WO2019144841A1 - 一种功率控制方法及装置 - Google Patents

一种功率控制方法及装置 Download PDF

Info

Publication number
WO2019144841A1
WO2019144841A1 PCT/CN2019/072239 CN2019072239W WO2019144841A1 WO 2019144841 A1 WO2019144841 A1 WO 2019144841A1 CN 2019072239 W CN2019072239 W CN 2019072239W WO 2019144841 A1 WO2019144841 A1 WO 2019144841A1
Authority
WO
WIPO (PCT)
Prior art keywords
node
link
power
information
downlink
Prior art date
Application number
PCT/CN2019/072239
Other languages
English (en)
French (fr)
Inventor
陈磊
刘凤威
邱晶
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP19743843.5A priority Critical patent/EP3720200A4/en
Publication of WO2019144841A1 publication Critical patent/WO2019144841A1/zh
Priority to US16/918,775 priority patent/US11457413B2/en
Priority to US17/942,957 priority patent/US11871354B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/38TPC being performed in particular situations
    • H04W52/46TPC being performed in particular situations in multi hop networks, e.g. wireless relay networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0426Power distribution
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J11/00Orthogonal multiplex systems, e.g. using WALSH codes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J11/00Orthogonal multiplex systems, e.g. using WALSH codes
    • H04J11/0023Interference mitigation or co-ordination
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0002Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission rate
    • H04L1/0003Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission rate by switching between different modulation schemes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/06TPC algorithms
    • H04W52/14Separate analysis of uplink or downlink
    • H04W52/143Downlink power control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • H04W52/24TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters
    • H04W52/242TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters taking into account path loss
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/30TPC using constraints in the total amount of available transmission power
    • H04W52/32TPC of broadcast or control channels
    • H04W52/325Power control of control or pilot channels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/30TPC using constraints in the total amount of available transmission power
    • H04W52/36TPC using constraints in the total amount of available transmission power with a discrete range or set of values, e.g. step size, ramping or offsets
    • H04W52/367Power values between minimum and maximum limits, e.g. dynamic range

Definitions

  • the present application relates to the field of wireless communication technologies, and in particular, to a power control method and apparatus.
  • the relay technology (Relaying) is introduced in the 4G Long Term Evolution (LTE) system, and the relay node (Relay Node, RN) is deployed in the network to forward data between the base station and the terminal device to achieve enhanced network capacity.
  • the relay node (Relay Node, RN) is deployed in the network to forward data between the base station and the terminal device to achieve enhanced network capacity.
  • LTE Long Term Evolution
  • RN relay node
  • FIG. 2 shows a schematic diagram of signal transmission in a possible IAB, signal transmission between the donor base station to the Relaying Transmission and Reception Point (rTRP) 1, and signal transmission between rTRP1 and rTRP2. , rTRP1 to the signal transmission between the terminal devices, can flexibly share resources.
  • rTRP Relaying Transmission and Reception Point
  • the rTRP (or RN) simultaneously receives the downlink signal of the backhaul link, the uplink signal of the access link, and/or the uplink signal of the downlink of the next hop, if this If the power difference between the three signals is too large, the interference between the three signals may be severe, which may affect the rTRP (or RN) to correctly demodulate the three signals.
  • the next hop rTRP of rTRP1 is rTRP2.
  • the received power of the backhaul link downlink signal received by rTRP1 is P1.
  • the received power of the rTRP1 receiving the uplink signal of the access link is P3, and the rTRP1 receives the uplink signal of the back link of the next hop (that is, the uplink signal sent by rTRP2 to rTRP1)
  • the received power is P2.
  • the transmission of the uplink signal defines a power control mechanism, and the mechanism can continue to be applied to the uplink signal transmission of the access link and the uplink transmission of the next hop as shown in FIG. .
  • the mechanism can continue to be applied to the uplink signal transmission of the access link and the uplink transmission of the next hop as shown in FIG. .
  • the embodiment of the present application provides a power control method and apparatus for providing power control for downlink signal transmission of a backhaul link, and reducing interference between respective signals received by the relay device.
  • an embodiment of the present application provides a power control method, where the method includes:
  • the first node receives the first information sent by the second node, where the first information is used to determine the first sending power, and the first node determines the first sending power according to the first information.
  • the first transmission power is power used by the first node to send downlink information to the second node by using the first link; the first link is the first node and the second A link between nodes, the first node being a superior device of the second node.
  • the first node determines the first sending power according to the first information sent by the second node, and the first node uses the first sending power when transmitting the downlink information to the second node by using the first link, which can alleviate the second node. Interference between the received signals.
  • the first information includes a reference received power or a power adjustment.
  • the first node determines the first transmit power according to the reference received power and the path loss measurement value corresponding to the first link.
  • the reference received power is determined by the second node based on at least one of a preset bandwidth, a preset MIMO configuration parameter, and a preset MCS value.
  • the second node updates the preset MIMO configuration parameter
  • the second node updates the reference received power according to the updated preset MIMO configuration parameter.
  • the reference received power may also be a normalized reference received power. Therefore, when the downlink bandwidth, the MCS, and the preset MIMO configuration parameters of the actual backhaul link are different from the parameters used by the second node to determine the reference received power, the actual reference received power may be determined by scaling the reference received power.
  • the first node determines the adjusted first transmission power according to the first used power and the power adjustment amount that are used last time.
  • the power adjustment amount is determined by the second node according to the difference between the received power of the preset signal and the reference received power, and the preset signal is sent by the first node to the second node by using the first link.
  • the reference signal may be a CSI-RS or a DMRS for CSI measurement, where the CSI-RS for CSI measurement refers to a Precoding Matrix Indicator (PMI), a channel quality indicator (Channel Quality).
  • PMI Precoding Matrix Indicator
  • RI Rank Indicator
  • CSI-RS for performing radio resource management and the like are two types of CSI-RSs with different purposes.
  • the first information includes: a power control parameter P 0 , a path loss compensation coefficient ⁇ corresponding to the first link, and a power adjustment amount; wherein the power adjustment amount is used to update power The cumulative value f of the adjustment amount.
  • the first node determines the first transmit power according to the first information, including:
  • the first node determines the first transmit power P BH according to the following formula:
  • P CMAX is a downlink transmission maximum power corresponding to the first link
  • M BH is a downlink bandwidth corresponding to the first link
  • ⁇ TF is a correction amount of a preset modulation and coding mode
  • PL is the first The path loss measurement value corresponding to a link.
  • the power control mode provided by the above formula is a closed loop power control mode.
  • the first information includes: a power control parameter P 0 , and a path loss compensation coefficient ⁇ corresponding to the first link.
  • the first node determines the first transmit power according to the first information, including:
  • the first node determines the first transmit power P BH according to the following formula:
  • P CMAX is a downlink transmission maximum power corresponding to the first link
  • M BH is a downlink bandwidth corresponding to the first link
  • ⁇ TF is a correction amount of a preset modulation and coding mode
  • PL is the first The path loss measurement value corresponding to a link.
  • the power control mode provided by the above formula is an open loop power control mode.
  • the first information further includes: a path loss measurement value PL corresponding to the first link.
  • the path loss measurement value corresponding to the first link is determined by the second node according to the transmit power of the first signal sent by the first node and the received power of the first signal measured by the second node.
  • the first signal is any one of the following signals: DMRS, CSI-RS or synchronization signal.
  • the path loss measurement value corresponding to the first link is determined by the first node according to the transmit power of the second signal sent by the second node and the received power of the second signal measured by the first node.
  • the second signal is an SRS, a DMRS, a CSI-RS, or a synchronization signal.
  • the first transmit power is the same as or different from the power used by the first node to send the reference signal or the control information to the second node.
  • the reference signal here may be at least one of the following: DMRS, TRS, PTRS, CSI-RS for CSI acquisition.
  • the preset threshold is determined according to the number of ports of the reference signal and the number of transport streams corresponding to the downlink information.
  • the CSI-RS for beam measurement, the CSI-RS for mobility management, the transmit power of CSI-RS for link quality monitoring, and the channel carrying downlink information are not associated.
  • the transmission power of the signal of the relationship does not adopt the first transmission power.
  • the first node sends a time resource unit used by the downlink information to the second node by using the first link
  • the third node sends the second node to the second node by using the second link.
  • the time resource units used for transmitting the uplink information are identical or partially overlapped; wherein the second link is a link between the second node and the third node; and the third node is a subordinate of the second node Node or terminal device.
  • the method provided by the embodiment of the present application can be applied to the scenario where the second node simultaneously receives the downlink information sent by the first node and the uplink information sent by the third node.
  • the power control for the downlink transmission of the backhaul link in the embodiment of the present application is to avoid mutual interference between the uplink of the access link or the uplink of the downlink of the next hop.
  • not all time resource units are applied to the downlink transmission of the backhaul link and the uplink transmission of the uplink or the next hop of the access link simultaneously, and it is not necessary for these time resource units that are not multiplexed. Power control is applied to the downlink transmission of the backhaul link, or other power control methods may be adopted.
  • an embodiment of the present application provides a power control method, where the method includes:
  • the second node determines first information, and the second node sends the first information to the first node.
  • the first information is used to determine a first transmit power, where the first transmit power is power used by the first node to send downlink information to the second node by using the first link;
  • the link is a link between the first node and the second node, and the first node is a superior device of the second node.
  • the first node sends the first information to the first node, so that the first node determines the first sending power, and the first node uses the first sending power when sending the downlink information to the second node by using the first link.
  • the interference between the respective signals received by the second node can be mitigated.
  • the first information is a reference received power or a power adjustment amount.
  • the second node can determine the reference received power or power adjustment amount and notify the first node.
  • the first information includes: a power control parameter P 0 , a path loss compensation coefficient ⁇ corresponding to the first link, and a power adjustment amount; wherein the power adjustment amount is used to update power The cumulative value f of the adjustment amount.
  • the second node can enable the first node to implement closed loop power control of the first transmit power by transmitting parameter information required for closed loop power control to the first node.
  • the first information includes: a power control parameter P 0 , and a path loss compensation coefficient ⁇ corresponding to the first link.
  • the second node may send the parameter information required for the open loop power control to the first node, so that the first node implements open loop power control on the first transmit power.
  • the first information further includes: a path loss measurement value PL corresponding to the first link.
  • the second node may determine that the path loss measurement value PL corresponding to the first link is notified to the first node.
  • the method further includes: the second node updating the preset MIMO configuration parameter; and the second node updating the reference received power according to the updated preset MIMO configuration parameter.
  • the second node can implement the reference receiving power in time to meet the requirement that the first node accurately determines the first sending power.
  • the first node sends a time resource unit used by the downlink information to the second node by using the first link
  • the third node sends the second node to the second node by using the second link.
  • the time resource units used for transmitting the uplink information are identical or partially overlapped; wherein the second link is a link between the second node and the third node; and the third node is a subordinate of the second node Node or terminal device.
  • the method provided by the embodiment of the present application can be applied to the scenario where the second node simultaneously receives the downlink information sent by the first node and the uplink information sent by the third node.
  • the present application provides a network node, the network node including a transceiver, a processor, and a memory: the memory is used to store a computer program; the processor invokes a computer program stored in the memory, by The transceiver performs the method of any of the first aspect or the first aspect of the design, or the method of performing the design of any of the second aspect or the second aspect by the transceiver.
  • the present application provides a power control apparatus that performs the method of any of the possible aspects of the first aspect or the first aspect.
  • the apparatus comprises means for performing the method of any of the possible aspects of the first aspect or the first aspect.
  • the present application provides a power control apparatus that performs the method of any one of the possible aspects of the second aspect or the second aspect.
  • the apparatus comprises means for performing the method of any of the possible aspects of the second aspect or the second aspect.
  • the present application also provides a computer readable storage medium storing a computer program that, when executed on a computer, causes the computer to perform the methods described in the above aspects.
  • the present application also provides a computer program product comprising a program, which when executed on a computer, causes the computer to perform the method described in the above aspects.
  • FIG. 1 is a schematic diagram of a network topology of an LTE relay network according to an embodiment of the present application
  • FIG. 2 is a schematic diagram of a topology of an NR IAB network in an embodiment of the present application
  • FIG. 3 is a schematic diagram of the rTRP1 receiving the downlink signal of the backhaul link, the uplink signal of the access link, and the uplink signal of the backhaul link of the next hop in the embodiment of the present application;
  • FIG. 4 is a flowchart of an overview of a power control method in an embodiment of the present application.
  • FIG. 5 is a schematic structural diagram of a power control apparatus according to an embodiment of the present application.
  • FIG. 6 is a second schematic structural diagram of a power control device according to an embodiment of the present application.
  • FIG. 7 is a schematic structural diagram of a network node in an embodiment of the present application.
  • the embodiments of the present application are applicable to a cellular system having a relay device, including a scenario supporting single-hop and multi-hop relay, where the backhaul link and the access link use the same spectrum resource.
  • one relay device may be connected to a donor base station (eg, DgNB or DeNB) or may be connected to another relay device.
  • a donor base station eg, DgNB or DeNB
  • the relay device in the control role or the number of hops between the donor base station is less
  • the relay device that controls the role or has a large number of hops with the donor base station
  • the backhaul link is a link between the donor base station or the upper relay device to the lower relay device.
  • the access link is a link between the donor base station or the relay device to the terminal device.
  • the donor base station is an eNB or a gNB that provides a backhaul service for the lower-level node, and may also be referred to as a source base station or a donor base station.
  • the donor base station is directly connected to the core network, and the signal is not required to be relayed by other access network devices in a wireless relay manner.
  • the donor base station herein may be an evolved base station (eNodeB), a base station in a 5G mobile communication system, a next generation Node B (gNB), or a base station in a future mobile communication system.
  • eNodeB evolved base station
  • gNB next generation Node B
  • the relay device may be an RN in a 4G LTE system, an rTRP, an RN, an IAB node in a 5G NR system, or a relay device in a future mobile communication system.
  • the terminal equipment (Terminal equipment) involved in the embodiments of the present application may also be referred to as a terminal, a user equipment (UE), a mobile station (MS), a mobile terminal (MT), and the like.
  • the terminal device can be a mobile phone, a tablet, a computer with wireless transceiver function, a virtual reality (VR) terminal device, an augmented reality (AR) terminal device, and an industrial control (industrial control).
  • Wireless terminal wireless terminal in self-driving, wireless terminal in remote medical surgery, wireless terminal in smart grid, transportation safety A wireless terminal, a wireless terminal in a smart city, a wireless terminal in a smart home, and the like.
  • DgNB is a superior node of rTRP1
  • rTRP1 is a superior node of rTRP2.
  • rTRP2 is connected to DgNB by two hops.
  • the signal transmission between the first node and the terminal device involves at least three nodes: a first node, a second node, and a terminal device.
  • the first node is a previous hop device, a superior node, a parent node, a parent node, a serving base station, or an upstream node of the second node.
  • the second node is a next hop device, a lower node, a child node, or a downstream node of the first node.
  • the second node is a previous hop device, a superior node, a parent node, a parent node, a serving base station, or an upstream node of the third node.
  • the third node is a next hop device, a lower node, a child node, a terminal, or a downstream node of the second node.
  • the first node may be a donor base station or a relay device
  • the second node may be a relay device
  • the third node may be a relay device or a terminal device.
  • the first node is the donor base station
  • the second node is the next hop relay device of the first node
  • the third node is the terminal device accessing the second node.
  • the first node is a relay device
  • the second node is a next hop relay device of the first node
  • the third node is a terminal device that accesses the second node.
  • the first link is a link between the first node and the second node, and the first node is a superior device of the second node.
  • the second link is a link between the second node and the third node, and the third node is a lower-level device of the second node, or a terminal device.
  • the purpose of performing power control on the downlink transmission of the backhaul link in the embodiment of the present application is to avoid mutual interference between the uplink of the access link or the uplink of the next hop back link of the simultaneous transmission, but Not all time resource units are applied to the backhaul link downlink transmission and the access link uplink or the next hop backhaul link uplink transmission simultaneously, for example, when there is only a backhaul link in a certain time slot.
  • the downlink transmission of the backhaul link does not need to consider uplinking to the access link.
  • the first node and the second node may first appoint a time resource unit that needs to adopt the power control method provided by the embodiment of the present application, and then the first node determines, by using the power control method provided by the embodiment of the present application, on the time resource unit.
  • the time resource unit may be a time slot, a subframe, a mini-slot, etc., which is not limited in this application.
  • the time resource unit that is required by the first node and the second node to use the power control method provided by the embodiment of the present application is used by the first node to send downlink information to the second node by using the first link.
  • a time resource unit which is the same time resource unit that the third node sends the uplink information to the second node by using the second link; or the time resource unit sends the first node to the second node by using the first link.
  • the time resource unit used by the downlink information and the time resource unit partially overlapped with the time resource unit used by the third node to send the uplink information to the second node by using the second link.
  • power control of downlink signals is also referred to as power allocation.
  • the downlink power control and the downlink power allocation refer to the same meaning.
  • the DgNB does not have enough information for power control of the downlink transmission of the backhaul link, so it is difficult to accurately determine the transmission power of the downlink signal of the backhaul link to ensure the power between P1, P2, and P3.
  • the difference is not much difference, and the interference between the signals received by rTRP1 is mitigated.
  • an embodiment of the present application provides a power control method for determining a transmit power of a downlink signal of a backhaul link to mitigate interference between respective signals received by the relay device.
  • the method includes:
  • Step 400 The second node determines the first information.
  • the first information is used to determine the first sending power, and the first sending power is the power used by the first node to send downlink information to the second node by using the first link.
  • the first transmit power may be the power used by the DgNB to send downlink information to the rTRP1, or may be the power used when rTRP1 sends downlink information to the rTRP2.
  • downlink information mentioned in the embodiment of the present application may be downlink data.
  • Step 410 The second node sends the first information to the first node.
  • Step 420 The first node receives the first information, and the first node determines the first sending power according to the first information.
  • the determining, by the first node, the first sending power according to the first information may be any one of the following four methods:
  • the first information includes a reference received power.
  • the first node determines the first transmit power according to the reference received power and the path loss measurement value corresponding to the first link.
  • the reference received power is based on the preset bandwidth, the preset multiple input multiple output (MIMO) configuration parameter, and the preset modulation and coding scheme (MCS) value of the second node. At least one parameter is determined.
  • MIMO multiple input multiple output
  • MCS modulation and coding scheme
  • the preset MIMO configuration parameter may include, but is not limited to, at least one of the following parameters: a number of transport streams, a number of transmit antenna ports, a number of receive antenna ports, a maximum supported transport stream, and a maximum supported transmit antenna port number.
  • the maximum supported number of transport streams and the maximum number of supported transmit antenna ports herein are not based on the maximum number of physical antennas (for example, the number of physical antennas is 8, the maximum supported number of transport streams is impossible). More than 8), but determined based on the number of receiving antennas allocated by the second node for the backhaul link, and this allocation is variable. When the number of antennas allocated by the second node to the backhaul link changes at a certain moment, the maximum number of supported transport streams changes. Therefore, the maximum supported number of transport streams and the maximum number of supported transmit antenna ports here are not absolute maximums, but are the maximum values that are valid at some point.
  • the reference received power may also be a normalized reference received power, wherein the normalized reference received work may be a reference received power for each RB or a reference for each resource element (Resource Element, RE) Receive power, or reference received power for each bit, each bit here may be a pre-encoding bit or an encoded bit.
  • the reference received power may be determined under single-stream transmission on a single RB and using one MCS value; or the reference received power may be determined by a single bit under single-stream transmission conditions.
  • the second node when the second node updates the preset MIMO configuration parameter, the second node updates the reference received power according to the updated preset MIMO configuration parameter.
  • the number of antennas used by the second node to receive downlink information of the backhaul link may be dynamically or semi-statically allocated. Therefore, the parameter determining the reference received power may also include the number of receiving antennas, for example, calculating the reference received power according to the number of receiving antennas.
  • the interference relationship between the backhaul link and the access link may change at this time because the number of antennas will cause beamforming and the receiver.
  • the parameters such as the downlink bandwidth, the MCS value, and the preset MIMO configuration parameter of the backhaul link actually used by the first node may be different from the parameters used by the second node to determine the reference received power. Therefore, the first node determines the first transmission. Before the power, the actual reference received power is first determined according to the reference received power, and the first transmit power is determined according to the actual reference received power and the path loss measurement corresponding to the first link.
  • the first node and the second node need to agree in advance to determine parameters used for reference receiving power.
  • the parameters such as the downlink bandwidth, the MCS value, and the preset MIMO configuration parameter of the backhaul link actually used by the first node are different from the parameters used by the second node to determine the reference received power
  • the actual reference received power may be determined by scaling the reference received power.
  • the downlink bandwidth of the actual backhaul link is twice the preset bandwidth used by the second node to determine the reference received power
  • the actual reference received power should be doubled than the reference received power determined by the second node.
  • the actual number of transport streams is twice the number of used transport streams used by the second node to determine the reference received power
  • the actual reference received power should be reduced by half compared to the reference transmit power determined by the second node.
  • the path loss measurement value corresponding to the first link may be, but not limited to, the following two methods:
  • the first information further includes a path loss measurement value corresponding to the first link.
  • the path loss measurement value corresponding to the first link is determined by the second node according to the transmit power of the first signal sent by the first node and the received power of the first signal measured by the second node.
  • the first signal is any one of the following signals: a De-modulation Reference Signal (DMRS), a Channel State Information-Reference Signal (CSI-RS), or a synchronization signal.
  • DMRS De-modulation Reference Signal
  • CSI-RS Channel State Information-Reference Signal
  • the transmit power of the first signal herein refers to Ener Per Resource Element (EPRE).
  • EPRE Ener Per Resource Element
  • Method 2 The path loss measurement value corresponding to the first link is determined by the first node according to the transmit power of the second signal sent by the second node and the received power of the second signal measured by the first node.
  • the second signal is any one of the following signals: a Sounding Reference Signal (SRS), a DMRS, a CSI-RS, or a synchronization signal.
  • SRS Sounding Reference Signal
  • DMRS Downlink Reference Signal
  • CSI-RS Downlink Reference Signal
  • the transmit power of the second signal may be configured by the first node or configured by the second node and notifying the first node of the transmit power.
  • the transmit power of the second signal herein refers to the EPRE.
  • the second node when the second node is a relay device, the second node sends the CSI-RS and the synchronization signal, and the first node may measure the CSI-RS or the synchronization signal sent by the second node to determine the path loss corresponding to the first link. Measurements.
  • the first information includes a power adjustment amount.
  • the first node determines the adjusted first transmit power according to the first transmit power and the power adjustment amount that are used last time.
  • the first transmit power that is used by the first node may be the transmit power used by the first node to send downlink information to the second node through the first link.
  • the power adjustment amount is determined by the second node according to the received power of the preset signal and the reference received power, and the preset signal is downlink information that is sent by the first node to the second node by using the first link one or more times. Signal, or a reference signal sent by the first node to the second node.
  • the reference received power is the reference received power in mode 1, and the repetition will not be described again.
  • the method for determining the received power of the preset signal is also required to refer to the parameter used by the second node to determine the reference received power in the mode 1, and the preset signal is measured or determined based on the parameter determined by the second node to determine the received power.
  • the measurement result of the signal is scaled and determined. Therefore, when the parameters such as the downlink bandwidth, the MCS value, and the preset MIMO configuration parameter of the backhaul link actually used by the first node are different from the parameters used by the second node to determine the reference received power, the power adjustment amount also needs to be preset by zooming.
  • the difference between the received power of the signal and the reference received power may be determined by referring to the method for determining the actual reference received power according to the reference received power in Mode 1. It should be understood that the method for determining the power adjustment amount provided by the embodiment of the present application is only an example, and the power adjustment amount may also be determined in other manners.
  • the power adjustment amount may be determined by the second node, for example, when the absolute value of the difference between the received power of the preset signal and the reference received power exceeds a preset threshold, the second node determines the power adjustment amount, and reports the power adjustment amount to the second node.
  • the first node may configure the reporting timing of the power adjustment amount for the second node. For example, the first node configures the second node to periodically report the power adjustment amount.
  • the transmit power of the reference signal needs to have a determined association relationship with the first transmit power, for example, the reference signal is sent.
  • the power is equal to the first transmit power or the difference is fixed.
  • the reference signal may be a CSI-RS or a DMRS for CSI measurement.
  • the transmit power of the reference signal herein refers to the EPRE.
  • the transmit power of the reference signal is equal to the first transmit power or has a preset difference, and the first node is used according to the latest one.
  • the first transmit power and the power adjustment amount determine the adjusted first transmit power.
  • the first information includes: a power control parameter P 0 , a path loss compensation coefficient ⁇ corresponding to the first link, and a power adjustment amount; wherein the power adjustment amount is used to update the accumulated value f of the power adjustment amount.
  • the first node determines the first transmit power P BH according to the following formula:
  • P CMAX is the downlink transmission maximum power corresponding to the first link
  • M BH is the downlink bandwidth corresponding to the first link
  • ⁇ TF is a preset modulation code.
  • the correction amount of the mode, PL is the path loss measurement value corresponding to the first link.
  • P CMAX refers to the maximum value of the downlink transmission power of the first link. If the first node is transmitting other links (such as the downlink of the access link) at the same time, P CMAX includes only the first a part of the total transmit power supported by the node; P 0 is a metric reflecting the expected power of the received signal, wherein P 0 can be determined by prior art, for example, a method for determining relevant parameters in power control of the uplink signal transmission, This embodiment of the present application does not limit this.
  • the power adjustment amount is the power adjustment amount in the mode 2, and the repetition will not be described again.
  • the P 0 , ⁇ , and power adjustments may be reported by Radio Resource Control (RRC) signaling, or may be reported through the X2 interface.
  • RRC Radio Resource Control
  • the first information includes: a power control parameter P 0 , and a path loss compensation coefficient ⁇ corresponding to the first link.
  • the first node determines the first transmit power P BH according to the following formula:
  • the P CMAX is the downlink transmission maximum power corresponding to the first link
  • the M BH is the downlink bandwidth corresponding to the first link
  • the ⁇ TF is the correction amount of the preset modulation and coding mode
  • the PL is the path corresponding to the first link. Damage measurement value. The specific meaning of these parameters is the same as that of Mode 3.
  • the mode 3 is a closed loop power control mode
  • the mode 4 is an open loop power control mode.
  • the path loss measurement value PL corresponding to the first link in the foregoing manners 3 and 4 can be determined by using the method for determining the path loss measurement value corresponding to the first link in the mode 1.
  • the uplink power control parameters include P O_PUSCH, c (j) and ⁇ c (j), so the second node can Selecting to report the downlink power control parameters (including P 0 and ⁇ ) of the backhaul link and the uplink power control parameters of the access link (including P O_PUSCH, c (j) and ⁇ c (j)), which need to be controlled at this time.
  • the two types of parameters are distinguished in the field.
  • the second node only needs to report a set of values to the first node.
  • the first information includes P 0 and ⁇
  • the downlink power control parameter of the first node default backhaul link is the same as the uplink power control parameter of the access link.
  • the first node determines the first transmit power according to the first information, as the transmit power of the downlink signal of the backhaul link, thereby avoiding the downlink transmission of the backhaul link and the uplink transmission of the access link or Mutual interference between uplink transmissions of the next hop backhaul link.
  • the first transmit power is the same as or different from the preset threshold when the first node sends the reference signal or the control information to the second node.
  • the transmit power of the reference signal herein refers to the EPRE.
  • the reference signal here may be at least one of the following: a DMRS, a Tracking Reference Signal (TRS), a Phase-tracking Reference Signal (PTRS), and a CSI-RS for CSI acquisition.
  • TRS Tracking Reference Signal
  • PTRS Phase-tracking Reference Signal
  • CSI-RS CSI-RS for CSI acquisition.
  • the preset threshold is determined according to the number of ports of the reference signal and the number of transport streams corresponding to the downlink information.
  • the first node when the first node is configured with multiple reference signals, it is necessary to distinguish whether the reference signals are transmitted in the time resource unit of the downlink transmission power control in the configuration signaling, that is, whether the time resource unit is a backhaul.
  • the link resource transmission unit and the time resource unit of the access link uplink transmission multiplexing are necessary to distinguish whether the reference signals are transmitted in the time resource unit of the downlink transmission power control in the configuration signaling, that is, whether the time resource unit is a backhaul.
  • the CSI-RS for beam measurement, the CSI-RS for mobility management, the transmit power of CSI-RS for link quality monitoring, and the channel carrying downlink information are not associated.
  • the transmission power of the signal does not use the first transmission power.
  • the reference signals sent by the first node to the second node may be classified into two types, one is a signal associated with a channel carrying downlink information, and the transmission power of the reference signal is the same as or different from the first transmission power.
  • the threshold value can be used to facilitate the second node to obtain an accurate measurement result of the channel carrying the downlink information according to the reference signal; the other type is the signal that has no relationship with the channel carrying the downlink information, and the transmission power of the reference signal is not
  • the reason for adopting the first transmission power is that such reference signal needs to ensure better signal coverage, and it is preferable not to arbitrarily change its transmission power, and the first node performs power control on the first transmission power, so the first transmission power may be It will change frequently, and when the first transmit power is too small, the coverage requirements of such reference signals may not be met.
  • the embodiment of the present application provides a power control apparatus.
  • the apparatus 500 includes:
  • the receiving unit 501 is configured to receive first information that is sent by the second node, where the first information is used to determine a first sending power, where the first sending power is that the device sends the first node to the second node.
  • the processing unit 502 is configured to determine the first transmit power according to the first information.
  • the first information includes a reference received power or a power adjustment.
  • the first information includes: a power control parameter P 0 , a path loss compensation coefficient ⁇ corresponding to the first link, and a power adjustment amount; wherein the power adjustment amount is used to update power The cumulative value f of the adjustment amount.
  • processing unit 502 is specifically configured to:
  • the first transmission power P BH is determined according to the following formula:
  • P CMAX is a downlink transmission maximum power corresponding to the first link
  • M BH is a downlink bandwidth corresponding to the first link
  • ⁇ TF is a correction amount of a preset modulation and coding mode
  • PL is the first The path loss measurement value corresponding to a link.
  • the first information includes: a power control parameter P 0 , and a path loss compensation coefficient ⁇ corresponding to the first link.
  • processing unit 502 is specifically configured to:
  • the first transmission power P BH is determined according to the following formula:
  • P CMAX is a downlink transmission maximum power corresponding to the first link
  • M BH is a downlink bandwidth corresponding to the first link
  • ⁇ TF is a correction amount of a preset modulation and coding mode
  • PL is the first The path loss measurement value corresponding to a link.
  • the first information further includes: a path loss measurement value PL corresponding to the first link.
  • the first transmit power is the same as or different from the power used by the device to send the reference signal or the control information to the second node.
  • the device sends a time resource unit used by the downlink information to the second node by using the first link, and sends an uplink to the second node by using the second link with the third node.
  • the information uses the same time resource unit;
  • the second link is a link between the second node and the third node; the third node is a lower node or a terminal device of the second node.
  • the embodiment of the present application provides a power control apparatus.
  • the apparatus 600 includes:
  • the processing unit 601 is configured to determine first information, where the first information is used to determine a first sending power, where the first sending power is when the first node sends downlink information to the second node by using the first link. Power used; the first link is a link between the first node and the second node, and the first node is a superior device of the second node;
  • the sending unit 602 is configured to send the first information to the first node.
  • the first information is a reference received power or a power adjustment amount.
  • the first information includes: a power control parameter P 0 , a path loss compensation coefficient ⁇ corresponding to the first link, and a power adjustment amount; wherein the power adjustment amount is used to update power The cumulative value f of the adjustment amount.
  • the first information includes: a power control parameter P 0 , and a path loss compensation coefficient ⁇ corresponding to the first link.
  • the first information further includes: a path loss measurement value PL corresponding to the first link.
  • processing unit 601 is further configured to:
  • the reference received power is updated according to the updated preset MIMO configuration parameters.
  • the power control device sends a time resource unit used by the downlink information to the second node by using the first link, and the third node sends the second node to the second node by using the second link.
  • the time resource units used to send the uplink information are the same or partially overlapped;
  • the second link is a link between the second node and the third node; the third node is a lower node or a terminal device of the second node.
  • each unit above is only a division of logical functions, and the actual implementation may be integrated into one physical entity in whole or in part, or may be physically separated. Moreover, these units may all be implemented in the form of software by means of processing component calls; or may be implemented entirely in hardware; some units may be implemented in software in the form of processing component calls, and some units may be implemented in hardware. In the implementation process, each step of the above method or each of the above units may be completed by an integrated logic circuit of hardware in the processor element or an instruction in a form of software.
  • the processing unit may be a processor or a processing circuit, etc.; the sending unit may be a transmitter or a transmitting circuit, the receiving unit may be a receiver or a receiving circuit, etc., and the sending unit and the receiving unit may constitute a communication interface. .
  • the above units may be one or more integrated circuits configured to implement the above methods, such as one or more Application Specific Integrated Circuits (ASICs), or one or more microprocessors (digital) Signal processor, DSP), or one or more Field Programmable Gate Arrays (FPGAs).
  • ASICs Application Specific Integrated Circuits
  • DSP digital signal processor
  • FPGAs Field Programmable Gate Arrays
  • the processing element can be a general purpose processor, such as a central processing unit (CPU) or other processor that can invoke the program.
  • CPU central processing unit
  • these units can be integrated and implemented in the form of a system-on-a-chip (SOC).
  • SOC system-on-a-chip
  • the embodiment of the present application further provides a network node, which may be the first node or the second node in the embodiment shown in FIG. 4 .
  • the network device 700 includes: The transceiver 701, the processor 702, and the memory 703.
  • the memory 703 is used to store a computer program; the processor 702 calls a computer program stored in the memory 703, and the method shown in FIG. 4 is executed by the transceiver 701.
  • the power control device in the above embodiments shown in FIG. 5 and FIG. 6 can be implemented by the network node 700 shown in FIG. 7.
  • the structure of the network node 700 does not constitute a limitation on the embodiments of the present application.
  • processor 702 can be a CPU, a network processor (NP), a hardware chip, or any combination thereof.
  • the memory 703 may include a volatile memory such as a random access memory (RAM); the memory may also include a non-volatile memory such as a read-only memory (read-only) Memory, ROM), flash memory, hard disk drive (HDD) or solid-state drive (SSD); the memory 703 may also include a combination of the above types of memories.
  • the embodiment of the present application further provides a network node, where the network node includes: a processor.
  • the processor is used to control and manage the action of the network node.
  • the processor is configured to support the related steps of determining, by the network node, the first transmit power in the foregoing embodiment shown in FIG.
  • the network node may further include a memory, a communication interface.
  • the processor, the communication interface, and the memory can be connected to each other or to each other through a bus.
  • the memory is used to store code and data of the network node.
  • the communication interface is used to support the network node to communicate.
  • the processor may be a central processing unit, a general purpose processor, a digital signal processor, an application specific integrated circuit, a field programmable gate array or other programmable logic device, a transistor logic device, a hardware component, or any combination thereof. It is possible to implement or carry out the various illustrative logical blocks, modules and circuits described in connection with the present disclosure.
  • the processor may also be a combination of computing functions, such as a combination of one or more microprocessors, a combination of a digital signal processor and a microprocessor, and the like.
  • the embodiment of the present application provides a mechanism for performing power control on a downlink signal transmission of a backhaul link, which can mitigate interference between respective signals received by the relay device.
  • the first node determines the first sending power according to the first information sent by the second node, and the first node uses the first sending power when transmitting the downlink information to the second node by using the first link, thereby avoiding the backhaul link.
  • embodiments of the present application can be provided as a method, system, or computer program product.
  • embodiments of the present application can take the form of an entirely hardware embodiment, an entirely software embodiment, or a combination of software and hardware.
  • embodiments of the present application can take the form of a computer program product embodied on one or more computer-usable storage media (including but not limited to disk storage, CD-ROM, optical storage, etc.) including computer usable program code.
  • Embodiments of the present application are described with reference to flowchart illustrations and/or block diagrams of methods, devices (systems), and computer program products according to embodiments of the present application. It will be understood that each flow and/or block of the flowchart illustrations and/or FIG.
  • These computer program instructions can be provided to a processor of a general purpose computer, special purpose computer, embedded processor, or other programmable data processing device to produce a machine for the execution of instructions for execution by a processor of a computer or other programmable data processing device.
  • the computer program instructions can also be stored in a computer readable memory that can direct a computer or other programmable data processing device to operate in a particular manner, such that the instructions stored in the computer readable memory produce an article of manufacture comprising the instruction device.
  • the apparatus implements the functions specified in one or more blocks of a flow or a flow and/or block diagram of the flowchart.
  • These computer program instructions can also be loaded onto a computer or other programmable data processing device such that a series of operational steps are performed on a computer or other programmable device to produce computer-implemented processing for execution on a computer or other programmable device.
  • the instructions provide steps for implementing the functions specified in one or more of the flow or in a block or blocks of a flow diagram.

Abstract

本申请公开了一种功率控制方法及装置,该方法包括:第一节点接收第二节点发送的第一信息,第一信息用于确定第一发送功率,所述第一发送功率为第一节点通过第一链路向第二节点发送下行信息时采用的功率;第一链路为第一节点与第二节点之间的链路,第一节点为第二节点的上级设备;第一节点根据第一信息确定第一发送功率。因此,第一节点根据第一信息确定第一发送功率,在通过第一链路向第二节点发送下行信息时采用该第一发送功率,能够减轻第二节点接收到的各个信号之间的干扰。

Description

一种功率控制方法及装置
本申请中要求在2018年01月25日提交中国专利局、申请号为201810074307.4、申请名称为“一种功率控制方法及装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及无线通信技术领域,特别涉及一种功率控制方法及装置。
背景技术
4G长期演进(Long Term Evolution,LTE)系统中引入了中继技术(Relaying),通过在网络中部署中继节点(Relay Node,RN)来转发基站和终端设备之间的数据,达到增强网络容量和解决覆盖盲区的目的,其简单的网络拓扑如图1所示。其中,供体基站(Donor eNB,DeNB)和RN之间的链路称为回传链路,RN和终端设备之间的链路称为接入链路。
在5G新空口(New Radio,NR)系统中,中继技术仍然会被支持。NR引入了接入回传一体化(Integrated Access and Backhaul,IAB)的概念。相对于LTE中的relaying,IAB需要更加灵活的支持接入链路和回传链路的资源共享。如图2给出了一种可能的IAB中的信号传输示意图,供体基站到中继传输接收点(Relaying Transmission and Reception Point,rTRP)1之间的信号传输,rTRP1到rTRP2之间的信号传输,rTRP1到终端设备之间的信号传输,均可灵活地共享资源。
在上述4G LTE系统或5G NR系统中,存在rTRP(或RN)同时接收回传链路下行信号、接入链路上行信号和/或下一跳的回传链路上行信号的场景,若这三个信号之间的功率相差过大,则有可能会造成这三个信号之间干扰严重,影响rTRP(或RN)正确解调这三个信号。
如图3所示,以5G NR系统为例,rTRP1的下一跳rTRP为rTRP2,假设rTRP1接收到的回传链路下行信号(即供体基站向rTRP1发送的下行信号)的接收功率为P1,rTRP1接收到接入链路上行信号(即终端设备向rTRP1发送的上行信号)的接收功率为P3,rTRP1接收到下一跳的回传链路上行信号(即rTRP2向rTRP1发送的上行信号)的接收功率为P2。如果P1、P2、P3之间的功率相差过大,则有可能会造成这三个信号之间干扰严重,因此需要对这三条链路分别对应的信号传输进行功率控制。在现有技术中,如LTE协议中,上行信号的传输定义了功率控制机制,该机制可以继续适用在如图3中接入链路上行信号传输和下一跳的回传链路上行信号传输。但是,现有技术中并没有针对回传链路下行信号传输的功率控制机制。
发明内容
本申请实施例提供一种功率控制方法及装置,用以提供针对回传链路下行信号传输进行功率控制的机制,减轻中继设备接收到的各个信号之间的干扰。
第一方面,本申请实施例提供一种功率控制方法,该方法包括:
第一节点接收第二节点发送的第一信息,所述第一信息用于确定第一发送功率,所述第一节点根据所述第一信息确定所述第一发送功率。其中,所述第一发送功率为所述第一 节点通过第一链路向所述第二节点发送下行信息时采用的功率;所述第一链路为所述第一节点与所述第二节点之间的链路,所述第一节点为所述第二节点的上级设备。
通过上述方法,第一节点根据第二节点发送的第一信息确定第一发送功率,第一节点在通过第一链路向第二节点发送下行信息时采用第一发送功率,能够减轻第二节点接收到的各个信号之间的干扰。
在一种可能的设计中,所述第一信息包括参考接收功率或功率调整量。
当第一信息包括参考接收功率时,第一节点根据参考接收功率和第一链路对应的路损测量值确定第一发送功率。
其中,参考接收功率是第二节点基于预设带宽、预设MIMO配置参数和预设MCS值中的至少一个参数确定的。当第二节点更新预设MIMO配置参数时,第二节点根据更新后的预设MIMO配置参数,更新参考接收功率。此外,参考接收功率也可以是归一化的参考接收功率。因此,当实际的回传链路的下行带宽、MCS、预设MIMO配置参数与第二节点确定参考接收功率采用的参数不同时,实际参考接收功率可以通过缩放参考接收功率确定。
当第一信息包括功率调整量时,第一节点根据最近一次采用的第一发送功率与功率调整量确定调整后的第一发送功率。
其中,功率调整量是第二节点根据测量得到的预设信号的接收功率和参考接收功率的差值确定的,预设信号为承载第一节点最近一次通过第一链路向第二节点发送的下行信息的信号,或者第一节点向第二节点发送的参考信号。该参考信号可以为用于CSI测量的CSI-RS或者DMRS,其中,用于CSI测量的CSI-RS指的是用于测量预编码矩阵索引(Precoding Matrix Indicator,PMI)、信道质量指示(Channel Quality Indicator,CQI)、秩指示(Rank Indicator,RI)等参数的CSI-RS,它和用于进行无线资源管理等的CSI-RS是两类不同目的的CSI-RS。
在一种可能的设计中,所述第一信息包括:功率控制参数P 0、所述第一链路对应的路损补偿系数α和功率调整量;其中,所述功率调整量用于更新功率调整量的累积值f。
在一种可能的设计中,所述第一节点根据所述第一信息确定所述第一发送功率,包括:
所述第一节点根据如下公式确定所述第一发送功率P BH:
Figure PCTCN2019072239-appb-000001
其中,P CMAX是所述第一链路对应的下行传输最大功率,M BH是所述第一链路对应的下行带宽,Δ TF是预设的调制编码模式的修正量,PL是所述第一链路对应的路损测量值。
因此,上述公式提供的功率控制方式为闭环功率控制方式。
在一种可能的设计中,所述第一信息包括:功率控制参数P 0、所述第一链路对应的路损补偿系数α。
在一种可能的设计中,所述第一节点根据所述第一信息确定所述第一发送功率,包括:
所述第一节点根据如下公式确定所述第一发送功率P BH:
Figure PCTCN2019072239-appb-000002
其中,P CMAX是所述第一链路对应的下行传输最大功率,M BH是所述第一链路对应的 下行带宽,Δ TF是预设的调制编码模式的修正量,PL是所述第一链路对应的路损测量值。
因此,上述公式提供的功率控制方式为开环功率控制方式。
在一种可能的设计中,所述第一信息还包括:所述第一链路对应的路损测量值PL。
第一链路对应的路损测量值是第二节点根据第一节点发送的第一信号的发送功率和第二节点测量得到的第一信号的接收功率确定的。
其中,第一信号为以下任意一种信号:DMRS,CSI-RS或者同步信号。
在一种可能的设计中,第一链路对应的路损测量值是第一节点根据第二节点发送的第二信号的发送功率和第一节点测量得到的第二信号的接收功率确定的。
其中,第二信号为SRS、DMRS、CSI-RS或者同步信号。
在一种可能的设计中,所述第一发送功率与所述第一节点向所述第二节点发送参考信号或者控制信息时采用的功率相同或相差预设阈值。
这里的参考信号可以为以下至少一种:DMRS、TRS、PTRS、用于CSI获取的CSI-RS。
可选的,这里的预设阈值是根据该参考信号的端口数量以及下行信息对应的传输流数确定的。
在一种可能的设计中,用于波束测量的CSI-RS、用于移动性管理的CSI-RS、用于链路质量监控的CSI-RS的发送功率和与承载下行信息的信道不具有关联关系的信号的发送功率不采用第一发送功率。这些发送功率可以由第一节点直接配置。
在一种可能的设计中,所述第一节点通过所述第一链路向所述第二节点发送下行信息采用的时间资源单元,与第三节点通过第二链路向所述第二节点发送上行信息采用的时间资源单元相同或部分重叠;其中,所述第二链路为所述第二节点与所述第三节点之间的链路;所述第三节点为第二节点的下级节点或者终端设备。
因此,本申请实施例提供的方法能够应用于第二节点同时接收第一节点发送下行信息和第三节点发送的上行信息的场景。应理解的是,由于本申请实施例中针对回传链路下行传输进行功率控制的目的是为了避免和同时传输的接入链路上行或下一跳的回传链路上行之间的相互干扰,但是并不是所有的时间资源单元都被应用于回传链路下行传输和接入链路上行或下一跳的回传链路上行传输同时进行,对于这些没有复用的时间资源单元可以无需对回传链路下行传输采取功率控制,或者也可以采取其他的功率控制方法。
第二方面,本申请实施例提供一种功率控制方法,该方法包括:
所述第二节点确定第一信息,所述第二节点向所述第一节点发送所述第一信息。其中,所述第一信息用于确定第一发送功率,所述第一发送功率为所述第一节点通过第一链路向所述第二节点发送下行信息时采用的功率;所述第一链路为所述第一节点与所述第二节点之间的链路,所述第一节点为所述第二节点的上级设备。
通过上述方法,第二节点向第一节点发送第一信息,以使第一节点确定第一发送功率,第一节点在通过第一链路向第二节点发送下行信息时采用该第一发送功率,能够减轻第二节点接收到的各个信号之间的干扰。
在一种可能的设计中,所述第一信息为参考接收功率或功率调整量。
因此,第二节点可以确定参考接收功率或功率调整量,并通知给向第一节点。
在一种可能的设计中,所述第一信息包括:功率控制参数P 0、所述第一链路对应的路损补偿系数α和功率调整量;其中,所述功率调整量用于更新功率调整量的累积值f。
因此,第二节点可以通过向第一节点发送闭环功率控制所需的参数信息,以使第一节 点实现对第一发送功率的闭环功率控制。
在一种可能的设计中,所述第一信息包括:功率控制参数P 0、所述第一链路对应的路损补偿系数α。
因此,第二节点可以通过向第一节点发送开环功率控制所需的参数信息,以使第一节点实现对第一发送功率的开环功率控制。
在一种可能的设计中,所述第一信息还包括:所述第一链路对应的路损测量值PL。
因此,第二节点可以确定第一链路对应的路损测量值PL通知给第一节点。
在一种可能的设计中,还包括:所述第二节点更新预设MIMO配置参数;所述第二节点根据更新后的预设MIMO配置参数,更新所述参考接收功率。
因此,第二节点可以实现及时更新参考接收功率,满足第一节点准确确定第一发送功率的需求。
在一种可能的设计中,所述第一节点通过所述第一链路向所述第二节点发送下行信息采用的时间资源单元,与第三节点通过第二链路向所述第二节点发送上行信息采用的时间资源单元相同或部分重叠;其中,所述第二链路为所述第二节点与所述第三节点之间的链路;所述第三节点为第二节点的下级节点或者终端设备。
因此,本申请实施例提供的方法能够应用于第二节点同时接收第一节点发送下行信息和第三节点发送的上行信息的场景。
第三方面,本申请提供一种网络节点,所述网络节点包括收发器、处理器和存储器:所述存储器用于存储计算机程序;所述处理器调用所述存储器存储的计算机程序,通过所述收发器执行如第一方面或第一方面中任一种可能的设计的方法,或者,通过所述收发器执行如第二方面或第二方面中任一种可能的设计的方法。
具体执行步骤可以参见第一方面和第二方面,此处不在赘述。
第四方面,本申请提供一种功率控制装置,执行第一方面或第一方面任意一种可能的设计中的方法。具体地,该装置包括用于执行第一方面或第一方面的任意一种可能的设计中的方法的单元。
第五方面,本申请提供一种功率控制装置,执行第二方面或第二方面任意一种可能的设计中的方法。具体地,该装置包括用于执行第二方面或第二方面的任意一种可能的设计中的方法的单元。
第六方面,本申请还提供一种计算机可读存储介质,该计算机可读存储介质存储有计算机程序,当该计算机程序在计算机上运行时,使得计算机执行上述各方面所述的方法。
第七方面,本申请还提供一种包含程序的计算机程序产品,当其在计算机上运行时,使得计算机执行上述各方面所述的方法。
附图说明
图1为本申请实施例中LTE中继网络的网络拓扑示意图;
图2为本申请实施例中NR IAB网络拓扑示意图;
图3为本申请实施例中rTRP1同时接收回传链路下行信号、接入链路上行信号和下一跳的回传链路上行信号的示意图;
图4为本申请实施例中功率控制方法的概述流程图;
图5为本申请实施例中功率控制装置结构示意图之一;
图6为本申请实施例中功率控制装置结构示意图之二;
图7为本申请实施例中网络节点结构示意图。
具体实施方式
本申请实施例适用于具有中继设备的蜂窝系统,包括支持单跳和多跳中继的场景,其中,回传链路和接入链路使用相同的频谱资源。
在多跳中继网络中,一个中继设备可能连接到供体基站(例如,DgNB或DeNB),也可能连接到另外一个中继设备上。为了区分这种中继设备与中继设备之间的回传链路,把处于控制角色(或者,与供体基站之间跳数较少)的中继设备叫做上级中继设备,把处于被控制角色(或者,与供体基站之间跳数较多)的中继设备叫做下级中继设备。其中,回传链路为供体基站或者上级中继设备到下级中继设备之间的链路。接入链路为供体基站或中继设备到终端设备之间的链路。
其中,供体基站是为下级节点提供回传服务的eNB或者gNB,也可以称为来源基站或宿主基站。典型地,供体基站与核心网直接连接,无需通过其他接入网设备采用无线中继的方式进行信号的中转。这里的供体基站可以是演进型基站(eNodeB)、5G移动通信系统中的基站、下一代移动通信基站(next generation Node B,gNB),或者未来移动通信系统中的基站等。
中继设备可以是4G LTE系统中的RN,5G NR系统中的rTRP、RN、IAB节点或者未来移动通信系统中的中继设备等。
本申请实施例中涉及的终端设备(Terminal equipment)也可以称为终端、用户设备(user equipment,UE)、移动台(mobile station,MS)、移动终端(mobile terminal,MT)等。终端设备可以是手机(mobile phone)、平板电脑(Pad)、带无线收发功能的电脑、虚拟现实(Virtual Reality,VR)终端设备、增强现实(Augmented Reality,AR)终端设备、工业控制(industrial control)中的无线终端、无人驾驶(self-driving)中的无线终端、远程手术(remote medical surgery)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端等。
例如,图2所示,DgNB为rTRP1的上级节点,rTRP1为rTRP2的上级节点。rTRP2通过两跳连接到DgNB。
本申请实施例中,第一节点和终端设备之间的信号传输涉及至少三个节点:第一节点、第二节点和终端设备。其中,第一节点为第二节点的上一跳设备、上级节点、父节点、母节点、服务基站或者上游节点。第二节点为第一节点的下一跳设备、下级节点、子节点或者下游节点。第二节点为第三节点的上一跳设备、上级节点、父节点、母节点、服务基站或者上游节点。第三节点为第二节点的下一跳设备、下级节点、子节点、终端或者下游节点。第一节点可以为供体基站或者中继设备,第二节点可以为中继设备,第三节点可以为中继设备或者终端设备。例如,如果第一节点为供体基站,第二节点为第一节点的下一跳中继设备,第三节点为接入第二节点的终端设备。又例如,如果第一节点为中继设备,第二节点为第一节点的下一跳中继设备,第三节点为接入第二节点的终端设备。
其中,第一链路为第一节点与第二节点之间的链路,第一节点为第二节点的上级设备。第二链路为第二节点与第三节点之间的链路,第三节点为第二节点的下级设备,或者终端 设备。
应理解的是,本申请实施例中针对回传链路下行传输进行功率控制的目的是为了避免和同时传输的接入链路下行或下一跳回传链路上行之间的相互干扰,但是并不是所有的时间资源单元都被应用于回传链路下行传输和接入链路上行或下一跳回传链路上行传输同时进行,例如,当某个时隙只存在回传链路下行传输而不存在接入链路和下一跳回传链路传输时,在这种情况下,由于不存在多条链路的干扰问题,回传链路下行传输无需考虑对接入链路上行或下一跳回传链路上行传输的干扰问题,因此无需对回传链路下行传输采取功率控制,或者也可以采取其他的功率控制方法。因此,第一节点和第二节点可以首先约定需要采用本申请实施例提供的功率控制方法的时间资源单元,然后第一节点在这些时间资源单元上采用本申请实施例提供的功率控制方法确定第一发送功率,而对于其它的时间资源单元,第一节点可以不进行功率控制,或者采用其他的功率控制方法。其中,上述时间资源单元可以为时隙、子帧,迷你时隙等,本申请对此不作限定。
在一种可能的设计中,第一节点和第二节点约定的需要采用本申请实施例提供的功率控制方法的时间资源单元为第一节点通过第一链路向第二节点发送下行信息采用的时间资源单元,与第三节点通过第二链路向第二节点发送上行信息采用的时间资源单元相同的时间资源单元;或者该时间资源单元为第一节点通过第一链路向第二节点发送下行信息采用的时间资源单元,与第三节点通过第二链路向第二节点发送上行信息采用的时间资源单元存在部分重叠的时间资源单元。
在一些技术标准或技术文献中,例如LTE标准中,下行信号的功率控制也被称作功率分配。本申请实施例中,下行功率控制和下行功率分配指的是同样的含义。
如图3所示,DgNB没有足够的用于对回传链路下行传输进行功率控制的信息,因此难以准确确定回传链路下行信号的发送功率,以保证P1、P2、P3之间的功率差相差不大,减轻rTRP1接收到的各个信号之间的干扰。
参阅图4所示,本申请实施例提供一种功率控制方法,用于确定回传链路下行信号的发送功率,以减轻中继设备接收到的各个信号之间的干扰。该方法包括:
步骤400:第二节点确定第一信息。
其中,第一信息用于确定第一发送功率,第一发送功率为第一节点通过第一链路向第二节点发送下行信息时采用的功率。
例如,如图3所示,第一发送功率可以为DgNB向rTRP1发送下行信息时采用的功率,或者,还可以为rTRP1向rTRP2发送下行信息时采用的功率。
应理解的是,本申请实施例中提到的下行信息可以为下行数据。
步骤410:第二节点向第一节点发送第一信息。
步骤420:第一节点接收第一信息,第一节点根据第一信息确定第一发送功率。
具体的,第一节点根据第一信息确定第一发送功率可以采用但不限于以下四种方式任一种:
方式1:第一信息包括参考接收功率。
第一节点根据参考接收功率和第一链路对应的路损测量值确定第一发送功率。
应理解的是,参考接收功率是第二节点基于预设带宽、预设多输入多输出(multple input multiple output,MIMO)配置参数和预设调制编码方案(Modulation and Coding Scheme, MCS)值中的至少一个参数确定的。
其中,预设MIMO配置参数可以包括但不限于以下参数:传输流数、发送天线端口数、接收天线端口数量、最大支持的传输流数、最大支持的发送天线端口数等参数中的至少一个。
应理解的是,这里的最大支持的传输流数和最大支持的发送天线端口数并不是根据物理天线数量导致的最大值约束(例如物理天线数量为8,则最大支持的传输流数就不可能超过8),而是根据第二节点为回传链路分配的接收天线数量确定的,而且这种分配是可变的。当某个时刻,第二节点分配给回传链路的天线数量发生变化时,最大支持的传输流数就会发生改变。因此,这里的最大支持的传输流数和最大支持的发送天线端口数并不是绝对的最大值,而是在某个时刻才有效的最大值。
此外,参考接收功率也可以是归一化的参考接收功率,其中,归一化的参考接收功可以是针对每个RB的参考接收功率,或者针对每个资源单元(Resource Element,RE)的参考接收功率,或者针对每个比特的参考接收功率,这里的每个比特,可以是编码前的比特,也可以是编码后的比特。例如,该参考接收功率可以是在单个RB上进行单流传输且使用一个MCS值的条件下确定的;或者,该参考接收功率也可以是单个比特在单流传输条件下确定的。
在一种可能的设计中,当第二节点更新预设MIMO配置参数时,第二节点根据更新后的预设MIMO配置参数更新参考接收功率。
可选的,由于第二节点用于接收回传链路下行信息的天线数量可能会是动态或半静态分配的。因此,确定上述参考接收功率的参数也可以包括接收天线数量,例如按照接收天线数量为2计算参考接收功率。此外,当用于接收回传链路的天线数量发生变化时,此时回传链路和接入链路之间的干扰关系可能发生变化,这是因为天线数量将引起波束赋形以及接收机算法的变化,从而导致回传链路对接入链路的干扰的容忍能力的改变以及接入链路对回传链路的干扰的容忍能力的改变。这种情况下,第二节点需要更新上述参考接收功率并将更新后的参考接收功率通知第一节点。
但是,第一节点实际采用的回传链路的下行带宽、MCS值、预设MIMO配置参数等参数与第二节点确定参考接收功率采用的参数可能不同,因此,第一节点在确定第一发送功率前,需要首先根据参考接收功率确定实际参考接收功率,根据实际参考接收功率和第一链路对应的路损测量值确定第一发送功率。
具体的,第一节点和第二节点需要事先约定确定参考接收功率采用的参数。当第一节点实际采用的回传链路的下行带宽、MCS值、预设MIMO配置参数等参数与第二节点确定参考接收功率采用的参数不同时,实际参考接收功率可以通过缩放参考接收功率确定。例如,当实际的回传链路的下行带宽为第二节点确定参考接收功率采用的预设带宽的两倍时,实际参考接收功率应比第二节点确定的参考接收功率提高一倍。又例如,当实际的传输流数为第二节点确定参考接收功率的采用的传输流数的两倍时,实际参考接收功率应比第二节点确定的参考发送功率降低一半。
第一链路对应的路损测量值可以采用但不限于以下两种方法:
方法1:第一信息还包括第一链路对应的路损测量值。
在一种可能的设计中,第一链路对应的路损测量值是第二节点根据第一节点发送的第一信号的发送功率和第二节点测量得到的第一信号的接收功率确定的。
其中,第一信号为以下任意一种信号:解调参考信号(De-modulation Reference Signal,DMRS),信道状态信息测量参考信号(Channel State Information-Reference Signal,CSI-RS)或者同步信号。
应理解的是,第一节点已通知第二节点第一信号的发送功率。可选地,这里的第一信号的发送功率指的是每资源单元能量(Enery Per Resource Element,EPRE)。
方法2:第一链路对应的路损测量值是第一节点根据第二节点发送的第二信号的发送功率和第一节点测量得到的第二信号的接收功率确定的。
其中,第二信号为以下任意一种信号:探测参考信号(Sounding Reference Signal,SRS)、DMRS、CSI-RS或者同步信号。
应理解的是,第二信号的发送功率可以由第一节点配置,或者由第二节点配置并将该发送功率通知第一节点。可选地,这里第二信号的发送功率指的是EPRE。
例如,当第二节点为中继设备时,第二节点发送CSI-RS和同步信号,此时第一节点可以测量第二节点发送的CSI-RS或同步信号确定第一链路对应的路损测量值。
方式2:第一信息包括功率调整量。
第一节点根据最近一次采用的第一发送功率与功率调整量确定调整后的第一发送功率。
其中,第一节点最近一次采用的第一发送功率可以是指第一节点上一次通过第一链路向第二节点发送下行信息时采用的发送功率。功率调整量是第二节点根据测量得到的预设信号的接收功率和参考接收功率确定的,预设信号为承载第一节点最近一次或多次通过第一链路向第二节点发送的下行信息的信号,或者第一节点向第二节点发送的参考信号。
参考接收功率为方式1中的参考接收功率,重复之处不再赘述。预设信号的接收功率的确定方式也需参考方式1中第二节点确定参考接收功率采用的参数,并基于第二节点确定参考接收功率采用的参数对该预设信号进行测量或者对该预设信号的测量结果进行缩放确定。因此,当第一节点实际采用的回传链路的下行带宽、MCS值、预设MIMO配置参数等参数与第二节点确定参考接收功率采用的参数不同时,功率调整量也需要通过缩放预设信号的接收功率和参考接收功率的差值确定,具体方法可以参考方式1中根据参考接收功率确定实际参考接收功率的方法。应理解的是,本申请实施例提供的确定功率调整量的方法仅为举例,还可采用其他方式确定功率调整量。
此外,功率调整量可以由第二节点确定上报时机,例如,当预设信号的接收功率与参考接收功率的差值的绝对值超过预设门限时,第二节点确定功率调整量,并上报给第一节点。或者第一节点可以为第二节点配置功率调整量的上报时机,例如,第一节点配置第二节点周期性上报功率调整量。
应理解的是,当预设信号为第一节点向第二节点发送的参考信号时,该参考信号的发送功率需与第一发送功率之间具有确定的关联关系,例如,该参考信号的发送功率与第一发送功率相等或差值固定。该参考信号可以为用于CSI测量的CSI-RS或者DMRS。可选地,这里的参考信号的发送功率指的是EPRE。
例如,假设功率调整量是基于第一节点向第二节点发送的参考信号确定的,该参考信号的发送功率与第一发送功率相等或具有预设的差值,则第一节点根据最近一次采用的第一发送功率与功率调整量确定调整后的第一发送功率。
方式3:第一信息包括:功率控制参数P 0、第一链路对应的路损补偿系数α和功率调整量;其中,功率调整量用于更新功率调整量的累积值f。
第一节点根据如下公式确定第一发送功率P BH:
Figure PCTCN2019072239-appb-000003
其中,P CMAX是第一链路对应的下行传输最大功率,M BH是第一链路对应的下行带宽,以物理资源块(Physical Resource Block,PRB)为单位,Δ TF是预设的调制编码模式的修正量,PL是第一链路对应的路损测量值。
在这些参数中,P CMAX指的是第一链路的下行传输功率的最大值,如果第一节点同时在进行其它链路(例如接入链路下行)的传输,则P CMAX仅包括第一节点所支持的总发射功率中的一部分;P 0是反映接收信号的期望功率的度量值,其中,P 0可以采用现有技术确定,例如,上行信号传输的功率控制中相关参数的确定方法,本申请实施例对此不作限定。
功率调整量为方式2中的功率调整量,重复之处不再赘述。
具体的,P 0、α和功率调整量,可通过无线资源控制(Radio Resource Control,RRC)信令进行上报,或者也可以通过X2接口上报。
方式4:第一信息包括:功率控制参数P 0、第一链路对应的路损补偿系数α。
第一节点根据如下公式确定第一发送功率P BH:
Figure PCTCN2019072239-appb-000004
其中,P CMAX是第一链路对应的下行传输最大功率,M BH是第一链路对应的下行带宽,Δ TF是预设的调制编码模式的修正量,PL是第一链路对应的路损测量值。这些参数的具体含义和方式3相同。
针对上述方式3和方式4,方式3为闭环功率控制方式,方式4为开环功率控制方式。需要注意的是,上述方式3和方式4中第一链路对应的路损测量值PL可以采用方式1中确定第一链路对应的路损测量值的方法确定,重复之处不再赘述。
此外,由于第二节点对其小区内的终端设备发送的上行信号的发送功率也会进行功率控制,上行功控参数包括P O_PUSCH,c(j)和α c(j),因此第二节点可以选择将回传链路下行功控参数(包括P 0和α)和接入链路上行功控参数(包括P O_PUSCH,c(j)和α c(j))都上报,此时需要在控制字段中对这两类参数进行区分。可选地,P 0=P O_PUSCH,c(j),α=α c(j),因此,第二节点只需要向第一节点上报一组取值即可。例如,第一信息包括P 0和α,第一节点默认回传链路下行功控参数和接入链路上行功控参数相同。
综上,通过上述四种方式,第一节点根据第一信息确定第一发送功率,作为回传链路下行信号的发送功率,从而避免了回传链路下行传输和接入链路上行传输或者下一跳回传链路上行传输之间的相互干扰。
应理解的是,在一种可能的设计中,第一发送功率与第一节点向第二节点发送参考信号或者控制信息时采用的功率相同或相差预设阈值。可选地,这里的参考信号的发送功率指的是EPRE。
这里的参考信号可以为以下至少一种:DMRS、跟踪参考信号(Tracking reference signal,TRS)、相位跟踪参考信号(Phase-tracking reference signals,PTRS)、用于CSI获取的CSI-RS。
可选的,这里的预设阈值是根据该参考信号的端口数量以及下行信息对应的传输流数确定的。
应理解的是,当第一节点配置了多个上述参考信号时,需要在配置信令里区分这些参考信号是否是在下行传输功率控制的时间资源单元传输,即该时间资源单元是否为回传链路下行传输和接入链路上行传输复用的时间资源单元。
此外,需要注意的是,用于波束测量的CSI-RS、用于移动性管理的CSI-RS、用于链路质量监控的CSI-RS的发送功率和与承载下行信息的信道不具有关联关系的信号的发送功率不采用第一发送功率。这些发送功率可以由第一节点直接配置。
因此,第一节点向第二节点发送的参考信号可以分为两类,一类是与承载下行信息的信道具有关联关系的信号,这类参考信号的发送功率与第一发送功率相同或相差预设阈值,能够有利于第二节点根据这类参考信号获得承载下行信息的信道的准确测量结果;另一类为与承载下行信息的信道不具有关联关系的信号,这类参考信号的发送功率不采用第一发送功率的原因在于,这类参考信号需要保证较好的信号覆盖度,最好不随意改动其发送功率,而第一节点对第一发送功率进行功率控制,因此第一发送功率可能会经常变动,且当第一发送功率过小时,可能无法满足这类参考信号的覆盖需求。
基于以上实施例,本申请实施例提供一种功率控制装置,如图5所示,该装置500包括:
接收单元501,用于接收第二节点发送的第一信息,所述第一信息用于确定第一发送功率,所述第一发送功率为所述装置通过第一链路向所述第二节点发送下行信息时采用的功率;所述第一链路为所述装置与所述第二节点之间的链路,所述装置为所述第二节点的上级设备;
处理单元502,用于根据所述第一信息确定所述第一发送功率。
在一种可能的设计中,所述第一信息包括参考接收功率或功率调整量。
在一种可能的设计中,所述第一信息包括:功率控制参数P 0、所述第一链路对应的路损补偿系数α和功率调整量;其中,所述功率调整量用于更新功率调整量的累积值f。
在一种可能的设计中,所述处理单元502,具体用于:
根据如下公式确定所述第一发送功率P BH:
Figure PCTCN2019072239-appb-000005
其中,P CMAX是所述第一链路对应的下行传输最大功率,M BH是所述第一链路对应的下行带宽,Δ TF是预设的调制编码模式的修正量,PL是所述第一链路对应的路损测量值。
在一种可能的设计中,所述第一信息包括:功率控制参数P 0、所述第一链路对应的路损补偿系数α。
在一种可能的设计中,所述处理单元502,具体用于:
根据如下公式确定所述第一发送功率P BH:
Figure PCTCN2019072239-appb-000006
其中,P CMAX是所述第一链路对应的下行传输最大功率,M BH是所述第一链路对应的下行带宽,Δ TF是预设的调制编码模式的修正量,PL是所述第一链路对应的路损测量值。
在一种可能的设计中,所述第一信息还包括:所述第一链路对应的路损测量值PL。
在一种可能的设计中,所述第一发送功率与所述装置向所述第二节点发送参考信号或者控制信息时采用的功率相同或相差预设阈值。
在一种可能的设计中,所述装置通过所述第一链路向所述第二节点发送下行信息采用的时间资源单元,与第三节点通过第二链路向所述第二节点发送上行信息采用的时间资源单元相同;
其中,所述第二链路为所述第二节点与所述第三节点之间的链路;所述第三节点为第二节点的下级节点或者终端设备。
可以理解的,关于图5的功率控制装置包括的功能模块的具体实现方式及相应的有益效果,可参考前述图4所示实施例的具体介绍,这里不赘述。
基于以上实施例,本申请实施例提供一种功率控制装置,如图6所示,该装置600包括:
处理单元601,用确定第一信息,所述第一信息用于确定第一发送功率,所述第一发送功率为所述第一节点通过第一链路向所述第二节点发送下行信息时采用的功率;所述第一链路为所述第一节点与所述第二节点之间的链路,所述第一节点为所述第二节点的上级设备;
发送单元602,用于向所述第一节点发送所述第一信息。
在一种可能的设计中,所述第一信息为参考接收功率或功率调整量。
在一种可能的设计中,所述第一信息包括:功率控制参数P 0、所述第一链路对应的路损补偿系数α和功率调整量;其中,所述功率调整量用于更新功率调整量的累积值f。
在一种可能的设计中,所述第一信息包括:功率控制参数P 0、所述第一链路对应的路损补偿系数α。
在一种可能的设计中,所述第一信息还包括:所述第一链路对应的路损测量值PL。
在一种可能的设计中,所述处理单元601,还用于:
更新预设多输入多输出MIMO配置参数;
根据更新后的预设MIMO配置参数,更新所述参考接收功率。
在一种可能的设计中,所述功率控制装置通过所述第一链路向所述第二节点发送下行信息采用的时间资源单元,与第三节点通过第二链路向所述第二节点发送上行信息采用的时间资源单元相同或部分重叠;
其中,所述第二链路为所述第二节点与所述第三节点之间的链路;所述第三节点为第二节点的下级节点或者终端设备。
可以理解的,关于图6的功率控制装置包括的功能块的具体实现方式及相应的有益效果,可参考前述图4所示实施例的具体介绍,这里不赘述。
应理解以上各个单元的划分仅仅是一种逻辑功能的划分,实际实现时可以全部或部分集成到一个物理实体上,也可以物理上分开。且这些单元可以全部以软件通过处理元件调用的形式实现;也可以全部以硬件的形式实现;还可以部分单元以软件通过处理元件调用的形式实现,部分单元以硬件的形式实现。在实现过程中,上述方法的各步骤或以上各个单元可以通过处理器元件中的硬件的集成逻辑电路或者软件形式的指令完成。
比如,在硬件实现上,上述处理单元可以为处理器或者处理电路等;发送单元可以为发送器或者发送电路等,接收单元可以为接收器或者接收电路等,发送单元和接收单元可以构成通信接口。
例如,以上这些单元可以是被配置成实施以上方法的一个或多个集成电路,例如:一个或多个特定集成电路(Application Specific Integrated Circuit,ASIC),或,一个或多个微处理器(digital signal processor,DSP),或,一个或者多个现场可编程门阵列(Field Programmable Gate Array,FPGA)等。再如,当以上某个单元通过处理元件调度程序的形式实现时,该处理元件可以是通用处理器,例如中央处理器(Central Processing Unit,CPU)或其它可以调用程序的处理器。再如,这些单元可以集成在一起,以片上系统(system-on-a-chip,SOC)的形式实现。
基于以上实施例,本申请实施例还提供了一种网络节点,可为如图4所示实施例中的第一节点或第二节点,参阅图7所示,所述网络设备700中包括:收发器701、处理器702、存储器703。其中,存储器703用于存储计算机程序;处理器702调用存储器703存储的计算机程序,通过收发器701执行上述如图4所示的方法。
可以理解的,上述图5和图6所示实施例中的功率控制装置可以以图7所示的网络节点700实现。网络节点700的结构并不构成对本申请实施例的限定。
在图7中,处理器702可以是CPU,网络处理器(network processor,NP),硬件芯片或者其任意组合。存储器703可以包括易失性存储器(volatile memory),例如随机存取存储器(random access memory,RAM);存储器也可以包括非易失性存储器(non-volatile memory),例如只读存储器(read-only memory,ROM),快闪存储器(flash memory),硬盘(hard disk drive,HDD)或固态硬盘(solid-state drive,SSD);存储器703还可以包括上述种类的存储器的组合。
本申请实施例还提供一种网络节点,该网络节点包括:处理器。
在本申请的实施例中,处理器用于对该网络节点的动作进行控制管理,例如,处理器用于支持上述图4所示实施例中网络节点确定第一发送功率的相关步骤等。可选的,该网络节点还可以包括存储器,通信接口。处理器、通信接口以及存储器可以相互连接或通过总线相互连接。其中,该存储器用于存储网络节点的代码和数据。通信接口用于支持该网络节点进行通信。
其中,处理器可以是中央处理器单元,通用处理器,数字信号处理器,专用集成电路,现场可编程门阵列或者其他可编程逻辑器件、晶体管逻辑器件、硬件部件或者其任意组合。其可以实现或执行结合本申请公开内容所描述的各种示例性的逻辑方框,模块和电路。处理器也可以是实现计算功能的组合,例如包含一个或多个微处理器组合,数字信号处理器和微处理器的组合等等。
综上所述,本申请实施例提供了针对回传链路下行信号传输进行功率控制的机制,可以减轻中继设备接收到的各个信号之间的干扰。其中,第一节点根据第二节点发送的第一信息确定第一发送功率,第一节点在通过第一链路向第二节点发送下行信息时采用第一发送功率,从而避免了回传链路下行传输和接入链路上行传输或者下一跳回传链路上行传输之间的相互干扰。
本领域内的技术人员应明白,本申请实施例可提供为方法、系统、或计算机程序产品。因此,本申请实施例可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的 实施例的形式。而且,本申请实施例可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。
本申请实施例是参照根据本申请实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
显然,本领域的技术人员可以对本申请实施例进行各种改动和变型而不脱离本申请的精神和范围。这样,倘若本申请实施例的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。

Claims (36)

  1. 一种功率控制方法,其特征在于,该方法包括:
    第一节点接收第二节点发送的第一信息,所述第一信息用于确定第一发送功率,所述第一发送功率为所述第一节点通过第一链路向所述第二节点发送下行信息时采用的功率;所述第一链路为所述第一节点与所述第二节点之间的链路,所述第一节点为所述第二节点的上级设备;
    所述第一节点根据所述第一信息确定所述第一发送功率。
  2. 如权利要求1所述的方法,其特征在于,所述第一信息包括参考接收功率或功率调整量。
  3. 如权利要求1所述的方法,其特征在于,所述第一信息包括:功率控制参数P 0、所述第一链路对应的路损补偿系数α和功率调整量;其中,所述功率调整量用于更新功率调整量的累积值f。
  4. 如权利要求3所述的方法,其特征在于,所述第一节点根据所述第一信息确定所述第一发送功率,包括:
    所述第一节点根据如下公式确定所述第一发送功率P BH:
    Figure PCTCN2019072239-appb-100001
    其中,P CMAX是所述第一链路对应的下行传输最大功率,M BH是所述第一链路对应的下行带宽,Δ TF是预设的调制编码模式的修正量,PL是所述第一链路对应的路损测量值。
  5. 如权利要求1所述的方法,其特征在于,所述第一信息包括:功率控制参数P 0、所述第一链路对应的路损补偿系数α。
  6. 如权利要求5所述的方法,其特征在于,所述第一节点根据所述第一信息确定所述第一发送功率,包括:
    所述第一节点根据如下公式确定所述第一发送功率P BH:
    Figure PCTCN2019072239-appb-100002
    其中,P CMAX是所述第一链路对应的下行传输最大功率,M BH是所述第一链路对应的下行带宽,Δ TF是预设的调制编码模式的修正量,PL是所述第一链路对应的路损测量值。
  7. 如权利要求4或6所述的方法,其特征在于,所述第一信息还包括:所述第一链路对应的路损测量值PL。
  8. 如权利要求1-7任一项所述的方法,其特征在于,所述第一发送功率与所述第一节点向所述第二节点发送参考信号或者控制信息时采用的功率相同或相差预设阈值。
  9. 如权利要求1-8任一项所述的方法,其特征在于,所述第一节点通过所述第一链路向所述第二节点发送下行信息采用的时间资源单元,与第三节点通过第二链路向所述第二节点发送上行信息采用的时间资源单元相同或部分重叠;
    其中,所述第二链路为所述第二节点与所述第三节点之间的链路;所述第三节点为第二节点的下级节点或者终端设备。
  10. 一种功率控制方法,其特征在于,该方法包括:
    所述第二节点确定第一信息,所述第一信息用于确定第一发送功率,所述第一发送功率为所述第一节点通过第一链路向所述第二节点发送下行信息时采用的功率;所述第一链路为所述第一节点与所述第二节点之间的链路,所述第一节点为所述第二节点的上级设备;
    所述第二节点向所述第一节点发送所述第一信息。
  11. 如权利要求10所述的方法,其特征在于,所述第一信息为参考接收功率或功率调整量。
  12. 如权利要求10所述的方法,其特征在于,所述第一信息包括:功率控制参数P 0、所述第一链路对应的路损补偿系数α和功率调整量;其中,所述功率调整量用于更新功率调整量的累积值f。
  13. 如权利要求10所述的方法,其特征在于,所述第一信息包括:功率控制参数P 0、所述第一链路对应的路损补偿系数α。
  14. 如权利要求12或13所述的方法,其特征在于,所述第一信息还包括:所述第一链路对应的路损测量值PL。
  15. 如权利要求11所述的方法,其特征在于,还包括:
    所述第二节点更新预设多输入多输出MIMO配置参数;
    所述第二节点根据更新后的预设MIMO配置参数,更新所述参考接收功率。
  16. 如权利要求10-15任一项所述的方法,其特征在于,所述第一节点通过所述第一链路向所述第二节点发送下行信息采用的时间资源单元,与第三节点通过第二链路向所述第二节点发送上行信息采用的时间资源单元相同或部分重叠;
    其中,所述第二链路为所述第二节点与所述第三节点之间的链路;所述第三节点为第二节点的下级节点或者终端设备。
  17. 一种功率控制装置,其特征在于,该装置包括:
    接收单元,用于接收第二节点发送的第一信息,所述第一信息用于确定第一发送功率,所述第一发送功率为所述装置通过第一链路向所述第二节点发送下行信息时采用的功率;所述第一链路为所述装置与所述第二节点之间的链路,所述装置为所述第二节点的上级设备;
    处理单元,用于根据所述第一信息确定所述第一发送功率。
  18. 如权利要求17所述的装置,其特征在于,所述第一信息包括参考接收功率或功率调整量。
  19. 如权利要求17所述的装置,其特征在于,所述第一信息包括:功率控制参数P 0、所述第一链路对应的路损补偿系数α和功率调整量;其中,所述功率调整量用于更新功率调整量的累积值f。
  20. 如权利要求19所述的装置,其特征在于,所述处理单元,具体用于:
    根据如下公式确定所述第一发送功率P BH:
    Figure PCTCN2019072239-appb-100003
    其中,P CMAX是所述第一链路对应的下行传输最大功率,M BH是所述第一链路对应的下行带宽,Δ TF是预设的调制编码模式的修正量,PL是所述第一链路对应的路损测量值。
  21. 如权利要求17所述的装置,其特征在于,所述第一信息包括:功率控制参数P 0、所述第一链路对应的路损补偿系数α。
  22. 如权利要求21所述的装置,其特征在于,所述处理单元,具体用于:
    根据如下公式确定所述第一发送功率P BH:
    Figure PCTCN2019072239-appb-100004
    其中,P CMAX是所述第一链路对应的下行传输最大功率,M BH是所述第一链路对应的下行带宽,Δ TF是预设的调制编码模式的修正量,PL是所述第一链路对应的路损测量值。
  23. 如权利要求19或21所述的装置,其特征在于,所述第一信息还包括:所述第一链路对应的路损测量值PL。
  24. 如权利要求17-23任一项所述的装置,其特征在于,所述第一发送功率与所述装置向所述第二节点发送参考信号或者控制信息时采用的功率相同或相差预设阈值。
  25. 如权利要求17-24任一项所述的装置,其特征在于,所述装置通过所述第一链路向所述第二节点发送下行信息采用的时间资源单元,与第三节点通过第二链路向所述第二节点发送上行信息采用的时间资源单元相同;
    其中,所述第二链路为所述第二节点与所述第三节点之间的链路;所述第三节点为第二节点的下级节点或者终端设备。
  26. 一种功率控制装置,其特征在于,该装置包括:
    处理单元,用确定第一信息,所述第一信息用于确定第一发送功率,所述第一发送功率为所述第一节点通过第一链路向所述第二节点发送下行信息时采用的功率;所述第一链路为所述第一节点与所述第二节点之间的链路,所述第一节点为所述第二节点的上级设备;
    发送单元,用于向所述第一节点发送所述第一信息。
  27. 如权利要求26所述的装置,其特征在于,所述第一信息为参考接收功率或功率调整量。
  28. 如权利要求26所述的装置,其特征在于,所述第一信息包括:功率控制参数P 0、所述第一链路对应的路损补偿系数α和功率调整量;其中,所述功率调整量用于更新功率调整量的累积值f。
  29. 如权利要求26所述的装置,其特征在于,所述第一信息包括:功率控制参数P 0、所述第一链路对应的路损补偿系数α。
  30. 如权利要求28或29所述的装置,其特征在于,所述第一信息还包括:所述第一链路对应的路损测量值PL。
  31. 如权利要求27所述的装置,其特征在于,所述处理单元,还用于:
    更新预设多输入多输出MIMO配置参数;
    根据更新后的预设MIMO配置参数,更新所述参考接收功率。
  32. 如权利要求26-31任一项所述的装置,其特征在于,所述功率控制装置通过所述第一链路向所述第二节点发送下行信息采用的时间资源单元,与第三节点通过第二链路向所述第二节点发送上行信息采用的时间资源单元相同或部分重叠;
    其中,所述第二链路为所述第二节点与所述第三节点之间的链路;所述第三节点为第二节点的下级节点或者终端设备。
  33. 一种通信系统,其特征在于,包括如权利要求17至25任一所述的装置、和如权利要求26至32任一所述的装置。
  34. 一种网络节点,其特征在于,所述网络节点包括收发器、处理器和存储器:所述存储器用于存储计算机程序;所述处理器调用所述存储器存储的计算机程序,通过所述收发器执行如权利要求1至16任一所述的方法。
  35. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质存储有计算机程序,当所述计算机程序在计算机上运行时,使得计算机执行如权利要求1至16任一所述的方法。
  36. 一种包含程序的计算机程序产品,其特征在于,当所述程序在计算机上运行时,使得计算机如权利要求1至16任一所述的方法。
PCT/CN2019/072239 2018-01-25 2019-01-17 一种功率控制方法及装置 WO2019144841A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP19743843.5A EP3720200A4 (en) 2018-01-25 2019-01-17 POWER CONTROL PROCESS AND APPARATUS
US16/918,775 US11457413B2 (en) 2018-01-25 2020-07-01 Power control method and apparatus
US17/942,957 US11871354B2 (en) 2018-01-25 2022-09-12 Power control method and apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810074307.4A CN110087296B (zh) 2018-01-25 2018-01-25 一种功率控制方法及装置
CN201810074307.4 2018-01-25

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/918,775 Continuation US11457413B2 (en) 2018-01-25 2020-07-01 Power control method and apparatus

Publications (1)

Publication Number Publication Date
WO2019144841A1 true WO2019144841A1 (zh) 2019-08-01

Family

ID=67395124

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/072239 WO2019144841A1 (zh) 2018-01-25 2019-01-17 一种功率控制方法及装置

Country Status (4)

Country Link
US (2) US11457413B2 (zh)
EP (1) EP3720200A4 (zh)
CN (2) CN114499604A (zh)
WO (1) WO2019144841A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021035462A1 (en) * 2019-08-26 2021-03-04 Qualcomm Incorporated Uplink beam determination in wireless communication system with full-duplex
WO2021035461A1 (en) * 2019-08-26 2021-03-04 Qualcomm Incorporated Downlink beam determination in wireless communication system with full-duplex
WO2021160150A1 (zh) * 2020-02-11 2021-08-19 维沃移动通信有限公司 Iab网络的复用调度方法和iab节点
AU2019266680B2 (en) * 2018-05-11 2022-06-02 Vivo Mobile Communication Co., Ltd. Wireless communication methods and apparatuses, and network device

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11477795B2 (en) * 2019-12-09 2022-10-18 Qualcomm Incorporated IAB power configuration
CN116600376A (zh) * 2020-01-23 2023-08-15 维沃移动通信有限公司 发送功率配置方法、iab节点、基站及存储介质
CN113453339B (zh) * 2020-03-24 2023-04-07 维沃移动通信有限公司 功率调整方法及节点设备
KR20220046968A (ko) * 2020-10-08 2022-04-15 삼성전자주식회사 무선 통신 시스템에서 iab 노드의 전력 제어를 위한 방법 및 장치
CN114531693A (zh) * 2020-11-02 2022-05-24 维沃移动通信有限公司 传输参数管理方法、装置及电子设备
US11778505B1 (en) * 2020-11-03 2023-10-03 Sprint Spectrum Lp Prioritization of relay data packets
CN115767701A (zh) * 2021-09-03 2023-03-07 维沃移动通信有限公司 下行链路发送功率控制方法及装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103916901A (zh) * 2012-12-31 2014-07-09 华为技术有限公司 功率控制的方法和基站
CN105530692A (zh) * 2014-10-27 2016-04-27 中兴通讯股份有限公司 一种下行发送功率控制的方法和装置
US20170086147A1 (en) * 2015-09-23 2017-03-23 Futurewei Technologies, Inc. Methods and Systems for Downlink Transmit Power Control Command Transmission
CN107005942A (zh) * 2014-12-23 2017-08-01 华为技术有限公司 功率分配方法和通信设备
CN107548144A (zh) * 2017-10-23 2018-01-05 中国联合网络通信集团有限公司 一种应用于NB‑IoT的下行功率控制方法及设备

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8437798B2 (en) * 2009-04-27 2013-05-07 Motorola Mobility Llc Uplink scheduling support in multi-carrier wireless communication systems
CN102859900B (zh) 2010-04-22 2016-02-03 Lg电子株式会社 用于基站与中继站之间的无线链路的信道估计的方法和设备
CN102281571B (zh) * 2010-06-11 2015-01-14 电信科学技术研究院 一种功率控制的方法和设备
US9491766B2 (en) * 2010-12-08 2016-11-08 Nokia Technologies Oy Device-to-device communication scenario
CN102811478B (zh) * 2011-05-31 2016-03-30 华为技术有限公司 一种路损补偿方法和基站及用户设备
CN103444237A (zh) * 2011-08-12 2013-12-11 富士通株式会社 一种上行功率控制方法和装置
CN103945504B (zh) * 2013-01-18 2017-10-17 华为技术有限公司 功率控制方法及设备
US9603100B2 (en) * 2013-05-09 2017-03-21 Sharp Kabushiki Kaisha Terminal device, communication method, and integrated circuit
EP3244665B1 (en) * 2015-01-30 2019-11-06 Huawei Technologies Co., Ltd. Power control method and device
US10432345B2 (en) * 2015-03-23 2019-10-01 Lg Electronics Inc. Method and device for transmitting and receiving data using non-orthogonal multiple access in wireless communication system
KR102209642B1 (ko) * 2016-02-24 2021-01-29 노키아 솔루션스 앤드 네트웍스 오와이 업링크 송신 전력 제어
US10206232B2 (en) * 2016-09-29 2019-02-12 At&T Intellectual Property I, L.P. Initial access and radio resource management for integrated access and backhaul (IAB) wireless networks
US10827499B2 (en) * 2017-10-30 2020-11-03 Qualcomm Incorporated Techniques and apparatuses for prioritization for transmission power control in 5G
US10708089B2 (en) * 2017-11-17 2020-07-07 Qualcomm Incorporated Method for a UE for requesting a channel state information reference signal (CSI-RS) or a sounding reference signal (SRS)

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103916901A (zh) * 2012-12-31 2014-07-09 华为技术有限公司 功率控制的方法和基站
CN105530692A (zh) * 2014-10-27 2016-04-27 中兴通讯股份有限公司 一种下行发送功率控制的方法和装置
CN107005942A (zh) * 2014-12-23 2017-08-01 华为技术有限公司 功率分配方法和通信设备
US20170086147A1 (en) * 2015-09-23 2017-03-23 Futurewei Technologies, Inc. Methods and Systems for Downlink Transmit Power Control Command Transmission
CN107548144A (zh) * 2017-10-23 2018-01-05 中国联合网络通信集团有限公司 一种应用于NB‑IoT的下行功率控制方法及设备

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3720200A4

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2019266680B2 (en) * 2018-05-11 2022-06-02 Vivo Mobile Communication Co., Ltd. Wireless communication methods and apparatuses, and network device
US11523348B2 (en) 2018-05-11 2022-12-06 Vivo Mobile Communication Co., Ltd. Wireless communication method and device, and network device
US11800457B2 (en) 2018-05-11 2023-10-24 Vivo Mobile Communication Co., Ltd. Wireless communication method and device, and network device
WO2021035462A1 (en) * 2019-08-26 2021-03-04 Qualcomm Incorporated Uplink beam determination in wireless communication system with full-duplex
WO2021035461A1 (en) * 2019-08-26 2021-03-04 Qualcomm Incorporated Downlink beam determination in wireless communication system with full-duplex
CN114365554A (zh) * 2019-08-26 2022-04-15 高通股份有限公司 具有全双工的无线通信系统中的下行链路波束确定
CN114667770A (zh) * 2019-08-26 2022-06-24 高通股份有限公司 具有全双工的无线通信系统中的上行链路波束确定
WO2021160150A1 (zh) * 2020-02-11 2021-08-19 维沃移动通信有限公司 Iab网络的复用调度方法和iab节点

Also Published As

Publication number Publication date
EP3720200A4 (en) 2021-02-24
CN110087296A (zh) 2019-08-02
US20230059595A1 (en) 2023-02-23
CN110087296B (zh) 2021-12-10
US11457413B2 (en) 2022-09-27
EP3720200A1 (en) 2020-10-07
CN114499604A (zh) 2022-05-13
US20200336986A1 (en) 2020-10-22
US11871354B2 (en) 2024-01-09

Similar Documents

Publication Publication Date Title
WO2019144841A1 (zh) 一种功率控制方法及装置
US10932235B2 (en) System and method for virtual multi-point transceivers
US20230362911A1 (en) System and Method for Indicating Wireless Channel Status
US10951381B2 (en) CSI reference resource definition for CSI report in NR
JP7151796B2 (ja) 複数のtrp送信/パネルに用いられるcsiレポーティング
US10200890B2 (en) Methods for aperiodic CSI report triggering for flexible subframes in LTE TDD eIMTA systems with dynamic UL-DL reconfiguration
CN113273251B (zh) 用于探测参考信号传输和接收的设备、网络和方法
WO2019158064A1 (zh) 传输探测参考信号的方法和装置
CN115668852A (zh) 用于到多个传输和接收点(trp)的同时传输的方法和装置
WO2018228535A1 (zh) 传输方法、网络设备和终端
EP3378258B1 (en) Power control in a wireless network
US20230216635A1 (en) Method for transmitting srs for plurality of uplink bands in wireless communication system, and apparatus therefor
CN115053469A (zh) 关于多个发送/接收点的信道状态信息的增强
WO2019138380A1 (en) Signaling in rrc and mac for pdsch resource mapping for periodic and semipersistent reference signal assumptions
US20220360309A1 (en) Cqi saturation mitigation in downlink massive mu-mimo systems
TWI554065B (zh) Communication Information Exchange Device and Method in Multi - point Collaboration
KR102512319B1 (ko) 무선 통신 시스템에서 간섭 제어 방법 및 장치
CN104768166A (zh) 适于协同多点传输的天线校准的装置及方法
KR20200020725A (ko) 무선 통신 방법 및 장치
WO2018018355A1 (en) Determination of feedback timing
US20230291524A1 (en) Methods and apparatus for channel state measurement and reporting
WO2022126575A1 (en) Method and apparatus for reporting channel state information (csi)
US20230300819A1 (en) Uplink scheduling coordination for dual connectivity networking
JP2024513019A (ja) Csiフィードバック方法、関連装置及び可読記憶媒体
WO2024008273A1 (en) Calibration between access points in a distributed multiple-input multiple-output network operating in time-division duplexing mode

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19743843

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019743843

Country of ref document: EP

Effective date: 20200629

NENP Non-entry into the national phase

Ref country code: DE