WO2019142859A1 - Liquid level detecting device - Google Patents

Liquid level detecting device Download PDF

Info

Publication number
WO2019142859A1
WO2019142859A1 PCT/JP2019/001259 JP2019001259W WO2019142859A1 WO 2019142859 A1 WO2019142859 A1 WO 2019142859A1 JP 2019001259 W JP2019001259 W JP 2019001259W WO 2019142859 A1 WO2019142859 A1 WO 2019142859A1
Authority
WO
WIPO (PCT)
Prior art keywords
housing
liquid level
path
oscillation element
ultrasonic
Prior art date
Application number
PCT/JP2019/001259
Other languages
French (fr)
Japanese (ja)
Inventor
宮川 功
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Publication of WO2019142859A1 publication Critical patent/WO2019142859A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F23/00Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm
    • G01F23/22Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measuring physical variables, other than linear dimensions, pressure or weight, dependent on the level to be measured, e.g. by difference of heat transfer of steam or water
    • G01F23/28Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measuring physical variables, other than linear dimensions, pressure or weight, dependent on the level to be measured, e.g. by difference of heat transfer of steam or water by measuring the variations of parameters of electromagnetic or acoustic waves applied directly to the liquid or fluent solid material
    • G01F23/296Acoustic waves

Definitions

  • the present disclosure relates to a liquid level detection device.
  • this type of liquid level detection device includes a housing having an internal space that functions as a propagation path of ultrasonic waves.
  • the propagation path is a first path extending horizontally from the position at which the ultrasonic oscillation element is provided, and a second path extending upward from the end of the first path opposite to the position at which the ultrasonic oscillation element is provided
  • the structure which has and are common is known.
  • One aspect of the present disclosure is to provide a liquid level detection device capable of making it easy for water accumulated inside a housing to escape to the outside of the housing with a simple configuration.
  • a liquid level detection device which is provided on the bottom of the inside of a tank and detects the position of the liquid level of the liquid stored in the tank, and includes an ultrasonic oscillation element and a housing.
  • the ultrasonic oscillation element can transmit and receive ultrasonic waves.
  • the housing internally has a propagation path through which ultrasonic waves propagate.
  • the propagation path has a first path and a second path.
  • the first path extends horizontally from the position where the ultrasonic oscillation element is provided.
  • the second path extends upward from the end of the first path opposite to the position at which the ultrasonic oscillation element is provided.
  • the first path has a conical portion which is a truncated cone-like path whose cross-sectional area gradually decreases with distance from the ultrasonic oscillation element.
  • the housing has a shape in which the lower surface of the portion where the conical portion is formed is separated from the bottom, and has a through hole communicating the inside and the outside of the housing at the end portion on the ultrasonic oscillation element side in the conical portion and the lower portion in the vertical direction.
  • the water collected inside the housing is provided at the end portion on the ultrasonic oscillation element side in the conical portion and at the lower portion in the vertical direction, and the lower surface of the housing is separated from the bottom surface of the tank It is easy to go out from the through hole. As a result, it is not necessary to provide the above-described groove and the like, and water accumulated inside the housing can be easily released to the outside of the housing with a simple configuration.
  • the liquid level detection device 100 shown in FIG. 1 is mounted on a vehicle and transmits ultrasonic waves at the bottom of a tank 200 that stores liquid fuel, and receives a reflected wave reflected by the liquid surface to obtain the liquid level. Is a device for detecting the position of In addition, about a part of liquid level detection apparatus 100 shown in FIG. 1, in order to show an internal structure intelligibly, it has shown not the cross section but the side.
  • the liquid level detection apparatus 100 roughly includes two functional units, specifically, a sensor unit 1 and a housing unit 2 from the functional viewpoint.
  • the sensor unit 1 is an assembly that functions as a transmitter and receiver of ultrasonic waves as a whole.
  • the sensor unit 1 includes an ultrasonic oscillation element 11, two internal terminals 13, an elastic body 14, a case 15, a lid 16, and two external terminals 17.
  • the ultrasonic wave oscillation element 11 is an element that transmits and receives an ultrasonic wave.
  • the ultrasonic oscillation element 11 is configured in a disk shape having a shape in which the central axis A is defined by a substance having a piezoelectric effect such as PZT (zirconate titanate).
  • the piezo effect is a characteristic in which a volume changes when a voltage is applied, and a voltage is generated when an external force is applied.
  • Electrodes printed on substantially the entire surface of the ultrasonic oscillation element 11 are provided on both sides.
  • the ultrasonic oscillation element 11 vibrates in the direction of the central axis A, which is the thickness direction, by the above-described piezo effect, when a voltage is applied between the electrodes on both surfaces from an external electric circuit through the lead wire 3. It emits ultrasonic waves.
  • the ultrasonic oscillation element 11 is accommodated in the case 15 together with the insulating member.
  • the internal terminal 13 is a terminal for electrically connecting the ultrasonic oscillation element 11 and the external terminal 17.
  • the internal terminal 13 is formed of a metal plate.
  • the ultrasonic oscillation element 11 and the internal terminal 13 are electrically connected by soldering.
  • two internal terminals 13 are provided on both sides of the ultrasonic oscillation element 11 and the elastic body 14.
  • the elastic body 14 is a substantially cylindrical member disposed coaxially with the central axis A of the ultrasonic oscillation element 11, and of the two end faces on both sides in the axial direction, the first surface is the ultrasonic oscillation element 11. The second surface is in contact with the lid 16.
  • the elastic body 14 is formed of, for example, an elastic material such as a flexible resin and rubber.
  • the case 15 is a bottomed cylindrical case having a receiving chamber for receiving the ultrasonic oscillation element 11, the two internal terminals 13 and the elastic body 14.
  • the lid 16 is a member for closing the storage chamber of the case 15.
  • the elastic body 14 In the state where the lid 16 is locked to the case 15, the elastic body 14 is designed to be larger in the direction of the central axis A so that the elastic body 14 is compressed by the lid 16 and accommodated in the accommodation chamber in an elastically deformed state. ing. For this reason, the ultrasonic oscillation element 11 is fixed in a state of being pressed against the bottom surface of the case 15 by the elastic force of the elastic body 14.
  • the internal terminal 13 is inserted through the hole provided in the lid 16, and the tip of the internal terminal 13 protrudes outside the accommodation chamber of the case 15.
  • the external terminal 17 is a terminal for electrically connecting the internal terminal 13 and the lead wire 3.
  • the external terminal 17 is formed of a metal plate. One end of the external terminal 17 is joined to the tip of the internal terminal 13 by welding. The other end of the external terminal 17 is connected to the lead wire 3 by crimping or the like.
  • the external terminal 17 is fixed to the lid 16 outside the accommodation chamber of the case 15.
  • the housing part 2 is an assembly which functions as a propagation path of an ultrasonic wave as a whole by having a propagation path which propagates an ultrasonic wave inside.
  • the housing portion 2 has a body 21, a guide pipe 22, a guide pipe 23 and a reflection plate 24.
  • the body 21 is a resin member that holds and fixes the sensor unit 1, the guide pipe 22, the guide pipe 23, and the reflection plate 24.
  • the guide pipe 22, the guide pipe 23 and the reflecting plate 24 are attached to the body 21.
  • the body 21 is fixed to the bottom of the tank 200.
  • the sensor unit 1 is attached to the body 21 so that the central axis A of the ultrasonic oscillation element 11 is coaxial with the central axis of the guide pipe 22.
  • the guide pipe 22 is a metal cylinder made of a substantially truncated cone. One end side of the guide pipe 22 corresponding to the right side in FIG. 1 is provided at a position facing the sensor unit 1.
  • the guide pipe 22 has a circular cross section in the direction orthogonal to the central axis A of the guide pipe 22.
  • the guide pipe 22 forms a first path 4 which is a part of a propagation path, which extends horizontally from the position where the ultrasonic oscillation element 11 is provided.
  • the first path 4 has a conical portion 41, a straight portion 42 and a step 43.
  • the conical portion 41 is a frusto-conical portion whose cross-sectional area gradually reduces as it is separated from the ultrasonic oscillation element 11.
  • the diameter of the cross section of the conical portion 41 in the direction orthogonal to the central axis A of the first path 4 decreases as the distance from the ultrasonic oscillation element 11 increases.
  • the external shape of the part in which the conical part 41 is formed is also a truncated cone shape of the housing part 2 substantially. Therefore, as shown in FIG. 2, the lower surface of the portion of the housing 2 where the conical portion 41 is formed is separated from the bottom surface of the tank 200.
  • the straight portion 42 is a portion having a constant cross-sectional area, that is, a straight tube.
  • the stepped portion 43 is a portion connecting the conical portion 41 and the linear portion 42, and the cross-sectional area of the conical portion 41 is reduced in a step-like manner at the end opposite to the end where the ultrasonic wave oscillation element 11 is provided. It is a part.
  • An annular reference surface 221 coaxial with the central axis A is formed on the guide pipe 22 by the presence of the step 43.
  • the guide pipe 23 is a straight tubular metal cylinder.
  • the guide pipe 23 is provided such that the central axis B of the guide pipe 23 is orthogonal to the central axis A, and is continuous with the end of the guide pipe 22 on the linear portion 42 side via the body 21.
  • the guide pipe 23 has a circular cross section in the direction orthogonal to the central axis B.
  • the upper end portion of the guide pipe 23 is positioned so as to protrude upward by a predetermined length than the liquid level at the maximum time of the fuel storage amount of the tank 200.
  • the guide pipe 23 forms a second path 5 which is a part of the propagation path.
  • the second path 5 extends from the bottom of the tank 200 upward, in the vertical direction in the present embodiment.
  • the diameter of the second path 5 in the present embodiment is equal to the diameter of the straight portion 42.
  • the reflecting plate 24 is a metal plate.
  • the reflection plate 24 is disposed so that the central axis A of the guide pipe 22 and the central axis B of the guide pipe 23 intersect at the reflection surface 241 of the reflection plate 24 in a state of being held and fixed to the body 21 There is.
  • the reflection plate 24 reflects the ultrasonic wave transmitted from the ultrasonic oscillation element 11 toward the liquid surface of the fuel.
  • the reflection plate 24 reflects the ultrasonic wave traveling along the central axis A of the guide pipe 22 in the direction in which the incident angle to the liquid surface is 0 °, that is, in the direction orthogonal to the liquid surface.
  • the reflection plate 24 is provided to be inclined 45 ° with respect to the liquid surface.
  • the ultrasonic oscillation element 11 when a pulse voltage is applied to the ultrasonic oscillation element 11 through the lead wire 3, the external terminal 17 and the internal terminal 13, the ultrasonic oscillation element 11 vibrates, and the bottom surface of the case 15 is Ultrasonic waves are transmitted to the first path 4 via the first path 4.
  • the sensor unit 1 receives a reflected wave reflected on the liquid surface through the reflection plate 24 or a reflected wave reflected on the reference surface 221
  • the pressure action causes the bottom of the case 15 to vibrate, and the ultrasonic oscillation element 11 also accordingly Vibrate.
  • the ultrasonic oscillation element 11 generates a voltage, and the voltage is input as an output signal to an external electric circuit through the internal terminal 13, the external terminal 17 and the lead wire 3.
  • the fuel is based on the time from the transmission of the ultrasonic wave by the ultrasonic oscillation element 11 to the reception of the reflected wave reflected by the reference surface 221.
  • the propagation velocity of the ultrasonic wave in the inside can be measured. Therefore, by using the reflected wave reflected by the reference surface 221 as a reference wave for calculating the position of the liquid level, the position of the liquid level can be highly accurate regardless of the change in the propagation velocity of the ultrasonic wave due to the temperature change of the liquid. Can be detected.
  • the housing portion 2 has a through hole 6.
  • the through hole 6 is provided at the end portion of the conical portion 41 of the guide pipe 22 on the ultrasonic oscillation element 11 side, the lower portion in the vertical direction, or the lowermost portion in the vertical direction in the present embodiment.
  • the lowermost portion in the vertical direction is the lowest position in the vertical direction in a cross section perpendicular to the central axis A of the first path 4, in other words, the position directly below the central axis A of the first path 4. It is. That is, as shown in FIG. 3, the through hole 6 is located on the lower surface of the portion of the housing portion 2 which is separated from the bottom surface of the tank 200 and in which the conical portion 41 is formed.
  • the through hole 6 may not necessarily be provided at the lowermost part in the vertical direction, and may be provided at a position slightly offset from the lowermost part in the vertical direction.
  • the through hole 6 is a circular through hole communicating the inside and the outside of the housing portion 2.
  • the size of the through hole 6 is set such that the water stagnating inside the housing 2 is released to the outside of the housing 2.
  • the diameter of the through hole 6 is set to 3 mm.
  • the through hole 6 is provided at a position where the ultrasonic wave transmitted from the ultrasonic wave oscillation element 11 is hard to reflect. That is, the ultrasonic waves transmitted from the ultrasonic wave oscillating element 11 have directivity as shown in FIG.
  • the output is an angle range of -26 db or more, that is, about ⁇ 25 degrees, and further an error.
  • an angular range of ⁇ 30 degrees is a substantial ultrasonic wave transmission range. More precisely, the virtual range 72 shown in FIG. 1 is the transmission range of the substantial ultrasonic waves.
  • the virtual range 72 is reflected at an angle of ⁇ 30 degrees from the center 71 of the surface of the ultrasonic oscillation element 11 facing the first path 4 at 360 degrees around the central axis A, that is, with the center 71 as an apex. It is a range which spreads conically toward the plate 24 side. That is, the virtual range 72 is a conical range defined by the apex angle ⁇ with the center 71 as the apex and the central axis A as an axis, and the apex angle ⁇ in this example is 60 degrees. In the present embodiment, the through hole 6 is provided outside the virtual range 72.
  • a through hole 6 a is provided in the housing portion 2 instead of the through hole 6.
  • the through hole 6 a is located at a portion of the housing portion 2 that abuts the bottom surface of the tank 200 without a gap. Therefore, it is difficult for water accumulated inside the housing portion 2 to escape to the outside of the housing portion 2 only by the through hole 6a, and it is necessary to separately provide the housing portion 2 with a groove extending laterally from the through hole 6a and communicating with the outside of the housing. There is.
  • the through hole 6 of the present embodiment is provided at a position where the housing portion 2 and the bottom of the tank 200 are separated. As a result, it is not necessary to provide the groove described above, and the water remaining inside the housing portion 2 can be easily removed to the outside of the housing portion 2 by a simple configuration.
  • the housing portion 2 has the through hole 6 at the lowermost portion in the vertical direction of the conical portion 41. According to such a configuration, since the water has the characteristic of being easily accumulated in the lower portion in the vertical direction of the propagation path, the housing portion has a through hole at a portion different from the lowermost portion in the vertical direction in the conical portion Compared to the above, the water accumulated inside the housing portion 2 can be more easily removed.
  • the through hole 6 is provided outside the virtual range 72. According to such a configuration, it is possible to make it difficult for the ultrasonic wave transmitted from the ultrasonic wave oscillation element 11 to be reflected by the inner surface of the through hole 6.
  • the ultrasonic wave transmitted from the ultrasonic oscillation element 11 is reflected on the inner surface of the through hole, and the reflected wave detects the position of the liquid surface. Noise at the position of the liquid, which may cause a decrease in detection accuracy of the position of the liquid surface.
  • the through hole 6 of the present embodiment is provided outside the virtual range 72. That is, the ultrasonic wave transmitted from the ultrasonic wave oscillation element 11 is not likely to be reflected on the surface of the housing 2 on which the through hole 6 is provided. As a result, it is possible to make it difficult to cause a decrease in detection accuracy.
  • the housing portion 2 corresponds to a housing.
  • the through-hole 6 which is circular was illustrated.
  • the shape of the through hole is not limited to this, and may be, for example, a semicircular shape, an elliptical shape, or a polygonal shape such as a triangular shape.
  • the through holes may be so-called rounded rectangular shapes in which each vertex of the polygon has a round shape instead of a corner, or two parallel lines of two equal lengths and two semicircular shapes.
  • a plurality of through holes may be provided.
  • the configuration in which the through hole 6 is provided outside the virtual range 72 which is a conical shape whose apex angle is defined by 60 degrees is illustrated.
  • the virtual range and the position of the through hole are not limited to this.
  • the virtual range may be, for example, an apex angle other than 60 degrees.
  • the liquid level detection apparatus 100 used for the liquid level detection of the fuel in the tank 200 was illustrated.
  • the application of the liquid level detection device is not particularly limited.
  • the liquid level detection device may be used to detect the level of other liquids mounted on a vehicle, such as engine oil, brake fluid, and window washer liquid. Further, for example, the liquid level detection device may be used for liquid level detection in a liquid transport tank provided in a liquid transport vehicle or in a liquid container of various consumer devices other than the vehicle.
  • the function of one component in the above embodiment may be distributed as a plurality of components, or the function of a plurality of components may be integrated into one component.
  • part of the configuration of the above embodiment may be omitted.
  • at least a part of the configuration of the above-described embodiment may be added to or replaced with the configuration of the other above-described embodiment.

Abstract

A liquid level detecting device (100) is provided with an ultrasonic oscillating element (11) and a housing (2). The ultrasonic oscillating element is capable of transmitting and receiving ultrasonic waves. The housing internally includes a propagation pathway along which the ultrasonic waves propagate. The propagation pathway includes a first pathway (4) and a second pathway (5). The first pathway extends horizontally from a position at which the ultrasonic oscillating element is provided. The second pathway extends upward from the end of the first pathway on the opposite side to the position at which the ultrasonic oscillating element is provided. The first pathway has a conical portion (41) which is a truncated cone shaped pathway having a cross-sectional area which contracts gradually with increasing distance from the ultrasonic oscillating element. The housing has a shape in which a lower surface of a part forming the conical portion is separated from a bottom surface, and has a through hole (6) providing communication between the inside and the outside of the housing, in an end portion of the conical portion on the side thereof closest to the ultrasonic oscillating element, in a vertically lower portion of the housing.

Description

液面検出装置Liquid level detection device 関連出願の相互参照Cross-reference to related applications
 本国際出願は、2018年1月19日に日本国特許庁に出願された日本国特許出願第2018-6822号に基づく優先権を主張するものであり、日本国特許出願第2018-6822号の全内容を本国際出願に参照により援用する。 This international application claims the priority based on Japanese Patent Application No. 2018-6822 filed on Jan. 19, 2018 to the Japanese Patent Office, and the Japanese Patent Application No. 2018-6822 The entire contents are incorporated by reference into this international application.
 本開示は、液面検出装置に関する。 The present disclosure relates to a liquid level detection device.
 液体を貯蔵するタンクの内部の底面において、超音波発振素子によって超音波を送信し、液面で反射した反射波を受信することにより、液面の位置を検出する液面検出装置が知られている。一般に、この種の液面検出装置は、超音波の伝搬経路として機能する内部空間を有するハウジングを備える。伝搬経路は、超音波発振素子が設けられる位置から水平に延びる第1の経路と、第1の経路における超音波発振素子が設けられる位置とは反対側の端部から上方に延びる第2の経路とを有する構成が一般的である。 There is known a liquid level detection device that detects the position of a liquid surface by transmitting ultrasonic waves by an ultrasonic oscillation element and receiving a reflected wave reflected by the liquid surface at the bottom inside a tank that stores liquid. There is. Generally, this type of liquid level detection device includes a housing having an internal space that functions as a propagation path of ultrasonic waves. The propagation path is a first path extending horizontally from the position at which the ultrasonic oscillation element is provided, and a second path extending upward from the end of the first path opposite to the position at which the ultrasonic oscillation element is provided And the structure which has and are common.
 ところで、例えば、車両に搭載された燃料貯蔵用のタンクにおける液面の位置の検出は、ハウジングの内部に燃料が満たされた状態を前提として行われるが、給油中に雨水がタンク内へ浸入するなどの理由により、ハウジングの内部に水が溜まることがある。そうすると、超音波の伝搬速度は燃料中と水中とでは異なるため、液面の位置の検出精度が低下し得る。特許文献1には、燃料と比較して比重量が大きく伝搬経路の鉛直方向下部に溜まりやすい水の特性を考慮して、伝搬経路の最下部に水抜きのための貫通孔が設けられた液面検出装置が開示されている。 By the way, for example, although the detection of the position of the liquid surface in the tank for fuel storage mounted in the vehicle is performed on the assumption that the fuel is filled in the inside of the housing, rainwater infiltrates into the tank during refueling Water may be accumulated inside the housing for reasons such as. Then, the propagation speed of the ultrasonic wave is different between in the fuel and in the water, so that the detection accuracy of the position of the liquid level may be lowered. In Patent Document 1, a liquid having a through hole for draining water at the lowermost portion of the propagation path, taking into consideration the characteristics of water which is large in specific weight and easily accumulated in the lower portion in the vertical direction of the propagation path compared to fuel. A surface detection apparatus is disclosed.
特開2004-347378号公報Unexamined-Japanese-Patent No. 2004-347378
 特許文献1に記載の液面検出装置では、水抜きのための貫通孔が、伝搬経路の最下部であって、ハウジングにおけるその下面がタンクの底面に隙間なく当接する部分に設けられている。したがって、発明者の詳細な検討の結果、ハウジングの内部に溜まった水をハウジングの外部へ抜くためには、貫通孔から横方向に延びハウジングの外部に通じる溝を別途設ける必要があるという課題が見出された。 In the liquid level detection device described in Patent Document 1, a through hole for draining water is provided at the lowermost portion of the propagation path, and in a portion where the lower surface of the housing abuts the bottom surface of the tank without a gap. Therefore, as a result of the inventor's detailed study, in order to extract the water accumulated inside the housing to the outside of the housing, it is necessary to separately provide a groove extending laterally from the through hole and leading to the outside of the housing. It was found.
 本開示の一局面は、ハウジングの内部に溜まった水を、簡素な構成によりハウジングの外部へ抜けやすくすることのできる液面検出装置を提供することにある。 One aspect of the present disclosure is to provide a liquid level detection device capable of making it easy for water accumulated inside a housing to escape to the outside of the housing with a simple configuration.
 本開示の一態様は、タンクの内部の底面に設けられ、タンクに貯蔵された液体の液面の位置を検出する液面検出装置であって、超音波発振素子と、ハウジングと、を備える。超音波発振素子は、超音波を送受信可能である。ハウジングは、超音波が伝搬する伝搬経路を内部に有する。伝搬経路は、第1の経路と、第2の経路と、を有する。第1の経路は、超音波発振素子が設けられる位置から水平に延びる。第2の経路は、第1の経路における超音波発振素子が設けられる位置とは反対側の端部から上方に延びる。第1の経路は、超音波発振素子から離れるにつれて断面積が徐々に縮小する円錐台状の経路である円錐部を有する。ハウジングは、円錐部が形成されている部分の下面が底面から離間した形状であり、円錐部における超音波発振素子側の端部かつ鉛直方向下部にハウジングの内外を連通する貫通孔を有する。 One aspect of the present disclosure is a liquid level detection device which is provided on the bottom of the inside of a tank and detects the position of the liquid level of the liquid stored in the tank, and includes an ultrasonic oscillation element and a housing. The ultrasonic oscillation element can transmit and receive ultrasonic waves. The housing internally has a propagation path through which ultrasonic waves propagate. The propagation path has a first path and a second path. The first path extends horizontally from the position where the ultrasonic oscillation element is provided. The second path extends upward from the end of the first path opposite to the position at which the ultrasonic oscillation element is provided. The first path has a conical portion which is a truncated cone-like path whose cross-sectional area gradually decreases with distance from the ultrasonic oscillation element. The housing has a shape in which the lower surface of the portion where the conical portion is formed is separated from the bottom, and has a through hole communicating the inside and the outside of the housing at the end portion on the ultrasonic oscillation element side in the conical portion and the lower portion in the vertical direction.
 このような構成によれば、ハウジングの内部に溜まった水は、円錐部における超音波発振素子側の端部かつ鉛直方向下部であって、ハウジングにおけるその下面がタンクの底面から離間した部分に設けられた貫通孔から、外へ抜けやすい。その結果、上述した溝などを設ける必要がなく、簡素な構成によりハウジングの内部に溜まった水をハウジングの外部へ抜けやすくすることができる。 According to such a configuration, the water collected inside the housing is provided at the end portion on the ultrasonic oscillation element side in the conical portion and at the lower portion in the vertical direction, and the lower surface of the housing is separated from the bottom surface of the tank It is easy to go out from the through hole. As a result, it is not necessary to provide the above-described groove and the like, and water accumulated inside the housing can be easily released to the outside of the housing with a simple configuration.
本実施形態の液面検出装置の側断面図である。It is a sectional side view of the liquid level detection device of this embodiment. 本実施形態の液面検出装置の側面図である。It is a side view of a liquid level detection device of this embodiment. 本実施形態の液面検出装置の下面図である。It is a bottom view of the liquid level detection device of this embodiment. 本実施形態の超音波の指向性を示す図である。It is a figure which shows the directivity of the ultrasonic wave of this embodiment.
 以下、本開示の例示的な実施形態について図面を参照しながら説明する。 Hereinafter, exemplary embodiments of the present disclosure will be described with reference to the drawings.
 [1.構成]
 図1に示す液面検出装置100は、車両に搭載され、液体の燃料を貯蔵するタンク200内の底部において、超音波を送信し、液面で反射した反射波を受信することにより、液面の位置を検出する装置である。なお、図1に示す液面検出装置100の一部については、内部構造を分かりやすく示すため、断面ではなく側面を示している。液面検出装置100は、機能的な見地から見て、大きく2つの機能部、具体的には、センサ部1と、ハウジング部2と、を備える。
[1. Constitution]
The liquid level detection device 100 shown in FIG. 1 is mounted on a vehicle and transmits ultrasonic waves at the bottom of a tank 200 that stores liquid fuel, and receives a reflected wave reflected by the liquid surface to obtain the liquid level. Is a device for detecting the position of In addition, about a part of liquid level detection apparatus 100 shown in FIG. 1, in order to show an internal structure intelligibly, it has shown not the cross section but the side. The liquid level detection apparatus 100 roughly includes two functional units, specifically, a sensor unit 1 and a housing unit 2 from the functional viewpoint.
 センサ部1は、全体として超音波の送受信部として機能するアセンブリである。センサ部1は、超音波発振素子11、2つの内部端子13、弾性体14、ケース15、蓋16及び2つの外部端子17を備える。 The sensor unit 1 is an assembly that functions as a transmitter and receiver of ultrasonic waves as a whole. The sensor unit 1 includes an ultrasonic oscillation element 11, two internal terminals 13, an elastic body 14, a case 15, a lid 16, and two external terminals 17.
 超音波発振素子11は、超音波を送受信する素子である。超音波発振素子11は、PZT(チタン酸ジルコン酸)などのピエゾ効果を有する物質によって、中心軸Aが規定される形状である円盤状に構成されている。ピエゾ効果とは、電圧が印加されると体積が変化する一方、外部から力を受けると電圧を発生する特性のことである。超音波発振素子11の両面にはそれぞれ、ほぼ全面に印刷された電極が設けられている。超音波発振素子11は、両面の電極間に、リード線3を介して外部の電気回路から電圧が印加されると、上述したピエゾ効果により板厚方向である中心軸A方向に振動することにより超音波を発振する。超音波発振素子11は、絶縁部材と共にケース15に収容されている。 The ultrasonic wave oscillation element 11 is an element that transmits and receives an ultrasonic wave. The ultrasonic oscillation element 11 is configured in a disk shape having a shape in which the central axis A is defined by a substance having a piezoelectric effect such as PZT (zirconate titanate). The piezo effect is a characteristic in which a volume changes when a voltage is applied, and a voltage is generated when an external force is applied. Electrodes printed on substantially the entire surface of the ultrasonic oscillation element 11 are provided on both sides. The ultrasonic oscillation element 11 vibrates in the direction of the central axis A, which is the thickness direction, by the above-described piezo effect, when a voltage is applied between the electrodes on both surfaces from an external electric circuit through the lead wire 3. It emits ultrasonic waves. The ultrasonic oscillation element 11 is accommodated in the case 15 together with the insulating member.
 内部端子13は、超音波発振素子11と外部端子17とを電気的に接続する端子である。内部端子13は、金属板で形成されている。超音波発振素子11と内部端子13とは、はんだ付けにより電気的に接続されている。本実施形態では、2つの内部端子13が、超音波発振素子11及び弾性体14を挟んで両側に設けられている。 The internal terminal 13 is a terminal for electrically connecting the ultrasonic oscillation element 11 and the external terminal 17. The internal terminal 13 is formed of a metal plate. The ultrasonic oscillation element 11 and the internal terminal 13 are electrically connected by soldering. In the present embodiment, two internal terminals 13 are provided on both sides of the ultrasonic oscillation element 11 and the elastic body 14.
 弾性体14は、超音波発振素子11の中心軸Aと同軸に配置された概略円柱状の部材であって、軸方向両側の2つの端面のうち、第1の面が超音波発振素子11に当接しており、第2の面が蓋16に当接している。弾性体14は、例えば柔軟な樹脂及びゴムなどの弾性材料で形成されている。 The elastic body 14 is a substantially cylindrical member disposed coaxially with the central axis A of the ultrasonic oscillation element 11, and of the two end faces on both sides in the axial direction, the first surface is the ultrasonic oscillation element 11. The second surface is in contact with the lid 16. The elastic body 14 is formed of, for example, an elastic material such as a flexible resin and rubber.
 ケース15は、超音波発振素子11、2つの内部端子13及び弾性体14を収容する収容室を有する有底円筒状のケースである。 The case 15 is a bottomed cylindrical case having a receiving chamber for receiving the ultrasonic oscillation element 11, the two internal terminals 13 and the elastic body 14.
 蓋16は、ケース15の収容室を閉じる部材である。蓋16がケース15に係止された状態において、弾性体14は、蓋16により圧縮され、弾性変形した状態で収容室に収容されるように、中心軸Aの方向における寸法が大きめに設計されている。このため、超音波発振素子11は、弾性体14の弾性力によりケース15の底面に押し付けられた状態で固定される。蓋16に設けられた孔には内部端子13が挿通されており、内部端子13の先端部がケース15の収容室の外側へ突出している。 The lid 16 is a member for closing the storage chamber of the case 15. In the state where the lid 16 is locked to the case 15, the elastic body 14 is designed to be larger in the direction of the central axis A so that the elastic body 14 is compressed by the lid 16 and accommodated in the accommodation chamber in an elastically deformed state. ing. For this reason, the ultrasonic oscillation element 11 is fixed in a state of being pressed against the bottom surface of the case 15 by the elastic force of the elastic body 14. The internal terminal 13 is inserted through the hole provided in the lid 16, and the tip of the internal terminal 13 protrudes outside the accommodation chamber of the case 15.
 外部端子17は、内部端子13とリード線3とを電気的に接続する端子である。外部端子17は、金属板で形成されている。外部端子17の一端は、内部端子13の先端部と溶接により接合されている。外部端子17の他端は、リード線3と、圧着等によりかしめられて接続されている。外部端子17は、ケース15の収容室の外側において蓋16に固定されている。 The external terminal 17 is a terminal for electrically connecting the internal terminal 13 and the lead wire 3. The external terminal 17 is formed of a metal plate. One end of the external terminal 17 is joined to the tip of the internal terminal 13 by welding. The other end of the external terminal 17 is connected to the lead wire 3 by crimping or the like. The external terminal 17 is fixed to the lid 16 outside the accommodation chamber of the case 15.
 次に、ハウジング部2について説明する。ハウジング部2は、内部に超音波を伝搬する伝搬経路を有することで、全体として超音波の伝搬経路として機能するアセンブリである。図1に示すように、ハウジング部2は、ボディ21、ガイドパイプ22、ガイドパイプ23及び反射板24を有する。 Next, the housing portion 2 will be described. The housing part 2 is an assembly which functions as a propagation path of an ultrasonic wave as a whole by having a propagation path which propagates an ultrasonic wave inside. As shown in FIG. 1, the housing portion 2 has a body 21, a guide pipe 22, a guide pipe 23 and a reflection plate 24.
 ボディ21は、センサ部1、ガイドパイプ22、ガイドパイプ23及び反射板24を保持及び固定する樹脂製の部材である。ガイドパイプ22、ガイドパイプ23及び反射板24は、ボディ21に装着されている。ボディ21は、タンク200の底面に固定されている。センサ部1は、超音波発振素子11の中心軸Aがガイドパイプ22の中心軸と同軸となるように、ボディ21に取り付けられている。 The body 21 is a resin member that holds and fixes the sensor unit 1, the guide pipe 22, the guide pipe 23, and the reflection plate 24. The guide pipe 22, the guide pipe 23 and the reflecting plate 24 are attached to the body 21. The body 21 is fixed to the bottom of the tank 200. The sensor unit 1 is attached to the body 21 so that the central axis A of the ultrasonic oscillation element 11 is coaxial with the central axis of the guide pipe 22.
 ガイドパイプ22は、概略円錐台状の金属製の筒である。図1では右側にあたる、ガイドパイプ22の一端側は、センサ部1と対向する位置に設けられている。ガイドパイプ22は、ガイドパイプ22の中心軸Aと直交する方向における断面が円形である。ガイドパイプ22は、超音波発振素子11が設けられる位置から水平に延びている、伝搬経路の一部である第1の経路4を形成している。第1の経路4は、円錐部41、直線部42及び段部43を有する。円錐部41は、超音波発振素子11から離れるにつれて断面積が徐々に縮小する円錐台状の部分である。換言すると、円錐部41は、第1の経路4の中心軸Aと直交する方向における断面の直径が、超音波発振素子11から離れるにつれて縮小する。ハウジング部2は、円錐部41が形成されている部分の外形も概略円錐台状である。このため、図2に示すように、ハウジング部2における円錐部41が形成されている部分の下面は、タンク200の底面から離間している。直線部42は、断面積が一定、つまり直管状の部分である。段部43は、円錐部41と直線部42とを連結する部分であって、円錐部41における超音波発振素子11が設けられる端部と反対側の端部においてステップ状に断面積が縮小する部分である。段部43の存在により、ガイドパイプ22には、中心軸Aと同軸である円環状の基準面221が形成されている。 The guide pipe 22 is a metal cylinder made of a substantially truncated cone. One end side of the guide pipe 22 corresponding to the right side in FIG. 1 is provided at a position facing the sensor unit 1. The guide pipe 22 has a circular cross section in the direction orthogonal to the central axis A of the guide pipe 22. The guide pipe 22 forms a first path 4 which is a part of a propagation path, which extends horizontally from the position where the ultrasonic oscillation element 11 is provided. The first path 4 has a conical portion 41, a straight portion 42 and a step 43. The conical portion 41 is a frusto-conical portion whose cross-sectional area gradually reduces as it is separated from the ultrasonic oscillation element 11. In other words, the diameter of the cross section of the conical portion 41 in the direction orthogonal to the central axis A of the first path 4 decreases as the distance from the ultrasonic oscillation element 11 increases. The external shape of the part in which the conical part 41 is formed is also a truncated cone shape of the housing part 2 substantially. Therefore, as shown in FIG. 2, the lower surface of the portion of the housing 2 where the conical portion 41 is formed is separated from the bottom surface of the tank 200. The straight portion 42 is a portion having a constant cross-sectional area, that is, a straight tube. The stepped portion 43 is a portion connecting the conical portion 41 and the linear portion 42, and the cross-sectional area of the conical portion 41 is reduced in a step-like manner at the end opposite to the end where the ultrasonic wave oscillation element 11 is provided. It is a part. An annular reference surface 221 coaxial with the central axis A is formed on the guide pipe 22 by the presence of the step 43.
 ガイドパイプ23は、直管状の金属製の筒である。ガイドパイプ23は、ガイドパイプ23の中心軸Bが中心軸Aと直交し、かつガイドパイプ22における直線部42側の端部と、ボディ21を介して連続するように設けられている。ガイドパイプ23は、中心軸Bと直交する方向における断面が円形である。ガイドパイプ23の上方端部は、タンク200の燃料の貯蔵量が最大時における液面よりも、所定長さだけ上方に突出するように位置する。ガイドパイプ23は、伝搬経路の一部である第2の経路5を形成している。第2の経路5は、タンク200の底部から、上方、本実施形態では鉛直方向、に延びている。本実施形態における第2の経路5の直径は、直線部42の直径と等しい。 The guide pipe 23 is a straight tubular metal cylinder. The guide pipe 23 is provided such that the central axis B of the guide pipe 23 is orthogonal to the central axis A, and is continuous with the end of the guide pipe 22 on the linear portion 42 side via the body 21. The guide pipe 23 has a circular cross section in the direction orthogonal to the central axis B. The upper end portion of the guide pipe 23 is positioned so as to protrude upward by a predetermined length than the liquid level at the maximum time of the fuel storage amount of the tank 200. The guide pipe 23 forms a second path 5 which is a part of the propagation path. The second path 5 extends from the bottom of the tank 200 upward, in the vertical direction in the present embodiment. The diameter of the second path 5 in the present embodiment is equal to the diameter of the straight portion 42.
 反射板24は、金属製の板である。反射板24は、ボディ21に保持及び固定された状態において、ガイドパイプ22の中心軸Aとガイドパイプ23の中心軸Bとが、反射板24の反射面241にて交差するように配置されている。反射板24は、超音波発振素子11から送信された超音波を燃料の液面に向けて反射する。具体的には、反射板24は、ガイドパイプ22の中心軸Aに沿って進む超音波を、液面への入射角が0°となる方向、すなわち液面に直交する方向に向けて反射するように設置されている。本実施形態では、反射板24は、液面に対して45°傾斜するように設けられている。 The reflecting plate 24 is a metal plate. The reflection plate 24 is disposed so that the central axis A of the guide pipe 22 and the central axis B of the guide pipe 23 intersect at the reflection surface 241 of the reflection plate 24 in a state of being held and fixed to the body 21 There is. The reflection plate 24 reflects the ultrasonic wave transmitted from the ultrasonic oscillation element 11 toward the liquid surface of the fuel. Specifically, the reflection plate 24 reflects the ultrasonic wave traveling along the central axis A of the guide pipe 22 in the direction in which the incident angle to the liquid surface is 0 °, that is, in the direction orthogonal to the liquid surface. As installed. In the present embodiment, the reflection plate 24 is provided to be inclined 45 ° with respect to the liquid surface.
 以上のような構成により、リード線3、外部端子17及び内部端子13を介して超音波発振素子11にパルス状電圧が印加されると、超音波発振素子11が振動し、ケース15の底面を介して超音波が第1の経路4に送信される。反射板24を介し液面で反射した反射波又は基準面221で反射した反射波をセンサ部1が受信すると、その圧力作用によりケース15の底面が振動し、これに伴い超音波発振素子11も振動する。これにより、超音波発振素子11は電圧を発生し、当該電圧が内部端子13、外部端子17及びリード線3を介して外部の電気回路に出力信号として入力される。超音波発振素子11から基準面221までの距離は既定されているため、超音波発振素子11が超音波を送信してから基準面221で反射した反射波を受信するまでの時間に基づき、燃料中における超音波の伝搬速度が計測可能である。したがって、基準面221で反射した反射波を液面の位置を算出するための基準波として用いることで、液体の温度変化による超音波の伝搬速度の変化に関係なく、液面の位置を高い精度で検出することができる。 With the above configuration, when a pulse voltage is applied to the ultrasonic oscillation element 11 through the lead wire 3, the external terminal 17 and the internal terminal 13, the ultrasonic oscillation element 11 vibrates, and the bottom surface of the case 15 is Ultrasonic waves are transmitted to the first path 4 via the first path 4. When the sensor unit 1 receives a reflected wave reflected on the liquid surface through the reflection plate 24 or a reflected wave reflected on the reference surface 221, the pressure action causes the bottom of the case 15 to vibrate, and the ultrasonic oscillation element 11 also accordingly Vibrate. Thereby, the ultrasonic oscillation element 11 generates a voltage, and the voltage is input as an output signal to an external electric circuit through the internal terminal 13, the external terminal 17 and the lead wire 3. Since the distance from the ultrasonic oscillation element 11 to the reference surface 221 is predetermined, the fuel is based on the time from the transmission of the ultrasonic wave by the ultrasonic oscillation element 11 to the reception of the reflected wave reflected by the reference surface 221. The propagation velocity of the ultrasonic wave in the inside can be measured. Therefore, by using the reflected wave reflected by the reference surface 221 as a reference wave for calculating the position of the liquid level, the position of the liquid level can be highly accurate regardless of the change in the propagation velocity of the ultrasonic wave due to the temperature change of the liquid. Can be detected.
 ここで、図1及び図3に示すように、ハウジング部2は、貫通孔6を有する。具体的には、貫通孔6は、ガイドパイプ22の円錐部41における超音波発振素子11側の端部、かつ鉛直方向下部、本実施形態では鉛直方向最下部に設けられている。ここで、鉛直方向最下部とは、第1の経路4の中心軸Aに対して垂直な断面において鉛直方向に最も低い位置、換言すれば、第1の経路4の中心軸Aの真下の位置である。つまり、貫通孔6は、図3に示すように、ハウジング部2におけるタンク200の底面から離間している円錐部41が形成されている部分の下面に位置している。ただし、貫通孔は、必ずしも鉛直方向最下部に設けられていなくてもよく、鉛直方向最下部から少しずれた位置に設けられてもよい。貫通孔6は、ハウジング部2の内外を連通する円形の貫通孔である。貫通孔6の大きさは、ハウジング部2の内部に滞まった水がハウジング部2の外部へ抜ける大きさに設定されている。本実施形態では、貫通孔6の直径は3mmに設定されている。 Here, as shown in FIGS. 1 and 3, the housing portion 2 has a through hole 6. Specifically, the through hole 6 is provided at the end portion of the conical portion 41 of the guide pipe 22 on the ultrasonic oscillation element 11 side, the lower portion in the vertical direction, or the lowermost portion in the vertical direction in the present embodiment. Here, the lowermost portion in the vertical direction is the lowest position in the vertical direction in a cross section perpendicular to the central axis A of the first path 4, in other words, the position directly below the central axis A of the first path 4. It is. That is, as shown in FIG. 3, the through hole 6 is located on the lower surface of the portion of the housing portion 2 which is separated from the bottom surface of the tank 200 and in which the conical portion 41 is formed. However, the through hole may not necessarily be provided at the lowermost part in the vertical direction, and may be provided at a position slightly offset from the lowermost part in the vertical direction. The through hole 6 is a circular through hole communicating the inside and the outside of the housing portion 2. The size of the through hole 6 is set such that the water stagnating inside the housing 2 is released to the outside of the housing 2. In the present embodiment, the diameter of the through hole 6 is set to 3 mm.
 また、貫通孔6は、超音波発振素子11から送信される超音波を反射しにくい位置に設けられている。すなわち、超音波発振素子11から送信される超音波は、図4に示すような指向性を持っている。ここで、反射波の出力波形の精度に大きく影響するのは出力=5%程度までの角度範囲であると考えると、出力が-26db以上の角度範囲、つまり約±25度程度、更に誤差を考慮すると±30度の角度範囲が、実質的な超音波の送信範囲となる。より正確には、図1に示す仮想範囲72が、実質的な超音波の送信範囲となる。仮想範囲72は、超音波発振素子11における第1の経路4に面する側の面の中心71から±30度の角度をもって中心軸Aを中心として360度に、すなわち中心71を頂点として、反射板24側に向かって円錐状に広がる範囲である。つまり、仮想範囲72は、中心71を頂点とし、中心軸Aを軸として頂角θで規定される円錐状の範囲であって、この例における頂角θは60度である。本実施形態では、貫通孔6は、仮想範囲72よりも外側に設けられている。 Further, the through hole 6 is provided at a position where the ultrasonic wave transmitted from the ultrasonic wave oscillation element 11 is hard to reflect. That is, the ultrasonic waves transmitted from the ultrasonic wave oscillating element 11 have directivity as shown in FIG. Here, if it is considered that the angle range up to about 5% greatly affects the accuracy of the output waveform of the reflected wave, the output is an angle range of -26 db or more, that is, about ± 25 degrees, and further an error. When considered, an angular range of ± 30 degrees is a substantial ultrasonic wave transmission range. More precisely, the virtual range 72 shown in FIG. 1 is the transmission range of the substantial ultrasonic waves. The virtual range 72 is reflected at an angle of ± 30 degrees from the center 71 of the surface of the ultrasonic oscillation element 11 facing the first path 4 at 360 degrees around the central axis A, that is, with the center 71 as an apex. It is a range which spreads conically toward the plate 24 side. That is, the virtual range 72 is a conical range defined by the apex angle θ with the center 71 as the apex and the central axis A as an axis, and the apex angle θ in this example is 60 degrees. In the present embodiment, the through hole 6 is provided outside the virtual range 72.
 [2.効果]
 以上詳述した実施形態によれば、以下の効果が得られる。
[2. effect]
According to the embodiment described above, the following effects can be obtained.
 (1a)本実施形態における液面検出装置100によれば、ハウジング部2の内部に溜まった水を、簡素な構成により貫通孔6からハウジング部2の外部へ抜けやすくすることができる。 (1a) According to the liquid level detection device 100 in the present embodiment, water accumulated inside the housing 2 can be easily removed from the through hole 6 to the outside of the housing 2 by a simple configuration.
 例えば、図3に示すように、貫通孔6の代わりに貫通孔6aをハウジング部2に設けるとする。貫通孔6aは、ハウジング部2におけるタンク200の底面に隙間なく当接する部分に位置する。このため、貫通孔6aのみによってはハウジング部2の内部に溜まった水がハウジング部2の外部へ抜けにくく、貫通孔6aから横方向に延びハウジングの外部に通じる溝をハウジング部2に別途設ける必要がある。 For example, as shown in FIG. 3, it is assumed that a through hole 6 a is provided in the housing portion 2 instead of the through hole 6. The through hole 6 a is located at a portion of the housing portion 2 that abuts the bottom surface of the tank 200 without a gap. Therefore, it is difficult for water accumulated inside the housing portion 2 to escape to the outside of the housing portion 2 only by the through hole 6a, and it is necessary to separately provide the housing portion 2 with a groove extending laterally from the through hole 6a and communicating with the outside of the housing. There is.
 これに対し、本実施形態の貫通孔6は、ハウジング部2とタンク200の底部とが離間している位置に設けられている。その結果、上述した溝を設ける必要がなく、簡素な構成によりハウジング部2の内部に留まった水をハウジング部2の外部へ抜けやすくすることができる。 On the other hand, the through hole 6 of the present embodiment is provided at a position where the housing portion 2 and the bottom of the tank 200 are separated. As a result, it is not necessary to provide the groove described above, and the water remaining inside the housing portion 2 can be easily removed to the outside of the housing portion 2 by a simple configuration.
 (1b)ハウジング部2は、円錐部41における鉛直方向最下部に貫通孔6を有する。このような構成によれば、水は伝搬経路の鉛直方向下部に溜まりやすい特性を有しているため、ハウジング部が円錐部における鉛直方向最下部とは異なる部分に貫通孔を有している場合と比較して、ハウジング部2の内部に溜まった水をより抜けやすくすることができる。 (1b) The housing portion 2 has the through hole 6 at the lowermost portion in the vertical direction of the conical portion 41. According to such a configuration, since the water has the characteristic of being easily accumulated in the lower portion in the vertical direction of the propagation path, the housing portion has a through hole at a portion different from the lowermost portion in the vertical direction in the conical portion Compared to the above, the water accumulated inside the housing portion 2 can be more easily removed.
 (1c)貫通孔6は、仮想範囲72よりも外側に設けられている。このような構成によれば、超音波発振素子11から送信される超音波が、貫通孔6の内面で反射することを生じにくくすることができる。 (1c) The through hole 6 is provided outside the virtual range 72. According to such a configuration, it is possible to make it difficult for the ultrasonic wave transmitted from the ultrasonic wave oscillation element 11 to be reflected by the inner surface of the through hole 6.
 仮に、仮想範囲72よりも内側に貫通孔が設けられている場合、超音波発振素子11から送信された超音波が貫通孔の内面で反射することにより、その反射波が液面の位置の検出においてノイズとなり、液面の位置の検出精度の低下が生じ得る。これに対し、本実施形態の貫通孔6は、仮想範囲72よりも外側に設けられている。つまり、超音波発振素子11から送信された超音波は、ハウジング部2における貫通孔6が設けられている面に反射しにくい。その結果、検出精度の低下を生じにくくすることができる。 If a through hole is provided inside the virtual range 72, the ultrasonic wave transmitted from the ultrasonic oscillation element 11 is reflected on the inner surface of the through hole, and the reflected wave detects the position of the liquid surface. Noise at the position of the liquid, which may cause a decrease in detection accuracy of the position of the liquid surface. On the other hand, the through hole 6 of the present embodiment is provided outside the virtual range 72. That is, the ultrasonic wave transmitted from the ultrasonic wave oscillation element 11 is not likely to be reflected on the surface of the housing 2 on which the through hole 6 is provided. As a result, it is possible to make it difficult to cause a decrease in detection accuracy.
 なお、本実施形態では、ハウジング部2がハウジングに相当する。 In the present embodiment, the housing portion 2 corresponds to a housing.
 [3.他の実施形態]
 以上、本開示の実施形態について説明したが、本開示は、上記実施形態に限定されることなく、種々の形態を採り得ることは言うまでもない。
[3. Other embodiments]
As mentioned above, although embodiment of this indication was described, it can not be overemphasized that this indication can take various forms, without being limited to the above-mentioned embodiment.
 (2a)上記実施形態では、円形である貫通孔6を例示した。しかしながら、貫通孔の形状はこれに限定されるものではく、例えば、半円状、楕円状や、三角状などの多角形状などであってもよい。また例えば、貫通孔は、多角形の各頂点が角ではなく丸い形状であったり、2つの等しい長さの平行線と2つの半円状からなるいわゆる角丸長方形状であってもよい。また例えば、貫通孔は複数設けられていてもよい。 (2a) In the said embodiment, the through-hole 6 which is circular was illustrated. However, the shape of the through hole is not limited to this, and may be, for example, a semicircular shape, an elliptical shape, or a polygonal shape such as a triangular shape. Also, for example, the through holes may be so-called rounded rectangular shapes in which each vertex of the polygon has a round shape instead of a corner, or two parallel lines of two equal lengths and two semicircular shapes. Also, for example, a plurality of through holes may be provided.
 (2b)上記実施形態では、頂角が60度で規定される円錐状である仮想範囲72よりも外側に貫通孔6が設けられている構成を例示した。しかしながら、仮想範囲及び貫通孔の位置はこれに限定されるものではない。仮想範囲は、例えば頂角が60度以外の角度であってもよい。 (2b) In the above embodiment, the configuration in which the through hole 6 is provided outside the virtual range 72 which is a conical shape whose apex angle is defined by 60 degrees is illustrated. However, the virtual range and the position of the through hole are not limited to this. The virtual range may be, for example, an apex angle other than 60 degrees.
 (2c)上記実施形態では、タンク200内の燃料の液面検出に用いられる液面検出装置100を例示した。しかしながら、液面検出装置の用途は特に限定されるものではない。液面検出装置は、車両に搭載される他の液体、例えば、エンジンオイル、ブレーキフルード、ウィンドウォッシャ液等の液面検出に用いられてもよい。また例えば、液面検出装置は、液体輸送用車両に備えられた液体輸送用タンク内や車両以外の各種民生用機器の液体容器内などの液面検出に用いられてもよい。 (2c) In the said embodiment, the liquid level detection apparatus 100 used for the liquid level detection of the fuel in the tank 200 was illustrated. However, the application of the liquid level detection device is not particularly limited. The liquid level detection device may be used to detect the level of other liquids mounted on a vehicle, such as engine oil, brake fluid, and window washer liquid. Further, for example, the liquid level detection device may be used for liquid level detection in a liquid transport tank provided in a liquid transport vehicle or in a liquid container of various consumer devices other than the vehicle.
 (2d)上記実施形態における1つの構成要素が有する機能を複数の構成要素として分散させたり、複数の構成要素が有する機能を1つの構成要素に統合したりしてもよい。また、上記実施形態の構成の一部を省略してもよい。また、上記実施形態の構成の少なくとも一部を、他の上記実施形態の構成に対して付加、置換等してもよい。 (2d) The function of one component in the above embodiment may be distributed as a plurality of components, or the function of a plurality of components may be integrated into one component. In addition, part of the configuration of the above embodiment may be omitted. In addition, at least a part of the configuration of the above-described embodiment may be added to or replaced with the configuration of the other above-described embodiment.

Claims (3)

  1.  タンクの内部の底面に設けられ、前記タンクに貯蔵された液体の液面の位置を検出する液面検出装置(100)であって、
     超音波を送受信可能な超音波発振素子(11)と、
     超音波が伝搬する伝搬経路を内部に有するハウジング(2)と、
     を備え、
     前記伝搬経路は、
     前記超音波発振素子が設けられる位置から水平に延びる第1の経路(4)と、
     前記第1の経路における前記超音波発振素子が設けられる位置とは反対側の端部から上方に延びる第2の経路(5)と、を有し、
     前記第1の経路は、前記超音波発振素子から離れるにつれて断面積が徐々に縮小する円錐台状の経路である円錐部(41)を有し、
     前記ハウジングは、前記円錐部が形成されている部分の下面が前記底面から離間した形状であり、前記円錐部における前記超音波発振素子側の端部かつ鉛直方向下部に前記ハウジングの内外を連通する貫通孔(6)を有する、液面検出装置。
    A liquid level detection device (100) provided on a bottom surface inside a tank and detecting a position of a liquid level of a liquid stored in the tank,
    An ultrasonic oscillator (11) capable of transmitting and receiving ultrasonic waves;
    A housing (2) having therein a propagation path through which ultrasonic waves propagate;
    Equipped with
    The propagation path is
    A first path (4) extending horizontally from the position where the ultrasonic oscillation element is provided;
    And a second path (5) extending upward from the end opposite to the position where the ultrasonic oscillation element is provided in the first path,
    The first path has a conical portion (41) which is a truncated cone-like path whose cross-sectional area gradually decreases with distance from the ultrasonic oscillation element.
    The housing has a shape in which the lower surface of the portion where the conical portion is formed is separated from the bottom surface, and communicates the inside and the outside of the housing to the end portion on the ultrasonic oscillation element side in the conical portion and the lower portion in the vertical direction Liquid level detection device which has a through hole (6).
  2.  請求項1に記載の液面検出装置であって、
     前記ハウジングは、前記円錐部における鉛直方向最下部に前記貫通孔を有する、液面検出装置。
    The liquid level detection device according to claim 1, wherein
    The liquid level detection device, wherein the housing has the through hole at the lowermost portion in the vertical direction of the conical portion.
  3.  請求項1又は請求項2に記載の液面検出装置であって、
     前記超音波発振素子は、中心軸が規定される形状であって、前記第1の経路の中心軸と同軸になるよう配置されており、
     前記貫通孔は、前記超音波発振素子における前記第1の経路に面する側の面の中心(71)を頂点とし、前記超音波発振素子の中心軸を軸として、60度の頂角で円錐状に広がる仮想の範囲(72)よりも外側に設けられている、液面検出装置。
    The liquid level detection device according to claim 1 or 2, wherein
    The ultrasonic oscillation element has a shape in which a central axis is defined, and is arranged to be coaxial with the central axis of the first path,
    The through hole has a center (71) of the surface of the ultrasonic oscillation element on the side facing the first path as a vertex, and a cone with an apex angle of 60 degrees with the central axis of the ultrasonic oscillation element as an axis The liquid level detection device provided outside the virtual range (72) which spreads in the shape.
PCT/JP2019/001259 2018-01-19 2019-01-17 Liquid level detecting device WO2019142859A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018006822A JP6904268B2 (en) 2018-01-19 2018-01-19 Liquid level detector
JP2018-006822 2018-01-19

Publications (1)

Publication Number Publication Date
WO2019142859A1 true WO2019142859A1 (en) 2019-07-25

Family

ID=67301837

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/001259 WO2019142859A1 (en) 2018-01-19 2019-01-17 Liquid level detecting device

Country Status (2)

Country Link
JP (1) JP6904268B2 (en)
WO (1) WO2019142859A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11153471A (en) * 1997-11-18 1999-06-08 Nippon Soken Inc Liquid information measuring device using sound wave
US20040226362A1 (en) * 2003-03-19 2004-11-18 Klaus Marx Device for measuring a level of fluid in a container
JP2004347378A (en) * 2003-05-20 2004-12-09 Denso Corp Liquid level detector for vehicle
JP2006047056A (en) * 2004-08-03 2006-02-16 Denso Corp Liquid level detecting apparatus

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11153471A (en) * 1997-11-18 1999-06-08 Nippon Soken Inc Liquid information measuring device using sound wave
US20040226362A1 (en) * 2003-03-19 2004-11-18 Klaus Marx Device for measuring a level of fluid in a container
JP2004347378A (en) * 2003-05-20 2004-12-09 Denso Corp Liquid level detector for vehicle
JP2006047056A (en) * 2004-08-03 2006-02-16 Denso Corp Liquid level detecting apparatus

Also Published As

Publication number Publication date
JP2019124642A (en) 2019-07-25
JP6904268B2 (en) 2021-07-14

Similar Documents

Publication Publication Date Title
EP3440438B1 (en) Ultrasonic level sensor with reflector
US10551238B2 (en) Ultrasonic level sensor for aerated fluids
US11002587B2 (en) Ultrasonic level sensor with sound trap
US11426764B2 (en) Ultrasound transducer
WO2020111132A1 (en) Liquid-level detection device
WO2018211822A1 (en) Liquid level detector
WO2016158334A1 (en) Liquid surface position detection device
JP2006145403A (en) Ultrasonic measurement circuit and liquid-level detection system using the same
WO2019142859A1 (en) Liquid level detecting device
WO2019172334A1 (en) Liquid-level detection device
JP6927183B2 (en) Liquid level detector
JP2019132642A (en) Liquid level detector
JP7061559B2 (en) Ultrasonic sensor
WO2019139083A1 (en) Liquid level detecting device
JP2006279128A (en) Ultrasonic transceiver
JP6852716B2 (en) Liquid level detector
WO2019131664A1 (en) Liquid level detecting device and method of manufacturing liquid level detecting device
WO2019131663A1 (en) Liquid level detection device
KR101963732B1 (en) Fluid Level Measuring Ultrasonic Transducer
WO2021029239A1 (en) Ultrasound sensor
JP4306582B2 (en) Liquid level detector
WO2020080511A1 (en) Liquid surface detection device
JP2021089186A (en) Liquid level detection device
JP2021015011A (en) Ultrasonic distance measuring device
JP4277774B2 (en) Liquid level detector

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19741880

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19741880

Country of ref document: EP

Kind code of ref document: A1