WO2019144825A1 - 二次电池 - Google Patents

二次电池 Download PDF

Info

Publication number
WO2019144825A1
WO2019144825A1 PCT/CN2019/071604 CN2019071604W WO2019144825A1 WO 2019144825 A1 WO2019144825 A1 WO 2019144825A1 CN 2019071604 W CN2019071604 W CN 2019071604W WO 2019144825 A1 WO2019144825 A1 WO 2019144825A1
Authority
WO
WIPO (PCT)
Prior art keywords
secondary battery
pole
electrode assembly
top cover
ntc thermistor
Prior art date
Application number
PCT/CN2019/071604
Other languages
English (en)
French (fr)
Inventor
邱志军
Original Assignee
宁德时代新能源科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宁德时代新能源科技股份有限公司 filed Critical 宁德时代新能源科技股份有限公司
Publication of WO2019144825A1 publication Critical patent/WO2019144825A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to the field of power batteries, and more particularly to a secondary battery.
  • the power battery is mainly heated by an external heater, for example, an external heating film is disposed outside the power battery pack, and the secondary battery is directly heated by the heating film; or the power battery pack is heated by heating the liquid in the liquid system. Indirect heating.
  • an external heater for example, an external heating film is disposed outside the power battery pack, and the secondary battery is directly heated by the heating film; or the power battery pack is heated by heating the liquid in the liquid system. Indirect heating.
  • the method of rapidly heating the secondary battery is mainly to add a metal heating piece to the secondary battery, and change the battery from two tabs to four tabs. Since it is necessary to add a heating sheet inside the electrode assembly of the secondary battery, although the heating rate and the energy use efficiency are high, it is easy to introduce impurities, which causes the self-discharge of the battery to be intensified or even an internal short-circuit to cause a battery safety risk. Moreover, the above method needs to introduce a new heating circuit, which increases the design and manufacturing difficulty of the control system.
  • Another object of the present invention is to provide a secondary battery which simplifies the design and manufacturing difficulty of the heating system.
  • the present invention provides a secondary battery comprising: a top cover assembly comprising: a top cover sheet and first and second poles of opposite polarity; an electrode assembly, an electrode assembly a first tab and a second tab having opposite polarity; the secondary battery further comprising: a first NTC thermistor connected in series between the first pole of the cap assembly and the first tab of the electrode assembly; a second NTC thermistor connected in series between the second pole of the top cover assembly and the second pole of the electrode assembly; a first electrical connector; a control switch capable of being placed on the top cover based on temperature switching of the secondary battery On-chip, both ends of the control switch are respectively connected to the first NTC thermistor and the second NTC thermistor through the first electrical connection to connect the control switch and the electrode assembly in parallel.
  • the beneficial effects of the present invention are as follows: in the process of charging the external battery of the secondary battery of the present invention, when the temperature of the secondary battery is lower than the operating temperature, the control switch is closed, and at this time, the control switch is close to being a conductor, and the electrode assembly At low temperature, the internal resistance is large, close to the open circuit, and the control switch is connected in parallel with the electrode assembly. Therefore, the charging current mainly passes through the charger positive pole, the first pole, the first NTC thermistor, the control switch, and the second NTC heat.
  • the varistor and the second pole return to the negative pole of the charger to form a loop, and the current flowing through the electrode assembly is substantially zero, which effectively prevents the current flowing through the electrode assembly from being too high at a low temperature, so that the secondary battery is overcharged and the lithium crystal is precipitated.
  • Short-circuiting occurs through the diaphragm in the electrode assembly, and the current flowing causes the first NTC thermistor and the second NTC thermistor to heat, and then transfers heat to the electrode assembly through the first tab and the second tab, respectively. Part to achieve the purpose of heating; when the temperature of the secondary battery reaches the operating temperature, the control switch is turned off and the heating is stopped.
  • the secondary battery is subjected to pulse short-circuit discharge, and when the temperature of the secondary battery is lower than the operating temperature, the control switch is closed, and the discharge current passes through the positive electrode of the electrode assembly, the first NTC thermal The resistor flows through the control switch and the second NTC thermistor returns to the negative electrode of the electrode assembly to form a loop.
  • the current flowing causes the first NTC thermistor and the second NTC thermistor to be heated, and then transfers heat to the respective portions of the electrode assembly through the first tab and the second tab, respectively, thereby achieving the purpose of heating;
  • the temperature of the secondary battery reaches the operating temperature, turn off the control switch and stop heating.
  • the relationship between the resistance and temperature of the NTC thermistor is negatively correlated.
  • the resistance is large, so the first NTC thermistor and the second NTC thermistor can be rapidly heated with only a small current. Heat is further transferred to the respective portions of the electrode assembly through the first tab and the second tab, thereby achieving rapid heating and improving energy efficiency.
  • the secondary battery of the present invention simplifies the design and manufacturing difficulty of the heating system compared to the rapid heating in the prior art.
  • Figure 1 is a schematic view of a secondary battery according to the present invention.
  • FIG. 2 is a schematic view showing a charging process of a secondary battery according to the present invention.
  • Figure 3 is a schematic view showing a discharge process of a secondary battery according to the present invention.
  • Figure 4 is a graph showing the temperature of a secondary battery according to the present invention during discharge
  • Figure 5 is a graph showing resistance-temperature characteristics of a first NTC thermistor and a second NTC thermistor of a secondary battery according to the present invention
  • Figure 6 is a graph showing the temperature of a secondary battery according to the present invention during charging.
  • a secondary battery includes: a top cover assembly 1 including a top cover sheet 11 and first and second poles 12 and 13 of opposite polarity; electrode assembly 2 The electrode assembly 2 has a first tab 21 and a second tab 22 that are opposite in polarity; the secondary battery further includes: a first NTC thermistor 3, a first pole 12 and an electrode assembly connected in series to the cap assembly 1 2 between the first tabs 21; a second NTC thermistor 4, connected in series between the second pole 13 of the cap assembly 1 and the second tab 22 of the electrode assembly 2; the first electrical connector 5;
  • the control switch 6 can be disposed on the top cover sheet 11 based on the temperature switching of the secondary battery, and both ends of the control switch 6 are respectively connected to the first NTC thermistor 3 and the second NTC heat through the first electrical connection member 5
  • the varistor 4 is such that the control switch 6 is connected in parallel with the electrode assembly 2.
  • the charging current mainly flows through the charger positive electrode, the first pole 12, and the first NTC thermistor 3,
  • the control switch 6, the second NTC thermistor 4, and the second pole 13 return to the negative electrode of the charger to form a loop, and the current flowing through the electrode assembly 2 is substantially zero, effectively preventing the current flowing through the electrode assembly 2 at a low temperature.
  • the secondary battery is overcharged to precipitate lithium crystals, pierces the separator (not shown) in the electrode assembly 2, and short-circuits, and the current flowing causes the first NTC thermistor 3 and the second NTC thermistor 4 to be heated.
  • the secondary battery performs pulse short-circuit discharge, and when the temperature of the secondary battery is lower than the operating temperature, the control switch 6 is closed, and the discharge current passes through the electrode assembly.
  • the positive electrode of 2, the first NTC thermistor 3, the control switch 6, and the second NTC thermistor 4 return to the negative electrode of the electrode assembly 2 to form a loop.
  • the current flowing causes the first NTC thermistor 3 and the second NTC thermistor 4 to be heated, and then transfers heat to the respective portions of the electrode assembly 2 through the first tab 21 and the second tab 22, respectively, thereby heating Purpose; when the temperature of the secondary battery reaches the operating temperature, the control switch 6 is turned off, and the heating is stopped.
  • the relationship between the resistance and temperature of the NTC thermistor is negatively correlated. When the temperature is low, the resistance is large, so the first NTC thermistor 3 and the second NTC thermistor 4 can be quickly required with only a small current. Heating, further transferring heat to the respective portions of the electrode assembly 2 through the first tab 21 and the second tab 22, thereby achieving rapid heating and improving energy efficiency.
  • the secondary battery of the present invention simplifies the design and manufacturing difficulty of the heating system compared to the rapid heating in the prior art.
  • the ternary battery operating at a temperature of 30 ° C at an ambient temperature of 30 ° C and a mass of 980 g is 0 ° C.
  • the NTC thermistor with a resistance-temperature characteristic as shown in FIG. 5 is used, and the battery is discharged.
  • the control switch 6 is closed, and the battery is subjected to pulse discharge heating, and the cut-off voltage of the pulse discharge is 2.5 V.
  • the control switch 6 can be turned off.
  • the temperature curve of the battery is shown in Figure 4.
  • the resistance of the NTC thermistor continues to decrease, and the pulse discharge current of the battery continues to increase, thereby further increasing the heat output power of the NTC thermistor.
  • Speed up the temperature rise of the battery It can be seen from Fig. 4 that the temperature rise of the battery increases with the pulse discharge time, and the average temperature rise rate is about 7.2 ° C / min. Since the resistance of the NTC thermistor above 0 ° C is close to 0, when the temperature is greater than 0 The energy flowing through the NTC thermistor at °C is close to zero, which increases energy efficiency.
  • the control switch 6 When the battery is in the charging process, when the operating temperature of the battery is lower than 0 ° C, the control switch 6 is closed; when the battery temperature reaches 0 ° C, the control switch 6 is turned off, the temperature curve of the battery is as shown in FIG. 6, and when discharging The circuit is different, in which case the electrode assembly 2 and the control switch 6 are in a parallel relationship. When the battery temperature reaches 0 ° C, the control switch 6 can be turned off at this time, and the charger charges the electrode assembly 2.
  • the battery temperature curve is shown in Figure 6. Since the resistance of the NTC thermistor above 0 °C is close to zero, the energy flowing through the NTC thermistor is close to zero when the temperature is greater than 0 °C, thereby improving energy efficiency. In the selection of the NTC thermistor, it is necessary to select according to the operating temperature of the secondary battery and the application scenario.
  • the first NTC thermistor 3 is soldered between the first pole 12 of the top cover assembly 1 and the first pole 21 of the electrode assembly 2; the second NTC thermistor 4 is soldered to the top cover assembly 1.
  • the second pole 13 is between the second pole 22 of the electrode assembly 2.
  • the welding method may be laser welding or ultrasonic welding.
  • the secondary battery further includes an insulating frame 7 disposed under the top cover sheet 11; and a first electrical connector 5 disposed on the insulating frame 7.
  • the connection of the first electrical connector 5 to the control switch 6, the first NTC thermistor 3 and the second NTC thermistor 4 can be docked by a push-in connector, so that the plug can be installed only when the insulating frame 7 is mounted, and the installation is simple and easy. No increase in the process.
  • the insulating frame 7 is formed with a recessed recess 71 at a portion opposed to the control switch 6 for protecting the control switch 6 from being pressed by the electrode assembly 2.
  • the secondary battery further includes a second conductive connecting member 8 for connecting the control switch 6 and an external device.
  • the external device is a BMS (Battery Management System).
  • BMS Battery Management System
  • the control switch 6 is controlled by an external device to achieve closing and opening, for example, controlled by an external BMS, and the BMS controls the on and off of the control switch 6 by parameters such as temperature, current, and voltage.
  • the passive control strategy is adopted, that is, it is not controlled by the external device, the second conductive connector 8 may not be provided.
  • the first electrical connector 5 and the second electrical connector 8 in FIG. 1 may be a wire, a wire or a metal strip, for example, an aluminum tape or an aluminum wire, preferably integrated with a fuse function to protect the secondary battery.
  • the control switch 6 of Figure 1 can be a temperature sensitive switch.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Secondary Cells (AREA)
  • Battery Mounting, Suspending (AREA)

Abstract

一种二次电池,其包括:顶盖组件(1),顶盖组件(1)包括:顶盖片(11)以及电极性相反的第一极柱(12)和第二极柱(13);电极组件(2),电极组件(2)具有电极性相反的第一极耳(21)和第二极耳(22);二次电池还包括:第一NTC热敏电阻(3),串联在顶盖组件(1)的第一极柱(12)和电极组件(2)的第一极耳(21)之间;第二NTC热敏电阻(4),串联在顶盖组件(1)的第二极柱(13)和电极组件(2)的第二极耳(22)之间;第一电连接件(5);控制开关(6),能够基于二次电池的温度通断,设置在顶盖片(11)上,控制开关(6)的两端通过第一电连接件(5)分别连接于第一NTC热敏电阻(3)和第二NTC热敏电阻(4)以使控制开关(6)与电极组件(2)并联。该二次电池能够实现快速加热且提高能量效率,此外简化了现有技术中的快速加热的加热系统的设计和制造难度。

Description

二次电池 技术领域
本发明涉及动力电池领域,尤其涉及一种二次电池。
背景技术
目前对动力电池加热主要采用外置加热器的方法,例如在动力电池组的外面外置加热膜,采用加热膜对二次电池直接进行加热;或者通过加热液体系统中的液体对动力电池组进行间接加热。
目前不论是外置加热膜还是采用液式加热,其加热效率和能量使用效率均不高。而快速加热二次电池的方法主要是在二次电池中加入金属加热片,将电池由两个极耳更改为四个极耳。由于需要在二次电池的电极组件内部加入加热片,虽然其加热速率和能量使用效率较高,但是容易引入杂质造成电池自放电加剧甚至形成内短路引发电池安全风险。且上述方法需要引入新的加热电路,增加了控制系统的设计和制造难度。
发明内容
鉴于现有技术存在的缺陷,本发明的目的在于提供一种二次电池,其能够实现快速加热且提高能量效率。
本发明的另一目的在于提供一种二次电池,其能简化加热系统的设计和制造难度。
为了实现上述目的,本发明提供了一种二次电池,其包括:顶盖组件,顶盖组件包括:顶盖片以及电极性相反的第一极柱和第二极柱;电极组件,电极组件具有电极性相反的第一极耳和第二极耳;二次电池还包括:第一NTC热敏电阻,串联在顶盖组件的第一极柱和电极组件的第一极耳之间;第二NTC热敏电阻,串联在顶盖组件的第二极柱和电极组件的第二极耳之间;第一电连接件;控制开关,能够基于二次电池的温度通断,设置在顶盖片上,控制开关的两端通过第一电连接件分别连接于第一NTC热敏电阻和第二 NTC热敏电阻以使控制开关与电极组件并联。
本发明的有益效果如下:在本发明的二次电池外接充电器进行充电的过程中,当二次电池的温度低于工作温度时,闭合控制开关,此时控制开关接近为导体,而电极组件在低温时的内阻较大,接近断路,控制开关与电极组件并联,所以,充电电流主要通过充电器正极、第一极柱、第一NTC热敏电阻,流经控制开关、第二NTC热敏电阻、第二极柱回到充电器负极形成回路,而流经电极组件的电流基本为0,有效防止在低温时流经电极组件的电流过大使二次电池过充而析锂结晶,刺穿电极组件中的隔膜而发生短路,流经的电流使第一NTC热敏电阻和第二NTC热敏电阻加热,而后分别通过第一极耳和第二极耳将热量传递给电极组件的各部分,从而达到加热的目的;当二次电池的温度达到工作温度时,断开控制开关,停止加热。在本发明的二次电池放电的过程中,二次电池进行脉冲式短路放电,当二次电池的温度低于工作温度时,闭合控制开关,放电电流通过电极组件的正极、第一NTC热敏电阻,流经控制开关、第二NTC热敏电阻回到电极组件的负极形成回路。流经的电流使第一NTC热敏电阻和第二NTC热敏电阻加热,而后分别通过第一极耳和第二极耳将热量传递给电极组件的各部分,从而达到加热的目的;当二次电池的温度达到工作温度时,断开控制开关,停止加热。NTC热敏电阻的电阻和温度的关系呈负相关,在温度较低时,电阻较大,因此仅需较小的电流就可对第一NTC热敏电阻和第二NTC热敏电阻快速加热,进一步通过第一极耳和第二极耳将热量传递给电极组件的各个部分,从而实现快速加热且提高能量效率。此外,相比现有技术中的快速加热,本发明的二次电池简化了加热系统的设计和制造难度。
附图说明
图1是根据本发明的二次电池的示意图;
图2是根据本发明的二次电池的充电过程的示意图;
图3是根据本发明的二次电池的放电过程的示意图;
图4是根据本发明的二次电池在放电过程中的温度曲线图;
图5是根据本发明的二次电池的第一NTC热敏电阻和第二NTC热敏电阻的电阻-温度特性曲线图;
图6是根据本发明的二次电池在充电过程中的温度曲线图。
其中,附图标记说明如下:
1顶盖组件                      3第一NTC热敏电阻
11顶盖片                       4第二NTC热敏电阻
12第一极柱                     5第一电连接件
13第二极柱                     6控制开关
2电极组件                      7绝缘框
21第一极耳                     71凹部
22第二极耳                     8第二电连接件
具体实施方式
下面参照附图来详细说明根据本发明的二次电池。
参照图1至图3,根据本发明的二次电池包括:顶盖组件1,顶盖组件1包括顶盖片11以及电极性相反的第一极柱12和第二极柱13;电极组件2,电极组件2具有电极性相反的第一极耳21和第二极耳22;二次电池还包括:第一NTC热敏电阻3,串联在顶盖组件1的第一极柱12和电极组件2的第一极耳21之间;第二NTC热敏电阻4,串联在顶盖组件1的第二极柱13和电极组件2的第二极耳22之间;第一电连接件5;控制开关6,能够基于二次电池的温度通断,设置在顶盖片11上,控制开关6的两端通过第一电连接件5分别连接于第一NTC热敏电阻3和第二NTC热敏电阻4以使控制开关6与电极组件2并联。
在本发明的二次电池外接充电器进行充电的过程中,参照图1和图2,当二次电池的温度低于工作温度时,闭合控制开关6,此时控制开关6接近为导体,而电极组件2在低温时的内阻较大,接近断路,控制开关6与电极组件2并联,所以,充电电流主要通过充电器正极、第一极柱12、第一NTC热敏电阻3,流经控制开关6、第二NTC热敏电阻4、第二极柱13回到充电器负极形成回路,而流经电极组件2的电流基本为0,有效防止在低温时流经电极组件2的电流过大使二次电池过充而析锂结晶,刺穿电极组件2中的隔膜(未示出)而发生短路,流经的电流使第一NTC热敏电阻3和第二NTC 热敏电阻4加热,而后分别通过第一极耳21和第二极耳22将热量传递给电极组件2的各部分,从而达到加热的目的;当二次电池的温度达到工作温度时,断开控制开关6,停止加热。在本发明的二次电池放电的过程中,参照图1和图3,二次电池进行脉冲式短路放电,当二次电池的温度低于工作温度时,闭合控制开关6,放电电流通过电极组件2的正极、第一NTC热敏电阻3,流经控制开关6、第二NTC热敏电阻4回到电极组件2的负极形成回路。流经的电流使第一NTC热敏电阻3和第二NTC热敏电阻4加热,而后分别通过第一极耳21和第二极耳22将热量传递给电极组件2的各部分,从而达到加热的目的;当二次电池的温度达到工作温度时,断开控制开关6,停止加热。NTC热敏电阻的电阻和温度的关系呈负相关,在温度较低时,电阻较大,因此仅需较小的电流就可对第一NTC热敏电阻3和第二NTC热敏电阻4快速加热,进一步通过第一极耳21和第二极耳22将热量传递给电极组件2的各个部分,从而实现快速加热且提高能量效率。此外,相比现有技术中的快速加热,本发明的二次电池简化了加热系统的设计和制造难度。
在一实施例中,处于环境温度为零下30℃、质量为980g的62Ah的三元电池工作温度为0℃,采用如图5所示的电阻-温度特性的NTC热敏电阻,在电池处于放电过程中,当电池的工作温度低于0℃时,闭合控制开关6,对电池进行脉冲式放电加热,脉冲放电的截止电压为2.5V,当电池温度达到0℃时即可断开控制开关6。电池的温度曲线如图4所示,随着电池的温度上升,NTC热敏电阻的电阻持续下降,电池的脉冲放电电流也持续增大,进而使NTC热敏电阻的产热功率持续增加,进一步加快电池的温升。从图4可以看出,电池的温升随着脉冲放电时间不断增加,平均温升速率约为7.2℃/min,由于NTC热敏电阻在0℃以上的电阻接近于0,因此当温度大于0℃时电流流经NTC热敏电阻的能耗接近于0,从而提高能量效率。
在电池处于充电过程中,当电池的工作温度低于0℃时,闭合控制开关6;当电池温度达到0℃时,断开控制开关6,电池的温度曲线如图6所示,与放电时的电路不同,此时电极组件2与控制开关6为并联关系。当电池温度达到0℃时,此时即可断开控制开关6,充电器对电极组件2进行充电。电池的温度曲线如图6所示。由于NTC热敏电阻在0℃以上的电阻接近于0,因此当温度大于0℃时电流流经NTC热敏电阻的能耗接近于0,从而提高能 量效率。在NTC热敏电阻的选型方面,需要根据二次电池的工作温度和应用场景来选择。
参照图1,第一NTC热敏电阻3焊接于顶盖组件1的第一极柱12和电极组件2的第一极耳21之间;第二NTC热敏电阻4焊接于顶盖组件1的第二极柱13和电极组件2的第二极耳22之间。其中,焊接方式可以是激光焊接或超声焊接。
如图1所示,二次电池还包括:绝缘框7,设置在顶盖片11的下方;第一电连接件5设置在绝缘框7上。第一电连接件5与控制开关6、第一NTC热敏电阻3和第二NTC热敏电阻4的连接可采用快插接头对接,这样只需在安装绝缘框7时安装插头,安装简便且不会增加工序。
如图1所示,绝缘框7在与控制开关6相对的部位形成有下陷的凹部71,用以保护控制开关6不受电极组件2的挤压。
如图1所示,二次电池还包括:第二导电连接件8,用于连接控制开关6和外部装置。外部装置为BMS(电池管理系统,Battery Management System)。当采用主动控制策略时,控制开关6受外部设备控制来实现闭合和断开,例如受外部的BMS控制而通讯,BMS通过温度、电流和电压等参数来控制控制开关6的通断。而当采用被动控制策略时,即不受外部设备控制,可以不设置第二导电连接件8。
图1中的第一电连接件5和第二电连接件8可为导线、金属丝或金属带,例如可为铝带或铝丝,优选地集成有fuse(保险丝)功能,以保护二次电池。
图1中的控制开关6可为温敏开关。

Claims (10)

  1. 一种二次电池,包括:
    顶盖组件(1),包括:
    顶盖片(11);
    电极性相反的第一极柱(12)和第二极柱(13);
    电极组件(2),具有电极性相反的第一极耳(21)和第二极耳(22);
    其特征在于,二次电池还包括:
    第一NTC热敏电阻(3),串联在顶盖组件(1)的第一极柱(12)和电极组件(2)的第一极耳(21)之间;
    第二NTC热敏电阻(4),串联在顶盖组件(1)的第二极柱(13)和电极组件(2)的第二极耳(22)之间;
    第一电连接件(5);
    控制开关(6),能够基于二次电池的温度通断,设置在顶盖片(11)上,控制开关(6)的两端通过第一电连接件(5)分别连接于第一NTC热敏电阻(3)和第二NTC热敏电阻(4)以使控制开关(6)与电极组件(2)并联。
  2. 根据权利要求1所述的二次电池,其特征在于,
    第一NTC热敏电阻(3)焊接于顶盖组件(1)的第一极柱(12)和电极组件(2)的第一极耳(21)之间;
    第二NTC热敏电阻(4)焊接于顶盖组件(1)的第二极柱(13)和电极组件(2)的第二极耳(22)之间。
  3. 根据权利要求1所述的二次电池,其特征在于,二次电池还包括:
    绝缘框(7),设置在顶盖片(11)的下方。
  4. 根据权利要求3所述的二次电池,其特征在于,第一电连接件(5)设置在绝缘框(7)上。
  5. 根据权利要求3所述的二次电池,其特征在于,绝缘框(7)在与控制开关(6)相对的部位形成有下陷的凹部(71)。
  6. 根据权利要求1所述的二次电池,其特征在于,二次电池还包括:
    第二导电连接件(8),用于连接控制开关(6)和外部装置。
  7. 根据权利要求6所述的二次电池,其特征在于,外部装置为BMS。
  8. 根据权利要求1所述的二次电池,其特征在于,第一电连接件(5)为导线、金属丝或金属带。
  9. 根据权利要求6所述的二次电池,其特征在于,第二电连接件(8)为导线、金属丝或金属带。
  10. 根据权利要求1所述的二次电池,其特征在于,控制开关(6)为温敏开关。
PCT/CN2019/071604 2018-01-26 2019-01-14 二次电池 WO2019144825A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201820134487.6 2018-01-26
CN201820134487.6U CN207967201U (zh) 2018-01-26 2018-01-26 二次电池

Publications (1)

Publication Number Publication Date
WO2019144825A1 true WO2019144825A1 (zh) 2019-08-01

Family

ID=63735231

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/071604 WO2019144825A1 (zh) 2018-01-26 2019-01-14 二次电池

Country Status (2)

Country Link
CN (1) CN207967201U (zh)
WO (1) WO2019144825A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113270694A (zh) * 2021-05-27 2021-08-17 珠海冠宇电池股份有限公司 极耳组件和电芯

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN207967201U (zh) * 2018-01-26 2018-10-12 宁德时代新能源科技股份有限公司 二次电池
CN109786880B (zh) * 2019-01-23 2023-11-10 成都市银隆新能源产业技术研究有限公司 一种测试电池内部温度的方法
CN113937424A (zh) * 2020-06-28 2022-01-14 Oppo广东移动通信有限公司 电芯组件、电池组件及电子设备
CN113745769A (zh) * 2021-08-19 2021-12-03 新余赣锋电子有限公司 一种高安全性的电池

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000030719A (ja) * 1998-07-08 2000-01-28 Asahi Optical Co Ltd 電池温度制御回路
CN103515671A (zh) * 2013-09-11 2014-01-15 江苏春兰清洁能源研究院有限公司 一种带电加热的动力电池模块
CN104916848A (zh) * 2015-05-05 2015-09-16 哈尔滨天宝石墨科技发展有限公司 提高电池低温启动性能的方法
CN205921041U (zh) * 2016-08-11 2017-02-01 宁德时代新能源科技股份有限公司 一种动力电池
CN206742424U (zh) * 2017-05-09 2017-12-12 刘桥 一种低温快速自加热锂离子电池
CN207967201U (zh) * 2018-01-26 2018-10-12 宁德时代新能源科技股份有限公司 二次电池

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000030719A (ja) * 1998-07-08 2000-01-28 Asahi Optical Co Ltd 電池温度制御回路
CN103515671A (zh) * 2013-09-11 2014-01-15 江苏春兰清洁能源研究院有限公司 一种带电加热的动力电池模块
CN104916848A (zh) * 2015-05-05 2015-09-16 哈尔滨天宝石墨科技发展有限公司 提高电池低温启动性能的方法
CN205921041U (zh) * 2016-08-11 2017-02-01 宁德时代新能源科技股份有限公司 一种动力电池
CN206742424U (zh) * 2017-05-09 2017-12-12 刘桥 一种低温快速自加热锂离子电池
CN207967201U (zh) * 2018-01-26 2018-10-12 宁德时代新能源科技股份有限公司 二次电池

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113270694A (zh) * 2021-05-27 2021-08-17 珠海冠宇电池股份有限公司 极耳组件和电芯
CN113270694B (zh) * 2021-05-27 2023-07-18 珠海冠宇电池股份有限公司 极耳组件和电芯

Also Published As

Publication number Publication date
CN207967201U (zh) 2018-10-12

Similar Documents

Publication Publication Date Title
WO2019144825A1 (zh) 二次电池
KR100899425B1 (ko) 배터리 팩의 보호회로 및 이를 구비한 배터리 팩
WO2023109405A1 (zh) 电池
JP4663717B2 (ja) 二次電池の過充電防止のための安全素子、及びその安全素子を用いた二次電池
KR100305101B1 (ko) 방폭형이차전지
WO2006121290A1 (en) Protection circuit for secondary battery and secondary battery comprising the same
JP2011210717A (ja) 二次電池
WO2007011175A1 (en) Apparatus for protection of secondary battery
BR112015029581B1 (pt) Pacote de bateria compreendendo uma bateria secundária tipo bolsa
CN210167483U (zh) 锂电池温度管理系统
US20130323577A1 (en) Electrode lead and secondary battery having the same
EP1146579A2 (en) Non-aqueous electrolyte rechargeable battery
WO2020177746A1 (zh) 保护器、电芯以及电池
JPH04328279A (ja) 保護素子を有する電池装置
JP3574843B2 (ja) 安全機構付きリチウム二次電池
WO2019041144A1 (zh) 锂离子电池和锂离子电池组
TWI693772B (zh) 具有針對每一串聯二次電池芯進行充電管理功能的電池模組
CN107331906B (zh) 一种锂电池高温防护结构及锂电池
WO2020147148A1 (zh) 一种带内部加热装置的锂离子电池
GB2349284A (en) Preventing overcharge of lithium cells
JP3634128B2 (ja) 電池パック
CN207082875U (zh) 一种具有保温功能的宽温锂电池
US20230086270A1 (en) Battery and battery apparatus
CN205692924U (zh) 一种超低温锂离子电池结构
RU164335U1 (ru) Литиевая батарея

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19744530

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19744530

Country of ref document: EP

Kind code of ref document: A1