WO2019142326A1 - User terminal and wireless communication method - Google Patents

User terminal and wireless communication method Download PDF

Info

Publication number
WO2019142326A1
WO2019142326A1 PCT/JP2018/001623 JP2018001623W WO2019142326A1 WO 2019142326 A1 WO2019142326 A1 WO 2019142326A1 JP 2018001623 W JP2018001623 W JP 2018001623W WO 2019142326 A1 WO2019142326 A1 WO 2019142326A1
Authority
WO
WIPO (PCT)
Prior art keywords
bwp
user terminal
dci
unit
information
Prior art date
Application number
PCT/JP2018/001623
Other languages
French (fr)
Japanese (ja)
Inventor
一樹 武田
和晃 武田
聡 永田
リフェ ワン
ギョウリン コウ
Original Assignee
株式会社Nttドコモ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Nttドコモ filed Critical 株式会社Nttドコモ
Priority to JP2019565659A priority Critical patent/JPWO2019142326A1/en
Priority to PCT/JP2018/001623 priority patent/WO2019142326A1/en
Publication of WO2019142326A1 publication Critical patent/WO2019142326A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes

Definitions

  • the present invention relates to a user terminal and a wireless communication method in a next-generation mobile communication system.
  • LTE Long Term Evolution
  • Non-Patent Document 1 LTE-A (LTE-Advanced), FRA (Future Radio Access), 4G, 5G, 5G + (plus), NR ( Also referred to as New RAT), LTE Rel. 14, 15 and so on.
  • downlink (DL: Downlink) and / or uplink (UL: Uplink) communication is performed with a subframe of 1 ms as a scheduling unit.
  • DL Downlink
  • UL Uplink
  • the subframe is composed of 14 symbols of 15 kHz subcarrier spacing.
  • the subframes are also referred to as transmission time intervals (TTIs) or the like.
  • the user terminal (UE: User Equipment) is a DL data channel based on downlink control information (DCI: Downlink Control Information) (also referred to as DL assignment etc.) from a radio base station (for example, eNB: eNodeB). It controls reception of (for example, PDSCH: Physical Downlink Shared Channel, DL Shared Channel, etc.). Also, the user terminal controls transmission of a UL data channel (for example, PUSCH: also referred to as Physical Uplink Shared Channel, UL shared channel, etc.) based on DCI (also referred to as UL grant, etc.) from the radio base station.
  • DCI Downlink Control Information
  • E-UTRA Evolved Universal Terrestrial Radio Access
  • E-UTRAN Evolved Universal Terrestrial Radio Access Network
  • a user terminal is a control resource area (for example, control resource set (CORESET: control resource) which is a candidate area to which a DL control channel (for example, PDCCH: Physical Downlink Control Channel) is allocated. It is considered to receive (detect) DCI by monitoring (blind decoding)).
  • CORESET control resource set
  • PDCCH Physical Downlink Control Channel
  • one or more partial frequency bands (Partial Band), bands within a carrier (also referred to as component carrier (CC) or system band etc.) It has been considered to use a width part (BWP: Bandwidth part, etc.) for DL and / or UL communication (DL / UL communication). It is desirable to use such partial frequency bands for DL / UL communication to improve the throughput of wireless communication.
  • CC component carrier
  • BWP Bandwidth part, etc.
  • the present invention has been made in view of the foregoing, and provides a user terminal and a wireless communication method capable of improving the throughput of wireless communication by using a partial frequency band for DL / UL communication. It is one of the purposes.
  • a user terminal uses a first BWP in a partial frequency band (BWP: Bandwidth Part) set in a carrier to use a second BWP different from the first BWP.
  • BWP Bandwidth Part
  • a receiver is characterized by comprising: a receiver for receiving downlink control information including information to be shown; and a controller for determining a resource to be allocated according to the downlink control information based on BWP setting information of the first BWP.
  • FIGS. 1A-1C are diagrams showing an example of a BWP setting scenario.
  • FIG. 2 is a diagram showing an example of control of activation / deactivation of BWP.
  • FIG. 3 is a diagram illustrating an example of control of activation or deactivation of one or more BWPs in an S cell.
  • FIG. 4 is a diagram for explaining the method of determining the frequency domain RA field in the first aspect of the present embodiment.
  • FIGS. 5A and 5B are diagrams for describing an operation of receiving downlink control information via the determined frequency domain RA field in the first aspect of the present embodiment.
  • FIG. 6 is a diagram for explaining the method of determining the frequency domain RA field in the first aspect of the present embodiment.
  • FIG. 7 is a diagram for explaining the method of determining the frequency domain RA field in the second aspect of the present embodiment.
  • FIGS. 8A and 8B are diagrams for explaining an operation of receiving downlink control information via the determined frequency domain RA field in the second aspect of the present embodiment.
  • FIG. 9 is a diagram for explaining a method of determining a frequency domain RA field in the second aspect of the present embodiment.
  • FIG. 10 is a diagram showing an example of resource allocation in the third aspect.
  • FIG. 11 is a diagram showing an example of a schematic configuration of a wireless communication system according to the present embodiment.
  • FIG. 12 is a diagram showing an example of the entire configuration of the radio base station according to the present embodiment.
  • FIG. 13 is a diagram showing an example of a functional configuration of the radio base station according to the present embodiment.
  • FIG. 14 is a diagram showing an example of the entire configuration of the user terminal according to the present embodiment.
  • FIG. 15 is a diagram showing an example of a functional configuration of the user terminal according to the present embodiment.
  • FIG. 16 is a diagram showing an example of the hardware configuration of the radio base station and the user terminal according to the present embodiment.
  • carriers for example, NR, 5G or 5G +
  • carriers component carriers (CC: Component Carrier) having a wider bandwidth (for example, 100 to 800 MHz) than existing LTE systems (for example, LTE Rel. 8-13) It is considered to assign a carrier (also referred to as a cell or a system band).
  • a user terminal also referred to as Wideband (WB) UE, single carrier WB UE, etc.
  • WB Wideband
  • WB UE single carrier WB UE
  • BW Bandwidth
  • each frequency band (for example, 50 MHz or 200 MHz) in the carrier is called a sub-band or bandwidth part (BWP) or the like.
  • FIG. 1 is a diagram illustrating an example of a BWP setting scenario.
  • FIG. 1A shows a scenario (Usage scenario # 1) in which one BWP is set as a user terminal in one carrier.
  • a 200 MHz BWP is set in an 800 MHz carrier.
  • the activation or deactivation of the BWP may be controlled.
  • BWP activation means being in a usable state (or transitioning to the usable state), and activating BWP setting information (configuration) (BWP setting information) or It is also called validation.
  • deactivation of the BWP means that the BWP is in an unusable state (or transits to the unusable state), and is also called deactivation or invalidation of BWP setting information. By scheduling the BWP, this BWP will be activated.
  • FIG. 1B shows a scenario (Usage scenario # 2) in which a plurality of BWPs are set in a user terminal in one carrier. As shown in FIG. 1B, at least a portion of the plurality of BWPs (eg, BWPs # 1 and # 2) may overlap. For example, in FIG. 1B, BWP # 1 is a partial frequency band of BWP # 2.
  • At least one activation or deactivation of the plurality of BWPs may be controlled. Also, the number of BWPs activated at any given time may be limited (eg, only one BWP may be active at any given time). For example, in FIG. 1B, only one of BWP # 1 or # 2 is active at a certain time.
  • BWP # 1 may be activated when data transmission / reception is not performed
  • BWP # 2 may be activated when data transmission / reception is performed.
  • switching from BWP # 1 to BWP # 2 may be performed, and when data transmission / reception is completed, switching from BWP # 2 to BWP # 1 may be performed.
  • the user terminal does not have to constantly monitor BWP # 2, which has a wider bandwidth than BWP # 1, and can therefore reduce power consumption.
  • the network (for example, a radio base station) may not assume that the user terminal receives and / or transmits outside the BWP in the active state.
  • the user terminal supporting the entire carrier is not suppressed at all from receiving and / or transmitting a signal outside the BWP.
  • FIG. 1C shows a scenario (Usage scenario # 3) in which a plurality of BWPs are set in different bands in one carrier.
  • different numerologies may be applied to the plurality of BWPs.
  • the neurology includes at least one of subcarrier spacing, symbol length, slot length, cyclic prefix (CP) length, slot (transmission time interval (TTI)) length, number of symbols per slot, etc. It may be one.
  • BWPs # 1 and # 2 having different neurology are set for user terminals having the ability to transmit and receive in the entire carrier.
  • at least one BWP configured for a user terminal may be activated or deactivated, and at one time, one or more BWPs may be active.
  • BWP used for DL communication may be called DL BWP (frequency band for DL)
  • BWP used for UL communication may be called UL BWP (frequency band for UL).
  • DL BWP and UL BWP may overlap at least a part of frequency bands.
  • BWP when the DL BWP and the UL BWP are not distinguished, they are collectively referred to as BWP.
  • At least one of DL BWPs set in the user terminal may include a control resource region that is a candidate for assignment of a DL control channel (DCI).
  • the control resource region is called a control resource set (CORESET), a control subband, a search space set, a search space resource set, a control region, a control subband, an NR-PDCCH region, etc. It is also good.
  • the user terminal monitors one or more search spaces in CORESET to detect DCI for the user terminal.
  • the search space is a common search space (CSS: Common Search Space) in which a common DCI (for example, group DCI or common DCI) is arranged for one or more user terminals and / or a user terminal-specific DCI (for example, DL assignment) And / or a UL grant) may be included in a user terminal (UE) specific search space (USS).
  • CCS Common Search Space
  • a common DCI for example, group DCI or common DCI
  • UE user terminal specific search space
  • the user terminal may receive CORESET configuration information (CORESET configuration information) using higher layer signaling (for example, RRC (Radio Resource Control) signaling or the like).
  • the CORESET configuration information includes frequency resources (eg, number of RBs and / or start RB index) of each CORESET, time resources (eg, start OFDM symbol number), duration (duration), REG (resource element group) bundle size (eg It may indicate at least one of REG size), transmission type (eg, interleaving, non-interleaving), cycle (eg, monitor cycle per CORESET), and so on.
  • FIG. 2 is a diagram showing an example of control of activation / deactivation of BWP.
  • FIG. 2 assumes the scenario shown in FIG. 1B, the control of activation / deactivation of the BWP can be appropriately applied to the scenario shown in FIGS. 1A and 1C.
  • CORESET # 1 is set in BWP # 1
  • CORESET # 2 is set in BWP # 2.
  • Each of CORESET # 1 and CORESET # 2 is provided with one or more search spaces.
  • DCI for BWP # 1 and DCI for BWP # 2 may be located in the same search space, or may be located in different search spaces.
  • the user terminal when BWP # 1 is in the active state, the user terminal is in CORESET # 1 in a predetermined cycle (for example, every one or more slots, every one or more minislots, or each predetermined number of symbols).
  • the search space is monitored (blind decoding) to detect DCI for the user terminal.
  • the DCI may include information (BWP information) indicating which BWP the DCI is for.
  • the said BWP information is an index of BWP, for example, and should just be a predetermined field value in DCI.
  • the BWP index information may be included in the downlink scheduling DCI, may be included in the uplink scheduling DCI, or may be included in the common search space DCI. Good.
  • the user terminal may determine the BWP for which the PDSCH or PUSCH is scheduled by the DCI based on the BWP information in the DCI.
  • the user terminal when detecting a DCI for BWP # 2 in CORESET # 1, the user terminal deactivates BWP # 1 and activates BWP # 2.
  • the user terminal receives a PDSCH scheduled to a predetermined time / frequency resource of DL BWP # 2 based on the DCI for BWP # 2 detected in CORESET # 1.
  • the DCI for BWP # 1 and the DCI for BWP # 2 are detected at different timings in CORESET # 1
  • a plurality of DCI of different BWPs may be detected at the same timing.
  • a plurality of search spaces corresponding to each of a plurality of BWPs may be provided in the CORESET # 1
  • a plurality of DCIs of different BWPs may be transmitted in the plurality of search spaces.
  • the user terminal may monitor a plurality of search spaces in CORESET # 1 to detect a plurality of DCIs of different BWPs at the same timing.
  • the user terminal When BWP # 2 is activated, the user terminal monitors the search space in CORESET # 2 in a predetermined cycle (for example, every one or more slots, every one or more minislots, or each predetermined number of symbols) (blind) Decode to detect DCI for BWP # 2.
  • the user terminal may receive a PDSCH scheduled to a predetermined time / frequency resource of BWP # 2 based on the DCI for BWP # 2 detected in CORESET # 2.
  • the predetermined time may not be present.
  • BWP # 2 when BWP # 2 is activated with detection of DCI for BWP # 2 in CORESET # 1 as a trigger, BWP # 2 can be activated without explicit indication information, so Can be prevented from increasing overhead associated with
  • the radio base station when the radio base station can not receive the delivery confirmation information (also referred to as HARQ-ACK, ACK / NACK or A / N, etc.) of the PDSCH in a predetermined period, the user terminal is for BWP # 2 activation. It is recognized that the detection of the DCI of the above has failed, and CORESET # 1 may retransmit the DCI for activation. Alternatively, although not shown in FIG. 2, a common CORESET may be provided for BWPs # 1 and # 2.
  • the delivery confirmation information also referred to as HARQ-ACK, ACK / NACK or A / N, etc.
  • the BWP may be deactivated. For example, in FIG. 2, the user terminal deactivates BWP # 2 and activates BWP # 1, since PDSCH is not scheduled for a predetermined period in DL BWP # 2.
  • a data channel eg, PDSCH and / or PUSCH
  • the user terminal may set a timer each time reception of a data channel (for example, PDSCH and / or PUSCH) is completed in the activated BWP, and may deactivate the BWP when the timer expires.
  • the timer may be a common timer (also referred to as a joint timer or the like) between the DL BWP and the UL BWP, or may be an individual timer.
  • the maximum number of BWPs that can be set per carrier may be predetermined. For example, in frequency division duplex (FDD) (paired spectrum), up to four DL BWPs and up to four UL BWPs may be set per carrier.
  • FDD frequency division duplex
  • up to four DL BWPs and up to four UL BWPs may be set per carrier.
  • TDD time division duplex
  • DL BWP and UL BWP to be paired may have the same center frequency and different bandwidths.
  • multiple carriers may be integrated (eg, carrier aggregation (CA: Carrier Aggregation) and / or dual connectivity (DC: Dual Connectivity) )).
  • CA Carrier Aggregation
  • DC Dual Connectivity
  • one or more BWPs may be set in at least one of the plurality of carriers.
  • the plurality of cells may include a primary cell (P cell: Primary Cell) and one or more secondary cells (S cell: Secondary Cell).
  • the PCell corresponds to a single carrier (CC) and may include one or more BWPs.
  • each S cell may correspond to a single carrier (CC) and may include one or more BWPs.
  • Each BWP of the PCell may be provided with a common search space for a Random Access Channel Procedure (RACH). Similarly, each BWP of the PCell may be provided with a common search space for fallback, a common search space for paging, or a common search space for Remaining Minimum System Information (RMSI).
  • RACH Random Access Channel Procedure
  • RMSI Remaining Minimum System Information
  • each BWP of one or more cells is provided with a common search space for PDCCH (group common PDCCH (group-common PDCCH)) common to one or more user terminals. It is also good.
  • a specific BWP may be predetermined in the user terminal.
  • a BWP (initial active BWP) to which a PDSCH transmitting system information (eg, RMSI) is scheduled is defined by the frequency position and bandwidth of CORESET to which a DCI scheduling the PDSCH is arranged.
  • RMSI PDSCH transmitting system information
  • an initial active BWP may be applied with the same numerology as the RMSI.
  • a default BWP (default BWP) may be defined for the user terminal.
  • the default BWP may be the initial active BWP described above, or may be configured by higher layer signaling (eg, RRC signaling).
  • the radio base station Based on the result of inter-frequency measurement at the user terminal, the radio base station sets an S cell for the user terminal and sets one or more BWPs in the S cell. Good.
  • FIG. 3 is a diagram illustrating an example of control of activation or deactivation of one or more BWPs in an S cell.
  • BWPs # 1 and # 2 in the S cell are set as user terminals, but this is merely an example, and the present invention is not limited to this.
  • a BWP with a wider bandwidth among a plurality of BWPs set in the user terminal may be set as an initial active BWP.
  • the initial active BWP may be notified from the radio base station to the user terminal by higher layer signaling (eg, RRC signaling).
  • BWP # 2 having a wider bandwidth than BWP # 1 may be set (notified) to the user terminal as an initial active BWP.
  • BWP # 1 different from the initial active BWP is set (notified) to the user terminal as a default BWP, but the initial active BWP and the default BWP may be set to the same BWP. .
  • the user terminal monitors the search space in CORESET # 2 of BWP # 2 at a predetermined cycle (blind decoding) even after activation of timers T1 and T2, but timer T1 expires without detecting DCI. Do.
  • the user terminal deactivates BWP # 2, which is an initial active BWP, and activates BWP # 1, which is a default BWP.
  • the user terminal monitors (blind decoding) the search space in CORESET # 1 of the activated BWP # 1 at a predetermined cycle, but the timer T2 expires without detecting the DCI. When timer T2 expires, all BWPs are deactivated and S cells are deactivated.
  • each BWP may have a bandwidth according to an inherent neurology.
  • the number of PRBs available in the BWP will depend on the BWP configuration (BWP configuration) and the active BWP.
  • the frequency domain resource allocation (RA) field is under consideration. For this reason, it is also under consideration how to implement BWP switching. For example, when performing BWP cross carrier scheduling (for example, when scheduling second BWP data different from the first BWP in the first BWP downlink control information (DCI)), the size of the frequency domain RA field (for example, It is necessary to study bit width.
  • BWP cross carrier scheduling for example, when scheduling second BWP data different from the first BWP in the first BWP downlink control information (DCI)
  • DCI downlink control information
  • the number of PRBs differs between BWPs as described above.
  • the payload of the DCI will be different for each BWP.
  • the present inventors fix the bit size (bitwidth) of the frequency domain RA field and make the payload of DCI uniform, even for scheduling of BWP different from activated BWP. It came to the method.
  • the user terminal determines the size of the frequency domain RA field to define a common DCI format, which is used regardless of which BWP data is scheduled. Specifically, the user terminal sets the above-mentioned size as the maximum value of the required number of bits in all downlink BWP settings.
  • the user terminal In size determination, the user terminal first calculates the required size (bitwidth) of the frequency domain RA field in each BWP.
  • the BWP setting includes elements such as resource allocation type, BWP bandwidth, RB group (RBG) size, etc., and in consideration of all these elements, the size required for the frequency domain RA field of each BWP is calculated. (See Figure 4). In FIG. 4, the sizes are calculated for the three BWPs 1-3.
  • the user terminal compares the calculated sizes to determine the size of the frequency domain RA field. Specifically, the largest size among all the calculated sizes is determined as the size of the frequency domain RA field. In FIG. 4, the size of BWP3, which is the largest size among BWP1-3, is determined as the size of the frequency domain RA field.
  • the DCI includes a BWP indication field.
  • the user terminal can determine which BWP scheduling is indicated (indicated) based on the information in this field. Also, based on the information in the frequency domain RA field, the user terminal can determine in which RB (multiple RBs) data is scheduled.
  • the predetermined upper bit number (MSB) or the lower bit number (LSB) may be set to a predetermined bit (0 or 1).
  • unused bits may be fixed by predetermined scrambling. For example, it may be used as a redundant bit to check the validity of the used bit.
  • FIG. 5A shows the configuration of the DCI when BWP3 is specified in the BWP specification field. Since the size of BWP3 which is the largest size is determined as the size of the frequency domain RA field, scheduling of BWP3 is performed using the entire frequency domain RA field.
  • FIG. 5B shows the configuration of the DCI when BWP1 is specified in the BWP specification field. Since the number of bits required for the frequency domain RA field of BWP1 is smaller than the number of bits for BWP3, an unused bit is included in the frequency domain RA field.
  • the user terminal activates the BWP to be scheduled and deactivates the activated BWP.
  • RA resource allocation
  • the RA type 0 indicates a bit map format for each resource block group (RBG), and the RA type 1 indicates a format in which start and end values are specified. Also, RA type 0/1 switching that dynamically switches these RA types 0 and 1 is considered.
  • the required number of bits in the frequency domain RA field is 10 bits in BWP1, 13 bits in BWP2, and 13 bits in BWP3. Therefore, in RA type 0, 13 bits are the required maximum number of bits in the frequency domain RA field.
  • RA type 1 the required number of bits in the frequency domain RA field is 6 bits in BWP1, 12 bits in BWP2, and 14 bits in BWP3. Therefore, in RA type 1, 14 bits are the required maximum number of bits in the frequency domain RA field.
  • RA type 0/1 switching the required number of bits in the frequency domain RA field is added to the larger one of RA type 0 and RA type 1 by 1 bit for specifying either type.
  • BWP1 is 11 bits of 10 bits + 1 bit
  • BWP2 is 14 bits of 13 bits + 1 bit
  • BWP3 is 15 bits of 14 bits + 1 bit. Therefore, in RA type 0/1 switching, 15 bits are the required maximum number of bits in the frequency domain RA field.
  • the 1 bit for designating the RA type is not added to the required bit number of the frequency domain RA field, and the required bit number of the calculated frequency domain RA field is reduced by 1 bit, and the 1 bit is subtracted from the type designating field. It may be used as In this case, DCI overhead can be reduced by 1 bit.
  • the bit size (bitwidth) of the frequency domain RA field can be fixed and the payload of DCI can be made uniform.
  • the user terminal can monitor downlink control information based on a single DCI format. For this reason, compared to monitoring a plurality of DCI formats, the processing load is reduced, and power consumption can be suppressed.
  • a common DCI format can be used for a plurality of activated BWPs. Therefore, even when a plurality of BWPs are activated, the user terminal can monitor downlink control information based on a single DCI format. Thereby, the processing load and the power consumption can be suppressed as described above.
  • the user terminal determines (adopts) a frequency domain RA field size according to the BWP receiving DCI.
  • the BWP receiving DCI means an activated BWP when the number of BWPs activated in downlink communication is one.
  • the user terminal determines the size of the frequency domain RA field according to the BWP receiving DCI. In size determination, the user terminal calculates the necessary size (bitwidth) of the frequency domain RA field in each BWP.
  • the BWP setting includes elements such as resource allocation type and BWP bandwidth, and the size required for the frequency domain RA field of each BWP is calculated for all these elements (see FIG. 7).
  • the sizes of three BWPs 1-3 are calculated. Also, in BWP1-3, the calculated sizes are different.
  • the BWP receiving DCI is BWP 1
  • the user terminal determines a scheduled resource with the size of the frequency domain RA field calculated based on BWP 1. Also, if BWP receiving DCI is BWP2, the scheduled resource is determined by the size of the frequency domain RA field calculated based on BWP2, and the size calculated based on BWP3 also for BWP3. To determine resources.
  • BWPs where the required frequency domain RA field size is different from the application size of the DCI format
  • BWPs may be scheduled with the frequency domain RA field size applied by the BWPs that receive DCI.
  • the DCI includes a BWP indication field.
  • the user terminal can determine which BWP scheduling is indicated (indicated) based on the information in this field. Also, based on the information in the frequency domain RA field, the user terminal can determine in which RB (multiple RBs) data is scheduled.
  • the predetermined upper bit number (MSB) or the lower bit number (LSB) may be set to a predetermined bit (0 or 1).
  • unused bits may be fixed by predetermined scrambling. For example, it may be used as a redundant bit to check the validity of the used bit.
  • FIG. 8A shows the configuration of DCI when BWP 3 receives DCI and BWP 2 is designated in the BWP designation field. Since the size of the largest size BWP3 is determined as the size of the frequency domain RA field, all of the information of the frequency domain RA field required by BWP2 can be included in the DCI. That is, in the received frequency domain RA field, it is possible to indicate all scheduling of BWP2.
  • the number of bits (number of required bits) of the frequency domain RA field of the scheduled BWP is larger than the determined size (frequency domain RA field size of BWP receiving DCI).
  • FIG. 8B shows the configuration of DCI when BWP 1 receives DCI and BWP 3 is specified in the BWP specification field.
  • the frequency domain RA field size based on BWP1 is smaller than the frequency domain RA field based on BWP3 (FIG. 7). For this reason, only part of the information in the frequency domain RA field required by BWP3 is included in the DCI.
  • Information not included in DCI in the frequency domain RA field required by BWP 3 may be set to a predetermined bit (0 or 1). For example, when it is set to 0, scheduling of part of BWP 3 can be instructed in the received frequency domain RA field.
  • the user terminal activates the BWP to be scheduled and deactivates the activated BWP.
  • the size of the frequency domain RA field in the second embodiment is shown in the table using a specific numerical example.
  • resource allocation (RA) type is also considered.
  • specific numerical values use the same numerical values as in the first aspect (FIG. 6).
  • the size of the frequency domain RA field is 10 bits.
  • the RA type 1 has 6 bits, and the RA type 0/1 switching has 10 + 1 bits.
  • RA type 0 When DCI transmission / reception is performed in BWP2, in RA type 0, the size of the frequency domain RA field is 13 bits. In RA type 1, there are 12 bits, and in RA type 0/1 switching, it is 13 + 1 bits.
  • RA type 0 When DCI transmission / reception is performed in BWP3, in RA type 0, the size of the frequency domain RA field is 13 bits.
  • the RA type 1 has 14 bits, and the RA type 0/1 switching has 14 + 1 bits.
  • the PDW of the BWP2 RA type 0 is scheduled in the BWP1 RA type 0 DCI.
  • the frequency domain RA field size of DCI is 10 bits, and the size required for scheduling is 13 bits. Therefore, the size of the frequency domain RA field is less than 3 bits.
  • the user terminal determines the resource scheduled in 10 bits, and fixes the missing 3 bits to 0 or 1 and does not use it for resource determination.
  • resources scheduled as part of information may be set to be shifted by an offset.
  • the resource scheduled by a part of information is not fixed, and flexible scheduling can be performed by limited information.
  • the offset may be set by higher layer signaling such as RRC, or may be obtained implicitly based on C-RNTI, UE-ID, PDCCH resource information (for example, CCE index), and the like.
  • the size of the RBG may be set to be changed. For example, although the RBG size is set to 1 in the RA type 0 of BWP 1, by setting this to 8, scheduling can be performed in which the missing bits are compensated.
  • the RBG size may be set by higher layer signaling such as RRC, or may be implicitly obtained based on C-RNTI, UE-ID, PDCCH resource information (for example, CCE index), and the like.
  • the PDWP of RA type 1 of BWP 2 is scheduled by DCI of RA type 0 of BWP 3.
  • the DCI frequency domain RA field size is 13 bits and the size required for scheduling is 6 bits. Therefore, although the size required for scheduling of BWP1 is satisfied, seven bits remain.
  • the seven bits not used for scheduling may be set to a predetermined bit (0 or 1) with a predetermined upper bit number (MSB) or a lower bit number (LSB).
  • unused bits may be fixed by predetermined scrambling. For example, it may be used as a redundant bit to check the validity of the used bit.
  • the frequency domain RA field size is fixed to the frequency domain RA field size (bitwidth) of the BWP receiving DCI, even for scheduling of a BWP different from the activated BWP. .
  • the payload of the DCI can be made uniform until the BWP is deactivated.
  • the user terminal can monitor downlink control information based on a single DCI format. For this reason, compared to monitoring a plurality of DCI formats, the processing load is reduced, and power consumption can be suppressed.
  • the user terminal determines at least one or all of the RA type, the RBG size and the frequency domain RA field size of the received scheduling DCI based on the currently active BWP (or configuration information of the active BWP). to decide.
  • the size of the scheduling DCI monitored by the user terminal is determined by the configuration parameter of the currently active BWP.
  • the UE when the UE receives a DCI including a BWP designation field, a different BWP is scheduled even if the same BWP as the active BWP is scheduled by the DCI (self-BWP scheduling) Even in the case of (cross BWP scheduling), the RA type, RBG size and frequency domain RA field size are determined based on the currently active BWP.
  • the maximum schedulable bandwidth (eg, the maximum number of PRBs) is the same as the schedulable bandwidth in the currently active BWP.
  • the resource allocation type (RA type) in the currently active BWP is RA type 0
  • the resource block group (RBG) size may also be the same as the RBG set for the currently active BWP.
  • DMRS type indicating a pattern (for example, position of RE / symbol, number of RE / symbol, etc.) for mapping DMRS for PDSCH and / or PUSCH, presence or absence of additional DMRS (Additional DMRS), and / or setting position, layer Number, and also the Modulation and Coding Scheme (MCS) table used for Transport Block Size (TBS) derivation and modulation scheme determination, etc. may be determined based on the parameters set for the currently active BWP. Good.
  • MCS Modulation and Coding Scheme
  • FIG. 10 is a diagram showing an example of resource allocation in the third aspect.
  • the first active BWP is BWP # 1.
  • the UE monitors PDCCH candidates (search space) in active BWP # 1.
  • PDCCH candidates search space
  • the UE has detected a DCI in which the BWP specification field indicates BWP # 2 in the PDCCH associated with BWP # 1.
  • the UE may perform transmission or reception processing, judging that the data channel scheduled by the DCI conforms to the setting of BWP # 1 (not BWP # 2).
  • the UE when the UE detects DCI of cross BWP scheduling, it deactivates the currently active BWP after performing data transmission or reception in the currently active BWP based on the DCI.
  • the BWP indicated by the BWP specification field of DCI may be activated.
  • the UE switches the active BWP from BWP # 1 to BWP # 2 after processing the data according to the configuration of BWP # 1. And UE monitors a PDCCH candidate in active BWP # 2.
  • the UE may perform transmission or reception processing, judging that the data channel scheduled by the DCI conforms to the configuration of the active BWP # 2.
  • the frequency domain RA field size of DCI instructing cross BWP scheduling is fixed to the same frequency domain RA field size as self BWP scheduling. For this reason, it is possible to make the payload of scheduling DCI detected in the active BWP uniform.
  • the user terminal can monitor downlink control information based on a single DCI format. For this reason, compared to monitoring a plurality of DCI formats, the processing load is reduced, and power consumption can be suppressed.
  • wireless communication system The configuration of the wireless communication system according to the present embodiment will be described below.
  • the wireless communication method according to each aspect described above is applied. Note that the wireless communication methods according to the above aspects may be applied singly or in combination.
  • FIG. 11 is a diagram showing an example of a schematic configuration of a wireless communication system according to the present embodiment.
  • the radio communication system 1 applies carrier aggregation (CA) and / or dual connectivity (DC) in which a plurality of basic frequency blocks (component carriers) each having a system bandwidth (for example, 20 MHz) of the LTE system as one unit are integrated. it can.
  • the wireless communication system 1 may be called SUPER 3G, LTE-A (LTE-Advanced), IMT-Advanced, 4G, 5G, FRA (Future Radio Access), NR (New RAT), or the like.
  • the radio communication system 1 shown in FIG. 11 includes a radio base station 11 forming a macrocell C1, and radio base stations 12a to 12c disposed in the macrocell C1 and forming a small cell C2 narrower than the macrocell C1. .
  • the user terminal 20 is arrange
  • the configuration may be such that different mermorologies are applied between cells.
  • the terminology may be at least one of subcarrier spacing, symbol length, cyclic prefix (CP) length, number of symbols per transmission time interval (TTI), and TTI time length.
  • the slot may be a unit of time based on the terminology applied by the user terminal. The number of symbols per slot may be determined according to the subcarrier spacing.
  • the user terminal 20 can be connected to both the radio base station 11 and the radio base station 12.
  • the user terminal 20 is assumed to simultaneously use the macro cell C1 and the small cell C2 using different frequencies by CA or DC.
  • the user terminal 20 can apply CA or DC using a plurality of cells (CCs) (for example, two or more CCs).
  • the user terminal can use the license band CC and the unlicensed band CC as a plurality of cells.
  • the user terminal 20 can perform communication in each cell (carrier) using time division duplex (TDD) or frequency division duplex (FDD).
  • TDD time division duplex
  • FDD frequency division duplex
  • the TDD cell and the FDD cell may be respectively referred to as a TDD carrier (frame configuration second type), an FDD carrier (frame configuration first type), and the like.
  • a slot having a relatively long time length eg, 1 ms
  • TTI normal TTI
  • long TTI long TTI
  • normal subframe also referred to as long subframe or subframe, etc.
  • a slot having a relatively short time length also referred to as a mini slot, a short TTI or a short subframe, etc.
  • two or more time slots may be applied in each cell.
  • Communication can be performed between the user terminal 20 and the radio base station 11 using a relatively low frequency band (for example, 2 GHz) and a carrier having a narrow bandwidth (referred to as an existing carrier, Legacy carrier, etc.).
  • a carrier having a wide bandwidth in a relatively high frequency band for example, 3.5 GHz, 5 GHz, 30 to 70 GHz, etc.
  • the same carrier as that for the base station 11 may be used.
  • the configuration of the frequency band used by each wireless base station is not limited to this.
  • one or more BWPs may be set in the user terminal 20.
  • the BWP consists of at least part of the carrier.
  • a wired connection for example, an optical fiber conforming to a Common Public Radio Interface (CPRI), an X2 interface, etc.
  • a wireless connection Can be configured.
  • the radio base station 11 and each radio base station 12 are connected to the higher station apparatus 30 and connected to the core network 40 via the higher station apparatus 30.
  • the upper station apparatus 30 includes, for example, an access gateway apparatus, a radio network controller (RNC), a mobility management entity (MME), and the like, but is not limited thereto. Further, each wireless base station 12 may be connected to the higher station apparatus 30 via the wireless base station 11.
  • RNC radio network controller
  • MME mobility management entity
  • the radio base station 11 is a radio base station having a relatively wide coverage, and may be called a macro base station, an aggregation node, an eNB (eNodeB), a transmission / reception point, or the like.
  • the radio base station 12 is a radio base station having local coverage, and is a small base station, a micro base station, a pico base station, a femto base station, a HeNB (Home eNodeB), an RRH (Remote Radio Head), transmission and reception It may be called a point or the like.
  • the radio base stations 11 and 12 are not distinguished, they are collectively referred to as the radio base station 10.
  • Each user terminal 20 is a terminal compatible with various communication schemes such as LTE and LTE-A, and may include not only mobile communication terminals but also fixed communication terminals. Also, the user terminal 20 can perform inter-terminal communication (D2D) with another user terminal 20.
  • D2D inter-terminal communication
  • OFDMA Orthogonal Frequency Division Multiple Access
  • SC-FDMA Single Carrier-Frequency Division Multiple Access
  • OFDMA is a multicarrier transmission scheme in which a frequency band is divided into a plurality of narrow frequency bands (subcarriers) and data is mapped to each subcarrier to perform communication.
  • SC-FDMA is a single carrier transmission that reduces interference between terminals by dividing the system bandwidth into a band consisting of one or a series of resource blocks for each terminal and a plurality of terminals use different bands. It is a system.
  • the uplink and downlink radio access schemes are not limited to these combinations, and OFDMA may be used in UL.
  • SC-FDMA can be applied to a side link (SL) used for communication between terminals.
  • SL side link
  • DL data channels (PDSCH: also referred to as Physical Downlink Shared Channel, DL shared channel etc.) shared by each user terminal 20, broadcast channel (PBCH: Physical Broadcast Channel), L1 / L2 A control channel or the like is used.
  • DL data (at least one of user data, upper layer control information, SIB (System Information Block), etc.) is transmitted by the PDSCH.
  • SIB System Information Block
  • MIB Master Information Block
  • the L1 / L2 control channel is a DL control channel (PDCCH (Physical Downlink Control Channel) and / or EPDCCH (Enhanced Physical Downlink Control Channel)), PCFICH (Physical Control Format Indicator Channel), PHICH (Physical Hybrid-ARQ Indicator Channel), etc. including.
  • Downlink control information (DCI) including scheduling information of PDSCH and PUSCH is transmitted by PDCCH.
  • the number of OFDM symbols used for PDCCH is transmitted by PCFICH.
  • the EPDCCH is frequency division multiplexed with the PDSCH, and is used for transmission such as DCI as the PDCCH.
  • the PHICH can transmit PUSCH delivery confirmation information (also referred to as A / N, HARQ-ACK, HARQ-ACK bit, A / N codebook, etc.).
  • a UL data channel shared by each user terminal 20 (PUSCH: also referred to as Physical Uplink Shared Channel, UL shared channel, etc.), UL control channel (PUCCH: Physical Uplink Control Channel), random An access channel (PRACH: Physical Random Access Channel) or the like is used.
  • UL data (user data and / or upper layer control information) is transmitted by the PUSCH.
  • Uplink control information (UCI: Uplink Control Information) including at least one of PDSCH delivery acknowledgment information (A / N, HARQ-ACK) channel state information (CSI) and the like is transmitted by the PUSCH or PUCCH.
  • the PRACH can transmit a random access preamble for establishing a connection with a cell.
  • FIG. 12 is a diagram showing an example of the entire configuration of the radio base station according to the present embodiment.
  • the radio base station 10 includes a plurality of transmitting and receiving antennas 101, an amplifier unit 102, a transmitting and receiving unit 103, a baseband signal processing unit 104, a call processing unit 105, and a transmission path interface 106.
  • Each of the transmitting and receiving antenna 101, the amplifier unit 102, and the transmitting and receiving unit 103 may be configured to include one or more.
  • the radio base station 10 may configure a “receiving device” in UL and may configure a “transmitting device” in DL.
  • User data transmitted from the radio base station 10 to the user terminal 20 by downlink is input from the higher station apparatus 30 to the baseband signal processing unit 104 via the transmission path interface 106.
  • the baseband signal processing unit 104 performs packet data convergence protocol (PDCP) layer processing, user data division / combination, RLC layer transmission processing such as RLC (Radio Link Control) retransmission control, and MAC (Medium Access) for user data.
  • Control Retransmission control (for example, processing of HARQ (Hybrid Automatic Repeat reQuest)), scheduling, transmission format selection, channel coding, rate matching, scrambling, Inverse Fast Fourier Transform (IFFT) processing and precoding Transmission processing such as at least one of the processing is performed and transferred to the transmission / reception unit 103.
  • HARQ Hybrid Automatic Repeat reQuest
  • IFFT Inverse Fast Fourier Transform
  • Transmission processing such as at least one of the processing is performed and transferred to the transmission / reception unit 103.
  • transmission processing such as channel coding and / or inverse fast Fourier transform is performed and transferred to the transmission / reception unit 103.
  • the transmission / reception unit 103 converts the baseband signal output from the baseband signal processing unit 104 for each antenna into a radio frequency band and transmits the baseband signal.
  • the radio frequency signal frequency-converted by the transmitting and receiving unit 103 is amplified by the amplifier unit 102 and transmitted from the transmitting and receiving antenna 101.
  • the transmitter / receiver, the transmitting / receiving circuit or the transmitting / receiving device described based on the common recognition in the technical field according to the present invention can be constituted.
  • the transmitting and receiving unit 103 may be configured as an integrated transmitting and receiving unit, or may be configured from a transmitting unit and a receiving unit.
  • the radio frequency signal received by the transmitting and receiving antenna 101 is amplified by the amplifier unit 102.
  • the transmitting and receiving unit 103 receives the UL signal amplified by the amplifier unit 102.
  • the transmission / reception unit 103 frequency-converts the received signal into a baseband signal and outputs the result to the baseband signal processing unit 104.
  • the baseband signal processing unit 104 performs Fast Fourier Transform (FFT) processing, Inverse Discrete Fourier Transform (IDFT) processing, and error correction on UL data included in the input UL signal. Decoding, reception processing of MAC retransmission control, and reception processing of RLC layer and PDCP layer are performed, and are transferred to the higher station apparatus 30 via the transmission path interface 106.
  • the call processing unit 105 performs at least one of setting of a communication channel, call processing such as release, status management of the radio base station 10, and management of radio resources.
  • the transmission path interface 106 transmits and receives signals to and from the higher station apparatus 30 via a predetermined interface. Also, the transmission path interface 106 transmits / receives signals (backhaul signaling) to / from the adjacent wireless base station 10 via an inter-base station interface (for example, an optical fiber conforming to CPRI (Common Public Radio Interface), X2 interface). It is also good.
  • an inter-base station interface for example, an optical fiber conforming to CPRI (Common Public Radio Interface), X2 interface.
  • the transmission / reception unit 103 may be a DL signal (for example, at least one of a DL control signal (also referred to as DL control channel or DCI), a DL data signal (also referred to as DL data channel or DL data), and a reference signal)
  • a DL control signal also referred to as DL control channel or DCI
  • a DL data signal also referred to as DL data channel or DL data
  • a reference signal Send
  • the transmission / reception unit 103 may be a UL signal (for example, at least one of a UL control signal (also referred to as UL control channel or UCI), a UL data signal (also referred to as UL data channel or UL data), and a reference signal)
  • the transmission / reception unit 103 may transmit upper layer control information (for example, control information by MAC CE and / or RRC signaling).
  • upper layer control information for example, control information by MAC CE and / or RRC signaling.
  • the transmission / reception unit 103 may transmit DCI according to the DCI format defined by at least one of the first, second and third aspects described above.
  • FIG. 13 is a diagram showing an example of a functional configuration of the radio base station according to the present embodiment. Note that FIG. 13 mainly shows the functional blocks of the characterizing portion in the present embodiment, and the wireless base station 10 also has other functional blocks necessary for wireless communication.
  • the baseband signal processing unit 104 includes a control unit 301, a transmission signal generation unit 302, a mapping unit 303, a reception signal processing unit 304, and a measurement unit 305.
  • the control unit 301 controls the entire wireless base station 10.
  • the control unit 301 may, for example, generate a DL signal by the transmission signal generation unit 302, map the DL signal by the mapping unit 303, receive processing (for example, demodulation) of the UL signal by the reception signal processing unit 304, and measure it by the measurement unit 305.
  • Control at least one of Also, the control unit 301 may control scheduling of data channels (including DL data channels and / or UL data channels).
  • the control unit 301 may control the transmission direction for each symbol in a time unit (for example, slot) which is a scheduling unit of the DL data channel. Specifically, the control unit 301 may control generation and / or transmission of slot format related information (SFI) indicating DL symbols and / or UL symbols in the slot.
  • SFI slot format related information
  • control unit 301 configures one or more BWPs, and uses TDP (time division duplex) or FDD (frequency division duplex) with the user terminal 20 using the set BWPs. You may control to perform line communication.
  • TDP time division duplex
  • FDD frequency division duplex
  • control unit 301 may perform BWP scheduling using the DCI format defined in the first aspect or the second aspect described above.
  • the control unit 301 may perform control to transmit, to the user terminal 20, downlink control information including information indicating a second BWP different from the first BWP, using the first BWP. In this case, the control unit 301 may assume that the user terminal 20 determines the resource to be allocated according to the downlink control information based on the BWP setting information of the first BWP.
  • the control unit 301 is the DCI that transmits in the first BWP, and the maximum size of the resource that can be allocated by the DCI including the information indicating the second BWP is the DCI that transmits in the first BWP, and the first size It may be assumed to be the same as the maximum size of resources that can be allocated by downlink control information including information indicating BWP.
  • the control unit 301 can be configured of a controller, a control circuit, or a control device described based on the common recognition in the technical field according to the present invention.
  • the transmission signal generation unit 302 generates a DL signal (including at least one of DL data (channel), DCI, DL reference signal, and control information by upper layer signaling) based on an instruction from the control unit 301, It may be output to the mapping unit 303.
  • the transmission signal generation unit 302 can be a signal generator, a signal generation circuit, or a signal generation device described based on the common recognition in the technical field according to the present invention.
  • the mapping unit 303 maps the DL signal generated by the transmission signal generation unit 302 on a predetermined radio resource based on an instruction from the control unit 301, and outputs the DL signal to the transmission / reception unit 103.
  • the mapping unit 303 maps the reference signal to a predetermined radio resource using the arrangement pattern determined by the control unit 301.
  • the mapping unit 303 may be a mapper, a mapping circuit or a mapping device described based on the common recognition in the technical field according to the present invention.
  • the reception signal processing unit 304 performs reception processing (for example, at least one of demapping, demodulation, and decoding) of the UL signal transmitted from the user terminal 20. Specifically, the reception signal processing unit 304 may output the reception signal and / or the signal after reception processing to the measurement unit 305.
  • reception processing for example, at least one of demapping, demodulation, and decoding
  • the received signal processing unit 304 can be composed of a signal processor, a signal processing circuit or a signal processing device described based on the common recognition in the technical field according to the present invention. Further, the received signal processing unit 304 can constitute a receiving unit according to the present invention.
  • the measurement unit 305 measures the channel quality of UL based on, for example, received power of a reference signal (for example, reference signal received power (RSRP)) and / or received quality (for example, reference signal received quality (RSRQ)). May be The measurement result may be output to the control unit 301.
  • a reference signal for example, reference signal received power (RSRP)
  • RSSQ reference signal received quality
  • FIG. 14 is a diagram showing an example of the entire configuration of the user terminal according to the present embodiment.
  • the user terminal 20 includes a plurality of transmission / reception antennas 201 for MIMO transmission, an amplifier unit 202, a transmission / reception unit 203, a baseband signal processing unit 204, and an application unit 205.
  • the user terminal 20 may configure a “transmitting device” in UL and may configure a “receiving device” in DL.
  • the radio frequency signals received by the plurality of transmitting and receiving antennas 201 are amplified by the amplifier unit 202, respectively.
  • Each transmission / reception unit 203 receives the DL signal amplified by the amplifier unit 202.
  • the transmission / reception unit 203 frequency-converts the received signal into a baseband signal and outputs the result to the baseband signal processing unit 204.
  • the baseband signal processing unit 204 performs at least one of FFT processing, error correction decoding, reception processing of retransmission control, and the like on the input baseband signal.
  • the DL data is transferred to the application unit 205.
  • the application unit 205 performs processing on a layer higher than the physical layer and the MAC layer.
  • UL data is input from the application unit 205 to the baseband signal processing unit 204.
  • the baseband signal processing unit 204 performs at least one of retransmission control processing (for example, processing of HARQ), channel coding, rate matching, puncturing, discrete Fourier transform (DFT) processing, IFFT processing, and the like.
  • the data is transferred to each transmission / reception unit 203.
  • UCI eg, A / N of DL signal, channel state information (CSI), scheduling request (SR), etc.
  • CSI channel state information
  • SR scheduling request
  • the transmission / reception unit 203 converts the baseband signal output from the baseband signal processing unit 204 into a radio frequency band and transmits it.
  • the radio frequency signal frequency-converted by the transmitting and receiving unit 203 is amplified by the amplifier unit 202 and transmitted from the transmitting and receiving antenna 201.
  • the transmitting / receiving unit 203 is a DL signal (for example, at least one of a DL control signal (also referred to as DL control channel or DCI), a DL data signal (also referred to as DL data channel or DL data), and a reference signal) Receive
  • the transmission / reception unit 203 is a UL signal (for example, at least one of a UL control signal (also referred to as a UL control channel or UCI), a UL data signal (also referred to as a UL data channel or UL data), and a reference signal)
  • a DL control signal also referred to as DL control channel or DCI
  • a DL data signal also referred to as DL data channel or DL data
  • a reference signal for example, at least one of a UL control signal (also referred to as a UL control channel or UCI), a UL data signal (also referred to as a UL data channel or UL data), and a reference signal)
  • the transmitting / receiving unit 203 may receive upper layer control information (for example, control information by MAC CE and / or RRC signaling).
  • upper layer control information for example, control information by MAC CE and / or RRC signaling.
  • the transmission / reception unit 203 uses TDL (time division multiple overlapping signals) using a DL / UL frequency band pair (DL / UL BWP pair) having a UL frequency band and a DL frequency band set in the frequency direction in the carrier. May transmit and receive signals and / or information.
  • TDL time division multiple overlapping signals
  • the transmission / reception unit 203 may receive DCI in the DCI format defined in the first aspect or the second aspect described above.
  • the transmission / reception unit 203 can be a transmitter / receiver, a transmission / reception circuit, or a transmission / reception device described based on the common recognition in the technical field according to the present invention.
  • the transmission / reception unit 203 may be configured as an integrated transmission / reception unit, or may be configured from a transmission unit and a reception unit.
  • FIG. 15 is a diagram showing an example of a functional configuration of the user terminal according to the present embodiment.
  • the functional blocks of the characteristic part in the present embodiment are mainly shown, and the user terminal 20 also has other functional blocks necessary for wireless communication.
  • the baseband signal processing unit 204 included in the user terminal 20 includes the control unit 401, the transmission signal generation unit 402, the mapping unit 403, the reception signal processing unit 404, and the measurement unit 405. Have.
  • the control unit 401 controls the entire user terminal 20.
  • the control unit 401 controls, for example, at least one of UL signal generation by the transmission signal generation unit 402, mapping of the UL signal by the mapping unit 403, reception processing of the DL signal by the reception signal processing unit 404, and measurement by the measurement unit 405. Do.
  • control unit 401 configures one or more BWPs, and uses TDPs (time division duplex) or FDD (frequency division duplex) with the radio base station 10 using the set BWPs. Control to perform line communication.
  • TDPs time division duplex
  • FDD frequency division duplex
  • the control unit 401 may determine the scheduled BWP resources using the DCI format defined in the first aspect or the second aspect described above.
  • the transmitting / receiving unit 203 receives downlink control information using the first BWP in the partial frequency band (BWP) set in the carrier, and the control unit 401 uses the plurality of the downlink control information. Determining a resource of a second BWP different from the first BWP through a resource allocation field (RA field) having a size set (or selected) based on a predetermined BWP of BWPs of It is also good.
  • RA field resource allocation field
  • the predetermined BWP may be the widest bandwidth BWP among the plurality of BWPs.
  • the predetermined BWP may be the first BWP.
  • control unit 401 When the control unit 401 receives the downlink control information, the control unit 401 may activate the second BWP and deactivate the first BWP.
  • the control unit 401 may monitor the downlink control information of the same size even if the activated BWP is either the first BWP or the second BWP.
  • the transmission / reception unit 203 may use downlink control information (for example, scheduling DCI, DL assignment, UL grant, etc.) including information indicating the second BWP different from the first BWP. May be received).
  • the control unit 401 may determine, based on the BWP setting information of the first BWP, a resource allocated by the downlink control information (a resource specified by cross BWP scheduling).
  • the control unit 401 may assume that the maximum size of resources that can be allocated by the downlink control information is the same as the maximum size of resources that can be allocated by downlink control information including information indicating the first BWP. .
  • the control unit 401 may perform control to activate the second BWP after processing the resources allocated by the downlink control information.
  • the control unit 401 can be configured of a controller, a control circuit, or a control device described based on the common recognition in the technical field according to the present invention.
  • Transmission signal generation unit 402 generates retransmission control information of UL signal and DL signal (for example, coding, rate matching, puncturing, modulation, etc.) based on an instruction from control unit 401, and outputs the result to mapping unit 403. Do.
  • the transmission signal generation unit 402 can be a signal generator, a signal generation circuit, or a signal generation device described based on the common recognition in the technical field according to the present invention.
  • the mapping unit 403 may be a mapper, a mapping circuit or a mapping device described based on the common recognition in the technical field according to the present invention.
  • the reception signal processing unit 404 performs reception processing (for example, at least one of demapping, demodulation, and decoding) of the DL signal.
  • reception processing for example, at least one of demapping, demodulation, and decoding
  • the reception signal processing unit 404 may demodulate the DL data channel using the reference signal of the arrangement pattern determined by the control unit 401.
  • the reception signal processing unit 404 may output the reception signal and / or the signal after reception processing to the control unit 401 and / or the measurement unit 405.
  • the reception signal processing unit 404 outputs, for example, upper layer control information by upper layer signaling, L1 / L2 control information (for example, UL grant and / or DL assignment), and the like to the control unit 401.
  • the received signal processing unit 404 can be composed of a signal processor, a signal processing circuit or a signal processing device described based on the common recognition in the technical field according to the present invention. Further, the received signal processing unit 404 can constitute a receiving unit according to the present invention.
  • Measuring section 405 measures a channel state based on a reference signal (for example, CSI-RS) from radio base station 10, and outputs the measurement result to control section 401.
  • the channel state measurement may be performed for each CC.
  • the measuring unit 405 can be composed of a signal processor, a signal processing circuit or a signal processing device, and a measuring instrument, a measuring circuit or a measuring device described based on the common recognition in the technical field according to the present invention.
  • each functional block is realized by one physically and / or logically coupled device, or directly and / or indirectly two or more physically and / or logically separated devices. It may be connected by (for example, wired and / or wireless) and realized by the plurality of devices.
  • the wireless base station, the user terminal, and the like in the present embodiment may function as a computer that performs the process of the wireless communication method of the present invention.
  • FIG. 16 is a diagram showing an example of the hardware configuration of the radio base station and the user terminal according to the present embodiment.
  • the above-described wireless base station 10 and user terminal 20 may be physically configured as a computer device including a processor 1001, a memory 1002, a storage 1003, a communication device 1004, an input device 1005, an output device 1006, a bus 1007 and the like. Good.
  • the term “device” can be read as a circuit, a device, a unit, or the like.
  • the hardware configuration of the radio base station 10 and the user terminal 20 may be configured to include one or more of the devices illustrated in the figure, or may be configured without including some devices.
  • processor 1001 may be implemented by one or more chips.
  • Each function in the radio base station 10 and the user terminal 20 is performed, for example, by causing a processor 1001 to read predetermined software (program) on hardware such as the processor 1001 and the memory 1002, and the processor 1001 performs an operation. This is realized by controlling at least one of reading and writing of data in the memory 1002 and the storage 1003.
  • the processor 1001 operates, for example, an operating system to control the entire computer.
  • the processor 1001 may be configured by a central processing unit (CPU: Central Processing Unit) including an interface with a peripheral device, a control device, an arithmetic device, a register, and the like.
  • CPU Central Processing Unit
  • the above-described baseband signal processing unit 104 (204), call processing unit 105, and the like may be realized by the processor 1001.
  • the processor 1001 reads a program (program code), a software module, data, and the like from the storage 1003 and / or the communication device 1004 to the memory 1002, and executes various processing according to these.
  • a program a program that causes a computer to execute at least a part of the operations described in the above embodiments is used.
  • the control unit 401 of the user terminal 20 may be realized by a control program stored in the memory 1002 and operated by the processor 1001, or may be realized similarly for other functional blocks.
  • the memory 1002 is a computer readable recording medium, and for example, at least at least a read only memory (ROM), an erasable programmable ROM (EPROM), an electrically EPROM (EEPROM), a random access memory (RAM), or any other suitable storage medium. It may consist of one.
  • the memory 1002 may be called a register, a cache, a main memory (main storage device) or the like.
  • the memory 1002 may store a program (program code), a software module, and the like that can be executed to implement the wireless communication method according to an embodiment of the present invention.
  • the storage 1003 is a computer readable recording medium, and for example, a flexible disk, a floppy (registered trademark) disk, a magneto-optical disk (for example, a compact disk (CD-ROM (Compact Disc ROM), etc.), a digital versatile disk, Blu-ray® disc), removable disc, hard disc drive, smart card, flash memory device (eg card, stick, key drive), magnetic stripe, database, server, at least one other suitable storage medium May be composed of
  • the storage 1003 may be called an auxiliary storage device.
  • the communication device 1004 is hardware (transmission / reception device) for performing communication between computers via a wired and / or wireless network, and is also called, for example, a network device, a network controller, a network card, a communication module, or the like.
  • the communication device 1004 includes, for example, a high frequency switch, a duplexer, a filter, a frequency synthesizer, and the like to realize, for example, frequency division duplex (FDD) and / or time division duplex (TDD). It may be configured.
  • FDD frequency division duplex
  • TDD time division duplex
  • the transmission / reception antenna 101 (201), the amplifier unit 102 (202), the transmission / reception unit 103 (203), the transmission path interface 106, and the like described above may be realized by the communication device 1004.
  • the input device 1005 is an input device (for example, a keyboard, a mouse, a microphone, a switch, a button, a sensor, and the like) that receives an input from the outside.
  • the output device 1006 is an output device (for example, a display, a speaker, a light emitting diode (LED) lamp, and the like) that performs output to the outside.
  • the input device 1005 and the output device 1006 may be integrated (for example, a touch panel).
  • each device shown in FIG. 16 is connected by a bus 1007 for communicating information.
  • the bus 1007 may be configured by a single bus or may be configured by different buses among the devices.
  • radio base station 10 and the user terminal 20 may be microprocessors, digital signal processors (DSPs), application specific integrated circuits (ASICs), programmable logic devices (PLDs), field programmable gate arrays (FPGAs), etc. It may be configured to include hardware, and part or all of each functional block may be realized by the hardware. For example, processor 1001 may be implemented in at least one of these hardware.
  • DSPs digital signal processors
  • ASICs application specific integrated circuits
  • PLDs programmable logic devices
  • FPGAs field programmable gate arrays
  • the channels and / or symbols may be signaling.
  • the signal may be a message.
  • the reference signal may be abbreviated as RS (Reference Signal), and may be referred to as a pilot (Pilot), a pilot signal or the like according to an applied standard.
  • a component carrier CC: Component Carrier
  • CC Component Carrier
  • a radio frame may be configured with one or more periods (frames) in the time domain.
  • Each of the one or more periods (frames) that constitute a radio frame may be referred to as a subframe.
  • a subframe may be configured with one or more slots in the time domain.
  • the subframes may be of a fixed time length (e.g., 1 ms) independent of the neurology.
  • a slot may be configured with one or more symbols (such as orthogonal frequency division multiplexing (OFDM) symbols, single carrier frequency division multiple access (SC-FDMA) symbols, etc.) in the time domain.
  • the slot may be a time unit based on the neurology.
  • the slot may include a plurality of minislots. Each minislot may be comprised of one or more symbols in the time domain.
  • a radio frame, a subframe, a slot, a minislot and a symbol all represent time units when transmitting a signal.
  • subframes, slots, minislots and symbols other names corresponding to each may be used.
  • one subframe may be referred to as a transmission time interval (TTI)
  • TTI transmission time interval
  • a plurality of consecutive subframes may be referred to as a TTI
  • one slot or one minislot may be referred to as a TTI.
  • TTI transmission time interval
  • the subframe and / or TTI may be a subframe (1 ms) in existing LTE, a period shorter than 1 ms (eg, 1-13 symbols), or a period longer than 1 ms. It may be.
  • TTI refers to, for example, the minimum time unit of scheduling in wireless communication.
  • the radio base station performs scheduling to allocate radio resources (such as frequency bandwidth and / or transmission power that can be used in each user terminal) to each user terminal on a TTI basis.
  • the TTI may be a transmission time unit of a channel coded data packet (transport block) or may be a processing unit such as scheduling and / or link adaptation. If one slot or one minislot is referred to as TTI, one or more TTIs (ie, one or more slots or one or more minislots) may be the minimum time unit of scheduling. In addition, the number of slots (the number of minislots) constituting the minimum time unit of the scheduling may be controlled.
  • a TTI having a time length of 1 ms may be referred to as a normal TTI (TTI in LTE Rel. 8-12), a normal TTI, a long TTI, a normal subframe, a normal subframe, a long subframe, or the like.
  • a TTI shorter than a normal TTI may be referred to as a short TTI, a short TTI, a partial TTI (partial or fractional TTI), a short subframe, a short subframe, or the like.
  • a resource block is a resource allocation unit in time domain and frequency domain, and may include one or more consecutive subcarriers (subcarriers) in the frequency domain. Also, an RB may include one or more symbols in the time domain, and may be one slot, one minislot, one subframe, or one TTI in length. One TTI and one subframe may be configured of one or more resource blocks, respectively.
  • the RB may be called a physical resource block (PRB: Physical RB), a PRB pair, an RB pair, or the like.
  • a resource block may be composed of one or more resource elements (RE: Resource Element).
  • RE Resource Element
  • one RE may be one subcarrier and one symbol radio resource region.
  • the above-described structures such as the radio frame, subframe, slot, minislot and symbol are merely examples.
  • the number of subframes included in a radio frame the number of slots per subframe or radio frame, the number of minislots included in a slot, the number of symbols included in a slot or minislot, and subcarriers included in an RB
  • the number of symbols in TTI, symbol length, cyclic prefix (CP) length, and other configurations may be variously changed.
  • the information, parameters, and the like described in the present specification may be represented by absolute values, may be represented by relative values from predetermined values, or may be represented by corresponding other information.
  • the radio resources may be indicated by a predetermined index.
  • the formulas etc. that use these parameters may differ from those explicitly disclosed herein.
  • data, instructions, commands, information, signals, bits, symbols, chips etc may be voltage, current, electromagnetic waves, magnetic fields or particles, optical fields or photons, or any of these May be represented by a combination of
  • information, signals, etc. may be output from the upper layer to the lower layer and / or from the lower layer to the upper layer.
  • Information, signals, etc. may be input / output via a plurality of network nodes.
  • the input / output information, signals and the like may be stored in a specific place (for example, a memory) or may be managed by a management table. Information, signals, etc. input and output can be overwritten, updated or added. The output information, signals and the like may be deleted. The input information, signals and the like may be transmitted to other devices.
  • notification of information is not limited to the aspects / embodiments described herein, and may be performed in other manners.
  • notification of information may be physical layer signaling (eg, downlink control information (DCI), uplink control information (UCI)), upper layer signaling (eg, RRC (Radio Resource Control) signaling, It may be implemented by broadcast information (Master Information Block (MIB), System Information Block (SIB), etc.), MAC (Medium Access Control) signaling, other signals, or a combination thereof.
  • DCI downlink control information
  • UCI uplink control information
  • RRC Radio Resource Control
  • MIB Master Information Block
  • SIB System Information Block
  • MAC Medium Access Control
  • the physical layer signaling may be called L1 / L2 (Layer 1 / Layer 2) control information (L1 / L2 control signal), L1 control information (L1 control signal), or the like.
  • RRC signaling may be referred to as an RRC message, and may be, for example, an RRC connection setup (RRC Connection Setup) message, an RRC connection reconfiguration (RRC Connection Reconfiguration) message, or the like.
  • MAC signaling may be notified by, for example, a MAC control element (MAC CE (Control Element)).
  • notification of predetermined information is not limited to what is explicitly performed, but implicitly (for example, by not notifying the predetermined information or another It may be performed by notification of information.
  • the determination may be performed by a value (0 or 1) represented by one bit, or may be performed by a boolean value represented by true or false. , Numerical comparison (for example, comparison with a predetermined value) may be performed.
  • Software may be called software, firmware, middleware, microcode, hardware description language, or any other name, and may be instructions, instruction sets, codes, code segments, program codes, programs, subprograms, software modules. Should be interpreted broadly to mean applications, software applications, software packages, routines, subroutines, objects, executables, threads of execution, procedures, functions, etc.
  • software, instructions, information, etc. may be sent and received via a transmission medium.
  • software may use a wired technology (coaxial cable, fiber optic cable, twisted pair, digital subscriber line (DSL), etc.) and / or a wireless technology (infrared, microwave, etc.), a website, a server
  • wired technology coaxial cable, fiber optic cable, twisted pair, digital subscriber line (DSL), etc.
  • wireless technology infrared, microwave, etc.
  • system and "network” as used herein are used interchangeably.
  • base station Base Station
  • radio base station eNB
  • gNB gNodeB
  • cell cell
  • cell group cell group
  • carrier carrier
  • component carrier component carrier
  • a base station may also be called in terms of a fixed station (Node station), NodeB, eNodeB (eNB), access point (access point), transmission point, reception point, femtocell, small cell, and so on.
  • a base station may accommodate one or more (e.g., three) cells (also called sectors). If the base station accommodates multiple cells, the entire coverage area of the base station can be partitioned into multiple smaller areas, each smaller area being a base station subsystem (eg, a small base station for indoor use (RRH: Communication service can also be provided by Remote Radio Head).
  • RRH Communication service can also be provided by Remote Radio Head.
  • the terms "cell” or “sector” refer to part or all of the coverage area of a base station and / or a base station subsystem serving communication services in this coverage.
  • MS mobile station
  • UE user equipment
  • a base station may also be called in terms of a fixed station (Node station), NodeB, eNodeB (eNB), access point (access point), transmission point, reception point, femtocell, small cell, and so on.
  • Node station Node station
  • NodeB NodeB
  • eNodeB eNodeB
  • access point access point
  • transmission point reception point
  • femtocell small cell, and so on.
  • the mobile station may be a subscriber station, a mobile unit, a subscriber unit, a wireless unit, a remote unit, a mobile device, a wireless device, a wireless communication device, a remote device, a mobile subscriber station, an access terminal, a mobile terminal, a wireless terminal, by those skilled in the art. It may also be called a terminal, a remote terminal, a handset, a user agent, a mobile client, a client or some other suitable term.
  • the radio base station in the present specification may be replaced with a user terminal.
  • each aspect / embodiment of the present invention may be applied to a configuration in which communication between a wireless base station and a user terminal is replaced with communication between a plurality of user terminals (D2D: Device-to-Device).
  • the user terminal 20 may have a function that the above-described radio base station 10 has.
  • “up” and / or “down” may be read as “side”.
  • the upstream channel may be read as a side channel.
  • a user terminal herein may be read at a radio base station.
  • the radio base station 10 may have a function that the above-described user terminal 20 has.
  • the specific operation to be performed by the base station may be performed by the upper node in some cases.
  • various operations performed for communication with a terminal may be performed by the base station, one or more network nodes other than the base station (for example, it is apparent that it can be performed by MME (Mobility Management Entity), S-GW (Serving-Gateway), etc. but not limited thereto or a combination thereof.
  • MME Mobility Management Entity
  • S-GW Serving-Gateway
  • Each aspect / embodiment described in the present specification includes LTE (Long Term Evolution), LTE-A (LTE-Advanced), LTE-B (LTE-Beyond), SUPER 3G, IMT-Advanced, 4G (4th generation mobile) Communication system), 5G (5th generation mobile communication system), FRA (Future Radio Access), New-RAT (Radio Access Technology), NR (New Radio), NX (New radio access), FX (Future generation radio access), GSM (registered trademark) (Global System for Mobile communications), CDMA2000, UMB (Ultra Mobile Broadband), IEEE 802.11 (Wi-Fi (registered trademark)), IEEE 802.16 (WiMAX (registered trademark)), IEEE 802 .20, UWB (Ultra-Wide Band), Bluetooth (registered trademark),
  • the present invention may be applied to a system utilizing another appropriate wireless communication method of and / or an extended next generation system based on these.
  • the phrase “based on” does not mean “based only on,” unless expressly stated otherwise. In other words, the phrase “based on” means both “based only on” and “based at least on.”
  • any reference to an element using the designation "first,” “second,” etc. as used herein does not generally limit the quantity or order of those elements. These designations may be used herein as a convenient way of distinguishing between two or more elements. Thus, reference to the first and second elements does not mean that only two elements can be taken or that the first element must somehow precede the second element.
  • determining may encompass a wide variety of operations. For example, “determination” may be calculating, computing, processing, deriving, investigating, looking up (eg, table, database or other data) A search on structure), ascertaining, etc. may be considered as “determining”. Also, “determination” may be receiving (e.g. receiving information), transmitting (e.g. transmitting information), input (input), output (output), access (access) It may be considered as “determining” (eg, accessing data in memory) and the like. Also, “determination” is considered to be “determination” to resolve, select, choose, choose, establish, compare, etc. It is also good. That is, “determination” may be considered as “determining” some action.
  • the terms “connected”, “coupled”, or any variation thereof are any direct or indirect connection between two or more elements or It means a bond and can include the presence of one or more intermediate elements between two elements “connected” or “connected” to each other.
  • the coupling or connection between elements may be physical, logical or a combination thereof.
  • the two elements are by using one or more wires, cables and / or printed electrical connections, and radio frequency as some non-limiting and non-exclusive examples. It can be considered “connected” or “coupled” to one another by using electromagnetic energy such as electromagnetic energy having wavelengths in the region, microwave region and light (both visible and invisible) regions.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

A user terminal according to one embodiment of the present disclosure is characterized by comprising: a reception unit that uses, in a partial frequency band (BWP: bandwidth part) set in a carrier, a first BWP to receive downlink control information containing information indicating a second BWP different from the first BWP; and a control unit that determines a resource to be allocated in accordance with the downlink control information on the basis of BWP setting information of the first BWP. According to one embodiment of the present disclosure, a partial frequency band can be used for DL/UL communication to improve the throughput of wireless communication.

Description

ユーザ端末及び無線通信方法User terminal and wireless communication method
 本発明は、次世代移動通信システムにおけるユーザ端末及び無線通信方法に関する。 The present invention relates to a user terminal and a wireless communication method in a next-generation mobile communication system.
 UMTS(Universal Mobile Telecommunications System)ネットワークにおいて、さらなる高速データレート、低遅延などを目的としてロングタームエボリューション(LTE:Long Term Evolution)が仕様化された(非特許文献1)。また、LTEからの更なる広帯域化及び高速化を目的として、LTEの後継システム(例えば、LTE-A(LTE-Advanced)、FRA(Future Radio Access)、4G、5G、5G+(plus)、NR(New RAT)、LTE Rel.14、15~、などともいう)も検討されている。 In Universal Mobile Telecommunications System (UMTS) networks, Long Term Evolution (LTE) has been specified for the purpose of further higher data rates, lower delays, etc. (Non-Patent Document 1). Also, for the purpose of achieving wider bandwidth and higher speed from LTE, successor systems of LTE (for example, LTE-A (LTE-Advanced), FRA (Future Radio Access), 4G, 5G, 5G + (plus), NR ( Also referred to as New RAT), LTE Rel. 14, 15 and so on.
 また、既存のLTEシステム(例えば、LTE Rel.8-13)では、1msのサブフレームをスケジューリング単位として、下りリンク(DL:Downlink)及び/又は上りリンク(UL:Uplink)の通信が行われる。当該サブフレームは、例えば、通常サイクリックプリフィクス(NCP:Normal Cyclic Prefix)の場合、サブキャリア間隔15kHzの14シンボルで構成される。当該サブフレームは、伝送時間間隔(TTI:Transmission Time Interval)等とも呼ばれる。 Also, in the existing LTE system (for example, LTE Rel. 8-13), downlink (DL: Downlink) and / or uplink (UL: Uplink) communication is performed with a subframe of 1 ms as a scheduling unit. For example, in the case of Normal Cyclic Prefix (NCP), the subframe is composed of 14 symbols of 15 kHz subcarrier spacing. The subframes are also referred to as transmission time intervals (TTIs) or the like.
 また、ユーザ端末(UE:User Equipment)は、無線基地局(例えば、eNB:eNodeB)からの下りリンク制御情報(DCI:Downlink Control Information)(DLアサインメント等ともいう)に基づいて、DLデータチャネル(例えば、PDSCH:Physical Downlink Shared Channel、DL共有チャネル等ともいう)の受信を制御する。また、ユーザ端末は、無線基地局からのDCI(ULグラント等ともいう)に基づいて、ULデータチャネル(例えば、PUSCH:Physical Uplink Shared Channel、UL共有チャネル等ともいう)の送信を制御する。 Also, the user terminal (UE: User Equipment) is a DL data channel based on downlink control information (DCI: Downlink Control Information) (also referred to as DL assignment etc.) from a radio base station (for example, eNB: eNodeB). It controls reception of (for example, PDSCH: Physical Downlink Shared Channel, DL Shared Channel, etc.). Also, the user terminal controls transmission of a UL data channel (for example, PUSCH: also referred to as Physical Uplink Shared Channel, UL shared channel, etc.) based on DCI (also referred to as UL grant, etc.) from the radio base station.
 将来の無線通信システム(例えば、NR)では、ユーザ端末は、DL制御チャネル(例えば、PDCCH:Physical Downlink Control Channel)が割り当てられる候補領域である制御リソース領域(例えば、制御リソースセット(CORESET:control resource set))を監視(ブラインド復号)して、DCIを受信(検出)することが検討されている。 In the future wireless communication system (for example, NR), a user terminal is a control resource area (for example, control resource set (CORESET: control resource) which is a candidate area to which a DL control channel (for example, PDCCH: Physical Downlink Control Channel) is allocated. It is considered to receive (detect) DCI by monitoring (blind decoding)).
 また、当該将来の無線通信システムにおいては、キャリア(コンポーネントキャリア(CC:Component Carrier)又はシステム帯域等ともいう)内の一以上の部分的な(partial)周波数帯域(部分帯域(Partial Band)、帯域幅部分(BWP:Bandwidth part)等ともいう)を、DL及び/又はUL通信(DL/UL通信)に用いることが検討されている。このような部分的な周波数帯域をDL/UL通信に用いて、無線通信のスループットを向上させることが望まれる。 Also, in the future wireless communication system, one or more partial frequency bands (Partial Band), bands within a carrier (also referred to as component carrier (CC) or system band etc.) It has been considered to use a width part (BWP: Bandwidth part, etc.) for DL and / or UL communication (DL / UL communication). It is desirable to use such partial frequency bands for DL / UL communication to improve the throughput of wireless communication.
 本発明はかかる点に鑑みてなされたものであり、DL/UL通信に部分的な周波数帯域を用いて、無線通信のスループットを向上させることが可能なユーザ端末及び無線通信方法を提供することを目的の一つとする。 The present invention has been made in view of the foregoing, and provides a user terminal and a wireless communication method capable of improving the throughput of wireless communication by using a partial frequency band for DL / UL communication. It is one of the purposes.
 本開示の一態様に係るユーザ端末は、キャリア内に設定される部分周波数帯域(BWP:Bandwidth Part)の内、第1のBWPを用いて、前記第1のBWPとは異なる第2のBWPを示す情報を含む下り制御情報を受信する受信部と、前記第1のBWPのBWP設定情報に基づいて、前記下り制御情報によって割り当てられるリソースを判断する制御部と、を有することを特徴とする。 A user terminal according to an aspect of the present disclosure uses a first BWP in a partial frequency band (BWP: Bandwidth Part) set in a carrier to use a second BWP different from the first BWP. A receiver is characterized by comprising: a receiver for receiving downlink control information including information to be shown; and a controller for determining a resource to be allocated according to the downlink control information based on BWP setting information of the first BWP.
 本発明によれば、DL/UL通信に部分的な周波数帯域を用いて、無線通信のスループットを向上させることが可能となる。 According to the present invention, it is possible to improve the throughput of wireless communication by using a partial frequency band for DL / UL communication.
図1A-1Cは、BWPの設定シナリオの一例を示す図である。FIGS. 1A-1C are diagrams showing an example of a BWP setting scenario. 図2は、BWPのアクティブ化/非アクティブ化の制御の一例を示す図である。FIG. 2 is a diagram showing an example of control of activation / deactivation of BWP. 図3は、Sセル内の一以上のBWPのアクティブ化又は非アクティブ化の制御の一例を示す図である。FIG. 3 is a diagram illustrating an example of control of activation or deactivation of one or more BWPs in an S cell. 図4は、本実施の形態の第1の態様における周波数領域RAフィールドの決定方法を説明するための図である。FIG. 4 is a diagram for explaining the method of determining the frequency domain RA field in the first aspect of the present embodiment. 図5A、図5Bは、本実施の形態の第1の態様において、決定された周波数領域RAフィールドを介して下り制御情報を受信する動作を説明するための図である。FIGS. 5A and 5B are diagrams for describing an operation of receiving downlink control information via the determined frequency domain RA field in the first aspect of the present embodiment. 図6は、本実施の形態の第1の態様における周波数領域RAフィールドの決定方法を説明するための図である。FIG. 6 is a diagram for explaining the method of determining the frequency domain RA field in the first aspect of the present embodiment. 図7は、本実施の形態の第2の態様における周波数領域RAフィールドの決定方法を説明するための図である。FIG. 7 is a diagram for explaining the method of determining the frequency domain RA field in the second aspect of the present embodiment. 図8A、図8Bは、本実施の形態の第2の態様において、決定された周波数領域RAフィールドを介して下り制御情報を受信する動作を説明するための図である。FIGS. 8A and 8B are diagrams for explaining an operation of receiving downlink control information via the determined frequency domain RA field in the second aspect of the present embodiment. 図9は、本実施の形態の第2の態様における周波数領域RAフィールドの決定方法を説明するための図である。FIG. 9 is a diagram for explaining a method of determining a frequency domain RA field in the second aspect of the present embodiment. 図10は、第3の態様におけるリソース割り当ての一例を示す図である。FIG. 10 is a diagram showing an example of resource allocation in the third aspect. 図11は、本実施の形態にかかる無線通信システムの概略構成の一例を示す図である。FIG. 11 is a diagram showing an example of a schematic configuration of a wireless communication system according to the present embodiment. 図12は、本実施の形態にかかる無線基地局の全体構成の一例を示す図である。FIG. 12 is a diagram showing an example of the entire configuration of the radio base station according to the present embodiment. 図13は、本実施の形態にかかる無線基地局の機能構成の一例を示す図である。FIG. 13 is a diagram showing an example of a functional configuration of the radio base station according to the present embodiment. 図14は、本実施の形態にかかるユーザ端末の全体構成の一例を示す図である。FIG. 14 is a diagram showing an example of the entire configuration of the user terminal according to the present embodiment. 図15は、本実施の形態にかかるユーザ端末の機能構成の一例を示す図である。FIG. 15 is a diagram showing an example of a functional configuration of the user terminal according to the present embodiment. 図16は、本実施の形態にかかる無線基地局及びユーザ端末のハードウェア構成の一例を示す図である。FIG. 16 is a diagram showing an example of the hardware configuration of the radio base station and the user terminal according to the present embodiment.
 将来の無線通信システム(例えば、NR、5G又は5G+)では、既存のLTEシステム(例えば、LTE Rel.8-13)より広い帯域幅(例えば、100~800MHz)のキャリア(コンポーネントキャリア(CC:Component Carrier)、セル又はシステム帯域等ともいう)を割り当てることが検討されている。 In the future wireless communication systems (for example, NR, 5G or 5G +), carriers (component carriers (CC: Component Carrier) having a wider bandwidth (for example, 100 to 800 MHz) than existing LTE systems (for example, LTE Rel. 8-13) It is considered to assign a carrier (also referred to as a cell or a system band).
 一方、当該将来の無線通信システムでは、当該キャリア全体で送信及び/又は受信(送受信)する能力(capability)を有するユーザ端末(Wideband(WB) UE、single carrier WB UE等ともいう)と、当該キャリア全体で送受信する能力を有しないユーザ端末(BW(Bandwidth) reduced UE等ともいう)とが混在することが想定される。 On the other hand, in the future wireless communication system, a user terminal (also referred to as Wideband (WB) UE, single carrier WB UE, etc.) capable of transmitting and / or receiving (transmitting / receiving) over the entire carrier and the carrier It is assumed that user terminals (also referred to as BW (Bandwidth) reduced UE etc.) that do not have the ability to transmit and receive as a whole coexist.
 このように、将来の無線通信システムでは、サポートする帯域幅が異なる複数のユーザ端末が混在すること(various BW UE capabilities)が想定されるため、キャリア内に一以上の部分的な周波数帯域を準静的に設定(configure)することが検討されている。当該キャリア内の各周波数帯域(例えば、50MHz又は200MHzなど)は、部分帯域又は帯域幅部分(BWP:Bandwidth part)等と呼ばれる。 Thus, in the future wireless communication system, it is assumed that a plurality of user terminals with different supported bandwidths are mixed (various BW UE capabilities), so that one or more partial frequency bands in the carrier are allocated. It is considered to configure statically. Each frequency band (for example, 50 MHz or 200 MHz) in the carrier is called a sub-band or bandwidth part (BWP) or the like.
 図1は、BWPの設定シナリオの一例を示す図である。図1Aでは、1キャリア内に1BWPがユーザ端末に設定されるシナリオ(Usage scenario#1)が示される。例えば、図1Aでは、800MHzのキャリア内に200MHzのBWPが設定される。当該BWPのアクティブ化(activation)又は非アクティブ化(deactivation)は制御されてもよい。 FIG. 1 is a diagram illustrating an example of a BWP setting scenario. FIG. 1A shows a scenario (Usage scenario # 1) in which one BWP is set as a user terminal in one carrier. For example, in FIG. 1A, a 200 MHz BWP is set in an 800 MHz carrier. The activation or deactivation of the BWP may be controlled.
 ここで、BWPのアクティブ化とは、当該BWPを利用可能な状態である(又は当該利用可能な状態に遷移する)ことであり、BWPの設定情報(configuration)(BWP設定情報)のアクティブ化又は有効化等とも呼ばれる。また、BWPの非アクティブ化とは、当該BWPを利用不可能な状態である(又は当該利用不可能な状態に遷移する)ことであり、BWP設定情報の非アクティブ化又は無効化等とも呼ばれる。BWPがスケジューリングされることで、このBWPがアクティブ化されることになる。 Here, BWP activation means being in a usable state (or transitioning to the usable state), and activating BWP setting information (configuration) (BWP setting information) or It is also called validation. In addition, the deactivation of the BWP means that the BWP is in an unusable state (or transits to the unusable state), and is also called deactivation or invalidation of BWP setting information. By scheduling the BWP, this BWP will be activated.
 図1Bでは、1キャリア内に複数のBWPがユーザ端末に設定されるシナリオ(Usage scenario#2)が示される。図1Bに示すように、当該複数のBWP(例えば、BWP#1及び#2)の少なくとも一部は重複してもよい。例えば、図1Bでは、BWP#1は、BWP#2の一部の周波数帯域である。 FIG. 1B shows a scenario (Usage scenario # 2) in which a plurality of BWPs are set in a user terminal in one carrier. As shown in FIG. 1B, at least a portion of the plurality of BWPs (eg, BWPs # 1 and # 2) may overlap. For example, in FIG. 1B, BWP # 1 is a partial frequency band of BWP # 2.
 また、当該複数のBWPの少なくとも一つのアクティブ化又は非アクティブ化が制御されてもよい。また、ある時間においてアクティブ化されるBWPの数は制限されてもよい(例えば、ある時間において1BWPだけがアクティブであってもよい)。例えば、図1Bでは、ある時間においてBWP#1又は#2のいずれか一方だけがアクティブである。 Also, at least one activation or deactivation of the plurality of BWPs may be controlled. Also, the number of BWPs activated at any given time may be limited (eg, only one BWP may be active at any given time). For example, in FIG. 1B, only one of BWP # 1 or # 2 is active at a certain time.
 例えば、図1Bでは、データの送受信が行われない場合、BWP#1がアクティブ化され、データの送受信が行われる場合、BWP#2がアクティブ化されてもよい。具体的には、送受信されるデータが発生すると、BWP#1からBWP#2への切り替えが行われ、データの送受信が終了すると、BWP#2からBWP#1への切り替えが行われてもよい。これにより、ユーザ端末は、BWP#1よりも帯域幅の広いBWP#2を常に監視する必要がないので、消費電力を抑制できる。 For example, in FIG. 1B, BWP # 1 may be activated when data transmission / reception is not performed, and BWP # 2 may be activated when data transmission / reception is performed. Specifically, when data to be transmitted / received is generated, switching from BWP # 1 to BWP # 2 may be performed, and when data transmission / reception is completed, switching from BWP # 2 to BWP # 1 may be performed. . As a result, the user terminal does not have to constantly monitor BWP # 2, which has a wider bandwidth than BWP # 1, and can therefore reduce power consumption.
 なお、図1A及び1Bにおいて、ネットワーク(例えば、無線基地局)は、ユーザ端末がアクティブ状態のBWP外で受信及び/又は送信することを想定しなくともよい。なお、図1Aにおいて、キャリア全体をサポートするユーザ端末が、当該BWP外で信号を受信及び/又は送信することは何ら抑制されない。 In FIGS. 1A and 1B, the network (for example, a radio base station) may not assume that the user terminal receives and / or transmits outside the BWP in the active state. In addition, in FIG. 1A, the user terminal supporting the entire carrier is not suppressed at all from receiving and / or transmitting a signal outside the BWP.
 図1Cでは、1キャリア内の異なる帯域に複数のBWPが設定されるシナリオ(Usage scenario#3)が示される。図1Cに示すように、当該複数のBWPには異なるニューメロロジーが適用されてもよい。ここで、ニューメロロジーは、サブキャリア間隔、シンボル長、スロット長、サイクリックプレフィックス(CP)長、スロット(伝送時間間隔(TTI:Transmission Time Interval))長、スロットあたりのシンボル数などの少なくとも1つであってもよい。 FIG. 1C shows a scenario (Usage scenario # 3) in which a plurality of BWPs are set in different bands in one carrier. As shown in FIG. 1C, different numerologies may be applied to the plurality of BWPs. Here, the neurology includes at least one of subcarrier spacing, symbol length, slot length, cyclic prefix (CP) length, slot (transmission time interval (TTI)) length, number of symbols per slot, etc. It may be one.
 例えば、図1Cでは、キャリア全体で送受信する能力を有するユーザ端末に対して、ニューメロロジーが異なるBWP#1及び#2が設定される。図1Cでは、ユーザ端末に対して設定される少なくとも一つのBWPのアクティブ化又は非アクティブ化され、ある時間において一以上のBWPがアクティブであってもよい。 For example, in FIG. 1C, BWPs # 1 and # 2 having different neurology are set for user terminals having the ability to transmit and receive in the entire carrier. In FIG. 1C, at least one BWP configured for a user terminal may be activated or deactivated, and at one time, one or more BWPs may be active.
 なお、DL通信に利用されるBWPは、DL BWP(DL用周波数帯域)と呼ばれてもよく、UL通信に利用されるBWPは、UL BWP(UL用周波数帯域)と呼ばれてもよい。DL BWP及びUL BWPは、少なくとも一部の周波数帯域が重複してもよい。以下、DL BWP及びUL BWPを区別しない場合は、BWPと総称する。 In addition, BWP used for DL communication may be called DL BWP (frequency band for DL), and BWP used for UL communication may be called UL BWP (frequency band for UL). DL BWP and UL BWP may overlap at least a part of frequency bands. Hereinafter, when the DL BWP and the UL BWP are not distinguished, they are collectively referred to as BWP.
 ユーザ端末に設定されるDL BWPの少なくとも1つ(例えば、プライマリCCに含まれるDL BWP)は、DL制御チャネル(DCI)の割当て候補となる制御リソース領域を含んでもよい。当該制御リソース領域は、制御リソースセット(CORESET:control resource set)、コントロールサブバンド(control subband)、サーチスペースセット、サーチスペースリソースセット、制御領域、制御サブバンド、NR-PDCCH領域などと呼ばれてもよい。 At least one of DL BWPs set in the user terminal (e.g., DL BWPs included in the primary CC) may include a control resource region that is a candidate for assignment of a DL control channel (DCI). The control resource region is called a control resource set (CORESET), a control subband, a search space set, a search space resource set, a control region, a control subband, an NR-PDCCH region, etc. It is also good.
 ユーザ端末は、CORESET内の一以上のサーチスペースを監視(monitor)して、当該ユーザ端末に対するDCIを検出する。当該サーチスペースは、一以上のユーザ端末に共通のDCI(例えば、グループDCI又は共通DCI)が配置される共通サーチスペース(CSS:Common Search Space)及び/又はユーザ端末固有のDCI(例えば、DLアサインメント及び/又はULグラント)が配置されるユーザ端末(UE)固有サーチスペース(USS:UE-specific Search Space)を含んでもよい。 The user terminal monitors one or more search spaces in CORESET to detect DCI for the user terminal. The search space is a common search space (CSS: Common Search Space) in which a common DCI (for example, group DCI or common DCI) is arranged for one or more user terminals and / or a user terminal-specific DCI (for example, DL assignment) And / or a UL grant) may be included in a user terminal (UE) specific search space (USS).
 ユーザ端末は、上位レイヤシグナリング(例えば、RRC(Radio Resource Control)シグナリングなど)を用いて、CORESETの設定情報(CORESET設定情報)を受信してもよい。CORESET設定情報は、各CORESETの周波数リソース(例えば、RB数及び/又は開始RBインデックスなど)、時間リソース(例えば、開始OFDMシンボル番号)、時間長(duration)、REG(Resource Element Group)バンドルサイズ(REGサイズ)、送信タイプ(例えば、インタリーブ、非インタリーブ)、周期(例えば、CORESETごとのモニタ周期)等の少なくとも一つを示してもよい。 The user terminal may receive CORESET configuration information (CORESET configuration information) using higher layer signaling (for example, RRC (Radio Resource Control) signaling or the like). The CORESET configuration information includes frequency resources (eg, number of RBs and / or start RB index) of each CORESET, time resources (eg, start OFDM symbol number), duration (duration), REG (resource element group) bundle size (eg It may indicate at least one of REG size), transmission type (eg, interleaving, non-interleaving), cycle (eg, monitor cycle per CORESET), and so on.
 図2を参照し、BWPのアクティブ化及び/又は非アクティブ化(アクティブ化/非アクティブ化又は切り替え(switching)、決定等ともいう)の制御について説明する。図2は、BWPのアクティブ化/非アクティブ化の制御の一例を示す図である。なお、図2では、図1Bに示すシナリオを想定するが、BWPのアクティブ化/非アクティブ化の制御は、図1A、1Cに示すシナリオ等にも適宜適用可能である。 Control of BWP activation and / or deactivation (also referred to as activation / deactivation or switching, decision, etc.) will be described with reference to FIG. FIG. 2 is a diagram showing an example of control of activation / deactivation of BWP. Although FIG. 2 assumes the scenario shown in FIG. 1B, the control of activation / deactivation of the BWP can be appropriately applied to the scenario shown in FIGS. 1A and 1C.
 また、図2では、BWP#1内にCORESET#1が設定され、BWP#2内にCORESET#2が設定されるものとする。CORESET#1及びCORESET#2には、それぞれ、一以上のサーチスペースが設けられる。例えば、CORESET#1において、BWP#1用のDCI及びBWP#2用のDCIは、同一のサーチスペース内に配置されてもよいし、又は、それぞれ異なるサーチスペースに配置されてもよい。 Further, in FIG. 2, CORESET # 1 is set in BWP # 1, and CORESET # 2 is set in BWP # 2. Each of CORESET # 1 and CORESET # 2 is provided with one or more search spaces. For example, in CORESET # 1, DCI for BWP # 1 and DCI for BWP # 2 may be located in the same search space, or may be located in different search spaces.
 また、図2において、BWP#1がアクティブ状態である場合、ユーザ端末は、所定周期(例えば、一以上のスロット毎、一以上のミニスロット毎又は所定数のシンボル毎)のCORESET#1内のサーチスペースを監視(ブラインド復号)して、当該ユーザ端末に対するDCIを検出する。 Further, in FIG. 2, when BWP # 1 is in the active state, the user terminal is in CORESET # 1 in a predetermined cycle (for example, every one or more slots, every one or more minislots, or each predetermined number of symbols). The search space is monitored (blind decoding) to detect DCI for the user terminal.
 当該DCIは、どのBWPに対するDCIであるかを示す情報(BWP情報)を含んでもよい。当該BWP情報は、例えば、BWPのインデックスであり、DCI内の所定フィールド値であればよい。また、当該BWPインデックス情報は、下りのスケジューリング用のDCIに含まれていてもよいし、上りのスケジューリング用のDCIに含まれていてもよいし、又は共通サーチスペースのDCIに含まれていてもよい。ユーザ端末は、DCI内のBWP情報に基づいて、当該DCIによってPDSCH又はPUSCHがスケジューリングされるBWPを決定してもよい。 The DCI may include information (BWP information) indicating which BWP the DCI is for. The said BWP information is an index of BWP, for example, and should just be a predetermined field value in DCI. Further, the BWP index information may be included in the downlink scheduling DCI, may be included in the uplink scheduling DCI, or may be included in the common search space DCI. Good. The user terminal may determine the BWP for which the PDSCH or PUSCH is scheduled by the DCI based on the BWP information in the DCI.
 ユーザ端末は、CORESET#1内でBWP#1用のDCIを検出する場合、当該BWP#1用のDCIに基づいて、BWP#1内の所定の時間及び/又は周波数リソース(時間/周波数リソース)にスケジューリングされた(割り当てられた)PDSCHを受信する。 When the user terminal detects DCI for BWP # 1 in CORESET # 1, based on the DCI for BWP # 1, the predetermined time and / or frequency resource (time / frequency resource) in BWP # 1 is detected. Receive a scheduled (assigned) PDSCH.
 また、ユーザ端末は、CORESET#1内でBWP#2用のDCIを検出する場合、BWP#1を非アクティブ化(ディアクティベート)して、BWP#2をアクティブ化する(アクティベートする)。ユーザ端末は、CORESET#1で検出された当該BWP#2用のDCIに基づいて、DL BWP#2の所定の時間/周波数リソースにスケジューリングされたPDSCHを受信する。 Also, when detecting a DCI for BWP # 2 in CORESET # 1, the user terminal deactivates BWP # 1 and activates BWP # 2. The user terminal receives a PDSCH scheduled to a predetermined time / frequency resource of DL BWP # 2 based on the DCI for BWP # 2 detected in CORESET # 1.
 なお、図2では、CORESET#1でBWP#1用のDCIとBWP#2用のDCIが異なるタイミングで検出されるが、同一のタイミングで異なるBWPの複数のDCIを検出可能としてもよい。例えば、CORESET#1内に複数のBWPそれぞれに対応する複数のサーチスペースを設け、当該複数のサーチスペースでそれぞれ異なるBWPの複数のDCIを送信してもよい。ユーザ端末は、CORESET#1内の複数のサーチスペースを監視して、同一のタイミングで異なるBWPの複数のDCIを検出してもよい。 In FIG. 2, although the DCI for BWP # 1 and the DCI for BWP # 2 are detected at different timings in CORESET # 1, a plurality of DCI of different BWPs may be detected at the same timing. For example, a plurality of search spaces corresponding to each of a plurality of BWPs may be provided in the CORESET # 1, and a plurality of DCIs of different BWPs may be transmitted in the plurality of search spaces. The user terminal may monitor a plurality of search spaces in CORESET # 1 to detect a plurality of DCIs of different BWPs at the same timing.
 BWP#2がアクティブ化されると、ユーザ端末は、所定周期(例えば、一以上のスロット毎、一以上のミニスロット毎又は所定数のシンボル毎)のCORESET#2内のサーチスペースを監視(ブラインド復号)して、BWP#2用のDCIを検出する。ユーザ端末は、CORESET#2で検出されたBWP#2用のDCIに基づいて、BWP#2の所定の時間/周波数リソースにスケジューリングされたPDSCHを受信してもよい。 When BWP # 2 is activated, the user terminal monitors the search space in CORESET # 2 in a predetermined cycle (for example, every one or more slots, every one or more minislots, or each predetermined number of symbols) (blind) Decode to detect DCI for BWP # 2. The user terminal may receive a PDSCH scheduled to a predetermined time / frequency resource of BWP # 2 based on the DCI for BWP # 2 detected in CORESET # 2.
 なお、図2では、アクティブ化又は非アクティブ化の切り替え用に所定時間が示されるが、当該所定時間はなくともよい。 Although a predetermined time is shown in FIG. 2 for switching between activation and deactivation, the predetermined time may not be present.
 図2に示すように、CORESET#1内におけるBWP#2用のDCIの検出をトリガとしてBWP#2がアクティブ化される場合、明示的な指示情報なしにBWP#2をアクティブ化できるので、アクティブ化の制御に伴うオーバーヘッドの増加を防止できる。 As shown in FIG. 2, when BWP # 2 is activated with detection of DCI for BWP # 2 in CORESET # 1 as a trigger, BWP # 2 can be activated without explicit indication information, so Can be prevented from increasing overhead associated with
 一方、図2では、ユーザ端末が、CORESET#1でBWP#2用のDCI(すなわち、BWP#2のアクティブ化用のDCI)の検出に失敗(miss)しても、無線基地局は、当該検出の失敗を認識できない。このため、ユーザ端末がBWP#1のCORESET#1を監視し続けているのに、無線基地局は、BWP#2をユーザ端末が利用可能であると誤認識して、BWP#2内にPDSCHをスケジューリングするDCIをCORESET#2で送信する恐れがある。 On the other hand, in FIG. 2, even if the user terminal misses detection of DCI for BWP # 2 (that is, DCI for activation of BWP # 2) in CORESET # 1, the radio base station does not Unable to recognize detection failure. Therefore, although the user terminal continues to monitor CORESET # 1 of BWP # 1, the radio base station erroneously recognizes BWP # 2 as the user terminal can use it, and the PDSCH in BWP # 2 is erroneously recognized. There is a risk of sending DCI on CORESET # 2 to schedule.
 この場合、無線基地局は、当該PDSCHの送達確認情報(HARQ-ACK、ACK/NACK又はA/N等ともいう)を所定期間内に受信できない場合、ユーザ端末が、BWP#2のアクティブ化用のDCIの検出に失敗したと認識し、CORESET#1でアクティブ化用のDCIを再送してもよい。或いは、図2では、図示しないが、BWP#1及び#2に共通のCORESETが設けられてもよい。 In this case, when the radio base station can not receive the delivery confirmation information (also referred to as HARQ-ACK, ACK / NACK or A / N, etc.) of the PDSCH in a predetermined period, the user terminal is for BWP # 2 activation. It is recognized that the detection of the DCI of the above has failed, and CORESET # 1 may retransmit the DCI for activation. Alternatively, although not shown in FIG. 2, a common CORESET may be provided for BWPs # 1 and # 2.
 また、アクティブ化されたBWPにおいてデータチャネル(例えば、PDSCH及び/又はPUSCH)が所定期間スケジューリングされない場合、当該BWPを非アクティブ化してもよい。例えば、図2では、ユーザ端末は、DL BWP#2においてPDSCHが所定期間スケジューリングされないので、BWP#2を非アクティブ化して、BWP#1をアクティブ化する。 Also, if a data channel (eg, PDSCH and / or PUSCH) is not scheduled for a predetermined period in the activated BWP, the BWP may be deactivated. For example, in FIG. 2, the user terminal deactivates BWP # 2 and activates BWP # 1, since PDSCH is not scheduled for a predetermined period in DL BWP # 2.
 ユーザ端末は、アクティブ化されているBWPにおいて、データチャネル(例えば、PDSCH及び/又はPUSCH)の受信が完了する毎にタイマを設定し、当該タイマが満了すると、当該BWPを非アクティブ化してもよい。当該タイマは、DL BWP用とUL BWP用との間で共通のタイマ(ジョイントタイマ等ともいう)であってもよいし、又は、個別のタイマであってもよい。 The user terminal may set a timer each time reception of a data channel (for example, PDSCH and / or PUSCH) is completed in the activated BWP, and may deactivate the BWP when the timer expires. . The timer may be a common timer (also referred to as a joint timer or the like) between the DL BWP and the UL BWP, or may be an individual timer.
 BWPの非アクティブ化にタイマを用いる場合、明示的な非アクティブ化の指示情報を送信する必要がないので、非アクティブ化の制御に伴うオーバーヘッドを削減できる。 When a timer is used to deactivate BWP, the overhead associated with controlling deactivation can be reduced because it is not necessary to transmit explicit deactivation indication information.
 ところで、キャリアあたりに設定可能なBWPの最大数は、予め定められていてもよい。例えば、周波数分割複信(FDD:Frequency Division Duplex)(paired spectrum)では、1キャリアあたり最大4つのDL BWPと最大4つのUL BWPがそれぞれ設定されてもよい。 By the way, the maximum number of BWPs that can be set per carrier may be predetermined. For example, in frequency division duplex (FDD) (paired spectrum), up to four DL BWPs and up to four UL BWPs may be set per carrier.
 一方、時間分割複信(TDD:Time Division Duplex)(unpaired spectrum)では、1キャリアあたりDL BWPとUL BWPの最大4つのペアが設定されてもよい。なお、TDDでは、ペアとなるDL BWPとUL BWPとは、中心周波数は同一で異なる帯域幅を有してもよい。 On the other hand, in time division duplex (TDD) (unpaired spectrum), up to four pairs of DL BWP and UL BWP may be set per carrier. In TDD, DL BWP and UL BWP to be paired may have the same center frequency and different bandwidths.
 以上では、単一のキャリアが示されるが、複数のキャリア(セル、サービングセル等ともいう)が統合されてもよい(例えば、キャリアアグリゲーション(CA:Carrier Aggregation)及び/又はデュアルコネクティビティ(DC:Dual Connectivity))。当該複数のキャリアの少なくとも一つには、上述のように、一以上のBWPが設定されればよい。 Although a single carrier is shown above, multiple carriers (also referred to as cells, serving cells, etc.) may be integrated (eg, carrier aggregation (CA: Carrier Aggregation) and / or dual connectivity (DC: Dual Connectivity) )). As described above, one or more BWPs may be set in at least one of the plurality of carriers.
 CA又はDCにより複数のセルが統合される場合、当該複数のセルは、プライマリセル(Pセル:Primary Cell)及び一以上のセカンダリセル(Sセル:Secondary Cell)を含んでもよい。Pセルは、単一のキャリア(CC)に対応し、一以上のBWPを含んでもよい。また、各Sセルは、単一のキャリア(CC)に対応し、一以上のBWPを含んでもよい。 When a plurality of cells are integrated by CA or DC, the plurality of cells may include a primary cell (P cell: Primary Cell) and one or more secondary cells (S cell: Secondary Cell). The PCell corresponds to a single carrier (CC) and may include one or more BWPs. Also, each S cell may correspond to a single carrier (CC) and may include one or more BWPs.
 Pセルの各BWPには、ランダムアクセス手順(RACH:Random Access Channel Procedure)用の共通サーチスペースが設けられてもよい。同様に、Pセルの各BWPには、フォールバック用の共通サーチスペース、ページング用の共通サーチスペース、又はRMSI(Remaining Minimum System Information)用の共通サーチスペースが設けられてもよい。 Each BWP of the PCell may be provided with a common search space for a Random Access Channel Procedure (RACH). Similarly, each BWP of the PCell may be provided with a common search space for fallback, a common search space for paging, or a common search space for Remaining Minimum System Information (RMSI).
 また、一以上のセル(Pセル及び/又はSセル)の各BWPには、一以上のユーザ端末に共通のPDCCH(グループ共通PDCCH(group-common PDCCH))用の共通サーチスペースが設けられてもよい。 Further, each BWP of one or more cells (P cell and / or S cell) is provided with a common search space for PDCCH (group common PDCCH (group-common PDCCH)) common to one or more user terminals. It is also good.
 また、ユーザ端末には、特定のBWPが予め定められていてもよい。例えば、システム情報(例えば、RMSI)を伝送するPDSCHがスケジューリングされるBWP(初期アクティブBWP(initial active BWP))は、当該PDSCHをスケジューリングするDCIが配置されるCORESETの周波数位置及び帯域幅によって規定されてもよい。また、初期アクティブBWPには、RMSIと同一のニューメロロジーが適用されてもよい。 In addition, a specific BWP may be predetermined in the user terminal. For example, a BWP (initial active BWP) to which a PDSCH transmitting system information (eg, RMSI) is scheduled is defined by the frequency position and bandwidth of CORESET to which a DCI scheduling the PDSCH is arranged. May be Also, an initial active BWP may be applied with the same numerology as the RMSI.
 また、ユーザ端末には、デフォルトのBWP(デフォルトBWP)が定められていてもよい。デフォルトBWPは、上述の初期アクティブBWPであってもよいし、又は、上位レイヤシグナリング(例えば、RRCシグナリング)により設定されてもよい。 Also, a default BWP (default BWP) may be defined for the user terminal. The default BWP may be the initial active BWP described above, or may be configured by higher layer signaling (eg, RRC signaling).
 次に、SセルにおけるBWPのアクティブ化/非アクティブ化の制御について説明する。ユーザ端末における異周波数メジャメント(Inter-frequency measurement)の結果に基づいて、無線基地局は、ユーザ端末に対して、Sセルを設定するとともに、当該Sセル内の一以上のBWPを設定してもよい。 Next, control of BWP activation / deactivation in the S cell will be described. Based on the result of inter-frequency measurement at the user terminal, the radio base station sets an S cell for the user terminal and sets one or more BWPs in the S cell. Good.
 図3は、Sセル内の一以上のBWPのアクティブ化又は非アクティブ化の制御の一例を示す図である。図3では、Sセル内のBWP#1及び#2がユーザ端末に設定されるが、一例にすぎず、これに限られない。 FIG. 3 is a diagram illustrating an example of control of activation or deactivation of one or more BWPs in an S cell. In FIG. 3, BWPs # 1 and # 2 in the S cell are set as user terminals, but this is merely an example, and the present invention is not limited to this.
 図3に示すように、Sセルでは、ユーザ端末に設定される複数のBWPの中でより広い帯域幅のBWPが初期アクティブBWPとして設定されてもよい。当該初期アクティブBWPは、上位レイヤシグナリング(例えば、RRCシグナリング)により、無線基地局からユーザ端末に通知されてもよい。 As shown in FIG. 3, in the S cell, a BWP with a wider bandwidth among a plurality of BWPs set in the user terminal may be set as an initial active BWP. The initial active BWP may be notified from the radio base station to the user terminal by higher layer signaling (eg, RRC signaling).
 例えば、図3では、BWP#1よりも広い帯域幅を有するBWP#2が初期アクティブBWPとしてユーザ端末に設定(通知)されてもよい。また、図3では、初期アクティブBWPとは異なるBWP#1が、デフォルトBWPとしてユーザ端末に設定(通知)されるものとするが、初期アクティブBWPとデフォルトBWPが同一のBWPに設定されてもよい。 For example, in FIG. 3, BWP # 2 having a wider bandwidth than BWP # 1 may be set (notified) to the user terminal as an initial active BWP. Further, in FIG. 3, BWP # 1 different from the initial active BWP is set (notified) to the user terminal as a default BWP, but the initial active BWP and the default BWP may be set to the same BWP. .
 例えば、図3において、ユーザ端末は、BWP#2でPDSCHの受信を完了する毎に、デフォルトBWPへの切り替え(フォールバック)用のタイマT1と、Sセルの非アクティブ用のタイマT2とを起動してもよい。例えば、タイマT2の期間は、タイマT1の期間よりも長く設定される。 For example, in FIG. 3, every time the user terminal completes the reception of PDSCH in BWP # 2, it starts timer T1 for switching to the default BWP (fallback) and timer T2 for S cell inactivity. You may For example, the period of timer T2 is set longer than the period of timer T1.
 図3では、ユーザ端末は、タイマT1、T2の起動後も、BWP#2のCORESET#2内のサーチスペースを所定周期で監視(ブラインド復号)するが、DCIを検出しないまま、タイマT1が満了する。タイマT1が満了(expire)すると、ユーザ端末は、初期アクティブBWPであるBWP#2を非アクティブ化し、デフォルトBWPであるBWP#1をアクティブ化する。 In FIG. 3, the user terminal monitors the search space in CORESET # 2 of BWP # 2 at a predetermined cycle (blind decoding) even after activation of timers T1 and T2, but timer T1 expires without detecting DCI. Do. When the timer T1 expires, the user terminal deactivates BWP # 2, which is an initial active BWP, and activates BWP # 1, which is a default BWP.
 ユーザ端末は、アクティブ化されたBWP#1のCORESET#1内のサーチスペースを所定周期で監視(ブラインド復号)するが、DCIを検出しないまま、タイマT2が満了する。タイマT2が満了すると、全てのBWPが非アクティブ化され、Sセルが非アクティブ化される。 The user terminal monitors (blind decoding) the search space in CORESET # 1 of the activated BWP # 1 at a predetermined cycle, but the timer T2 expires without detecting the DCI. When timer T2 expires, all BWPs are deactivated and S cells are deactivated.
 以上のように、Sセルの全てのBWPが非アクティブ化される場合、黙示的に、Sセルが非アクティブ化される場合、Sセルの非アクティブ化するためのシグナリングオーバヘッドを削減できる。 As described above, when all BWPs of the S cell are deactivated, implicitly, when the S cell is deactivated, the signaling overhead for deactivating the S cell can be reduced.
 上述のように、将来の無線通信(例えば、NR)では、キャリア(セル)内に複数の異なるBWPが設定することができることが想定されている。ここで、各BWPには、固有のニューメロロジーにしたがった帯域幅を有してもよい。言い換えると、BWPにおいて使用可能なPRB数は、BWP設定(BWP configuration)及びアクティブなBWPに依存することとなる。 As described above, in future wireless communication (for example, NR), it is assumed that a plurality of different BWPs can be set in a carrier (cell). Here, each BWP may have a bandwidth according to an inherent neurology. In other words, the number of PRBs available in the BWP will depend on the BWP configuration (BWP configuration) and the active BWP.
 その一方で、周波数領域リソースアロケーション(RA:Resource Allocation)フィールドについては検討の段階にある。このため、どのようにBWPスイッチングを実現するかといった点も検討中となる。例えば、BWPクロスキャリアスケジューリングを行う場合(例えば第1のBWPの下り制御情報(DCI)で、第1のBWPとは異なる第2のBWPのデータをスケジューリングする場合)、周波数領域RAフィールドのサイズ(ビット幅)について検討を要する。 On the other hand, the frequency domain resource allocation (RA) field is under consideration. For this reason, it is also under consideration how to implement BWP switching. For example, when performing BWP cross carrier scheduling (for example, when scheduling second BWP data different from the first BWP in the first BWP downlink control information (DCI)), the size of the frequency domain RA field (for example, It is necessary to study bit width.
 検討にあたっては、上述したようにBWP間でPRB数が異なることを考慮する必要がある。例えば、複数のBWPごとにDCI用のフォーマットを規定した場合、DCIのペイロードがBWPごとに異なることになるからである。 In consideration, it is necessary to consider that the number of PRBs differs between BWPs as described above. For example, when a format for DCI is defined for each of a plurality of BWPs, the payload of the DCI will be different for each BWP.
 本願発明者等は、このような点に鑑みて、アクティブ化されたBWPと異なるBWPのスケジューリングであっても、周波数領域RAフィールドのビットサイズ(bitwidth)を固定し、DCIのペイロードを均一にする手法に至った。 In view of such a point, the present inventors fix the bit size (bitwidth) of the frequency domain RA field and make the payload of DCI uniform, even for scheduling of BWP different from activated BWP. It came to the method.
 以下、本発明の一実施の形態について図面を参照して説明する。なお、以降に説明する態様では、3つのBWPが設定されているが、設定されるBWP数はこれに限らない。 Hereinafter, an embodiment of the present invention will be described with reference to the drawings. Although three BWPs are set in the aspect described below, the number of BWPs set is not limited to this.
(第1の態様)
 第1の態様を図4-図6を参照して説明する。先ず、ユーザ端末は、いずれのBWPのデータがスケジューリングされるのかに関係なく用いられる、共通のDCIフォーマットを規定するため、周波数領域RAフィールドのサイズを決定する。具体的には、ユーザ端末は上記サイズを、下りリンクの全てのBWP設定において、必要とされるビット数の最大値とする。
(First aspect)
The first aspect will be described with reference to FIGS. First, the user terminal determines the size of the frequency domain RA field to define a common DCI format, which is used regardless of which BWP data is scheduled. Specifically, the user terminal sets the above-mentioned size as the maximum value of the required number of bits in all downlink BWP settings.
 サイズ決定にあたって、先ず、ユーザ端末は、各BWPにおいて、周波数領域RAフィールドの必要なサイズ(bitwidth)を算出する。BWP設定には、リソースアロケーションタイプ、BWP帯域幅、RBグループ(RBG)サイズなどの要素が含まれるが、これらの全ての要素を考慮し、各BWPの周波数領域RAフィールドに必要なサイズを算出する(図4参照)。図4では、3つのBWP1-3についてサイズが算出されている。 In size determination, the user terminal first calculates the required size (bitwidth) of the frequency domain RA field in each BWP. The BWP setting includes elements such as resource allocation type, BWP bandwidth, RB group (RBG) size, etc., and in consideration of all these elements, the size required for the frequency domain RA field of each BWP is calculated. (See Figure 4). In FIG. 4, the sizes are calculated for the three BWPs 1-3.
 次に、ユーザ端末は、算出したサイズを比較し、周波数領域RAフィールドのサイズを決定する。具体的には、算出された全てのサイズの内、最も大きなサイズを周波数領域RAフィールドのサイズと決定する。図4においては、BWP1-3の内、最も大きいサイズであるBWP3のサイズが周波数領域RAフィールドのサイズとして決定される。 Next, the user terminal compares the calculated sizes to determine the size of the frequency domain RA field. Specifically, the largest size among all the calculated sizes is determined as the size of the frequency domain RA field. In FIG. 4, the size of BWP3, which is the largest size among BWP1-3, is determined as the size of the frequency domain RA field.
 次に、上記決定された周波数領域RAフィールドのサイズで規定されたDCIでスケジューリングされた場合の処理を説明する。 Next, processing in the case of being scheduled by DCI defined by the size of the frequency domain RA field determined above will be described.
 DCIには、BWP指定フィールド(BWP indication field)が含まれている。ユーザ端末は、このフィールドの情報に基づいて、いずれのBWPのスケジューリングが指示(indicate)されているのかを判断することができる。また、周波数領域RAフィールドの情報に基づいて、ユーザ端末は、データがいずれのRB(複数RB)にスケジューリングされているのかを判断することができる。 The DCI includes a BWP indication field. The user terminal can determine which BWP scheduling is indicated (indicated) based on the information in this field. Also, based on the information in the frequency domain RA field, the user terminal can determine in which RB (multiple RBs) data is scheduled.
 スケジューリングされたBWPの周波数領域RAフィールドのビット数(必要なビット数)が、上記決定されたサイズよりも小さい場合、周波数領域RAフィールドに使用されないビットが発生する。この場合、所定の上位ビット数(MSB)又は下位ビット数(LSB)を所定のビット(0又は1)に設定してもよい。もしくは、使用されないビットを所定のスクランブルで固定してもよい。例えば、冗長ビットとして利用して、使用されたビットの正当性を確認するようにしてもよい。 If the number of bits (number of required bits) in the frequency domain RA field of the scheduled BWP is smaller than the above determined size, unused bits are generated in the frequency domain RA field. In this case, the predetermined upper bit number (MSB) or the lower bit number (LSB) may be set to a predetermined bit (0 or 1). Alternatively, unused bits may be fixed by predetermined scrambling. For example, it may be used as a redundant bit to check the validity of the used bit.
 図5Aは、BWP指定フィールドでBWP3が指定された場合のDCIの構成を示している。最も大きいサイズであるBWP3のサイズが周波数領域RAフィールドのサイズとして決定されるため、周波数領域RAフィールド全体を用いて、BWP3のスケジューリングが行われている。 FIG. 5A shows the configuration of the DCI when BWP3 is specified in the BWP specification field. Since the size of BWP3 which is the largest size is determined as the size of the frequency domain RA field, scheduling of BWP3 is performed using the entire frequency domain RA field.
 図5Bは、BWP指定フィールドでBWP1が指定された場合のDCIの構成を示している。BWP1の周波数領域RAフィールドに必要なビット数は、BWP3のビット数に比べて小さいため、周波数領域RAフィールド内に使用されないビットが含まれることになる。 FIG. 5B shows the configuration of the DCI when BWP1 is specified in the BWP specification field. Since the number of bits required for the frequency domain RA field of BWP1 is smaller than the number of bits for BWP3, an unused bit is included in the frequency domain RA field.
 BWP指定フィールドで、アクティブ化されたBWPと異なるBWPが指定された場合(クロスBWPスケジューリング)、ユーザ端末は、スケジューリング先のBWPをアクティブにし、アクティブ化されていたBWPをディアクティブにする。 If a BWP different from the activated BWP is designated in the BWP designation field (cross BWP scheduling), the user terminal activates the BWP to be scheduled and deactivates the activated BWP.
 次に、第1の態様における周波数領域RAフィールドのサイズを具体的な数値例を用いて表に示す。図6に示される表では、リソースアロケーション(RA)タイプについても考慮されている。 Next, the size of the frequency domain RA field in the first aspect is shown in a table using specific numerical examples. In the table shown in FIG. 6, resource allocation (RA) type is also considered.
 RAタイプ0は、リソースブロックグループ(RBG)ごとのビットマップ形式を示し、RAタイプ1は、スタート及びエンドの値が指定される形式を示す。また、これらRAタイプ0と1とを動的にスイッチングする、RAタイプ0/1スイッチングも考慮されている。 The RA type 0 indicates a bit map format for each resource block group (RBG), and the RA type 1 indicates a format in which start and end values are specified. Also, RA type 0/1 switching that dynamically switches these RA types 0 and 1 is considered.
 例えば、RAタイプ0では、周波数領域RAフィールドの必要ビット数は、BWP1では10ビット、BWP2では13ビット、BWP3では13ビットとなる。したがって、RAタイプ0では、13ビットが周波数領域RAフィールドの必要最大ビット数となる。 For example, in RA type 0, the required number of bits in the frequency domain RA field is 10 bits in BWP1, 13 bits in BWP2, and 13 bits in BWP3. Therefore, in RA type 0, 13 bits are the required maximum number of bits in the frequency domain RA field.
 RAタイプ1では、周波数領域RAフィールドの必要ビット数は、BWP1では6ビット、BWP2では12ビット、BWP3では14ビットとなる。したがって、RAタイプ1では、14ビットが周波数領域RAフィールドの必要最大ビット数となる。 In RA type 1, the required number of bits in the frequency domain RA field is 6 bits in BWP1, 12 bits in BWP2, and 14 bits in BWP3. Therefore, in RA type 1, 14 bits are the required maximum number of bits in the frequency domain RA field.
 RAタイプ0/1スイッチングでは、周波数領域RAフィールドの必要ビット数は、RAタイプ0とRAタイプ1の大きい方に、いずれかのタイプを指定するための1ビットが加算される。具体的には、BWP1では10ビット+1ビットの11ビット、BWP2では13ビット+1ビットの14ビット、BWP3では14ビット+1ビットの15ビットとなる。したがって、RAタイプ0/1スイッチングでは、15ビットが周波数領域RAフィールドの必要最大ビット数となる。なお、RAタイプを指定するための1ビットは周波数領域RAフィールドの必要ビット数に加えるのではなく、算出される周波数領域RAフィールドの必要ビット数を1ビット減らし、その1ビットを当該タイプ指定フィールドとして用いてもよい。この場合、DCIのオーバーヘッドを1ビット軽減できる。 In RA type 0/1 switching, the required number of bits in the frequency domain RA field is added to the larger one of RA type 0 and RA type 1 by 1 bit for specifying either type. Specifically, BWP1 is 11 bits of 10 bits + 1 bit, BWP2 is 14 bits of 13 bits + 1 bit, and BWP3 is 15 bits of 14 bits + 1 bit. Therefore, in RA type 0/1 switching, 15 bits are the required maximum number of bits in the frequency domain RA field. The 1 bit for designating the RA type is not added to the required bit number of the frequency domain RA field, and the required bit number of the calculated frequency domain RA field is reduced by 1 bit, and the 1 bit is subtracted from the type designating field. It may be used as In this case, DCI overhead can be reduced by 1 bit.
 以上の第1の態様によれば、アクティブ化されたBWPと異なるBWPのスケジューリングであっても、周波数領域RAフィールドのビットサイズ(bitwidth)を固定し、DCIのペイロードを均一にすることができる。ユーザ端末は、単一のDCIフォーマットに基づいて下り制御情報をモニタすることができる。このため、複数のDCIフォーマットをモニタすることに比べて、処理負荷が低くなり、電力の消費を抑えることができる。 According to the above first aspect, even in scheduling of a BWP different from the activated BWP, the bit size (bitwidth) of the frequency domain RA field can be fixed and the payload of DCI can be made uniform. The user terminal can monitor downlink control information based on a single DCI format. For this reason, compared to monitoring a plurality of DCI formats, the processing load is reduced, and power consumption can be suppressed.
 なお、下りリンク通信において、複数のBWPをアクティブ化することも検討されている。上記第1の態様によれば、アクティブ化された複数のBWPで、共通のDCIフォーマットを用いることができる。このため、複数のBWPがアクティブ化された場合であっても、ユーザ端末は、単一のDCIフォーマットに基づいて下り制御情報をモニタすることができる。これにより、上記同様に処理負荷及び電力消費を抑えることができる。 In downlink communication, it is also considered to activate a plurality of BWPs. According to the first aspect, a common DCI format can be used for a plurality of activated BWPs. Therefore, even when a plurality of BWPs are activated, the user terminal can monitor downlink control information based on a single DCI format. Thereby, the processing load and the power consumption can be suppressed as described above.
(第2の態様)
 次に、第2の態様を図7-図9を参照して説明する。先ず、ユーザ端末は、上述の第1の態様と異なり、DCIを受信するBWPに応じた周波数領域RAフィールドサイズを決定(採用)する。DCIを受信するBWPとは、下りリンク通信において、アクティブ化されるBWP数が1つである場合には、アクティブ化されたBWPを意味する。
(Second aspect)
The second aspect will now be described with reference to FIGS. 7-9. First, unlike the first aspect described above, the user terminal determines (adopts) a frequency domain RA field size according to the BWP receiving DCI. The BWP receiving DCI means an activated BWP when the number of BWPs activated in downlink communication is one.
 先ず、ユーザ端末は、DCIを受信するBWPに応じた周波数領域RAフィールドのサイズを決定する。サイズ決定にあたって、ユーザ端末は、各BWPにおいて、周波数領域RAフィールドの必要なサイズ(bitwidth)を算出する。BWP設定には、リソースアロケーションタイプ、BWP帯域幅などの要素が含まれるが、これらの全ての要素について各BWPの周波数領域RAフィールドに必要なサイズを算出する(図7参照)。 First, the user terminal determines the size of the frequency domain RA field according to the BWP receiving DCI. In size determination, the user terminal calculates the necessary size (bitwidth) of the frequency domain RA field in each BWP. The BWP setting includes elements such as resource allocation type and BWP bandwidth, and the size required for the frequency domain RA field of each BWP is calculated for all these elements (see FIG. 7).
 図7では、3つのBWP1-3についてサイズが算出されている。また、BWP1-3では、算出されたサイズがそれぞれ異なっている。ユーザ端末は、DCIを受信するBWPがBWP1の場合、BWP1に基づいて算出された周波数領域RAフィールドのサイズでスケジューリングされたリソースを判断する。また、DCIを受信するBWPがBWP2の場合は、BWP2に基づいて算出された周波数領域RAフィールドのサイズでスケジューリングされたリソースを判断し、BWP3の場合にも同様にBWP3に基づいて算出されたサイズでリソースを判断する。 In FIG. 7, the sizes of three BWPs 1-3 are calculated. Also, in BWP1-3, the calculated sizes are different. When the BWP receiving DCI is BWP 1, the user terminal determines a scheduled resource with the size of the frequency domain RA field calculated based on BWP 1. Also, if BWP receiving DCI is BWP2, the scheduled resource is determined by the size of the frequency domain RA field calculated based on BWP2, and the size calculated based on BWP3 also for BWP3. To determine resources.
 このため、DCIを受信するBWPで適用されている周波数領域RAフィールドサイズで、異なるBWP(必要な周波数領域RAフィールドサイズがDCIフォーマットの適用サイズと異なるBWP)がスケジューリングされる場合がある。次に、DCIを受信するBWPに応じた、周波数領域RAフィールドのサイズで規定されたDCIでスケジューリングされた場合の処理を説明する。 For this reason, different BWPs (BWPs where the required frequency domain RA field size is different from the application size of the DCI format) may be scheduled with the frequency domain RA field size applied by the BWPs that receive DCI. Next, the process in the case of being scheduled by DCI defined by the size of the frequency domain RA field according to the BWP receiving DCI will be described.
 第2の態様では、上述の第1の態様と同様に、DCIには、BWP指定フィールド(BWP indication field)が含まれている。ユーザ端末は、このフィールドの情報に基づいて、いずれのBWPのスケジューリングが指示(indicate)されているのかを判断することができる。また、周波数領域RAフィールドの情報に基づいて、ユーザ端末は、データがいずれのRB(複数RB)にスケジューリングされているのかを判断することができる。 In the second aspect, as in the first aspect described above, the DCI includes a BWP indication field. The user terminal can determine which BWP scheduling is indicated (indicated) based on the information in this field. Also, based on the information in the frequency domain RA field, the user terminal can determine in which RB (multiple RBs) data is scheduled.
 スケジューリングされたBWPの周波数領域RAフィールドのビット数(必要なビット数)が、決定されたサイズ(DCIを受信するBWPの周波数領域RAフィールドサイズ)より小さい場合、周波数領域RAフィールドに使用されないビットが発生する。この場合、所定の上位ビット数(MSB)又は下位ビット数(LSB)を所定のビット(0又は1)に設定してもよい。もしくは、使用されないビットを所定のスクランブルで固定してもよい。例えば、冗長ビットとして利用して、使用されたビットの正当性を確認するようにしてもよい。 If the number of bits (number of required bits) in the frequency domain RA field of the scheduled BWP is smaller than the determined size (frequency domain RA field size of the BWP receiving DCI), then the unused bits in the frequency domain RA field Occur. In this case, the predetermined upper bit number (MSB) or the lower bit number (LSB) may be set to a predetermined bit (0 or 1). Alternatively, unused bits may be fixed by predetermined scrambling. For example, it may be used as a redundant bit to check the validity of the used bit.
 図8Aは、BWP3でDCIを受信し、BWP指定フィールドでBWP2が指定された場合のDCIの構成を示している。最も大きいサイズであるBWP3のサイズが周波数領域RAフィールドのサイズとして決定されるため、BWP2で必要とされる周波数領域RAフィールドの情報の全てをDCIに含めることができる。すなわち、受信された周波数領域RAフィールドで、BWP2の全てのスケジューリングを指示することができる。 FIG. 8A shows the configuration of DCI when BWP 3 receives DCI and BWP 2 is designated in the BWP designation field. Since the size of the largest size BWP3 is determined as the size of the frequency domain RA field, all of the information of the frequency domain RA field required by BWP2 can be included in the DCI. That is, in the received frequency domain RA field, it is possible to indicate all scheduling of BWP2.
 一方、スケジューリングされたBWPの周波数領域RAフィールドのビット数(必要なビット数)が、決定されたサイズ(DCIを受信するBWPの周波数領域RAフィールドサイズ)より大きい場合が考えられる。 On the other hand, it may be considered that the number of bits (number of required bits) of the frequency domain RA field of the scheduled BWP is larger than the determined size (frequency domain RA field size of BWP receiving DCI).
 例えば、図8Bでは、BWP1でDCIを受信し、BWP指定フィールドでBWP3が指定された場合のDCIの構成を示している。BWP1に基づく周波数領域RAフィールドサイズは、BWP3に基づく周波数領域RAフィールドよりも小さい(図7)。このため、BWP3で必要とされる周波数領域RAフィールドの一部の情報のみが、DCIに含められる。BWP3で必要とされる周波数領域RAフィールドのうちDCIに含められない情報は、所定のビット(0又は1)に設定してもよい。例えば0に設定した場合、受信された周波数領域RAフィールドで、BWP3の一部のスケジューリングを指示することができる。 For example, FIG. 8B shows the configuration of DCI when BWP 1 receives DCI and BWP 3 is specified in the BWP specification field. The frequency domain RA field size based on BWP1 is smaller than the frequency domain RA field based on BWP3 (FIG. 7). For this reason, only part of the information in the frequency domain RA field required by BWP3 is included in the DCI. Information not included in DCI in the frequency domain RA field required by BWP 3 may be set to a predetermined bit (0 or 1). For example, when it is set to 0, scheduling of part of BWP 3 can be instructed in the received frequency domain RA field.
 BWP指定フィールドで、アクティブ化されたBWPと異なるBWPが指定された場合(クロスBWPスケジューリング)、ユーザ端末は、スケジューリング先のBWPをアクティブにし、アクティブ化されていたBWPをディアクティブにする。 If a BWP different from the activated BWP is designated in the BWP designation field (cross BWP scheduling), the user terminal activates the BWP to be scheduled and deactivates the activated BWP.
 次に、第2の態様における周波数領域RAフィールドのサイズを具体的な数値例を用いて表に示す。図9に示される表では、リソースアロケーション(RA)タイプについても考慮されている。なお、図9の表は一例であるため、具体的な数値は、第1の態様(図6)と同じ数値を用いている。 Next, the size of the frequency domain RA field in the second embodiment is shown in the table using a specific numerical example. In the table shown in FIG. 9, resource allocation (RA) type is also considered. In addition, since the table of FIG. 9 is an example, specific numerical values use the same numerical values as in the first aspect (FIG. 6).
 例えば、DCIの送受信がBWP1で行われる場合、RAタイプ0では、周波数領域RAフィールドのサイズは10ビットとなる。RAタイプ1では、6ビットとなり、RAタイプ0/1スイッチングでは、10+1ビットとなる。 For example, when DCI transmission / reception is performed in BWP1, in RA type 0, the size of the frequency domain RA field is 10 bits. The RA type 1 has 6 bits, and the RA type 0/1 switching has 10 + 1 bits.
 DCIの送受信がBWP2で行われる場合、RAタイプ0では、周波数領域RAフィールドのサイズは13ビットとなる。RAタイプ1では、12ビットとなり、RAタイプ0/1スイッチングでは、13+1ビットとなる。 When DCI transmission / reception is performed in BWP2, in RA type 0, the size of the frequency domain RA field is 13 bits. In RA type 1, there are 12 bits, and in RA type 0/1 switching, it is 13 + 1 bits.
 DCIの送受信がBWP3で行われる場合、RAタイプ0では、周波数領域RAフィールドのサイズは13ビットとなる。RAタイプ1では、14ビットとなり、RAタイプ0/1スイッチングでは、14+1ビットとなる。 When DCI transmission / reception is performed in BWP3, in RA type 0, the size of the frequency domain RA field is 13 bits. The RA type 1 has 14 bits, and the RA type 0/1 switching has 14 + 1 bits.
 例えば、BWP1のRAタイプ0のDCIで、BWP2のRAタイプ0のPDSCHをスケジューリングする場合を想定する。DCIの周波数領域RAフィールドサイズは10ビットとなり、スケジューリングに必要なサイズは13ビットとなる。したがって、周波数領域RAフィールドのサイズが3ビット足りなくなる。この場合、ユーザ端末は、10ビットでスケジューリングされたリソースを判断し、足りない3ビットは0又は1に固定してリソースの判定には用いない。 For example, it is assumed that the PDW of the BWP2 RA type 0 is scheduled in the BWP1 RA type 0 DCI. The frequency domain RA field size of DCI is 10 bits, and the size required for scheduling is 13 bits. Therefore, the size of the frequency domain RA field is less than 3 bits. In this case, the user terminal determines the resource scheduled in 10 bits, and fixes the missing 3 bits to 0 or 1 and does not use it for resource determination.
 この場合、一部の情報でスケジューリングされるリソースをオフセットでシフトするように設定してもよい。これによれば、一部の情報でスケジューリングされるリソースが固定されず、限られた情報で柔軟なスケジューリングが可能となる。当該オフセットは、RRC等上位レイヤシグナリングで設定してもよいし、C-RNTIやUE-ID、PDCCHのリソース情報(例えばCCEインデックス)等に基づいて、暗黙的に求めるものとしてもよい。 In this case, resources scheduled as part of information may be set to be shifted by an offset. According to this, the resource scheduled by a part of information is not fixed, and flexible scheduling can be performed by limited information. The offset may be set by higher layer signaling such as RRC, or may be obtained implicitly based on C-RNTI, UE-ID, PDCCH resource information (for example, CCE index), and the like.
 また、RBGのサイズを変更するように設定してもよい。例えば、BWP1のRAタイプ0ではRBGサイズが1に設定されているが、これを8とすることで足りないビットを補ったスケジューリングが可能となる。当該RBGサイズは、RRC等上位レイヤシグナリングで設定してもよいし、C-RNTIやUE-ID、PDCCHのリソース情報(例えばCCEインデックス)等に基づいて、暗黙的に求めるものとしてもよい。 Also, the size of the RBG may be set to be changed. For example, although the RBG size is set to 1 in the RA type 0 of BWP 1, by setting this to 8, scheduling can be performed in which the missing bits are compensated. The RBG size may be set by higher layer signaling such as RRC, or may be implicitly obtained based on C-RNTI, UE-ID, PDCCH resource information (for example, CCE index), and the like.
 また、BWP3のRAタイプ0のDCIで、BWP2のRAタイプ1のPDSCHをスケジューリングする場合を想定する。DCIの周波数領域RAフィールドサイズは13ビットとなり、スケジューリングに必要なサイズは6ビットとなる。したがって、BWP1のスケジューリングに必要なサイズは満足されることになるが、7ビットが余る。 Further, it is assumed that the PDWP of RA type 1 of BWP 2 is scheduled by DCI of RA type 0 of BWP 3. The DCI frequency domain RA field size is 13 bits and the size required for scheduling is 6 bits. Therefore, although the size required for scheduling of BWP1 is satisfied, seven bits remain.
 スケジューリングに使用されない7ビットは、所定の上位ビット数(MSB)又は下位ビット数(LSB)で所定のビット(0又は1)に設定してもよい。もしくは、使用されないビットを所定のスクランブルで固定してもよい。例えば、冗長ビットとして利用して、使用されたビットの正当性を確認するようにしてもよい。 The seven bits not used for scheduling may be set to a predetermined bit (0 or 1) with a predetermined upper bit number (MSB) or a lower bit number (LSB). Alternatively, unused bits may be fixed by predetermined scrambling. For example, it may be used as a redundant bit to check the validity of the used bit.
 以上の第2の態様によれば、アクティブ化されたBWPと異なるBWPのスケジューリングであっても、周波数領域RAフィールドサイズが、DCIを受信するBWPの周波数領域RAフィールドサイズ(bitwidth)に固定される。このため、BWPが非アクティブ化されるまで、DCIのペイロードを均一にすることができる。ユーザ端末は、単一のDCIフォーマットに基づいて下り制御情報をモニタすることができる。このため、複数のDCIフォーマットをモニタすることに比べて、処理負荷が低くなり、電力の消費を抑えることができる。 According to the above second aspect, the frequency domain RA field size is fixed to the frequency domain RA field size (bitwidth) of the BWP receiving DCI, even for scheduling of a BWP different from the activated BWP. . Thus, the payload of the DCI can be made uniform until the BWP is deactivated. The user terminal can monitor downlink control information based on a single DCI format. For this reason, compared to monitoring a plurality of DCI formats, the processing load is reduced, and power consumption can be suppressed.
(第3の態様)
 第3の態様では、ユーザ端末は、現在アクティブなBWP(又はアクティブなBWPの設定情報)に基づいて、RAタイプ、RBGサイズ及び受信したスケジューリングDCIの周波数領域RAフィールドサイズの少なくとも1つ又は全てを判断する。したがって、ユーザ端末がモニタするスケジューリングDCIのサイズは、現在アクティブなBWPの設定パラメータによって決定される。
(Third aspect)
In a third aspect, the user terminal determines at least one or all of the RA type, the RBG size and the frequency domain RA field size of the received scheduling DCI based on the currently active BWP (or configuration information of the active BWP). to decide. Thus, the size of the scheduling DCI monitored by the user terminal is determined by the configuration parameter of the currently active BWP.
 第3の態様において、UEは、BWP指定フィールドを含むDCIを受信した場合、当該DCIによってアクティブなBWPと同じBWPがスケジュールされる(セルフBWPスケジューリング)場合であっても、異なるBWPがスケジュールされる(クロスBWPスケジューリング)場合であっても、現在アクティブなBWPに基づいてRAタイプ、RBGサイズ及び周波数領域RAフィールドサイズを判断する。 In the third aspect, when the UE receives a DCI including a BWP designation field, a different BWP is scheduled even if the same BWP as the active BWP is scheduled by the DCI (self-BWP scheduling) Even in the case of (cross BWP scheduling), the RA type, RBG size and frequency domain RA field size are determined based on the currently active BWP.
 このため、クロスBWPスケジューリングの場合であっても、スケジュール可能な最大帯域幅(例えば、最大のPRB数)は、現在アクティブなBWPにおいてスケジュール可能な帯域幅と同じになる。また、現在アクティブなBWPにおけるリソース割り当てタイプ(RAタイプ)がRAタイプ0の場合、そのリソースブロックグループ(RBG)サイズも、現在アクティブなBWPに対して設定されたRBGと同じとしてもよい。 Therefore, even in the case of cross-BWP scheduling, the maximum schedulable bandwidth (eg, the maximum number of PRBs) is the same as the schedulable bandwidth in the currently active BWP. Also, if the resource allocation type (RA type) in the currently active BWP is RA type 0, the resource block group (RBG) size may also be the same as the RBG set for the currently active BWP.
 また、PDSCH及び/又はPUSCH用のDMRSをマッピングするパターン(例えば、RE/シンボルの位置、RE/シンボルの数など)を示すDMRSタイプ、追加DMRS(Additional DMRS)の有無及び/又は設定位置、レイヤ数、そしてトランスポートブロックサイズ(TBS:Transport Block Size)導出と変調方式決定に用いるMCS(Modulation and Coding Scheme)テーブルなども、現在アクティブなBWPに対して設定されたパラメータに基づいて決定されてもよい。 In addition, DMRS type indicating a pattern (for example, position of RE / symbol, number of RE / symbol, etc.) for mapping DMRS for PDSCH and / or PUSCH, presence or absence of additional DMRS (Additional DMRS), and / or setting position, layer Number, and also the Modulation and Coding Scheme (MCS) table used for Transport Block Size (TBS) derivation and modulation scheme determination, etc. may be determined based on the parameters set for the currently active BWP. Good.
 第3の態様を、図10を参照して説明する。図10は、第3の態様におけるリソース割り当ての一例を示す図である。本例では、最初にアクティブなBWPはBWP#1である。 The third aspect is described with reference to FIG. FIG. 10 is a diagram showing an example of resource allocation in the third aspect. In this example, the first active BWP is BWP # 1.
 UEは、アクティブなBWP#1においてPDCCH候補(サーチスペース)をモニタする。本例では、UEは、BWP#1に関連するPDCCHにおいて、BWP指定フィールドがBWP#2を示すDCIを検出したと想定する。この場合、UEは、当該DCIによってスケジュールされるデータチャネルは、(BWP#2ではなく)BWP#1の設定に従うと判断して、送信又は受信処理を行ってもよい。 The UE monitors PDCCH candidates (search space) in active BWP # 1. In this example, it is assumed that the UE has detected a DCI in which the BWP specification field indicates BWP # 2 in the PDCCH associated with BWP # 1. In this case, the UE may perform transmission or reception processing, judging that the data channel scheduled by the DCI conforms to the setting of BWP # 1 (not BWP # 2).
 第3の態様において、UEは、クロスBWPスケジューリングのDCIを検出した場合、当該DCIに基づいて現在アクティブなBWP内でのデータ送信又は受信を行った後に、現在アクティブなBWPをディアクティベートし、当該DCIのBWP指定フィールドが示すBWPをアクティブにしてもよい。 In the third aspect, when the UE detects DCI of cross BWP scheduling, it deactivates the currently active BWP after performing data transmission or reception in the currently active BWP based on the DCI. The BWP indicated by the BWP specification field of DCI may be activated.
 図10の例において、UEは、BWP#1の設定に従うデータの処理後、アクティブなBWPをBWP#1からBWP#2にスイッチングする。そして、UEは、アクティブなBWP#2においてPDCCH候補をモニタする。 In the example of FIG. 10, the UE switches the active BWP from BWP # 1 to BWP # 2 after processing the data according to the configuration of BWP # 1. And UE monitors a PDCCH candidate in active BWP # 2.
 本例では、UEは、BWP#2に関連するPDCCHにおいて、BWP指定フィールドがBWP#2を示すDCIを検出したと想定する。この場合、UEは、当該DCIによってスケジュールされるデータチャネルは、アクティブなBWP#2の設定に従うと判断して、送信又は受信処理を行ってもよい。 In this example, it is assumed that the UE has detected a DCI in which the BWP specification field indicates BWP # 2 in the PDCCH associated with BWP # 2. In this case, the UE may perform transmission or reception processing, judging that the data channel scheduled by the DCI conforms to the configuration of the active BWP # 2.
 以上の第3の態様によれば、クロスBWPスケジューリングを指示するDCIの周波数領域RAフィールドサイズが、セルフBWPスケジューリングと同じ周波数領域RAフィールドサイズに固定される。このため、アクティブなBWPにおいて検出するスケジューリングDCIのペイロードを均一にすることができる。ユーザ端末は、単一のDCIフォーマットに基づいて下り制御情報をモニタすることができる。このため、複数のDCIフォーマットをモニタすることに比べて、処理負荷が低くなり、電力の消費を抑えることができる。 According to the above third aspect, the frequency domain RA field size of DCI instructing cross BWP scheduling is fixed to the same frequency domain RA field size as self BWP scheduling. For this reason, it is possible to make the payload of scheduling DCI detected in the active BWP uniform. The user terminal can monitor downlink control information based on a single DCI format. For this reason, compared to monitoring a plurality of DCI formats, the processing load is reduced, and power consumption can be suppressed.
 また、クロスBWPスケジューリングの場合であってもスケジュール可能な最大帯域幅が、アクティブなBWPの最大帯域幅に制限されるため、リチューニングが不要である(一旦データ送受信を行った後にリチューニングする制御が可能である)。 In addition, since the maximum bandwidth that can be scheduled is limited to the maximum bandwidth of the active BWP even in the case of cross BWP scheduling, retuning is unnecessary (control to perform retuning after data has been transmitted and received once). Is possible).
(無線通信システム)
 以下、本実施の形態にかかる無線通信システムの構成について説明する。この無線通信システムでは、上記各態様にかかる無線通信方法が適用される。なお、上記各態様にかかる無線通信方法は、それぞれ単独で適用されてもよいし、組み合わせて適用されてもよい。
(Wireless communication system)
The configuration of the wireless communication system according to the present embodiment will be described below. In the wireless communication system, the wireless communication method according to each aspect described above is applied. Note that the wireless communication methods according to the above aspects may be applied singly or in combination.
 図11は、本実施の形態にかかる無線通信システムの概略構成の一例を示す図である。無線通信システム1では、LTEシステムのシステム帯域幅(例えば、20MHz)を1単位とする複数の基本周波数ブロック(コンポーネントキャリア)を一体としたキャリアアグリゲーション(CA)及び/又はデュアルコネクティビティ(DC)を適用できる。なお、無線通信システム1は、SUPER 3G、LTE-A(LTE-Advanced)、IMT-Advanced、4G、5G、FRA(Future Radio Access)、NR(New RAT)などと呼ばれても良い。 FIG. 11 is a diagram showing an example of a schematic configuration of a wireless communication system according to the present embodiment. The radio communication system 1 applies carrier aggregation (CA) and / or dual connectivity (DC) in which a plurality of basic frequency blocks (component carriers) each having a system bandwidth (for example, 20 MHz) of the LTE system as one unit are integrated. it can. The wireless communication system 1 may be called SUPER 3G, LTE-A (LTE-Advanced), IMT-Advanced, 4G, 5G, FRA (Future Radio Access), NR (New RAT), or the like.
 図11に示す無線通信システム1は、マクロセルC1を形成する無線基地局11と、マクロセルC1内に配置され、マクロセルC1よりも狭いスモールセルC2を形成する無線基地局12a~12cとを備えている。また、マクロセルC1及び各スモールセルC2には、ユーザ端末20が配置されている。セル間で異なるニューメロロジーが適用される構成としてもよい。なお、ニューメロロジーとは、サブキャリア間隔、シンボル長、サイクリックプリフィクス(CP)長、1伝送時間間隔(TTI)あたりのシンボル数、TTIの時間長の少なくとも一つであってもよい。また、スロットは、ユーザ端末が適用するニューメロロジーに基づく時間単位であってもよい。スロットあたりのシンボル数は、サブキャリア間隔に応じて定められてもよい。 The radio communication system 1 shown in FIG. 11 includes a radio base station 11 forming a macrocell C1, and radio base stations 12a to 12c disposed in the macrocell C1 and forming a small cell C2 narrower than the macrocell C1. . Moreover, the user terminal 20 is arrange | positioned at macro cell C1 and each small cell C2. The configuration may be such that different mermorologies are applied between cells. The terminology may be at least one of subcarrier spacing, symbol length, cyclic prefix (CP) length, number of symbols per transmission time interval (TTI), and TTI time length. Also, the slot may be a unit of time based on the terminology applied by the user terminal. The number of symbols per slot may be determined according to the subcarrier spacing.
 ユーザ端末20は、無線基地局11及び無線基地局12の双方に接続できる。ユーザ端末20は、異なる周波数を用いるマクロセルC1とスモールセルC2を、CA又はDCにより同時に使用することが想定される。また、ユーザ端末20は、複数のセル(CC)(例えば、2個以上のCC)を用いてCA又はDCを適用できる。また、ユーザ端末は、複数のセルとしてライセンスバンドCCとアンライセンスバンドCCを利用することができる。 The user terminal 20 can be connected to both the radio base station 11 and the radio base station 12. The user terminal 20 is assumed to simultaneously use the macro cell C1 and the small cell C2 using different frequencies by CA or DC. Also, the user terminal 20 can apply CA or DC using a plurality of cells (CCs) (for example, two or more CCs). Also, the user terminal can use the license band CC and the unlicensed band CC as a plurality of cells.
 また、ユーザ端末20は、各セル(キャリア)で、時分割複信(TDD:Time Division Duplex)又は周波数分割複信(FDD:Frequency Division Duplex)を用いて通信を行うことができる。TDDのセル、FDDのセルは、それぞれ、TDDキャリア(フレーム構成第2のタイプ)、FDDキャリア(フレーム構成第1のタイプ)等と呼ばれてもよい。 In addition, the user terminal 20 can perform communication in each cell (carrier) using time division duplex (TDD) or frequency division duplex (FDD). The TDD cell and the FDD cell may be respectively referred to as a TDD carrier (frame configuration second type), an FDD carrier (frame configuration first type), and the like.
 また、各セル(キャリア)では、相対的に長い時間長(例えば、1ms)を有するスロット(TTI、通常TTI、ロングTTI、通常サブフレーム、ロングサブフレーム又はサブフレーム等ともいう)、及び/又は、相対的に短い時間長を有するスロット(ミニスロット、ショートTTI又はショートサブフレーム等ともいう)が適用されてもよい。また、各セルで、2以上の時間長のスロットが適用されてもよい。 Also, in each cell (carrier), a slot having a relatively long time length (eg, 1 ms) (TTI, normal TTI, long TTI, normal subframe, also referred to as long subframe or subframe, etc.), and / or A slot having a relatively short time length (also referred to as a mini slot, a short TTI or a short subframe, etc.) may be applied. Also, two or more time slots may be applied in each cell.
 ユーザ端末20と無線基地局11との間は、相対的に低い周波数帯域(例えば、2GHz)で帯域幅が狭いキャリア(既存キャリア、Legacy carrierなどと呼ばれる)を用いて通信を行うことができる。一方、ユーザ端末20と無線基地局12との間は、相対的に高い周波数帯域(例えば、3.5GHz、5GHz、30~70GHzなど)で帯域幅が広いキャリアが用いられてもよいし、無線基地局11との間と同じキャリアが用いられてもよい。なお、各無線基地局が利用する周波数帯域の構成はこれに限られない。また、ユーザ端末20は、一以上のBWPが設定されてもよい。BWPは、キャリアの少なくとも一部で構成される。 Communication can be performed between the user terminal 20 and the radio base station 11 using a relatively low frequency band (for example, 2 GHz) and a carrier having a narrow bandwidth (referred to as an existing carrier, Legacy carrier, etc.). On the other hand, between the user terminal 20 and the radio base station 12, a carrier having a wide bandwidth in a relatively high frequency band (for example, 3.5 GHz, 5 GHz, 30 to 70 GHz, etc.) may be used. The same carrier as that for the base station 11 may be used. The configuration of the frequency band used by each wireless base station is not limited to this. In addition, one or more BWPs may be set in the user terminal 20. The BWP consists of at least part of the carrier.
 無線基地局11と無線基地局12との間(又は、2つの無線基地局12間)は、有線接続(例えば、CPRI(Common Public Radio Interface)に準拠した光ファイバ、X2インターフェースなど)又は無線接続する構成とすることができる。 Between the wireless base station 11 and the wireless base station 12 (or between two wireless base stations 12), a wired connection (for example, an optical fiber conforming to a Common Public Radio Interface (CPRI), an X2 interface, etc.) or a wireless connection Can be configured.
 無線基地局11及び各無線基地局12は、それぞれ上位局装置30に接続され、上位局装置30を介してコアネットワーク40に接続される。なお、上位局装置30には、例えば、アクセスゲートウェイ装置、無線ネットワークコントローラ(RNC)、モビリティマネジメントエンティティ(MME)などが含まれるが、これに限定されるものではない。また、各無線基地局12は、無線基地局11を介して上位局装置30に接続されてもよい。 The radio base station 11 and each radio base station 12 are connected to the higher station apparatus 30 and connected to the core network 40 via the higher station apparatus 30. The upper station apparatus 30 includes, for example, an access gateway apparatus, a radio network controller (RNC), a mobility management entity (MME), and the like, but is not limited thereto. Further, each wireless base station 12 may be connected to the higher station apparatus 30 via the wireless base station 11.
 なお、無線基地局11は、相対的に広いカバレッジを有する無線基地局であり、マクロ基地局、集約ノード、eNB(eNodeB)、送受信ポイント、などと呼ばれてもよい。また、無線基地局12は、局所的なカバレッジを有する無線基地局であり、スモール基地局、マイクロ基地局、ピコ基地局、フェムト基地局、HeNB(Home eNodeB)、RRH(Remote Radio Head)、送受信ポイントなどと呼ばれてもよい。以下、無線基地局11及び12を区別しない場合は、無線基地局10と総称する。 The radio base station 11 is a radio base station having a relatively wide coverage, and may be called a macro base station, an aggregation node, an eNB (eNodeB), a transmission / reception point, or the like. Also, the radio base station 12 is a radio base station having local coverage, and is a small base station, a micro base station, a pico base station, a femto base station, a HeNB (Home eNodeB), an RRH (Remote Radio Head), transmission and reception It may be called a point or the like. Hereinafter, when the radio base stations 11 and 12 are not distinguished, they are collectively referred to as the radio base station 10.
 各ユーザ端末20は、LTE、LTE-Aなどの各種通信方式に対応した端末であり、移動通信端末だけでなく固定通信端末を含んでもよい。また、ユーザ端末20は、他のユーザ端末20との間で端末間通信(D2D)を行うことができる。 Each user terminal 20 is a terminal compatible with various communication schemes such as LTE and LTE-A, and may include not only mobile communication terminals but also fixed communication terminals. Also, the user terminal 20 can perform inter-terminal communication (D2D) with another user terminal 20.
 無線通信システム1においては、無線アクセス方式として、下りリンク(DL)にOFDMA(直交周波数分割多元接続)が適用でき、上りリンク(UL)にSC-FDMA(シングルキャリア-周波数分割多元接続)が適用できる。OFDMAは、周波数帯域を複数の狭い周波数帯域(サブキャリア)に分割し、各サブキャリアにデータをマッピングして通信を行うマルチキャリア伝送方式である。SC-FDMAは、システム帯域幅を端末毎に1つ又は連続したリソースブロックで構成される帯域に分割し、複数の端末が互いに異なる帯域を用いることで、端末間の干渉を低減するシングルキャリア伝送方式である。なお、上り及び下りの無線アクセス方式は、これらの組み合わせに限られず、ULでOFDMAが用いられてもよい。また、端末間通信に用いられるサイドリンク(SL)にSC-FDMAを適用できる。 In the radio communication system 1, as the radio access scheme, OFDMA (Orthogonal Frequency Division Multiple Access) can be applied to the downlink (DL), and SC-FDMA (Single Carrier-Frequency Division Multiple Access) is applied to the uplink (UL) it can. OFDMA is a multicarrier transmission scheme in which a frequency band is divided into a plurality of narrow frequency bands (subcarriers) and data is mapped to each subcarrier to perform communication. SC-FDMA is a single carrier transmission that reduces interference between terminals by dividing the system bandwidth into a band consisting of one or a series of resource blocks for each terminal and a plurality of terminals use different bands. It is a system. The uplink and downlink radio access schemes are not limited to these combinations, and OFDMA may be used in UL. Further, SC-FDMA can be applied to a side link (SL) used for communication between terminals.
 無線通信システム1では、DLチャネルとして、各ユーザ端末20で共有されるDLデータチャネル(PDSCH:Physical Downlink Shared Channel、DL共有チャネル等ともいう)、ブロードキャストチャネル(PBCH:Physical Broadcast Channel)、L1/L2制御チャネルなどが用いられる。PDSCHにより、DLデータ(ユーザデータ、上位レイヤ制御情報、SIB(System Information Block)などの少なくとも一つ)が伝送される。また、PBCHにより、MIB(Master Information Block)が伝送される。 In the wireless communication system 1, as DL channels, DL data channels (PDSCH: also referred to as Physical Downlink Shared Channel, DL shared channel etc.) shared by each user terminal 20, broadcast channel (PBCH: Physical Broadcast Channel), L1 / L2 A control channel or the like is used. DL data (at least one of user data, upper layer control information, SIB (System Information Block), etc.) is transmitted by the PDSCH. Also, a MIB (Master Information Block) is transmitted by the PBCH.
 L1/L2制御チャネルは、DL制御チャネル(PDCCH(Physical Downlink Control Channel)及び/又はEPDCCH(Enhanced Physical Downlink Control Channel))、PCFICH(Physical Control Format Indicator Channel)、PHICH(Physical Hybrid-ARQ Indicator Channel)などを含む。PDCCHにより、PDSCH及びPUSCHのスケジューリング情報を含む下り制御情報(DCI:Downlink Control Information)などが伝送される。PCFICHにより、PDCCHに用いるOFDMシンボル数が伝送される。EPDCCHは、PDSCHと周波数分割多重され、PDCCHと同様にDCIなどの伝送に用いられる。PHICHにより、PUSCHの送達確認情報(A/N、HARQ-ACK、HARQ-ACKビット又はA/Nコードブック等ともいう)を伝送できる。 The L1 / L2 control channel is a DL control channel (PDCCH (Physical Downlink Control Channel) and / or EPDCCH (Enhanced Physical Downlink Control Channel)), PCFICH (Physical Control Format Indicator Channel), PHICH (Physical Hybrid-ARQ Indicator Channel), etc. including. Downlink control information (DCI) including scheduling information of PDSCH and PUSCH is transmitted by PDCCH. The number of OFDM symbols used for PDCCH is transmitted by PCFICH. The EPDCCH is frequency division multiplexed with the PDSCH, and is used for transmission such as DCI as the PDCCH. The PHICH can transmit PUSCH delivery confirmation information (also referred to as A / N, HARQ-ACK, HARQ-ACK bit, A / N codebook, etc.).
 無線通信システム1では、ULチャネルとして、各ユーザ端末20で共有されるULデータチャネル(PUSCH:Physical Uplink Shared Channel、UL共有チャネル等ともいう)、UL制御チャネル(PUCCH:Physical Uplink Control Channel)、ランダムアクセスチャネル(PRACH:Physical Random Access Channel)などが用いられる。PUSCHにより、ULデータ(ユーザデータ及び/又は上位レイヤ制御情報)が伝送される。PDSCHの送達確認情報(A/N、HARQ-ACK)チャネル状態情報(CSI)などの少なくとも一つを含む上り制御情報(UCI:Uplink Control Information)は、PUSCH又はPUCCHにより、伝送される。PRACHにより、セルとの接続確立のためのランダムアクセスプリアンブルを伝送できる。 In the radio communication system 1, as a UL channel, a UL data channel shared by each user terminal 20 (PUSCH: also referred to as Physical Uplink Shared Channel, UL shared channel, etc.), UL control channel (PUCCH: Physical Uplink Control Channel), random An access channel (PRACH: Physical Random Access Channel) or the like is used. UL data (user data and / or upper layer control information) is transmitted by the PUSCH. Uplink control information (UCI: Uplink Control Information) including at least one of PDSCH delivery acknowledgment information (A / N, HARQ-ACK) channel state information (CSI) and the like is transmitted by the PUSCH or PUCCH. The PRACH can transmit a random access preamble for establishing a connection with a cell.
<無線基地局>
 図12は、本実施の形態にかかる無線基地局の全体構成の一例を示す図である。無線基地局10は、複数の送受信アンテナ101と、アンプ部102と、送受信部103と、ベースバンド信号処理部104と、呼処理部105と、伝送路インターフェース106とを備えている。なお、送受信アンテナ101、アンプ部102、送受信部103は、それぞれ1つ以上を含むように構成されてもよい。無線基地局10は、ULにおいて「受信装置」を構成し、DLにおいて「送信装置」を構成してもよい。
<Wireless base station>
FIG. 12 is a diagram showing an example of the entire configuration of the radio base station according to the present embodiment. The radio base station 10 includes a plurality of transmitting and receiving antennas 101, an amplifier unit 102, a transmitting and receiving unit 103, a baseband signal processing unit 104, a call processing unit 105, and a transmission path interface 106. Each of the transmitting and receiving antenna 101, the amplifier unit 102, and the transmitting and receiving unit 103 may be configured to include one or more. The radio base station 10 may configure a “receiving device” in UL and may configure a “transmitting device” in DL.
 下りリンクにより無線基地局10からユーザ端末20に送信されるユーザデータは、上位局装置30から伝送路インターフェース106を介してベースバンド信号処理部104に入力される。 User data transmitted from the radio base station 10 to the user terminal 20 by downlink is input from the higher station apparatus 30 to the baseband signal processing unit 104 via the transmission path interface 106.
 ベースバンド信号処理部104では、ユーザデータに関して、PDCP(Packet Data Convergence Protocol)レイヤの処理、ユーザデータの分割・結合、RLC(Radio Link Control)再送制御などのRLCレイヤの送信処理、MAC(Medium Access Control)再送制御(例えば、HARQ(Hybrid Automatic Repeat reQuest)の処理)、スケジューリング、伝送フォーマット選択、チャネル符号化、レートマッチング、スクランブリング、逆高速フーリエ変換(IFFT:Inverse Fast Fourier Transform)処理及びプリコーディング処理の少なくとも一つなどの送信処理が行われて送受信部103に転送される。また、下り制御信号に関しても、チャネル符号化及び/又は逆高速フーリエ変換などの送信処理が行われて、送受信部103に転送される。 The baseband signal processing unit 104 performs packet data convergence protocol (PDCP) layer processing, user data division / combination, RLC layer transmission processing such as RLC (Radio Link Control) retransmission control, and MAC (Medium Access) for user data. Control) Retransmission control (for example, processing of HARQ (Hybrid Automatic Repeat reQuest)), scheduling, transmission format selection, channel coding, rate matching, scrambling, Inverse Fast Fourier Transform (IFFT) processing and precoding Transmission processing such as at least one of the processing is performed and transferred to the transmission / reception unit 103. Also, with regard to the downlink control signal, transmission processing such as channel coding and / or inverse fast Fourier transform is performed and transferred to the transmission / reception unit 103.
 送受信部103は、ベースバンド信号処理部104からアンテナ毎にプリコーディングして出力されたベースバンド信号を無線周波数帯に変換して送信する。送受信部103で周波数変換された無線周波数信号は、アンプ部102により増幅され、送受信アンテナ101から送信される。 The transmission / reception unit 103 converts the baseband signal output from the baseband signal processing unit 104 for each antenna into a radio frequency band and transmits the baseband signal. The radio frequency signal frequency-converted by the transmitting and receiving unit 103 is amplified by the amplifier unit 102 and transmitted from the transmitting and receiving antenna 101.
 本発明にかかる技術分野での共通認識に基づいて説明されるトランスミッター/レシーバー、送受信回路又は送受信装置から構成することができる。なお、送受信部103は、一体の送受信部として構成されてもよいし、送信部及び受信部から構成されてもよい。 The transmitter / receiver, the transmitting / receiving circuit or the transmitting / receiving device described based on the common recognition in the technical field according to the present invention can be constituted. The transmitting and receiving unit 103 may be configured as an integrated transmitting and receiving unit, or may be configured from a transmitting unit and a receiving unit.
 一方、UL信号については、送受信アンテナ101で受信された無線周波数信号がアンプ部102で増幅される。送受信部103はアンプ部102で増幅されたUL信号を受信する。送受信部103は、受信信号をベースバンド信号に周波数変換して、ベースバンド信号処理部104に出力する。 On the other hand, for the UL signal, the radio frequency signal received by the transmitting and receiving antenna 101 is amplified by the amplifier unit 102. The transmitting and receiving unit 103 receives the UL signal amplified by the amplifier unit 102. The transmission / reception unit 103 frequency-converts the received signal into a baseband signal and outputs the result to the baseband signal processing unit 104.
 ベースバンド信号処理部104では、入力されたUL信号に含まれるULデータに対して、高速フーリエ変換(FFT:Fast Fourier Transform)処理、逆離散フーリエ変換(IDFT:Inverse Discrete Fourier Transform)処理、誤り訂正復号、MAC再送制御の受信処理、RLCレイヤ及びPDCPレイヤの受信処理がなされ、伝送路インターフェース106を介して上位局装置30に転送される。呼処理部105は、通信チャネルの設定、解放などの呼処理、無線基地局10の状態管理、無線リソースの管理の少なくとも一つを行う。 The baseband signal processing unit 104 performs Fast Fourier Transform (FFT) processing, Inverse Discrete Fourier Transform (IDFT) processing, and error correction on UL data included in the input UL signal. Decoding, reception processing of MAC retransmission control, and reception processing of RLC layer and PDCP layer are performed, and are transferred to the higher station apparatus 30 via the transmission path interface 106. The call processing unit 105 performs at least one of setting of a communication channel, call processing such as release, status management of the radio base station 10, and management of radio resources.
 伝送路インターフェース106は、所定のインターフェースを介して、上位局装置30と信号を送受信する。また、伝送路インターフェース106は、基地局間インターフェース(例えば、CPRI(Common Public Radio Interface)に準拠した光ファイバ、X2インターフェース)を介して隣接無線基地局10と信号を送受信(バックホールシグナリング)してもよい。 The transmission path interface 106 transmits and receives signals to and from the higher station apparatus 30 via a predetermined interface. Also, the transmission path interface 106 transmits / receives signals (backhaul signaling) to / from the adjacent wireless base station 10 via an inter-base station interface (for example, an optical fiber conforming to CPRI (Common Public Radio Interface), X2 interface). It is also good.
 また、送受信部103は、DL信号(例えば、DL制御信号(DL制御チャネル又はDCI等ともいう)、DLデータ信号(DLデータチャネル又はDLデータ等ともいう)、及び、参照信号の少なくとも一つ)を送信する。また、送受信部103は、UL信号(例えば、UL制御信号(UL制御チャネル又はUCI等ともいう)、ULデータ信号(ULデータチャネル又はULデータ等ともいう)、及び、参照信号の少なくとも一つ)を受信する。 In addition, the transmission / reception unit 103 may be a DL signal (for example, at least one of a DL control signal (also referred to as DL control channel or DCI), a DL data signal (also referred to as DL data channel or DL data), and a reference signal) Send In addition, the transmission / reception unit 103 may be a UL signal (for example, at least one of a UL control signal (also referred to as UL control channel or UCI), a UL data signal (also referred to as UL data channel or UL data), and a reference signal) Receive
 また、送受信部103は、上位レイヤ制御情報(例えば、MAC CE及び/又はRRCシグナリングによる制御情報)を送信してもよい。 Also, the transmission / reception unit 103 may transmit upper layer control information (for example, control information by MAC CE and / or RRC signaling).
 また、送受信部103は、上述の第1、第2及び第3の態様のうち少なくとも1つによって規定されるDCIフォーマットに従うDCIを送信してもよい。 In addition, the transmission / reception unit 103 may transmit DCI according to the DCI format defined by at least one of the first, second and third aspects described above.
 図13は、本実施の形態にかかる無線基地局の機能構成の一例を示す図である。なお、図13は、本実施の形態における特徴部分の機能ブロックを主に示しており、無線基地局10は、無線通信に必要な他の機能ブロックも有しているものとする。図13に示すように、ベースバンド信号処理部104は、制御部301と、送信信号生成部302と、マッピング部303と、受信信号処理部304と、測定部305とを備えている。 FIG. 13 is a diagram showing an example of a functional configuration of the radio base station according to the present embodiment. Note that FIG. 13 mainly shows the functional blocks of the characterizing portion in the present embodiment, and the wireless base station 10 also has other functional blocks necessary for wireless communication. As shown in FIG. 13, the baseband signal processing unit 104 includes a control unit 301, a transmission signal generation unit 302, a mapping unit 303, a reception signal processing unit 304, and a measurement unit 305.
 制御部301は、無線基地局10全体の制御を実施する。制御部301は、例えば、送信信号生成部302によるDL信号の生成、マッピング部303によるDL信号のマッピング、受信信号処理部304によるUL信号の受信処理(例えば、復調など)及び測定部305による測定の少なくとも一つを制御する。また、制御部301は、データチャネル(DLデータチャネル及び/又はULデータチャネルを含む)のスケジューリングを制御してもよい。 The control unit 301 controls the entire wireless base station 10. The control unit 301 may, for example, generate a DL signal by the transmission signal generation unit 302, map the DL signal by the mapping unit 303, receive processing (for example, demodulation) of the UL signal by the reception signal processing unit 304, and measure it by the measurement unit 305. Control at least one of Also, the control unit 301 may control scheduling of data channels (including DL data channels and / or UL data channels).
 制御部301は、DLデータチャネルのスケジューリング単位となる時間単位(例えば、スロット)におけるシンボル毎の伝送方向を制御してもよい。具体的には、制御部301は、スロット内のDLシンボル及び/又はULシンボルを示すスロットフォーマット関連情報(SFI)の生成及び/又は送信を制御してもよい。 The control unit 301 may control the transmission direction for each symbol in a time unit (for example, slot) which is a scheduling unit of the DL data channel. Specifically, the control unit 301 may control generation and / or transmission of slot format related information (SFI) indicating DL symbols and / or UL symbols in the slot.
 また、制御部301は、一以上のBWPが設定(configure)し、設定されたBWPを用いて、ユーザ端末20との間で、TDD(時分割複信)又はFDD(周波数分割複信)で線通信を行うように制御してもよい。 Also, the control unit 301 configures one or more BWPs, and uses TDP (time division duplex) or FDD (frequency division duplex) with the user terminal 20 using the set BWPs. You may control to perform line communication.
 また、制御部301は、上述の第1の態様又は第2の態様で規定されるDCIフォーマットを用いて、BWPのスケジューリングを行ってもよい。 In addition, the control unit 301 may perform BWP scheduling using the DCI format defined in the first aspect or the second aspect described above.
 制御部301は、第1のBWPを用いて、当該第1のBWPとは異なる第2のBWPを示す情報を含む下り制御情報をユーザ端末20に対して送信する制御を行ってもよい。この場合、制御部301は、当該ユーザ端末20において、当該第1のBWPのBWP設定情報に基づいて、上記下り制御情報によって割り当てられるリソースが判断されると想定してもよい。 The control unit 301 may perform control to transmit, to the user terminal 20, downlink control information including information indicating a second BWP different from the first BWP, using the first BWP. In this case, the control unit 301 may assume that the user terminal 20 determines the resource to be allocated according to the downlink control information based on the BWP setting information of the first BWP.
 制御部301は、第1のBWPで送信するDCIであって第2のBWPを示す情報を含むDCIによって割り当て可能なリソースの最大サイズは、第1のBWPで送信するDCIであって第1のBWPを示す情報を含む下り制御情報によって割り当て可能なリソースの最大サイズと同じであると想定してもよい。 The control unit 301 is the DCI that transmits in the first BWP, and the maximum size of the resource that can be allocated by the DCI including the information indicating the second BWP is the DCI that transmits in the first BWP, and the first size It may be assumed to be the same as the maximum size of resources that can be allocated by downlink control information including information indicating BWP.
 制御部301は、本発明にかかる技術分野での共通認識に基づいて説明されるコントローラ、制御回路又は制御装置から構成することができる。 The control unit 301 can be configured of a controller, a control circuit, or a control device described based on the common recognition in the technical field according to the present invention.
 送信信号生成部302は、制御部301からの指示に基づいて、DL信号(DLデータ(チャネル)、DCI、DL参照信号、上位レイヤシグナリングによる制御情報の少なくとも一つを含む)を生成して、マッピング部303に出力してもよい。 The transmission signal generation unit 302 generates a DL signal (including at least one of DL data (channel), DCI, DL reference signal, and control information by upper layer signaling) based on an instruction from the control unit 301, It may be output to the mapping unit 303.
 送信信号生成部302は、本発明にかかる技術分野での共通認識に基づいて説明される信号生成器、信号生成回路又は信号生成装置とすることができる。 The transmission signal generation unit 302 can be a signal generator, a signal generation circuit, or a signal generation device described based on the common recognition in the technical field according to the present invention.
 マッピング部303は、制御部301からの指示に基づいて、送信信号生成部302で生成されたDL信号を、所定の無線リソースにマッピングして、送受信部103に出力する。例えば、マッピング部303は、制御部301によって決定される配置パターンを用いて、参照信号を所定の無線リソースにマッピングする。 The mapping unit 303 maps the DL signal generated by the transmission signal generation unit 302 on a predetermined radio resource based on an instruction from the control unit 301, and outputs the DL signal to the transmission / reception unit 103. For example, the mapping unit 303 maps the reference signal to a predetermined radio resource using the arrangement pattern determined by the control unit 301.
 マッピング部303は、本発明にかかる技術分野での共通認識に基づいて説明されるマッパー、マッピング回路又はマッピング装置とすることができる。 The mapping unit 303 may be a mapper, a mapping circuit or a mapping device described based on the common recognition in the technical field according to the present invention.
 受信信号処理部304は、ユーザ端末20から送信されるUL信号の受信処理(例えば、デマッピング、復調及び復号の少なくとも一つなど)を行う。具体的には、受信信号処理部304は、受信信号及び/又は受信処理後の信号を、測定部305に出力してもよい。 The reception signal processing unit 304 performs reception processing (for example, at least one of demapping, demodulation, and decoding) of the UL signal transmitted from the user terminal 20. Specifically, the reception signal processing unit 304 may output the reception signal and / or the signal after reception processing to the measurement unit 305.
 受信信号処理部304は、本発明にかかる技術分野での共通認識に基づいて説明される信号処理器、信号処理回路又は信号処理装置から構成することができる。また、受信信号処理部304は、本発明にかかる受信部を構成することができる。 The received signal processing unit 304 can be composed of a signal processor, a signal processing circuit or a signal processing device described based on the common recognition in the technical field according to the present invention. Further, the received signal processing unit 304 can constitute a receiving unit according to the present invention.
 測定部305は、例えば、参照信号の受信電力(例えば、RSRP(Reference Signal Received Power))及び/又は受信品質(例えば、RSRQ(Reference Signal Received Quality))に基づいて、ULのチャネル品質を測定してもよい。測定結果は、制御部301に出力されてもよい。 The measurement unit 305 measures the channel quality of UL based on, for example, received power of a reference signal (for example, reference signal received power (RSRP)) and / or received quality (for example, reference signal received quality (RSRQ)). May be The measurement result may be output to the control unit 301.
<ユーザ端末>
 図14は、本実施の形態にかかるユーザ端末の全体構成の一例を示す図である。ユーザ端末20は、MIMO伝送のための複数の送受信アンテナ201と、アンプ部202と、送受信部203と、ベースバンド信号処理部204と、アプリケーション部205と、を備えている。ユーザ端末20は、ULにおいて「送信装置」を構成し、DLにおいて「受信装置」を構成してもよい。
<User terminal>
FIG. 14 is a diagram showing an example of the entire configuration of the user terminal according to the present embodiment. The user terminal 20 includes a plurality of transmission / reception antennas 201 for MIMO transmission, an amplifier unit 202, a transmission / reception unit 203, a baseband signal processing unit 204, and an application unit 205. The user terminal 20 may configure a “transmitting device” in UL and may configure a “receiving device” in DL.
 複数の送受信アンテナ201で受信された無線周波数信号は、それぞれアンプ部202で増幅される。各送受信部203はアンプ部202で増幅されたDL信号を受信する。送受信部203は、受信信号をベースバンド信号に周波数変換して、ベースバンド信号処理部204に出力する。 The radio frequency signals received by the plurality of transmitting and receiving antennas 201 are amplified by the amplifier unit 202, respectively. Each transmission / reception unit 203 receives the DL signal amplified by the amplifier unit 202. The transmission / reception unit 203 frequency-converts the received signal into a baseband signal and outputs the result to the baseband signal processing unit 204.
 ベースバンド信号処理部204は、入力されたベースバンド信号に対して、FFT処理、誤り訂正復号、再送制御の受信処理などの少なくとも一つを行う。DLデータは、アプリケーション部205に転送される。アプリケーション部205は、物理レイヤ及びMACレイヤより上位のレイヤに関する処理などを行う。 The baseband signal processing unit 204 performs at least one of FFT processing, error correction decoding, reception processing of retransmission control, and the like on the input baseband signal. The DL data is transferred to the application unit 205. The application unit 205 performs processing on a layer higher than the physical layer and the MAC layer.
 一方、ULデータについては、アプリケーション部205からベースバンド信号処理部204に入力される。ベースバンド信号処理部204では、再送制御処理(例えば、HARQの処理)、チャネル符号化、レートマッチング、パンクチャ、離散フーリエ変換(DFT:Discrete Fourier Transform)処理、IFFT処理などの少なくとも一つが行われて各送受信部203に転送される。UCI(例えば、DL信号のA/N、チャネル状態情報(CSI)、スケジューリング要求(SR)の少なくとも一つなど)についても、チャネル符号化、レートマッチング、パンクチャ、DFT処理及びIFFT処理などの少なくとも一つが行われて各送受信部203に転送される。 On the other hand, UL data is input from the application unit 205 to the baseband signal processing unit 204. The baseband signal processing unit 204 performs at least one of retransmission control processing (for example, processing of HARQ), channel coding, rate matching, puncturing, discrete Fourier transform (DFT) processing, IFFT processing, and the like. The data is transferred to each transmission / reception unit 203. Also for UCI (eg, A / N of DL signal, channel state information (CSI), scheduling request (SR), etc.), at least one of channel coding, rate matching, puncturing, DFT processing, IFFT processing, etc. Is transferred to each of the transmitting and receiving units 203.
 送受信部203は、ベースバンド信号処理部204から出力されたベースバンド信号を無線周波数帯に変換して送信する。送受信部203で周波数変換された無線周波数信号は、アンプ部202により増幅され、送受信アンテナ201から送信される。 The transmission / reception unit 203 converts the baseband signal output from the baseband signal processing unit 204 into a radio frequency band and transmits it. The radio frequency signal frequency-converted by the transmitting and receiving unit 203 is amplified by the amplifier unit 202 and transmitted from the transmitting and receiving antenna 201.
 また、送受信部203は、DL信号(例えば、DL制御信号(DL制御チャネル又はDCI等ともいう)、DLデータ信号(DLデータチャネル又はDLデータ等ともいう)、及び、参照信号の少なくとも一つ)を受信する。また、送受信部203は、UL信号(例えば、UL制御信号(UL制御チャネル又はUCI等ともいう)、ULデータ信号(ULデータチャネル又はULデータ等ともいう)、及び、参照信号の少なくとも一つ)を送信する。 In addition, the transmitting / receiving unit 203 is a DL signal (for example, at least one of a DL control signal (also referred to as DL control channel or DCI), a DL data signal (also referred to as DL data channel or DL data), and a reference signal) Receive In addition, the transmission / reception unit 203 is a UL signal (for example, at least one of a UL control signal (also referred to as a UL control channel or UCI), a UL data signal (also referred to as a UL data channel or UL data), and a reference signal) Send
 また、送受信部203は、上位レイヤ制御情報(例えば、MAC CE及び/又はRRCシグナリングによる制御情報)を受信してもよい。 Also, the transmitting / receiving unit 203 may receive upper layer control information (for example, control information by MAC CE and / or RRC signaling).
 また、送受信部203は、キャリア内で周波数方向に設定されたUL用周波数帯域及びDL用周波数帯域を有するDL/UL周波数帯域ペア(DL/UL BWPペア)用いて、TDD(時分割多重複信)で信号及び/又は情報の送受信を行ってもよい。 Also, the transmission / reception unit 203 uses TDL (time division multiple overlapping signals) using a DL / UL frequency band pair (DL / UL BWP pair) having a UL frequency band and a DL frequency band set in the frequency direction in the carrier. May transmit and receive signals and / or information.
 また、送受信部203は、上述の第1の態様又は第2の態様で規定されるDCIフォーマットでDCIを受信してもよい。 In addition, the transmission / reception unit 203 may receive DCI in the DCI format defined in the first aspect or the second aspect described above.
 送受信部203は、本発明にかかる技術分野での共通認識に基づいて説明されるトランスミッター/レシーバー、送受信回路又は送受信装置とすることができる。また、送受信部203は、一体の送受信部として構成されてもよいし、送信部及び受信部から構成されてもよい。 The transmission / reception unit 203 can be a transmitter / receiver, a transmission / reception circuit, or a transmission / reception device described based on the common recognition in the technical field according to the present invention. The transmission / reception unit 203 may be configured as an integrated transmission / reception unit, or may be configured from a transmission unit and a reception unit.
 図15は、本実施の形態にかかるユーザ端末の機能構成の一例を示す図である。なお、図15においては、本実施の形態における特徴部分の機能ブロックを主に示しており、ユーザ端末20は、無線通信に必要な他の機能ブロックも有しているものとする。図15に示すように、ユーザ端末20が有するベースバンド信号処理部204は、制御部401と、送信信号生成部402と、マッピング部403と、受信信号処理部404と、測定部405と、を備えている。 FIG. 15 is a diagram showing an example of a functional configuration of the user terminal according to the present embodiment. In FIG. 15, the functional blocks of the characteristic part in the present embodiment are mainly shown, and the user terminal 20 also has other functional blocks necessary for wireless communication. As illustrated in FIG. 15, the baseband signal processing unit 204 included in the user terminal 20 includes the control unit 401, the transmission signal generation unit 402, the mapping unit 403, the reception signal processing unit 404, and the measurement unit 405. Have.
 制御部401は、ユーザ端末20全体の制御を実施する。制御部401は、例えば、送信信号生成部402によるUL信号の生成、マッピング部403によるUL信号のマッピング、受信信号処理部404によるDL信号の受信処理及び測定部405による測定の少なくとも一つを制御する。 The control unit 401 controls the entire user terminal 20. The control unit 401 controls, for example, at least one of UL signal generation by the transmission signal generation unit 402, mapping of the UL signal by the mapping unit 403, reception processing of the DL signal by the reception signal processing unit 404, and measurement by the measurement unit 405. Do.
 また、制御部401は、一以上のBWPが設定(configure)し、設定されたBWPを用いて、無線基地局10との間で、TDD(時分割複信)又はFDD(周波数分割複信)で線通信を行うように制御してもよい。 Further, the control unit 401 configures one or more BWPs, and uses TDPs (time division duplex) or FDD (frequency division duplex) with the radio base station 10 using the set BWPs. Control to perform line communication.
 制御部401は、上述の第1の態様又は第2の態様で規定されるDCIフォーマットを用いて、スケジューリングされたBWPのリソースを判断してもよい。 The control unit 401 may determine the scheduled BWP resources using the DCI format defined in the first aspect or the second aspect described above.
 送受信部203は、キャリア内に設定された部分周波数帯域(BWP)の内、第1のBWPを用いて、下りリンク制御情報を受信し、制御部401は、前記下りリンク制御情報において、前記複数のBWPの内の所定のBWPに基づいて設定(又は選択)されるサイズを有するリソースアロケーションフィールド(RAフィールド)を介して、前記第1のBWPとは異なる第2のBWPのリソースを判断してもよい。 The transmitting / receiving unit 203 receives downlink control information using the first BWP in the partial frequency band (BWP) set in the carrier, and the control unit 401 uses the plurality of the downlink control information. Determining a resource of a second BWP different from the first BWP through a resource allocation field (RA field) having a size set (or selected) based on a predetermined BWP of BWPs of It is also good.
 前記所定のBWPは、前記複数のBWPの内、最も帯域幅が広いBWPであってもよい。前記所定のBWPは、前記第1のBWPであってもよい。 The predetermined BWP may be the widest bandwidth BWP among the plurality of BWPs. The predetermined BWP may be the first BWP.
 制御部401は、前記下りリンク制御情報を受信した場合、前記第2のBWPをアクティブ化し、前記第1のBWPを非アクティブ化してもよい。 When the control unit 401 receives the downlink control information, the control unit 401 may activate the second BWP and deactivate the first BWP.
 制御部401は、アクティブ化されたBWPが第1のBWPと第2のBWPとのいずれであっても、同じサイズの前記下りリンク制御情報をモニタしてもよい。 The control unit 401 may monitor the downlink control information of the same size even if the activated BWP is either the first BWP or the second BWP.
 また、送受信部203は、第1のBWPを用いて、当該第1のBWPとは異なる第2のBWPを示す情報を含む下り制御情報(例えば、スケジューリング用DCI、DLアサインメント、ULグラントなどと呼ばれてもよい)を受信してもよい。この場合、制御部401は、当該第1のBWPのBWP設定情報に基づいて、上記下り制御情報によって割り当てられるリソース(クロスBWPスケジューリングによって指定されるリソース)を判断してもよい。 Also, using the first BWP, the transmission / reception unit 203 may use downlink control information (for example, scheduling DCI, DL assignment, UL grant, etc.) including information indicating the second BWP different from the first BWP. May be received). In this case, the control unit 401 may determine, based on the BWP setting information of the first BWP, a resource allocated by the downlink control information (a resource specified by cross BWP scheduling).
 制御部401は、上記下り制御情報によって割り当て可能なリソースの最大サイズは、上記第1のBWPを示す情報を含む下り制御情報によって割り当て可能なリソースの最大サイズと同じであると想定してもよい。 The control unit 401 may assume that the maximum size of resources that can be allocated by the downlink control information is the same as the maximum size of resources that can be allocated by downlink control information including information indicating the first BWP. .
 制御部401は、上記下り制御情報によって割り当てられるリソースを処理した後、上記第2のBWPをアクティベートする制御を行ってもよい。 The control unit 401 may perform control to activate the second BWP after processing the resources allocated by the downlink control information.
 制御部401は、本発明にかかる技術分野での共通認識に基づいて説明されるコントローラ、制御回路又は制御装置から構成することができる。 The control unit 401 can be configured of a controller, a control circuit, or a control device described based on the common recognition in the technical field according to the present invention.
 送信信号生成部402は、制御部401からの指示に基づいて、UL信号、DL信号の再送制御情報を生成(例えば、符号化、レートマッチング、パンクチャ、変調など)して、マッピング部403に出力する。送信信号生成部402は、本発明にかかる技術分野での共通認識に基づいて説明される信号生成器、信号生成回路又は信号生成装置とすることができる。 Transmission signal generation unit 402 generates retransmission control information of UL signal and DL signal (for example, coding, rate matching, puncturing, modulation, etc.) based on an instruction from control unit 401, and outputs the result to mapping unit 403. Do. The transmission signal generation unit 402 can be a signal generator, a signal generation circuit, or a signal generation device described based on the common recognition in the technical field according to the present invention.
 マッピング部403は、本発明にかかる技術分野での共通認識に基づいて説明されるマッパー、マッピング回路又はマッピング装置とすることができる。 The mapping unit 403 may be a mapper, a mapping circuit or a mapping device described based on the common recognition in the technical field according to the present invention.
 受信信号処理部404は、DL信号の受信処理(例えば、デマッピング、復調及び復号の少なくとも一つなど)を行う。例えば、受信信号処理部404は、制御部401によって決定される配置パターンの参照信号を用いて、DLデータチャネルを復調してもよい。 The reception signal processing unit 404 performs reception processing (for example, at least one of demapping, demodulation, and decoding) of the DL signal. For example, the reception signal processing unit 404 may demodulate the DL data channel using the reference signal of the arrangement pattern determined by the control unit 401.
 また、受信信号処理部404は、受信信号及び/又は受信処理後の信号を、制御部401及び/又は測定部405に出力してもよい。受信信号処理部404は、例えば、上位レイヤシグナリングによる上位レイヤ制御情報、L1/L2制御情報(例えば、ULグラント及び/又はDLアサインメント)などを、制御部401に出力する。 Further, the reception signal processing unit 404 may output the reception signal and / or the signal after reception processing to the control unit 401 and / or the measurement unit 405. The reception signal processing unit 404 outputs, for example, upper layer control information by upper layer signaling, L1 / L2 control information (for example, UL grant and / or DL assignment), and the like to the control unit 401.
 受信信号処理部404は、本発明にかかる技術分野での共通認識に基づいて説明される信号処理器、信号処理回路又は信号処理装置から構成することができる。また、受信信号処理部404は、本発明にかかる受信部を構成することができる。 The received signal processing unit 404 can be composed of a signal processor, a signal processing circuit or a signal processing device described based on the common recognition in the technical field according to the present invention. Further, the received signal processing unit 404 can constitute a receiving unit according to the present invention.
 測定部405は、無線基地局10からの参照信号(例えば、CSI-RS)に基づいて、チャネル状態を測定し、測定結果を制御部401に出力する。なお、チャネル状態の測定は、CC毎に行われてもよい。 Measuring section 405 measures a channel state based on a reference signal (for example, CSI-RS) from radio base station 10, and outputs the measurement result to control section 401. The channel state measurement may be performed for each CC.
 測定部405は、本発明にかかる技術分野での共通認識に基づいて説明される信号処理器、信号処理回路又は信号処理装置、並びに、測定器、測定回路又は測定装置から構成することができる。 The measuring unit 405 can be composed of a signal processor, a signal processing circuit or a signal processing device, and a measuring instrument, a measuring circuit or a measuring device described based on the common recognition in the technical field according to the present invention.
<ハードウェア構成>
 なお、上記実施形態の説明に用いたブロック図は、機能単位のブロックを示している。これらの機能ブロック(構成部)は、ハードウェア及び/又はソフトウェアの任意の組み合わせによって実現される。また、各機能ブロックの実現手段は特に限定されない。すなわち、各機能ブロックは、物理的及び/又は論理的に結合した1つの装置により実現されてもよいし、物理的及び/又は論理的に分離した2つ以上の装置を直接的及び/又は間接的に(例えば、有線及び/又は無線)で接続し、これら複数の装置により実現されてもよい。
<Hardware configuration>
The block diagram used for the explanation of the above-mentioned embodiment has shown the block of a functional unit. These functional blocks (components) are realized by any combination of hardware and / or software. Moreover, the implementation means of each functional block is not particularly limited. That is, each functional block may be realized by one physically and / or logically coupled device, or directly and / or indirectly two or more physically and / or logically separated devices. It may be connected by (for example, wired and / or wireless) and realized by the plurality of devices.
 例えば、本実施の形態における無線基地局、ユーザ端末などは、本発明の無線通信方法の処理を行うコンピュータとして機能してもよい。図16は、本実施の形態にかかる無線基地局及びユーザ端末のハードウェア構成の一例を示す図である。上述の無線基地局10及びユーザ端末20は、物理的には、プロセッサ1001、メモリ1002、ストレージ1003、通信装置1004、入力装置1005、出力装置1006、バス1007などを含むコンピュータ装置として構成されてもよい。 For example, the wireless base station, the user terminal, and the like in the present embodiment may function as a computer that performs the process of the wireless communication method of the present invention. FIG. 16 is a diagram showing an example of the hardware configuration of the radio base station and the user terminal according to the present embodiment. The above-described wireless base station 10 and user terminal 20 may be physically configured as a computer device including a processor 1001, a memory 1002, a storage 1003, a communication device 1004, an input device 1005, an output device 1006, a bus 1007 and the like. Good.
 なお、以下の説明では、「装置」という文言は、回路、デバイス、ユニットなどに読み替えることができる。無線基地局10及びユーザ端末20のハードウェア構成は、図に示した各装置を1つ又は複数含むように構成されてもよいし、一部の装置を含まずに構成されてもよい。 In the following description, the term "device" can be read as a circuit, a device, a unit, or the like. The hardware configuration of the radio base station 10 and the user terminal 20 may be configured to include one or more of the devices illustrated in the figure, or may be configured without including some devices.
 例えば、プロセッサ1001は1つだけ図示されているが、複数のプロセッサがあってもよい。また、処理は、1のプロセッサで実行されてもよいし、処理が同時に、逐次に、又はその他の手法で、1以上のプロセッサで実行されてもよい。なお、プロセッサ1001は、1以上のチップで実装されてもよい。 For example, although only one processor 1001 is illustrated, there may be a plurality of processors. Also, the processing may be performed by one processor, or the processing may be performed by one or more processors simultaneously, sequentially, or in other manners. The processor 1001 may be implemented by one or more chips.
 無線基地局10及びユーザ端末20における各機能は、例えば、プロセッサ1001、メモリ1002などのハードウェア上に所定のソフトウェア(プログラム)を読み込ませることで、プロセッサ1001が演算を行い、通信装置1004による通信、メモリ1002及びストレージ1003におけるデータの読み出し及び書き込みの少なくとも一つを制御することで実現される。 Each function in the radio base station 10 and the user terminal 20 is performed, for example, by causing a processor 1001 to read predetermined software (program) on hardware such as the processor 1001 and the memory 1002, and the processor 1001 performs an operation. This is realized by controlling at least one of reading and writing of data in the memory 1002 and the storage 1003.
 プロセッサ1001は、例えば、オペレーティングシステムを動作させてコンピュータ全体を制御する。プロセッサ1001は、周辺装置とのインターフェース、制御装置、演算装置、レジスタなどを含む中央処理装置(CPU:Central Processing Unit)で構成されてもよい。例えば、上述のベースバンド信号処理部104(204)、呼処理部105などは、プロセッサ1001で実現されてもよい。 The processor 1001 operates, for example, an operating system to control the entire computer. The processor 1001 may be configured by a central processing unit (CPU: Central Processing Unit) including an interface with a peripheral device, a control device, an arithmetic device, a register, and the like. For example, the above-described baseband signal processing unit 104 (204), call processing unit 105, and the like may be realized by the processor 1001.
 また、プロセッサ1001は、プログラム(プログラムコード)、ソフトウェアモジュール、データなどを、ストレージ1003及び/又は通信装置1004からメモリ1002に読み出し、これらに従って各種の処理を実行する。プログラムとしては、上述の実施形態で説明した動作の少なくとも一部をコンピュータに実行させるプログラムが用いられる。例えば、ユーザ端末20の制御部401は、メモリ1002に格納され、プロセッサ1001で動作する制御プログラムによって実現されてもよく、他の機能ブロックについても同様に実現されてもよい。 Also, the processor 1001 reads a program (program code), a software module, data, and the like from the storage 1003 and / or the communication device 1004 to the memory 1002, and executes various processing according to these. As a program, a program that causes a computer to execute at least a part of the operations described in the above embodiments is used. For example, the control unit 401 of the user terminal 20 may be realized by a control program stored in the memory 1002 and operated by the processor 1001, or may be realized similarly for other functional blocks.
 メモリ1002は、コンピュータ読み取り可能な記録媒体であり、例えば、ROM(Read Only Memory)、EPROM(Erasable Programmable ROM)、EEPROM(Electrically EPROM)、RAM(Random Access Memory)、その他の適切な記憶媒体の少なくとも1つで構成されてもよい。メモリ1002は、レジスタ、キャッシュ、メインメモリ(主記憶装置)などと呼ばれてもよい。メモリ1002は、本発明の一実施形態にかかる無線通信方法を実施するために実行可能なプログラム(プログラムコード)、ソフトウェアモジュールなどを保存することができる。 The memory 1002 is a computer readable recording medium, and for example, at least at least a read only memory (ROM), an erasable programmable ROM (EPROM), an electrically EPROM (EEPROM), a random access memory (RAM), or any other suitable storage medium. It may consist of one. The memory 1002 may be called a register, a cache, a main memory (main storage device) or the like. The memory 1002 may store a program (program code), a software module, and the like that can be executed to implement the wireless communication method according to an embodiment of the present invention.
 ストレージ1003は、コンピュータ読み取り可能な記録媒体であり、例えば、フレキシブルディスク、フロッピー(登録商標)ディスク、光磁気ディスク(例えば、コンパクトディスク(CD-ROM(Compact Disc ROM)など)、デジタル多用途ディスク、Blu-ray(登録商標)ディスク)、リムーバブルディスク、ハードディスクドライブ、スマートカード、フラッシュメモリデバイス(例えば、カード、スティック、キードライブ)、磁気ストライプ、データベース、サーバ、その他の適切な記憶媒体の少なくとも1つで構成されてもよい。ストレージ1003は、補助記憶装置と呼ばれてもよい。 The storage 1003 is a computer readable recording medium, and for example, a flexible disk, a floppy (registered trademark) disk, a magneto-optical disk (for example, a compact disk (CD-ROM (Compact Disc ROM), etc.), a digital versatile disk, Blu-ray® disc), removable disc, hard disc drive, smart card, flash memory device (eg card, stick, key drive), magnetic stripe, database, server, at least one other suitable storage medium May be composed of The storage 1003 may be called an auxiliary storage device.
 通信装置1004は、有線及び/又は無線ネットワークを介してコンピュータ間の通信を行うためのハードウェア(送受信デバイス)であり、例えばネットワークデバイス、ネットワークコントローラ、ネットワークカード、通信モジュールなどともいう。通信装置1004は、例えば周波数分割複信(FDD:Frequency Division Duplex)及び/又は時分割複信(TDD:Time Division Duplex)を実現するために、高周波スイッチ、デュプレクサ、フィルタ、周波数シンセサイザなどを含んで構成されてもよい。例えば、上述の送受信アンテナ101(201)、アンプ部102(202)、送受信部103(203)、伝送路インターフェース106などは、通信装置1004で実現されてもよい。 The communication device 1004 is hardware (transmission / reception device) for performing communication between computers via a wired and / or wireless network, and is also called, for example, a network device, a network controller, a network card, a communication module, or the like. The communication device 1004 includes, for example, a high frequency switch, a duplexer, a filter, a frequency synthesizer, and the like to realize, for example, frequency division duplex (FDD) and / or time division duplex (TDD). It may be configured. For example, the transmission / reception antenna 101 (201), the amplifier unit 102 (202), the transmission / reception unit 103 (203), the transmission path interface 106, and the like described above may be realized by the communication device 1004.
 入力装置1005は、外部からの入力を受け付ける入力デバイス(例えば、キーボード、マウス、マイクロフォン、スイッチ、ボタン、センサなど)である。出力装置1006は、外部への出力を実施する出力デバイス(例えば、ディスプレイ、スピーカー、LED(Light Emitting Diode)ランプなど)である。なお、入力装置1005及び出力装置1006は、一体となった構成(例えば、タッチパネル)であってもよい。 The input device 1005 is an input device (for example, a keyboard, a mouse, a microphone, a switch, a button, a sensor, and the like) that receives an input from the outside. The output device 1006 is an output device (for example, a display, a speaker, a light emitting diode (LED) lamp, and the like) that performs output to the outside. The input device 1005 and the output device 1006 may be integrated (for example, a touch panel).
 また、図16に示す各装置は、情報を通信するためのバス1007で接続される。バス1007は、単一のバスで構成されてもよいし、装置間で異なるバスで構成されてもよい。 Further, each device shown in FIG. 16 is connected by a bus 1007 for communicating information. The bus 1007 may be configured by a single bus or may be configured by different buses among the devices.
 また、無線基地局10及びユーザ端末20は、マイクロプロセッサ、デジタル信号プロセッサ(DSP:Digital Signal Processor)、ASIC(Application Specific Integrated Circuit)、PLD(Programmable Logic Device)、FPGA(Field Programmable Gate Array)などのハードウェアを含んで構成されてもよく、当該ハードウェアにより、各機能ブロックの一部又は全てが実現されてもよい。例えば、プロセッサ1001は、これらのハードウェアの少なくとも1つで実装されてもよい。 Also, the radio base station 10 and the user terminal 20 may be microprocessors, digital signal processors (DSPs), application specific integrated circuits (ASICs), programmable logic devices (PLDs), field programmable gate arrays (FPGAs), etc. It may be configured to include hardware, and part or all of each functional block may be realized by the hardware. For example, processor 1001 may be implemented in at least one of these hardware.
(変形例)
 なお、本明細書で説明した用語及び/又は本明細書の理解に必要な用語については、同一の又は類似する意味を有する用語と置き換えてもよい。例えば、チャネル及び/又はシンボルは信号(シグナリング)であってもよい。また、信号はメッセージであってもよい。参照信号は、RS(Reference Signal)と略称することもでき、適用される標準によってパイロット(Pilot)、パイロット信号などと呼ばれてもよい。また、コンポーネントキャリア(CC:Component Carrier)は、セル、周波数キャリア、キャリア周波数などと呼ばれてもよい。
(Modification)
The terms described in the present specification and / or the terms necessary for the understanding of the present specification may be replaced with terms having the same or similar meanings. For example, the channels and / or symbols may be signaling. Also, the signal may be a message. The reference signal may be abbreviated as RS (Reference Signal), and may be referred to as a pilot (Pilot), a pilot signal or the like according to an applied standard. Also, a component carrier (CC: Component Carrier) may be called a cell, a frequency carrier, a carrier frequency or the like.
 また、無線フレームは、時間領域において1つ又は複数の期間(フレーム)で構成されてもよい。無線フレームを構成する当該1つ又は複数の各期間(フレーム)は、サブフレームと呼ばれてもよい。さらに、サブフレームは、時間領域において1つ又は複数のスロットで構成されてもよい。サブフレームは、ニューメロロジーに依存しない固定の時間長(例えば、1ms)であってもよい。 Also, a radio frame may be configured with one or more periods (frames) in the time domain. Each of the one or more periods (frames) that constitute a radio frame may be referred to as a subframe. Furthermore, a subframe may be configured with one or more slots in the time domain. The subframes may be of a fixed time length (e.g., 1 ms) independent of the neurology.
 スロットは、時間領域において1つ又は複数のシンボル(OFDM(Orthogonal Frequency Division Multiplexing)シンボル、SC-FDMA(Single Carrier Frequency Division Multiple Access)シンボルなど)で構成されてもよい。また、スロットは、ニューメロロジーに基づく時間単位であってもよい。また、スロットは、複数のミニスロットを含んでもよい。各ミニスロットは、時間領域において一つ又は複数のシンボルで構成されてもよい。 A slot may be configured with one or more symbols (such as orthogonal frequency division multiplexing (OFDM) symbols, single carrier frequency division multiple access (SC-FDMA) symbols, etc.) in the time domain. Also, the slot may be a time unit based on the neurology. Also, the slot may include a plurality of minislots. Each minislot may be comprised of one or more symbols in the time domain.
 無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルは、いずれも信号を伝送する際の時間単位を表す。無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルは、それぞれに対応する別の呼称が用いられてもよい。例えば、1サブフレームは送信時間間隔(TTI:Transmission Time Interval)と呼ばれてもよいし、複数の連続したサブフレームがTTIと呼ばれてよいし、1スロット又は1ミニスロットがTTIと呼ばれてもよい。つまり、サブフレーム及び/又はTTIは、既存のLTEにおけるサブフレーム(1ms)であってもよいし、1msより短い期間(例えば、1-13シンボル)であってもよいし、1msより長い期間であってもよい。 A radio frame, a subframe, a slot, a minislot and a symbol all represent time units when transmitting a signal. For radio frames, subframes, slots, minislots and symbols, other names corresponding to each may be used. For example, one subframe may be referred to as a transmission time interval (TTI), a plurality of consecutive subframes may be referred to as a TTI, and one slot or one minislot may be referred to as a TTI. May be That is, the subframe and / or TTI may be a subframe (1 ms) in existing LTE, a period shorter than 1 ms (eg, 1-13 symbols), or a period longer than 1 ms. It may be.
 ここで、TTIは、例えば、無線通信におけるスケジューリングの最小時間単位のことをいう。例えば、LTEシステムでは、無線基地局が各ユーザ端末に対して、無線リソース(各ユーザ端末において使用することが可能な周波数帯域幅及び/又は送信電力など)を、TTI単位で割り当てるスケジューリングを行う。なお、TTIの定義はこれに限られない。TTIは、チャネル符号化されたデータパケット(トランスポートブロック)の送信時間単位であってもよいし、スケジューリング及び/又はリンクアダプテーションなどの処理単位となってもよい。なお、1スロット又は1ミニスロットがTTIと呼ばれる場合、1以上のTTI(すなわち、1以上のスロット又は1以上のミニスロット)が、スケジューリングの最小時間単位となってもよい。また、当該スケジューリングの最小時間単位を構成するスロット数(ミニスロット数)は制御されてもよい。 Here, TTI refers to, for example, the minimum time unit of scheduling in wireless communication. For example, in the LTE system, the radio base station performs scheduling to allocate radio resources (such as frequency bandwidth and / or transmission power that can be used in each user terminal) to each user terminal on a TTI basis. Note that the definition of TTI is not limited to this. The TTI may be a transmission time unit of a channel coded data packet (transport block) or may be a processing unit such as scheduling and / or link adaptation. If one slot or one minislot is referred to as TTI, one or more TTIs (ie, one or more slots or one or more minislots) may be the minimum time unit of scheduling. In addition, the number of slots (the number of minislots) constituting the minimum time unit of the scheduling may be controlled.
 1msの時間長を有するTTIは、通常TTI(LTE Rel.8-12におけるTTI)、ノーマルTTI、ロングTTI、通常サブフレーム、ノーマルサブフレーム、又はロングサブフレームなどと呼ばれてもよい。通常TTIより短いTTIは、短縮TTI、ショートTTI、部分TTI(partial又はfractional TTI)、短縮サブフレーム、又はショートサブフレームなどと呼ばれてもよい。 A TTI having a time length of 1 ms may be referred to as a normal TTI (TTI in LTE Rel. 8-12), a normal TTI, a long TTI, a normal subframe, a normal subframe, a long subframe, or the like. A TTI shorter than a normal TTI may be referred to as a short TTI, a short TTI, a partial TTI (partial or fractional TTI), a short subframe, a short subframe, or the like.
 リソースブロック(RB:Resource Block)は、時間領域及び周波数領域のリソース割当単位であり、周波数領域において、1つ又は複数個の連続した副搬送波(サブキャリア(subcarrier))を含んでもよい。また、RBは、時間領域において、1つ又は複数個のシンボルを含んでもよく、1スロット、1ミニスロット、1サブフレーム又は1TTIの長さであってもよい。1TTI、1サブフレームは、それぞれ1つ又は複数のリソースブロックで構成されてもよい。なお、RBは、物理リソースブロック(PRB:Physical RB)、PRBペア、RBペアなどと呼ばれてもよい。 A resource block (RB: Resource Block) is a resource allocation unit in time domain and frequency domain, and may include one or more consecutive subcarriers (subcarriers) in the frequency domain. Also, an RB may include one or more symbols in the time domain, and may be one slot, one minislot, one subframe, or one TTI in length. One TTI and one subframe may be configured of one or more resource blocks, respectively. The RB may be called a physical resource block (PRB: Physical RB), a PRB pair, an RB pair, or the like.
 また、リソースブロックは、1つ又は複数のリソースエレメント(RE:Resource Element)で構成されてもよい。例えば、1REは、1サブキャリア及び1シンボルの無線リソース領域であってもよい。 Also, a resource block may be composed of one or more resource elements (RE: Resource Element). For example, one RE may be one subcarrier and one symbol radio resource region.
 なお、上述した無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルなどの構造は例示に過ぎない。例えば、無線フレームに含まれるサブフレームの数、サブフレーム又は無線フレームあたりのスロットの数、スロット内に含まれるミニスロットの数、スロット又はミニスロットに含まれるシンボルの数、RBに含まれるサブキャリアの数、並びにTTI内のシンボル数、シンボル長、サイクリックプレフィックス(CP:Cyclic Prefix)長などの構成は、様々に変更することができる。 The above-described structures such as the radio frame, subframe, slot, minislot and symbol are merely examples. For example, the number of subframes included in a radio frame, the number of slots per subframe or radio frame, the number of minislots included in a slot, the number of symbols included in a slot or minislot, and subcarriers included in an RB And the number of symbols in TTI, symbol length, cyclic prefix (CP) length, and other configurations may be variously changed.
 また、本明細書で説明した情報、パラメータなどは、絶対値で表されてもよいし、所定の値からの相対値で表されてもよいし、対応する別の情報で表されてもよい。例えば、無線リソースは、所定のインデックスで指示されるものであってもよい。さらに、これらのパラメータを使用する数式などは、本明細書で明示的に開示したものと異なってもよい。 In addition, the information, parameters, and the like described in the present specification may be represented by absolute values, may be represented by relative values from predetermined values, or may be represented by corresponding other information. . For example, the radio resources may be indicated by a predetermined index. Furthermore, the formulas etc. that use these parameters may differ from those explicitly disclosed herein.
 本明細書においてパラメータなどに使用する名称は、いかなる点においても限定的なものではない。例えば、様々なチャネル(PUCCH(Physical Uplink Control Channel)、PDCCH(Physical Downlink Control Channel)など)及び情報要素は、あらゆる好適な名称によって識別できるので、これらの様々なチャネル及び情報要素に割り当てている様々な名称は、いかなる点においても限定的なものではない。 The names used for parameters and the like in the present specification are not limited in any respect. For example, since various channels (PUCCH (Physical Uplink Control Channel), PDCCH (Physical Downlink Control Channel), etc.) and information elements can be identified by any suitable names, various assignments are made to these various channels and information elements. The name is not limited in any way.
 本明細書で説明した情報、信号などは、様々な異なる技術のいずれかを使用して表されてもよい。例えば、上記の説明全体に渡って言及され得るデータ、命令、コマンド、情報、信号、ビット、シンボル、チップなどは、電圧、電流、電磁波、磁界若しくは磁性粒子、光場若しくは光子、又はこれらの任意の組み合わせによって表されてもよい。 The information, signals, etc. described herein may be represented using any of a variety of different techniques. For example, data, instructions, commands, information, signals, bits, symbols, chips etc that may be mentioned throughout the above description may be voltage, current, electromagnetic waves, magnetic fields or particles, optical fields or photons, or any of these May be represented by a combination of
 また、情報、信号などは、上位レイヤから下位レイヤ、及び/又は下位レイヤから上位レイヤへ出力され得る。情報、信号などは、複数のネットワークノードを介して入出力されてもよい。 Also, information, signals, etc. may be output from the upper layer to the lower layer and / or from the lower layer to the upper layer. Information, signals, etc. may be input / output via a plurality of network nodes.
 入出力された情報、信号などは、特定の場所(例えば、メモリ)に保存されてもよいし、管理テーブルで管理してもよい。入出力される情報、信号などは、上書き、更新又は追記をされ得る。出力された情報、信号などは、削除されてもよい。入力された情報、信号などは、他の装置へ送信されてもよい。 The input / output information, signals and the like may be stored in a specific place (for example, a memory) or may be managed by a management table. Information, signals, etc. input and output can be overwritten, updated or added. The output information, signals and the like may be deleted. The input information, signals and the like may be transmitted to other devices.
 情報の通知は、本明細書で説明した態様/実施形態に限られず、他の方法で行われてもよい。例えば、情報の通知は、物理レイヤシグナリング(例えば、下り制御情報(DCI:Downlink Control Information)、上り制御情報(UCI:Uplink Control Information))、上位レイヤシグナリング(例えば、RRC(Radio Resource Control)シグナリング、ブロードキャスト情報(マスタ情報ブロック(MIB:Master Information Block)、システム情報ブロック(SIB:System Information Block)など)、MAC(Medium Access Control)シグナリング)、その他の信号又はこれらの組み合わせによって実施されてもよい。 The notification of information is not limited to the aspects / embodiments described herein, and may be performed in other manners. For example, notification of information may be physical layer signaling (eg, downlink control information (DCI), uplink control information (UCI)), upper layer signaling (eg, RRC (Radio Resource Control) signaling, It may be implemented by broadcast information (Master Information Block (MIB), System Information Block (SIB), etc.), MAC (Medium Access Control) signaling, other signals, or a combination thereof.
 なお、物理レイヤシグナリングは、L1/L2(Layer 1/Layer 2)制御情報(L1/L2制御信号)、L1制御情報(L1制御信号)などと呼ばれてもよい。また、RRCシグナリングは、RRCメッセージと呼ばれてもよく、例えば、RRC接続セットアップ(RRCConnectionSetup)メッセージ、RRC接続再構成(RRCConnectionReconfiguration)メッセージなどであってもよい。また、MACシグナリングは、例えば、MAC制御要素(MAC CE(Control Element))で通知されてもよい。 The physical layer signaling may be called L1 / L2 (Layer 1 / Layer 2) control information (L1 / L2 control signal), L1 control information (L1 control signal), or the like. Also, RRC signaling may be referred to as an RRC message, and may be, for example, an RRC connection setup (RRC Connection Setup) message, an RRC connection reconfiguration (RRC Connection Reconfiguration) message, or the like. Also, MAC signaling may be notified by, for example, a MAC control element (MAC CE (Control Element)).
 また、所定の情報の通知(例えば、「Xであること」の通知)は、明示的に行うものに限られず、暗示的に(例えば、当該所定の情報の通知を行わないことによって又は別の情報の通知によって)行われてもよい。 In addition, notification of predetermined information (for example, notification of "it is X") is not limited to what is explicitly performed, but implicitly (for example, by not notifying the predetermined information or another It may be performed by notification of information.
 判定は、1ビットで表される値(0か1か)によって行われてもよいし、真(true)又は偽(false)で表される真偽値(boolean)によって行われてもよいし、数値の比較(例えば、所定の値との比較)によって行われてもよい。 The determination may be performed by a value (0 or 1) represented by one bit, or may be performed by a boolean value represented by true or false. , Numerical comparison (for example, comparison with a predetermined value) may be performed.
 ソフトウェアは、ソフトウェア、ファームウェア、ミドルウェア、マイクロコード、ハードウェア記述言語と呼ばれるか、他の名称で呼ばれるかを問わず、命令、命令セット、コード、コードセグメント、プログラムコード、プログラム、サブプログラム、ソフトウェアモジュール、アプリケーション、ソフトウェアアプリケーション、ソフトウェアパッケージ、ルーチン、サブルーチン、オブジェクト、実行可能ファイル、実行スレッド、手順、機能などを意味するよう広く解釈されるべきである。 Software may be called software, firmware, middleware, microcode, hardware description language, or any other name, and may be instructions, instruction sets, codes, code segments, program codes, programs, subprograms, software modules. Should be interpreted broadly to mean applications, software applications, software packages, routines, subroutines, objects, executables, threads of execution, procedures, functions, etc.
 また、ソフトウェア、命令、情報などは、伝送媒体を介して送受信されてもよい。例えば、ソフトウェアが、有線技術(同軸ケーブル、光ファイバケーブル、ツイストペア、デジタル加入者回線(DSL:Digital Subscriber Line)など)及び/又は無線技術(赤外線、マイクロ波など)を使用してウェブサイト、サーバ、又は他のリモートソースから送信される場合、これらの有線技術及び/又は無線技術は、伝送媒体の定義内に含まれる。 Also, software, instructions, information, etc. may be sent and received via a transmission medium. For example, software may use a wired technology (coaxial cable, fiber optic cable, twisted pair, digital subscriber line (DSL), etc.) and / or a wireless technology (infrared, microwave, etc.), a website, a server These or other wired and / or wireless technologies are included within the definition of the transmission medium, as transmitted from a remote source, or other remote source.
 本明細書で使用する「システム」及び「ネットワーク」という用語は、互換的に使用される。 The terms "system" and "network" as used herein are used interchangeably.
 本明細書では、「基地局(BS:Base Station)」、「無線基地局」、「eNB」、「gNB」、「セル」、「セクタ」、「セルグループ」、「キャリア」及び「コンポーネントキャリア」という用語は、互換的に使用され得る。基地局は、固定局(fixed station)、NodeB、eNodeB(eNB)、アクセスポイント(access point)、送信ポイント、受信ポイント、フェムトセル、スモールセルなどの用語で呼ばれる場合もある。 In this specification, “base station (BS: Base Station)”, “radio base station”, “eNB”, “gNB”, “cell”, “sector”, “cell group”, “carrier” and “component carrier” The term "can be used interchangeably. A base station may also be called in terms of a fixed station (Node station), NodeB, eNodeB (eNB), access point (access point), transmission point, reception point, femtocell, small cell, and so on.
 基地局は、1つ又は複数(例えば、3つ)のセル(セクタとも呼ばれる)を収容することができる。基地局が複数のセルを収容する場合、基地局のカバレッジエリア全体は複数のより小さいエリアに区分でき、各々のより小さいエリアは、基地局サブシステム(例えば、屋内用の小型基地局(RRH:Remote Radio Head))によって通信サービスを提供することもできる。「セル」又は「セクタ」という用語は、このカバレッジにおいて通信サービスを行う基地局及び/又は基地局サブシステムのカバレッジエリアの一部又は全体を指す。 A base station may accommodate one or more (e.g., three) cells (also called sectors). If the base station accommodates multiple cells, the entire coverage area of the base station can be partitioned into multiple smaller areas, each smaller area being a base station subsystem (eg, a small base station for indoor use (RRH: Communication service can also be provided by Remote Radio Head). The terms "cell" or "sector" refer to part or all of the coverage area of a base station and / or a base station subsystem serving communication services in this coverage.
 本明細書では、「移動局(MS:Mobile Station)」、「ユーザ端末(user terminal)」、「ユーザ装置(UE:User Equipment)」及び「端末」という用語は、互換的に使用され得る。基地局は、固定局(fixed station)、NodeB、eNodeB(eNB)、アクセスポイント(access point)、送信ポイント、受信ポイント、フェムトセル、スモールセルなどの用語で呼ばれる場合もある。 As used herein, the terms "mobile station (MS)," user terminal, "" user equipment (UE) "and" terminal "may be used interchangeably. A base station may also be called in terms of a fixed station (Node station), NodeB, eNodeB (eNB), access point (access point), transmission point, reception point, femtocell, small cell, and so on.
 移動局は、当業者によって、加入者局、モバイルユニット、加入者ユニット、ワイヤレスユニット、リモートユニット、モバイルデバイス、ワイヤレスデバイス、ワイヤレス通信デバイス、リモートデバイス、モバイル加入者局、アクセス端末、モバイル端末、ワイヤレス端末、リモート端末、ハンドセット、ユーザエージェント、モバイルクライアント、クライアント又はいくつかの他の適切な用語で呼ばれる場合もある。 The mobile station may be a subscriber station, a mobile unit, a subscriber unit, a wireless unit, a remote unit, a mobile device, a wireless device, a wireless communication device, a remote device, a mobile subscriber station, an access terminal, a mobile terminal, a wireless terminal, by those skilled in the art. It may also be called a terminal, a remote terminal, a handset, a user agent, a mobile client, a client or some other suitable term.
 また、本明細書における無線基地局は、ユーザ端末で読み替えてもよい。例えば、無線基地局及びユーザ端末間の通信を、複数のユーザ端末間(D2D:Device-to-Device)の通信に置き換えた構成について、本発明の各態様/実施形態を適用してもよい。この場合、上述の無線基地局10が有する機能をユーザ端末20が有する構成としてもよい。また、「上り」及び/又は「下り」は、「サイド」と読み替えられてもよい。例えば、上りチャネルは、サイドチャネルと読み替えられてもよい。 Also, the radio base station in the present specification may be replaced with a user terminal. For example, each aspect / embodiment of the present invention may be applied to a configuration in which communication between a wireless base station and a user terminal is replaced with communication between a plurality of user terminals (D2D: Device-to-Device). In this case, the user terminal 20 may have a function that the above-described radio base station 10 has. Also, “up” and / or “down” may be read as “side”. For example, the upstream channel may be read as a side channel.
 同様に、本明細書におけるユーザ端末は、無線基地局で読み替えてもよい。この場合、上述のユーザ端末20が有する機能を無線基地局10が有する構成としてもよい。 Similarly, a user terminal herein may be read at a radio base station. In this case, the radio base station 10 may have a function that the above-described user terminal 20 has.
 本明細書において、基地局によって行われるとした特定動作は、場合によってはその上位ノード(upper node)によって行われることもある。基地局を有する1つ又は複数のネットワークノード(network nodes)で構成されるネットワークにおいて、端末との通信のために行われる様々な動作は、基地局、基地局以外の1つ以上のネットワークノード(例えば、MME(Mobility Management Entity)、S-GW(Serving-Gateway)などが考えられるが、これらに限られない)又はこれらの組み合わせによって行われ得ることは明らかである。 In this specification, the specific operation to be performed by the base station may be performed by the upper node in some cases. In a network composed of one or more network nodes having a base station, various operations performed for communication with a terminal may be performed by the base station, one or more network nodes other than the base station ( For example, it is apparent that it can be performed by MME (Mobility Management Entity), S-GW (Serving-Gateway), etc. but not limited thereto or a combination thereof.
 本明細書で説明した各態様/実施形態は単独で用いてもよいし、組み合わせて用いてもよいし、実行に伴って切り替えて用いてもよい。また、本明細書で説明した各態様/実施形態の処理手順、シーケンス、フローチャートなどは、矛盾の無い限り、順序を入れ替えてもよい。例えば、本明細書で説明した方法については、例示的な順序で様々なステップの要素を提示しており、提示した特定の順序に限定されない。 Each aspect / embodiment described in this specification may be used alone, may be used in combination, and may be switched and used along with execution. Moreover, as long as there is no contradiction, you may replace the order of the processing procedure of each aspect / embodiment, sequence, flowchart, etc. which were demonstrated in this specification. For example, for the methods described herein, elements of the various steps are presented in an exemplary order and are not limited to the particular order presented.
 本明細書で説明した各態様/実施形態は、LTE(Long Term Evolution)、LTE-A(LTE-Advanced)、LTE-B(LTE-Beyond)、SUPER 3G、IMT-Advanced、4G(4th generation mobile communication system)、5G(5th generation mobile communication system)、FRA(Future Radio Access)、New-RAT(Radio Access Technology)、NR(New Radio)、NX(New radio access)、FX(Future generation radio access)、GSM(登録商標)(Global System for Mobile communications)、CDMA2000、UMB(Ultra Mobile Broadband)、IEEE 802.11(Wi-Fi(登録商標))、IEEE 802.16(WiMAX(登録商標))、IEEE 802.20、UWB(Ultra-WideBand)、Bluetooth(登録商標)、その他の適切な無線通信方法を利用するシステム及び/又はこれらに基づいて拡張された次世代システムに適用されてもよい。 Each aspect / embodiment described in the present specification includes LTE (Long Term Evolution), LTE-A (LTE-Advanced), LTE-B (LTE-Beyond), SUPER 3G, IMT-Advanced, 4G (4th generation mobile) Communication system), 5G (5th generation mobile communication system), FRA (Future Radio Access), New-RAT (Radio Access Technology), NR (New Radio), NX (New radio access), FX (Future generation radio access), GSM (registered trademark) (Global System for Mobile communications), CDMA2000, UMB (Ultra Mobile Broadband), IEEE 802.11 (Wi-Fi (registered trademark)), IEEE 802.16 (WiMAX (registered trademark)), IEEE 802 .20, UWB (Ultra-Wide Band), Bluetooth (registered trademark), The present invention may be applied to a system utilizing another appropriate wireless communication method of and / or an extended next generation system based on these.
 本明細書で使用する「に基づいて」という記載は、別段に明記されていない限り、「のみに基づいて」を意味しない。言い換えれば、「に基づいて」という記載は、「のみに基づいて」と「に少なくとも基づいて」の両方を意味する。 As used herein, the phrase "based on" does not mean "based only on," unless expressly stated otherwise. In other words, the phrase "based on" means both "based only on" and "based at least on."
 本明細書で使用する「第1の」、「第2の」などの呼称を使用した要素へのいかなる参照も、それらの要素の量又は順序を全般的に限定するものではない。これらの呼称は、2つ以上の要素間を区別する便利な方法として本明細書で使用され得る。したがって、第1及び第2の要素の参照は、2つの要素のみが採用され得ること又は何らかの形で第1の要素が第2の要素に先行しなければならないことを意味しない。 Any reference to an element using the designation "first," "second," etc. as used herein does not generally limit the quantity or order of those elements. These designations may be used herein as a convenient way of distinguishing between two or more elements. Thus, reference to the first and second elements does not mean that only two elements can be taken or that the first element must somehow precede the second element.
 本明細書で使用する「判断(決定)(determining)」という用語は、多種多様な動作を包含する場合がある。例えば、「判断(決定)」は、計算(calculating)、算出(computing)、処理(processing)、導出(deriving)、調査(investigating)、探索(looking up)(例えば、テーブル、データベース又は別のデータ構造での探索)、確認(ascertaining)などを「判断(決定)」することであるとみなされてもよい。また、「判断(決定)」は、受信(receiving)(例えば、情報を受信すること)、送信(transmitting)(例えば、情報を送信すること)、入力(input)、出力(output)、アクセス(accessing)(例えば、メモリ中のデータにアクセスすること)などを「判断(決定)」することであるとみなされてもよい。また、「判断(決定)」は、解決(resolving)、選択(selecting)、選定(choosing)、確立(establishing)、比較(comparing)などを「判断(決定)」することであるとみなされてもよい。つまり、「判断(決定)」は、何らかの動作を「判断(決定)」することであるとみなされてもよい。 The term "determining" as used herein may encompass a wide variety of operations. For example, “determination” may be calculating, computing, processing, deriving, investigating, looking up (eg, table, database or other data) A search on structure), ascertaining, etc. may be considered as "determining". Also, "determination" may be receiving (e.g. receiving information), transmitting (e.g. transmitting information), input (input), output (output), access (access) It may be considered as "determining" (eg, accessing data in memory) and the like. Also, “determination” is considered to be “determination” to resolve, select, choose, choose, establish, compare, etc. It is also good. That is, "determination" may be considered as "determining" some action.
 本明細書で使用する「接続された(connected)」、「結合された(coupled)」という用語、又はこれらのあらゆる変形は、2又はそれ以上の要素間の直接的又は間接的なあらゆる接続又は結合を意味し、互いに「接続」又は「結合」された2つの要素間に1又はそれ以上の中間要素が存在することを含むことができる。要素間の結合又は接続は、物理的なものであっても、論理的なものであっても、或いはこれらの組み合わせであってもよい。本明細書で使用する場合、2つの要素は、1又はそれ以上の電線、ケーブル及び/又はプリント電気接続を使用することにより、並びにいくつかの非限定的かつ非包括的な例として、無線周波数領域、マイクロ波領域及び光(可視及び不可視の両方)領域の波長を有する電磁エネルギーなどの電磁エネルギーを使用することにより、互いに「接続」又は「結合」されると考えることができる。 As used herein, the terms "connected", "coupled", or any variation thereof are any direct or indirect connection between two or more elements or It means a bond and can include the presence of one or more intermediate elements between two elements "connected" or "connected" to each other. The coupling or connection between elements may be physical, logical or a combination thereof. As used herein, the two elements are by using one or more wires, cables and / or printed electrical connections, and radio frequency as some non-limiting and non-exclusive examples. It can be considered "connected" or "coupled" to one another by using electromagnetic energy such as electromagnetic energy having wavelengths in the region, microwave region and light (both visible and invisible) regions.
 本明細書又は請求の範囲で「含む(including)」、「含んでいる(comprising)」、及びそれらの変形が使用されている場合、これらの用語は、用語「備える」と同様に、包括的であることが意図される。さらに、本明細書あるいは請求の範囲において使用されている用語「又は(or)」は、排他的論理和ではないことが意図される。 When the terms "including", "comprising" and variations thereof are used in the specification or in the claims, these terms as well as the term "comprising" are inclusive. It is intended to be. Further, it is intended that the term "or" as used herein or in the claims is not an exclusive OR.
 以上、本発明について詳細に説明したが、当業者にとっては、本発明が本明細書中に説明した実施形態に限定されるものではないということは明らかである。本発明は、請求の範囲の記載により定まる本発明の趣旨及び範囲を逸脱することなく修正及び変更態様として実施することができる。したがって、本明細書の記載は、例示説明を目的とするものであり、本発明に対して何ら制限的な意味を有するものではない。 Although the present invention has been described above in detail, it is apparent to those skilled in the art that the present invention is not limited to the embodiments described herein. The present invention can be implemented as modifications and changes without departing from the spirit and scope of the present invention defined by the description of the claims. Accordingly, the description in the present specification is for the purpose of illustration and does not have any limiting meaning on the present invention.

Claims (4)

  1.  キャリア内に設定される部分周波数帯域(BWP:Bandwidth Part)の内、第1のBWPを用いて、前記第1のBWPとは異なる第2のBWPを示す情報を含む下り制御情報を受信する受信部と、
     前記第1のBWPのBWP設定情報に基づいて、前記下り制御情報によって割り当てられるリソースを判断する制御部と、を有することを特徴とするユーザ端末。
    Reception of receiving downlink control information including information indicating a second BWP different from the first BWP using a first BWP among partial frequency bands (BWP: Bandwidth Part) set in a carrier Department,
    A control unit that determines a resource to be allocated according to the downlink control information based on BWP setting information of the first BWP.
  2.  前記制御部は、前記下り制御情報によって割り当て可能なリソースの最大サイズは、前記第1のBWPを示す情報を含む下り制御情報によって割り当て可能なリソースの最大サイズと同じであると想定することを特徴とする請求項1に記載のユーザ端末。 The control unit is characterized by assuming that the maximum size of resources that can be allocated by the downlink control information is the same as the maximum size of resources that can be allocated by downlink control information including information indicating the first BWP. The user terminal according to claim 1.
  3.  前記制御部は、前記下り制御情報によって割り当てられるリソースを処理した後、前記第2のBWPをアクティベートすることを特徴とする請求項1又は請求項2に記載のユーザ端末。 The user terminal according to claim 1 or 2, wherein the control unit activates the second BWP after processing a resource allocated by the downlink control information.
  4.  キャリア内に設定される部分周波数帯域(BWP:Bandwidth Part)の内、第1のBWPを用いて、前記第1のBWPとは異なる第2のBWPを示す情報を含む下り制御情報を受信するステップと、
     前記第1のBWPのBWP設定情報に基づいて、前記下り制御情報によって割り当てられるリソースを判断するステップと、を有することを特徴とするユーザ端末の無線通信方法。
    Step of receiving downlink control information including information indicating a second BWP different from the first BWP using a first BWP among partial frequency bands (BWP: Bandwidth Part) set in a carrier When,
    Determining a resource to be allocated according to the downlink control information based on BWP setting information of the first BWP.
PCT/JP2018/001623 2018-01-19 2018-01-19 User terminal and wireless communication method WO2019142326A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2019565659A JPWO2019142326A1 (en) 2018-01-19 2018-01-19 User terminal and wireless communication method
PCT/JP2018/001623 WO2019142326A1 (en) 2018-01-19 2018-01-19 User terminal and wireless communication method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/001623 WO2019142326A1 (en) 2018-01-19 2018-01-19 User terminal and wireless communication method

Publications (1)

Publication Number Publication Date
WO2019142326A1 true WO2019142326A1 (en) 2019-07-25

Family

ID=67300972

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/001623 WO2019142326A1 (en) 2018-01-19 2018-01-19 User terminal and wireless communication method

Country Status (2)

Country Link
JP (1) JPWO2019142326A1 (en)
WO (1) WO2019142326A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210377944A1 (en) * 2018-11-02 2021-12-02 Wilus Institute Of Standards And Technology Inc. Method for transmitting and receiving physical channel and signals on basis of bandwidth part (bwp) in unlicensed band, and device using same
US11895698B2 (en) 2019-01-09 2024-02-06 Wilus Institute Of Standards And Technology Inc. Channel access method for carrying out transmission in unlicensed band, and device using same

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
HUAWEI ET AL.: "Remaining issues on bandwidth part and wideband operation", 3GPP TSG RAN WG1 NR AD HOC MEETING, RL-1800018, 13 January 2018 (2018-01-13), XP051384521, Retrieved from the Internet <URL:http://www.3gpp.org/ftp/TSG_RAN/WG1_RL1/TSGR1_AH/NR_AH_1801/Docs> [retrieved on 20180327] *
NTT DOCOMO: "Remaing issues on bandwidth parts for NR", 3GPP TSG RAN WG1#90B, RL-1718223, vol. 4, 3 October 2017 (2017-10-03), XP051352931, Retrieved from the Internet <URL:http://www.3gpp.org/ftp/TSG_RAN/WG1_RL1/TSGR1_90b/Docs> [retrieved on 20180327] *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210377944A1 (en) * 2018-11-02 2021-12-02 Wilus Institute Of Standards And Technology Inc. Method for transmitting and receiving physical channel and signals on basis of bandwidth part (bwp) in unlicensed band, and device using same
US11895698B2 (en) 2019-01-09 2024-02-06 Wilus Institute Of Standards And Technology Inc. Channel access method for carrying out transmission in unlicensed band, and device using same

Also Published As

Publication number Publication date
JPWO2019142326A1 (en) 2021-01-28

Similar Documents

Publication Publication Date Title
JP7254714B2 (en) Terminal, wireless communication method, base station and system
JP7121053B2 (en) Terminal, wireless communication method, base station and system
JP7248594B2 (en) Terminal, wireless communication method, base station and system
US20200252180A1 (en) User terminal and radio communication method
JP7074766B2 (en) Terminals, wireless communication methods and systems
WO2019193768A1 (en) User terminal and wireless base station
WO2019097633A1 (en) User terminal and wireless communication method
WO2019111301A1 (en) User equipment and radio communication method
JP7107845B2 (en) Terminal, wireless communication method and wireless communication system
WO2019087340A1 (en) User equipment and wireless communication method
US11343063B2 (en) User terminal and radio communication method
WO2019021489A1 (en) User terminal and radio communication method
WO2019021488A1 (en) User terminal, base station device and radio communication method
WO2019021443A1 (en) User terminal and radio communication method
WO2019069471A1 (en) User terminal and wireless communication method
WO2019135287A1 (en) User terminal and wireless communication method
WO2019030930A1 (en) User terminal and radio communication method
WO2019030871A1 (en) User terminal and radio communication method
WO2019026216A1 (en) User terminal and wireless communications method
JP7163320B2 (en) Terminal, wireless communication method, base station and system
WO2019135288A1 (en) User terminal and wireless communication method
WO2019030869A1 (en) User terminal, base station, and radio communication method
WO2019087361A1 (en) User equipment and wireless communication method
WO2019142326A1 (en) User terminal and wireless communication method
WO2019087365A1 (en) User equipment and wireless communication method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18900857

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019565659

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18900857

Country of ref document: EP

Kind code of ref document: A1