WO2019142299A1 - Component mounting device, and component shortage determination method - Google Patents

Component mounting device, and component shortage determination method Download PDF

Info

Publication number
WO2019142299A1
WO2019142299A1 PCT/JP2018/001446 JP2018001446W WO2019142299A1 WO 2019142299 A1 WO2019142299 A1 WO 2019142299A1 JP 2018001446 W JP2018001446 W JP 2018001446W WO 2019142299 A1 WO2019142299 A1 WO 2019142299A1
Authority
WO
WIPO (PCT)
Prior art keywords
component
tape
supply position
component supply
unit
Prior art date
Application number
PCT/JP2018/001446
Other languages
French (fr)
Japanese (ja)
Inventor
大山 和義
亮介 中村
清隆 相澤
Original Assignee
ヤマハ発動機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ヤマハ発動機株式会社 filed Critical ヤマハ発動機株式会社
Priority to CN201880070326.8A priority Critical patent/CN112042287B/en
Priority to PCT/JP2018/001446 priority patent/WO2019142299A1/en
Priority to JP2019565635A priority patent/JP6974503B2/en
Publication of WO2019142299A1 publication Critical patent/WO2019142299A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K13/00Apparatus or processes specially adapted for manufacturing or adjusting assemblages of electric components
    • H05K13/08Monitoring manufacture of assemblages

Definitions

  • the present invention relates to a technique for determining the occurrence of component breakage of a component supply tape in which components are accommodated in a carrier tape accommodating unit in which a plurality of accommodating units are arranged at predetermined intervals.
  • a tape for supplying components to the supply position by sequentially transporting the respective storage units to the supply position by intermittently driving the component supply tape containing the components in the storage units of the carrier tape in which a plurality of storage units are arranged at predetermined intervals. Feeders are widely used. Further, Patent Documents 1 to 3 disclose a technique for determining the end of the parts supply tape.
  • Patent Documents 1 and 2 a sensor for detecting the presence or absence of a component in the storage portion of the component supply tape is provided in the tape feeder, and this sensor detects an empty storage portion not storing the component. It is determined that the component supply tape has run out of components.
  • the present invention has been made in view of the above problems, and makes it possible to accurately determine the occurrence of component breakage of a component supply tape in which components are housed in a carrier tape housing portion in which a plurality of housing portions are arranged at predetermined intervals.
  • the purpose is to provide technology.
  • the component mounter is a carrier tape for storing components in the storage section on the tip side of the predetermined range without storing the components in the storage area of the predetermined range from the end among the plurality of storage sections arranged at predetermined intervals.
  • a tape drive unit for intermittently transporting the storage unit to the supply position by intermittently driving the component supply tape having the cover tape for closing the plurality of storage units, and the cover tape to open the supply tape.
  • a tape feeder having an exposed portion for exposing the transported storage portion, a substrate loading portion for loading a substrate, and a component picked up from the storage portion transported to the supply position and mounted on the substrate loaded by the substrate loading portion Components of the component supply tape based on the result of checking the presence or absence of the components in the storage unit transported to the supply position from the mounting head to be taken, the imaging unit for imaging the supply position, and the image captured by the imaging unit Les and a determining controller whether occurred.
  • the component breakage determination method is a carrier that accommodates components in the accommodation portion on the tip end side from the predetermined range without accommodating the components in the accommodation portion of the predetermined range from the end among the plurality of accommodation portions arranged at predetermined intervals.
  • the component supply tape having the tape and the cover tape for closing the plurality of storage units is intermittently driven to the supply position by intermittently driving the storage unit to the supply position, and the cover tape is transported to the supply position.
  • the component supply tape is cut off based on the result of confirming the presence or absence of the component in the storage unit transported to the supply position from the process of exposing the storage unit, the process of imaging the supply position, and the image obtained by imaging the supply position. Determining whether or not has occurred.
  • the presence or absence of the component in the container transported to the supply position is confirmed from the image obtained by imaging the supply position where the exposed container is located. Be done. That is, based on the image of the exposed storage portion, the presence or absence of a component in the storage portion is confirmed. As a result, it is possible to accurately determine the occurrence of component breakage of the component supply tape.
  • control unit determines that the component mounting tape has run out so that the component mounting machine is operated. You may configure. This makes it possible to more accurately determine the occurrence of component breakage of the component supply tape.
  • control unit determines that the component supply tape has run out of parts
  • the control unit causes the tape drive unit to execute a tape discharge operation of continuously conveying the component supply tape until the end of the component supply tape is discharged.
  • the component mounting machine may be configured. In such a configuration, it is possible to appropriately execute the tape discharging operation after accurately determining the occurrence of component breakage of the component supply tape.
  • the tape feeder further includes a sensor that detects the end of the component supply tape, and the control unit monitors the detection timing at which the sensor detects the end of the component supply tape when the tape drive unit starts the tape discharging operation.
  • the component mounter may be configured to stop the tape drive unit according to the discharge timing of the component supply tape determined from the detection timing. In this configuration, it is possible to stop the tape drive unit that executes the tape discharging operation at an appropriate timing based on the detection timing when the sensor detects the end of the component supply tape. Therefore, when the ejection of the component supply tape is completed, the tape drive can be stopped promptly.
  • the imaging unit may configure the component mounter so as to capture the supply position by a camera that captures a fiducial mark of the substrate.
  • the imaging unit may configure the component mounter so as to capture the supply position by a camera that captures a fiducial mark of the substrate.
  • the imaging unit may configure the component mounter so as to image the supply position when the mounting head fails to pick up the component from the storage unit at the supply position.
  • a failure in picking up a component by the mounting head can also be caused by a failure in component exposure in addition to a component shortage in the component supply tape. Therefore, the control unit checks the presence or absence of the component in the storage unit transported to the supply position when it is determined from the image captured by the imaging unit that the component supplied to the supply position has been successfully exposed. You may comprise a component mounting machine. This can suppress unnecessary execution of confirmation of the presence or absence of the component in the housing when the cause of the failure in pickup of the component by the mounting head is failure in exposure of the component.
  • control unit may configure the component mounter so as not to pick up the component from the storage unit to the mounting head when confirming that no component is present in the storage unit transported to the supply position. This can prevent the mounting head from unnecessarily trying to pick up a component.
  • the present invention it is possible to accurately determine the occurrence of component breakage of a component supply tape in which components are accommodated in a carrier tape accommodating unit in which a plurality of accommodating units are arranged at predetermined intervals.
  • FIG. 1 is a partial plan view schematically showing a component mounter according to the present invention.
  • FIG. 2 is a block diagram showing an electrical configuration of the component mounter of FIG. 1;
  • FIG. 2 is a partial cross-sectional view schematically showing a configuration of a substrate recognition camera.
  • the side view which shows typically an example of a structure and operation
  • the perspective view which shows an example of a components supply tape.
  • FIG. 6 is a plan view showing the vicinity of the end of the component supply tape of FIG. 5;
  • FIG. 7 is a flowchart showing a first example of a pickup operation performed by the component mounting machine of FIG. 1; The figure which shows typically the modification of a mounting head.
  • FIG. 11 is a flowchart showing an example of processing in a tape ejection operation that can be executed by the tape feeder of FIG. 10;
  • FIG. The flowchart which shows the 3rd example of the processing in pickup operation in a component mounting machine.
  • FIG. 1 is a partial plan view schematically showing a component mounter according to the present invention
  • FIG. 2 is a block diagram showing an electrical configuration provided in the component mounter of FIG. FIG. 1 and the following drawings show XYZ orthogonal coordinates in which the Z direction is a vertical direction and the X direction and the Y direction are horizontal directions.
  • the component mounter 1 includes a main control unit 100 including an arithmetic processing unit 110, a drive control unit 120, a storage unit 130, an image processing unit 140, and a feeder communication unit 150.
  • the arithmetic processing unit 110 is a processor configured of a central processing unit (CPU) and a random access memory (RAM), and the drive control unit 120 and the image processing unit 140 based on programs and data stored in the storage unit 130. And by controlling the feeder communication unit 150, each operation described later is controlled.
  • the component mounting machine 1 is provided with a user interface 160 configured of, for example, a touch panel display, and the arithmetic processing unit 110 executes control according to an input of the user interface 160.
  • the component mounter 1 includes a pair of conveyors 12, 12 provided on a base 11. Then, the component mounter 1 controls the conveyor 12 by the drive control unit 120 to carry the substrate B required for component mounting. That is, the component mounting machine 1 mounts the component E (FIG. 5) on the substrate B carried in to the working position (the position of the substrate B in FIG. 1) from the upstream side of the X direction (substrate conveyance direction) Then, the substrate B on which the component mounting has been completed is carried out by the conveyor 12 from the work position to the downstream side in the X direction. Mounting the component E on the substrate B means placing the component E on the substrate B.
  • Two component supply units 25 are aligned in the X direction on both sides of the pair of conveyors 12 and 12 in the Y direction, and in each component supply unit 25, a plurality of tape feeders 5 are arranged in the X direction.
  • Each tape feeder 5 is provided with a component supply reel on which a component supply tape 60 (FIG. 5) is accommodated, in which small pieces E of integrated circuits, transistors, capacitors and the like are accommodated at predetermined intervals.
  • Each tape feeder 5 intermittently supplies the component E to the component supply position Ls at the tip by intermittently feeding the component supply tape 60 drawn from the component supply reel.
  • the arithmetic processing unit 110 controls the operation of the tape feeder 5 by issuing an instruction to the feeder control unit 50 of the tape feeder 5 via the feeder communication unit 150.
  • a component recognition camera 7 is attached to the base 11 facing upward between two component supply units 25 arranged in the X direction.
  • the component recognition camera 7 captures an image of the component E passing above as described later, and transmits the image to the image processing unit 140.
  • a pair of Y-axis rails 21, 21 extending in the Y-direction, a Y-axis ball screw 22 extending in the Y-direction, and a Y-axis motor My for rotating the Y-axis ball screw 22 are provided.
  • the support member 23 is fixed to the nut of the Y-axis ball screw 22 in a state where the support member 23 is supported movably in the Y direction by the pair of Y-axis rails 21, 21.
  • An X-axis ball screw 24 extending in the X direction and an X-axis motor Mx for rotationally driving the X-axis ball screw 24 are attached to the head support member 23, and the head unit 3 can be moved in the X direction with the head support member 23. While being supported by the X axis ball screw 24 is fixed to the nut of the X axis ball screw 24. Therefore, the drive control unit 120 rotates the Y-axis ball screw 22 by the Y-axis motor My to move the head unit 3 in the Y direction, or rotates the X-axis ball screw 24 by the X-axis motor Mx to rotate the head unit 3 It can be moved in the direction.
  • the head unit 3 has a plurality (six) of mounting heads 31 aligned in the X direction. Furthermore, the head unit 3 has a Z-axis motor Mz for raising and lowering the mounting head 31 with respect to each mounting head 31. Each mounting head 31 has an elongated shape extending in the Z direction (vertical direction), and has a nozzle 32 for suctioning the component E at its lower end so as to be disengageable. Then, component mounting is performed by the mounting head 31.
  • the drive control unit 120 causes the nozzle 32 of the mounting head 31 to face the component supply position Ls from above by the X-axis motor Mx and the Y-axis motor My.
  • the drive control unit 120 lowers the mounting head 31 by the Z-axis motor Mz and brings the nozzle 32 into contact with the component E supplied to the component supply position Ls by the tape feeder 5.
  • the drive control unit 120 raises the mounting head 31 having the component E adsorbed by the nozzle 32.
  • the drive control unit 120 moves the mounting head 31 above the substrate B by the X-axis motor Mx and the Y-axis motor My.
  • the component E is mounted on the substrate B by releasing the adsorption of the component E.
  • the head unit 3 has an R-axis motor Mr for each mounting head 31 for rotating the mounting head 31 in the R direction (rotational direction about the Z direction), and the drive control unit 120 uses the R-axis motor Mr
  • the rotation angle of the component E mounted on the substrate B is adjusted by rotating the mounting head 31 in the R direction. That is, the mounting head 31 picks up the component E from the component supply position Ls and then moves to the upper side of the substrate B, passing the upper side of the component recognition camera 7 and passing the component recognition camera 7 above it To capture an image of the part E.
  • the image of the component E is transmitted from the component recognition camera 7 to the image processing unit 140, and the image processing unit 140 recognizes the position and orientation of the component E attracted by the mounting head 31 based on the image (component recognition).
  • the drive control unit 120 adjusts the rotation angle of the component E mounted on the substrate B by the mounting head 31 based on the result of the component recognition.
  • the substrate recognition camera 8 is attached to the head unit 3 so as to face downward, and the substrate recognition camera 8 moves in the X direction and the Y direction along with the head unit 3.
  • the substrate recognition camera 8 captures from above the fiducial mark attached to the substrate B carried into the work position, and acquires an image of the fiducial mark.
  • the image of the fiducial mark is transmitted from the substrate recognition camera 8 to the image processing unit 140, and the image processing unit 140 recognizes the position of the substrate B based on the image (substrate recognition).
  • the drive control unit 120 adjusts the position in the X direction and the Y direction of the component E mounted by the mounting head 31 based on the result of the substrate recognition.
  • FIG. 3 is a partial cross-sectional view schematically showing the configuration of the substrate recognition camera.
  • the substrate recognition camera 8 has an illumination unit 81 for irradiating the object J with light, and an imaging unit 83 for imaging the object J while facing the object J from the Z direction.
  • the illumination unit 81 arranges a plurality of point light sources in an annular shape centered on the optical axis of the imaging unit 83 parallel to the Z direction, and emits light from the respective light sources downward.
  • a point light source for example, an LED (Light Emitting Diode) can be used.
  • the imaging unit 83 has a lens 831 and a solid-state imaging device 832.
  • the lens 831 has an optical axis parallel to the Z direction and faces the object J from above, and images the light reflected by the object J on the solid-state imaging device 832.
  • the solid-state imaging device 832 captures an image of the object J by detecting the light formed by the lens 831.
  • the substrate recognition camera 8 also performs imaging of the component supply position Ls of the tape feeder 5 as described later, in addition to imaging of the fiducial mark.
  • FIG. 4 is a side view schematically showing an example of the configuration and operation of the tape feeder.
  • the tape feeder 5 appropriately indicates the feed direction Df (parallel to the Y direction) in which the component supply tape 60 is sent out, and the arrow side of the feed direction Df corresponds to the “front” of the feed direction Df and the arrows of the feed direction Df. Treat the opposite side as "back” in the feed direction Df as appropriate.
  • different reference numerals 60a and 60b are appropriately used for the carrier tape.
  • the tape feeder 5 includes a feeder main body 51 having a mechanical configuration, and feeder motors Mf and Mb for driving the component supply tape 60.
  • the feeder main body 51 has a flat case 52 which is thin in the X direction and long in the feed direction Df.
  • the case 52 accommodates the above-described feeder control unit 50, and the operator can input an instruction to the feeder control unit 50 via the operation button provided on the case 52.
  • a tape insertion port 53a (shown by a broken line) extended in the Z direction is opened, and the component supply position Ls is on the upper surface of the front end portion of the case 52 in the feed direction Df. It is provided.
  • the feeder main body 51 In the feeder main body 51, there is provided a tape transport path 53b extending from the tape insertion port 53a to the component supply position Ls.
  • the feeder main body 51 feeds the component supply tape 60 inserted from the tape insertion port 53a into the tape conveyance path 53b in the feed direction Df by receiving the driving force of the feeder motors Mf and Mb, thereby providing components at the component supply position Ls. Supply.
  • the feeder main body 51 has a sprocket 54 disposed adjacent to the tape insertion port 53a above the tape transport path 53b and a gear 55 for transmitting the driving force of the feeder motor Mb to the sprocket 54 in the case 52,
  • the sprocket 54 rotates in response to the driving force generated by the feeder motor Mb.
  • the feeder main body 51 has a tape support member 56 removably attached to the case 52.
  • the tape support member 56 is opposed to the sprocket 54 from below, and the component supply tape 60 is engaged with the sprocket 54 by sandwiching the component supply tape 60 with the sprocket 54.
  • the feeder motor Mb can convey the component supply tape 60 engaged with the sprocket 54 in the feed direction Df by rotating in the forward direction (forward rotation). Further, the feeder motor Mb can convey the component supply tape 60 engaged with the sprocket 54 to the opposite side (rear side) of the feed direction Df by rotating in the reverse direction opposite to the forward direction (reverse rotation).
  • the feeder main body 51 is disposed at the front end portion thereof, and two sprockets 57d and 57u adjacent to the tape transport path 53b from below and two for transmitting the driving force of the feeder motor Mf to the sprockets 57d and 57u.
  • Gears 58 d and 58 u are provided in the case 52.
  • the sprockets 57d and 57u rotate in response to the driving force generated by the feeder motor Mf. Therefore, the feeder motor Mf can intermittently transport the component supply tape 60 engaged with the sprockets 57d and 57u in the feed direction Df by intermittently rotating (forward rotation) in the forward direction.
  • the feeder motor Mf can convey the component supply tape 60 engaged with the sprockets 57d and 57u to the opposite side (rear side) of the feed direction Df by rotating (reversely rotating) in the reverse direction opposite to the forward direction. .
  • the feeder control unit 50 executes the steps shown in FIG. 4 by controlling the feeder motors Mf and Mb. That is, as shown in step S11, when the component supply tape 60a is attached to the tape attachment position La and the operator inputs an execution instruction of automatic loading to the feeder control unit 50, the feeder motor Mb starts rotating in the forward direction. Then, the sprocket 54 conveys the component supply tape 60a in the feed direction Df. Further, in response to the leading end of the component supply tape 60 reaching the sprocket 57u, the feeder motor Mf starts to rotate in the forward direction, and the sprockets 57u and 57d transport the component supply tape 60a in the feed direction Df.
  • step S12 when the leading end of the component supply tape 60a reaches the component supply position Ls, the sprockets 57u and 57d stop conveying the component supply tape 60a in the feed direction Df.
  • the tape feeder 5 automatically carries the component supply tape 60 from the tape attachment position La to the component supply position Ls in the feed direction Df, thereby performing automatic loading for supplying the component E to the component supply position Ls.
  • the tape feeder 5 is disposed between the two sprockets 57d and 57u, and has a tape sensor Sf that detects the carrier tape 60 near the upstream side of the feed direction Df of the component supply position Ls. Then, based on the timing at which the tape sensor Sf detects the component supply tape 60a, the feeder control unit 50 grasps the timing at which the component supply tape 60a reaches the component supply position Ls.
  • step S13 when the operator removes the tape support member 56 from the case 52, the component supply tape 60a is removed from the sprocket 54 and falls into the tape transport path 53b. Subsequently, as shown in step S14, the worker reattaches the tape support member 56 to the case 52, whereby the component supply tape 60b used for component mounting next to the component supply tape 60a is used as the sprocket 54 and the tape support member. It can be attached to the tape attachment position La between 56 and 56.
  • the drive of the component supply tape 60a detached from the sprocket 54 may be performed by the feeder motor Mf in a state where the feeder motor Mb is stopped.
  • the tape feeder 5 has a component exposing member 59 for releasing the component supply tape 60 at an open position Le near the upstream side of the feed direction Df of the component supply position Ls.
  • the component exposure member 59 has a cutter that contacts the component supply tape 60 at the open position Le, and the component supply tape 60 passing through the open position Le in the feed direction Df is opened by the cutter, and the component is supplied at the component supply position Ls. E is exposed.
  • FIG. 5 is a perspective view showing an example of a component supply tape
  • FIG. 6 is a plan view showing the vicinity of the end of the component supply tape of FIG.
  • the component supply tape 60 is configured of a carrier tape 62 having a sheet shape elongated in one direction, and a cover tape 64 attached to the carrier tape 62.
  • a carrier tape 62 In the carrier tape 62, hollow pockets 621 opened upward are aligned in a row at a predetermined interval in the longitudinal direction of the tape, in other words, at a predetermined arrangement pitch. Then, the part E is accommodated and held in the pocket 621 in a state of being closed by the cover tape 64.
  • engagement holes 622 penetrating vertically along the edge thereof are provided at regular intervals, and the above-mentioned sprocket 54 and sprockets 57d and 57u are engaged with the engagement holes 622 Match.
  • the tape feeder 5 intermittently supplies the component supply tape 60 by intermittently driving the component supply tape 60 in the feed direction Df by the arrangement pitch of the component E by rotating the sprockets 57d, 57u, 54 by the feeder motors Mf, Mb.
  • Each pocket 621 is sequentially transported to the position Ls. As a result, the part E in the pocket 621 is supplied to the part supply position Ls.
  • a predetermined range from the end 601 of the component supply tape 60 is a trail portion T in which a predetermined number (two or more) of empty pockets 621 in which components E do not exist are arranged. That is, among the plurality of pockets 621 of the carrier tape 62, the pocket 621 of the trail portion T does not accommodate the component E, and the pocket 621 on the tip side of the trail portion T accommodates the component E.
  • the end 601 of the component supply tape 60 corresponds to the upstream end of the feed direction Df of the component supply tape 60 attached to the tape feeder 5, and is attached to the axis of the above-mentioned reel.
  • the tip of the component supply tape 60 corresponds to the downstream end of the feed direction Df of the component supply tape 60 attached to the tape feeder 5 in other words.
  • the component exposure member 59 in FIG. 4 exposes the component E supplied to the component supply position Ls by opening the cover tape 64 at the open position Le.
  • a center opening method Japanese Unexamined Patent Publication No. 2015-220297, etc.
  • a one-sided method WO 2017/042898 etc.
  • FIG. 7 is a flow chart showing a first example of the pickup operation performed by the component mounting machine of FIG.
  • the flowchart of FIG. 7 is executed by cooperative control of the arithmetic processing unit 110 and the feeder control unit 50.
  • the tape feeder 5 to be picked up by the mounting head 31 intermittently drives the component supply tape 60 to transport the pocket 621 to the component supply position Ls.
  • step S102 the arithmetic processing unit 110 confirms whether the pickup of the component from the previous component supply position Ls has succeeded for the tape feeder 5. That is, for example, at the time of component recognition described above, the arithmetic processing unit 110 stores, for each tape feeder 5, the result that the mounting head 31 determines the success or failure of pickup of the component E based on the image captured by the component recognition camera 7. The information is stored in the unit 130. Then, in step S102, the result stored in the storage unit 130 is referred to.
  • the success or failure of the pickup of the component E by the mounting head 31 can be determined without depending on the result of component recognition. That is, the magnitude of the negative pressure generated in the nozzle 32 of the mounting head 31 differs between when the component E is picked up successfully and when it fails. Therefore, based on the pressure of the nozzle 32, the success or failure of the pickup may be determined.
  • the arithmetic processing unit 110 permits the mounting head 31 to pick up the component E (step S104).
  • the mounting head 31 can pick up the component E from the pocket 621 transported to the component supply position Ls in step S101 and mount the component E on the substrate B.
  • step S104 If the pickup fails (in the case of “NO” in step S103), the board recognition camera 8 moves above the component supply position Ls to be subjected to the pickup operation by the mounting head 31 (step S105)
  • the component supply position Ls is imaged (step S106).
  • an image captured by the substrate recognition camera 8 from above is acquired at the component supply position Ls at which the pocket 621 exposed upward by the component exposure member 59 is located.
  • the image of the component supply position Ls is transmitted from the substrate recognition camera 8 to the image processing unit 140, and the image processing unit 140 determines the presence or absence of the component E in the pocket 621 of the component supply position Ls based on the image (step S107).
  • the arithmetic processing unit 110 permits the mounting head 31 to pick up the part E (step S104).
  • the imaging number m of the component supply position Ls is incremented (step S108), and the imaging number m is a predetermined number mt (mt is It is determined whether it is an integer of 2 or more) (step S109).
  • the component mounter 1 may be configured such that the user can arbitrarily input the predetermined number of times mt by, for example, an operation on the user interface 160.
  • the number of times of imaging m is “1”
  • “NO” is determined in step S109.
  • step S110 the tape feeder 5 to be picked up by the mounting head 31 intermittently drives the component supply tape 60 to transport the pocket 621 to the component supply position Ls, and then the process returns to step S106.
  • the arithmetic processing unit 110 prohibits the mounting head 31 from picking up the component E from the component supply position Ls in which it is determined in step S107 that the component E is not present.
  • the substrate recognition camera 8 captures an image of the component supply position Ls (step S106), and the image processing unit 140 determines the presence or absence of the component E in the pocket 621 of the component supply position Ls based on the image (step S107). ). Then, when it is determined that the part E is present (in the case of “YES” in step S107), the arithmetic processing unit 110 permits the mounting head 31 to pick up the part E (step S104). On the other hand, when it is determined that the part E does not exist (in the case of “NO” in step S107), steps S108 to S110 are re-executed.
  • the arithmetic processing unit 110 determines that the component supply tape 60 has run out of parts (step S112) after resetting the number of times of imaging m to zero (step S111). ). Then, the feeder control unit 50 continuously discharges the component supply tape 60 in the feed direction Df until the end 601 of the component supply tape 60 as the determination target is discharged from the tip of the tape feeder 5.
  • the feeder motors Mf, Mb are executed (step S113).
  • the moving speed of the component supply tape 60 in the tape discharging operation is higher than the moving speed of the component supply tape 60 in intermittent conveyance.
  • the sprocket 54 starts to rotate, and the component supply tape 60 engaged with the sprocket 54 with the tape support member 56 is conveyed toward the component supply position Ls.
  • the component E at the most downstream in the feed direction Df of the component supply tape 60 is supplied to the component supply position Ls, and mounting of the component E by the mounting head 31 is continued.
  • the start of the automatic loading that is, the start of the rotation of the sprocket 54 is started immediately after it is determined that the parts are out, and the ejection of the leading part supply tape 60 and the automatic loading of the following parts supply tape 60 are performed in parallel. You may.
  • the presence or absence of the component E in the pocket 621 conveyed to the component supply position Ls is confirmed from the image obtained by imaging the component supply position Ls at which the exposed pocket 621 is located. That is, based on an image obtained by imaging the exposed pocket 621, the presence or absence of the part E in the pocket 621 is confirmed. As a result, it is possible to accurately determine the occurrence of component breakage of the component supply tape 60.
  • the arithmetic processing unit 110 determines that the component supply tape 60 is out of components. As a result, the occurrence of component breakage of the component supply tape 60 can be determined more accurately.
  • the feeder motor for continuously discharging the component supply tape 60 is continuously fed until the end 601 of the component supply tape 60 is discharged.
  • Make Mf and Mb execute it is possible to appropriately execute the tape discharging operation after accurately determining the occurrence of component breakage of the component supply tape 60.
  • the component supply tape 60 is continuously transported without being stopped intermittently. Then, with the continuous conveyance of the component supply tape 60, the cover tape 64 is opened. Therefore, even after the detection of the out-of-parts, the presence or absence of the part E in the pocket 621 passing through the parts supply position Ls may be confirmed by continuing the imaging of the parts supply position Ls by the substrate recognition camera 8. Then, when the pocket 621 in which the component E exists is detected, the component supply tape 60 is stopped or transported to the upstream side in the feed direction Df after stopping, and pickup of the component E by the mounting head 31 is permitted. It is good.
  • the component supply position Ls is imaged by the substrate recognition camera 8 which images the fiducial mark of the substrate B.
  • the board recognition camera 8 for capturing a fiducial mark can be shared to determine whether the component supply tape 60 is out of parts, and the number of cameras provided in the component mounter 1 can be reduced. .
  • the board recognition camera 8 captures the component supply position Ls. In such a configuration, it is possible to confirm that the component supply tape 60 has run out of components at an appropriate timing, triggered by a failure in picking up the component E by the mounting head 31.
  • the arithmetic processing unit 110 confirms that the component E does not exist in the pocket 621 conveyed to the component supply position Ls, the arithmetic processing unit 110 prohibits the mounting head from picking up the component E from the pocket 621. This can suppress the mounting head 31 from unnecessarily trying to pick up the component E.
  • FIG. 8 is a view schematically showing a modified example of the mounting head.
  • the mounting head 31 of FIG. 8 has a plurality of nozzles 32 circumferentially arranged around a rotation center C parallel to the Z direction. In FIG. 8, only two nozzles 32 of the plurality of nozzles 32 are shown.
  • one of the nozzles 32 is selectively located at the operation position Lo, and a component from the component supply position Ls Do E pickup.
  • a component recognition camera 9 (imaging unit) is attached to the mounting head 31.
  • the component recognition camera 9 brings the component supply position Ls into the field of view with the nozzle 32 at the operation position Lo facing the component supply position Ls from above.
  • the component recognition camera 9 includes an illumination unit 91 that emits light to the component supply position Ls, and an imaging unit 93 that images the component supply position Ls.
  • the illumination unit 91 is disposed inside the plurality of nozzles 32, and radiates light from obliquely upward to the component supply position Ls from a plurality of point light sources (for example, LEDs) arranged in a matrix.
  • the imaging unit 93 is disposed outside the plurality of nozzles 32 and includes a lens 931 and a solid-state imaging device 932.
  • the lens 931 faces the component supply position Ls from diagonally above, and focuses the light reflected at the component supply position Ls on the solid-state imaging device 932. Then, the solid-state imaging device 932 detects the light imaged by the lens 931 to capture an image of the component supply position Ls.
  • the arrangement of the illumination unit 91 is not limited to this example, and the illumination unit 91 may be attached adjacent to the imaging unit 93. In this case, the illumination unit 91 emits light to the component E from the side of the imaging unit 93.
  • FIG. 9 is a flowchart showing a second example of the processing in the pickup operation in the component mounting machine. This flowchart is executed by using the mounting head 31 of FIG. 8 under cooperative control of the main control unit 100 and the feeder control unit 50.
  • description will be made centering on differences from the flowchart of FIG. 7, common parts will be denoted by corresponding reference numerals, and the description will be appropriately omitted.
  • similar effects can be achieved by providing a common configuration.
  • step S201 the tape feeder 5 to be picked up by the mounting head 31 intermittently drives the component supply tape 60 to transport the pocket 621 to the component supply position Ls.
  • step S202 in order to pick up the component E, the mounting head 31 causes the nozzle 32 at the operation position Lo to face the component supply position Ls from above (step S202). As a result, the component supply position Ls falls within the field of view of the component recognition camera 9.
  • step S203 the component recognition camera 9 picks up an image of the component supply position Ls which is the target of the pickup operation by the mounting head 31.
  • an image obtained by the component recognition camera 9 capturing from above (obliquely above) the component supply position Ls at which the pocket 621 exposed upward by the component exposure member 59 is located is acquired.
  • the image of the component supply position Ls is transmitted from the component recognition camera 9 to the image processing unit 140, and the image processing unit 140 determines the presence or absence of the component E in the pocket 621 of the component supply position Ls based on the image (step S107).
  • the arithmetic processing unit 110 permits the mounting head 31 to pick up the part E (step S104).
  • the mounting head 31 can pick up the component E from the pocket 621 transported to the component supply position Ls in step S201 and mount the component E on the substrate B.
  • the pickup of the component E is performed while correcting the positions of the nozzle 32 of the mounting head 31 and the component E in the pocket 621 based on the position of the component E calculated from the image captured in step S203. By this, it is possible to pick up the part E while sucking an appropriate part of the part E by the nozzle 32.
  • steps S107 to S113 are executed as in FIG.
  • step S203 performed according to the determination result in step S109, imaging of the component supply position Ls is performed by the component recognition camera 9.
  • the presence or absence of the component E in the pocket 621 conveyed to the component supply position Ls is confirmed from the image obtained by imaging the component supply position Ls at which the exposed pocket 621 is located. That is, based on an image obtained by imaging the exposed pocket 621, the presence or absence of the part E in the pocket 621 is confirmed. As a result, it is possible to accurately determine the occurrence of component breakage of the component supply tape 60.
  • FIG. 10 is a view showing a modified example of the tape feeder provided in the component mounter of FIG.
  • the tape feeder 5 shown in FIG. 10 has a tape sensor Sb in the case 52 for detecting the component supply tape 60 upstream of the component supply position Ls in the feed direction Df.
  • the tape sensor Sb detects that the end 601 (upstream end of the feed direction Df) of the component supply tape 60 has passed the detection area of the tape sensor Sb.
  • the tape feeder 5 can execute the tape discharging operation shown in FIG.
  • FIG. 11 is a flowchart showing an example of processing in the tape discharge operation that can be executed by the tape feeder of FIG.
  • the feeder control unit 50 causes the feeder motors Mf and Mb to start driving the component supply tape 60 in the feed direction Df (step S301), and the tape sensor Sb controls the component supply tape 60.
  • the detection timing for detecting the end 601 is monitored (step S302).
  • the feeder control unit 50 confirms whether a predetermined time has elapsed from the detection timing (step S303).
  • the predetermined time corresponds to the time required from the detection of the end 601 of the component supply tape 60 by the tape sensor Sb to the discharge from the tape feeder 5. And if progress of predetermined time is checked ("YES" at Step S303), feeder control part 50 will stop a drive of parts supply tape 60 by feeder motor Mf and Mb (Step 304).
  • the feeder control unit 50 monitors detection timing when the tape sensor Sb detects the end 601 of the component supply tape 60. Then, the feeder control unit 50 stops the feeder motors Mf and Mb according to the discharge timing of the component supply tape 60 (that is, the timing when a predetermined time has elapsed from the detection timing) obtained from the detection timing. In this configuration, the feeder motors Mf and Mb that execute the tape discharging operation can be stopped at an appropriate timing based on the detection timing at which the tape sensor Sb detects the end 601 of the component supply tape 60. Therefore, when the component supply tape 60 is completely discharged, the feeder motors Mf and Mb can be stopped promptly.
  • FIG. 12 is a flowchart showing a third example of the processing in the pickup operation in the component mounting machine.
  • the flowchart is executed by cooperative control of the main control unit 100 and the feeder control unit 50.
  • description will be made centering on differences from the flowchart of FIG. 7, common parts will be denoted by corresponding reference numerals, and the description will be appropriately omitted.
  • similar effects can be achieved by providing a common configuration.
  • step S401 it is monitored whether the mounting head 31 succeeds in picking up the component E from the pocket 621 of the component supply position Ls.
  • the board recognition camera 8 moves above the component supply position Ls targeted for the pick-up (step S402).
  • the supply position Ls is imaged (step S403).
  • step S404 the arithmetic processing unit 110 confirms whether the exposure of the pocket 621 has succeeded at the component supply position Ls (step S404).
  • step S404 when the cover tape 64 is removed from the range necessary for picking up the part E among the openings of the pocket 621, it is determined that the exposure is successful (YES), and at least one of the cover tapes 64 is If the sets overlap, it is determined that the exposure has failed (NO). Then, if it is determined in step S404 that the exposure has failed (NO), the arithmetic processing unit 110 notifies the operator via the user interface 160 that the exposure of the pocket 621p has failed (step S405). On the other hand, if it is determined in step S404 that the exposure is successful (YES), step S107 and subsequent steps are executed as in FIG. 7 described above.
  • the presence or absence of the component E in the pocket 621 conveyed to the component supply position Ls is confirmed from the image obtained by imaging the component supply position Ls at which the exposed pocket 621 is located. That is, based on an image obtained by imaging the exposed pocket 621, the presence or absence of the part E in the pocket 621 is confirmed. As a result, it is possible to accurately determine the occurrence of component breakage of the component supply tape 60.
  • a failure in picking up the component E by the mounting head 31 may also occur due to a failure in exposure of the component E, in addition to the component breakage of the component supply tape 60. Therefore, when the arithmetic processing unit 110 determines that the exposure of the component E supplied to the component supply position Ls is successful from the image captured by the substrate recognition camera 8, the inside of the pocket 621 transported to the component supply position Ls The presence or absence of the part E is checked (step S107). On the other hand, when it is determined that the exposure of the part E has failed, the arithmetic processing unit 110 does not confirm the presence or absence of the part E in the pocket 621 of the part supply position Ls. This can suppress unnecessary execution of confirmation of the presence or absence of the component E in the pocket 621 when the cause of the failure in picking up the component E by the mounting head 31 is failure in exposure of the component E.
  • the component mounting machine 1 corresponds to an example of the "component mounting machine” of the present invention
  • the tape feeder 5 corresponds to an example of the “tape feeder” of the present invention
  • the feeder motors Mf and Mb The component exposure member 59 corresponds to an example of the "exposed portion” of the present invention
  • the component supply position Ls corresponds to an example of the "supply position" of the present invention.
  • the conveyor 12 corresponds to an example of the "substrate loading unit” of the present invention
  • the mounting head 31 corresponds to an example of the “mounting head” of the present invention
  • the substrate recognition camera 8 or the component recognition camera 9 is the "imaging unit” of the present invention
  • the substrate recognition camera 8 corresponds to an example of the “camera” of the present invention
  • the main control unit 100 and the feeder control unit 50 cooperate to function as an example of the “control unit” of the present invention.
  • the tape sensor Sb The component supply tape 60 corresponds to an example of the "component supply tape” of the present invention
  • the carrier tape 62 corresponds to an example of the "carrier tape” of the present invention
  • the pocket 621 is an example of the present invention.
  • the trail portion T corresponds to an example of the "predetermined range” of the present invention
  • the cover tape 64 corresponds to an example of the "cover tape” of the present invention
  • the component E is an example of the "cover portion” of the present invention.
  • the substrate B corresponds to an example of the “part” of the invention, and the substrate B corresponds to an example of the “substrate” of the invention.
  • the present invention is not limited to the above-described embodiment, and various modifications can be made to the above-described one without departing from the scope of the invention.
  • the moving speed of the component supply tape 60 in the tape discharging operation can also be changed as appropriate.
  • notification of component run out is performed by the user interface 160 without executing the tape discharging operation, and the component supply tape 60 with a component run out is generated. The operator may be prompted to perform splicing to connect the next component supply tape 60.
  • the configuration for exposing the pocket 621 at the component supply position Ls is not limited to the above example. That is, as described in JP-A-2015-143225, the pocket 621 may be exposed by a peeling member which pulls the cover tape 64 to peel it from the carrier tape 62.
  • Component mounting machine 12 Conveyor (substrate loading unit) 31 ... mounting head 5 ... tape feeder 59 ... part exposed member (exposed part) Mf, Mb: Feeder motor (tape drive unit) Sb ... tape sensor (sensor) Ls: Parts supply position (supply position) 60 ... parts supply tape 62 ... carrier tape 621 ... pocket (housing part) 64 ... cover tape T ... trail section (predetermined range) 7 ... Part recognition camera (imaging unit, camera) 9: Parts recognition camera (imaging unit) 100: Main control unit (control unit) 50: Feeder control unit (control unit) B: Board E: Parts

Landscapes

  • Engineering & Computer Science (AREA)
  • Operations Research (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Supply And Installment Of Electrical Components (AREA)

Abstract

From an image obtained by imaging a component feed position Ls at which an exposed pocket 621 is positioned, the presence/absence of a component E in the pocket 621 transported to the component feed position Ls is verified. Specifically, the presence/absence of a component E in the pocket 621 is verified on the basis of the image obtained by imaging the exposed pocket 621. As a result, the occurrence of a component shortage in a component feed tape 60 can be accurately determined.

Description

部品実装機、部品切れ判定方法Part mounting machine, part out judgment method
 この発明は、複数の収容部が所定間隔で並ぶキャリアテープの収容部に部品を収容した部品供給テープの部品切れの発生を判定する技術に関する。 The present invention relates to a technique for determining the occurrence of component breakage of a component supply tape in which components are accommodated in a carrier tape accommodating unit in which a plurality of accommodating units are arranged at predetermined intervals.
 複数の収容部が所定間隔で並ぶキャリアテープの収容部に部品を収容した部品供給テープを間欠的に駆動することで各収容部を供給位置に順に搬送して、供給位置に部品を供給するテープフィーダーが広く用いられている。また、特許文献1~3では、部品供給テープの部品切れを判定する技術が示されている。 A tape for supplying components to the supply position by sequentially transporting the respective storage units to the supply position by intermittently driving the component supply tape containing the components in the storage units of the carrier tape in which a plurality of storage units are arranged at predetermined intervals. Feeders are widely used. Further, Patent Documents 1 to 3 disclose a technique for determining the end of the parts supply tape.
 例えば特許文献1では、実装ヘッドが供給位置からの部品のピックアップに失敗し、なおかつテープフィーダー内に設けられたセンサーが部品供給テープの終端を検出すると、部品供給テープの部品切れが生じたと判定される。ただし、部品供給テープの終端部には、部品を収容しない空の収容部が連続するトレイル部が設けられている。したがって、トレイル部が長いと、実装ヘッドが部品のピックアップに失敗してから部品供給テープの終端の検出までの時間が長くなり、部品供給テープの部品切れの判定に時間を要することとなる。これに対して、特許文献1、2では、部品供給テープの収容部における部品の有無を検出するセンサーがテープフィーダー内に設けられており、このセンサーが部品を収容しない空の収容部を検出すると、部品供給テープの部品切れが生じたと判定される。 For example, according to Patent Document 1, when the mounting head fails to pick up a component from the supply position and the sensor provided in the tape feeder detects the end of the component supply tape, it is determined that the component supply tape has run out of components. Ru. However, the trailing end portion of the component supply tape is provided with a trail portion in which an empty accommodating portion not accommodating the components is continuous. Therefore, if the trail portion is long, it takes a long time from when the mounting head fails to pick up a component to when the end of the component supply tape is detected, and it takes time to determine that the component supply tape is out of components. On the other hand, in Patent Documents 1 and 2, a sensor for detecting the presence or absence of a component in the storage portion of the component supply tape is provided in the tape feeder, and this sensor detects an empty storage portion not storing the component. It is determined that the component supply tape has run out of components.
特許5985275号公報Patent No. 5985275 gazette 特開2016-127217号公報JP, 2016-127217, A 特許6173160号公報Patent No. 6173160 gazette
 しかしながら、供給位置に供給される前の収容部は、カバーテープによって塞がれている。したがって、特許文献1、2に記載のセンサーは、カバーテープあるいはキャリアテープを介して収容部内の部品の有無を検出する必要がある。そのため、部品の有無を正確に検出できず、部品供給テープのテープ切れの発生を的確に判定することが難しかった。 However, the container before being supplied to the supply position is blocked by the cover tape. Therefore, it is necessary for the sensor described in Patent Documents 1 and 2 to detect the presence or absence of a component in the housing through a cover tape or a carrier tape. Therefore, it has been difficult to accurately detect the presence or absence of a part, and it has been difficult to accurately determine the occurrence of a tape breakage of the part supply tape.
 この発明は上記課題に鑑みなされたものであり、複数の収容部が所定間隔で並ぶキャリアテープの収容部に部品を収容した部品供給テープの部品切れの発生を的確に判定することを可能とする技術の提供を目的とする。 The present invention has been made in view of the above problems, and makes it possible to accurately determine the occurrence of component breakage of a component supply tape in which components are housed in a carrier tape housing portion in which a plurality of housing portions are arranged at predetermined intervals. The purpose is to provide technology.
 本発明に係る部品実装機は、所定間隔で並ぶ複数の収容部のうち、終端から所定範囲の収容部には部品を収容せずに所定範囲より先端側の収容部に部品を収容するキャリアテープと、複数の収容部を塞ぐカバーテープとを有する部品供給テープを間欠的に駆動することで供給位置へ収容部を間欠的に搬送するテープ駆動部と、カバーテープを開くことで、供給位置に搬送された収容部を露出させる露出部とを有するテープフィーダーと、基板を搬入する基板搬入部と、供給位置に搬送された収容部から部品をピックアップして基板搬入部により搬入された基板に実装する実装ヘッドと、供給位置を撮像する撮像部と、撮像部が撮像した画像から、供給位置に搬送された収容部内の部品の有無を確認した結果に基づき、部品供給テープの部品切れが生じたか否かを判定する制御部とを備える。 The component mounter according to the present invention is a carrier tape for storing components in the storage section on the tip side of the predetermined range without storing the components in the storage area of the predetermined range from the end among the plurality of storage sections arranged at predetermined intervals. And a tape drive unit for intermittently transporting the storage unit to the supply position by intermittently driving the component supply tape having the cover tape for closing the plurality of storage units, and the cover tape to open the supply tape. A tape feeder having an exposed portion for exposing the transported storage portion, a substrate loading portion for loading a substrate, and a component picked up from the storage portion transported to the supply position and mounted on the substrate loaded by the substrate loading portion Components of the component supply tape based on the result of checking the presence or absence of the components in the storage unit transported to the supply position from the mounting head to be taken, the imaging unit for imaging the supply position, and the image captured by the imaging unit Les and a determining controller whether occurred.
 本発明に係る部品切れ判定方法は、所定間隔で並ぶ複数の収容部のうち、終端から所定範囲の収容部には部品を収容せずに所定範囲より先端側の収容部に部品を収容するキャリアテープと、複数の収容部を塞ぐカバーテープとを有する部品供給テープを間欠的に駆動することで供給位置へ収容部を間欠的に搬送しつつ、カバーテープを開くことで、供給位置に搬送された収容部を露出させる工程と、供給位置を撮像する工程と、供給位置を撮像した画像から、供給位置に搬送された収容部内の部品の有無を確認した結果に基づき、部品供給テープの部品切れが生じたか否かを判定する工程とを備える。 The component breakage determination method according to the present invention is a carrier that accommodates components in the accommodation portion on the tip end side from the predetermined range without accommodating the components in the accommodation portion of the predetermined range from the end among the plurality of accommodation portions arranged at predetermined intervals. The component supply tape having the tape and the cover tape for closing the plurality of storage units is intermittently driven to the supply position by intermittently driving the storage unit to the supply position, and the cover tape is transported to the supply position. The component supply tape is cut off based on the result of confirming the presence or absence of the component in the storage unit transported to the supply position from the process of exposing the storage unit, the process of imaging the supply position, and the image obtained by imaging the supply position. Determining whether or not has occurred.
 このように構成された本発明(部品実装機、部品切れ判定方法)では、露出された収容部が位置する供給位置を撮像した画像から、供給位置に搬送された収容部内の部品の有無が確認される。つまり、露出された収容部の画像に基づき当該収容部内の部品の有無が確認される。その結果、部品供給テープの部品切れの発生を的確に判定することが可能となっている。 In the present invention configured as described above (the component mounter, the method for determining the shortage of components), the presence or absence of the component in the container transported to the supply position is confirmed from the image obtained by imaging the supply position where the exposed container is located. Be done. That is, based on the image of the exposed storage portion, the presence or absence of a component in the storage portion is confirmed. As a result, it is possible to accurately determine the occurrence of component breakage of the component supply tape.
 また、制御部は、供給位置に順番に供給された隣接する2個以上の収容部に部品が存在しないことを確認すると、部品供給テープの部品切れが生じたと判定するように、部品実装機を構成しても良い。これによって、部品供給テープの部品切れの発生をより的確に判定することができる。 In addition, when the control unit confirms that there is no component in the adjacent two or more accommodating units sequentially supplied to the supply position, the control unit determines that the component mounting tape has run out so that the component mounting machine is operated. You may configure. This makes it possible to more accurately determine the occurrence of component breakage of the component supply tape.
 また、制御部は、部品供給テープの部品切れが生じたと判定すると、部品供給テープの終端が排出されるまで部品供給テープを連続的に搬送するテープ排出動作を、テープ駆動部に実行させるように、部品実装機を構成しても良い。かかる構成では、部品供給テープの部品切れの発生を的確に判定した上で、テープ排出動作を適切に実行することができる。 In addition, when the control unit determines that the component supply tape has run out of parts, the control unit causes the tape drive unit to execute a tape discharge operation of continuously conveying the component supply tape until the end of the component supply tape is discharged. The component mounting machine may be configured. In such a configuration, it is possible to appropriately execute the tape discharging operation after accurately determining the occurrence of component breakage of the component supply tape.
 また、テープフィーダーは、部品供給テープの終端を検出するセンサーをさらに有し、制御部は、テープ排出動作をテープ駆動部に開始させると、センサーが部品供給テープの終端を検出する検出タイミングを監視し、検出タイミングから求まる部品供給テープの排出タイミングに応じてテープ駆動部を停止させるように、部品実装機を構成しても良い。かかる構成では、センサーが部品供給テープの終端を検出した検出タイミングに基づいた適切なタイミングで、テープ排出動作を実行するテープ駆動部を停止することができる。したがって、部品供給テープの排出が完了すると、テープ駆動部を速やかに停止することができる。 In addition, the tape feeder further includes a sensor that detects the end of the component supply tape, and the control unit monitors the detection timing at which the sensor detects the end of the component supply tape when the tape drive unit starts the tape discharging operation. The component mounter may be configured to stop the tape drive unit according to the discharge timing of the component supply tape determined from the detection timing. In this configuration, it is possible to stop the tape drive unit that executes the tape discharging operation at an appropriate timing based on the detection timing when the sensor detects the end of the component supply tape. Therefore, when the ejection of the component supply tape is completed, the tape drive can be stopped promptly.
 また、撮像部は、基板のフィデューシャルマークを撮像するカメラにより供給位置を撮像するように、部品実装機を構成しても良い。かかる構成では、フィデューシャルマークを撮像するカメラを、部品供給テープの部品切れの判定に共用することができ、部品実装機に装備するカメラの台数を抑えることが可能となる。 In addition, the imaging unit may configure the component mounter so as to capture the supply position by a camera that captures a fiducial mark of the substrate. In such a configuration, it is possible to share a camera for capturing a fiducial mark for determination of component shortage of the component supply tape, and to reduce the number of cameras provided in the component mounting machine.
 また、撮像部は、実装ヘッドが供給位置の収容部からの部品のピックアップに失敗した場合に、供給位置を撮像するように、部品実装機を構成しても良い。かかる構成では、実装ヘッドによる部品のピックアップの失敗をきっかけとして、部品供給テープの部品切れを適切なタイミングで確認することができる。 In addition, the imaging unit may configure the component mounter so as to image the supply position when the mounting head fails to pick up the component from the storage unit at the supply position. With such a configuration, it is possible to confirm the component breakage of the component supply tape at an appropriate timing, triggered by a failure in picking up the component by the mounting head.
 ちなみに、実装ヘッドによる部品のピックアップの失敗は、部品供給テープの部品切れ以外に、部品の露出の失敗によっても生じうる。そこで、制御部は、撮像部が撮像した画像から、供給位置に供給された部品の露出が成功したと判定した場合に、供給位置に搬送された収容部内の部品の有無を確認するように、部品実装機を構成しても良い。これによって、実装ヘッドによる部品のピックアップの失敗の原因が部品の露出の失敗による場合に、収容部内の部品の有無の確認を不要に実行されるのを抑制できる。 Incidentally, a failure in picking up a component by the mounting head can also be caused by a failure in component exposure in addition to a component shortage in the component supply tape. Therefore, the control unit checks the presence or absence of the component in the storage unit transported to the supply position when it is determined from the image captured by the imaging unit that the component supplied to the supply position has been successfully exposed. You may comprise a component mounting machine. This can suppress unnecessary execution of confirmation of the presence or absence of the component in the housing when the cause of the failure in pickup of the component by the mounting head is failure in exposure of the component.
 また、制御部は、供給位置に搬送された収容部内に部品が存在しないことを確認すると、収容部からの部品のピックアップを実装ヘッドに禁止するように、部品実装機を構成しても良い。これによって、実装ヘッドが部品のピックアップを不要に試行するのを抑制できる。 In addition, the control unit may configure the component mounter so as not to pick up the component from the storage unit to the mounting head when confirming that no component is present in the storage unit transported to the supply position. This can prevent the mounting head from unnecessarily trying to pick up a component.
 本発明によれば、複数の収容部が所定間隔で並ぶキャリアテープの収容部に部品を収容した部品供給テープの部品切れの発生を的確に判定することが可能となる。 According to the present invention, it is possible to accurately determine the occurrence of component breakage of a component supply tape in which components are accommodated in a carrier tape accommodating unit in which a plurality of accommodating units are arranged at predetermined intervals.
本発明に係る部品実装機を模式的に示す部分平面図。FIG. 1 is a partial plan view schematically showing a component mounter according to the present invention. 図1の部品実装機が備える電気的構成を示すブロック図。FIG. 2 is a block diagram showing an electrical configuration of the component mounter of FIG. 1; 基板認識カメラの構成を模式的に示す部分断面図。FIG. 2 is a partial cross-sectional view schematically showing a configuration of a substrate recognition camera. テープフィーダーの構成および動作の一例を模式的に示す側面図。The side view which shows typically an example of a structure and operation | movement of a tape feeder. 部品供給テープの一例を示す斜視図。The perspective view which shows an example of a components supply tape. 図5の部品供給テープの終端近傍を示す平面図。FIG. 6 is a plan view showing the vicinity of the end of the component supply tape of FIG. 5; 図1の部品実装機で実行されるピックアップ動作の第1例を示すフローチャート。FIG. 7 is a flowchart showing a first example of a pickup operation performed by the component mounting machine of FIG. 1; 実装ヘッドの変形例を模式的に示す図。The figure which shows typically the modification of a mounting head. 部品実装機におけるピックアップ動作での処理の第2例を示すフローチャート。The flowchart which shows the 2nd example of the processing in pickup operation in a component mounting machine. 図1の部品実装機が備えるテープフィーダーの変形例を示す図。The figure which shows the modification of the tape feeder with which the component mounting machine of FIG. 1 is provided. 図10のテープフィーダーにより実行可能なテープ排出動作での処理の一例を示すフローチャート。FIG. 11 is a flowchart showing an example of processing in a tape ejection operation that can be executed by the tape feeder of FIG. 10; FIG. 部品実装機におけるピックアップ動作での処理の第3例を示すフローチャート。The flowchart which shows the 3rd example of the processing in pickup operation in a component mounting machine.
 図1は本発明に係る部品実装機を模式的に示す部分平面図であり、図2は図1の部品実装機が備える電気的構成を示すブロック図である。図1および以下の図では、Z方向を鉛直方向とし、X方向およびY方向のそれぞれを水平方向とするXYZ直交座標を示す。 FIG. 1 is a partial plan view schematically showing a component mounter according to the present invention, and FIG. 2 is a block diagram showing an electrical configuration provided in the component mounter of FIG. FIG. 1 and the following drawings show XYZ orthogonal coordinates in which the Z direction is a vertical direction and the X direction and the Y direction are horizontal directions.
 図2に示すように、部品実装機1は、演算処理部110、駆動制御部120、記憶部130、画像処理部140およびフィーダー通信部150を有する主制御部100を備える。演算処理部110は、CPU(Central Processing Unit)およびRAM(Random Access Memory)等で構成されたプロセッサーであり、記憶部130に記憶されたプログラムやデータに基づき、駆動制御部120、画像処理部140およびフィーダー通信部150を制御することで、後述する各動作を制御する。また、部品実装機1には、例えばタッチパネルディスプレイで構成されたユーザーインターフェース160が設けられ、演算処理部110は、ユーザーインターフェース160の入力に応じて制御を実行する。 As shown in FIG. 2, the component mounter 1 includes a main control unit 100 including an arithmetic processing unit 110, a drive control unit 120, a storage unit 130, an image processing unit 140, and a feeder communication unit 150. The arithmetic processing unit 110 is a processor configured of a central processing unit (CPU) and a random access memory (RAM), and the drive control unit 120 and the image processing unit 140 based on programs and data stored in the storage unit 130. And by controlling the feeder communication unit 150, each operation described later is controlled. Further, the component mounting machine 1 is provided with a user interface 160 configured of, for example, a touch panel display, and the arithmetic processing unit 110 executes control according to an input of the user interface 160.
 図1に示すように、部品実装機1は、基台11の上に設けられた一対のコンベア12、12を備える。そして、部品実装機1は、駆動制御部120によってコンベア12を制御することで、部品実装に要する基板Bの搬送を実行する。つまり、部品実装機1は、コンベア12によりX方向(基板搬送方向)の上流側から作業位置(図1の基板Bの位置)に搬入した基板Bに対して部品E(図5)を実装し、部品実装を完了した基板Bをコンベア12により作業位置からX方向の下流側へ搬出する。なお、部品Eを基板Bに実装するとは、部品Eを基板Bに載置することを示す。 As shown in FIG. 1, the component mounter 1 includes a pair of conveyors 12, 12 provided on a base 11. Then, the component mounter 1 controls the conveyor 12 by the drive control unit 120 to carry the substrate B required for component mounting. That is, the component mounting machine 1 mounts the component E (FIG. 5) on the substrate B carried in to the working position (the position of the substrate B in FIG. 1) from the upstream side of the X direction (substrate conveyance direction) Then, the substrate B on which the component mounting has been completed is carried out by the conveyor 12 from the work position to the downstream side in the X direction. Mounting the component E on the substrate B means placing the component E on the substrate B.
 一対のコンベア12、12のY方向の両側それぞれでは2つの部品供給部25がX方向に並んでおり、各部品供給部25では、複数のテープフィーダー5がX方向に並ぶ。各テープフィーダー5に対しては、集積回路、トランジスター、コンデンサ等の小片状の部品Eを所定間隔おきに収容した部品供給テープ60(図5)が巻き付けられた部品供給リールが配置されており、各テープフィーダー5は部品供給リールから引き出された部品供給テープ60を間欠的に送り出すことで、その先端部の部品供給位置Lsに部品Eを供給する。なお、演算処理部110は、フィーダー通信部150を介してテープフィーダー5のフィーダー制御部50に指令を出すことで、テープフィーダー5の動作を制御する。 Two component supply units 25 are aligned in the X direction on both sides of the pair of conveyors 12 and 12 in the Y direction, and in each component supply unit 25, a plurality of tape feeders 5 are arranged in the X direction. Each tape feeder 5 is provided with a component supply reel on which a component supply tape 60 (FIG. 5) is accommodated, in which small pieces E of integrated circuits, transistors, capacitors and the like are accommodated at predetermined intervals. Each tape feeder 5 intermittently supplies the component E to the component supply position Ls at the tip by intermittently feeding the component supply tape 60 drawn from the component supply reel. The arithmetic processing unit 110 controls the operation of the tape feeder 5 by issuing an instruction to the feeder control unit 50 of the tape feeder 5 via the feeder communication unit 150.
 X方向に並ぶ2個の部品供給部25の間には、部品認識カメラ7が上方を向いて基台11に取り付けられている。この部品認識カメラ7は、後述するようにその上方を通過する部品Eの画像を撮像して、画像処理部140に送信する。 A component recognition camera 7 is attached to the base 11 facing upward between two component supply units 25 arranged in the X direction. The component recognition camera 7 captures an image of the component E passing above as described later, and transmits the image to the image processing unit 140.
 また、部品実装機1では、Y方向に延びる一対のY軸レール21、21と、Y方向に延びるY軸ボールネジ22と、Y軸ボールネジ22を回転駆動するY軸モーターMyとが設けられ、ヘッド支持部材23が一対のY軸レール21、21にY方向に移動可能に支持された状態でY軸ボールネジ22のナットに固定されている。ヘッド支持部材23には、X方向に延びるX軸ボールネジ24と、X軸ボールネジ24を回転駆動するX軸モーターMxとが取り付けられており、ヘッドユニット3がヘッド支持部材23にX方向に移動可能に支持された状態でX軸ボールネジ24のナットに固定されている。したがって、駆動制御部120は、Y軸モーターMyによりY軸ボールネジ22を回転させてヘッドユニット3をY方向に移動させ、あるいはX軸モーターMxによりX軸ボールネジ24を回転させてヘッドユニット3をX方向に移動させることができる。 Further, in the component mounting machine 1, a pair of Y- axis rails 21, 21 extending in the Y-direction, a Y-axis ball screw 22 extending in the Y-direction, and a Y-axis motor My for rotating the Y-axis ball screw 22 are provided. The support member 23 is fixed to the nut of the Y-axis ball screw 22 in a state where the support member 23 is supported movably in the Y direction by the pair of Y- axis rails 21, 21. An X-axis ball screw 24 extending in the X direction and an X-axis motor Mx for rotationally driving the X-axis ball screw 24 are attached to the head support member 23, and the head unit 3 can be moved in the X direction with the head support member 23. While being supported by the X axis ball screw 24 is fixed to the nut of the X axis ball screw 24. Therefore, the drive control unit 120 rotates the Y-axis ball screw 22 by the Y-axis motor My to move the head unit 3 in the Y direction, or rotates the X-axis ball screw 24 by the X-axis motor Mx to rotate the head unit 3 It can be moved in the direction.
 ヘッドユニット3は、X方向に並ぶ複数(6本)の実装ヘッド31を有する。さらに、ヘッドユニット3には、実装ヘッド31を昇降させるZ軸モーターMzを各実装ヘッド31に対して有する。各実装ヘッド31はZ方向(鉛直方向)に延びた長尺形状を有し、部品Eを吸着するためのノズル32をその下端に係脱自在に有する。そして、実装ヘッド31によって部品実装が実行される。 The head unit 3 has a plurality (six) of mounting heads 31 aligned in the X direction. Furthermore, the head unit 3 has a Z-axis motor Mz for raising and lowering the mounting head 31 with respect to each mounting head 31. Each mounting head 31 has an elongated shape extending in the Z direction (vertical direction), and has a nozzle 32 for suctioning the component E at its lower end so as to be disengageable. Then, component mounting is performed by the mounting head 31.
 つまり、駆動制御部120は、X軸モーターMxおよびY軸モーターMyによって、実装ヘッド31のノズル32を部品供給位置Lsに上方から対向させる。次に、駆動制御部120は、Z軸モーターMzによって実装ヘッド31を下降させて、テープフィーダー5によって部品供給位置Lsに供給された部品Eにノズル32を接触させる。続いて、駆動制御部120は、ノズル32により部品Eを吸着した実装ヘッド31を上昇させる。こうして実装ヘッド31が部品供給位置Lsからの部品Eのピックアップを完了すると、駆動制御部120は、X軸モーターMxおよびY軸モーターMyによって実装ヘッド31を基板Bの上方に移動させ、実装ヘッド31は、部品Eの吸着を解除することで、基板Bに部品Eを実装する。 That is, the drive control unit 120 causes the nozzle 32 of the mounting head 31 to face the component supply position Ls from above by the X-axis motor Mx and the Y-axis motor My. Next, the drive control unit 120 lowers the mounting head 31 by the Z-axis motor Mz and brings the nozzle 32 into contact with the component E supplied to the component supply position Ls by the tape feeder 5. Subsequently, the drive control unit 120 raises the mounting head 31 having the component E adsorbed by the nozzle 32. Thus, when the mounting head 31 completes picking up the component E from the component supply position Ls, the drive control unit 120 moves the mounting head 31 above the substrate B by the X-axis motor Mx and the Y-axis motor My. The component E is mounted on the substrate B by releasing the adsorption of the component E.
 なお、ヘッドユニット3は、実装ヘッド31をR方向(Z方向を中心とする回転方向)に回転させるR軸モーターMrを各実装ヘッド31について有し、駆動制御部120は、R軸モーターMrによって実装ヘッド31をR方向に回転させることで、基板Bに実装する部品Eの回転角度を調整する。つまり、実装ヘッド31は、部品供給位置Lsから部品Eをピックアップしてから基板Bの上方へ移動する途中で部品認識カメラ7の上方を経由し、部品認識カメラ7がその上方を通過する部品Eを撮像して、部品Eの画像を取得する。部品Eの画像は、部品認識カメラ7から画像処理部140に送信され、画像処理部140は当該画像に基づき、実装ヘッド31に吸着された部品Eの位置および姿勢を認識する(部品認識)。そして、駆動制御部120は、この部品認識の結果に基づき、実装ヘッド31により基板Bに実装される部品Eの回転角度を調整する。 The head unit 3 has an R-axis motor Mr for each mounting head 31 for rotating the mounting head 31 in the R direction (rotational direction about the Z direction), and the drive control unit 120 uses the R-axis motor Mr The rotation angle of the component E mounted on the substrate B is adjusted by rotating the mounting head 31 in the R direction. That is, the mounting head 31 picks up the component E from the component supply position Ls and then moves to the upper side of the substrate B, passing the upper side of the component recognition camera 7 and passing the component recognition camera 7 above it To capture an image of the part E. The image of the component E is transmitted from the component recognition camera 7 to the image processing unit 140, and the image processing unit 140 recognizes the position and orientation of the component E attracted by the mounting head 31 based on the image (component recognition). Then, the drive control unit 120 adjusts the rotation angle of the component E mounted on the substrate B by the mounting head 31 based on the result of the component recognition.
 また、ヘッドユニット3には、基板認識カメラ8が下方を向いて取り付けられており、基板認識カメラ8は、ヘッドユニット3に伴ってX方向およびY方向へ移動する。基板認識カメラ8は、作業位置に搬入された基板Bに付されたフィデューシャルマークを上方から撮像して、フィデューシャルマークの画像を取得する。フィデューシャルマークの画像は、基板認識カメラ8から画像処理部140に送信され、画像処理部140は当該画像に基づき、基板Bの位置を認識する(基板認識)。そして、駆動制御部120は、この基板認識の結果に基づき、実装ヘッド31により実装される部品EのX方向およびY方向への位置を調整する。 Further, the substrate recognition camera 8 is attached to the head unit 3 so as to face downward, and the substrate recognition camera 8 moves in the X direction and the Y direction along with the head unit 3. The substrate recognition camera 8 captures from above the fiducial mark attached to the substrate B carried into the work position, and acquires an image of the fiducial mark. The image of the fiducial mark is transmitted from the substrate recognition camera 8 to the image processing unit 140, and the image processing unit 140 recognizes the position of the substrate B based on the image (substrate recognition). Then, the drive control unit 120 adjusts the position in the X direction and the Y direction of the component E mounted by the mounting head 31 based on the result of the substrate recognition.
 図3は基板認識カメラの構成を模式的に示す部分断面図である。基板認識カメラ8は、対象物Jに光を照射する照明ユニット81と、Z方向から対象物Jに対向しつつ対象物Jを撮像する撮像ユニット83とを有する。照明ユニット81は、Z方向に平行な撮像ユニット83の光軸を中心とする円環状に複数の点光源を配列して、各光源から下方に光を照射する。点光源としては、例えばLED(Light Emitting Diode)を使用できる。撮像ユニット83は、レンズ831と固体撮像素子832とを有する。レンズ831は、Z方向に平行な光軸を有して対象物Jに上方から対向して、対象物Jで反射された光を固体撮像素子832に結像する。そして、固体撮像素子832は、レンズ831により結像された光を検出することで、対象物Jの画像を撮像する。かかる基板認識カメラ8は、フィデューシャルマークの撮像以外に、後述するようにテープフィーダー5の部品供給位置Lsの撮像も実行する。 FIG. 3 is a partial cross-sectional view schematically showing the configuration of the substrate recognition camera. The substrate recognition camera 8 has an illumination unit 81 for irradiating the object J with light, and an imaging unit 83 for imaging the object J while facing the object J from the Z direction. The illumination unit 81 arranges a plurality of point light sources in an annular shape centered on the optical axis of the imaging unit 83 parallel to the Z direction, and emits light from the respective light sources downward. As a point light source, for example, an LED (Light Emitting Diode) can be used. The imaging unit 83 has a lens 831 and a solid-state imaging device 832. The lens 831 has an optical axis parallel to the Z direction and faces the object J from above, and images the light reflected by the object J on the solid-state imaging device 832. The solid-state imaging device 832 captures an image of the object J by detecting the light formed by the lens 831. The substrate recognition camera 8 also performs imaging of the component supply position Ls of the tape feeder 5 as described later, in addition to imaging of the fiducial mark.
 図4はテープフィーダーの構成および動作の一例を模式的に示す側面図である。同図では、テープフィーダー5が部品供給テープ60を送り出すフィード方向Df(Y方向に平行)を適宜示すとともに、フィード方向Dfの矢印側をフィード方向Dfの「前」と、フィード方向Dfの矢印の反対側をフィード方向Dfの「後ろ」と適宜取り扱う。また、テープフィーダー5に取付可能な2本の部品供給テープ60を区別するために、同図および以下の図では、キャリアテープに対して異なる符号60a、60bを適宜用いる。 FIG. 4 is a side view schematically showing an example of the configuration and operation of the tape feeder. In the figure, the tape feeder 5 appropriately indicates the feed direction Df (parallel to the Y direction) in which the component supply tape 60 is sent out, and the arrow side of the feed direction Df corresponds to the “front” of the feed direction Df and the arrows of the feed direction Df. Treat the opposite side as "back" in the feed direction Df as appropriate. Further, in order to distinguish the two component supply tapes 60 attachable to the tape feeder 5, in the same figure and the following figures, different reference numerals 60a and 60b are appropriately used for the carrier tape.
 テープフィーダー5は、機械的構成であるフィーダー本体51と、部品供給テープ60を駆動するフィーダーモーターMf、Mbとを備える。フィーダー本体51は、X方向に薄くてフィード方向Dfに長尺な偏平形状のケース52を有する。ケース52は上述のフィーダー制御部50を内部に収容しており、作業者はケース52に設けられた操作ボタンを介してフィーダー制御部50に指示を入力できる。また、ケース52のフィード方向Dfの後端では、Z方向に延設されたテープ挿入口53a(破線で示す)が開口し、ケース52のフィード方向Dfの前端部分の上面に部品供給位置Lsが設けられている。そして、フィーダー本体51内ではテープ挿入口53aから部品供給位置Lsへ到るテープ搬送路53bが設けられている。このフィーダー本体51は、テープ挿入口53aからテープ搬送路53bに挿入された部品供給テープ60を、フィーダーモーターMf、Mbの駆動力を受けてフィード方向Dfに送り出すことで、部品供給位置Lsに部品を供給する。 The tape feeder 5 includes a feeder main body 51 having a mechanical configuration, and feeder motors Mf and Mb for driving the component supply tape 60. The feeder main body 51 has a flat case 52 which is thin in the X direction and long in the feed direction Df. The case 52 accommodates the above-described feeder control unit 50, and the operator can input an instruction to the feeder control unit 50 via the operation button provided on the case 52. Further, at the rear end of the case 52 in the feed direction Df, a tape insertion port 53a (shown by a broken line) extended in the Z direction is opened, and the component supply position Ls is on the upper surface of the front end portion of the case 52 in the feed direction Df. It is provided. In the feeder main body 51, there is provided a tape transport path 53b extending from the tape insertion port 53a to the component supply position Ls. The feeder main body 51 feeds the component supply tape 60 inserted from the tape insertion port 53a into the tape conveyance path 53b in the feed direction Df by receiving the driving force of the feeder motors Mf and Mb, thereby providing components at the component supply position Ls. Supply.
 フィーダー本体51は、テープ搬送路53bの上方でテープ挿入口53aに隣接して配置されたスプロケット54と、フィーダーモーターMbの駆動力をスプロケット54に伝達するギヤ55とをケース52内に有し、スプロケット54はフィーダーモーターMbが発生する駆動力を受けて回転する。さらに、フィーダー本体51は、ケース52に対して着脱可能に取り付けられたテープ支持部材56を有する。このテープ支持部材56はスプロケット54に下方から対向し、スプロケット54との間に部品供給テープ60を挟むことで、部品供給テープ60をスプロケット54に係合させる。こうして、スプロケット54とテープ支持部材56との間のテープ取付位置Laに、部品供給テープ60の先端が取り付けられる。したがって、フィーダーモーターMbは、順方向に回転(順回転)することで、スプロケット54に係合する部品供給テープ60をフィード方向Dfへ搬送することができる。また、フィーダーモーターMbは、順方向と反対の逆方向に回転(逆回転)することで、スプロケット54に係合する部品供給テープ60をフィード方向Dfの反対側(後側)へ搬送できる。 The feeder main body 51 has a sprocket 54 disposed adjacent to the tape insertion port 53a above the tape transport path 53b and a gear 55 for transmitting the driving force of the feeder motor Mb to the sprocket 54 in the case 52, The sprocket 54 rotates in response to the driving force generated by the feeder motor Mb. Furthermore, the feeder main body 51 has a tape support member 56 removably attached to the case 52. The tape support member 56 is opposed to the sprocket 54 from below, and the component supply tape 60 is engaged with the sprocket 54 by sandwiching the component supply tape 60 with the sprocket 54. Thus, the tip of the component supply tape 60 is attached to the tape attachment position La between the sprocket 54 and the tape support member 56. Therefore, the feeder motor Mb can convey the component supply tape 60 engaged with the sprocket 54 in the feed direction Df by rotating in the forward direction (forward rotation). Further, the feeder motor Mb can convey the component supply tape 60 engaged with the sprocket 54 to the opposite side (rear side) of the feed direction Df by rotating in the reverse direction opposite to the forward direction (reverse rotation).
 また、フィーダー本体51は、その前端部分に配置されて下方からテープ搬送路53bに隣接する2個のスプロケット57d、57uと、フィーダーモーターMfの駆動力をスプロケット57d、57uにそれぞれ伝達する2個のギヤ58d、58uとをケース52内に有する。そして、スプロケット57d、57uはフィーダーモーターMfが発生する駆動力を受けて回転する。したがって、フィーダーモーターMfは、順方向に間欠的に回転(順回転)することで、スプロケット57d、57uに係合する部品供給テープ60をフィード方向Dfへ間欠的に搬送できる。また、フィーダーモーターMfは、順方向と反対の逆方向に回転(逆回転)することで、スプロケット57d、57uに係合する部品供給テープ60をフィード方向Dfの反対側(後側)へ搬送できる。 Further, the feeder main body 51 is disposed at the front end portion thereof, and two sprockets 57d and 57u adjacent to the tape transport path 53b from below and two for transmitting the driving force of the feeder motor Mf to the sprockets 57d and 57u. Gears 58 d and 58 u are provided in the case 52. The sprockets 57d and 57u rotate in response to the driving force generated by the feeder motor Mf. Therefore, the feeder motor Mf can intermittently transport the component supply tape 60 engaged with the sprockets 57d and 57u in the feed direction Df by intermittently rotating (forward rotation) in the forward direction. Further, the feeder motor Mf can convey the component supply tape 60 engaged with the sprockets 57d and 57u to the opposite side (rear side) of the feed direction Df by rotating (reversely rotating) in the reverse direction opposite to the forward direction. .
 フィーダー制御部50は、フィーダーモーターMf、Mbを制御することで、図4に示す各ステップを実行する。つまり、ステップS11に示すように部品供給テープ60aがテープ取付位置Laに取り付けられて、作業者が自動装填の実行指示をフィーダー制御部50に入力すると、フィーダーモーターMbが順方向への回転を開始して、スプロケット54が部品供給テープ60aをフィード方向Dfに搬送する。さらに、部品供給テープ60の先端がスプロケット57uに到達するのに応じて、フィーダーモーターMfが順方向への回転を開始して、スプロケット57u、57dが部品供給テープ60aをフィード方向Dfに搬送する。そして、ステップS12に示すように、部品供給テープ60aの先端が部品供給位置Lsに到達すると、スプロケット57u、57dがフィード方向Dfへの部品供給テープ60aの搬送を停止する。こうして、テープフィーダー5は、テープ取付位置Laから部品供給位置Lsへフィード方向Dfに自動的に部品供給テープ60を搬送することで部品供給位置Lsに部品Eを供給する自動装填を実行する。 The feeder control unit 50 executes the steps shown in FIG. 4 by controlling the feeder motors Mf and Mb. That is, as shown in step S11, when the component supply tape 60a is attached to the tape attachment position La and the operator inputs an execution instruction of automatic loading to the feeder control unit 50, the feeder motor Mb starts rotating in the forward direction. Then, the sprocket 54 conveys the component supply tape 60a in the feed direction Df. Further, in response to the leading end of the component supply tape 60 reaching the sprocket 57u, the feeder motor Mf starts to rotate in the forward direction, and the sprockets 57u and 57d transport the component supply tape 60a in the feed direction Df. Then, as shown in step S12, when the leading end of the component supply tape 60a reaches the component supply position Ls, the sprockets 57u and 57d stop conveying the component supply tape 60a in the feed direction Df. Thus, the tape feeder 5 automatically carries the component supply tape 60 from the tape attachment position La to the component supply position Ls in the feed direction Df, thereby performing automatic loading for supplying the component E to the component supply position Ls.
 ちなみに、テープフィーダー5は、2個のスプロケット57d、57uの間に配置され、部品供給位置Lsのフィード方向Dfの上流側近傍のキャリアテープ60を検出するテープセンサーSfを有する。そして、フィーダー制御部50は、テープセンサーSfが部品供給テープ60aを検出したタイミングに基づき、部品供給テープ60aが部品供給位置Lsに到達するタイミングを把握する。 Incidentally, the tape feeder 5 is disposed between the two sprockets 57d and 57u, and has a tape sensor Sf that detects the carrier tape 60 near the upstream side of the feed direction Df of the component supply position Ls. Then, based on the timing at which the tape sensor Sf detects the component supply tape 60a, the feeder control unit 50 grasps the timing at which the component supply tape 60a reaches the component supply position Ls.
 また、ステップS13に示すように、作業者がテープ支持部材56をケース52から取り外すと、部品供給テープ60aがスプロケット54から外れてテープ搬送路53bに落下する。続いて、ステップS14に示すように、作業者はテープ支持部材56をケース52に再び取り付けることで、部品供給テープ60aの次に部品実装に使用される部品供給テープ60bをスプロケット54とテープ支持部材56との間のテープ取付位置Laに取り付けておくことができる。なお、スプロケット54から外れた部品供給テープ60aの駆動は、フィーダーモーターMbを停止させた状態でフィーダーモーターMfによって実行すれば良い。 Further, as shown in step S13, when the operator removes the tape support member 56 from the case 52, the component supply tape 60a is removed from the sprocket 54 and falls into the tape transport path 53b. Subsequently, as shown in step S14, the worker reattaches the tape support member 56 to the case 52, whereby the component supply tape 60b used for component mounting next to the component supply tape 60a is used as the sprocket 54 and the tape support member. It can be attached to the tape attachment position La between 56 and 56. The drive of the component supply tape 60a detached from the sprocket 54 may be performed by the feeder motor Mf in a state where the feeder motor Mb is stopped.
 さらに、テープフィーダー5は、部品供給位置Lsのフィード方向Dfの上流側近傍の開放位置Leで部品供給テープ60を開放する部品露出部材59を有する。この部品露出部材59は、開放位置Leで部品供給テープ60に接触するカッターを有し、開放位置Leをフィード方向Dfに通過する部品供給テープ60をカッターにより開くことで、部品供給位置Lsにおいて部品Eを露出させる。 Furthermore, the tape feeder 5 has a component exposing member 59 for releasing the component supply tape 60 at an open position Le near the upstream side of the feed direction Df of the component supply position Ls. The component exposure member 59 has a cutter that contacts the component supply tape 60 at the open position Le, and the component supply tape 60 passing through the open position Le in the feed direction Df is opened by the cutter, and the component is supplied at the component supply position Ls. E is exposed.
 図5は部品供給テープの一例を示す斜視図であり、図6は図5の部品供給テープの終端近傍を示す平面図である。部品供給テープ60は、一方向に長いシート形状を有するキャリアテープ62と、キャリアテープ62に貼着されるカバーテープ64とから構成される。キャリアテープ62には、上方に開口した空洞状のポケット621がテープの長手方向に一定間隔で、換言すれば所定の配列ピッチで一列に並ぶ。そして、カバーテープ64によって塞がれた状態で部品Eがポケット621に収容され、保持されている。 FIG. 5 is a perspective view showing an example of a component supply tape, and FIG. 6 is a plan view showing the vicinity of the end of the component supply tape of FIG. The component supply tape 60 is configured of a carrier tape 62 having a sheet shape elongated in one direction, and a cover tape 64 attached to the carrier tape 62. In the carrier tape 62, hollow pockets 621 opened upward are aligned in a row at a predetermined interval in the longitudinal direction of the tape, in other words, at a predetermined arrangement pitch. Then, the part E is accommodated and held in the pocket 621 in a state of being closed by the cover tape 64.
 また、キャリアテープ62の一辺側には、その縁部に沿って上下に貫通する係合孔622が一定間隔で設けられており、上述のスプロケット54およびスプロケット57d、57uが係合孔622に係合する。そして、テープフィーダー5は、フィーダーモーターMf、Mbによってスプロケット57d、57u、54を回転させることで、部品供給テープ60をフィード方向Dfに部品Eの配列ピッチずつ間欠的に駆動することで、部品供給位置Lsに各ポケット621を順に搬送する。これによって、ポケット621内の部品Eが部品供給位置Lsに供給される。 Further, on one side of the carrier tape 62, engagement holes 622 penetrating vertically along the edge thereof are provided at regular intervals, and the above-mentioned sprocket 54 and sprockets 57d and 57u are engaged with the engagement holes 622 Match. Then, the tape feeder 5 intermittently supplies the component supply tape 60 by intermittently driving the component supply tape 60 in the feed direction Df by the arrangement pitch of the component E by rotating the sprockets 57d, 57u, 54 by the feeder motors Mf, Mb. Each pocket 621 is sequentially transported to the position Ls. As a result, the part E in the pocket 621 is supplied to the part supply position Ls.
 また、図6に示すように、部品供給テープ60の終端601から所定範囲は、部品Eが存在しない空のポケット621が所定個数(2個以上)並ぶトレイル部Tである。つまり、キャリアテープ62の複数のポケット621のうち、トレイル部Tのポケット621は部品Eを収容せず、トレイル部Tより先端側のポケット621が部品E収容する。かかる部品供給テープ60の終端601は、換言すれば、テープフィーダー5に取り付けられた部品供給テープ60のフィード方向Dfの上流端に相当し、上述のリールの軸心に取り付けられる。また、部品供給テープ60の先端は、換言すれば、テープフィーダー5に取り付けられた部品供給テープ60のフィード方向Dfの下流端に相当する。 Further, as shown in FIG. 6, a predetermined range from the end 601 of the component supply tape 60 is a trail portion T in which a predetermined number (two or more) of empty pockets 621 in which components E do not exist are arranged. That is, among the plurality of pockets 621 of the carrier tape 62, the pocket 621 of the trail portion T does not accommodate the component E, and the pocket 621 on the tip side of the trail portion T accommodates the component E. The end 601 of the component supply tape 60 corresponds to the upstream end of the feed direction Df of the component supply tape 60 attached to the tape feeder 5, and is attached to the axis of the above-mentioned reel. In addition, the tip of the component supply tape 60 corresponds to the downstream end of the feed direction Df of the component supply tape 60 attached to the tape feeder 5 in other words.
 そして、図4の部品露出部材59は、開放位置Leでカバーテープ64を開くことで、部品供給位置Lsに供給される部品Eを露出させる。この際、部品Eを露出させる方法としては、カバーテープ64の中心をカッターにより開いてカバーテープを両側に捲るセンター開放方式(特開2015-220297号公報等)や、カバーテープ64の一方側の周縁をカッターにより開いてカバーテープを他方側へ捲る片捲り方式(WO2017/042898号公報等)がある。 Then, the component exposure member 59 in FIG. 4 exposes the component E supplied to the component supply position Ls by opening the cover tape 64 at the open position Le. At this time, as a method of exposing the component E, a center opening method (Japanese Unexamined Patent Publication No. 2015-220297, etc.) in which the center of the cover tape 64 is opened by a cutter and the cover tape is wound on both sides There is a one-sided method (WO 2017/042898 etc.) in which the peripheral edge is opened by a cutter and the cover tape is turned to the other side.
 図7は図1の部品実装機で実行されるピックアップ動作の第1例を示すフローチャートである。図7のフローチャートは、演算処理部110とフィーダー制御部50との協働制御によって実行される。ステップS101では、実装ヘッド31によるピックアップ動作の対象となるテープフィーダー5が部品供給テープ60を間欠的に駆動して、ポケット621を部品供給位置Lsに搬送する。 FIG. 7 is a flow chart showing a first example of the pickup operation performed by the component mounting machine of FIG. The flowchart of FIG. 7 is executed by cooperative control of the arithmetic processing unit 110 and the feeder control unit 50. In step S101, the tape feeder 5 to be picked up by the mounting head 31 intermittently drives the component supply tape 60 to transport the pocket 621 to the component supply position Ls.
 ステップS102では、演算処理部110は、当該テープフィーダー5について、前回の部品供給位置Lsからの部品のピックアップが成功したかを確認する。つまり、例えば上述の部品認識の際に、演算処理部110は、部品認識カメラ7が撮像した画像に基づき、実装ヘッド31が部品Eのピックアップの成否を判定した結果を、テープフィーダー5毎に記憶部130に記憶する。そして、ステップS102では、記憶部130に記憶された当該結果を参照する。ちなみに、実装ヘッド31による部品Eのピックアップの成否は、部品認識の結果によらずとも判定できる。つまり、部品Eのピックアップに成功した場合と失敗した場合とで、実装ヘッド31のノズル32に生じる負圧の大きさが異なる。そこで、ノズル32の圧力に基づき、ピックアップの成否を判定しても良い。 In step S102, the arithmetic processing unit 110 confirms whether the pickup of the component from the previous component supply position Ls has succeeded for the tape feeder 5. That is, for example, at the time of component recognition described above, the arithmetic processing unit 110 stores, for each tape feeder 5, the result that the mounting head 31 determines the success or failure of pickup of the component E based on the image captured by the component recognition camera 7. The information is stored in the unit 130. Then, in step S102, the result stored in the storage unit 130 is referred to. Incidentally, the success or failure of the pickup of the component E by the mounting head 31 can be determined without depending on the result of component recognition. That is, the magnitude of the negative pressure generated in the nozzle 32 of the mounting head 31 differs between when the component E is picked up successfully and when it fails. Therefore, based on the pressure of the nozzle 32, the success or failure of the pickup may be determined.
 ピックアップが成功している場合(ステップS103で「YES」の場合)には、演算処理部110は実装ヘッド31に部品Eのピックアップを許可する(ステップS104)。これによって、実装ヘッド31は、ステップS101で部品供給位置Lsに搬送されたポケット621から部品Eをピックアップして、基板Bに実装することができる。 If the pickup is successful (in the case of “YES” in step S103), the arithmetic processing unit 110 permits the mounting head 31 to pick up the component E (step S104). By this, the mounting head 31 can pick up the component E from the pocket 621 transported to the component supply position Ls in step S101 and mount the component E on the substrate B.
 ピックアップが失敗している場合(ステップS103で「NO」の場合)には、基板認識カメラ8が、実装ヘッド31によるピックアップ動作の対象となる部品供給位置Lsの上方に移動して(ステップS105)、部品供給位置Lsを撮像する(ステップS106)。こうして、部品露出部材59によって上方へ向けて露出されたポケット621が位置する部品供給位置Lsを、基板認識カメラ8が上方から撮像した画像が取得される。この部品供給位置Lsの画像は、基板認識カメラ8から画像処理部140に送信され、画像処理部140は、部品供給位置Lsのポケット621内の部品Eの有無を当該画像に基づき判定する(ステップS107)。そして、部品Eが存在すると判定した場合(ステップS107で「YES」の場合)には、演算処理部110は実装ヘッド31に部品Eのピックアップを許可する(ステップS104)。 If the pickup fails (in the case of “NO” in step S103), the board recognition camera 8 moves above the component supply position Ls to be subjected to the pickup operation by the mounting head 31 (step S105) The component supply position Ls is imaged (step S106). Thus, an image captured by the substrate recognition camera 8 from above is acquired at the component supply position Ls at which the pocket 621 exposed upward by the component exposure member 59 is located. The image of the component supply position Ls is transmitted from the substrate recognition camera 8 to the image processing unit 140, and the image processing unit 140 determines the presence or absence of the component E in the pocket 621 of the component supply position Ls based on the image (step S107). Then, when it is determined that the part E is present (in the case of “YES” in step S107), the arithmetic processing unit 110 permits the mounting head 31 to pick up the part E (step S104).
 一方、部品Eが存在しないと判定した場合(ステップS107で「NO」の場合)には、部品供給位置Lsの撮像回数mをインクリメントし(ステップS108)、撮像回数mが所定回数mt(mtは2以上の整数)以上かを判断する(ステップS109)。なお、所定回数mtは、例えばユーザーインターフェース160への操作によってユーザーにより任意に入力できるように、部品実装機1を構成しても良い。ここでは、撮像回数mは「1」であるため、ステップS109で「NO」と判断される。したがって、ステップS110において、実装ヘッド31によるピックアップ動作の対象となるテープフィーダー5が部品供給テープ60を間欠的に駆動して、ポケット621を部品供給位置Lsに搬送してから、ステップS106に戻る。この際、演算処理部110は、ステップS107で部品Eが存在しないと判定された部品供給位置Lsからの部品Eのピックアップを実装ヘッド31に禁止する。 On the other hand, when it is determined that the part E does not exist (in the case of “NO” in step S107), the imaging number m of the component supply position Ls is incremented (step S108), and the imaging number m is a predetermined number mt (mt is It is determined whether it is an integer of 2 or more) (step S109). The component mounter 1 may be configured such that the user can arbitrarily input the predetermined number of times mt by, for example, an operation on the user interface 160. Here, since the number of times of imaging m is “1”, “NO” is determined in step S109. Accordingly, in step S110, the tape feeder 5 to be picked up by the mounting head 31 intermittently drives the component supply tape 60 to transport the pocket 621 to the component supply position Ls, and then the process returns to step S106. At this time, the arithmetic processing unit 110 prohibits the mounting head 31 from picking up the component E from the component supply position Ls in which it is determined in step S107 that the component E is not present.
 そして、基板認識カメラ8が部品供給位置Lsの画像を撮像して(ステップS106)、画像処理部140が部品供給位置Lsのポケット621内の部品Eの有無を当該画像に基づき判定する(ステップS107)。そして、部品Eが存在すると判定した場合(ステップS107で「YES」の場合)には、演算処理部110は実装ヘッド31に部品Eのピックアップを許可する(ステップS104)。一方、部品Eが存在しないと判定した場合(ステップS107で「NO」の場合)には、ステップS108~S110が再実行される。 Then, the substrate recognition camera 8 captures an image of the component supply position Ls (step S106), and the image processing unit 140 determines the presence or absence of the component E in the pocket 621 of the component supply position Ls based on the image (step S107). ). Then, when it is determined that the part E is present (in the case of “YES” in step S107), the arithmetic processing unit 110 permits the mounting head 31 to pick up the part E (step S104). On the other hand, when it is determined that the part E does not exist (in the case of “NO” in step S107), steps S108 to S110 are re-executed.
 こうして、部品Eが存在しないポケット621が連続してmt回確認されると、換言すれば、部品供給位置Lsに順番に供給される隣接するmt個以上のポケット621に部品Eが存在しないことが確認されると(ステップS109で「YES」)、演算処理部110は、撮像回数mをゼロにリセットしてから(ステップS111)、部品供給テープ60の部品切れが発生したと判定する(ステップS112)。そして、フィーダー制御部50は、判定対象となった部品供給テープ60の終端601がテープフィーダー5の先端から排出されるまで部品供給テープ60を連続的にフィード方向Dfに搬送するテープ排出動作を、フィーダーモーターMf、Mbに実行させる(ステップS113)。かかるテープ排出動作での部品供給テープ60での移動速度は、間欠搬送での部品供給テープ60の移動速度より高速である。 Thus, when the pocket 621 in which the part E does not exist is confirmed mt times in a row, in other words, the part E does not exist in the adjacent mt or more pockets 621 sequentially supplied to the part supply position Ls. If confirmed ("YES" in step S109), the arithmetic processing unit 110 determines that the component supply tape 60 has run out of parts (step S112) after resetting the number of times of imaging m to zero (step S111). ). Then, the feeder control unit 50 continuously discharges the component supply tape 60 in the feed direction Df until the end 601 of the component supply tape 60 as the determination target is discharged from the tip of the tape feeder 5. The feeder motors Mf, Mb are executed (step S113). The moving speed of the component supply tape 60 in the tape discharging operation is higher than the moving speed of the component supply tape 60 in intermittent conveyance.
 部品供給テープ60の排出が終了すると、スプロケット54が回転を開始して、テープ支持部材56との間でスプロケット54に係合する部品供給テープ60が部品供給位置Lsに向けて搬送される。こうして自動装填が実行されることで、部品供給テープ60のフィード方向Dfの最下流の部品Eが部品供給位置Lsに供給され、実装ヘッド31による部品Eの実装が続行される。この自動装填の開始、すなわちスプロケット54の回転の開始は、部品切れと判断された直後に開始され、先行する部品供給テープ60の排出と後続する部品供給テープ60の自動装填とを並行して実行しても良い。 When the ejection of the component supply tape 60 is completed, the sprocket 54 starts to rotate, and the component supply tape 60 engaged with the sprocket 54 with the tape support member 56 is conveyed toward the component supply position Ls. In this way, by performing automatic loading, the component E at the most downstream in the feed direction Df of the component supply tape 60 is supplied to the component supply position Ls, and mounting of the component E by the mounting head 31 is continued. The start of the automatic loading, that is, the start of the rotation of the sprocket 54 is started immediately after it is determined that the parts are out, and the ejection of the leading part supply tape 60 and the automatic loading of the following parts supply tape 60 are performed in parallel. You may.
 以上に説明した実施形態では、露出されたポケット621が位置する部品供給位置Lsを撮像した画像から、部品供給位置Lsに搬送されたポケット621内の部品Eの有無が確認される。つまり、露出されたポケット621を撮像した画像に基づき当該ポケット621内の部品Eの有無が確認される。その結果、部品供給テープ60の部品切れの発生を的確に判定することが可能となっている。 In the embodiment described above, the presence or absence of the component E in the pocket 621 conveyed to the component supply position Ls is confirmed from the image obtained by imaging the component supply position Ls at which the exposed pocket 621 is located. That is, based on an image obtained by imaging the exposed pocket 621, the presence or absence of the part E in the pocket 621 is confirmed. As a result, it is possible to accurately determine the occurrence of component breakage of the component supply tape 60.
 また、演算処理部110は、部品供給位置Lsに順番に供給された隣接する2個以上のポケット621に部品Eが存在しないことを確認すると、部品供給テープ60の部品切れが生じたと判定する。これによって、部品供給テープ60の部品切れの発生をより的確に判定することができる。 In addition, when the arithmetic processing unit 110 confirms that the component E does not exist in the two or more adjacent pockets 621 sequentially supplied to the component supply position Ls, the arithmetic processing unit 110 determines that the component supply tape 60 is out of components. As a result, the occurrence of component breakage of the component supply tape 60 can be determined more accurately.
 また、演算処理部110は、部品供給テープ60の部品切れが生じたと判定すると、部品供給テープ60の終端601が排出されるまで部品供給テープ60を連続的に搬送するテープ排出動作を、フィーダーモーターMf、Mbに実行させる。かかる構成では、部品供給テープ60の部品切れの発生を的確に判定した上で、テープ排出動作を適切に実行することができる。 In addition, when the arithmetic processing unit 110 determines that the component supply tape 60 has run out of parts, the feeder motor for continuously discharging the component supply tape 60 is continuously fed until the end 601 of the component supply tape 60 is discharged. Make Mf and Mb execute. In such a configuration, it is possible to appropriately execute the tape discharging operation after accurately determining the occurrence of component breakage of the component supply tape 60.
 なお、テープ排出動作では、部品供給テープ60は、間欠的に停止することなく、連続して搬送される。そして、この部品供給テープ60の連続搬送に伴って、カバーテープ64の開放は実行される。したがって、部品切れの検出後においても、基板認識カメラ8による部品供給位置Lsの撮像を継続することで、部品供給位置Lsを通過するポケット621における部品Eの有無を確認しても良い。そして、部品Eが存在するポケット621が検出された場合には、部品供給テープ60を停止させ、あるいは停止後にフィード方向Dfの上流側へ搬送させて、実装ヘッド31による部品Eのピックアップを許可しても良い。 In the tape discharging operation, the component supply tape 60 is continuously transported without being stopped intermittently. Then, with the continuous conveyance of the component supply tape 60, the cover tape 64 is opened. Therefore, even after the detection of the out-of-parts, the presence or absence of the part E in the pocket 621 passing through the parts supply position Ls may be confirmed by continuing the imaging of the parts supply position Ls by the substrate recognition camera 8. Then, when the pocket 621 in which the component E exists is detected, the component supply tape 60 is stopped or transported to the upstream side in the feed direction Df after stopping, and pickup of the component E by the mounting head 31 is permitted. It is good.
 また、基板Bのフィデューシャルマークを撮像する基板認識カメラ8により部品供給位置Lsを撮像する。かかる構成では、フィデューシャルマークを撮像する基板認識カメラ8を、部品供給テープ60の部品切れの判定に共用することができ、部品実装機1に装備するカメラの台数を抑えることが可能となる。 Further, the component supply position Ls is imaged by the substrate recognition camera 8 which images the fiducial mark of the substrate B. In such a configuration, the board recognition camera 8 for capturing a fiducial mark can be shared to determine whether the component supply tape 60 is out of parts, and the number of cameras provided in the component mounter 1 can be reduced. .
 また、基板認識カメラ8は、実装ヘッド31が部品供給位置Lsのポケット621からの部品Eのピックアップに失敗した場合に、部品供給位置Lsを撮像する。かかる構成では、実装ヘッド31による部品Eのピックアップの失敗をきっかけとして、部品供給テープ60の部品切れを適切なタイミングで確認することができる。 Further, when the mounting head 31 fails to pick up the component E from the pocket 621 of the component supply position Ls, the board recognition camera 8 captures the component supply position Ls. In such a configuration, it is possible to confirm that the component supply tape 60 has run out of components at an appropriate timing, triggered by a failure in picking up the component E by the mounting head 31.
 また、演算処理部110は、部品供給位置Lsに搬送されたポケット621内に部品Eが存在しないことを確認すると、ポケット621からの部品Eのピックアップを実装ヘッドに禁止する。これによって、実装ヘッド31が部品Eのピックアップを不要に試行するのを抑制できる。 In addition, when the arithmetic processing unit 110 confirms that the component E does not exist in the pocket 621 conveyed to the component supply position Ls, the arithmetic processing unit 110 prohibits the mounting head from picking up the component E from the pocket 621. This can suppress the mounting head 31 from unnecessarily trying to pick up the component E.
 図8は実装ヘッドの変形例を模式的に示す図である。図8の実装ヘッド31は、Z方向に平行な回転中心Cの周りで円周状に並ぶ複数のノズル32を有する。なお、図8では、複数のノズル32のうち、2個のノズル32のみが示されている。かかる実装ヘッド31では、複数のノズル32が回転中心Cを中心に回転することで、これらのうちの1個のノズル32が選択的に動作位置Loに位置して、部品供給位置Lsからの部品Eのピックアップを行う。 FIG. 8 is a view schematically showing a modified example of the mounting head. The mounting head 31 of FIG. 8 has a plurality of nozzles 32 circumferentially arranged around a rotation center C parallel to the Z direction. In FIG. 8, only two nozzles 32 of the plurality of nozzles 32 are shown. In the mounting head 31, when the plurality of nozzles 32 rotate around the rotation center C, one of the nozzles 32 is selectively located at the operation position Lo, and a component from the component supply position Ls Do E pickup.
 また、実装ヘッド31には部品認識カメラ9(撮像部)が取り付けられている。この部品認識カメラ9は、動作位置Loのノズル32が部品供給位置Lsに上方から対向した状態で、部品供給位置Lsを視野に収める。具体的には、部品認識カメラ9は、部品供給位置Lsに光を照射する照明ユニット91と、部品供給位置Lsを撮像する撮像ユニット93とを有する。照明ユニット91は複数のノズル32の内側に配置され、マトリックス状に配列された複数の点光源(例えば、LED)から部品供給位置Lsに対して斜め上方から光を照射する。撮像ユニット93は複数のノズル32の外側に配置され、レンズ931と固体撮像素子932とを有する。レンズ931は、部品供給位置Lsに対して斜め上方から対向して、部品供給位置Lsで反射された光を固体撮像素子932に結像する。そして、固体撮像素子932は、レンズ931により結像された光を検出することで、部品供給位置Lsの画像を撮像する。 Further, a component recognition camera 9 (imaging unit) is attached to the mounting head 31. The component recognition camera 9 brings the component supply position Ls into the field of view with the nozzle 32 at the operation position Lo facing the component supply position Ls from above. Specifically, the component recognition camera 9 includes an illumination unit 91 that emits light to the component supply position Ls, and an imaging unit 93 that images the component supply position Ls. The illumination unit 91 is disposed inside the plurality of nozzles 32, and radiates light from obliquely upward to the component supply position Ls from a plurality of point light sources (for example, LEDs) arranged in a matrix. The imaging unit 93 is disposed outside the plurality of nozzles 32 and includes a lens 931 and a solid-state imaging device 932. The lens 931 faces the component supply position Ls from diagonally above, and focuses the light reflected at the component supply position Ls on the solid-state imaging device 932. Then, the solid-state imaging device 932 detects the light imaged by the lens 931 to capture an image of the component supply position Ls.
 なお、照明ユニット91の配置はここの例に限られず、照明ユニット91を撮像ユニット93に隣接して取り付けても良い。この場合には、照明ユニット91は、撮像ユニット93の側から部品Eに光を照射することとなる。 The arrangement of the illumination unit 91 is not limited to this example, and the illumination unit 91 may be attached adjacent to the imaging unit 93. In this case, the illumination unit 91 emits light to the component E from the side of the imaging unit 93.
 図9は部品実装機におけるピックアップ動作での処理の第2例を示すフローチャートである。かかるフローチャートは、主制御部100とフィーダー制御部50との協働制御よって、図8の実装ヘッド31を用いて実行される。ここでは、図7のフローチャートとの差異部分を中心に説明することとし、共通する部分は相当符号を付して適宜説明を省略する。ただし、共通する構成を備えることで、同様の効果が奏されることは言うまでもない。 FIG. 9 is a flowchart showing a second example of the processing in the pickup operation in the component mounting machine. This flowchart is executed by using the mounting head 31 of FIG. 8 under cooperative control of the main control unit 100 and the feeder control unit 50. Here, description will be made centering on differences from the flowchart of FIG. 7, common parts will be denoted by corresponding reference numerals, and the description will be appropriately omitted. However, it goes without saying that similar effects can be achieved by providing a common configuration.
 図9では、ステップS201で、実装ヘッド31によるピックアップ動作の対象となるテープフィーダー5が部品供給テープ60を間欠的に駆動して、ポケット621を部品供給位置Lsに搬送する。ステップS202では、部品Eのピックアップのために、実装ヘッド31は、動作位置Loのノズル32を部品供給位置Lsに上方から対向させる(ステップS202)。これによって、部品認識カメラ9の視野内に部品供給位置Lsが収まることとなる。 In FIG. 9, in step S201, the tape feeder 5 to be picked up by the mounting head 31 intermittently drives the component supply tape 60 to transport the pocket 621 to the component supply position Ls. In step S202, in order to pick up the component E, the mounting head 31 causes the nozzle 32 at the operation position Lo to face the component supply position Ls from above (step S202). As a result, the component supply position Ls falls within the field of view of the component recognition camera 9.
 ステップS203では、部品認識カメラ9が、実装ヘッド31によるピックアップ動作の対象となる部品供給位置Lsを撮像する。こうして、部品露出部材59によって上方へ向けて露出されたポケット621が位置する部品供給位置Lsを、部品認識カメラ9が上方(斜め上方)から撮像した画像が取得される。この部品供給位置Lsの画像は、部品認識カメラ9から画像処理部140に送信され、画像処理部140は、部品供給位置Lsのポケット621内の部品Eの有無を当該画像に基づき判定する(ステップS107)。そして、部品Eが存在すると判定した場合(ステップS107で「YES」の場合)には、演算処理部110は実装ヘッド31に部品Eのピックアップを許可する(ステップS104)。 In step S203, the component recognition camera 9 picks up an image of the component supply position Ls which is the target of the pickup operation by the mounting head 31. Thus, an image obtained by the component recognition camera 9 capturing from above (obliquely above) the component supply position Ls at which the pocket 621 exposed upward by the component exposure member 59 is located is acquired. The image of the component supply position Ls is transmitted from the component recognition camera 9 to the image processing unit 140, and the image processing unit 140 determines the presence or absence of the component E in the pocket 621 of the component supply position Ls based on the image (step S107). Then, when it is determined that the part E is present (in the case of “YES” in step S107), the arithmetic processing unit 110 permits the mounting head 31 to pick up the part E (step S104).
 これによって、実装ヘッド31は、ステップS201で部品供給位置Lsに搬送されたポケット621から部品Eをピックアップして、基板Bに実装することができる。この際、部品Eのピックアップは、ステップS203で撮像した画像から算出された部品Eの位置に基づき、実装ヘッド31のノズル32とポケット621内の部品Eとの位置を補正しつつ実行される。これによって、部品Eの適切な箇所をノズル32により吸着しつつ、部品Eをピックアップすることができる。 As a result, the mounting head 31 can pick up the component E from the pocket 621 transported to the component supply position Ls in step S201 and mount the component E on the substrate B. At this time, the pickup of the component E is performed while correcting the positions of the nozzle 32 of the mounting head 31 and the component E in the pocket 621 based on the position of the component E calculated from the image captured in step S203. By this, it is possible to pick up the part E while sucking an appropriate part of the part E by the nozzle 32.
 一方、部品Eが存在しないと判定した場合(ステップS107で「NO」の場合)には、図7と同様にして、ステップS107~S113が実行される。なお、ステップS109での判断結果に応じて実行されるステップS203では、部品認識カメラ9によって部品供給位置Lsの撮像が実行される。 On the other hand, when it is determined that the part E does not exist (in the case of “NO” in step S107), steps S107 to S113 are executed as in FIG. In step S203 performed according to the determination result in step S109, imaging of the component supply position Ls is performed by the component recognition camera 9.
 なお、部品Eが正常な姿勢でポケット621に収納されていない等の理由により、部品Eの有無をどちらとも判断できない場合がありうる。このような場合に対応できるようにするために、部品Eの有無を明確に判断できる場合には図7および図9のフローチャートを実行し、部品Eの有無を明確に判断できない場合には部品Eのピックアップを禁止する一方、図7および図9のフローチャートにて、撮像回数mをインクリメントしないように構成しても良い。 It may be impossible to determine the presence or absence of the component E because the component E is not stored in the pocket 621 in a normal posture. In order to be able to cope with such a case, when the presence or absence of the part E can be clearly determined, the flowcharts of FIGS. 7 and 9 are executed. When the presence or absence of the part E can not be clearly determined, the part E In the flowcharts of FIG. 7 and FIG. 9, the number of times of imaging may not be incremented while the pickup of the above is prohibited.
 以上に説明した実施形態においても、露出されたポケット621が位置する部品供給位置Lsを撮像した画像から、部品供給位置Lsに搬送されたポケット621内の部品Eの有無が確認される。つまり、露出されたポケット621を撮像した画像に基づき当該ポケット621内の部品Eの有無が確認される。その結果、部品供給テープ60の部品切れの発生を的確に判定することが可能となっている。 Also in the embodiment described above, the presence or absence of the component E in the pocket 621 conveyed to the component supply position Ls is confirmed from the image obtained by imaging the component supply position Ls at which the exposed pocket 621 is located. That is, based on an image obtained by imaging the exposed pocket 621, the presence or absence of the part E in the pocket 621 is confirmed. As a result, it is possible to accurately determine the occurrence of component breakage of the component supply tape 60.
 図10は図1の部品実装機が備えるテープフィーダーの変形例を示す図である。図10に示すテープフィーダー5は、部品供給位置Lsよりもフィード方向Dfの上流側で部品供給テープ60を検出するテープセンサーSbをケース52内に有する。特にテープセンサーSbは、部品供給テープ60の終端601(フィード方向Dfの上流端)がテープセンサーSbの検出領域を通過したことを検出する。かかるテープフィーダー5は、図11に示すテープ排出動作を実行することができる。 FIG. 10 is a view showing a modified example of the tape feeder provided in the component mounter of FIG. The tape feeder 5 shown in FIG. 10 has a tape sensor Sb in the case 52 for detecting the component supply tape 60 upstream of the component supply position Ls in the feed direction Df. In particular, the tape sensor Sb detects that the end 601 (upstream end of the feed direction Df) of the component supply tape 60 has passed the detection area of the tape sensor Sb. The tape feeder 5 can execute the tape discharging operation shown in FIG.
 図11は図10のテープフィーダーにより実行可能なテープ排出動作での処理の一例を示すフローチャートである。テープ排出動作の開始のために、フィーダー制御部50は、フィード方向Dfへの部品供給テープ60の駆動をフィーダーモーターMf、Mbに開始させるとともに(ステップS301)、テープセンサーSbが部品供給テープ60の終端601を検出する検出タイミングを監視する(ステップS302)。そして、テープセンサーSbが部品供給テープ60の終端601を検出すると(ステップS302で「YES」)、フィーダー制御部50は、検出タイミングから所定時間が経過したかを確認する(ステップS303)。この所定時間は、部品供給テープ60の終端601がテープセンサーSbにより検出されてからテープフィーダー5から排出されるまでに要する時間に相当する。そして、所定時間の経過が確認されると(ステップS303で「YES」)、フィーダー制御部50は、フィーダーモーターMf、Mbによる部品供給テープ60の駆動を停止する(ステップ304)。 FIG. 11 is a flowchart showing an example of processing in the tape discharge operation that can be executed by the tape feeder of FIG. To start the tape discharging operation, the feeder control unit 50 causes the feeder motors Mf and Mb to start driving the component supply tape 60 in the feed direction Df (step S301), and the tape sensor Sb controls the component supply tape 60. The detection timing for detecting the end 601 is monitored (step S302). Then, when the tape sensor Sb detects the end 601 of the component supply tape 60 ("YES" in step S302), the feeder control unit 50 confirms whether a predetermined time has elapsed from the detection timing (step S303). The predetermined time corresponds to the time required from the detection of the end 601 of the component supply tape 60 by the tape sensor Sb to the discharge from the tape feeder 5. And if progress of predetermined time is checked ("YES" at Step S303), feeder control part 50 will stop a drive of parts supply tape 60 by feeder motor Mf and Mb (Step 304).
 以上に説明した実施形態では、フィーダー制御部50は、テープ排出動作をフィーダーモーターMf、Mbに開始させると、テープセンサーSbが部品供給テープ60の終端601を検出する検出タイミングを監視する。そして、フィーダー制御部50は、検出タイミングから求まる部品供給テープ60の排出タイミング(すなわち、検出タイミングから所定時間が経過したタイミング)に応じてフィーダーモーターMf、Mbを停止させる。かかる構成では、テープセンサーSbが部品供給テープ60の終端601を検出した検出タイミングに基づいた適切なタイミングで、テープ排出動作を実行するフィーダーモーターMf、Mbを停止することができる。したがって、部品供給テープ60の排出が完了すると、フィーダーモーターMf、Mbを速やかに停止することができる。 In the embodiment described above, when the feeder control unit 50 causes the feeder motors Mf and Mb to start the tape discharging operation, the feeder control unit 50 monitors detection timing when the tape sensor Sb detects the end 601 of the component supply tape 60. Then, the feeder control unit 50 stops the feeder motors Mf and Mb according to the discharge timing of the component supply tape 60 (that is, the timing when a predetermined time has elapsed from the detection timing) obtained from the detection timing. In this configuration, the feeder motors Mf and Mb that execute the tape discharging operation can be stopped at an appropriate timing based on the detection timing at which the tape sensor Sb detects the end 601 of the component supply tape 60. Therefore, when the component supply tape 60 is completely discharged, the feeder motors Mf and Mb can be stopped promptly.
 図12は部品実装機におけるピックアップ動作での処理の第3例を示すフローチャートである。かかるフローチャートは、主制御部100とフィーダー制御部50との協働制御よって実行される。ここでは、図7のフローチャートとの差異部分を中心に説明することとし、共通する部分は相当符号を付して適宜説明を省略する。ただし、共通する構成を備えることで、同様の効果が奏されることは言うまでもない。 FIG. 12 is a flowchart showing a third example of the processing in the pickup operation in the component mounting machine. The flowchart is executed by cooperative control of the main control unit 100 and the feeder control unit 50. Here, description will be made centering on differences from the flowchart of FIG. 7, common parts will be denoted by corresponding reference numerals, and the description will be appropriately omitted. However, it goes without saying that similar effects can be achieved by providing a common configuration.
 ステップS401では、部品供給位置Lsのポケット621からの部品Eのピックアップに実装ヘッド31が成功したか否かが監視される。そして、実装ヘッド31が部品Eのピックアップに失敗すると(ステップS401で「NO」)、基板認識カメラ8が当該ピックアップの対象となった部品供給位置Lsの上方へ移動して(ステップS402)、部品供給位置Lsを撮像する(ステップS403)。 In step S401, it is monitored whether the mounting head 31 succeeds in picking up the component E from the pocket 621 of the component supply position Ls. When the mounting head 31 fails to pick up the component E ("NO" in step S401), the board recognition camera 8 moves above the component supply position Ls targeted for the pick-up (step S402). The supply position Ls is imaged (step S403).
 そして、演算処理部110は、部品供給位置Lsにおいてポケット621の露出に成功しているかを確認する(ステップS404)。このステップS404では、ポケット621の開口のうち、部品Eのピックアップに必要な範囲からカバーテープ64が除去されている場合は、露出成功(YES)と判定され、当該範囲にカバーテープ64の少なくとも一部が重複する場合には、露出失敗(NO)と判定される。そして、ステップS404で露出失敗(NO)と判定されると、演算処理部110は、ポケット621pの露出に失敗した旨を、ユーザーインターフェース160を介して作業者に報知する(ステップS405)。 一方、ステップS404で露出成功(YES)と判定されると、上述の図7と同様にしてステップS107以後が実行される。 Then, the arithmetic processing unit 110 confirms whether the exposure of the pocket 621 has succeeded at the component supply position Ls (step S404). In this step S404, when the cover tape 64 is removed from the range necessary for picking up the part E among the openings of the pocket 621, it is determined that the exposure is successful (YES), and at least one of the cover tapes 64 is If the sets overlap, it is determined that the exposure has failed (NO). Then, if it is determined in step S404 that the exposure has failed (NO), the arithmetic processing unit 110 notifies the operator via the user interface 160 that the exposure of the pocket 621p has failed (step S405). On the other hand, if it is determined in step S404 that the exposure is successful (YES), step S107 and subsequent steps are executed as in FIG. 7 described above.
 以上に説明した実施形態においても、露出されたポケット621が位置する部品供給位置Lsを撮像した画像から、部品供給位置Lsに搬送されたポケット621内の部品Eの有無が確認される。つまり、露出されたポケット621を撮像した画像に基づき当該ポケット621内の部品Eの有無が確認される。その結果、部品供給テープ60の部品切れの発生を的確に判定することが可能となっている。 Also in the embodiment described above, the presence or absence of the component E in the pocket 621 conveyed to the component supply position Ls is confirmed from the image obtained by imaging the component supply position Ls at which the exposed pocket 621 is located. That is, based on an image obtained by imaging the exposed pocket 621, the presence or absence of the part E in the pocket 621 is confirmed. As a result, it is possible to accurately determine the occurrence of component breakage of the component supply tape 60.
 なお、実装ヘッド31による部品Eのピックアップの失敗は、部品供給テープ60の部品切れ以外に、部品Eの露出の失敗によっても生じうる。そこで、演算処理部110は、基板認識カメラ8が撮像した画像から、部品供給位置Lsに供給された部品Eの露出が成功したと判定した場合に、部品供給位置Lsに搬送されたポケット621内の部品Eの有無を確認する(ステップS107)。一方、演算処理部110は、当該部品Eの露出が失敗したと判定した場合に、部品供給位置Lsのポケット621内の部品Eの有無を確認しない。これによって、実装ヘッド31による部品Eのピックアップの失敗の原因が部品Eの露出の失敗による場合に、ポケット621内の部品Eの有無の確認を不要に実行されるのを抑制できる。 A failure in picking up the component E by the mounting head 31 may also occur due to a failure in exposure of the component E, in addition to the component breakage of the component supply tape 60. Therefore, when the arithmetic processing unit 110 determines that the exposure of the component E supplied to the component supply position Ls is successful from the image captured by the substrate recognition camera 8, the inside of the pocket 621 transported to the component supply position Ls The presence or absence of the part E is checked (step S107). On the other hand, when it is determined that the exposure of the part E has failed, the arithmetic processing unit 110 does not confirm the presence or absence of the part E in the pocket 621 of the part supply position Ls. This can suppress unnecessary execution of confirmation of the presence or absence of the component E in the pocket 621 when the cause of the failure in picking up the component E by the mounting head 31 is failure in exposure of the component E.
 このように本実施形態では、部品実装機1が本発明の「部品実装機」の一例に相当し、テープフィーダー5が本発明の「テープフィーダー」の一例に相当し、フィーダーモーターMf、Mbが本発明の「テープ駆動部」の一例に相当し、部品露出部材59が本発明の「露出部」の一例に相当し、部品供給位置Lsが本発明の「供給位置」の一例に相当し、コンベア12が本発明の「基板搬入部」の一例に相当し、実装ヘッド31が本発明の「実装ヘッド」の一例に相当し、基板認識カメラ8あるいは部品認識カメラ9が本発明の「撮像部」の一例に相当し、基板認識カメラ8が本発明の「カメラ」の一例に相当し、主制御部100およびフィーダー制御部50が協働して本発明の「制御部」の一例として機能し、テープセンサーSbが本発明の「センサー」の一例に相当し、部品供給テープ60が本発明の「部品供給テープ」の一例に相当し、キャリアテープ62が本発明の「キャリアテープ」の一例に相当し、ポケット621が本発明の「収容部」の一例に相当し、トレイル部Tが本発明の「所定範囲」の一例に相当し、カバーテープ64が本発明の「カバーテープ」の一例に相当し、部品Eが本発明の「部品」の一例に相当し、基板Bが本発明の「基板」の一例に相当する。 Thus, in the present embodiment, the component mounting machine 1 corresponds to an example of the "component mounting machine" of the present invention, the tape feeder 5 corresponds to an example of the "tape feeder" of the present invention, and the feeder motors Mf and Mb The component exposure member 59 corresponds to an example of the "exposed portion" of the present invention, and the component supply position Ls corresponds to an example of the "supply position" of the present invention. The conveyor 12 corresponds to an example of the "substrate loading unit" of the present invention, the mounting head 31 corresponds to an example of the "mounting head" of the present invention, and the substrate recognition camera 8 or the component recognition camera 9 is the "imaging unit" of the present invention The substrate recognition camera 8 corresponds to an example of the “camera” of the present invention, and the main control unit 100 and the feeder control unit 50 cooperate to function as an example of the “control unit” of the present invention. , The tape sensor Sb The component supply tape 60 corresponds to an example of the "component supply tape" of the present invention, the carrier tape 62 corresponds to an example of the "carrier tape" of the present invention, and the pocket 621 is an example of the present invention. The trail portion T corresponds to an example of the "predetermined range" of the present invention, the cover tape 64 corresponds to an example of the "cover tape" of the present invention, and the component E is an example of the "cover portion" of the present invention. The substrate B corresponds to an example of the “part” of the invention, and the substrate B corresponds to an example of the “substrate” of the invention.
 なお、本発明は上記実施形態に限定されるものではなく、その趣旨を逸脱しない限りにおいて上述したものに対して種々の変更を加えることが可能である。例えば、テープ排出動作での部品供給テープ60での移動速度も適宜変更が可能である。 The present invention is not limited to the above-described embodiment, and various modifications can be made to the above-described one without departing from the scope of the invention. For example, the moving speed of the component supply tape 60 in the tape discharging operation can also be changed as appropriate.
 また、部品供給テープ60の部品切れが生じたと判定した場合には、テープ排出動作を実行せずに、部品切れの報知をユーザーインターフェース160により実行して、部品切れが生じた部品供給テープ60と次の部品供給テープ60を接続するスプライシングの実行を作業者に促しても良い。 Further, when it is determined that the component supply tape 60 has run out of parts, notification of component run out is performed by the user interface 160 without executing the tape discharging operation, and the component supply tape 60 with a component run out is generated. The operator may be prompted to perform splicing to connect the next component supply tape 60.
 また、部品供給位置Lsにおいてポケット621を露出させる構成は上記の例に限られない。つまり、特開2017-143225号公報に記載のように、カバーテープ64を引っ張ってキャリアテープ62から剥離する剥離部材によって、ポケット621を露出させても良い。 Further, the configuration for exposing the pocket 621 at the component supply position Ls is not limited to the above example. That is, as described in JP-A-2015-143225, the pocket 621 may be exposed by a peeling member which pulls the cover tape 64 to peel it from the carrier tape 62.
 また、部品切れの発生確認に、複数のポケット621について部品Eの不存在を確認することは要しない。つまり、単一のポケット621について部品Eが存在しないことを確認した時点で、部品供給テープ60の部品切れが生じたと判定しても良い。 In addition, it is not necessary to confirm the absence of the part E for the plurality of pockets 621 in order to confirm the occurrence of part breakage. That is, when it is confirmed that there is no part E for the single pocket 621, it may be determined that the part supply tape 60 has run out of parts.
 1…部品実装機
 12…コンベア(基板搬入部)
 31…実装ヘッド
 5…テープフィーダー
 59…部品露出部材(露出部)
 Mf、Mb…フィーダーモーター(テープ駆動部)
 Sb…テープセンサー(センサー)
 Ls…部品供給位置(供給位置)
 60…部品供給テープ
 62…キャリアテープ
 621…ポケット(収容部)
 64…カバーテープ
 T…トレイル部(所定範囲)
 7…部品認識カメラ(撮像部、カメラ)
 9…部品認識カメラ(撮像部)
 100…主制御部(制御部)
 50…フィーダー制御部(制御部)
 B…基板
 E…部品
1 Component mounting machine 12 Conveyor (substrate loading unit)
31 ... mounting head 5 ... tape feeder 59 ... part exposed member (exposed part)
Mf, Mb: Feeder motor (tape drive unit)
Sb ... tape sensor (sensor)
Ls: Parts supply position (supply position)
60 ... parts supply tape 62 ... carrier tape 621 ... pocket (housing part)
64 ... cover tape T ... trail section (predetermined range)
7 ... Part recognition camera (imaging unit, camera)
9: Parts recognition camera (imaging unit)
100: Main control unit (control unit)
50: Feeder control unit (control unit)
B: Board E: Parts

Claims (9)

  1.  所定間隔で並ぶ複数の収容部のうち、終端から所定範囲の収容部には部品を収容せずに所定範囲より先端側の収容部に部品を収容するキャリアテープと、前記複数の収容部を塞ぐカバーテープとを有する部品供給テープを間欠的に駆動することで供給位置へ前記収容部を間欠的に搬送するテープ駆動部と、前記カバーテープを開くことで、前記供給位置に搬送された前記収容部を露出させる露出部とを有するテープフィーダーと、
     基板を搬入する基板搬入部と、
     前記供給位置に搬送された前記収容部から部品をピックアップして前記基板搬入部により搬入された基板に実装する実装ヘッドと、
     前記供給位置を撮像する撮像部と、
     前記撮像部が撮像した画像から、前記供給位置に搬送された前記収容部内の部品の有無を確認した結果に基づき、前記部品供給テープの部品切れが生じたか否かを判定する制御部と
    を備える部品実装機。
    Among a plurality of storage units arranged at a predetermined interval, a carrier tape for storing components in a storage section on the tip end side from a predetermined range without storing components in a storage area of a predetermined range from the end, and closing the plurality of storage units A tape drive unit that intermittently transports the storage unit to a supply position by intermittently driving a component supply tape having a cover tape, and the storage that is transported to the supply position by opening the cover tape. A tape feeder having an exposed portion exposing the portion;
    A substrate loading unit for loading a substrate;
    A mounting head which picks up a component from the storage section transported to the supply position and mounts the component on the substrate loaded by the substrate loading section;
    An imaging unit for imaging the supply position;
    And a control unit that determines whether or not a component shortage of the component supply tape has occurred based on a result of confirming the presence or absence of components in the storage unit conveyed to the supply position from the image captured by the imaging unit. Component mounter.
  2.  前記制御部は、前記供給位置に順番に供給された隣接する2個以上の前記収容部に部品が存在しないことを確認すると、前記部品供給テープの部品切れが生じたと判定する請求項1に記載の部品実装機。 The said control part determines that it is out of parts of the said component supply tape, when it confirms that components do not exist in the adjacent two or more said accommodating parts sequentially supplied to the said supply position. Part mounting machine.
  3.  前記制御部は、前記部品供給テープの部品切れが生じたと判定すると、前記部品供給テープの終端が排出されるまで前記部品供給テープを連続的に搬送するテープ排出動作を、前記テープ駆動部に実行させる請求項1または2に記載の部品実装機。 When the control unit determines that a component breakage of the component supply tape has occurred, the tape drive unit executes a tape discharge operation of continuously conveying the component supply tape until the end of the component supply tape is discharged. The component mounting machine according to claim 1 or 2.
  4.  前記テープフィーダーは、前記部品供給テープの終端を検出するセンサーをさらに有し、
     前記制御部は、前記テープ排出動作を前記テープ駆動部に開始させると、前記センサーが前記部品供給テープの終端を検出する検出タイミングを監視し、前記検出タイミングから求まる前記部品供給テープの排出タイミングに応じて前記テープ駆動部を停止させる請求項3に記載の部品実装機。
    The tape feeder further comprises a sensor for detecting the end of the component supply tape,
    The control unit monitors the detection timing when the sensor detects the end of the component supply tape when the tape drive unit starts the tape discharge operation, and the component supply tape discharge timing determined from the detection timing. The component mounter according to claim 3, wherein the tape drive unit is stopped accordingly.
  5.  前記撮像部は、前記基板のフィデューシャルマークを撮像するカメラにより前記供給位置を撮像する請求項1ないし4のいずれか一項に記載の部品実装機。 The component mounting machine according to any one of claims 1 to 4, wherein the imaging unit captures the supply position by a camera that captures a fiducial mark of the substrate.
  6.  前記撮像部は、前記実装ヘッドが前記供給位置の前記収容部からの部品のピックアップに失敗した場合に、前記供給位置を撮像する請求項1ないし5のいずれか一項に記載の部品実装機。 The component mounting machine according to any one of claims 1 to 5, wherein the imaging unit images the supply position when the mounting head fails to pick up a component from the storage unit at the supply position.
  7.  前記制御部は、前記撮像部が撮像した画像から、前記供給位置に供給された部品の露出が成功したと判定した場合に、前記供給位置に搬送された前記収容部内の部品の有無を確認する請求項6に記載の部品実装機。 The said control part confirms the presence or absence of the components in the said accommodating part conveyed to the said supply position, when it determines with the exposure of the components supplied to the said supply position being successful from the image which the said imaging part imaged. The component mounting machine according to claim 6.
  8.  前記制御部は、前記供給位置に搬送された前記収容部内に部品が存在しないことを確認すると、前記収容部からの部品のピックアップを前記実装ヘッドに禁止する請求項1ないし7のいずれか一項に記載の部品実装機。 The said control part prohibits the pick-up of the components from the said accommodating part to the said mounting head, when it confirms that components do not exist in the said accommodating part conveyed to the said supply position. The component mounting machine described in.
  9.  所定間隔で並ぶ複数の収容部のうち、終端から所定範囲の収容部には部品を収容せずに所定範囲より先端側の収容部に部品を収容するキャリアテープと、前記複数の収容部を塞ぐカバーテープとを有する部品供給テープを間欠的に駆動することで供給位置へ前記収容部を間欠的に搬送しつつ、前記カバーテープを開くことで、前記供給位置に搬送された前記収容部を露出させる工程と、
     前記供給位置を撮像する工程と、
     前記供給位置を撮像した画像から、前記供給位置に搬送された前記収容部内の部品の有無を確認した結果に基づき、前記部品供給テープの部品切れが生じたか否かを判定する工程と
    を備える部品切れ判定方法。
    Among a plurality of storage units arranged at a predetermined interval, a carrier tape for storing components in a storage section on the tip end side from a predetermined range without storing components in a storage area of a predetermined range from the end, and closing the plurality of storage units A component supply tape having a cover tape is intermittently driven to intermittently convey the storage portion to the supply position while the cover tape is opened to expose the storage portion transferred to the supply position. And a process of
    Imaging the supply position;
    And a step of determining whether or not a component shortage of the component supply tape has occurred based on the result of confirming the presence or absence of the component in the storage unit conveyed to the supply position from the image obtained by imaging the supply position. Out-of-stock check method.
PCT/JP2018/001446 2018-01-18 2018-01-18 Component mounting device, and component shortage determination method WO2019142299A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201880070326.8A CN112042287B (en) 2018-01-18 2018-01-18 Component mounting machine and component use-up determination method
PCT/JP2018/001446 WO2019142299A1 (en) 2018-01-18 2018-01-18 Component mounting device, and component shortage determination method
JP2019565635A JP6974503B2 (en) 2018-01-18 2018-01-18 Parts mounting machine, parts out-of-stock judgment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/001446 WO2019142299A1 (en) 2018-01-18 2018-01-18 Component mounting device, and component shortage determination method

Publications (1)

Publication Number Publication Date
WO2019142299A1 true WO2019142299A1 (en) 2019-07-25

Family

ID=67301382

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/001446 WO2019142299A1 (en) 2018-01-18 2018-01-18 Component mounting device, and component shortage determination method

Country Status (3)

Country Link
JP (1) JP6974503B2 (en)
CN (1) CN112042287B (en)
WO (1) WO2019142299A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20230067782A1 (en) * 2020-02-20 2023-03-02 Fuji Corporation Component mounting machine and component mounting system
US12052826B2 (en) * 2020-02-20 2024-07-30 Fuji Corporation Component mounting machine and component mounting system

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012248626A (en) * 2011-05-26 2012-12-13 Juki Corp Electronic component mounting device
JP2013098414A (en) * 2011-11-02 2013-05-20 Sony Corp Packaging device, component shortage determination method and program
JP2014236126A (en) * 2013-06-03 2014-12-15 株式会社日立ハイテクインスツルメンツ Suppressor, feeder, feeder control method and electronic component mounting apparatus
JP2016127218A (en) * 2015-01-08 2016-07-11 パナソニックIpマネジメント株式会社 Electronic component supply device
WO2016147339A1 (en) * 2015-03-18 2016-09-22 富士機械製造株式会社 Component mounting machine, and tape peel recovery method for component mounting machine

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5445484B2 (en) * 2011-02-08 2014-03-19 パナソニック株式会社 Tape feeder and tape loading method in tape feeder
US9743569B2 (en) * 2015-01-06 2017-08-22 Panasonic Intellectual Property Management Co., Ltd. Electronic component supply apparatus

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012248626A (en) * 2011-05-26 2012-12-13 Juki Corp Electronic component mounting device
JP2013098414A (en) * 2011-11-02 2013-05-20 Sony Corp Packaging device, component shortage determination method and program
JP2014236126A (en) * 2013-06-03 2014-12-15 株式会社日立ハイテクインスツルメンツ Suppressor, feeder, feeder control method and electronic component mounting apparatus
JP2016127218A (en) * 2015-01-08 2016-07-11 パナソニックIpマネジメント株式会社 Electronic component supply device
WO2016147339A1 (en) * 2015-03-18 2016-09-22 富士機械製造株式会社 Component mounting machine, and tape peel recovery method for component mounting machine

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20230067782A1 (en) * 2020-02-20 2023-03-02 Fuji Corporation Component mounting machine and component mounting system
US12052826B2 (en) * 2020-02-20 2024-07-30 Fuji Corporation Component mounting machine and component mounting system

Also Published As

Publication number Publication date
JPWO2019142299A1 (en) 2020-11-19
JP6974503B2 (en) 2021-12-01
CN112042287B (en) 2022-12-13
CN112042287A (en) 2020-12-04

Similar Documents

Publication Publication Date Title
KR101238962B1 (en) Electronic part mounting device
US10420268B2 (en) Component supply system and component supply method
JP4802751B2 (en) Electronic component mounting method
JP2010034606A (en) Electronic component mounting device
JP6142291B2 (en) Component mounting apparatus and component mounting method
JP5087032B2 (en) Electronic component mounting device
JP5925524B2 (en) Electronic component supply device and electronic component mounting device
JP4829042B2 (en) Mounting machine
JP6499768B2 (en) Component mounter, component holding member imaging method
JP4812816B2 (en) Component mounting apparatus and component mounting method
WO2019142299A1 (en) Component mounting device, and component shortage determination method
JP2020181868A (en) Component mounting device and automatic pitch detection method
JP4450809B2 (en) Electronic component mounting device
WO2017037824A1 (en) Component mounting device and nozzle imaging method
JP2011049279A (en) Electronic component mounting apparatus
JP2008210984A (en) Surface-mounting apparatus
JP4887067B2 (en) Electronic component mounting device
WO2019142300A1 (en) Component mounting machine, and method for judging component exposure status
JP6335299B2 (en) Component supply device and component mounting machine
JP7113310B2 (en) COMPONENT MOUNTING DEVICE AND COMPONENT SUPPLY METHOD
JP5982167B2 (en) Substrate transfer device
WO2018096574A1 (en) Mounting machine
JP4851952B2 (en) Surface mount equipment
JP4460071B2 (en) Electronic component mounting device
JP2007200989A (en) Method of mounting electronic component

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18901682

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019565635

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18901682

Country of ref document: EP

Kind code of ref document: A1