WO2019144557A1 - 液晶显示装置 - Google Patents

液晶显示装置 Download PDF

Info

Publication number
WO2019144557A1
WO2019144557A1 PCT/CN2018/090105 CN2018090105W WO2019144557A1 WO 2019144557 A1 WO2019144557 A1 WO 2019144557A1 CN 2018090105 W CN2018090105 W CN 2018090105W WO 2019144557 A1 WO2019144557 A1 WO 2019144557A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
optical layer
display device
liquid crystal
crystal display
Prior art date
Application number
PCT/CN2018/090105
Other languages
English (en)
French (fr)
Inventor
李富琳
杜强
Original Assignee
青岛海信电器股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201810076650.2A external-priority patent/CN108227305B/zh
Priority claimed from CN201810078975.4A external-priority patent/CN108279532B/zh
Application filed by 青岛海信电器股份有限公司 filed Critical 青岛海信电器股份有限公司
Priority to EP18902372.4A priority Critical patent/EP3745188B1/en
Publication of WO2019144557A1 publication Critical patent/WO2019144557A1/zh
Priority to US16/714,138 priority patent/US10788704B2/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133602Direct backlight
    • G02F1/133603Direct backlight with LEDs
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133602Direct backlight
    • G02F1/133605Direct backlight including specially adapted reflectors
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133602Direct backlight
    • G02F1/133611Direct backlight including means for improving the brightness uniformity
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F13/00Illuminated signs; Luminous advertising
    • G09F13/04Signs, boards or panels, illuminated from behind the insignia
    • G09F13/0409Arrangements for homogeneous illumination of the display surface, e.g. using a layer having a non-uniform transparency
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133602Direct backlight
    • G02F1/133606Direct backlight including a specially adapted diffusing, scattering or light controlling members
    • G02F1/133607Direct backlight including a specially adapted diffusing, scattering or light controlling members the light controlling member including light directing or refracting elements, e.g. prisms or lenses
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133614Illuminating devices using photoluminescence, e.g. phosphors illuminated by UV or blue light
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2202/00Materials and properties
    • G02F2202/36Micro- or nanomaterials
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F13/00Illuminated signs; Luminous advertising
    • G09F13/04Signs, boards or panels, illuminated from behind the insignia
    • G09F13/0418Constructional details
    • G09F13/0422Reflectors

Definitions

  • the present disclosure relates to the field of display technologies, and in particular, to a liquid crystal display device.
  • the display device includes a backlight module, and the contrast of each light-emitting region in the backlight module is crucial for the display effect of the display device.
  • the backlight module may include a substrate, and a light emitting layer and a quantum dot film sequentially disposed on the substrate.
  • the light emitting layer includes a plurality of light emitting diodes (LEDs).
  • the backlight module can be a direct-lit LED backlight module, and the LED is divided into a plurality of independently controlled units to form a backlight partition, and the input image can be divided into image partitions corresponding to the backlight partition, and can be divided according to each image.
  • the brightness of the image modulates the brightness of the backlight corresponding to each backlight partition in real time.
  • the quantum dot diaphragm includes a plurality of light exiting regions that correspond one-to-one with the plurality of LEDs.
  • Each LED can emit blue light to its corresponding light exit area.
  • Red quantum dot material and green quantum dot material are disposed in each light exiting region, and the red quantum dot material and the green quantum dot material can emit red light and green light in various directions under the excitation of blue light, so that each light emitting region emits red light. Green and blue light of three colors.
  • Embodiments of the present disclosure provide a liquid crystal display device.
  • the liquid crystal display device includes a substrate, a plurality of light sources disposed on the substrate, a quantum dot film disposed in a light emitting direction of the plurality of light sources, and a plurality of stereoscopic reflective sheets and an optical layer disposed on the substrate.
  • the plurality of stereoscopic reflective sheets and the plurality of light sources form a plurality of cavities disposed in an array.
  • a plurality of light sources are respectively located at the bottom of the plurality of cavities.
  • the optical layer is disposed between the plurality of cavities and the quantum dot diaphragm for partially transmitting and partially reflecting the excitation light generated by the plurality of light sources.
  • the quantum dot diaphragm is used to be excited by excitation light to generate excitation light.
  • FIG. 1 is a schematic structural diagram of a liquid crystal display device according to an embodiment of the present disclosure
  • 2a is a schematic diagram showing the illuminance distribution of a light receiving surface of a quantum dot film when an optical layer is not used according to an embodiment of the present disclosure
  • 2b is a brightness curve diagram of a light receiving surface of a quantum dot film when an optical layer is not used according to an embodiment of the present disclosure
  • 3a is a brightness curve diagram of a light receiving surface of a quantum dot film when an optical layer is used according to an embodiment of the present disclosure
  • FIG. 3b is a brightness curve diagram of a light receiving surface of a quantum dot film when an optical layer is used according to an embodiment of the present disclosure
  • FIG. 4 is a schematic diagram showing the relationship between reflectance and wavelength of an optical layer according to an embodiment of the present disclosure
  • FIG. 5 is a schematic structural diagram of a liquid crystal display device provided by the related art.
  • FIG. 6 is a schematic structural diagram of another liquid crystal display device according to an embodiment of the present disclosure.
  • FIG. 7 is a schematic diagram showing relationship between reflectance and wavelength of a second layer according to an embodiment of the present disclosure.
  • FIG. 8 is a schematic diagram showing relationship between reflectance of a first layer and wavelengths according to an embodiment of the present disclosure
  • FIG. 9 is a schematic diagram showing relationship between reflectance and wavelength of another first layer according to an embodiment of the present disclosure.
  • FIG. 10 is a schematic structural diagram of still another liquid crystal display device according to an embodiment of the present disclosure.
  • Embodiments of the present disclosure provide a liquid crystal display device having a high contrast between respective light emitting regions.
  • FIG. 1 is a schematic structural diagram of a liquid crystal display device according to an embodiment of the present disclosure.
  • the liquid crystal display device 10 may include a plurality of light sources 101 and a quantum dot film 102.
  • the quantum dot film may be disposed in the light emitting direction of the plurality of light sources 101.
  • the excitation light emitted from the plurality of light sources 101 emits the vector sub-dot film 102 and excites the quantum dot film 102 to generate excitation light.
  • the excitation light and the excitation light emitted by the light source 101 can be mixed into a white backlight.
  • the liquid crystal display device 10 further includes a reflective sheet.
  • the reflection sheet may be a stereoscopic reflection sheet 103 and is composed of a side surface 1031 and a bottom surface 1032 for reflecting excitation light emitted from the plurality of light sources 101.
  • the plurality of stereoscopic reflection sheets 103 and the plurality of light sources 101 form a plurality of cavities 103h arranged in an array. Wherein, the bottom of each cavity 103h is opposite to the optical layer 104, and a plurality of light sources 101 are respectively disposed at the bottoms of the plurality of cavities 103h.
  • the liquid crystal display device 10 may further include a substrate (not shown).
  • a plurality of light sources 101 and a plurality of stereoscopic reflection sheets 103 may be disposed on the substrate.
  • a plurality of light sources 101 and a stereoscopic reflection sheet 103 may be disposed on the substrate.
  • An optical layer 104 is further disposed between the light source 101 and the quantum dot film 102.
  • the optical layer 104 partially and partially transmits the excitation light emitted from the plurality of light sources 101, that is, the optical layer 104 has a certain transmittance to the excitation light.
  • the reflection of the plurality of stereoscopic reflection sheets 103 and the partial reflection of the optical layer 104 cause the excitation light emitted from the plurality of light sources 101 to be reflected and mixed multiple times in the plurality of cavities 103h, so that the excitation light emitted from the optical layer 104 is more Evenly.
  • the height H of each of the light sources 101 to the optical layer 104 is each empty
  • the ratio H/P of the width P of the cavity 103h is 0.2 ⁇ H / P ⁇ 0.35.
  • the width of one cavity 103h is the distance between the two stereoscopic reflection sheets 103 forming the cavity 103h.
  • the ratio H/P of the height H of each of the plurality of light sources 101 to the optical layer 104 to the width P of each of the cavities 103h is 0.1 ⁇ H/P ⁇ 0.25.
  • the single transmittance m of the optical layer 104 to the excitation light satisfies 0.05 ⁇ m ⁇ 0.6.
  • the ratio H/P of the height H of each of the light sources 101 to the optical layer 104 to the width P of the single cavity 103h and the single transmittance m of the optical layer 104 to the excitation light may each take the following values: H/P is At 0.2, m is 0.25; or, when H/P is 0.25, m is 0.6; or, when H/P is 0.35, m is taken as 1.
  • the ratio H/P of the height H of each of the light sources 101 to the optical layer 104 to the width P of the single cavity 103h and the single transmittance m of the optical layer 104 to the excitation light may each take the following values: H/P is At 0.1, m is 0.05; or, when H/P is 0.2, m is 0.25.
  • each light source 101 can be an LED and emit blue light.
  • a plurality of light sources 101 may be disposed on the same plane A.
  • the quantum dot film 102 may be provided with a quantum dot material, which may be composed of a red quantum dot material and a green quantum dot material (the quantum dot material is not labeled in FIG. 1).
  • the red quantum dot material can emit red light under the excitation of blue light emitted by the plurality of light sources 101
  • the green quantum dot material can emit green light under the excitation of the blue light.
  • the quantum dot film 102 may include a light exiting region that corresponds one-to-one with each of the light sources 101.
  • the light source 101 corresponding to the light-emitting region can be controlled to emit blue light, thereby causing the light-emitting region to generate excitation light under excitation of the blue light. If the blue light emitted by each of the light sources 101 is directed to the light exiting area corresponding to the light source 101, the light emitted by the respective light sources 101 does not interfere with each other, and the contrast between the respective light exiting regions can be improved.
  • the excitation light emitted by each of the light sources 101 is reflected by the side surface 1031 of the two stereoscopic reflection sheets 103 adjacent to the light source 101, and then irradiated to the optical light corresponding to the light source 101.
  • the corresponding area on layer 104 In this process, the stereoscopic reflection sheet 103 converges on the spot of the excitation light emitted from each of the light sources 101, reducing the irradiation range of each of the light sources 101.
  • the optical layer 104 can reflect a part of the excitation light to the bottom surface 1032 or the side surface 1031 of the stereoscopic reflection sheet 103.
  • the partial light is reflected again multiple times, so that the angle of the light changes, and then the excitation light can be made multiple times.
  • the light is mixed in the cavity 103h to increase the uniformity of the excitation light emitted from the optical layer 104.
  • the following is an effect comparison analysis of the uniformity of illumination when the optical layer 104 is not used and the optical layer 104 is used under the same conditions.
  • FIG. 2a is a schematic view showing the illuminance distribution of the light receiving surface of the quantum dot film 102 when the optical layer 104 is not used.
  • the coordinate system in Figure 2a can be the coordinate system established on the light receiving surface.
  • 2b is a graph showing the brightness of the light-receiving surface of the quantum dot film 102 when the optical layer 104 is not used.
  • a total of two luminance curves x1 and y1 are shown in Figure 2b. Among them, the luminance curve x1 corresponds to the luminance at different positions on the abscissa axis a1 in FIG. 2a, and the luminance curve y1 corresponds to the luminance at different positions on the ordinate axis b1 in FIG. 2a.
  • the abscissa value of each point in each brightness curve corresponds to the position on the corresponding coordinate axis in FIG. 2a
  • the ordinate value of each point in each brightness curve is the brightness value of the position.
  • the abscissa value of a certain point on the brightness curve x1 corresponds to the coordinate point in FIG. 2a where the abscissa is the corresponding value and the ordinate is 0, and the abscissa value of a point on the brightness curve y1 corresponds to the ordinate in FIG. 2a.
  • the coordinate point whose value is 0 and the abscissa is 0.
  • FIG. 3a is a schematic diagram showing the illuminance distribution of the light receiving surface of the quantum dot diaphragm 102 when the optical layer 104 is used (for example, 0.2 ⁇ H/P ⁇ 0.35, 0.25 ⁇ m ⁇ 1), and the coordinate system in FIG. 3a may be The coordinate system established on the light receiving surface.
  • FIG. 3b is a graph showing the brightness of the light-receiving surface of the quantum dot film 102 when the optical layer 104 is used. A total of two luminance curves x2 and y2 are shown in Figure 3b. Among them, the brightness curve x2 corresponds to the brightness at different positions on the abscissa axis in Fig.
  • the brightness curve y2 corresponds to the brightness at different positions on the ordinate axis in Fig. 3a.
  • the abscissa value of each point in each brightness curve corresponds to the position on the corresponding coordinate axis in FIG. 3a
  • the ordinate of each point in each brightness curve is the brightness value of the position.
  • the abscissa value of a certain point on the brightness curve x2 corresponds to the coordinate point in FIG. 3a where the abscissa is the corresponding value and the ordinate is 0, and the abscissa value of a point on the brightness curve y2 corresponds to the ordinate in FIG. 3a.
  • the coordinate point whose value is 0 and the abscissa is 0.
  • the side surface 1031 of the stereoscopic reflection sheet 103 reflects light and the side surface 1031 has a certain thickness, a certain amount can be reserved between the top surface of each cavity 103h and the optical layer 104. Interval, thereby reducing the possibility that the optical layer 104 generates dark spots at corresponding positions on the top of the side surface 1031, ensuring uniform distribution of incident light of corresponding regions on the optical layer 104 corresponding to each cavity 103h, and then ensuring each of the liquid crystal display devices 10 The contrast of the light exit area.
  • the top surface of the cavity 103h is opposite to the bottom and is closer to the optical layer 104 than the bottom of the cavity 103h.
  • the liquid crystal display device 10 provided by the embodiment of the present disclosure includes a substrate, an optical layer 104, a plurality of light sources 101 and a plurality of stereoscopic reflective sheets 103 disposed on the substrate, and are disposed in the light emitting direction of the plurality of light sources 101.
  • the plurality of stereoscopic reflection sheets 103 and the plurality of light sources 101 form a plurality of cavities 103h arranged in an array.
  • a plurality of light sources 101 are respectively located at the bottoms of the plurality of cavities 103h for generating excitation light.
  • An optical layer 104 for transmitting part of the excitation light and reflecting another part of the excitation light is disposed between the light source 101 and the quantum dot film 102.
  • the quantum dot diaphragm 102 is used to be excited by excitation light to generate excitation light.
  • the excitation light emitted by each of the light sources 101 is generated by the stereoscopic reflection sheet 103 and the optical layer 104, and the excitation light is generated on the light-emitting area corresponding to the light source 101 on the vector sub-point film 102, thereby greatly reducing the illumination.
  • the possibility of reaching the other light exiting regions on the quantum dot diaphragm 102 achieves convergence of the spot of the light source 101.
  • the presence of the optical layer 104 enhances the uniformity of the excitation light emitted from the optical layer 104, improving the contrast between the respective light-emitting regions of the liquid crystal display device 10.
  • the optical layer 104 is also used to reflect backscattered light of the excitation light.
  • the backscattered light is a portion of the red and green light generated by the red quantum dot material and the green quantum dot material in the quantum dot film 102 being incident on the optical layer 104 by the excitation of the blue light.
  • the contrast between the respective light exit regions of the backlight module 10 is further improved.
  • the wavelength of blue light may be [440 nm, 450 nm]
  • the wavelength of red light may be [620 nm, 660 nm]
  • the wavelength of green light may be [525 nm, 545 nm].
  • the optical layer 104 emits green light (assuming a green light wavelength range of [525 nm, 545 nm]) and red light (assuming a red light wavelength range of [620 nm, 660 nm]) for the quantum dot film 102.
  • the reflectance is about 100%, and the reflectance of blue light emitted by the LED is about 50%. It should be noted that, in this embodiment, only the reflectance of the optical layer to blue light is 50%. In practical applications, the reflectance can be adjusted, and the reflectivity can be selected according to the relationship between the transmittance and the H/P ratio. It is determined to ensure the uniformity of the light output in the light exiting area.
  • Fig. 5 is a schematic structural view of a liquid crystal display device in the related art.
  • the liquid crystal display device can perform local dimming (also referred to as local dimming) when emitting light, for example, controlling only one light source to emit light.
  • the liquid crystal display device may include a substrate 301, a blue light source 302 disposed on the substrate 301, and a quantum dot film 303 disposed on a side of the blue light source 302 away from the substrate 301.
  • the substrate 301 is provided with a reflection sheet (not shown).
  • the spot formed by the quantum dot film 303 under the excitation of the blue light emitted by the blue light source 302 may be B1.
  • the excitation light generated by the quantum dot diaphragm 303 can be backscattered to form backscattered light, and the backscattered light is reflected toward the reflective sheet on the substrate 301, and the vector sub-dot film 303 is again incident.
  • the spot formed by the quantum dot diaphragm may be B2.
  • the range of the actually formed spot B2 is larger than the range of the spot B1 to be formed, and therefore the contrast between the respective light-emitting areas of the liquid crystal display device 10 in the related art is low.
  • the optical layer 104 can reflect the excitation light generated by the quantum dot film 102, thereby reducing the possibility that the excitation light is directed to the surface of the light source 101, and thus the actually formed spot is formed.
  • the difference between the spot and the expected spot is small, and the contrast between the respective light-emitting regions can be further improved.
  • the liquid crystal display device 10 provided by the above embodiment includes the stereoscopic reflection sheet 103 and the optical layer 104, wherein the stereoscopic reflection sheet 103 can reduce the emission angle of the emitted light of the light source 101, and the optical layer
  • the portion 104 transmits and partially reflects the excitation light from the light source 101 and reflects the backscattered light of the excitation light.
  • the light emitted by the light source 101 can generate excitation light under the action of the stereoscopic reflection sheet 103 and the optical layer 104 on the light-emitting region corresponding to the light source 101 on the vector sub-dot film 102, and the excitation light
  • the backscattered light is reflected by the optical layer 104, reducing the likelihood that it will strike the surface of the source 101 and the other exit regions that are reflected by the surface of the source 101 onto the quantum dot film 102.
  • the color mixture of the light emitted from each of the light-emitting regions is reduced, and the contrast between the respective light-emitting regions of the liquid crystal display device 10 is improved.
  • FIG. 6 is a schematic structural diagram of another liquid crystal display device 10 according to an embodiment of the present disclosure. As shown in FIG. 6, on the basis of FIG. 1, the liquid crystal display device 10 may further include a light diffusing plate 105 disposed on a side of the quantum dot film 102 away from the light source 101.
  • the light diffusing plate 105 is disposed on the side of the quantum dot film 102 away from the light source 101 for making the excitation light (ie, red light and green light) generated by the quantum dot film 102 and the quantum dots.
  • the blue light of the diaphragm 102 is uniformly mixed. This is because if the light diffusing plate 105 is disposed between the optical layer 104 and the quantum dot film 102, the propagation path of the excitation light backscatter generated by the quantum dot film 102 is long, and the light is emitted in the embodiment of the present disclosure.
  • the diffusion plate 105 is disposed on the side of the quantum dot diaphragm 102 away from the light source 101, and can shorten the path of the excitation light generated by the quantum dot film 102 to the optical layer 104, so that the excitation light is reflected after the optical layer 104 is formed. Smaller, further reducing the color mixture between the respective light-emitting areas, and improving the contrast between the light-emitting areas.
  • the optical layer 104 in the embodiment of the present disclosure may transmit a portion of the blue light transmitted by the light source 101 and reflect another portion of the blue light emitted by the light source 101. After the blue light reflected by the optical layer 104 is reflected to the stereoscopic reflection sheet 103, the reflection can be performed multiple times between the stereoscopic reflection sheets 103, and then the optical layer 104 is emitted, thereby improving the uniformity of the blue light of the emission vector sub-dot film 102. degree.
  • the optical layer 104 can be a transflective layer that is configured to partially reflect the transmissive portion of the blue light and reflect the red and green light that is excited by the blue light.
  • the optical layer 104 may also include two or more layers, which is not limited by the embodiments of the present disclosure.
  • the optical layer 104 can include a first optical layer 1041 and a second optical layer 1042.
  • the first optical layer 1041 is disposed near the light source 101 and can be used to transmit a portion of the blue light emitted by the light source 101 and reflect another portion of the blue light emitted by the light source 101.
  • the second optical layer 1042 is disposed away from the light source 101 and can be used to reflect the backscattered light of the excitation light generated by the quantum dot film 102 and transmit the blue light emitted by the light source 101.
  • the stereoreflective sheeting 103 includes a bottom plate that is parallel to the substrate and a side plate that is vertically disposed on the bottom plate.
  • the bottom plate is fixed on the substrate.
  • the side panels are disposed along the bottom layer toward the optical layer 104.
  • a plurality of through holes are provided in the bottom plate.
  • a plurality of through holes are provided for passing a plurality of light sources 101 disposed on the bottom plate to form separate optical cavities, respectively.
  • the bottom plate and the side plates are each formed into a flat shape, and the flat bottom plate and the side plates can form a plurality of reflections in the optical cavity to facilitate the homogenization of the light.
  • Figure 7 shows the reflectance versus wavelength for the second optical layer 1042.
  • the red quantum dot material in the quantum dot film 102 emits red light having a wavelength range of [620 nm, 660 nm] excited by the blue light, and the green quantum dot
  • the green light emitted by the material under the excitation of the blue light has a wavelength range of [525 nm, 545 nm].
  • the second optical layer 1042 is capable of transmitting the blue light and reflecting the red light and the green light.
  • Figure 8 illustrates the reflectance versus wavelength for the first optical layer 1041 in one embodiment.
  • the first optical layer 1041 may transpose only the light of the blue light band ([400 nm, 480 nm]) and transmit light of other wavelengths other than the blue light band, the blue light band ( [400 nm, 480 nm]) may include the wavelength of blue light emitted by the light source 101 in the embodiment of the present disclosure.
  • Figure 9 illustrates the reflectance versus wavelength for the first optical layer 1041 in another embodiment.
  • the first optical layer 1041 may perform transflecting of light of any wavelength in the visible light band ([380 nm, 780 nm]), and the visible light band ([380 nm, 780 nm]) may include the embodiment in the present disclosure.
  • the wavelength of the blue light emitted by the light source 101 may include the embodiment in the present disclosure.
  • the liquid crystal display device 10 may further include a substrate K, and the substrate K may be in a groove shape, and the plurality of light sources 101 may be disposed in the groove, that is, the bottom surface of the groove may be a plurality of light sources 101.
  • the optical layer 104 may be disposed on the substrate K to support other film layers disposed on the optical layer 104.
  • the liquid crystal display device 10 may further include an optical film layer.
  • the liquid crystal display device 10 may further include an optical film layer 106 disposed on the light diffusing plate 105 on the basis of FIG.
  • the optical film layer 106 may include a Brightness Enhancement Film (BEF) and a Dual Brightness Enhancement Film (DBEF).
  • BEF Brightness Enhancement Film
  • DBEF Dual Brightness Enhancement Film
  • the optical film layer 106 can increase the brightness of light passing through the optical film layer 106.
  • the liquid crystal display device 10 may further include a liquid crystal display panel.
  • the liquid crystal display device 10 may be any product or component having a display function such as a liquid crystal display device, an electronic paper, a mobile phone, a tablet computer, a television, a display, a notebook computer, a digital photo frame, a navigator, or the like.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Liquid Crystal (AREA)
  • Planar Illumination Modules (AREA)

Abstract

本公开公开了一种液晶显示装置。该液晶显示装置包括:多个光源,量子点膜片,多个立体反射片和光学层。其中,多个立体反射片和多个光源形成阵列设置的多个空腔。多个光源位于多个空腔的底部。光学层设置在多个空腔和量子点膜片之间,用于部分透射和部分反射多个光源产生的激励光。量子点膜片用于被激励光激发产生激发光。

Description

液晶显示装置
本申请要求于2018年1月26日提交中国专利局、申请号为201810076650.2、申请名称为“背光模组及显示装置”的中国专利申请以及于2018年1月26日提交中国专利局、申请号为201810078975.4、申请名称为“背光模组及显示装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本公开涉及显示技术领域,特别涉及一种液晶显示装置。
背景技术
随着显示技术的发展,人们对显示装置的要求越来越高。显示装置包括背光模组,背光模组中各个出光区域的对比度对于显示装置的显示效果来说至关重要。
相关技术中,为实现高色域显示,背光模组可以包括基板,以及依次设置在基板上的发光层和量子点膜片。其中,发光层包括多个发光二极管(Light Emitting Diode;LED)。该背光模组可以是直下式LED背光模组,且LED被划分为多个独立控制的单元形成背光分区,输入的图像可以划分为与背光分区一一对应的图像分区,可以根据每个图像分区的图像亮度实时调制每个背光分区所对应的背光亮度。量子点膜片包括与多个LED一一对应的多个出光区域。每个LED均可以向其对应的出光区域发出蓝光。每个出光区域中设置有红色量子点材料和绿色量子点材料,且红色量子点材料和绿色量子点材料能够在蓝光的激发下向各个方向发出红光与绿光,使得每个出光区域发出红绿蓝三种颜色的光。
发明内容
本公开实施例提供了一种液晶显示装置。该液晶显示装置包括:基板;设置在基板上的多个光源,设置在多个光源的出光方向上的量子点膜片,设置在基板上的多个立体反射片和光学层。其中,多个立体反射片和多个光源形成阵列设置的多个空腔。多个光源分别位于多个空腔的底部。光学层设置在多个空腔和量子点膜片之间,用于部分透射和部分反射多个光源产生的激励光。量子点膜片用于被激励光激发产生激发光。
附图说明
为了更清楚地说明本公开实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单的介绍。显然,下面描述的附图仅仅示出本公开的一些实施例,对于本领域普 通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本公开实施例提供的一种液晶显示装置的结构示意图;
图2a是本公开实施例提供的一种未使用光学层时量子点膜片的光接受面的照度分布示意图;
图2b是本公开实施例提供的一种未使用光学层时量子点膜片的光接受面的亮度曲线图;
图3a是本公开实施例提供的一种使用光学层时量子点膜片的光接受面的亮度曲线图;
图3b是本公开实施例提供的一种使用光学层时量子点膜片的光接受面的亮度曲线图;
图4是本公开实施例提供的一种光学层的反射率关于波长的关系示意图;
图5是相关技术提供的一种液晶显示装置的结构示意图;
图6是本公开实施例提供的另一种液晶显示装置的结构示意图;
图7是本公开实施例提供的一种第二层的反射率关于波长的关系示意图;
图8是本公开实施例提供的一种第一层的反射率关于波长的关系示意图;
图9是本公开实施例提供的另一种第一层的反射率关于波长的关系示意图;
图10是本公开实施例提供的又一种液晶显示装置的结构示意图。
具体实施方式
为使本公开的目的、技术方案和优点更加清楚,下面将结合附图对本公开实施例作进一步的详细描述。
随着显示技术的发展,人们对显示装置的显示效果的要求越来越高。而若显示装置中背光模组的各个出光区域之间的对比度较高,则显示装置可以有较好的显示效果。本公开实施例提供了一种各个发光区域之间的对比度较高的液晶显示装置。
图1是本公开实施例提供的一种液晶显示装置的结构示意图。如图1所示,液晶显示装置10可以包括多个光源101与量子点膜片102。量子点膜片可以设置在多个光源101的出光方向上。多个光源101发出的激励光射向量子点膜片102,并激发量子点膜片102产生激发光。该激发光与光源101发出的激励光可以混合成白色背光。
液晶显示装置10还包括反射片。该反射片可以为立体反射片103,并由侧面1031和底面1032构成,用于对多个光源101发出的激励光进行反射。多个立体反射片103和多个光源101形成阵列设置的多个空腔103h。其中,每个空腔103h的底部与光学层104相对,且多个光源101分别设置在多个空腔103h的底部。
液晶显示装置10还可以包括基板(图中未示)。多个光源101以及多个立体反射片103 都可以设置在基板上。
多个光源101和立体反射片103均可设置在基板上,
光源101与量子点膜片102之间还设置有光学层104。该光学层104对多个光源101发出的激励光进行部分反射和部分透射,即光学层104对激励光具有一定的透过率。多个立体反射片103的反射作用和光学层104的部分反射作用使得多个光源101发出的激励光在多个空腔103h内发生多次反射混光,使得从光学层104出射的激励光更加均匀。
为了保证从光学层104出射的激励光的均匀性,以满足显示的需要,如图1所示,在本公开的一些实施例中,每个光源101到光学层104的高度H与每个空腔103h的宽度P的比值H/P为0.2≤H/P≤0.35。其中,一个空腔103h的宽度为形成该空腔103h的两个立体反射片103之间的距离。此时光学层104对激励光的单次透过率m满足0.25≤m≤1。
在本公开的另外一些实施例中,多个光源101中的每个光源101到光学层104的高度H与每个空腔103h的宽度P的比值H/P为0.1≤H/P≤0.25。此时光学层104对激励光的单次透过率m满足0.05≤m≤0.6。
研究表明,每个光源101到光学层104的高度H与单个空腔103h的宽度P的比值H/P和光学层104对激励光的单次透过率m满足上述限定关系时,从光学层104出射的激励光的均匀性良好,能够满足显示装置的显示需求。
例如,每个光源101到光学层104的高度H与单个空腔103h的宽度P的比值H/P和光学层104对激励光的单次透过率m可以分别取以下数值:H/P为0.2时,m取0.25;或,H/P为0.25时,m取0.6;或,H/P为0.35时,m取1。
或,每个光源101到光学层104的高度H与单个空腔103h的宽度P的比值H/P和光学层104对激励光的单次透过率m可以分别取以下数值:H/P为0.1时,m取0.05;或,H/P为0.2时,m取0.25。
在一种实施方式中,每个光源101可以为LED,并发出蓝光。如图1所示,多个光源101可以设置在同一个平面A上。量子点膜片102中可以设置有量子点材料,该量子点材料可以由红色量子点材料和绿色量子点材料组成(图1中未标出量子点材料)。其中,红色量子点材料可以在多个光源101发出的蓝光的激发下发出红光,绿色量子点材料可以在该蓝光的激发下发出绿光。
量子点膜片102可以包括与每个光源101一一对应的出光区域。当需要控制量子点膜片102的某个出光区域发光时,可以控制该出光区域对应的光源101发出蓝光,进而使得该出光区域在该蓝光的激发下产生激发光。若每个光源101发出的蓝光射向该光源101对应的出光区域,则各个光源101发出的光不会互相干扰,进而可以提高各个出光区域之间 的对比度。
在一种实施方式中,如图1所示,每个光源101发出的激励光经与该光源101相邻的两个立体反射片103的侧面1031的反射后照射在该光源101所对应的光学层104上的相应区域。在该过程中,立体反射片103对每个光源101发出的激励光的光斑进行收敛,减小了每个光源101的照射范围。进一步地,光学层104可以将激励光中的一部分反射至立体反射片103的底面1032或侧面1031,此部分光线再经过多次反射,使得光线的角度发生改变,继而可以使激励光多次在空腔103h内进行混光,从而提高从光学层104出射的激励光的均匀性。
以下是相同条件下,未使用光学层104和使用光学层104时光照均匀性的效果对照分析。
图2a为未使用光学层104时量子点膜片102的光接受面的照度分布示意图。图2a中的坐标系可以为在该光接受面上建立的坐标系。图2b为未使用光学层104时量子点膜片102的光接受面的亮度曲线图。图2b中共示出了两条亮度曲线x1和y1。其中,亮度曲线x1对应图2a中的横坐标轴a1上不同位置处的亮度,亮度曲线y1对应图2a中的纵坐标轴b1上不同位置处的亮度。该亮度曲线图中,每条亮度曲线中每个点的横坐标值对应图2a中相应坐标轴上的位置,每条亮度曲线中每个点的纵坐标值为该位置的亮度值。例如,亮度曲线x1上的某一点的横坐标值对应图2a中横坐标为对应值而纵坐标为0的坐标点,亮度曲线y1上的某一点的横坐标值对应图2a中纵坐标为对应值而横坐标为0的坐标点。
图3a为使用光学层104(以0.2≤H/P≤0.35,0.25≤m≤1为例)时量子点膜片102的光接受面的照度分布示意图,图3a中的坐标系可以为在该光接受面上建立的坐标系。图3b为使用光学层104时量子点膜片102的光接受面的亮度曲线图。图3b中共示出了两条亮度曲线x2和y2。其中,亮度曲线x2对应图3a中的横坐标轴上不同位置处的亮度,亮度曲线y2对应图3a中的纵坐标轴上不同位置处的亮度。该亮度曲线图中,每条亮度曲线中每个点的横坐标值对应图3a中相应坐标轴上的位置,每条亮度曲线中每个点的纵坐标为该位置的亮度值。例如,亮度曲线x2上的某一点的横坐标值对应图3a中横坐标为对应值而纵坐标为0的坐标点,亮度曲线y2上的某一点的横坐标值对应图3a中纵坐标为对应值而横坐标为0的坐标点。
对比图2a与图3a以及图2b与图3b可以看出,大部分情况下,x2与y2上横坐标值相同的点对应的纵坐标值之间的差距小于x1与y1上横坐标值相同的点对应的纵坐标值之间的差距,说明在立体反射片103和光学层104的配合作用下,从光学层104出射的激励光具有良好的均匀性,提高了液晶显示装置10各个出光区域的对比度。需要说明的是, 图2b与图3b中的E+004表示104。例如,图2b中的1.2E+004表示12000,2.8E+004表示28000。
在一种实施方式中,因为立体反射片103的侧面1031会对光进行反射,且侧面1031具有一定的厚度,因此可以在每个空腔103h的顶面与光学层104之间预留一定的间隔,以此来减少光学层104在侧面1031的顶部对应位置产生暗斑的可能,保证每个空腔103h对应的光学层104上的相应区域的入射光线分布均匀,继而保证液晶显示装置10各个出光区域的对比度。其中,空腔103h的顶面与底部相对,且比空腔103h的底部更靠近光学层104。
综上所述,本公开实施例提供的液晶显示装置10包括基板,光学层104,设置在基板上的多个光源101和多个立体反射片103,设置在多个光源101的出光方向上的量子点膜片102。该多个立体反射片103和该多个光源101形成阵列设置的多个空腔103h。多个光源101分别位于多个空腔103h的底部,用于产生激励光。用于透射部分激励光和反射另一部分激励光的光学层104设置在光源101和量子点膜102之间。量子点膜片102用于被激励光激发产生激发光。这样一来,每个光源101发出的激励光在立体反射片103和光学层104的作用下,射向量子点膜片102上该光源101对应的出光区域而产生激发光,大大减小了照射到量子点膜片102上的其它出光区域的可能性,实现对光源101的光斑的收敛。同时,光学层104的存在提高了从光学层104出射的激励光的均匀性,提高了液晶显示装置10的各个出光区域之间的对比度。
在一种实施方式中,光学层104还用于反射激发光的后向散射光。该后向散射光为量子点膜片102中的红色量子点材料和绿色量子点材料受蓝光的激发产生的红光和绿光中射向光学层104的一部分光。通过这样的方式,可以增加这部分射向光学层104的光通过光学层104再次被反射到量子点膜片102并从所述量子点膜片102向远离光学层102的方向出射的可能性,进一步提高背光模组10的各个出光区域之间的对比度。
在一种实施方式中,蓝光的波长范围可以为[440nm,450nm],红光的波长范围可以为[620nm,660nm],绿光的波长范围可以为[525nm,545nm]。
图4为一种实施方式中,光学层104的反射率与入射到光学层104的光的波长的关系示意图。由图4可知,光学层104对于量子点膜片102发出的绿光(假设绿光的波长范围为[525nm,545nm])与红光(假设红光的波长范围为[620nm,660nm])的反射率约为100%,对于LED发出的蓝光的反射率约为50%。需要说明的是,本实施方式仅以光学层对蓝光的反射率为50%为例,实际应用中该反射率可以调节,反射率的选择可依据上述透过率与H/P比值的关系来确定,以此保证出光区域的出光的均匀性。
图5为相关技术中的液晶显示装置的结构示意图。相关技术中,液晶显示装置在发光时可以进行分区动态控制(local dimming,也称为局部调光),例如仅控制某一个光源发光。该液晶显示装置可以包括基板301,设置在基板301上的蓝光光源302,以及设置在蓝光光源302远离基板301的一侧的量子点膜片303。其中,基板301上设置有反射片(图中未标出)。
如图5所示,量子点膜片303在蓝光光源302发出的蓝光的激发下预期形成的光斑可以为B1。然而,量子点膜片303产生的激发光可以发生后向散射而形成后向散射光,后向散射光射向基板301上的反射片后发生反射,再次射向量子点膜片303,此时量子点膜片形成的光斑可以为B2。由图5可知,实际形成的光斑B2的范围大于预期形成的光斑B1的范围,因此相关技术中的液晶显示装置10的各个出光区域之间的对比度较低。
而本公开实施例上述实施方式提供的液晶显示装置10中,光学层104可以反射量子点膜片102产生的激发光,减少该激发光射向光源101所在面的可能性,因此实际形成的光斑与预期形成的光斑差距较小,进而可以进一步提高各个出光区域之间的对比度。
综上所述,本公开实施例上述实施方式提供的液晶显示装置10包括立体反射片103和光学层104,其中,该立体反射片103可使光源101的出射光的发射角减小,光学层104部分透射和部分反射光源101发出的激励光,并反射激发光的后向散射光。这样一来,光源101发出的光可以在该立体反射片103和光学层104的作用下,射向量子点膜片102上该光源101对应的出光区域而产生激发光,并且该激发光中的后向散射光会被光学层104反射,减少其射向光源101所在面以及被光源101所在面反射至量子点膜片102上的其他出光区域的可能性。通过这样的方式,减少了各个出光区域发出的光的混色,提高了液晶显示装置10的各个出光区域之间的对比度。
图6是本公开实施例提供的另一种液晶显示装置10的结构示意图。如图6所示,在图1的基础上,液晶显示装置10还可以包括:设置在量子点膜片102远离光源101一侧的光扩散板105。
需要说明的是,光扩散板105设置在量子点膜片102远离光源101的一侧,用于使得量子点膜片102产生的激发光(也即是红光与绿光)以及透过量子点膜片102的蓝光均匀混合。这是因为,若光扩散板105设置在光学层104与量子点膜片102之间,则量子点膜片102产生的激发光后向散射的传输路径较长,而本公开实施例中将光扩散板105设置在量子点膜片102远离光源101的一侧,可缩短量子点膜片102产生的激发光射向光学层104的路径,使得激发光在光学层104发生反射后,形成的光斑较小,进一步减少了各个出光区域之间的混色,提高了出光区域之间的对比度。
本公开实施例中的光学层104可以透射光源101发出一部分的蓝光,并反射光源101发出的另一部分蓝光。该部分被光学层104反射的蓝光被反射至立体反射片103后,可以在立体反射片103之间进行多次反射,然后射出光学层104,提高了射向量子点膜片102的蓝光的均匀度。
在一种实施方式中,光学层104可为一半透半反层,该层被配置为对蓝光部分透射部分反射,对蓝光激发的红光和绿光进行反射。
在一种实施方式中,光学层104也可包括两层或两层以上,本公开实施例对此不作限定。例如,如图6所示,光学层104可以包括第一光学层1041与第二光学层1042。其中,第一光学层1041靠近光源101设置,可以用于透射光源101发出的一部分蓝光,并反射光源101发出的另一部分蓝光。第二光学层1042远离光源101设置,可以用于反射量子点膜片102产生的激发光的后向散射光,且透射光源101发出的蓝光。
在一些实施例中,立体反射片103包括与基板平行的底板和垂直设置在底板上的侧板。底板固定在基板上。侧板沿从底板朝向光学层104设置。
在一些实施例中,底板上设置有多个通孔。多个通孔用于使设置在底板上的多个光源101通过,以分别形成独立的光学腔。
在一些实施例中,底板与侧板均成平板状,平板状的底板和侧板能够使光学腔内形成较多次的反射,有利于光线的匀化。
图7示出了第二光学层1042的反射率与波长的关系。假设光源101发出的蓝光的波长范围为[440nm,450nm],量子点膜片102中的红色量子点材料在该蓝光的激发下发出的红光的波长范围为[620nm,660nm],绿色量子点材料在该蓝光的激发下发出的绿光的波长范围为[525nm,545nm],如图7所示,第二光学层1042能够透射该蓝光,且反射该红光与绿光。
图8示出了一种实施方式中,第一光学层1041的反射率与波长的关系。如图8所示,第一光学层1041可以仅对蓝光波段([400nm,480nm])的光进行半透半反,并对该蓝光波段之外的其它波长的光进行透射,该蓝光波段([400nm,480nm])可以包括本公开实施例中光源101发出的蓝光的波长。
图9示出了另一种实施方式中,第一光学层1041的反射率与波长的关系。如图9所示,第一光学层1041可以对可见光波段([380nm,780nm])内任意波长的光进行半透半反,该可见光波段([380nm,780nm])可以包括本公开实施例中光源101发出的蓝光的波长。
请继续参考图6,液晶显示装置10还可以包括基板K,且该基板K可以呈凹槽状,多个光源101可以设置在该凹槽中,即该凹槽的底面可以为多个光源101所在面A,光学层 104可以设置在基板K上,对设置在光学层104之上的其他膜层进行支撑。
在一种实施方式中,在图1或者图6所示的液晶显示装置10的基础上,液晶显示装置10还可以包括光学膜层。如图10所示,例如,液晶显示装置10在图6的基础上还可以包括设置在光扩散板105上的光学膜层106。光学膜层106可以包括棱镜膜(Brightness Enhancement Film,BEF)与反射式偏光增亮膜(Dual Brightness Enhancement Film,DBEF)。光学膜层106能够提高通过该光学膜层106的光的亮度。
在一种实施方式中,液晶显示装置10还可以包括液晶显示面板。
例如,该液晶显示装置10可以为:液晶显示装置、电子纸、手机、平板电脑、电视机、显示器、笔记本电脑、数码相框、导航仪等任何具有显示功能的产品或部件。
以上所述仅为本公开的可选实施例,并不用以限制本公开,凡在本公开的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本公开的保护范围之内。

Claims (12)

  1. 一种液晶显示装置,其特征在于,包括:
    基板;
    设置在基板上的多个光源;
    设置在所述多个光源的出光方向上的量子点膜片;
    设置在基板上的多个立体反射片;
    光学层;
    其中,
    所述多个立体反射片和所述多个光源形成阵列设置的多个空腔;
    所述多个光源分别位于所述多个空腔的底部;
    所述光学层设置在所述多个空腔和所述量子点膜片之间,用于部分透射和部分反射所述多个光源产生的激励光;
    所述量子点膜片用于被所述激励光激发产生激发光。
  2. 根据权利要求1所述的液晶显示装置,其特征在于,
    所述多个光源到所述光学层的高度H与所述多个空腔中每个空腔的宽度P的比值H/P为0.2≤H/P≤0.35;
    所述每个空腔的宽度为形成该空腔的两个立体反射片之间的距离;
    所述光学层对所述激励光的单次透过率m满足0.25≤m≤1。
  3. 根据权利要求1所述的液晶显示装置,其特征在于,
    所述多个光源到所述光学层的高度H与所述多个空腔中每个空腔的宽度P的比值H/P为0.1≤H/P≤0.25;
    所述每个空腔的宽度为形成该空腔的两个立体反射片之间的距离;
    所述光学层对所述激励光的单次透过率m满足0.05≤m≤0.6。
  4. 根据权利要求1-3任一所述的液晶显示装置,其特征在于,
    所述光学层还用于反射所述激发光的后向散射光;
    所述后向散射光为所述激发光中射向所述光学层的一部分光。
  5. 根据权利要求4所述的液晶显示装置,其特征在于,所述光学层为一半透半反层。
  6. 根据权利要求4所述的液晶显示装置,其特征在于,所述光学层包括:层叠设置的第一层光学层与第二层光学层,
    所述第一光学层靠近所述光源,用于透射部分所述激励光,并反射部分所述激励光;
    所述第二光学层远离所述光源,用于反射所述激发光的后向散射光。
  7. 根据权利要求1-6任一项所述的液晶显示装置,其特征在于,还包括:设置在所述量子点膜片远离所述光源的一侧的扩散板。
  8. 根据权利要求1-6任一项所述的液晶显示装置,其特征在于,所述光源为蓝光光源,所述量子点膜片中设置有量子点材料,所述量子点材料由红色量子点材料和绿色量子点材料组成。
  9. 根据权利要求1-6任一项所述的液晶显示装置,其特征在于,所述多个空腔的顶面与所述光学层之间预留一定的间隔,所述每个空腔的顶面与该空腔的底部相对。
  10. 根据权利要求1-9任意一项所述的液晶显示装置,其特征在于,所述立体反射片包括与所述基板平行的底板和垂直设置在所述底板上的侧板。
  11. 根据权利要求10所述的液晶显示装置,其特征在于,所述底板上设置有多个通孔,所述多个通孔用于使设置在所述底板上的所述多个光源通过。
  12. 根据权利要求10所述的液晶显示装置,其特征在于,所述底板与所述侧板均成平板状
PCT/CN2018/090105 2018-01-26 2018-06-06 液晶显示装置 WO2019144557A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP18902372.4A EP3745188B1 (en) 2018-01-26 2018-06-06 Liquid crystal display device
US16/714,138 US10788704B2 (en) 2018-01-26 2019-12-13 Liquid crystal display device

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201810076650.2A CN108227305B (zh) 2018-01-26 2018-01-26 背光模组及显示装置
CN201810078975.4A CN108279532B (zh) 2018-01-26 2018-01-26 背光模组及显示装置
CN201810078975.4 2018-01-26
CN201810076650.2 2018-01-26

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/714,138 Continuation US10788704B2 (en) 2018-01-26 2019-12-13 Liquid crystal display device

Publications (1)

Publication Number Publication Date
WO2019144557A1 true WO2019144557A1 (zh) 2019-08-01

Family

ID=67394499

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/090105 WO2019144557A1 (zh) 2018-01-26 2018-06-06 液晶显示装置

Country Status (3)

Country Link
US (1) US10788704B2 (zh)
EP (1) EP3745188B1 (zh)
WO (1) WO2019144557A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113325494A (zh) * 2021-01-25 2021-08-31 深圳市隆利科技股份有限公司 一种增强反射的光学膜片及应用其的直下式背光模组

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012174371A (ja) * 2011-02-17 2012-09-10 Sharp Corp 照明装置、液晶表示装置
JP2012212509A (ja) * 2011-03-30 2012-11-01 Sharp Corp 照明装置および表示装置
CN104698680A (zh) * 2015-03-11 2015-06-10 青岛海信电器股份有限公司 模组和显示设备
CN105425452A (zh) * 2015-12-03 2016-03-23 青岛海信电器股份有限公司 背光模组及显示装置
CN107532786A (zh) * 2015-05-15 2018-01-02 索尼公司 发光装置、显示装置和照明装置

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10466534B2 (en) * 2016-05-06 2019-11-05 Sharp Kabushiki Kaisha Backlight device, and display apparatus including same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012174371A (ja) * 2011-02-17 2012-09-10 Sharp Corp 照明装置、液晶表示装置
JP2012212509A (ja) * 2011-03-30 2012-11-01 Sharp Corp 照明装置および表示装置
CN104698680A (zh) * 2015-03-11 2015-06-10 青岛海信电器股份有限公司 模组和显示设备
CN107532786A (zh) * 2015-05-15 2018-01-02 索尼公司 发光装置、显示装置和照明装置
CN105425452A (zh) * 2015-12-03 2016-03-23 青岛海信电器股份有限公司 背光模组及显示装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3745188A4

Also Published As

Publication number Publication date
US10788704B2 (en) 2020-09-29
EP3745188A4 (en) 2021-02-24
US20200117054A1 (en) 2020-04-16
EP3745188A1 (en) 2020-12-02
EP3745188B1 (en) 2023-01-04

Similar Documents

Publication Publication Date Title
US11112557B2 (en) Light guide structure, direct type backlight module and display panel
TWI541472B (zh) 背光模組
CN108227305B (zh) 背光模组及显示装置
TWI309324B (en) Backlight device and liquid crystal display device
KR20120080644A (ko) 백라이트 장치, 및 그 백라이트 장치를 이용한 액정 표시 장치, 및 그들에 이용하는 발광 다이오드
WO2010150516A1 (ja) 面光源および液晶表示装置
CN110928038A (zh) 一种背光模组、显示装置及液晶电视
WO2020025055A1 (zh) 一种led光源、面光源显示模组和led光源的制备方法
US20160033703A1 (en) Surface Light Source, Backlight Module and Display Device
US8152319B2 (en) Backlight module and liquid crystal display
WO2019127728A1 (zh) 用于背光模块的量子点膜、背光模块及液晶显示器
EP2450742B1 (en) Backlight source and thinning method for the same and liquid crystal device with the same
US9753213B2 (en) Planar light source device and liquid crystal display apparatus
WO2020019856A1 (zh) 灯板、背光模组和显示装置
US11320574B2 (en) Light guide plate, backlight module and display device
WO2019144557A1 (zh) 液晶显示装置
CN111665662B (zh) 照明装置以及显示装置
KR20120031581A (ko) 도광판 및 그를 이용한 백라이트 유닛
CN108279532B (zh) 背光模组及显示装置
US10732457B2 (en) Backlight module and display device having transparent substrate with a plurality of light source disposed thereon
CN114063347A (zh) 一种显示装置
US10996501B1 (en) Display panel and display device
WO2012043361A1 (ja) 照明装置、及び表示装置
CN109638143A (zh) 量子点膜及发光模块
CN220709874U (zh) 一种背光模组及显示装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18902372

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018902372

Country of ref document: EP

Effective date: 20200826