WO2019144628A1 - 一种降噪方法及电子设备 - Google Patents

一种降噪方法及电子设备 Download PDF

Info

Publication number
WO2019144628A1
WO2019144628A1 PCT/CN2018/105201 CN2018105201W WO2019144628A1 WO 2019144628 A1 WO2019144628 A1 WO 2019144628A1 CN 2018105201 W CN2018105201 W CN 2018105201W WO 2019144628 A1 WO2019144628 A1 WO 2019144628A1
Authority
WO
WIPO (PCT)
Prior art keywords
audio
type
audio data
application
channels
Prior art date
Application number
PCT/CN2018/105201
Other languages
English (en)
French (fr)
Inventor
郑伟波
耿炳钰
Original Assignee
青岛海信移动通信技术股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 青岛海信移动通信技术股份有限公司 filed Critical 青岛海信移动通信技术股份有限公司
Priority to US16/156,558 priority Critical patent/US10354673B2/en
Publication of WO2019144628A1 publication Critical patent/WO2019144628A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
    • G10L21/00Speech or voice signal processing techniques to produce another audible or non-audible signal, e.g. visual or tactile, in order to modify its quality or its intelligibility
    • G10L21/02Speech enhancement, e.g. noise reduction or echo cancellation
    • G10L21/0208Noise filtering
    • G10L21/0216Noise filtering characterised by the method used for estimating noise
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
    • G10L21/00Speech or voice signal processing techniques to produce another audible or non-audible signal, e.g. visual or tactile, in order to modify its quality or its intelligibility
    • G10L21/02Speech enhancement, e.g. noise reduction or echo cancellation
    • G10L21/0208Noise filtering
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04MTELEPHONIC COMMUNICATION
    • H04M1/00Substation equipment, e.g. for use by subscribers
    • H04M1/02Constructional features of telephone sets
    • H04M1/19Arrangements of transmitters, receivers, or complete sets to prevent eavesdropping, to attenuate local noise or to prevent undesired transmission; Mouthpieces or receivers specially adapted therefor
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04MTELEPHONIC COMMUNICATION
    • H04M1/00Substation equipment, e.g. for use by subscribers
    • H04M1/72Mobile telephones; Cordless telephones, i.e. devices for establishing wireless links to base stations without route selection
    • H04M1/724User interfaces specially adapted for cordless or mobile telephones
    • H04M1/72403User interfaces specially adapted for cordless or mobile telephones with means for local support of applications that increase the functionality
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04MTELEPHONIC COMMUNICATION
    • H04M1/00Substation equipment, e.g. for use by subscribers
    • H04M1/72Mobile telephones; Cordless telephones, i.e. devices for establishing wireless links to base stations without route selection
    • H04M1/724User interfaces specially adapted for cordless or mobile telephones
    • H04M1/72448User interfaces specially adapted for cordless or mobile telephones with means for adapting the functionality of the device according to specific conditions
    • H04M1/72454User interfaces specially adapted for cordless or mobile telephones with means for adapting the functionality of the device according to specific conditions according to context-related or environment-related conditions
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R2410/00Microphones
    • H04R2410/05Noise reduction with a separate noise microphone

Definitions

  • the present disclosure relates to the field of audio signal processing technologies, and in particular, to a noise reduction method and an electronic device.
  • noise covers a wide range, such as the sound of cars on the street, the sound of a quiet library, the sound of machines on construction sites, and the excessive sound of neighboring televisions.
  • decibels are used to measure the intensity of noise
  • signal-to-noise ratio S/N
  • possible sources of noise include airplanes, automobiles, factories, construction sites, and the like.
  • the present disclosure provides a noise reduction method and an electronic device for solving the problem that when the electronic device in the related art performs sound collection, if there are various noises outside, the noise will be collected together, resulting in a poor collection effect.
  • An embodiment of the present disclosure provides a noise reduction method, the method comprising: determining a plurality of first applications occupying a plurality of first type audio channels connected to a microphone, and a second application occupying a second type of audio path connected to the speaker, Where the plurality of first applications are different from the second application; the audio data of the second type of audio path is resampled using each of the sampling rates of the plurality of first type audio channels; The audio data is respectively subjected to noise reduction processing on the audio data of each of the plurality of first type audio channels.
  • Embodiments of the present disclosure provide an electronic device including a microphone, a speaker, a memory, and a processor, wherein the memory stores computer instructions configured to execute computer instructions to perform the process of determining that a plurality of first applications are occupied a plurality of first type audio channels connected to the microphone and a second type of audio path having a second application occupying a speaker connection, wherein the plurality of first applications are different from the second application; according to the plurality of first type audio channels a sampling rate of the audio data, respectively resampling the frequency of the audio data of the second type of audio path to the frequency of the audio data of each of the plurality of first type audio channels; and the audio data according to the resampling
  • the audio data of each of the first type of audio channels in the plurality of first type audio channels is respectively subjected to noise reduction processing.
  • FIG. 1 is a schematic diagram of an example of including multiple audio channels in an electronic device in an embodiment of the present disclosure
  • FIG. 2 is a flowchart of a noise reduction method according to an embodiment of the present disclosure
  • FIG. 3 is a schematic diagram of an implementation manner of a noise reduction method according to an embodiment of the present disclosure
  • FIG. 4 is a schematic diagram of an example of a noise reduction method according to an embodiment of the present disclosure.
  • FIG. 5 is a flowchart of an embodiment of a noise reduction method according to an embodiment of the present disclosure
  • FIG. 6 is a structural block diagram of a noise reduction device according to an embodiment of the present disclosure.
  • FIG. 7 is a structural block diagram of another noise reduction device according to an embodiment of the present disclosure.
  • FIG. 1 is a schematic diagram of an example of including multiple audio channels in an electronic device in an embodiment of the present disclosure.
  • the intercom audio data occupies an audio path
  • the recorded audio data occupies an audio path
  • the recorded audio data occupies an audio path
  • the audio data of the ringtone occupies an audio path.
  • the audio data of the intercom, the audio data of the video recording and the audio data of the recording occupy an audio channel connected with a MIC (Microphone), and such an audio channel can be called a first type of audio channel, an intercom audio data, and a video recording.
  • MIC Microphone
  • the audio data and the recorded audio data are the audio data of the first type of audio path; the audio data of the ringtone of the caller occupies an audio path connected to the speaker, and the audio path can be referred to as a second type of audio path, and the audio data of the ringtone of the incoming call is Audio data for the second type of audio path.
  • This allows different audio channels to be assigned to different applications, enabling simultaneous intercom, recording, and recording functions.
  • an embodiment of the present disclosure provides a method for noise reduction, the method including steps 200-202.
  • Step 200 The electronic device determines a plurality of first applications occupying a plurality of first type audio channels connected to the microphone and a second application occupying a second type of audio path connected to the speaker.
  • the plurality of first applications are different from the second application.
  • step 201 includes the electronic device resampling the audio data of the second type of audio channel using each of the sampling rates of the audio data of the plurality of first type audio channels.
  • Step 202 The electronic device performs noise reduction processing on the audio data of each of the plurality of first type audio channels according to the resampled audio data.
  • the electronic device determines that different first applications and second applications respectively occupy a plurality of first type audio channels connected to the microphone and a second type audio channel connected to the speaker
  • the plurality of The sampling rate of the audio data of the audio path is resampled, and then the audio data of the plurality of first type audio channels is subjected to noise reduction processing according to the resampled audio data.
  • noise reduction processing according to the resampled audio data.
  • the above resampling can be implemented by at least one of the following algorithms: Nearest neighbor interpolation, Bilinear interpolation, and Cubic convolution interpolation.
  • the electronic device resamples the audio data of the second type of audio channel by using each of the sampling rates of the audio data of the plurality of first type audio channels.
  • the method may include the following steps: the electronic device copies the audio data outputted by the mixer on the second type of audio path according to the number of the plurality of first type audio channels; and the second type of audio path obtained by the electronic device
  • Each copy of the audio data the audio data of the copy of the first type of audio path is resampled using the sample rate of the audio data of the first type of audio path.
  • the resampled audio data can be input to a noise processing module of the electronic device.
  • the DSP Digital Signal Processing
  • the CODEC COder-DECoder
  • the DSP module determines the application X corresponding to the encoded audio data received by the MIC according to the correspondence between the previously recorded application X and the audio path, and then debugs the audio data according to the relationship between the application type X and the debugging parameters. After the debugging is completed, the DSP module sends the debugged audio data to the noise processing module through the virtual sound card for noise reduction processing.
  • the output stream in Fig. 3 refers to audio data that is directly output to the speaker without resampling.
  • the input stream in Fig. 3 refers to the audio data received by the CODE 1-3 and encoded by the CODEC and input into the DSP module.
  • MICs 1-3 correspond to different first type audio channels.
  • the MIC 1 is connected to the audio path occupied by the intercom application;
  • the MIC 2 is connected to the audio path occupied by the video application, and
  • the MIC 3 is connected to the audio path occupied by the recording application. That is, the audio data of the intercom is received by the MIC 1, the audio data of the video is received by the MIC 2, and the audio data of the recording is received by the MIC 3.
  • the audio data received by the three MICs is not completely the same, so that the noise reduction effect is more obvious.
  • the audio channels of the same application connect multiple MICs.
  • the second type of audio path corresponding to the ringtone in FIG. 3 is an audio channel connected to the speaker. Since the audio data of the ringtone of the incoming call is noisy for the audio data of the recording, recording and intercom, it is necessary to eliminate the first type of audio path. Audio data of the incoming call ringtone included in the audio data.
  • the electronic device after receiving the audio data of the ringtone of the incoming call, the electronic device first decodes through the decoder, and then sends the decoded audio data to the mixer, and then the audio data is copied by the mixer, and the audio data is all the way. It is sent directly to the speaker output, and the remaining copied audio data is resampled and sent to the noise processing module for noise reduction.
  • the electronic device may determine the sampling rate of the audio data of the plurality of first type audio channels according to the following manner: the electronic device determines, according to the correspondence between the application and the sampling rate, the number of the plurality of first type audio channels The sampling rate of the audio data of an application; the electronic device uses the determined sampling rate as the sampling rate of the audio data of the plurality of first-class audio channels.
  • FIG. 4 shows an example of the noise reduction method shown in FIG. 2, in which the audio data of the ringtone of the incoming call is taken as an example, and the audio data sampling rate of the incoming ringtone is assumed to be 44.1 kHz, and the sampling rate of the recorded audio data is At 16KHz, the sampling rate of the audio data recorded is 48KHz, and the sampling rate of the audio data of the intercom is 8KHz.
  • the mixer copies the audio data of the incoming ringtone into three channels of audio data and resamples them separately, and then sends them as reference signals to intercom, video and recording respectively. Corresponding audio path.
  • the mixer resamples the audio data of the incoming ringtone with an initial sampling rate of 44.1 kHz at a sampling rate of 16 kHz and sends it to the noise processing module to eliminate the ringtone in the first type of audio path occupied by the recording.
  • Audio data the audio data of the incoming call ringtone with an initial sampling rate of 44.1 kHz is resampled at a sampling rate of 48 kHz and sent to the noise processing module to eliminate the audio data of the incoming call ringtone in the first type of audio path occupied by the recording;
  • the audio data of the ringtone with a sampling rate of 44.1 kHz is resampled at a sampling rate of 8 kHz and sent to the noise processing module to eliminate the audio data of the incoming ringtone in the first type of audio path occupied by the intercom.
  • the resampled audio data is sent to the DSP module as a reference signal of the original signal (the audio data of the first application occupying the first type of audio path), and then the noise processing module passes the noise reduction algorithm.
  • the same signal as the reference signal in the original signal is eliminated, so that clear voice data can be obtained.
  • the noise reduction algorithm may be, for example, an algorithm that uses a cancellation principle to perform noise reduction.
  • the DSP module after receiving the audio data of the first type of audio path Y, the DSP module further needs to use the parameter corresponding to the application type YY occupying the first type of audio path Y to the first type of audio path Y.
  • the audio data is debugged. For example, for any one of the first type of audio channels, the DSP module determines one or more debugging parameters corresponding to the application type to which the application occupying the first type of audio path belongs, and then passes the DSP according to the one or more debugging parameters. The module debugs the audio data of the first type of audio path.
  • the above debugging refers to the encoded audio data received by the DSP module, and the conversion parameters, including the sampling rate, the number of channels, and the bit width, are required according to different applications.
  • the debugging parameter is sound quality
  • the sound quality of the recording is level 2
  • the sound quality of the recording is level 3
  • the audio data 1, 2, 3, 4 corresponds to the first type of audio path 1, 2 3, 4,
  • the first type of audio channels 1, 2, 3, 4 correspond to intercom, video, recording and call.
  • the DSP module debugs the sound quality of the audio data 1 to be level 1, and the DSP module receives the audio data 2 and debugs it to set the sound quality of the audio data 2 to level 2.
  • the DSP module receives the audio data 3, it is debugged by setting the audio quality of the audio data 3 to level 3.
  • the above DSP module can be implemented by a DSP chip, and the noise processing module can be implemented by a DSP chip or a processor.
  • FIG. 5 is a flowchart of an implementation manner of a noise reduction method according to an embodiment of the present disclosure, where the implementation includes steps 501-506. For example, the audio data of the first type of audio path connected to the MIC is retained, and the audio data of the second type of audio path connected to the speaker is eliminated.
  • Step 500 When the electronic device determines that the application occupies the first type of audio path connected to the MIC, the second type of audio path connected to the speaker has audio data.
  • Step 501 The electronic device determines a sampling rate of audio data of an application occupying the first type of audio channel.
  • Step 502 The electronic device copies the audio data output by the mixer through the second type of audio path connected to the speaker.
  • Step 503 The electronic device resamples the audio data obtained after the copying.
  • Step 504 The electronic device determines, according to the correspondence between the application and the debugging parameter, the debugging parameter corresponding to the application that occupies the first type of audio channel.
  • Step 505 The electronic device debugs the received audio data of the first type of audio channel according to the determined debugging parameter.
  • Step 506 The electronic device performs noise reduction processing on the audio data of the debugged first type audio channel by using a noise reduction algorithm according to the resampled audio data.
  • the embodiment of the present disclosure further provides a noise reduction device.
  • the principle of solving the problem is similar to the principle of solving the problem by the noise reduction method provided by the embodiment of the present disclosure. Therefore, the implementation of the device can refer to the method. The implementation, repetitions will not be repeated.
  • an embodiment of the present disclosure provides an electronic device including a microphone 600, a speaker 601, a processor 602, and a memory 603.
  • Memory 603 stores computer instructions that are configured to execute these computer instructions to:
  • Audio data of the second type of audio path is resampled using each of the sampling rates of the audio data of the plurality of first type audio channels;
  • the audio data obtained by the re-sampling is respectively subjected to noise reduction processing on the audio data of each of the plurality of first-class audio channels.
  • the processor 602 is further configured to:
  • the audio data of the copy of the first type of audio path is used to resample the audio data of the copy .
  • the processor 602 is further configured to: determine, according to a correspondence between the application and the sampling rate, a sampling rate of the audio data of the plurality of first applications; and a sampling rate of the audio data of the plurality of first applications.
  • a sampling rate of audio data as the plurality of first type audio channels.
  • the electronic device further includes a DSP chip.
  • the processor 602 is further configured to: determine one or more debugging parameters corresponding to the application type to which the plurality of first applications belong; and perform, according to the one or more debugging parameters, each of the plurality of first type audio channels by the DSP chip The audio data of a class of audio channels is debugged.
  • the plurality of first applications include one or more of the following: a recording application, a recording application, and an intercom application.
  • an embodiment of the present disclosure provides a noise reduction device, where the device includes:
  • a determining module 700 for determining one or more first applications occupying one or more first type audio channels connected to the microphone and a second application occupying a second type of audio path connected to the speaker, wherein the one or more The first application is different from the second application;
  • the resampling module 701 is configured to resample the audio data of the second type of audio channel by using each of the sampling rates of the audio data of the one or more first type audio channels;
  • the noise processing module 702 is configured to perform noise reduction processing on the audio data of each of the first type of audio channels in the one or more first type audio channels according to the resampled audio data.
  • the noise processing module 702 is further configured to: copy the audio data of the second type of audio path according to the number of the one or more first types of audio channels; and copy the second type of audio path Each copy of the audio data is resampled using the sample rate of the audio data of the first type of audio path of the one or more first type of audio paths.
  • the noise processing module 702 determines a sampling rate of the audio data of the one or more first-type audio channels according to the following manner: determining the one or more first applications according to the correspondence between the application and the sampling rate. a sampling rate of the audio data; a sampling rate of the audio data of the one or more first applications as a sampling rate of audio data of the one or more first-class audio channels.
  • the noise processing module 702 is further configured to: determine one or more debugging parameters corresponding to the application type to which the one or more first applications belong; pass the DSP chip according to the one or more debugging parameters.
  • the audio data of each of the first type of audio channels of the one or more first type audio channels are separately debugged.
  • the one or more first applications include one or more of the following: a recording application, a recording application, and an intercom application.
  • the application can also be implemented in hardware and/or software (including firmware, resident software, microcode, etc.). Still further, the application can take the form of a computer program product on a computer usable or computer readable storage medium having computer usable or computer readable program code embodied in a medium for use by an instruction execution system or Used in conjunction with the instruction execution system.
  • a computer usable or computer readable medium can be any medium that can contain, store, communicate, communicate, or transport a program for use by an instruction execution system, apparatus or device, or in conjunction with an instruction execution system, Used by the device or device.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Human Computer Interaction (AREA)
  • Quality & Reliability (AREA)
  • Health & Medical Sciences (AREA)
  • Audiology, Speech & Language Pathology (AREA)
  • Computational Linguistics (AREA)
  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Multimedia (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Environmental & Geological Engineering (AREA)
  • Telephone Function (AREA)
  • Soundproofing, Sound Blocking, And Sound Damping (AREA)
  • Circuit For Audible Band Transducer (AREA)

Abstract

一种降噪方法及电子设备,电子设备确定占用与麦克风(600)连接的复数个第一类音频通路的复数个第一应用以及占用与扬声器(601)连接的第二类音频通路的第二应用,其中该复数个第一应用与所述第二应用不同(200);电子设备使用该复数个第一类音频通路的音频数据的采样率中的每个采样率,对第二类音频通路的音频数据进行重采样(201);电子设备根据重采样得到的音频数据分别对该复数个第一类音频通路中每个第一类音频通路的音频数据进行降噪处理(202)。

Description

一种降噪方法及电子设备
本申请要求于2018年1月24日提交中国专利局、申请号为201810069381.7、申请名称为“一种进行声音降噪的方法及设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本公开涉及音频信号处理技术领域,特别涉及一种降噪方法及电子设备。
背景技术
从生理学角度,凡是妨碍人们正常休息、学习和工作的声音,以及对人们要听的声音产生干扰的声音都属于噪声。从这个意义上来讲,噪声所包括的范围很广,如街道上的汽车声、安静的图书馆里的说话声、建筑工地的机器声、以及邻居电视机过大的声音等都属于噪声。
一般人们用分贝(dB)来衡量噪声的强度,用信噪比(S/N)来衡量噪声对有用信号的影响程度。如上所述,噪声的可能来源包括飞机、汽车、工厂、建筑工地等。
发明内容
本公开提供一种降噪方法及电子设备,用以解决相关技术中电子设备在进行声音采集时,如果外界有多种噪音,会将这些噪音一起采集,导致采集的效果比较差的问题。
本公开实施例提供一种降噪方法,该方法包括:确定占用与麦克风连接的复数个第一类音频通路的复数个第一应用以及占用与扬声器连接的第二类音频通路的第二应用,其中该复数个第一应用与第二应用不同;使用该复数个第一类音频通路的采样率中的每个采样率,对第二类音频通路的音频数据进行重采样;根据重采样得到的音频数据分别对该复数个第一类音频通路中每个第一类音频通路的音频数据进行降噪处理。
本公开实施例提供一种电子设备,该设备包括麦克风、扬声器、存储器和处理器,其中,存储器存储有计算机指令,处理器配置为执行计算机指令以执行下列过程:确定有复数个第一应用占用与麦克风连接的复数个第一类音频通路以及有第二应用占用与扬声器连接的第二类音频通路,其中该复数个第一应用与第二应用不同;根据该复数个第一类音频通路的音频数据的采样率,将第二类音频通路的音频数据的频率分别重采样为该复数个第一类音频通路中每个第一类音频通路的音频数据的频率;根据重采样得到的音频数据分别对该复数个第一类音频通路中每个第一类音频通路的音频数据进行降噪处理。
附图说明
为了更清楚地说明本公开实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简要介绍。显而易见地,下面描述中的附图仅仅是本公开的一些实施例,对于本领域的普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为本公开实施例中,电子设备内包括多条音频通路的一个示例的示意图;
图2为本公开实施例所提供的降噪方法的流程图;
图3为本公开实施例所提供的降噪方法的一种实施方式的示意图;
图4为本公开实施例所提供的降噪方法的一个示例的示意图;
图5为本公开实施例所提供的降噪方法的一种实施方式的流程图;
图6为本公开实施例所提供的一种降噪设备的结构框图;
图7为本公开实施例所提供的另一种降噪设备的结构框图。
具体实施方式
为了使本公开的目的、技术方案和优点更加清楚,下面将结合附图对本公开作进一步的详细描述。显然,本公开中所描述的实施例仅仅是本公开一部份实施例,而不是全部的实施例。基于本公开中所描述的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其它实施例,都属于本公开保护的范围。
用户在使用手机、对讲机等电子设备进行声音采集时(比如录像、对讲等),如果现场存在多种噪音(比如此时电子设备有来电,电子设备的扬声器会播放来电铃声),此时电子设备会将这些噪音一起采集,导致声音采集的效果比较差。
综上所述,目前电子设备在进行声音采集时,如果外界有多种噪音,会将这些噪音一起采集,导致采集的效果比较差。
图1为本公开实施例中,电子设备内包括多条音频通路的一个示例的示意图。如图1所示,在电子设备中,对讲的音频数据占用一个音频通路,录音的音频数据占用一个音频通路,录像的音频数据占用一个音频通路,来电铃声的音频数据占用一个音频通路。其中,对讲的音频数据、录像的音频数据和录音的音频数据占用与MIC(Microphone,麦克风)连接的音频通路,这类音频通路可称为第一类音频通路,对讲的音频数据、录像的音频数据和录音的音频数据即为第一类音频通路的音频数据;来电铃声的音频数据占用与扬声器连接的音频通路,该音频通路可称为第二类音频通路,来电铃声的音频数据即为第二类音频通路的音频数据。这样可以给不同的应用分配不同的音频通路,从而实现同时进行对讲、 录音、录像等功能。
图1中,若在录音、录像或对讲进行的同时,有来电铃声响起,为了保证录音、录像或对讲应用收到的音频数据不受来电铃声的音频数据的影响,需要对第一类音频通路的音频数据中包括的来电铃声的音频数据进行消除。除了来电铃声的音频数据,针对第一类音频通路的音频数据中包括的扬声器输出的其它任何声音(即第二类音频通路的音频数据),比如扬声器播放的音乐等,都应进行消除处理。
如图2所示,本公开实施例提供一种降噪的方法,该方法包括步骤200-202。
步骤200、电子设备确定占用与麦克风连接的复数个第一类音频通路的复数个第一应用以及占用与扬声器连接的第二类音频通路的第二应用。其中该复数个第一应用与第二应用不同。
由于电子设备的噪音处理模块进行降噪处理时,要求原始信号与参考信号的频率相同,为了消除复数个第一类音频通路的音频数据中包括的第二类音频通路的音频数据,可以对第二类音频通路的音频数据进行复数次重采样,得到采样率与该复数个第一类音频通路的的音频数据的采样率分别相同的复数个重采样后的第二类音频通路的音频数据。因此,步骤201包括:电子设备使用该复数个第一类音频通路的音频数据的采样率中的每个采样率,对第二类音频通路的音频数据进行重采样。
步骤202:电子设备根据重采样得到的音频数据分别对该复数个第一类音频通路中每个第一类音频通路的音频数据进行降噪处理。
本公开实施例中,电子设备在确定有不同的第一应用和第二应用分别占用与麦克风连接的复数个第一类音频通路以及与扬声器连接的第二类音频通路时,使用该复数个第一类音频通路的音频数据的采样率,对第二类音频通路的音频数据进行重采样,然后根据重采样后的音频数据对该复数个第一类音频通路的音频数据进行降噪处理。通过这种方式,能够消除或降低第二类音频通路的音频数据对该复数个第一类音频通路的音频数据造成的干扰,从而使电子设备采集到的声音的效果更优越。
上述重采样可以通过下列算法中的至少一个实现:Nearest neighbor interpolation(最邻近内插法)、Bilinear interpolation(双线性内插法)和Cubic convolution interpolation(三次卷积法内插)等。
如图3所示,在一种实施方式中,电子设备使用该复数个第一类音频通路的音频数据的采样率中的每个采样率,对第二类音频通路的音频数据进行重采样,具体可以包括以下步骤:电子设备根据复数个第一类音频通路的数量,对第二类音频通路上通过混音器输出的音频数据进行复制;电子设备对复制得到的所述第二类音频通路的音频数据的每一个副 本:使用该复数个第一类音频通路中一个第一类音频通路的音频数据的采样率,对该副本的音频数据进行重采样。被重采样后的音频数据可被输入到电子设备的噪音处理模块。
在一种实施方式中,若当前应用X将占用音频通路,电子设备的DSP(Digital Signal Processing,数字信号处理)模块会记录下该应用X与该应用X将要占用的音频通路之间的对应关系。CODEC(COder-DECoder,编译码器)会对MIC接收到的音频数据进行编码,然后发送给DSP模块。DSP模块根据之前记录的应用X与音频通路之间的对应关系,确定MIC接收到的编码后的音频数据对应的应用X,然后根据应用类型X和调试参数之间的关系对音频数据进行调试。调试完成后,DSP模块将调试后的音频数据通过虚拟声卡发送给噪音处理模块进行降噪处理。
图3中的输出流指的是:没有进行重采样而直接输出到扬声器中的音频数据。
图3中的输入流指的是:通过MIC 1-3接收的、由CODEC编码后输入到DSP模块中的音频数据。
图3中,MIC 1-3分别对应不同的第一类音频通路。MIC 1与对讲这个应用占用的音频通路连接在一起;MIC 2与录像这个应用占用的音频通路连接在一起,MIC 3与录音这个应用占用的音频通路连接在一起。也就是说,对讲的音频数据由MIC 1接收,录像的音频数据由MIC 2接收,录音的音频数据由MIC 3接收。通过这样的方式,使三个MIC接收到的音频数据不完全相同,令降噪效果更明显。
在一种实施方式中,同一个应用的音频通路连接多个MIC。
图3中来电铃声对应的第二类音频通路是与扬声器相连的音频通路,由于来电铃声的音频数据对录音、录像和对讲的音频数据来说是噪音,所以需要消除第一类音频通路的音频数据中包括的来电铃声的音频数据。
如图3所示,电子设备在收到来电铃声的音频数据后首先通过解码器进行解码,然后将解码后的音频数据发送至混频器,再由混音器将音频数据复制,一路音频数据直接发送至扬声器输出,其余复制后的音频数据进行重采样后发送给噪音处理模块进行降噪。
在一种实施方式中,电子设备可以根据下列方式确定复数个第一类音频通路的音频数据的采样率:电子设备根据应用和采样率的对应关系,确定占用复数个第一类音频通路的第一应用的音频数据的采样率;电子设备将确定的采样率作为复数个第一类音频通路的音频数据的采样率。
图4示出了图2所示的降噪方法的一个示例,其中以消除来电铃声的音频数据为例,并假设来电铃声的的音频数据采样率为44.1KHz,录音的音频数据的采样率为16KHz,录像的音频数据的采样率为48KHz,对讲的音频数据的采样率为8KHz。
为了消除来电铃声对录音、录像和对讲的影响,混音器对接收到的来电铃声的音频数据复制为三路音频数据并分别重采样后,作为参考信号分别发送给对讲、录像、录音对应的音频通路。在重采样的过程中,混音器将初始采样率为44.1KHz的来电铃声的音频数据以16KHz的采样率重采样后发送给噪音处理模块以消除录音占用的第一类音频通路中的来电铃声的音频数据;将初始采样率为44.1KHz的来电铃声的音频数据以48KHz的采样率重采样后发送给噪音处理模块以消除录像占用的第一类音频通路中的来电铃声的音频数据;将初始采样率为44.1KHz的来电铃声的音频数据以8KHz的采样率重采样后发送给噪音处理模块以消除对讲占用的第一类音频通路中的来电铃声的音频数据。
在一种实施方式中,重采样后的音频数据作为原始信号(占用第一类音频通路的第一应用的音频数据)的参考信号发送至DSP模块进行调试,再由噪音处理模块通过降噪算法将原始信号中与参考信号相同的信号消除,从而可以得到清晰的语音数据。降噪算法例如可以是采用对消原理进行降噪的算法。
在一种实施方式中,DSP模块接收到一路第一类音频通路Y的音频数据之后,还需要根据与占用该第一类音频通路Y的应用类型YY对应的参数对该第一类音频通路Y的音频数据进行调试。例如:针对任意一路第一类音频通路,DSP模块确定占用该第一类音频通路的应用所属的应用类型对应的一个或多个调试参数,再根据该一个或多个调试参数,通过所述DSP模块对该第一类音频通路的音频数据进行调试。
上述调试指的是DSP模块对收到的编码后的音频数据,根据不同应用需要转换参数,包括采样率、声道数、位宽等。
例如:假设调试参数为音质,而对讲的音质是1级,录音的音质是2级,录像的音质是3级;音频数据1、2、3、4对应第一类音频通路1、2、3、4,第一类音频通路1、2、3、4分别对应对讲、录像、录音和通话。那么,DSP模块收到音频数据1后对它的调试就是将音频数据1的音质定为1级,DSP模块收到音频数据2后对它的调试就是将音频数据2的音质定为2级,DSP模块收到音频数据3后对它的调试就是将音频数据3的音质定为3级。
上述DSP模块可以通过DSP芯片实现,噪音处理模块可以通过DSP芯片或处理器实现。
图5为本公开实施例所提供的降噪方法的一种实施方式的流程图,该实施方式包括步骤501-506。其中,以保留与MIC连接的第一类音频通路的音频数据,消除与扬声器连接的第二类音频通路的音频数据为例。
步骤500、电子设备确定有应用占用与MIC连接的第一类音频通路时,与扬声器连接 的第二类音频通路中有音频数据。
步骤501、电子设备确定占用第一类音频通路的应用的音频数据的采样率。
步骤502、电子设备对与扬声器连接的第二类音频通路通过混音器输出的音频数据进行复制。
步骤503、电子设备对复制后得到的音频数据进行重采样。
步骤504、电子设备根据应用与调试参数的对应关系,确定占用第一类音频通路的应用对应的调试参数。
步骤505、电子设备根据确定的调试参数对收到的第一类音频通路的音频数据进行调试。
步骤506、电子设备根据重采样后的音频数据,使用降噪算法对调试后的第一类音频通路的音频数据进行降噪处理。
基于同一发明构思,本公开实施例还提供了一种降噪设备,由于该设备解决问题的原理与本公开实施例所提供的降噪方法解决问题的原理相似,因此该设备的实施可以参见方法的实施,重复之处不再赘述。
如图6所示,本公开实施例提供一种电子设备,包括麦克风600、扬声器601、处理器602和存储器603。存储器603存储有计算机指令,处理器602配置为执行这些计算机指令以实现:
确定占用与麦克风600连接的复数个第一类音频通路的复数个第一应用以及占用与扬声器601连接的第二类音频通路的第二应用,其中该复数个第一应用与该第二应用不同;
使用该复数个第一类音频通路的音频数据的采样率中的每个采样率,对该第二类音频通路的音频数据进行重采样;
根据该重采样得到的音频数据分别对该复数个第一类音频通路中每个第一类音频通路的音频数据进行降噪处理。
在一种实施方式中,处理器602还用于:
根据该复数个第一类音频通路的数量,复制该第二类音频通路的音频数据;
对复制得到的该第二类音频通路的音频数据的每一个副本,使用该复数个第一类音频通路中一个第一类音频通路的音频数据的采样率,对该副本的音频数据进行重采样。
在一种实施方式中,处理器602还用于:根据应用和采样率的对应关系,确定该复数个第一应用的音频数据的采样率;将该复数个第一应用的音频数据的采样率作为该复数个第一类音频通路的音频数据的采样率。
在一种实施方式中,该电子设备还包括DSP芯片。处理器602还用于:确定复数个第 一应用所属的应用类型对应的一个或多个调试参数;根据一个或多个调试参数,通过DSP芯片分别对复数个第一类音频通路中每个第一类音频通路的音频数据进行调试。
在一种实施方式中,复数个第一应用包括下述的一种或多种:录像应用、录音应用和对讲应用。
如图7所示,本公开实施例提供一种降噪设备,该设备包括:
确定模块700,用于确定占用与麦克风连接的一个或多个第一类音频通路的一个或多个第一应用以及占用与扬声器连接的第二类音频通路的第二应用,其中该一个或多个第一应用与该第二应用不同;
重采样模块701,用于使用该一个或多个第一类音频通路的音频数据的采样率中的每个采样率,对该第二类音频通路的音频数据进行重采样;
噪音处理模块702,用于根据该重采样得到的音频数据分别对该一个或多个第一类音频通路中每个第一类音频通路的音频数据进行降噪处理。
在一种实施方式中,噪音处理模块702还用于:根据该一个或多个第一类音频通路的数量,复制该第二类音频通路的音频数据;对复制得到的该第二类音频通路的音频数据的每一个副本,使用该一个或多个第一类音频通路中一个第一类音频通路的音频数据的采样率,对该副本的音频数据进行重采样。
在一种实施方式中,噪音处理模块702根据下列方式确定一个或多个第一类音频通路的音频数据的采样率:根据应用和采样率的对应关系,确定该一个或多个第一应用的音频数据的采样率;将该一个或多个第一应用的音频数据的采样率作为该一个或多个第一类音频通路的音频数据的采样率。
在一种实施方式中,噪音处理模块702还用于:确定该一个或多个第一应用所属的应用类型对应的一个或多个调试参数;根据该一个或多个调试参数,通过该DSP芯片分别对该一个或多个第一类音频通路中每个第一类音频通路的音频数据进行调试。
可选的,一个或多个第一应用包括下述的一种或多种:录像应用、录音应用和对讲应用。
以上参照示出根据本申请实施例的方法、装置(系统)和/或计算机程序产品的框图和/或流程图描述本申请。应理解,可以通过计算机程序指令来实现框图和/或流程图示图的一个块以及框图和/或流程图示图的块的组合。可以将这些计算机程序指令提供给通用计算机、专用计算机的处理器和/或其它可编程数据处理装置,以产生机器,使得经由计算机处理器和/或其它可编程数据处理装置执行的指令创建用于实现框图和/或流程图块中所指定的功能/动作的方法。
相应地,还可以用硬件和/或软件(包括固件、驻留软件、微码等)来实施本申请。更进一步地,本申请可以采取计算机可使用或计算机可读存储介质上的计算机程序产品的形式,其具有在介质中实现的计算机可使用或计算机可读程序代码,以由指令执行系统来使用或结合指令执行系统而使用。在本申请上下文中,计算机可使用或计算机可读介质可以是任意介质,其可以包含、存储、通信、传输、或传送程序,以由指令执行系统、装置或设备使用,或结合指令执行系统、装置或设备使用。
显然,本领域的技术人员可以对本公开进行各种改动和变型而不脱离本公开的精神和范围。这样,倘若本公开的这些修改和变型属于本公开权利要求及其等同技术的范围之内,则本公开也意图包含这些改动和变型在内。

Claims (18)

  1. 一种降噪方法,其特征在于,该方法包括:
    确定占用与麦克风连接的复数个第一类音频通路的复数个第一应用以及占用与扬声器连接的第二类音频通路的第二应用,其中所述复数个第一应用与所述第二应用不同;
    使用所述复数个第一类音频通路的音频数据的采样率中的每个采样率,对所述第二类音频通路的音频数据进行重采样;
    根据所述重采样得到的音频数据分别对所述复数个第一类音频通路中每个第一类音频通路的音频数据进行降噪处理。
  2. 根据权利要求1所述的方法,其特征在于,根据所述重采样得到的音频数据分别对所述复数个第一类音频通路中每个第一类音频通路的音频数据进行降噪处理,包括:
    对所述复数个第一类音频通路中的每个第一类音频通路,消除该第一类音频通路的音频数据中包括的、使用该第一类音频通路的音频数据的采样率对所述第二类音频通路的音频数据进行重采样得到的音频数据相同的音频数据。
  3. 根据权利要求1所述的方法,其特征在于,所述重采样通过以下算法之一实现:
    最邻近内插法(Nearest neighbor interpolation)、双线性内插法(Bilinear interpolation)和三次卷积法内插(Cubic convolution interpolation)。
  4. 根据权利要求1所述的方法,其特征在于,在根据所述重采样得到的音频数据分别对所述复数个第一类音频通路中每个第一类音频通路的音频数据进行降噪处理之前,还包括:
    通过数字信号处理(Digital Signal Processing,DSP)模块对所述复数个第一类音频通路的音频数据进行调试。
  5. 根据权利要求4所述的方法,其特征在于,在所述调试完成之后,还包括:
    所述DSP模块将调试后的音频数据通过虚拟声卡发送给噪音处理模块进行降噪处理。
  6. 根据权利要求1所述的方法,其特征在于,所述第二应用为用于通过扬声器播放声音的应用。
  7. 根据权利要求1所述的方法,其特征在于,所述复数个第一应用包括下述的一种或多种:录像应用、录音应用和对讲应用。
  8. 根据权利要求7所述的方法,其特征在于,所述复数个第一类音频通路由不同类别的第一应用占用,或者由同时打开的多个同一类别的第一应用占用。
  9. 根据权利要求1所述的方法,其特征在于,使用所述复数个第一类音频通路的采样率中的每个采样率,对所述第二类音频通路的音频数据进行重采样,包括:
    根据所述复数个第一类音频通路的数量,复制所述第二类音频通路的音频数据;
    对复制得到的所述第二类音频通路的音频数据的每一个副本,使用所述复数个第一类音频通路中一个第一类音频通路的音频数据的采样率,对该副本的音频数据进行重采样。
  10. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    将所述第二类音频通路的音频数据复制复数份,将一份所述第二类音频通路的音频数据用于发送到扬声器进行音频播放,并将复数份所述第二类音频通路的音频数据用于进行所述重采样。
  11. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    记录当前启动的应用与音频通路的对应关系。
  12. 根据权利要求1所述的方法,其特征在于,根据下列方式确定所述复数个第一类音频通路的音频数据的采样率:
    根据应用和采样率的对应关系,确定所述复数个第一应用的音频数据的采样率;
    将所述复数个第一应用的音频数据的采样率作为所述复数个第一类音频通路的音频数据的采样率。
  13. 根据权利要求4所述的方法,其特征在于,通过DSP模块对所述复数个第一类音频通路的音频数据进行调试,包括:
    确定所述复数个第一应用所属的应用类型对应的一个或多个调试参数;
    根据所述一个或多个调试参数,通过所述DSP模块分别对所述复数个第一类音频通路中每个第一类音频通路的音频数据进行调试。
  14. 一种电子设备,其特征在于,包括麦克风、扬声器、存储器和处理器,其中,所述存储器存储有计算机指令,所述处理器配置为执行所述计算机指令以执行下列过程:
    确定占用与麦克风连接的复数个第一类音频通路的复数个第一应用以及占用与扬声器连接的第二类音频通路的第二应用,其中所述复数个第一应用与所述第二应用不同;
    使用所述复数个第一类音频通路的音频数据的采样率中的每个采样率,对所述第二类音频通路的音频数据进行重采样;
    根据所述重采样得到的音频数据分别对所述复数个第一类音频通路中每个第一类音频通路的音频数据进行降噪处理。
  15. 根据权利要求14所述的设备,其特征在于,所述处理器还用于:
    根据所述复数个第一类音频通路的数量,复制所述第二类音频通路的音频数据;
    对复制得到的所述第二类音频通路的音频数据的每一个副本,使用所述复数个第一类音频通路中一个第一类音频通路的音频数据的采样率,对该副本的音频数据进行重采样。
  16. 根据权利要求14所述的设备,其特征在于,所述处理器还用于:
    根据应用和采样率的对应关系,确定所述复数个第一应用的音频数据的采样率;
    将所述复数个第一应用的音频数据的采样率作为所述复数个第一类音频通路的音频数据的采样率。
  17. 根据权利要求14所述的设备,其特征在于,还包括DSP芯片,所述处理器还用于:
    确定所述复数个第一应用所属的应用类型对应的一个或多个调试参数;
    根据所述一个或多个调试参数,通过所述DSP芯片分别对所述复数个第一类音频通路中每个第一类音频通路的音频数据进行调试。
  18. 根据权利要求14所述的设备,其特征在于,所述复数个第一应用包括下述的一种或多种:录像应用、录音应用和对讲应用。
PCT/CN2018/105201 2018-01-24 2018-09-12 一种降噪方法及电子设备 WO2019144628A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/156,558 US10354673B2 (en) 2018-01-24 2018-10-10 Noise reduction method and electronic device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810069381.7 2018-01-24
CN201810069381.7A CN108335701B (zh) 2018-01-24 2018-01-24 一种进行声音降噪的方法及设备

Publications (1)

Publication Number Publication Date
WO2019144628A1 true WO2019144628A1 (zh) 2019-08-01

Family

ID=62925674

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/105201 WO2019144628A1 (zh) 2018-01-24 2018-09-12 一种降噪方法及电子设备

Country Status (2)

Country Link
CN (1) CN108335701B (zh)
WO (1) WO2019144628A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113409801A (zh) * 2021-08-05 2021-09-17 云从科技集团股份有限公司 用于实时音频流播放的噪音处理方法、系统、介质和装置

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108335701B (zh) * 2018-01-24 2021-04-13 青岛海信移动通信技术股份有限公司 一种进行声音降噪的方法及设备
CN111147730B (zh) * 2018-11-05 2022-04-19 Oppo广东移动通信有限公司 拍摄控制方法、装置、电子设备以及存储介质
CN110970046B (zh) * 2019-11-29 2022-03-11 北京搜狗科技发展有限公司 一种音频数据处理的方法及装置、电子设备、存储介质
CN111816183B (zh) * 2020-07-15 2024-05-07 前海人寿保险股份有限公司 基于音视频录制的语音识别方法、装置、设备及存储介质

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101320996A (zh) * 2008-05-27 2008-12-10 中山大学 一种自适应噪声消除装置及方法
CN104159177A (zh) * 2014-07-16 2014-11-19 浙江航天长峰科技发展有限公司 一种基于屏幕录制的音频录制系统及方法
CN104170011A (zh) * 2012-10-16 2014-11-26 视听公司 用于移动装置上的卡拉ok的方法及系统
CN104538011A (zh) * 2014-10-30 2015-04-22 华为技术有限公司 一种音调调节方法、装置及终端设备
CN106569774A (zh) * 2016-11-11 2017-04-19 青岛海信移动通信技术股份有限公司 一种去除噪声的方法及终端
CN108335701A (zh) * 2018-01-24 2018-07-27 青岛海信移动通信技术股份有限公司 一种进行声音降噪的方法及设备

Family Cites Families (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5845007A (en) * 1996-01-02 1998-12-01 Cognex Corporation Machine vision method and apparatus for edge-based image histogram analysis
CN2448031Y (zh) * 2000-08-23 2001-09-12 吴惠琪 两用免持听筒麦克风装置
US7251322B2 (en) * 2003-10-24 2007-07-31 Microsoft Corporation Systems and methods for echo cancellation with arbitrary playback sampling rates
US7673180B1 (en) * 2005-05-05 2010-03-02 Sun Microsystems, Inc. Method and apparatus for dispatching a remote debugging agent in a distributed computing environment
US8750494B2 (en) * 2011-08-17 2014-06-10 Alcatel Lucent Clock skew compensation for acoustic echo cancellers using inaudible tones
US9208766B2 (en) * 2012-09-02 2015-12-08 QoSound, Inc. Computer program product for adaptive audio signal shaping for improved playback in a noisy environment
CN103491488A (zh) * 2013-09-30 2014-01-01 天脉聚源(北京)传媒科技有限公司 一种麦克风回音消除方法及装置
CN103617797A (zh) * 2013-12-09 2014-03-05 腾讯科技(深圳)有限公司 一种语音处理方法,及装置
US9219456B1 (en) * 2013-12-17 2015-12-22 Amazon Technologies, Inc. Correcting clock drift via embedded sin waves
GB2523554B (en) * 2014-02-26 2020-12-09 Sony Interactive Entertainment Inc Head-mountable apparatus and systems
GB2525051B (en) * 2014-09-30 2016-04-13 Imagination Tech Ltd Detection of acoustic echo cancellation
EP4306041A1 (en) * 2015-01-06 2024-01-17 David Burton Mobile wearable monitoring systems
EP3099047A1 (en) * 2015-05-28 2016-11-30 Nxp B.V. Echo controller
CN105094808B (zh) * 2015-06-26 2018-04-10 努比亚技术有限公司 一种控制装置及方法
CN204948307U (zh) * 2015-08-17 2016-01-06 峰范(北京)科技有限公司 智能耳机
EP3163903B1 (en) * 2015-10-26 2019-06-19 Nxp B.V. Accoustic processor for a mobile device
CN105376668B (zh) * 2015-11-24 2018-11-16 广东欧珀移动通信有限公司 一种耳机降噪方法及装置
EP3206204A1 (en) * 2016-02-09 2017-08-16 Nxp B.V. System for processing audio
CN107346282B (zh) * 2016-05-04 2024-03-12 世意法(北京)半导体研发有限责任公司 用于微处理器的调试支持单元
CN106098078B (zh) * 2016-06-14 2020-06-02 惠州Tcl移动通信有限公司 一种可过滤扬声器噪音的语音识别方法及其系统
CN206181308U (zh) * 2016-08-12 2017-05-17 北京金锐德路科技有限公司 降噪装置
CN106341564B (zh) * 2016-08-31 2019-12-17 广州视源电子科技股份有限公司 一种信号数据的处理方法、装置及智能会议设备
CN106782592B (zh) * 2016-12-27 2020-06-19 中山大学花都产业科技研究院 一种用于消除网络声音传输的回音和啸叫的系统和方法
CN206629226U (zh) * 2017-03-29 2017-11-10 江西创成微电子有限公司 一种麦克风
CN206807701U (zh) * 2017-04-28 2017-12-26 东莞市云仕电子有限公司 基于nfc技术的蓝牙耳机
CN107105366B (zh) * 2017-06-15 2022-09-23 歌尔股份有限公司 一种多通道回声消除电路、方法和智能设备
CN107484081A (zh) * 2017-07-27 2017-12-15 努比亚技术有限公司 一种音频信号的调整方法、装置、终端及计算机可读存储介质
CN107452396A (zh) * 2017-09-08 2017-12-08 西安蜂语信息科技有限公司 降噪方法、装置及系统

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101320996A (zh) * 2008-05-27 2008-12-10 中山大学 一种自适应噪声消除装置及方法
CN104170011A (zh) * 2012-10-16 2014-11-26 视听公司 用于移动装置上的卡拉ok的方法及系统
CN104159177A (zh) * 2014-07-16 2014-11-19 浙江航天长峰科技发展有限公司 一种基于屏幕录制的音频录制系统及方法
CN104538011A (zh) * 2014-10-30 2015-04-22 华为技术有限公司 一种音调调节方法、装置及终端设备
CN106569774A (zh) * 2016-11-11 2017-04-19 青岛海信移动通信技术股份有限公司 一种去除噪声的方法及终端
CN108335701A (zh) * 2018-01-24 2018-07-27 青岛海信移动通信技术股份有限公司 一种进行声音降噪的方法及设备

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113409801A (zh) * 2021-08-05 2021-09-17 云从科技集团股份有限公司 用于实时音频流播放的噪音处理方法、系统、介质和装置
CN113409801B (zh) * 2021-08-05 2024-03-19 云从科技集团股份有限公司 用于实时音频流播放的噪音处理方法、系统、介质和装置

Also Published As

Publication number Publication date
CN108335701A (zh) 2018-07-27
CN108335701B (zh) 2021-04-13

Similar Documents

Publication Publication Date Title
WO2019144628A1 (zh) 一种降噪方法及电子设备
TWI672693B (zh) 用於聲學迴聲消除的組合參考信號
CN102056036B (zh) 再现设备、头戴式耳机和再现方法
US9161149B2 (en) Three-dimensional sound compression and over-the-air transmission during a call
US9208766B2 (en) Computer program product for adaptive audio signal shaping for improved playback in a noisy environment
EP1949552B1 (en) Configuration of echo cancellation
JP2018528479A (ja) スーパー広帯域音楽のための適応雑音抑圧
US10354673B2 (en) Noise reduction method and electronic device
US20160267925A1 (en) Audio processing apparatus that outputs, among sounds surrounding user, sound to be provided to user
CN108510997A (zh) 电子设备及应用于电子设备的回声消除方法
JP3898673B2 (ja) 音声通信システム、方法及びプログラム並びに音声再生装置
US11915710B2 (en) Conference terminal and embedding method of audio watermarks
TWI790694B (zh) 聲音浮水印的處理方法及聲音浮水印產生裝置
JP6392161B2 (ja) 音声会議システム、音声会議装置、その方法及びプログラム
CN113612881B (zh) 基于单移动终端的扬声方法、装置及存储介质
JP3717809B2 (ja) 携帯電話機
CN116189694A (zh) 音频处理方法、装置及电子设备
JP4138565B2 (ja) 多チャネル音声損失制御装置、方法、及び多チャネル音声損失制御プログラム
JP2015220482A (ja) 送受話端末、エコー消去システム、エコー消去方法、プログラム
CN115700881A (zh) 会议终端及声音水印的嵌入方法
JP2023047178A (ja) 情報処理装置及び情報処理プログラム
JP2005033270A (ja) 通話制御装置、方法、プログラムおよび該プログラムを記録した記録媒体
JPS62285558A (ja) 留守番電話装置とそこに用いられる個別音声周波信号検出手段
JPH09153945A (ja) 音声情報発生装置
JP2001144834A (ja) 携帯電話装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18902553

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 13.11.2020)

122 Ep: pct application non-entry in european phase

Ref document number: 18902553

Country of ref document: EP

Kind code of ref document: A1