机通过减速器与被驱动车辆的前桥连接,以同时向被驱动车辆的两前轮提供动力(第一交流分驱动电机和第二交流分驱动电机可以共用同一个减速器);第一直流分驱动电机可以通过减速器与被驱动车辆的两前轮/两后轮连接,以同时向被驱动车辆的两前轮/两后轮提供动力;第二直流分驱动电机可以通过减速器与被驱动车辆的两前轮/两后轮连接,以同时向被驱动车辆的两前轮/两后轮提供动力;此时,同时驱动两前轮/两后轮的驱动电机(交流分驱动电机和直流分驱动电机)可以共用同一个减速器;
或者,第一交流分驱动电机通过减速器与被驱动车辆的前桥连接(第一交流分驱动电机通过减速器与被驱动车辆的两前轮连接),以同时向被驱动车辆的两前轮提供动力;且,第二交流分驱动电机通过减速器与被驱动车辆的后桥连接,以同时向被驱动车辆的两后轮提供动力(第一交流分驱动电机和第二交流分驱动电机可以共用同一个减速器);第一直流分驱动电机可以通过减速器与被驱动车辆的两前轮/两后轮连接,以同时向被驱动车辆的两前轮/两后轮提供动力;第二直流分驱动电机可以通过减速器与被驱动车辆的两前轮/两后轮连接,以同时向被驱动车辆的两前轮/两后轮提供动力;此时,同时驱动两前轮/两后轮的驱动电机(交流分驱动电机和直流分驱动电机)可以共用同一个减速器;
或者,第一交流分驱动电机通过减速器与被驱动车辆的前桥连接(如第一交流分驱动电机通过减速器与被驱动车辆的两前轮连接),以同时向被驱动车辆的两前轮提供动力;第二交流分驱动电机可以与被驱动车辆的两个后轮中的一个后轮或两前轮连接,以向该后轮/两前轮提供动力;第一直流分驱动电机可以与被驱动车辆的两个后轮中的一个后轮或两前轮连接,以向该后轮/两前轮提供动力;第二直流分驱动电机可以与被驱动车辆的两个后轮中的一个后轮或两前轮连接,以向该后轮/两前轮提供动力;
或者,第一交流分驱动电机通过减速器与被驱动车辆的后桥连接(如第一交流分驱动电机通过减速器与被驱动车辆的两后轮连接),以同时向被驱动车辆的两后轮提供动力;第二交流分驱动电机可以与被驱动车辆的两个前轮中的一个前轮或两后轮连接,以向该前轮/两后轮提供动力;第一直流分驱动电机可以与被驱动车辆的两个前轮中的一个前轮或两后轮连接,以向该前轮/两后轮提供动力;第二直流分驱动电机可以与被驱动车辆的两个前轮中的一个前轮或两后轮连接,以向该前轮/两后轮提供动力。
需要说明的是,本申请申请人推荐采用如下方式设置第一交流分驱动电机、第二交流分驱动电机、第一直流分驱动电机和第二直流分驱动电机;
具体而言,第一交流分驱动电机与被驱动车辆的左前轮连接,以向该左前轮提供动力,第二交流分驱动电机与被驱动车辆的右前轮连接,以向该右前轮提供动力,第一直流分驱动电 机与被驱动车辆的右后轮连接,以向该右后轮提供动力,第二交流分驱动电机与被驱动车辆的左后轮连接,以向该左后轮提供动力;优选这四个电机均为轮毂电机;
或者,第一交流分驱动电机与被驱动车辆的左后轮连接,以向该左后轮提供动力,第二交流分驱动电机与被驱动车辆的右后轮连接,以向该右后轮提供动力,第一直流分驱动电机与被驱动车辆的右前轮连接,以向该右前轮提供动力,第二交流分驱动电机与被驱动车辆的左前轮连接,以向该左前轮提供动力;优选这四个电机均为轮毂电机。
这两种设置电机的方式能够省去车辆中的差速器,以节约车辆内部空间。
需要说明的是,上述实现方式中,交流分驱动电机的数量通常是按照上述实现方式中所公开的方式设置;直流分驱动电机的数量在上述方案公开的基础上,还可以增加,比如直流分驱动电机的数量可以是多个(如2、3、4、5个或更多个),当直流分驱动电机为多个的时候,每个直流分驱动电机都可以按照上述方案中所公开的直流分驱动电机的驱动方式来设置(比如任一个直流分驱动电机都可以驱动任一个车轮,也可以驱动两前轮或者是两后轮)。
基于前述方案,为验证上述方案的正确性,本申请申请人进行了大量的试验和分析研究,下面,列出不同状态下的实验数据进行佐证,以下实验例中,驱动系统均驱动四轮车(包括左前轮、右前轮、左后轮和右后轮),当额定转速低于1000时,电机通常为轮毂电机,高于1000时,电机通常为非轮毂电机:
实验例1:
如表1和图37所示,示出了匀速40km/h状态下行驶测试数据和对比例的数据。该驱动系统是作用于1.2t重的车辆。
表1-一交三直,三分电机串联
Figure PCTCN2019072807-appb-000001
Figure PCTCN2019072807-appb-000002
表1-一交三直,三分电机串联
Figure PCTCN2019072807-appb-000003
该驱动系统包括:顺序连接的电池、1个交流分驱动电机、1个整流器和3个直流分驱动电机依次顺序连接,三个直流分驱动电机串联连接整流器的直流输入端和直流输出端之间;交流分驱动电机和一个直流分驱动电机通过同一个减速器同时驱动前两个车轮,另两个直流分驱动电机共同驱动左后轮。图37-39中,串表示电机串联,尾打表示三相绕组中每相绕组的尾端之间相互分离,交流分驱动电机的三相绕组中每相绕组的尾端分别连接整流器的三相输入端口,所述整流器的直流输出端口电气连接直流分驱动电机。也就是,通过交流驱动电机尾节的方式,通过整流器来连接直流驱动电机。图37-39中,直流驱动电机等同于直流分驱动电机,交流驱动电机等同于交流分驱动电机。
该驱动系统是作用于1.2t重的车辆;
交流分驱动电机的减速比为1:3.8;3个直流分驱动电机的减速比分别为1:1、1:1和1:3.8(第一行数据),或分别为1:1、1:3.8和1:1(第二行数据);
交流分驱动电机的额定功率为20KW;3个直流分驱动电机的额定功率均为4KW;
交流分驱动电机的额定转速为3500r/min;3个直流分驱动电机的额定转速均为2800r/min。
对比例:与表1相对的原始车辆数据为:原车只设置了交流分驱动电机,该交流分驱动电机的额定功率为20KW,额定转速为3500r/min,减速比为1:6.4。
百公里耗电为:能耗为9.76Kwh/百公里。
通过前两次试验(表1的前两行数据)可以明显的看出在车速为40码,其他参数不便的条件下,使用本申请所提供的方案,能够平均增加里程分别为28.8%和19.2%。
实验例2:
如表2所示,示出了匀速40km/h状态下行驶测试数据和对比例的数据。该驱动系统是作用于1.6t重的车辆。
表2
Figure PCTCN2019072807-appb-000004
Figure PCTCN2019072807-appb-000005
该驱动系统包括:顺序连接的电池、1个交流分驱动电机、1个整流器和2个直流分驱动电机(第一直流分驱动电机和第二直流分驱动电机)依次顺序连接,2个直流分驱动电机串联连接整流器的直流输入端和直流输出端之间;交流分驱动电机通过减速器同时驱动前两个车轮,另两个直流分驱动电机输出轴同轴连接共同驱动右后轮。
该驱动系统是作用于1.6t重的车辆;交流分驱动电机的额定功率为42KW,额定转速为4500r/min,减速比为1:8。
对比例:原车只使用上述交流分驱动电机驱动前两个车轮,百公里耗电为:8.55kwh/百公里。
实验例3:
如表3所示,示出了匀速40km/h状态下行驶测试数据和对比例的数据。该驱动系统是作用于1.6t重的车辆。
表3
Figure PCTCN2019072807-appb-000006
该驱动系统包括:顺序连接的电池、1个交流分驱动电机、1个整流器和3个直流分驱动电机依次顺序连接,3个直流分驱动电机串联连接整流器的直流输入端和直流输出端之间;交流分驱动电机通过减速器同时驱动前两个车轮,3个直流分驱动电机输出轴同轴连接共同驱动右后轮。三个直流分驱动电机的减速比均为1:1,额定功率均为4KW,转速均为2800r/min。交流分驱动电机的额电功率为42KW,额定转速为4500r/min,减速比为1:8。三个直流分驱动电机均为串励电机。
对比例:原车只使用上述交流分驱动电机驱动车轮,百公里耗电为:8.55kwh/百公里。
实验例4:
如表4所示,示出了匀速40km/h状态下行驶测试数据和对比例的数据。该驱动系统是作用于1.8t重的车辆。
Figure PCTCN2019072807-appb-000007
Figure PCTCN2019072807-appb-000008
该驱动系统包括:顺序连接的电池、1个交流分驱动电机、1个整流器和1个直流分驱动电机依次顺序连接,1个直流分驱动电机串联连接整流器的直流输入端和直流输出端之间;交流分驱动电机通过减速器同时驱动前两个车轮,1个直流分驱动电机通过减速器同时驱动后两个车轮。交流分驱动电机的额电功率为45KW,额定转速为4500r/min,减速比为1:6.4。
对比例:原车只使用上述交流分驱动电机驱动车轮,百公里耗电为:13.5Kwh/百公里。
实验例5:
如表5所示,示出了匀速40km/h状态下行驶测试数据和对比例的数据。该驱动系统是作用于1.8t重的车辆。
Figure PCTCN2019072807-appb-000009
Figure PCTCN2019072807-appb-000010
该驱动系统包括:顺序连接的电池、1个交流分驱动电机、1个整流器和2个直流分驱动电机(第一直流分驱动电机和第二直流分驱动电机)依次顺序连接,2个直流分驱动电机串联连接整流器的直流输入端和直流输出端之间;交流分驱动电机通过减速器同时驱动前两个车轮,2个直流分驱动电机通过减速器同时驱动后两个车轮。交流分驱动电机的额电功率为45KW,额定转速为4500r/min,减速比为1:8。
对比例:原车只使用上述交流分驱动电机驱动车轮,百公里耗电为:9.5Kwh/百公里。
实验例6:
如表6所示,示出了匀速60km/h状态下行驶测试数据和对比例的数据。该驱动系统是作用于1.4t重的车辆。
Figure PCTCN2019072807-appb-000011
Figure PCTCN2019072807-appb-000012
该驱动系统包括:顺序连接的电池、1个交流分驱动电机、1个整流器和1个直流分驱动电机依次顺序连接,1个直流分驱动电机串联连接整流器的直流输入端和直流输出端之间;交流分驱动电机通过减速器同时驱动前两个车轮,1个直流分驱动电机通过减速器同时驱动后两个车轮。交流分驱动电机的额电功率为45KW,额定转速为4500r/min,减速比为1:6.4。
对比例:原车只使用上述交流分驱动电机(额定功率75KW,额定转速6000r/min,减速比1:9.5)驱动车轮,百公里耗电为:9.5Kwh/百公里。
实验例7:
如表7所示,示出了匀速60km/h状态下行驶测试数据和对比例的数据。该驱动系统是作用于1.4t重的车辆。
Figure PCTCN2019072807-appb-000013
Figure PCTCN2019072807-appb-000014
该驱动系统包括两条驱动线路(第一条驱动线路和第二条驱动线路)和电池;第一条驱动线路包括:依次顺序串联的1个交流分驱动电机(第一交流分驱动电机)、1个整流器(第一整流器)和1个直流分驱动电机(第一交流分驱动电机);第二条驱动线路包括:依次顺序串联的1个交流分驱动电机(第二交流分驱动电机)、1个整流器(第二整流器)和1个直流分驱动电机(第二交流分驱动电机);第一直流分驱动电机串联连接第一整流器的直流输入端和直流输出端之间;第二直流分驱动电机串联连接第二整流器的直流输入端和直流输出端之间;第一交流分驱动电机驱动左前轮;第二交流分驱动电机驱动右前轮;第一直流分驱动电机驱动右后轮;第二直流分驱动电机驱动左后轮。
对比例:原车只使用上述第一交流分驱动电机驱动车轮,百公里耗电为:9.5Kwh/百公里。
实验例8:
如表8所示,示出了匀速60km/h状态下行驶测试数据和对比例的数据。该驱动系统是作用于1.4t重的车辆。
Figure PCTCN2019072807-appb-000015
该驱动系统包括:顺序连接的电池、1个交流分驱动电机、1个整流器和2个直流分驱动电机(第一直流分驱动电机和第二直流分驱动电机)依次顺序连接,2个直流分驱动电机并联连接整流器的直流输入端和直流输出端之间;交流分驱动电机和第一直流分驱动电机同轴连接,且共同驱动两个前轮,第二直流分驱动电机通过减速器同时驱动后两个车轮。
对比例:原车只使用交流分驱动电机(额定功率为20KW,额定转速为3500r/min,减速比为1:6.4)驱动车轮,百公里耗电为:11.73Kwh/百公里。
实验例9:
如表9所示,示出了匀速60km/h状态下行驶测试数据和对比例的数据。该驱动系统是作用于1.2t重的车辆。
Figure PCTCN2019072807-appb-000016
该驱动系统包括:顺序连接的电池、1个交流分驱动电机、1个整流器和2个直流分驱动电机(第一直流分驱动电机和第二直流分驱动电机)依次顺序连接,2个直流分驱动电机串联连接整流器的直流输入端和直流输出端之间;交流分驱动电机通过减速器同时驱动前桥连接,两直流分驱动电机同时通过减速器同时驱动后两个车轮。
对比例:原车只使用交流分驱动电机(额定功率为20KW,额定转速为3500r/min,减速比为1:6.4)驱动车轮,百公里耗电为:11.73Kwh/百公里。
实验例10:
如表10所示,示出了匀速60km/h状态下行驶测试数据和对比例的数据。该驱动系统是作用于1.6t重的车辆。
Figure PCTCN2019072807-appb-000017
Figure PCTCN2019072807-appb-000018
该驱动系统包括:顺序连接的电池、1个交流分驱动电机、1个整流器和2个直流分驱动电机(第一直流分驱动电机和第二直流分驱动电机)依次顺序连接,2个直流分驱动电机串联连接整流器的直流输入端和直流输出端之间;交流分驱动电机通过减速器同时驱动前两个车轮,另两个直流分驱动电机输出轴同轴连接共同驱动右后轮。交流分驱动电机的额定功率为42KW,额定转速为4500r/min,减速比为1:8。
对比例:原车只使用上述交流分驱动电机驱动两前轮,百公里耗电为:10.2Kwh/百公里。
上述第一组数据中,第一直流分驱动电机和第二直流分驱动电机分别为永磁碳刷电机和串励电机;
上述第二、三组数据中,第一直流分驱动电机和第二直流分驱动电机分别为永磁电机和串励电机;第一直流分驱动电机和第二直流分驱动电机共同通过链轮传动;
上述第四组数据中,第一直流分驱动电机和第二直流分驱动电机分别为串励电机和永磁电机;
上述第五组数据中,第一直流分驱动电机和第二直流分驱动电机分别为永磁电机和串励电机;
上述第六组数据中,第一直流分驱动电机和第二直流分驱动电机分别为永磁电机和永磁电机;
上述第七、八组数据中,第一直流分驱动电机和第二直流分驱动电机分别为串励电机和永磁电机;
上述第九组数据中,第一直流分驱动电机和第二直流分驱动电机分别为串励电机和串励电机;
上述第十组数据中,第一直流分驱动电机和第二直流分驱动电机分别为永磁电机和串励电机。
实验例11:
如表11所示,示出了匀速60km/h状态下行驶测试数据和对比例的数据。该驱动系统是作用于1.8t重的车辆。
Figure PCTCN2019072807-appb-000019
Figure PCTCN2019072807-appb-000020
Figure PCTCN2019072807-appb-000021
该驱动系统包括:顺序连接的电池、1个交流分驱动电机、1个整流器和2个直流分驱动电机(第一直流分驱动电机和第二直流分驱动电机)依次顺序连接,2个直流分驱动电机串联连接整流器的直流输入端和直流输出端之间;交流分驱动电机通过减速器同时驱动前两个车轮,两个直流分驱动电机通过减速器同时驱动两后轮轮。交流分驱动电机的额定功率为45KW,额定转速为4500r/min,减速比为1:6.4。
对比例:原车只使用上述交流分驱动电机驱动两前轮,百公里耗电为:15.6Kwh/百公里。
实验例12:
如表12所示,示出了匀速80km/h状态下行驶测试数据和对比例的数据。该驱动系统是作用于1.4t重的车辆。
Figure PCTCN2019072807-appb-000022
Figure PCTCN2019072807-appb-000023
该驱动系统包括两条驱动线路(第一条驱动线路和第二条驱动线路)和电池;第一条驱动线路包括:依次顺序串联的1个交流分驱动电机(第一交流分驱动电机)、1个整流器(第一整流器)和1个直流分驱动电机(第一交流分驱动电机);第二条驱动线路包括:依次顺序串联的1个交流分驱动电机(第二交流分驱动电机)、1个整流器(第二整流器)和1个直流分驱动电机(第二交流分驱动电机);第一直流分驱动电机串联连接第一整流器的直流输入端和直流输出端之间;第二直流分驱动电机串联连接第二整流器的直流输入端和直流输出端之间;第一交流分驱动电机驱动左前轮;第二交流分驱动电机驱动右前轮;第一直流分驱动电机驱动右后轮;第二直流分驱动电机驱动左后轮。该实验例中,两个直流分驱动电机的参数均是相同的。
对比例:原车只使用上述第一交流分驱动电机同时驱动两前轮,百公里耗电为:9.98kwh/百公里。
实验例13:
如表13和图38所示,示出了匀速80km/h状态下行驶测试数据和对比例的数据。该驱动系统是作用于1.2t重的车辆。
Figure PCTCN2019072807-appb-000024
Figure PCTCN2019072807-appb-000025
该驱动系统包括:电池、2个交流分驱动电机(第一交流分驱动电机和第二交流分驱动电机)、2个整流器(第一整流器和第二整流器)和1个直流分驱动电机;第一交流分驱动电机、第一整流器和直流分驱动电机依次顺序连接;第二交流分驱动电机、第二整流器和直流分驱动电机依次顺序连接;第一交流分驱动电机和第二交流分驱动电机分别驱动左后轮和右后轮(两电机均为轮毂电机);直流分驱动电机同时驱动两前轮;直流分驱动电机并联连接整流器的直流输入端和直流输出端之间;
对比例:原车只使用交流分驱动电机(额定功率20KW,额定转速3500r/min,减速比1:6.4)驱动两前轮,百公里耗电为:10.4Kwh/百公里。
实验例14:
如表14和图40-43所示,示出了匀速80km/h状态下行驶测试数据和对比例的数据。该驱动系统是作用于1.2t重的车辆。
Figure PCTCN2019072807-appb-000026
Figure PCTCN2019072807-appb-000027
该驱动系统包括两条驱动线路(第一条驱动线路和第二条驱动线路)和电池;第一条驱动线路包括:依次顺序串联的1个交流分驱动电机(第一交流分驱动电机)、1个整流器(第一整流器)和1个直流分驱动电机(第一交流分驱动电机);第二条驱动线路包括:依次顺序串联的1个交流分驱动电机(第二交流分驱动电机)、1个整流器(第二整流器)和1个直流分驱动电机(第二交流分驱动电机);第一直流分驱动电机串联连接第一整流器的直流输入端和直流输出端之间;第二直流分驱动电机串联连接第二整流器的直流输入端和直流输出端之间;第一交流分驱动电机驱动左前轮;第二交流分驱动电机驱动右前轮;第一直流分驱动电机驱动右后轮;第二直流分驱动电机驱动左后轮。该实验例中,两个直流分驱动电机的参数均是相同的。两交流分驱动电机均为外转子电机。
对比例:原车只使用交流分驱动电机(额定功率20KW,额定转速3500r/min,减速比1:6.4)驱动两前轮,百公里耗电为:10.4Kwh/百公里。
实验例15:
如表15和图39所示,示出了匀速80km/h状态下行驶测试数据和对比例的数据。该驱动系统是作用于1.2t重的车辆。
Figure PCTCN2019072807-appb-000028
该驱动系统包括:电池、2个交流分驱动电机(第一交流分驱动电机和第二交流分驱动电机)、2个整流器(第一整流器和第二整流器)和2个直流分驱动电机(第一直流分驱动电机和第二直流分驱动电机);第一交流分驱动电机、第一整流器、第一直流分驱动电机和第一直流分驱动电机依次顺序连接;第二交流分驱动电机、第二整流器、第一直流分驱动电机和第一直流分驱动电机依次顺序连接(即,第一直流分驱动电机和第二直流分驱动电机串联连接在第一整流器的直流输入端和直流输出端之间,以及,第一直流分驱动电机和第二直流分驱动电机串联连接在第二整流器的直流输入端和直流输出端之间);第一交流分驱动电机和第二交流分驱动电机分别驱动左后轮和右后轮(两交流分驱动电机均为外转子电机);第一直流分驱动电机和第二直流分驱动电机分别驱动左前轮和右前轮;该实验例中,两个直流分驱动电机的参数均是相同的。
对比例:原车只使用交流分驱动电机(额定功率20KW,额定转速3500r/min,减速比1:6.4)驱动两前轮,百公里耗电为:10.4Kwh/百公里。
实验例16:
如表16和图40-43所示,示出了匀速80km/h状态下行驶测试数据和对比例的数据。该驱动系统是作用于1.2t重的车辆。
Figure PCTCN2019072807-appb-000029
该驱动系统包括两条驱动线路(第一条驱动线路和第二条驱动线路)和电池;第一条驱动线路包括:依次顺序串联的1个交流分驱动电机(第一交流分驱动电机)、1个整流器(第一整流器)和1个直流分驱动电机(第一交流分驱动电机);第二条驱动线路包括:依次顺序 串联的1个交流分驱动电机(第二交流分驱动电机)、1个整流器(第二整流器)和1个直流分驱动电机(第二交流分驱动电机);第一直流分驱动电机串联连接第一整流器的直流输入端和直流输出端之间;第二直流分驱动电机串联连接第二整流器的直流输入端和直流输出端之间;第一交流分驱动电机驱动左后轮;第二交流分驱动电机驱动右后轮;第一直流分驱动电机驱动右前轮;第二直流分驱动电机驱动左前轮。该实验例中,两个直流分驱动电机的参数均是相同的。第一交流分驱动电机为内转子扁平电机;第二交流分驱动电机为外转子轮毂电机。
对比例:原车只使用交流分驱动电机(额定功率20KW,额定转速3500r/min,减速比1:6.4)驱动两前轮,百公里耗电为:10.4Kwh/百公里。
实验例17:
如表17所示,示出了匀速80km/h状态下行驶测试数据和对比例的数据。该驱动系统是作用于1.6t重的车辆。
Figure PCTCN2019072807-appb-000030
该驱动系统包括:顺序连接的电池、1个交流分驱动电机、1个整流器和2个直流分驱动电机(第一直流分驱动电机和第二直流分驱动电机,分别是串励电机和永磁电机)依次顺序连接,2个直流分驱动电机串联连接整流器的直流输入端和直流输出端之间;交流分驱动电机通过减速器同时驱动前两个车轮,两个直流分驱动电机通过减速器同时驱动两后轮轮。交流分驱动电机的额定功率为42KW,额定转速为4500r/min,减速比为1:8。
对比例:原车只使用上述交流分驱动电机驱动两前轮,百公里耗电为:11.25kwh/百公里。
实验例18:
如表18所示,示出了匀速80km/h状态下行驶测试数据和对比例的数据。该驱动系统是作用于1.6t重的车辆。
Figure PCTCN2019072807-appb-000031
该驱动系统包括:顺序连接的电池、1个交流分驱动电机、1个整流器和2个直流分驱动电机(第一直流分驱动电机和第二直流分驱动电机,分别是串励电机和永磁电机)依次顺序连接,2个直流分驱动电机并联连接整流器的直流输入端和直流输出端之间;交流分驱动电机通过减速器同时驱动前两个车轮,两个直流分驱动电机通过减速器同时驱动两后轮轮。交流分驱动电机的额定功率为42KW,额定转速为4500r/min,减速比为1:8。
对比例:原车只使用上述交流分驱动电机驱动两前轮,百公里耗电为:11.25kwh/百公里。
实验例19:
如表19所示,示出了匀速80km/h状态下行驶测试数据和对比例的数据。该驱动系统是作用于1.6t重的车辆。
Figure PCTCN2019072807-appb-000032
该驱动系统包括:顺序连接的电池、1个交流分驱动电机、1个整流器和3个直流分驱动电机(第一直流分驱动电机、第二直流分驱动电机和第三直流分驱动电机)依次顺序连接,3个直流分驱动电机串联连接整流器的直流输入端和直流输出端之间;交流分驱动电机通过减速器同时驱动前两个车轮,两个直流分驱动电机通过减速器同时驱动两后轮轮。交流分驱动电机 的额定功率为42KW,额定转速为4500r/min,减速比为1:8。3个直流分驱动电机的参数均相同,减速比均为1:1,额定功率均为4kw,额定转速均为2800r/min。
对比例:原车只使用上述交流分驱动电机驱动两前轮,百公里耗电为:11.25kwh/百公里。
实验例20:
如表20所示,示出了匀速80km/h状态下行驶测试数据和对比例的数据。该驱动系统是作用于1.8t重的车辆。
Figure PCTCN2019072807-appb-000033
该驱动系统包括:顺序连接的电池、1个交流分驱动电机、1个整流器和1个直流分驱动电机依次顺序连接,1个直流分驱动电机串联连接整流器的直流输入端和直流输出端之间;交流分驱动电机驱动左前轮,直流分驱动电机驱动右后轮。交流分驱动电机的额电功率为45KW,额定转速为4500r/min,减速比为1:6.4。
对比例:原车只使用上述交流分驱动电机(额定功率45KW,额定转速4500r/min,减速比1:6.4)驱动车轮,百公里耗电为:15.75Kwh/百公里。
实验例21:
如表21所示,示出了匀速80km/h状态下行驶测试数据和对比例的数据。该驱动系统是作用于1.8t重的车辆。
Figure PCTCN2019072807-appb-000034
该驱动系统包括:顺序连接的电池、1个交流分驱动电机、1个整流器和2个直流分驱动电机(第一直流分驱动电机和第二直流分驱动电机,分别是串励电机和永磁电机)依次顺序连接,2个直流分驱动电机串联连接整流器的直流输入端和直流输出端之间;交流分驱动电机通过减速器同时驱动前两个车轮,两个直流分驱动电机通过减速器同时驱动两后轮轮。交流分驱动电机的额定功率为45KW,额定转速为4500r/min,减速比为1:6.4。
对比例:原车只使用上述交流分驱动电机驱动左前轮,百公里耗电为:15.75Kwh/百公里。
实验例22:
如表22所示,示出了匀速80km/h状态下行驶测试数据和对比例的数据。该驱动系统是作用于1.8t重的车辆。
Figure PCTCN2019072807-appb-000035
该驱动系统包括:顺序连接的电池、1个交流分驱动电机、1个整流器和2个直流分驱动电机(第一直流分驱动电机和第二直流分驱动电机,分别是串励电机和永磁电机)依次顺序连接,2个直流分驱动电机并联连接整流器的直流输入端和直流输出端之间;交流分驱动电机通过减速器同时驱动前两个车轮,两个直流分驱动电机通过减速器同时驱动两后轮轮。交流分驱动电机的额定功率为45KW,额定转速为4500r/min,减速比为1:6.4。
对比例:原车只使用上述交流分驱动电机驱动两前轮,百公里耗电为:15.75Kwh/百公里。
经过对比,上述实验例14和16的效果最为理想,车辆在行驶时,能够实现自动差速,车辆中不用再设置差速器,降低了机械损耗,节约了车内空间,并且提高了安全性。类似的,同一条驱动线路中的交流分驱动电机和直流分驱动电机分别驱动左前轮和右后轮的方式也能够起到良好的效果,类似的这两个电极分别驱动右前轮和左后轮,或分别驱动右后轮和左前轮,或分别驱动左后轮和右前轮都能够起到良好的效果。
本技术方案通过串联串励电机,有串励电机的转子绕组和定子绕组为串联,不存在位置切换问题,因此可有效地进行同步及同速驱动,不会造成驱动混乱的现象。
上述内容介绍了本申请所提供的驱动系统和车辆的结构,下面,本申请还提供了基于上述结构的驱动系统的加工方法,该加工方法主要有两个步骤,分别如下:
步骤1,使第一绕组中的每一相绕组的尾端均分别与整流器的三相输入端电性连接;所述第一绕组位于交流分驱动电机中,且所述第一绕组的相数至少为三相;
步骤2,在使所述整流器的直流输出端和直流输入端之间连接直流分驱动电机。
需要说明的是,这两个步骤之间通常不必然区分前后关系,可以先执行步骤1,再执行步骤2,也可以先执行步骤2,再执行步骤1。
优选的,还可以在上述两个步骤的基础上增加如下步骤:分别为所述交流分驱动电机和所述直流分驱动电机配置第一减速器和第二减速器,所述第一减速器和所述第二减速器的减速比分别为2.2-2.45:1和2.05:1。
其中,第一减速器和第二减速器可以是同一个减速器,也可以是分别指车辆的前桥减速器和后桥减速器。由于该方法是基于上述结构的方法,因此,本方法中没有公开的内容可以全部参照本文中对于系统、系统和车辆的描述。
类似的,本申请还提供了种车辆外壳,包括主体骨架,所述主体骨架中设置有容置腔,所述容置腔配置为放置前文中所公开的驱动系统。主体骨架指的是车辆的上部客体,在某种情况下,还可以包括车辆的底盘。
本申请中,交流分驱动电机所用的电机为交流永磁同步电机,当然,也可以使用交流异步电机。
以上仅为本申请的实施例,并非因此限制本申请的专利范围,凡是利用本申请说明书内容所作的等效结构或等效流程变换,或直接或间接运用在其它相关的技术领域,均同理包括在本申请的专利保护范围内。

Claims (146)

  1. 一种用于电动汽车的电动机驱动系统,其特征在于:
    包括电池、控制器、至少一个交流分驱动电机、至少一个整流器和至少一个直流分驱动电机;
    所述控制器连接电池以输出交流电;
    所述交流分驱动电机内至少设有三相绕组,所述三相绕组中每相绕组的首端均连接控制器,三相绕组中每相绕组的尾端之间相互分离;
    所述整流器包括三相输入端口和直流输出端口;所述交流分驱动电机的三相绕组中每相绕组的尾端分别连接所述整流器的三相输入端口,所述整流器的直流输出端口电气连接直流分驱动电机。
  2. 根据权利要求1所述的电动机驱动系统,其特征在于,所述交流分驱动电机和直流分驱动电机分别制成不同的额定转速,所述控制器输出的电能根据所述交流分驱动电机和直流分驱动电机上的负载大小进行自由配比。
  3. 根据权利要求1所述的电动机驱动系统,其特征在于,所述交流分驱动电机和直流分驱动电机分别连接不同速比的减速器,所述控制器输出的电能根据所述交流分驱动电机和直流分驱动电机上的负载大小进行自由配比。
  4. 根据权利要求1至3中任意一项所述的电动机驱动系统,其特征在于,所述直流分驱动电机为有刷永磁直流电机。
  5. 根据权利要求1至3中任意一项所述的电动机驱动系统,其特征在于,所述直流分驱动电机为串励电机。
  6. 根据权利要求1至3中任意一项所述的电动机驱动系统,其特征在于,所述交流分驱动电机为交流异步电机或交流同步电机。
  7. 根据权利要求1至3中任意一项所述的电动机驱动系统,其特征在于,所述交流分驱动电机和直流分驱动电机同轴连接驱动汽车前桥或后桥。
  8. 根据权利要求1至3中任意一项所述的电动机驱动系统,其特征在于,所述交流分驱动电机和直流分驱动电机分别连接驱动汽车前桥和后桥。
  9. 根据权利要求1至8中任意一项所述的电动机驱动系统,其特征在于,还包括最高行驶速度大于100km/h的电动车,所述电动车包括前桥和后桥,所述前桥和/或后桥上设有相互连接传动的减速箱和差速器,所述交流分驱动电机和/或直流分驱动电机连接传动所述减速箱,所述减速箱的减速比为2.2-4.5。
  10. 根据权利要求1至8中任意一项所述的电动机驱动系统,其特征在于,还包括最高行驶速度大于100km/h的电动车,所述电动车包括前桥和后桥,所述前桥和/或后桥上设有相互连接传动的减速箱和差速器,所述交流分驱动电机和/或直流分驱动电机连接传动所述减速箱,所述减速箱的减速比为2.5-3.7。
  11. 根据权利要求1所述的电动机驱动系统,其特征在于,所述整流器内设有三相二极管整流桥,所述三相二极管整流桥包括三个电气并联的单相二极管整流电路,所述三相绕组中的每相绕组的尾端分别电气连接单相二极管整流电路,三个单相二极管整流电路的两端分别同时连接于整流器的两个直流输出端口,所述直流分驱动电机或/和储电能装置接通两个直流输出端口后,三个单相二极管整流电路的两端连接导通形成回路,使得直流输出端口成为三相绕组星接所需的中性点。
  12. 根据权利要求1至11中任意一项所述的电动机驱动系统,其特征在于,所述直流分驱动电机有2个,包括相互电气串联或并联的第一直流分驱动电机和第二直流分驱动电机。
  13. 根据权利要求12所述的电动机驱动系统,其特征在于,所述交流分驱动电机、第一直流分驱动电机和第二直流分驱动电机分别制成不同的额定转速,所述控制器输出的电能根据交流分驱动电机、第一直流分驱动电机和第二直流分驱动电机上的负载大小进行自由配比。
  14. 根据权利要求12所述的电动机驱动系统,其特征在于,所述交流分驱动电机、第一直流分驱动电机和第二直流分驱动电机分别连接不同速比的减速器,所述控制器输出的电能根据交流分驱动电机、第一直流分驱动电机和第二直流分驱动电机上的负载大小进行自由配比。
  15. 根据权利要求12所述的电动机驱动系统,其特征在于,所述第一直流分驱动电机和第二直流分驱动电机为有刷永磁直流电机或串励电机。
  16. 根据权利要求12所述的电动机驱动系统,其特征在于,所述交流分驱动电机为交流异步电机或交流同步电机。
  17. 根据权利要求1至11中任意一项所述的电动机驱动系统,其特征在于,所述直流分驱动电机有3个,包括相互电气串联或并联的第一直流分驱动电机、第二直流分驱动电机和第三直流分驱动电机。
  18. 根据权利要求17所述的电动机驱动系统,其特征在于,所述交流分驱动电机、第一直流分驱动电机、第二直流分驱动电机和第三直流分驱动电机分别制成不同的额定转速,所述控制器输出的电能根据交流分驱动电机、第一直流分驱动电机、第二直流分驱动电机和第三直流分驱动电机上的负载大小进行自由配比。
  19. 根据权利要求17所述的电动机驱动系统,其特征在于,所述交流分驱动电机、第一直流分驱动电机、第二直流分驱动电机和第三直流分驱动电机分别连接不同速比的减速器,所述控制器输出的电能根据交流分驱动电机、第一直流分驱动电机、第二直流分驱动电机和第三直流分驱动电机上的负载大小进行自由配比。
  20. 根据权利要求17所述的电动机驱动系统,其特征在于,所述第一直流分驱动电机、第二直流分驱动电机和第三直流分驱动电机为有刷永磁直流电机或串励电机。
  21. 根据权利要求17所述的电动机驱动系统,其特征在于,所述交流分驱动电机为交流异步电机或交流同步电机。
  22. 根据权利要求1至11中任意一项所述的电动机驱动系统,其特征在于,所述直流分驱动电机有4个,包括相互电气串联的第一直流分驱动电机、第二直流分驱动电机、第三直流分驱动电机和第四直流分驱动电机。
  23. 根据权利要求22所述的电动机驱动系统,其特征在于,还包括最高行驶速度大于100km/h的电动车,所述电动车包括前桥和后桥,所述前桥和/或后桥上设有相互连接传动的减速箱和差速器,所述交流分驱动电机和第一直流分驱动电机同轴连接传动所述减速箱,所述减速箱的减速比为2.2-4.5。
  24. 根据权利要求22所述的电动机驱动系统,其特征在于,还包括最高行驶速度大于100km/h的电动车,所述电动车包括前桥和后桥,所述前桥和/或后桥上设有相互连接传动的减速箱和差速器,所述交流分驱动电机和第一直流分驱动电机同轴连接传动所述减速箱,所述减速箱的减速比为2.5-3.7。
  25. 根据权利要求1或2或3或12或17或22所述的电动机驱动系统,其特征在于,所述交流分驱动电机设有2个,包括相互电气串联连接第一交流分驱动电机和第二交流分驱动电机,所述第一交流分驱动电机内每相绕组的尾端直接连接第二交流分驱动电机内每相绕组的首端,第二交流分驱动电机内每相绕组的尾端连接所述整流器的三相输入端口。
  26. 根据权利要求25所述的电动机驱动系统,其特征在于,所述第一交流分驱动电机和第二交流分驱动电机同轴串联连接。
  27. 根据权利要求25所述的电动机驱动系统,其特征在于,所述第一交流分驱动电机和第二交流分驱动电机为交流异步电机或交流同步电机。
  28. 根据权利要求1-27中任意一项所述的电动机驱动系统,其特征在于,所述直流分驱动电机运转时的驱动电压为不少于5V。
  29. 根据权利要求1-27中任意一项所述的电动机驱动系统,其特征在于,所述直流分驱动电机运转时的驱动电压为5-96V。
  30. 根据权利要求1所述的电动机驱动系统,其特征在于,至少一个交流分驱动电机、至少一个整流器和至少一个直流分驱动电机顺序连接形成一条驱动线路。
  31. 根据权利要求30所述的电动机驱动系统,其特征在于,目标交流分驱动电机的电机参数和目标直流分驱动电机的电机参数按照预设数值设定,以使目标直流分驱动电机的功率占总功率的百分比约为1.5%-40%;总功率是目标直流分驱动电机的功率与目标交流分驱动电机的功率之和;目标交流分驱动电机的电机参数至少包括以下的一种或多种:额定转速和减速比;目标直流分驱动电机的电机参数包括以下的一种或多种:额定转速和减速比。
  32. 根据权利要求30所述的电动机驱动系统,其特征在于,车辆处于加速状态时,目标直流分驱动电机的功率占比大于车辆处于匀速状态时,目标直流分驱动电机的功率占比;功率占比是目标直流分驱动电机的功率占总功率的百分比;总功率是目标直流分驱动电机的功率与目标交流分驱动电机的功率之和;目标交流分驱动电机的电机参数至少包括以下的一种或多 种,额定转速和减速比;目标直流分驱动电机的电机参数包括以下的一种或多种,额定转速和减速比;目标交流分驱动电机、目标整流器和目标直流分驱动电机均属于同一条驱动线路。
  33. 根据权利要求30所述的电动机驱动系统,其特征在于,目标交流分驱动电机的电机参数和目标直流分驱动电机的电机参数按照预设数值设定,以使在不同的负载条件下,目标直流分驱动电机的电能使用率和目标交流分驱动电机的电能使用率能自动调整;目标交流分驱动电机的电机参数至少包括以下的一种或多种,额定转速和减速比;目标直流分驱动电机的电机参数包括以下的一种或多种,额定转速和减速比;目标交流分驱动电机、目标整流器和目标直流分驱动电机均属于同一条驱动线路;
    或,
    目标交流分驱动电机的电机参数和目标直流分驱动电机的电机参数按照预设数值设定,以使在不同的负载条件下,电能输入端所提供的电能至少部分的在目标直流分驱动电机和目标交流分驱动电机之间窜移;目标交流分驱动电机的电机参数至少包括以下的一种或多种,额定转速和减速比;目标直流分驱动电机的电机参数包括以下的一种或多种,额定转速和减速比;目标交流分驱动电机、目标整流器和目标直流分驱动电机均属于同一条驱动线路。
  34. 根据权利要求30所述的电动机驱动系统,其特征在于,目标交流分驱动电机的电机参数和目标直流分驱动电机的电机参数按照预设数值设定,以使目标直流分驱动电机的视在功率约为70w-800w;以使目标交流分驱动电机的视在功率约为3000w-4500w;电机参数包括以下的一种或多种,额定转速和减速比;目标交流分驱动电机、目标整流器和目标直流分驱动电机均属于同一条驱动线路。
  35. 根据权利要求30所述的电动机驱动系统,其特征在于,同一个驱动线路中的至少一个直流分驱动电机和至少一个交流分驱动电机的减速比/额定转速不同;
    和/或,同一个驱动线路中的至少一个直流分驱动电机的实际输出转速大于至少一个交流分驱动电机的实际输出转速;
    和/或,同一个驱动线路中的至少一个直流分驱动电机的实际输出转速的峰值大于至少一个交流分驱动电机的实际输出转速的峰值。
  36. 根据权利要求30-35中任一项所述的电动机驱动系统,其特征在于,交流分驱动电机为1个。
  37. 根据权利要求36所述的电动机驱动系统,其特征在于,
    目标交流分驱动电机通过减速器与被驱动车辆的前桥/后桥连接,以同时向被驱动车辆的两前轮或两后轮提供动力;目标交流分驱动电机、目标整流器和目标直流分驱动电机均属于同一条驱动线路。
  38. 根据权利要求36所述的电动机驱动系统,其特征在于,直流分驱动电机为1个;
    直流分驱动电机通过减速器与被驱动车辆的前桥/后桥连接,以同时向被驱动车辆的两前轮或两后轮提供动力。
  39. 根据权利要求36所述的电动机驱动系统,其特征在于,
    交流分驱动电机的输出轴配置为与指定的一个车轮连接,以向指定的一个车轮提供动力。
  40. 根据权利要求36所述的电动机驱动系统,其特征在于,至少一个交流分驱动电机为轮毂电机。
  41. 根据权利要求30-35任一项所述的电动机驱动系统,其特征在于,交流分驱动电机为2个,分别为第一交流分驱动电机和第二交流分驱动电机,整流器为2个,分别是第一整流器和第二整流器;
    第一交流分驱动电机内的多相绕组中每相绕组的首端均配置为与电能输入端连接;第一交流分驱动电机的多相绕组中每相绕组的尾端分别连接所述第一整流器的多相输入端口;
    第二交流分驱动电机内的多相绕组中每相绕组的首端均配置为与电能输入端连接;第二交流分驱动电机的多相绕组中每相绕组的尾端分别连接所述第二整流器的多相输入端口;
    直流分驱动电机电气连接在所述第一整流器直流输出端和直流输入端之间,以及,直流分驱动电机电气连接在所述第二整流器直流输出端和直流输入端之间。
  42. 根据权利要求41所述的电动机驱动系统,其特征在于,
    第一交流分驱动电机通过减速器与被驱动车辆的前桥/后桥连接,以同时向被驱动车辆的两前轮或两后轮提供动力;
    第二交流分驱动电机通过减速器与被驱动车辆的后桥/前桥连接,以同时向被驱动车辆的两后轮或两前轮提供动力。
  43. 根据权利要求41所述的电动机驱动系统,其特征在于,
    第一交流分驱动电机的输出轴配置为与第一车轮连接,以向第一车轮提供动力;
    第二交流分驱动电机的输出轴配置为与第二车轮连接,以向第二车轮提供动力。
  44. 根据权利要求43所述的电动机驱动系统,其特征在于,第一车轮和第二车轮为不同的车轮。
  45. 根据权利要求43所述的电动机驱动系统,其特征在于,
    所述第一车轮为左侧的一个车轮,所述第二车轮为右侧的一个车轮。
  46. 根据权利要求45所述的电动机驱动系统,其特征在于,
    所述第一车轮为左前轮,所述第二车轮为右前轮;
    或,所述第一车轮为左后轮,所述第二车轮为右后轮。
  47. 根据权利要求45所述的电动机驱动系统,其特征在于,
    所述第一车轮和所述第二车轮均为左侧的车轮,或均为右侧的车轮。
  48. 根据权利要求41所述的电动机驱动系统,其特征在于,第一交流分驱动电机和第二交流分驱动电机中的至少一个为轮毂电机。
  49. 根据权利要求30-35任一项所述的电动机驱动系统,其特征在于,
    交流分驱动电机为2个,分别是第三交流分驱动电机和第四交流分驱动电机,整流器为两个,分为是第三整流器和第四整流器;直流分驱动电机为2个,分别是第三直流分驱动电机和第四直流分驱动电机;第三交流分驱动电机、第三整流器和第三直流分驱动电机顺序连接形 成第一驱动线路;第四交流分驱动电机、第四整流器和第四直流分驱动电机顺序连接形成第二驱动线路;
    第三交流分驱动电机内的多相绕组中每相绕组的首端均配置为与电能输入端连接;第三交流分驱动电机的多相绕组中每相绕组的尾端分别连接所述第三整流器的多相输入端口;
    第四交流分驱动电机内的多相绕组中每相绕组的首端均配置为与电能输入端连接;第四交流分驱动电机的多相绕组中每相绕组的尾端分别连接所述第四整流器的多相输入端口;
    第三直流分驱动电机电气连接在所述第三整流器的直流输出端和直流输入端之间,以及,第四直流分驱动电机电气连接在所述第四整流器的直流输出端和直流输入端之间。
  50. 根据权利要求49所述的电动机驱动系统,其特征在于,
    第三交流分驱动电机通过减速器与被驱动车辆的前桥/后桥连接,以同时向被驱动车辆的两前轮或两后轮提供动力;
    第四交流分驱动电机通过减速器与被驱动车辆的后桥/前桥连接,以同时向被驱动车辆的两后轮或两前轮提供动力。
  51. 根据权利要求49所述的电动机驱动系统,其特征在于,
    第三交流分驱动电机的输出轴配置为与第一车轮连接,以向第一车轮提供动力;
    第四交流分驱动电机的输出轴配置为与第二车轮连接,以向第二车轮提供动力。
  52. 根据权利要求51所述的电动机驱动系统,其特征在于,第一车轮和第二车轮为不同的车轮。
  53. 根据权利要求49所述的电动机驱动系统,其特征在于,
    第三交流分驱动电机的输出轴配置为向驱动被驱动车辆的左前轮提供动力;第三直流分驱动电机的输出轴配置为向驱动被驱动车辆的右后轮提供动力;第四交流分驱动电机的输出轴配置为向驱动被驱动车辆的右前轮提供动力;第四直流分驱动电机的输出轴配置为向驱动被驱动车辆的左后轮提供动力;
    或,
    第三交流分驱动电机的输出轴配置为向驱动被驱动车辆的右前轮提供动力;第三直流分驱动电机的输出轴配置为向驱动被驱动车辆的左后轮提供动力;第四交流分驱动电机的输出轴配置为向驱动被驱动车辆的左前轮提供动力;第四直流分驱动电机的输出轴配置为向驱动被驱动车辆的右后轮提供动力;
    或,
    第三交流分驱动电机的输出轴配置为向驱动被驱动车辆的左后轮提供动力;第三直流分驱动电机的输出轴配置为向驱动被驱动车辆的右前轮提供动力;第四交流分驱动电机的输出轴配置为向驱动被驱动车辆的右后轮提供动力;第四直流分驱动电机的输出轴配置为向驱动被驱动车辆的左前轮提供动力;
    或,
    第三交流分驱动电机的输出轴配置为向驱动被驱动车辆的右后轮提供动力;第三直流分驱动电机的输出轴配置为向驱动被驱动车辆的左前轮提供动力;第四交流分驱动电机的输出轴配置为向驱动被驱动车辆的左后轮提供动力;第四直流分驱动电机的输出轴配置为向驱动被驱动车辆的右前轮提供动力。
  54. 根据权利要求49所述的电动机驱动系统,其特征在于,
    第三交流分驱动电机的输出轴配置为向驱动被驱动车辆的左前轮提供动力;第三直流分驱动电机的输出轴配置为向驱动被驱动车辆的左后轮提供动力;第四交流分驱动电机的输出轴配置为向驱动被驱动车辆的右前轮提供动力;第四直流分驱动电机的输出轴配置为向驱动被驱动车辆的右后轮提供动力;
    或,
    第三交流分驱动电机的输出轴配置为向驱动被驱动车辆的右前轮提供动力;第三直流分驱动电机的输出轴配置为向驱动被驱动车辆的右后轮提供动力;第四交流分驱动电机的输出轴配置为向驱动被驱动车辆的左前轮提供动力;第四直流分驱动电机的输出轴配置为向驱动被驱动车辆的左后轮提供动力;
    或,
    第三交流分驱动电机的输出轴配置为向驱动被驱动车辆的左后轮提供动力;第三直流分驱动电机的输出轴配置为向驱动被驱动车辆的左前轮提供动力;第四交流分驱动电机的输出轴配置为向驱动被驱动车辆的右后轮提供动力;第四直流分驱动电机的输出轴配置为向驱动被驱动车辆的右前轮提供动力;
    或,
    第三交流分驱动电机的输出轴配置为向驱动被驱动车辆的右后轮提供动力;第三直流分驱动电机的输出轴配置为向驱动被驱动车辆的右前轮提供动力;第四交流分驱动电机的输出轴配置为向驱动被驱动车辆的左后轮提供动力;第四直流分驱动电机的输出轴配置为向驱动被驱动车辆的左前轮提供动力。
  55. 根据权利要求49-52中任一项所述的电动机驱动系统,其特征在于,
    第三交流分驱动电机的输出轴配置为向驱动被驱动车辆的左前轮提供动力;第三直流分驱动电机的输出轴配置为向驱动被驱动车辆的右前轮提供动力;第四交流分驱动电机的输出轴配置为向驱动被驱动车辆的右后轮提供动力;第四直流分驱动电机的输出轴配置为向驱动被驱动车辆的左后轮提供动力;
    或,
    第三交流分驱动电机的输出轴配置为向驱动被驱动车辆的右前轮提供动力;第三直流分驱动电机的输出轴配置为向驱动被驱动车辆的左前轮提供动力;第四交流分驱动电机的输出轴配置为向驱动被驱动车辆的左后轮提供动力;第四直流分驱动电机的输出轴配置为向驱动被驱动车辆的右后轮提供动力;
    或,
    第三交流分驱动电机的输出轴配置为向驱动被驱动车辆的左后轮提供动力;第三直流分驱动电机的输出轴配置为向驱动被驱动车辆的右后轮提供动力;第四交流分驱动电机的输出轴配置为向驱动被驱动车辆的右前轮提供动力;第四直流分驱动电机的输出轴配置为向驱动被驱动车辆的左前轮提供动力;
    或,
    第三交流分驱动电机的输出轴配置为向驱动被驱动车辆的右后轮提供动力;第三直流分驱动电机的输出轴配置为向驱动被驱动车辆的左后轮提供动力;第四交流分驱动电机的输出轴配置为向驱动被驱动车辆的左前轮提供动力;第四直流分驱动电机的输出轴配置为向驱动被驱动车辆的右前轮提供动力。
  56. 根据权利要求49所述的电动机驱动系统,其特征在于,第三交流分驱动电机和第四交流分驱动电机中的至少一个是轮毂电机。
  57. 根据权利要求36-40任一项所述的电动机驱动系统,其特征在于,
    所述交流分驱动电机的减速比约为1:1-12:1;所述直流分驱动电机的减速比约为1:1-8:1;
    若交流分驱动电机为轮毂电机,则交流分驱动电机的额定转速约为500-1000r/min;若交流分驱动电机为永磁电机,则交流分驱动电机的额定转速约为3000r/min-7000r/min;若直流分驱动电机为轮毂电机,则直流分驱动电机的额定转速约为500-1000r/min,若直流分驱动电机为永磁电机,则直流分驱动电机的额定转速约为1000r/min-3000r/min。
  58. 根据权利要求36-40中任一项所述的电动机驱动系统,其特征在于,
    交流分驱动电机与直流分驱动电机的减速比的比值约为0.8:1~1.2:1;
    交流分驱动电机与直流分驱动电机的额定转速之比约为1:1~3:1。
  59. 根据权利要求57所述的电动机驱动系统,其特征在于,
    所述交流分驱动电机的减速比约为1:1-6.4:1;所述直流分驱动电机的减速比约为1:1-7:1;
    交流分驱动电机的额定转速约为4000r/min-6500r/min;直流分驱动电机的额定转速约为2500r/min-3000r/min。
  60. 根据权利要求41-48中任一项所述的电动机驱动系统,其特征在于,
    所述第一交流分驱动电机的减速比约为1:1-12:1;第二交流分驱动电机的减速比约为1:1-12:1;所述直流分驱动电机的减速比约为1:1-8:1;
    若第一交流分驱动电机为轮毂电机,则第一交流分驱动电机的额定转速约为500-1000r/min;若第二交流分驱动电机为轮毂电机,则第二交流分驱动电机的额定转速约为500-1000r/min;
    若第一交流分驱动电机为永磁电机,则第一交流分驱动电机的额定转速约为3000r/min-7000r/min;若第二交流分驱动电机为永磁电机,则第二交流分驱动电机的额定转速约为3000r/min-7000r/min;
    若直流分驱动电机为轮毂电机,则直流分驱动电机的额定转速约为500-1000r/min,若直流分驱动电机为永磁电机,则直流分驱动电机的额定转速约为1000r/min-3000r/min。
  61. 根据权利要求49-56中任一项所述的电动机驱动系统,其特征在于,
    所述第三交流分驱动电机的减速比约为1:1-12:1;第四交流分驱动电机的减速比约为1:1-12:1;所述第三直流分驱动电机的减速比约为1:1-8:1;所述第四直流分驱动电机的减速比约为1:1-8:1;
    若第三交流分驱动电机为轮毂电机,则第三交流分驱动电机的额定转速约为500-1000r/min;若第四交流分驱动电机为轮毂电机,则第四交流分驱动电机的额定转速约为500-1000r/min;
    若第三交流分驱动电机为永磁电机,则第三交流分驱动电机的额定转速约为3000r/min-7000r/min;若第四交流分驱动电机为永磁电机,则第四交流分驱动电机的额定转速约为3000r/min-7000r/min;
    若第三直流分驱动电机为轮毂电机,则第三直流分驱动电机的额定转速约为500-1000r/min,若第三直流分驱动电机为永磁电机,则第三直流分驱动电机的额定转速约为1000r/min-3000r/min;
    若第四直流分驱动电机为轮毂电机,则第四直流分驱动电机的额定转速约为500-1000r/min,若第四直流分驱动电机为永磁电机,则第四直流分驱动电机的额定转速约为1000r/min-3000r/min。
  62. 根据权利要求30所述的电动机驱动系统,其特征在于,所述整流器内设有多相二极管整流桥,所述多相二极管整流桥包括三个电气并联的单相二极管整流电路,所述多相绕组中的每相绕组的尾端分别电气连接单相二极管整流电路,三个单相二极管整流电路的两端分别同时连接于整流器的两个直流输出端口,所述直流分驱动电机接通两个直流输出端口后,使得三个单相二极管整流电路的两端连接导通形成回路,使得直流输出端成为多相绕组星接所需的中性点。
  63. 根据权利要求30-61中任一项所述的电动机驱动系统,其特征在于,所述直流分驱动电机为以下两种中的任一种:
    串励电机、有刷永磁直流电机;
    和/或,
    所述交流分驱动电机为以下两种中的任一种:
    交流永磁电机、交流异步电机、交流同步电机。
  64. 一种多轮电动车,包括至少三个车轮,其特征在于,还包括如权利要求1-63所述的电动机驱动系统,至少一个交流分驱动电机配置为向至少一个车轮直接或间接的进行驱动;至少一个直流分驱动电机配置为向至少一个车轮直接或间接的进行驱动。
  65. 一种两轮电动车,包括两个车轮,其特征在于,还包括如权利要求1-48中任一项所述的电动机驱动系统,其特征在于,至少一个交流分驱动电机配置为向至少一个车轮直接或间接的进行驱动;
    至少一个直流分驱动电机配置为向至少一个车轮直接或间接的进行驱动。
  66. 根据权利要求65所述的两轮电动车,其特征在于,两个车轮前后设置,或左右设置。
  67. 电动机驱动系统的加工方法,其特征在于,包括:
    使第一绕组中的每一相绕组的尾端均与对应的整流器的多相输入端电性连接;所述第一绕组位于交流分驱动电机中,且所述第一绕组的相数至少为多相;
    在所述整流器的直流输出端和直流输入端之间连接直流分驱动电机。
  68. 一种车辆外壳,其特征在于,包括主体骨架,所述主体骨架中设置有容置腔,所述容置腔配置为放置如权利要求1-63中任一项所述的电动机驱动系统。
  69. 一种用于电动车的驱动系统,其特征在于:
    包括电池、控制器、交流电机组、整流组件和直流电机组;
    交流电机组包括至少一个交流分驱动电机;所述直流电机组包括至少一个直流分驱动电机;所述整流组件包括至少一个整流器;至少一个交流分驱动电机、至少一个整流器和至少一个直流分驱动电机顺序连接形成一条驱动线路;
    所述整流器包括多相输入端、直流输出端和直流输入端,所述交流分驱动电机内至少设有多相绕组,多相绕组中每相绕组的首端均配置为与电能输入端连接;目标直流分驱动电机电气连接在目标整流器的所述直流输出端和直流输入端之间;目标交流分驱动电机的多相绕组中每相绕组的尾端分别连接目标整流器的多相输入端口;目标交流分驱动电机、目标整流器和目标直流分驱动电机均属于同一条驱动线路。
  70. 根据权利要求69所述的一种驱动系统,其特征在于,目标交流分驱动电机的电机参数和目标直流分驱动电机的电机参数按照预设数值设定,以使目标直流分驱动电机的功率占总功率的百分比约为1.5%-40%;总功率是目标直流分驱动电机的功率与目标交流分驱动电机的功率之和;目标交流分驱动电机的电机参数至少包括以下的一种或多种,额定转速和减速比;目标直流分驱动电机的电机参数包括以下的一种或多种,额定转速和减速比。
  71. 根据权利要求69所述的一种驱动系统,其特征在于,车辆处于加速状态时,目标直流分驱动电机的功率占比大于车辆处于匀速状态时,目标直流分驱动电机的功率占比;功率占比是目标直流分驱动电机的功率占总功率的百分比;总功率是目标直流分驱动电机的功率与目标交流分驱动电机的功率之和;目标交流分驱动电机的电机参数至少包括以下的一种或多种,额定转速和减速比;目标直流分驱动电机的电机参数包括以下的一种或多种,额定转速和减速比。
  72. 根据权利要求69所述的一种驱动系统,其特征在于,目标交流分驱动电机的电机参数和目标直流分驱动电机的电机参数按照预设数值设定,以使在不同的负载条件下,目标直流分驱动电机的电能使用率和目标交流分驱动电机的电能使用率能自动调整;目标交流分驱动电机的电机参数至少包括以下的一种或多种,额定转速和减速比;目标直流分驱动电机的电机参数包括以下的一种或多种,额定转速和减速比;
    或,
    目标交流分驱动电机的电机参数和目标直流分驱动电机的电机参数按照预设数值设定,以使在不同的负载条件下,电能输入端所提供的电能至少部分的在目标直流分驱动电机和目标交流分驱动电机之间窜移;目标交流分驱动电机的电机参数至少包括以下的一种或多种,额定转速和减速比;目标直流分驱动电机的电机参数包括以下的一种或多种,额定转速和减速比。
  73. 根据权利要求69所述的一种驱动系统,其特征在于,目标交流分驱动电机的电机参数和目标直流分驱动电机的电机参数按照预设数值设定,以使目标直流分驱动电机的视在功率约为70w-800w;以使目标交流分驱动电机的视在功率约为3000w-4500w;电机参数包括以下的一种或多种,额定转速和减速比。
  74. 根据权利要求69所述的一种驱动系统,其特征在于,同一个驱动线路中的至少一个直流分驱动电机和至少一个交流分驱动电机的减速比/额定转速不同;
    和/或,同一个驱动线路中的至少一个直流分驱动电机的实际输出转速大于至少一个交流分驱动电机的实际输出转速;
    和/或,同一个驱动线路中的至少一个直流分驱动电机的实际输出转速的峰值大于至少一个交流分驱动电机的实际输出转速的峰值。
  75. 根据权利要求69-74中任一项所述的一种驱动系统,其特征在于,交流电机组包括1个交流分驱动电机。
  76. 根据权利要求75所述的一种驱动系统,其特征在于,
    目标交流分驱动电机通过减速器与被驱动车辆的前桥/后桥连接,以同时向被驱动车辆的两前轮或两后轮提供动力。
  77. 根据权利要求75所述的一种驱动系统,其特征在于,直流电机组包括1个直流分驱动电机;
    直流分驱动电机通过减速器与被驱动车辆的前桥/后桥连接,以同时向被驱动车辆的两前轮或两后轮提供动力。
  78. 根据权利要求75所述的一种驱动系统,其特征在于,
    目标交流分驱动电机的输出轴配置为与指定的一个车轮连接,以向指定的一个车轮提供动力。
  79. 根据权利要求75所述的一种驱动系统,其特征在于,目标交流分驱动电机为轮毂电机。
  80. 根据权利要求69-74中任一项所述的一种驱动系统,其特征在于,交流电机组包括第一交流分驱动电机和第二交流分驱动电机,整流组件包括第一整流器和第二整流器;
    第一交流分驱动电机内的多相绕组中每相绕组的首端均配置为与电能输入端连接;第一交流分驱动电机的多相绕组中每相绕组的尾端分别连接所述第一整流器的多相输入端口;
    第二交流分驱动电机内的多相绕组中每相绕组的首端均配置为与电能输入端连接;第二交流分驱动电机的多相绕组中每相绕组的尾端分别连接所述第二整流器的多相输入端口;
    直流电机组电气连接在所述第一整流器直流输出端和直流输入端之间,以及,直流电机组电气连接在所述第二整流器直流输出端和直流输入端之间。
  81. 根据权利要求80所述的一种驱动系统,其特征在于,
    第一交流分驱动电机通过减速器与被驱动车辆的前桥/后桥连接,以同时向被驱动车辆的两前轮或两后轮提供动力;
    第二交流分驱动电机通过减速器与被驱动车辆的后桥/前桥连接,以同时向被驱动车辆的两后轮或两前轮提供动力。
  82. 根据权利要求80所述的一种驱动系统,其特征在于,
    第一交流分驱动电机的输出轴配置为与第一车轮连接,以向第一车轮提供动力;
    第二交流分驱动电机的输出轴配置为与第二车轮连接,以向第二车轮提供动力。
  83. 根据权利要求82所述的一种驱动系统,其特征在于,第一车轮和第二车轮为不同的车轮。
  84. 根据权利要求82所述的一种驱动系统,其特征在于,
    所述第一车轮为左侧的一个车轮,所述第二车轮为右侧的一个车轮。
  85. 根据权利要求84所述的一种驱动系统,其特征在于,
    所述第一车轮为左前轮,所述第二车轮为右前轮;
    或,所述第一车轮为左后轮,所述第二车轮为右后轮。
  86. 根据权利要求84所述的一种驱动系统,其特征在于,
    所述第一车轮和所述第二车轮均为左侧的车轮,或均为右侧的车轮。
  87. 根据权利要求80所述的一种驱动系统,其特征在于,第一交流分驱动电机和第二交流分驱动电机中的至少一个为轮毂电机。
  88. 根据权利要求69-74中任一项所述的一种驱动系统,其特征在于,
    交流电机组包括第三交流分驱动电机和第四交流分驱动电机,整流组件包括第三整流器和第四整流器;直流电机组包括第三直流电机组和第四直流电机组;第三交流分驱动电机、第三整流器和第三直流电机组顺序连接形成第一驱动线路;第四交流分驱动电机、第四整流器和第四直流电机组顺序连接形成第二驱动线路;
    第三交流分驱动电机内的多相绕组中每相绕组的首端均配置为与电能输入端连接;第三交流分驱动电机的多相绕组中每相绕组的尾端分别连接所述第三整流器的多相输入端口;
    第四交流分驱动电机内的多相绕组中每相绕组的首端均配置为与电能输入端连接;第四交流分驱动电机的多相绕组中每相绕组的尾端分别连接所述第四整流器的多相输入端口;
    第三直流电机组电气连接在所述第三整流器的直流输出端和直流输入端之间,以及,第四直流电机组电气连接在所述第四整流器的直流输出端和直流输入端之间。
  89. 根据权利要求88所述的一种驱动系统,其特征在于,
    第三交流分驱动电机通过减速器与被驱动车辆的前桥/后桥连接,以同时向被驱动车辆的两前轮或两后轮提供动力;
    第四交流分驱动电机通过减速器与被驱动车辆的后桥/前桥连接,以同时向被驱动车辆的两后轮或两前轮提供动力。
  90. 根据权利要求89所述的一种驱动系统,其特征在于,
    第三交流分驱动电机的输出轴配置为与第一车轮连接,以向第一车轮提供动力;
    第四交流分驱动电机的输出轴配置为与第二车轮连接,以向第二车轮提供动力。
  91. 根据权利要求90所述的一种驱动系统,其特征在于,第一车轮和第二车轮为不同的车轮。
  92. 根据权利要求88所述的一种驱动系统,其特征在于,
    第三交流分驱动电机的输出轴配置为向驱动被驱动车辆的左前轮提供动力;第三直流分驱动电机的输出轴配置为向驱动被驱动车辆的右后轮提供动力;第四交流分驱动电机的输出轴配置为向驱动被驱动车辆的右前轮提供动力;第四直流分驱动电机的输出轴配置为向驱动被驱动车辆的左后轮提供动力;
    或,
    第三交流分驱动电机的输出轴配置为向驱动被驱动车辆的右前轮提供动力;第三直流分驱动电机的输出轴配置为向驱动被驱动车辆的左后轮提供动力;第四交流分驱动电机的输出轴配置为向驱动被驱动车辆的左前轮提供动力;第四直流分驱动电机的输出轴配置为向驱动被驱动车辆的右后轮提供动力;
    或,
    第三交流分驱动电机的输出轴配置为向驱动被驱动车辆的左后轮提供动力;第三直流分驱动电机的输出轴配置为向驱动被驱动车辆的右前轮提供动力;第四交流分驱动电机的输出轴配置为向驱动被驱动车辆的右后轮提供动力;第四直流分驱动电机的输出轴配置为向驱动被驱动车辆的左前轮提供动力;
    或,
    第三交流分驱动电机的输出轴配置为向驱动被驱动车辆的右后轮提供动力;第三直流分驱动电机的输出轴配置为向驱动被驱动车辆的左前轮提供动力;第四交流分驱动电机的输出轴配置为向驱动被驱动车辆的左后轮提供动力;第四直流分驱动电机的输出轴配置为向驱动被驱动车辆的右前轮提供动力。
  93. 根据权利要求88所述的一种驱动系统,其特征在于,
    第三交流分驱动电机的输出轴配置为向驱动被驱动车辆的左前轮提供动力;第三直流分驱动电机的输出轴配置为向驱动被驱动车辆的左后轮提供动力;第四交流分驱动电机的输出轴配置为向驱动被驱动车辆的右前轮提供动力;第四直流分驱动电机的输出轴配置为向驱动被驱动车辆的右后轮提供动力;
    或,
    第三交流分驱动电机的输出轴配置为向驱动被驱动车辆的右前轮提供动力;第三直流分驱动电机的输出轴配置为向驱动被驱动车辆的右后轮提供动力;第四交流分驱动电机的输出轴 配置为向驱动被驱动车辆的左前轮提供动力;第四直流分驱动电机的输出轴配置为向驱动被驱动车辆的左后轮提供动力;
    或,
    第三交流分驱动电机的输出轴配置为向驱动被驱动车辆的左后轮提供动力;第三直流分驱动电机的输出轴配置为向驱动被驱动车辆的左前轮提供动力;第四交流分驱动电机的输出轴配置为向驱动被驱动车辆的右后轮提供动力;第四直流分驱动电机的输出轴配置为向驱动被驱动车辆的右前轮提供动力;
    或,
    第三交流分驱动电机的输出轴配置为向驱动被驱动车辆的右后轮提供动力;第三直流分驱动电机的输出轴配置为向驱动被驱动车辆的右前轮提供动力;第四交流分驱动电机的输出轴配置为向驱动被驱动车辆的左后轮提供动力;第四直流分驱动电机的输出轴配置为向驱动被驱动车辆的左前轮提供动力。
  94. 根据权利要求88所述的一种驱动系统,其特征在于,
    第三交流分驱动电机的输出轴配置为向驱动被驱动车辆的左前轮提供动力;第三直流分驱动电机的输出轴配置为向驱动被驱动车辆的右前轮提供动力;第四交流分驱动电机的输出轴配置为向驱动被驱动车辆的右后轮提供动力;第四直流分驱动电机的输出轴配置为向驱动被驱动车辆的左后轮提供动力;
    或,
    第三交流分驱动电机的输出轴配置为向驱动被驱动车辆的右前轮提供动力;第三直流分驱动电机的输出轴配置为向驱动被驱动车辆的左前轮提供动力;第四交流分驱动电机的输出轴配置为向驱动被驱动车辆的左后轮提供动力;第四直流分驱动电机的输出轴配置为向驱动被驱动车辆的右后轮提供动力;
    或,
    第三交流分驱动电机的输出轴配置为向驱动被驱动车辆的左后轮提供动力;第三直流分驱动电机的输出轴配置为向驱动被驱动车辆的右后轮提供动力;第四交流分驱动电机的输出轴配置为向驱动被驱动车辆的右前轮提供动力;第四直流分驱动电机的输出轴配置为向驱动被驱动车辆的左前轮提供动力;
    或,
    第三交流分驱动电机的输出轴配置为向驱动被驱动车辆的右后轮提供动力;第三直流分驱动电机的输出轴配置为向驱动被驱动车辆的左后轮提供动力;第四交流分驱动电机的输出轴配置为向驱动被驱动车辆的左前轮提供动力;第四直流分驱动电机的输出轴配置为向驱动被驱动车辆的右前轮提供动力。
  95. 根据权利要求88所述的一种驱动系统,其特征在于,第三交流分驱动电机和第四交流分驱动电机中的至少一个是轮毂电机。
  96. 根据权利要求75-79中任一项所述的一种驱动系统,其特征在于,
    所述交流分驱动电机的减速比约为1:1-12:1;所述直流分驱动电机的减速比约为1:1-8:1;
    若交流分驱动电机为轮毂电机,则交流分驱动电机的额定转速约为500-1000r/min;若交流分驱动电机为永磁电机,则交流分驱动电机的额定转速约为3000r/min-7000r/min;若直流分驱动电机为轮毂电机,则直流分驱动电机的额定转速约为500-1000r/min,若直流分驱动电机为永磁电机,则直流分驱动电机的额定转速约为1000r/min-3000r/min。
  97. 根据权利要求75-79中任一项所述的一种驱动系统,其特征在于,
    交流分驱动电机与直流分驱动电机的减速比的比值约为0.8:1~1.2:1;
    交流分驱动电机与直流分驱动电机的额定转速之比约为1:1~3:1。
  98. 根据权利要求86所述的一种驱动系统,其特征在于,
    所述交流分驱动电机的减速比约为1:1-6.4:1;所述直流分驱动电机的减速比约为1:1-7:1;
    交流分驱动电机的额定转速约为4000r/min-6500r/min;直流分驱动电机的额定转速约为2500r/min-3000r/min。
  99. 根据权利要求80-87中任一项所述的一种驱动系统,其特征在于,
    所述第一交流分驱动电机的减速比约为1:1-12:1;第二交流分驱动电机的减速比约为1:1-12:1;所述直流分驱动电机的减速比约为1:1-8:1;
    若第一交流分驱动电机为轮毂电机,则第一交流分驱动电机的额定转速约为500-1000r/min;若第二交流分驱动电机为轮毂电机,则第二交流分驱动电机的额定转速约为500-1000r/min;
    若第一交流分驱动电机为永磁电机,则第一交流分驱动电机的额定转速约为3000r/min-7000r/min;若第二交流分驱动电机为永磁电机,则第二交流分驱动电机的额定转速约为3000r/min-7000r/min;
    若直流分驱动电机为轮毂电机,则直流分驱动电机的额定转速约为500-1000r/min,若直流分驱动电机为永磁电机,则直流分驱动电机的额定转速约为1000r/min-3000r/min。
  100. 根据权利要求88-95中任一项所述的一种驱动系统,其特征在于,
    所述第三交流分驱动电机的减速比约为1:1-12:1;第四交流分驱动电机的减速比约为1:1-12:1;所述第三直流分驱动电机的减速比约为1:1-8:1;所述第四直流分驱动电机的减速比约为1:1-8:1;
    若第三交流分驱动电机为轮毂电机,则第三交流分驱动电机的额定转速约为500-1000r/min;若第四交流分驱动电机为轮毂电机,则第四交流分驱动电机的额定转速约为500-1000r/min;
    若第三交流分驱动电机为永磁电机,则第三交流分驱动电机的额定转速约为3000r/min-7000r/min;若第四交流分驱动电机为永磁电机,则第四交流分驱动电机的额定转速约为3000r/min-7000r/min;
    若第三直流分驱动电机为轮毂电机,则第三直流分驱动电机的额定转速约为500-1000r/min,若第三直流分驱动电机为永磁电机,则第三直流分驱动电机的额定转速约为1000r/min-3000r/min;
    若第四直流分驱动电机为轮毂电机,则第四直流分驱动电机的额定转速约为500-1000r/min,若第四直流分驱动电机为永磁电机,则第四直流分驱动电机的额定转速约为1000r/min-3000r/min。
  101. 根据权利要求69所述的一种驱动系统,其特征在于,所述整流器内设有多相二极管整流桥,所述多相二极管整流桥包括三个电气并联的单相二极管整流电路,所述多相绕组中的每相绕组的尾端分别电气连接单相二极管整流电路,三个单相二极管整流电路的两端分别同时连接于整流器的两个直流输出端口,所述直流分驱动电机接通两个直流输出端口后,使得三个单相二极管整流电路的两端连接导通形成回路,使得直流输出端成为多相绕组星接所需的中性点。
  102. 根据权利要求69-100中任一项所述的驱动系统,其特征在于,所述直流分驱动电机为以下两种中的任一种:
    串励电机和有刷永磁直流电机;
    和/或,
    所述交流分驱动电机为以下三种中的任一种:
    交流永磁电机、交流异步电机和交流同步电机。
  103. 一种多轮电动车,包括至少三个车轮,其特征在于,还包括如权利要求69-102中任一项所述的驱动系统,至少一个交流分驱动电机配置为向至少一个车轮直接或间接的进行驱动;至少一个直流分驱动电机配置为向至少一个车轮直接或间接的进行驱动。
  104. 一种两轮电动车,包括两个车轮,其特征在于,还包括如权利要求69-87中任一项所述的驱动系统,至少一个交流分驱动电机配置为向至少一个车轮直接或间接的进行驱动;至少一个直流分驱动电机配置为向至少一个车轮直接或间接的进行驱动。
  105. 根据权利要求104所述的两轮电动车,其特征在于,两个车轮前后设置,或左右设置。
  106. 一种驱动系统的加工方法,其特征在于,包括:
    使第一绕组中的每一相绕组的尾端均与对应的整流器的多相输入端电性连接;所述第一绕组位于交流分驱动电机中,且所述第一绕组的相数至少为多相;
    在所述整流器的直流输出端和直流输入端之间连接直流分驱动电机。
  107. 一种车辆外壳,其特征在于,包括主体骨架,所述主体骨架中设置有容置腔,所述容置腔配置为放置如权利要求69-102中任一项所述的驱动系统。
  108. 一种驱动系统,其特征在于,包括:
    交流电机组、整流组件和直流电机组;
    交流电机组包括至少一个交流分驱动电机;所述直流电机组包括至少一个直流分驱动电机;所述整流组件包括至少一个整流器;至少一个交流分驱动电机、至少一个整流器和至少一个直流分驱动电机顺序连接形成一条驱动线路;
    所述整流器包括多相输入端、直流输出端和直流输入端,所述交流分驱动电机内至少设有多相绕组,多相绕组中每相绕组的首端均配置为与电能输入端连接;目标直流分驱动电机电气连接在目标整流器的所述直流输出端和直流输入端之间;目标交流分驱动电机的多相绕组中每相绕组的尾端分别连接目标整流器的多相输入端口;目标交流分驱动电机、目标整流器和目标直流分驱动电机均属于同一条驱动线路。
  109. 根据权利要求108所述的一种驱动系统,其特征在于,目标交流分驱动电机的电机参数和目标直流分驱动电机的电机参数按照预设数值设定,以使目标直流分驱动电机的功率占总功率的百分比约为1.5%-40%;总功率是目标直流分驱动电机的功率与目标交流分驱动电机的功率之和;目标交流分驱动电机的电机参数至少包括以下的一种或多种:额定转速和减速比;目标直流分驱动电机的电机参数包括以下的一种或多种:额定转速和减速比。
  110. 根据权利要求108所述的一种驱动系统,其特征在于,车辆处于加速状态时,目标直流分驱动电机的功率占比大于车辆处于匀速状态时,目标直流分驱动电机的功率占比;功率占比是目标直流分驱动电机的功率占总功率的百分比;总功率是目标直流分驱动电机的功率与目标交流分驱动电机的功率之和;目标交流分驱动电机的电机参数至少包括以下的一种或多种:额定转速和减速比;目标直流分驱动电机的电机参数包括以下的一种或多种:额定转速和减速比。
  111. 根据权利要求108所述的一种驱动系统,其特征在于,目标交流分驱动电机的电机参数和目标直流分驱动电机的电机参数按照预设数值设定,以使在不同的负载条件下,目标直流分驱动电机的电能使用率和目标交流分驱动电机的电能使用率能自动调整;目标交流分驱动电机的电机参数至少包括以下的一种或多种,额定转速和减速比;目标直流分驱动电机的电机参数包括以下的一种或多种,额定转速和减速比;
    或,
    目标交流分驱动电机的电机参数和目标直流分驱动电机的电机参数按照预设数值设定,以使在不同的负载条件下,电能输入端所提供的电能至少部分的在目标直流分驱动电机和目标交流分驱动电机之间窜移;目标交流分驱动电机的电机参数至少包括以下的一种或多种,额定转速和减速比;目标直流分驱动电机的电机参数包括以下的一种或多种,额定转速和减速比。
  112. 根据权利要求108所述的一种驱动系统,其特征在于,目标交流分驱动电机的电机参数和目标直流分驱动电机的电机参数按照预设数值设定,以使目标直流分驱动电机的视在功率约为70w-800w;以使目标交流分驱动电机的视在功率约为3000w-4500w;电机参数包括以下的一种或多种,额定转速和减速比。
  113. 根据权利要求108所述的一种驱动系统,其特征在于,同一个驱动线路中的至少一个直流分驱动电机和至少一个交流分驱动电机的减速比/额定转速不同;
    和/或,同一个驱动线路中的至少一个直流分驱动电机的实际输出转速大于至少一个交流分驱动电机的实际输出转速;
    和/或,同一个驱动线路中的至少一个直流分驱动电机的实际输出转速的峰值大于至少一个交流分驱动电机的实际输出转速的峰值。
  114. 根据权利要求108-113中任一项所述的一种驱动系统,其特征在于,交流电机组包括1个交流分驱动电机。
  115. 根据权利要求114所述的一种驱动系统,其特征在于,
    目标交流分驱动电机通过减速器与被驱动车辆的前桥/后桥连接,以同时向被驱动车辆的两前轮或两后轮提供动力。
  116. 根据权利要求114所述的一种驱动系统,其特征在于,直流电机组包括1个直流分驱动电机;
    直流分驱动电机通过减速器与被驱动车辆的前桥/后桥连接,以同时向被驱动车辆的两前轮或两后轮提供动力。
  117. 根据权利要求114所述的一种驱动系统,其特征在于,
    目标交流分驱动电机的输出轴配置为与指定的一个车轮连接,以向指定的一个车轮提供动力。
  118. 根据权利要求114所述的一种驱动系统,其特征在于,目标交流分驱动电机为轮毂电机。
  119. 根据权利要求108-113中任一项所述的一种驱动系统,其特征在于,交流电机组包括第一交流分驱动电机和第二交流分驱动电机,整流组件包括第一整流器和第二整流器;
    第一交流分驱动电机内的多相绕组中每相绕组的首端均配置为与电能输入端连接;第一交流分驱动电机的多相绕组中每相绕组的尾端分别连接所述第一整流器的多相输入端口;
    第二交流分驱动电机内的多相绕组中每相绕组的首端均配置为与电能输入端连接;第二交流分驱动电机的多相绕组中每相绕组的尾端分别连接所述第二整流器的多相输入端口;
    直流电机组电气连接在所述第一整流器直流输出端和直流输入端之间,以及,直流电机组电气连接在所述第二整流器直流输出端和直流输入端之间。
  120. 根据权利要求119所述的一种驱动系统,其特征在于,
    第一交流分驱动电机通过减速器与被驱动车辆的前桥/后桥连接,以同时向被驱动车辆的两前轮或两后轮提供动力;
    第二交流分驱动电机通过减速器与被驱动车辆的后桥/前桥连接,以同时向被驱动车辆的两后轮或两前轮提供动力。
  121. 根据权利要求119所述的一种驱动系统,其特征在于,
    第一交流分驱动电机的输出轴配置为与第一车轮连接,以向第一车轮提供动力;
    第二交流分驱动电机的输出轴配置为与第二车轮连接,以向第二车轮提供动力。
  122. 根据权利要求121所述的一种驱动系统,其特征在于,第一车轮和第二车轮为不同的车轮。
  123. 根据权利要求121所述的一种驱动系统,其特征在于,
    所述第一车轮为左侧的一个车轮,所述第二车轮为右侧的一个车轮。
  124. 根据权利要求123所述的一种驱动系统,其特征在于,
    所述第一车轮为左前轮,所述第二车轮为右前轮;
    或,所述第一车轮为左后轮,所述第二车轮为右后轮。
  125. 根据权利要求123所述的一种驱动系统,其特征在于,
    所述第一车轮和所述第二车轮均为左侧的车轮,或均为右侧的车轮。
  126. 根据权利要求119所述的一种驱动系统,其特征在于,第一交流分驱动电机和第二交流分驱动电机中的至少一个为轮毂电机。
  127. 根据权利要求108-113中任一项所述的一种驱动系统,其特征在于,
    交流电机组包括第三交流分驱动电机和第四交流分驱动电机,整流组件包括第三整流器和第四整流器;直流电机组包括第三直流电机组和第四直流电机组;第三交流分驱动电机、第三整流器和第三直流电机组顺序连接形成第一驱动线路;第四交流分驱动电机、第四整流器和第四直流电机组顺序连接形成第二驱动线路;
    第三交流分驱动电机内的多相绕组中每相绕组的首端均配置为与电能输入端连接;第三交流分驱动电机的多相绕组中每相绕组的尾端分别连接所述第三整流器的多相输入端口;
    第四交流分驱动电机内的多相绕组中每相绕组的首端均配置为与电能输入端连接;第四交流分驱动电机的多相绕组中每相绕组的尾端分别连接所述第四整流器的多相输入端口;
    第三直流电机组电气连接在所述第三整流器的直流输出端和直流输入端之间,以及,第四直流电机组电气连接在所述第四整流器的直流输出端和直流输入端之间。
  128. 根据权利要求127所述的一种驱动系统,其特征在于,
    第三交流分驱动电机通过减速器与被驱动车辆的前桥/后桥连接,以同时向被驱动车辆的两前轮或两后轮提供动力;
    第四交流分驱动电机通过减速器与被驱动车辆的后桥/前桥连接,以同时向被驱动车辆的两后轮或两前轮提供动力。
  129. 根据权利要求127所述的一种驱动系统,其特征在于,
    第三交流分驱动电机的输出轴配置为与第一车轮连接,以向第一车轮提供动力;
    第四交流分驱动电机的输出轴配置为与第二车轮连接,以向第二车轮提供动力。
  130. 根据权利要求129所述的一种驱动系统,其特征在于,第一车轮和第二车轮为不同的车轮。
  131. 根据权利要求127所述的一种驱动系统,其特征在于,
    第三交流分驱动电机的输出轴配置为向驱动被驱动车辆的左前轮提供动力;第三直流分驱动电机的输出轴配置为向驱动被驱动车辆的右后轮提供动力;第四交流分驱动电机的输出轴 配置为向驱动被驱动车辆的右前轮提供动力;第四直流分驱动电机的输出轴配置为向驱动被驱动车辆的左后轮提供动力;
    或,
    第三交流分驱动电机的输出轴配置为向驱动被驱动车辆的右前轮提供动力;第三直流分驱动电机的输出轴配置为向驱动被驱动车辆的左后轮提供动力;第四交流分驱动电机的输出轴配置为向驱动被驱动车辆的左前轮提供动力;第四直流分驱动电机的输出轴配置为向驱动被驱动车辆的右后轮提供动力;
    或,
    第三交流分驱动电机的输出轴配置为向驱动被驱动车辆的左后轮提供动力;第三直流分驱动电机的输出轴配置为向驱动被驱动车辆的右前轮提供动力;第四交流分驱动电机的输出轴配置为向驱动被驱动车辆的右后轮提供动力;第四直流分驱动电机的输出轴配置为向驱动被驱动车辆的左前轮提供动力;
    或,
    第三交流分驱动电机的输出轴配置为向驱动被驱动车辆的右后轮提供动力;第三直流分驱动电机的输出轴配置为向驱动被驱动车辆的左前轮提供动力;第四交流分驱动电机的输出轴配置为向驱动被驱动车辆的左后轮提供动力;第四直流分驱动电机的输出轴配置为向驱动被驱动车辆的右前轮提供动力。
  132. 根据权利要求127所述的一种驱动系统,其特征在于,
    第三交流分驱动电机的输出轴配置为向驱动被驱动车辆的左前轮提供动力;第三直流分驱动电机的输出轴配置为向驱动被驱动车辆的左后轮提供动力;第四交流分驱动电机的输出轴配置为向驱动被驱动车辆的右前轮提供动力;第四直流分驱动电机的输出轴配置为向驱动被驱动车辆的右后轮提供动力;
    或,
    第三交流分驱动电机的输出轴配置为向驱动被驱动车辆的右前轮提供动力;第三直流分驱动电机的输出轴配置为向驱动被驱动车辆的右后轮提供动力;第四交流分驱动电机的输出轴配置为向驱动被驱动车辆的左前轮提供动力;第四直流分驱动电机的输出轴配置为向驱动被驱动车辆的左后轮提供动力;
    或,
    第三交流分驱动电机的输出轴配置为向驱动被驱动车辆的左后轮提供动力;第三直流分驱动电机的输出轴配置为向驱动被驱动车辆的左前轮提供动力;第四交流分驱动电机的输出轴配置为向驱动被驱动车辆的右后轮提供动力;第四直流分驱动电机的输出轴配置为向驱动被驱动车辆的右前轮提供动力;
    或,
    第三交流分驱动电机的输出轴配置为向驱动被驱动车辆的右后轮提供动力;第三直流分驱动电机的输出轴配置为向驱动被驱动车辆的右前轮提供动力;第四交流分驱动电机的输出轴 配置为向驱动被驱动车辆的左后轮提供动力;第四直流分驱动电机的输出轴配置为向驱动被驱动车辆的左前轮提供动力。
  133. 根据权利要求127所述的一种驱动系统,其特征在于,
    第三交流分驱动电机的输出轴配置为向驱动被驱动车辆的左前轮提供动力;第三直流分驱动电机的输出轴配置为向驱动被驱动车辆的右前轮提供动力;第四交流分驱动电机的输出轴配置为向驱动被驱动车辆的右后轮提供动力;第四直流分驱动电机的输出轴配置为向驱动被驱动车辆的左后轮提供动力;
    或,
    第三交流分驱动电机的输出轴配置为向驱动被驱动车辆的右前轮提供动力;第三直流分驱动电机的输出轴配置为向驱动被驱动车辆的左前轮提供动力;第四交流分驱动电机的输出轴配置为向驱动被驱动车辆的左后轮提供动力;第四直流分驱动电机的输出轴配置为向驱动被驱动车辆的右后轮提供动力;
    或,
    第三交流分驱动电机的输出轴配置为向驱动被驱动车辆的左后轮提供动力;第三直流分驱动电机的输出轴配置为向驱动被驱动车辆的右后轮提供动力;第四交流分驱动电机的输出轴配置为向驱动被驱动车辆的右前轮提供动力;第四直流分驱动电机的输出轴配置为向驱动被驱动车辆的左前轮提供动力;
    或,
    第三交流分驱动电机的输出轴配置为向驱动被驱动车辆的右后轮提供动力;第三直流分驱动电机的输出轴配置为向驱动被驱动车辆的左后轮提供动力;第四交流分驱动电机的输出轴配置为向驱动被驱动车辆的左前轮提供动力;第四直流分驱动电机的输出轴配置为向驱动被驱动车辆的右前轮提供动力。
  134. 根据权利要求127所述的一种驱动系统,其特征在于,第三交流分驱动电机和第四交流分驱动电机中的至少一个是轮毂电机。
  135. 根据权利要求114-126中任一项所述的一种驱动系统,其特征在于,
    所述交流分驱动电机的减速比约为1:1-12:1;所述直流分驱动电机的减速比约为1:1-8:1;
    若交流分驱动电机为轮毂电机,则交流分驱动电机的额定转速约为500-1000r/min;若交流分驱动电机为永磁电机,则交流分驱动电机的额定转速约为3000r/min-7000r/min;若直流分驱动电机为轮毂电机,则直流分驱动电机的额定转速约为500-1000r/min,若直流分驱动电机为永磁电机,则直流分驱动电机的额定转速约为1000r/min-3000r/min。
  136. 根据权利要求114-126任一项所述的一种驱动系统,其特征在于,
    交流分驱动电机与直流分驱动电机的减速比的比值约为0.8:1~1.2:1;
    交流分驱动电机与直流分驱动电机的额定转速之比约为1:1~3:1。
  137. 根据权利要求135所述的一种驱动系统,其特征在于,
    所述交流分驱动电机的减速比约为1:1-6.4:1;所述直流分驱动电机的减速比约为1:1-7:1;
    交流分驱动电机的额定转速约为4000r/min-6500r/min;直流分驱动电机的额定转速约为2500r/min-3000r/min。
  138. 根据权利要求119-126中任一项所述的一种驱动系统,其特征在于,
    所述第一交流分驱动电机的减速比约为1:1-12:1;第二交流分驱动电机的减速比约为1:1-12:1;所述直流分驱动电机的减速比约为1:1-8:1;
    若第一交流分驱动电机为轮毂电机,则第一交流分驱动电机的额定转速约为500-1000r/min;若第二交流分驱动电机为轮毂电机,则第二交流分驱动电机的额定转速约为500-1000r/min;
    若第一交流分驱动电机为永磁电机,则第一交流分驱动电机的额定转速约为3000r/min-7000r/min;若第二交流分驱动电机为永磁电机,则第二交流分驱动电机的额定转速约为3000r/min-7000r/min;
    若直流分驱动电机为轮毂电机,则直流分驱动电机的额定转速约为500-1000r/min,若直流分驱动电机为永磁电机,则直流分驱动电机的额定转速约为1000r/min-3000r/min。
  139. 根据权利要求127-134中任一项所述的一种驱动系统,其特征在于,
    所述第三交流分驱动电机的减速比约为1:1-12:1;第四交流分驱动电机的减速比约为1:1-12:1;所述第三直流分驱动电机的减速比约为1:1-8:1;所述第四直流分驱动电机的减速比约为1:1-8:1;
    若第三交流分驱动电机为轮毂电机,则第三交流分驱动电机的额定转速约为500-1000r/min;若第四交流分驱动电机为轮毂电机,则第四交流分驱动电机的额定转速约为500-1000r/min;
    若第三交流分驱动电机为永磁电机,则第三交流分驱动电机的额定转速约为3000r/min-7000r/min;若第四交流分驱动电机为永磁电机,则第四交流分驱动电机的额定转速约为3000r/min-7000r/min;
    若第三直流分驱动电机为轮毂电机,则第三直流分驱动电机的额定转速约为500-1000r/min,若第三直流分驱动电机为永磁电机,则第三直流分驱动电机的额定转速约为1000r/min-3000r/min;
    若第四直流分驱动电机为轮毂电机,则第四直流分驱动电机的额定转速约为500-1000r/min,若第四直流分驱动电机为永磁电机,则第四直流分驱动电机的额定转速约为1000r/min-3000r/min。
  140. 根据权利要求108所述的一种驱动系统,其特征在于,所述整流器内设有多相二极管整流桥,所述多相二极管整流桥包括三个电气并联的单相二极管整流电路,所述多相绕组中的每相绕组的尾端分别电气连接单相二极管整流电路,三个单相二极管整流电路的两端分别同时连接于整流器的两个直流输出端口,所述直流分驱动电机接通两个直流输出端口后,使得三个单相二极管整流电路的两端连接导通形成回路,使得直流输出端成为多相绕组星接所需的中性点。
  141. 根据权利要求108-139中任一项所述的驱动系统,其特征在于,所述直流分驱动电机为以下两种中的任一种:
    串励电机、有刷永磁直流电机;
    和/或,
    所述交流分驱动电机为以下两种中的任一种:
    交流永磁电机、交流异步电机、交流同步电机。
  142. 一种多轮电动车,包括至少三个车轮,其特征在于,还包括如权利要求108-141所述的驱动系统,至少一个交流分驱动电机配置为向至少一个车轮直接或间接的进行驱动;至少一个直流分驱动电机配置为向至少一个车轮直接或间接的进行驱动。
  143. 一种两轮电动车,包括两个车轮,其特征在于,还包括如权利要求1-126所述的驱动系统,其中,至少一个交流分驱动电机配置为向至少一个车轮直接或间接的进行驱动;至少一个直流分驱动电机配置为向至少一个车轮直接或间接的进行驱动。
  144. 根据权利要求143所述的两轮电动车,其特征在于,两个车轮前后设置,或左右设置。
  145. 一种驱动系统的加工方法,其特征在于,包括:使第一绕组中的每一相绕组的尾端均与对应的整流器的多相输入端电性连接;所述第一绕组位于交流分驱动电机中,且所述第一绕组的相数至少为多相;在所述整流器的直流输出端和直流输入端之间连接直流分驱动电机。
  146. 一种车辆外壳,其特征在于,包括主体骨架,所述主体骨架中设置有容置腔,所述容置腔配置为放置如权利要求108-141中任一项所述的驱动系统。
PCT/CN2019/072807 2018-01-23 2019-01-23 用于电动汽车的电动机驱动系统、加工方法、电动车和车辆外壳 WO2019144879A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201980009633.XA CN111629925A (zh) 2018-01-23 2019-01-23 用于电动汽车的电动机驱动系统、加工方法、电动车和车辆外壳

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810065817.5 2018-01-23
CN201810065817 2018-01-23

Publications (1)

Publication Number Publication Date
WO2019144879A1 true WO2019144879A1 (zh) 2019-08-01

Family

ID=67394544

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/072807 WO2019144879A1 (zh) 2018-01-23 2019-01-23 用于电动汽车的电动机驱动系统、加工方法、电动车和车辆外壳

Country Status (2)

Country Link
CN (1) CN111629925A (zh)
WO (1) WO2019144879A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117526600B (zh) * 2024-01-03 2024-03-08 上海时的科技有限公司 一种转子结构及无刷电机

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2233880Y (zh) * 1995-04-21 1996-08-28 陈国安 电动摩托车
CN1621265A (zh) * 2003-11-27 2005-06-01 日产自动车株式会社 电动机驱动的四轮驱动车辆的控制装置及相关控制方法
CN1640713A (zh) * 2003-11-27 2005-07-20 日产自动车株式会社 用于电动机驱动的4轮驱动车辆的控制设备及其相关方法
CN201056167Y (zh) * 2007-06-19 2008-05-07 李菊生 组合动力电动车
US20080179123A1 (en) * 2007-01-31 2008-07-31 Steger Andrew A AC/DC system for powering a vehicle
CN101486374A (zh) * 2009-02-25 2009-07-22 无锡亿威车辆科技有限公司 具有混合动力驱动系统的电动机动车
CN103684196A (zh) * 2013-11-19 2014-03-26 南京航空航天大学 一种可切换绕组的永磁同步电机驱动系统

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2082487A5 (zh) * 1970-03-17 1971-12-10 Alsthom
JP3370191B2 (ja) * 1993-10-22 2003-01-27 ゼネラル・エレクトリック・カンパニイ 車輪付き車輛用の電気推進システムに対する制御システム、及び車輪付き車輛用の電気推進システム
JP4082336B2 (ja) * 2003-11-14 2008-04-30 日産自動車株式会社 モータ駆動4wd車両の制御装置及び制御方法
CN2863536Y (zh) * 2006-02-14 2007-01-31 刘宗锋 全速型电动汽车
JP5406429B2 (ja) * 2007-01-29 2014-02-05 日産自動車株式会社 駆動制御装置
CN101958674B (zh) * 2010-09-29 2014-05-07 南京航空航天大学 绕组开路型永磁电机车载起动发电系统及控制方法
CN103158568A (zh) * 2013-03-14 2013-06-19 吉林大学 增程式电动汽车动力系统
CN104104202B (zh) * 2014-07-24 2017-11-14 北京索德电气工业有限公司 无刷交流复合励磁无刷直流电机
CN105203956A (zh) * 2015-10-28 2015-12-30 中冶南方工程技术有限公司 一种交流电机控制性能自动化测试系统及测试方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2233880Y (zh) * 1995-04-21 1996-08-28 陈国安 电动摩托车
CN1621265A (zh) * 2003-11-27 2005-06-01 日产自动车株式会社 电动机驱动的四轮驱动车辆的控制装置及相关控制方法
CN1640713A (zh) * 2003-11-27 2005-07-20 日产自动车株式会社 用于电动机驱动的4轮驱动车辆的控制设备及其相关方法
US20080179123A1 (en) * 2007-01-31 2008-07-31 Steger Andrew A AC/DC system for powering a vehicle
CN201056167Y (zh) * 2007-06-19 2008-05-07 李菊生 组合动力电动车
CN101486374A (zh) * 2009-02-25 2009-07-22 无锡亿威车辆科技有限公司 具有混合动力驱动系统的电动机动车
CN103684196A (zh) * 2013-11-19 2014-03-26 南京航空航天大学 一种可切换绕组的永磁同步电机驱动系统

Also Published As

Publication number Publication date
CN111629925A (zh) 2020-09-04

Similar Documents

Publication Publication Date Title
US8602144B2 (en) Direct electrical connection for multi-motor hybrid drive system
CN102815198B (zh) 基于无级变速传动的混合动力汽车驱动系统
CN102653240B (zh) 电动汽车混合电池驱动系统
CN111873830B (zh) 一种用于电动汽车的分布式双电机驱动与车载充电集成系统及其充电控制方法
CN105774512B (zh) 一种发动机前置的增程式电动乘用车
CN105024509A (zh) 四轮驱动电动汽车的双转子轮毂电机及其动力传递方法
CN101293478A (zh) 插电式集成起动发电机混合动力轿车驱动系统
CN105235495B (zh) 适应多工况的二档多模混合动力系统及其控制方法
CN102303545A (zh) 电动汽车双轮双馈驱动系统及驱动方法
CN103978886B (zh) 输入合成型混合动力系统
CN102837592B (zh) 混合动力汽车用电子无级调速系统
US8179067B2 (en) Electric energy exchange system, in particular for a hybrid vehicle
RU126996U1 (ru) Бесколлекторный электродвигатель постоянного тока
CN201329817Y (zh) 一种电动汽车的驱动控制系统
WO2019144879A1 (zh) 用于电动汽车的电动机驱动系统、加工方法、电动车和车辆外壳
CN202152005U (zh) 电动汽车双轮双馈驱动系统
Wang et al. Experimental characterization of a supercapacitor-based electrical torque-boost system for downsized ICE vehicles
CN202169868U (zh) 摩托车组合动力系统
CN103978889B (zh) 输出分配型混合动力系统
Denis et al. Range prediction for a three-wheel plug-in hybrid electric vehicle
CN1075988C (zh) 具有自动弱磁调速功能的电动汽车牵引电机控制器
CN205395747U (zh) 一种具有前置涡轴发动机的增程式电动乘用车
RU121405U1 (ru) Бесколлекторный электродвигатель
CN201998814U (zh) 电动汽车备用能源系统
Zhang et al. Investigation and development of a new brushless DC generator system for extended-range electric vehicle application

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19743681

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19743681

Country of ref document: EP

Kind code of ref document: A1