WO2019142283A1 - Image processing device, image processing device control method, and program - Google Patents

Image processing device, image processing device control method, and program Download PDF

Info

Publication number
WO2019142283A1
WO2019142283A1 PCT/JP2018/001294 JP2018001294W WO2019142283A1 WO 2019142283 A1 WO2019142283 A1 WO 2019142283A1 JP 2018001294 W JP2018001294 W JP 2018001294W WO 2019142283 A1 WO2019142283 A1 WO 2019142283A1
Authority
WO
WIPO (PCT)
Prior art keywords
image
objective
virtual space
virtual
space
Prior art date
Application number
PCT/JP2018/001294
Other languages
French (fr)
Japanese (ja)
Inventor
高義 谷川
珠樹 大本
昇時 大島
Original Assignee
株式会社Five for
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Five for filed Critical 株式会社Five for
Priority to PCT/JP2018/001294 priority Critical patent/WO2019142283A1/en
Publication of WO2019142283A1 publication Critical patent/WO2019142283A1/en

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T19/00Manipulating 3D models or images for computer graphics
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N5/00Details of television systems
    • H04N5/222Studio circuitry; Studio devices; Studio equipment
    • H04N5/262Studio circuits, e.g. for mixing, switching-over, change of character of image, other special effects ; Cameras specially adapted for the electronic generation of special effects
    • H04N5/272Means for inserting a foreground image in a background image, i.e. inlay, outlay

Definitions

  • the present invention relates to an image processing apparatus, a control method of the image processing apparatus, and a program.
  • the present invention relates to an image processing apparatus that provides smooth video in video content such as a game using a head tracking HMD, and a control method and program for the image processing apparatus.
  • HMD head mounted displays
  • VR virtual reality
  • the HMD is a device that displays a stereoscopic image by displaying parallax images on the left and right eyes of a player wearing it on the head.
  • the HMD can also impart immersive feeling and reality to the VR by tracking the movement of the player's head and reflecting the result in the image.
  • an image of a virtual world (hereinafter, referred to as “virtual space”) generated by a computer is superimposed on an image of the real world (hereinafter, referred to as “real space”) captured by a camera or the like.
  • MR Mixed Reality
  • AR Augmented Reality
  • the position and orientation of the player wearing the HMD are acquired in real time, and images of the virtual space are generated following the change of the image obtained by imaging the real space, Display to the player in real time through the HMD.
  • the MR sets the position and orientation of the player measured by a sensor or the like as the virtual position and orientation in the virtual space, draws an image of the virtual space by CG based on the setting, and combines it with the image of the real space doing.
  • the player wearing the HMD can observe an image as if a virtual object exists in the real space.
  • a player wearing the HMD may image a situation in which the mixed reality is experienced by MR, or a third party may want to view the imaged image.
  • the player wearing the HMD is imaged in the real space, it can not be imaged including the object of the three-dimensional model existing in the virtual space only by imaging the player and the real space. Therefore, techniques using MR and chroma key composition are being studied. That is, the room experiencing the mixed reality is made homogeneous color (for example, green), the player wearing the HMD is imaged, the homogeneous color in the imaged image or video is made transparent, and virtual Overlap with the image of space. By doing this, it is possible to capture an image including the same virtual space as the player who is experiencing MR, or a third party can view the captured image.
  • homogeneous color for example, green
  • a player experiencing MR may not be able to properly display an image in a virtual space.
  • a background object serving as a player's background and an item object serving as an item possessed by the player are used.
  • the background object is displayed behind the player, and the item object has to be displayed before or after depending on the position and orientation of the player.
  • the item object will be an unnatural image such that the item object is always displayed behind the player.
  • various proposals have been made for video contents such as games using an HMD, but the related art will be described based on patent documents.
  • Patent Document 1 there is known a technology of a video compositing apparatus that enables an actor to perform and a CG operator to perform an operation while checking a compositing result at a shooting site. Further, there is known an image processing apparatus capable of providing a highly realistic augmented reality while reducing the burden on the image processing apparatus, a control method of the image apparatus, and a program technology (see Patent Document 2). Further, there is known an information processing apparatus that displays an image generated by imaging a player in a real space at an appropriate position on the virtual space, and a control method and program technology thereof (see Patent Document 3).
  • the invention described in Patent Document 1 acquires three-dimensional information indicating the depth of an actual space when combining a photographed image and CG data, and based on the three-dimensional information, before and after the photographed image and CG data
  • the composition is performed taking into consideration the relationship.
  • the size of the object as viewed from the viewpoint set in the virtual space and the size of the object in the real space can be obtained by merely arranging the physical space image including the object in the virtual space. There is a problem that the size of the object when viewed from the imaging device is different.
  • a subject image of a non-moving object is mapped to a subject object and arranged in a virtual space.
  • the invention described in Patent Document 2 has a problem that the current position of the object moving in the real space is specified in real time, and the real space image obtained by imaging the object can not be arranged in the virtual space.
  • the size of the object viewed from the objective camera and the size of the object included in the real space image viewed from the viewpoint set in the virtual space are substantially the same. The size of the space image is changed.
  • the present invention is created to solve the above-mentioned conventional problems, and achieves the following object.
  • the object of the present invention relates to an image processing apparatus that provides smooth video, a control method of the image processing apparatus, and a program.
  • An image processing apparatus is an image processing apparatus including a generating device for generating a virtual space in which a three-dimensional model is arranged, and a synthesizing device communicably connected to the imaging device and processing the captured image.
  • An objective camera position specifying unit that repeatedly acquires the position and the orientation of the imaging device in the real space and repeatedly specifies the objective virtual camera position that is the position and the orientation of the virtual camera in the virtual space;
  • Target position specifying means for repeatedly obtaining the position and the direction of the target in the target position repeatedly specifying the target position and the position of the target in the virtual space, and the objective virtual camera position and / or the target position according to While arranging a three-dimensional model in the virtual space, the three-dimensional model is moved according to the movement of the imaging device and / or the object Placement means for placing in the virtual space, and the three-dimensional model placed in the virtual space as one or more virtual space images with the objective virtual camera position specified by the objective camera position specifying means as a viewpoint
  • the apparatus includes: virtual space image acquisition means for generating; and transmission means for transmitting the virtual space image generated by the virtual space image acquisition means to the synthesizing device, wherein the synthesizing device transmits the virtual space image acquired from the generating device.
  • Receiving means for receiving a virtual space image Real space image acquiring means for acquiring a real space image generated by imaging a physical space including the object by the imaging device, The virtual space image and the real space image And a mixed reality image acquisition unit that generates a mixed reality image by overlapping the
  • An image processing apparatus of the second invention is the first invention, wherein
  • the virtual space image acquisition means is configured to obtain the objective background image and the objective foreground according to the objective virtual camera position specified by the objective camera position specifying means and / or the target position specified by the target position specifying means. Generating an image.
  • An image processing apparatus is the second aspect, wherein the objective background image includes all of the three-dimensional model disposed in the virtual space, and the objective foreground image includes the objective camera.
  • a partial image which is a part of the three-dimensional model arranged in the virtual space according to the objective virtual camera position specified by the position specifying means and / or the target position specified by the target position specifying means Are arranged.
  • the image processing device of the fourth aspect of the present invention is the third aspect of the present invention, wherein all of the three-dimensional model disposed in the virtual space is disposed in the objective background image, and the objective camera is disposed in the objective foreground image.
  • a partial image which is a part of the three-dimensional model arranged in the virtual space according to the objective virtual camera position specified by the position specifying means and / or the target position specified by the target position specifying means Are arranged.
  • An image processing apparatus is the fourth aspect, wherein the virtual space image acquiring unit extracts the partial image from the objective background image.
  • An image processing apparatus is the fifth aspect, wherein the virtual space image acquiring unit extracts the partial image by transmitting a specific color from the objective background image. .
  • An image processing apparatus is the image processing apparatus according to any one of the first to sixth aspects, wherein the physical space image acquiring unit extracts a specific image including the object from the physical space image captured by the imaging device. It is characterized by
  • An image processing apparatus is the seventh aspect, wherein the physical space image acquiring unit extracts the specific image by transmitting a specific color from the physical space image captured by the imaging device. And a transparent processing unit.
  • An image processing apparatus is the image processing apparatus according to any one of the first to eighth aspects, wherein a head mount display is connected to the generation device, and the generation device determines the position and orientation of the head mount display in real space.
  • Subjective camera position specifying means for repeatedly specifying the position of the subjective virtual camera in the virtual space and the position of the subjective virtual camera in the virtual space repeatedly;
  • Subjective virtual space image acquiring means for generating a subjective virtual space image with the subjective virtual camera position specified by the means as a viewpoint, and HMD display control means for controlling to display the subjective virtual space image It features.
  • An image processing apparatus is the ninth aspect, wherein the subjective virtual space image acquiring unit controls to display a camera object at the objective virtual camera position identified by the objective camera position identifying unit. It is characterized by
  • An image processing apparatus is the image processing apparatus according to any one of the first to tenth aspects, wherein the combining apparatus is a video mixer, a video switcher or other video switching apparatus for processing one or more images. Do.
  • a control method of an image processing apparatus is an image processing apparatus including: a generation device generating a virtual space in which a three-dimensional model is arranged; and a synthesis device communicably connected to an imaging device
  • the objective camera position specifying means of the generation device repeatedly acquires the position and the orientation of the imaging device in the real space, and the objective virtual camera position which is the position and the orientation of the virtual camera in the virtual space is
  • the objective camera position specifying step of repeatedly specifying, and the target position specifying means of the generating device repeatedly acquire the position and the direction of the target in the real space repeatedly, and repeatedly specify the target position which is the position and the direction of the target in the virtual space Target position specifying step, and placement means of the generation device, the third order according to the objective virtual camera position and / or the target position Arranging the model in the virtual space, moving the three-dimensional model to arrange the virtual space according to the movement of the imaging device and / or the object, and acquiring a virtual space image of the generating device Virtual
  • a program executes a control method of an image processing apparatus including a generating device generating a virtual space in which a three-dimensional model is arranged, and a synthesizing device communicably connected to the imaging device and processing the captured image
  • An objective camera position that repeatedly acquires the position and orientation of the imaging device in the real space, and repeatedly specifies the objective virtual camera position that is the position and orientation of the virtual camera in the virtual space;
  • the arrangement means for moving the three-dimensional model to arrange in the virtual space, and the objective virtual camera position specified by the objective camera position specifying means for the three-dimensional model arranged in the virtual space Virtual space image acquiring means for generating one or a plurality of virtual space images as a viewpoint, and transmitting means for transmitting the virtual space image generated by the virtual space image acquiring means to the synthesizing device, the synthesizing device
  • FIG. 1 is an external view showing an image processing apparatus 1 to which a first embodiment of the present invention is applied and a state in which it is used.
  • FIG. 2 is a diagram showing a hardware configuration of the image processing apparatus 1.
  • FIG. 3 is a diagram showing a functional configuration of the image processing apparatus 1.
  • FIG. 4 is a flowchart showing the flow of processing of the image processing apparatus 1.
  • FIG. 5 is a diagram showing a table storing the position and orientation of each device.
  • FIG. 6 is a diagram showing the state of image composition.
  • FIG. 7 is an external view showing an image processing apparatus 101 to which the second embodiment of the present invention is applied and a state in which the image processing apparatus 101 is used.
  • FIG. 8 is a diagram showing a functional configuration of the image processing apparatus 101.
  • FIG. 9 is a diagram showing the state of image composition.
  • FIG. 10 is a diagram showing the state of image composition.
  • FIG. 11 is a diagram showing the state of image composition.
  • FIG. 1 is an external view showing an image processing apparatus 1 to which a first embodiment of the present invention is applied and a state in which it is used.
  • FIG. 2 is a diagram showing a hardware configuration of the image processing apparatus 1.
  • FIG. 3 is a diagram showing a functional configuration of the image processing apparatus 1.
  • FIG. 4 is a flowchart showing the flow of processing of the image processing apparatus 1.
  • FIG. 5 is a diagram showing a table storing the position and orientation of each device.
  • FIG. 6 is a diagram showing the state of image composition.
  • the arrow U direction is taken as an upward direction
  • the arrow D direction which is the reverse direction is demonstrated as a downward direction.
  • the arrow L direction which is one direction orthogonal to the vertical direction in the horizontal plane
  • the arrow R direction which is the other direction orthogonal to the right direction.
  • the arrow F direction which is the upper direction orthogonal to the vertical direction and the left-right direction
  • the arrow B direction as the lower direction will be described as the backward direction.
  • Top side, Bottom side, Front side, Back side, Left side and Right side are plane, bottom, front, back, left, right Explain as.
  • the image processing apparatus 1 is a so-called MR system that provides a virtual game based on virtual space images to the player P and provides a mixed reality image to the visitor V.
  • the image processing apparatus 1 includes a generating device 10, a combining device 20, an HMD 30, a first controller 40, a second controller 50, an objective camera 60, a chroma key curtain 70, a display 80 and a base station 90. It is done.
  • a generating device 10 a combining device 20
  • HMD 30 a first controller 40
  • a second controller 50 an objective camera 60
  • a chroma key curtain 70 a display 80
  • a base station 90 a base station
  • the generation device 10 is a general-purpose device equipped with an operating system.
  • the generation device 10 is a device that generates an objective background image 601 and an objective foreground image 602 to be combined by the combining device 20 based on the information on the position and orientation of each device.
  • the generation device 10 is also a device that separately transmits the objective background image 601 and the objective foreground image 602 to the combining device 20 as a plurality of video sources.
  • the synthesizing device 20, the HMD 30, the first controller 40 and the second controller 50 are connected to the generating device 10.
  • the generation device 10 is communicably connected to the synthesizer 20, the HMD 30, the first controller 40, and the second controller 50 in a wired or wireless manner.
  • the generation device 10 generates an image of a virtual space (hereinafter, virtual space image) in accordance with the position and orientation of the HMD 30, the first controller 40, and the second controller 50, and transmits the image to the HMD 30.
  • virtual space image an image of a virtual
  • the combining device 20 is a video mixer, a video switcher, and other video switching devices, and is a device that processes the real space image 603 and combines the mixed reality image 604.
  • the synthesizing device 20 is also a device that separately receives the objective background image 601 and the objective foreground image 602 separately transmitted from the generating device 10 as a plurality of video sources. As shown in FIG. 3, the synthesizing device 20 is connected to the generating device 10, the objective camera 60, and the display 80.
  • the synthesizing device 20 is connected to the generating device 10, the objective camera 60, and the display 80 in a data communication manner in a wired or wireless manner.
  • the synthesizing device 20 receives the real space image 603 captured by the objective camera 60, transmits a predetermined color (such as blue or green) of the real space image 603, and performs keying to the objective transparent reality space image 603 ′. Generate The synthesizing device 20 synthesizes an objective transparent reality space image 603 ′ which is a plurality of video sources, an objective background image 601 generated by the generating device 10, and an objective foreground image 602, and transmits the synthesized image to the display 80.
  • a predetermined color such as blue or green
  • the HMD 30 is a so-called head mounted display. As shown in FIG. 1, the HMD 30 is a display mounted on the head of the player P, and includes a right-eye video camera, a left-eye video camera, a right-eye display, and a left-eye display. The HMD 30 has a frame rate of 90 fps (frames per second). The HMD 30 can transmit the real space image captured by the right-eye video camera and the left-eye video camera to the generation device 10. The HMD 30 receives the virtual space image transmitted from the generation device 10 and displays it on the right-eye display and the left-eye display.
  • the HMD 30 is displayed on the right-eye display and the left-eye display at a position immediately in front of the eyes of the player P, with the images slightly shifted between the two eyes. For this reason, although the images displayed on the right-eye display and the left-eye display are flat, they can be seen three-dimensionally.
  • the real space image captured by the HMD 30 and the virtual space image displayed may be a moving image or a still image captured at a predetermined interval.
  • An HMD sensor 31 for detecting the position and the orientation of the HMD 30 is attached to the HMD 30.
  • the HMD sensor 31 can pick up the infrared rays blown by the base station 90.
  • the first controller 40 and the second controller 50 are devices for operating all or part of an object to be a three-dimensional model disposed in a virtual space.
  • a first controller sensor 41 for detecting the position and orientation of the first controller 40 is attached to the first controller 40.
  • the first controller sensor 41 can pick up the infrared rays blown by the base station 90.
  • a second controller sensor 51 for detecting the position and the orientation of the second controller 50 is attached to the second controller 50.
  • the second controller sensor 51 can pick up the infrared rays blown from the base station 90.
  • the objective camera 60 is an imaging device that captures a real space by moving manually or automatically. As shown in FIG. 1, the objective camera 60 is disposed at a predetermined position so as to capture an image of the player P who plays a game inside the chroma key curtain 70.
  • the physical space image captured by the objective camera 60 is transmitted to the combining device 20.
  • the physical space image captured by the objective camera 60 is a moving image, but may be a still image captured at a predetermined interval.
  • An objective camera sensor 61 for detecting the position and the direction of the objective camera 60 is attached to the objective camera 60.
  • the chroma key curtain 70 is a curtain for covering a room where a virtual game is to be experienced. As shown in FIG. 1, the chroma key curtain 70 is arranged to cover the player P who experiences the mixed reality. In this example, in order to be able to image the whole body of the player P with the objective camera 60, the objective camera 60 is disposed so as to cover a plane other than the rear surface, the bottom, the front, the left side, and the right side. In this example, the chroma key curtain 70 uses a green color which is complementary to the color of human skin in order to cover the person who is the player P. A plurality of colors may be used for the chroma key curtain 70, and the color of the object to be transmitted may be changed depending on the color and the density.
  • the display 80 is a display device capable of viewing the mixed reality image 704 including the same virtual space as the player P who is experiencing the virtual game. As shown in FIG. 1, the display 80 is a thin and large liquid crystal television. The display 80 has a frame rate of 60 fps (frames per second). In this example, a thin and large liquid crystal television is used so that many visitors V can view the mixed reality image 704 including the same virtual space as the player P who is experiencing the virtual game. Other display devices such as a small television, a smartphone, and a tablet may be used.
  • the base station 90 is a device for detecting the position and orientation of the HMD sensor 31, the first controller sensor 41, the second controller sensor 51, and the objective camera sensor 61.
  • the base station 90 irradiates infrared rays in a predetermined pattern in the range of about 120 degrees in the vertical and horizontal directions, and the HMD sensor 31, the first controller sensor 41, the second controller sensor 51, and the objective camera sensor 61 pick up the infrared rays. These positions and orientations are detected.
  • two base stations 90 are disposed inside the chroma key curtain 70.
  • two or more base stations 90 may be arranged so that the HMD sensor 31, the first controller sensor 41, the second controller sensor 51, and the objective camera sensor 61 can be detected under any circumstances.
  • the base station 90 may be disposed outside the chroma key curtain 70 so as to be inconspicuous.
  • the CPU 10 a is a central processing unit that controls devices and controllers connected to the system bus 11.
  • the ROM 10 b or the external memory 10 j is a memory in which is stored a BIOS (Basic Input / Output System) which is a control program of the CPU 10 a, an operating system, various programs to be described later to realize functions executed by various devices, It is an apparatus.
  • the RAM 10 c is a device that functions as a main memory, a work area, and the like of the CPU 10 a.
  • the CPU 10a reads various programs and the like necessary for execution of processing from the RAM 10c, and realizes various operations by executing the same.
  • the input controller 10 f is a device that controls inputs from the first controller 40, the second controller 50, the keyboard, and the mouse or other input device 10 i.
  • the video controller 10 h is a device that controls display on other display devices such as the right eye display and the left eye display included in the HMD 30.
  • the right-eye display and the left-eye display are output using, for example, a high-definition multimedia interface.
  • the memory controller 10g is a card type connected via an adapter to a hard disk, flexible disk, or PCMCIA card slot that stores a boot program, browser software, various applications, font data, player P files, editing files, various data, etc. It is an apparatus for controlling access to an external memory 10 j such as a memory.
  • the communication I / F controller 10 e is for connecting / communicating with an external device via a network, and is a device that executes communication control processing.
  • the general-purpose bus 10d is a device for capturing an image from the right-eye video camera and the left-eye video camera of the HMD 30.
  • the general-purpose bus 10d is connected as an external input terminal to the right-eye video camera and left-eye video camera by, for example, a universal serial bus.
  • Programs and the like used to execute various processes by the generation device 10 are recorded in the external memory 10 j, and are executed by the CPU 10 a by being loaded into the RAM 10 c as necessary.
  • the definition file and various information tables used by the program executed by the generation device 10 are stored in the external memory 10 j.
  • the hardware configuration of the synthesizing device 20 will be described based on FIG.
  • the hardware configuration of the combining device 20 is substantially the same as the hardware configuration of the generating device 10, and thus the detailed description of the same hardware configuration is omitted.
  • the right-eye display and the left-eye display are not connected to the video controller 20h of the synthesizing device 20.
  • a display 20 k is connected to the video controller 20 h of the synthesizing device 20.
  • the base station 90 is not connected to the synthesizer 20.
  • the right-eye video camera and the left-eye video camera are not connected to the general-purpose bus 20 d of the synthesizing device 20.
  • An objective camera 60 is connected to the general-purpose bus 20 d of the synthesizing device 20.
  • the generation device 10 includes, as functional units, a communication control unit 301, an objective camera position specifying unit 302, an object position specifying unit 303, an HMD real space image acquisition unit 304, an arrangement unit 305, and a subjective virtual space image acquisition.
  • Means 306, HMD display control means 307, virtual space image acquisition means 308, objective background image transmission means 309, and objective foreground image transmission means 310 are provided.
  • the communication control unit 301 has a function of transmitting / receiving various information to / from the HMD 30 capable of communicating with the generating device 10, the base station 90, and the combining device 20.
  • the communication control unit 301 transmits and receives information to and from these devices through the video controller 10h, the communication I / F controller 10e, the general-purpose bus 10d, and the like.
  • the objective camera position specifying means 302 has a function of acquiring information indicating the position and orientation of the objective camera 60 in the real space.
  • the objective camera position specifying means 302 repeatedly acquires the position and the orientation of the objective camera 60 in the real space, and repeatedly specifies the objective virtual camera position which is the position and the orientation of the virtual camera in the virtual space.
  • the position and the orientation of the objective camera 60 are detected at the timing when the objective camera sensor 61 picks up the infrared rays blown from the base station 90.
  • the target position specifying means 303 has a function of acquiring information indicating the position and orientation of the HMD 30, the first controller 40 and the second controller 50 in the real space.
  • the target position specifying means 303 repeatedly acquires the position and the direction of the target in the real space, and repeatedly specifies the target position which is the position and the direction of the target in the virtual space.
  • the position and the orientation of the HMD 30 are detected at the timing when the HMD sensor 31 picks up the infrared rays blown off from the base station 90.
  • the position and the orientation of the first controller 40 are detected at the timing when the first controller sensor 41 picks up the infrared rays blown off from the base station 90.
  • the position and the orientation of the second controller 50 are detected at the timing when the second controller sensor 51 picks up the infrared rays blown off from the base station 90.
  • the HMD real space image acquisition unit 304 has a function of repeatedly acquiring real space images captured by the right-eye video camera and the left-eye video camera of the HMD 30.
  • the arranging unit 305 has a function of arranging an object image (for example, a background image, a weapon image, a shield image) which is a three-dimensional model in a virtual space.
  • the arranging unit 305 arranges the object image based on the position and the orientation acquired by the objective camera position specifying unit 302, the target position specifying unit 303, and the like.
  • the object image is stored in the external memory 10 j or the like of the generation device 10, and these are read and acquired as appropriate.
  • Determine the position and orientation in the virtual space based on the position and orientation of the HMD 30 and the objective camera 60, generate an object image (background image) when viewed from this position and orientation, and place this in the virtual space .
  • the position and orientation in the virtual space are determined, and an object image (weapon image) when viewed from the position and orientation is generated and arranged in the virtual space.
  • the position and orientation in the virtual space are determined, and an object image (shield image) when viewed from this position and orientation is generated and acquired.
  • the subjective virtual space image acquisition unit 306 has a function of generating a subjective virtual space image from the virtual space generated by the arrangement unit 305.
  • the HMD display control means 307 has a function of performing display control of the right-eye display and the left-eye display of the HMD 30 connected to the generation device 10.
  • the HMD display control means 307 displays the subjective virtual space image generated by the subjective virtual space image acquisition means 306 on the right eye display and the left eye display.
  • the virtual space image acquisition unit 308 has a function of generating a virtual space image by the generation device 10.
  • the virtual space image acquisition unit 308 sets an objective background image 601 and an objective foreground image 602, which are virtual space images, with the object image arranged in the virtual space as the viewpoint and the objective virtual camera position specified by the objective camera position specifying unit 302.
  • Generate As shown in FIG. 6, in the objective background image 601, all object images (for example, background image, weapon image, shield image) arranged in the virtual space are arranged.
  • the objective foreground image 602 is arranged in the virtual space according to the objective virtual camera position specified by the objective camera position specifying means 302 and / or the target position specified by the target position specifying means 303.
  • a part of the object image eg, a weapon image, a shield image
  • the virtual space image acquisition unit 308 determines whether to arrange an object image (for example, a weapon image) in the objective foreground image 602 based on the positions and orientations of the HMD 30, the objective camera 60, and the first controller 40.
  • the virtual space image acquisition unit 308 determines whether to arrange an object image (for example, a shield image) in the objective foreground image 602 based on the positions and orientations of the HMD 30, the objective camera 60, and the second controller 50.
  • the objective foreground image 602 is an objective foreground image 602 'which is keyed and transmitted except for a part of the arranged object image.
  • the objective background image transmission unit 309 has a function of repeatedly transmitting the objective background image 601 generated by the virtual space image acquisition unit 308 to the combining device 20.
  • the generation device 10 transmits the objective background image 601 to the combining device 20 via a dedicated interface.
  • the objective foreground image transmitting means 310 has a function of returning to the synthesizing device 20 the objective foreground image 602 generated by the virtual space image acquiring means 308 or the transmitted objective foreground image 602 ′ to the synthesizing device 20.
  • the generator 10 transmits the objective foreground image 602 'to the synthesizer 20 via a dedicated interface.
  • the synthesizing device 20 includes a communication control unit 351, a real space image acquisition unit 352, a transmission processing unit 353, an objective background image reception unit 354, an objective foreground image reception unit 355, a mixed reality image generation unit 356 and a display display.
  • a control means 357 is provided.
  • the communication control unit 351 is a functional unit that transmits and receives various types of information between the generating device 10 capable of communicating with the combining device 20 and the objective camera 60.
  • the communication control unit 301 transmits and receives information to and from these devices through the communication I / F controller 10 e, the general-purpose bus 10 d, and the like.
  • the physical space image acquisition unit 352 has a function of repeatedly acquiring the physical space image 603 captured by the objective camera 60.
  • the transmission processing unit 353 has a function of transmitting a predetermined color included in the physical space image 603 acquired by the physical space image acquisition unit 352 to generate an objective transmission reality space image 603 ′. Since the color of the chroma key curtain 70 is green, the transmission processing unit 353 sets the opacity of the green pixel to “0” among the pixels included in the acquired real space image 603. The opacity does not necessarily have to be “0”, but the effect of the present invention can be further improved by completely transmitting.
  • the objective background image receiving unit 354 has a function of repeatedly receiving the objective background image 601 transmitted from the objective background image transmitting unit 309.
  • the combining device 20 receives the objective background image 601 from the generating device 10 via a dedicated interface.
  • the objective foreground image receiving unit 355 has a function of repeatedly receiving the objective foreground image 602 transmitted from the objective foreground image transmitting unit 310 or the transmitted objective foreground image 602 ′.
  • the synthesizer 20 receives the objective foreground image 602 'from the generator 10 via a dedicated interface.
  • the mixed reality image generation means 356 has a function of combining the mixed reality image 604 by superposing the objective background image 601, the objective transmission reality space image 603 'and the transmitted objective foreground image 602'. As shown in FIG. 6, the mixed reality image 604 is superimposed from the bottom in the order of the objective background image 601, the objective transmission reality space image 603 'and the transmitted objective foreground image 602'.
  • the display display control means 357 has a function of performing display control of the display 80 connected to the combining device 20.
  • the display display control means 357 displays the mixed reality image 604 synthesized by the mixed reality image generating means 356 on the display 80.
  • a series of processes performed by the generation device 10 of the image processing apparatus 1 includes an objective camera position identification step 401, an object position identification step 402, an HMD real space image acquisition step 403, an arrangement step 404, a subjective virtual space image acquisition step 405, and an HMD. It comprises a display control step 406, a virtual space image acquisition step 407, an objective background image transmission step 408, an objective foreground image transmission step 409 and an end step 410.
  • the CPU 10a acquires information indicating the position and orientation of the objective camera 60 in the real space, and stores the information in the RAM 10c or the like.
  • the CPU 10a uses the objective camera position specifying means 302 to acquire information indicating the position and the orientation of the objective camera 60 in the real space at the timing of picking up the infrared rays blown from the base station 90.
  • the position (coordinates) and direction (vector) of the objective camera 60 are represented by XYZ coordinates with a predetermined place in the real space as the origin and a vector using the XYZ coordinates, and an objective camera table It is stored in 560.
  • the CPU 10a acquires information indicating the position and orientation of the HMD 30 in the real space, and stores the information in the RAM 10c or the like.
  • the CPU 10a acquires the information indicating the position and the orientation of the HMD 30 in the real space at the timing of picking up the infrared rays skipped from the base station 90 using the target position specifying means 303.
  • the position (coordinates) and the direction (vector) of the HMD 30 are represented by XYZ coordinates with a predetermined place in the real space as the origin and a vector using the XYZ coordinates, and are stored in the HMD table 530 Be done.
  • the CPU 10 a acquires the position (coordinates) and the orientation (vector) of the HMD 30 of the first controller 40 and the second controller 50 using the base station 90, and the first controller table 540 and the second controller table 550.
  • the CPU 10a repeatedly acquires the physical space image transmitted from the right-eye video camera and the left-eye video camera of the HMD 30 using the HMD physical space image acquiring unit 304, and stores the same in the RAM 10c or the like.
  • a video camera corresponding to the right eye of the player P and a video camera corresponding to the left eye are prepared, and from these, real space images for the right eye and the left eye are repeatedly acquired.
  • the CPU 10a arranges an object image, which is a three-dimensional model, in the virtual space using the arranging means 305, and stores it in the RAM 10c or the like.
  • the CPU 10a reads the position (coordinates) and direction (vector) of the objective camera 60 stored in the objective camera table 560, acquired in the objective camera position specifying step S401, from the RAM 10c or the like, and corresponds to the object image (for example, , Background image) in the virtual space and stored in the RAM 10 c or the like.
  • the CPU 10a reads the position (coordinates) and direction (vector) of the HMD 30 acquired in the target position specifying step S402 and stored in the HMD table 530 from the RAM 10c or the like, and an object image (for example, background image) corresponding thereto. Are arranged in the virtual space and stored in the RAM 10 c or the like.
  • the CPU 10a reads the position (coordinates) and the orientation (vector) of the first controller acquired in the target position specifying step S402 and stored in the first controller table 540 from the RAM 10c or the like, and corresponds to the object image (for example, , Weapon images) are arranged in the virtual space and stored in the RAM 10 c or the like.
  • the CPU 10a reads the position (coordinates) and the orientation (vector) of the second controller acquired in the target position specifying step S402 and stored in the second controller table 550 from the RAM 10c or the like, and corresponds to the object image (for example, , Shield image) in the virtual space and stored in the RAM 10 c or the like.
  • the CPU 10a generates a subjective virtual space image using the subjective virtual space image acquisition means 306, and stores it in the RAM 10c or the like.
  • the CPU 10a reads the position (coordinates) and the direction (vector) of the HMD 30 acquired in the target position specifying step S402 and stored in the HMD table 530 from the RAM 10c or the like, and generates a subjective virtual space image corresponding thereto. , RAM 10c and the like.
  • the CPU 10a generates a subjective virtual space image for the right eye and a subjective virtual space image for the left eye to display the subjective virtual space on the right eye display and the left eye display of the HMD 30.
  • the CPU 10a reads the subjective virtual space image generated in the subjective virtual space image acquisition step S405 from the RAM 10c or the like, and displays it on the right eye display and the left eye display of the HMD 30 through the video controller 10h.
  • Subjective virtual space images stored in the RAM 10c etc. are for the right eye and for the left eye. Therefore, the HMD display control means 307 is used to control to display the right-eye subjective virtual space image on the right-eye display, and to control to display the left-eye subjective virtual space real image on the left-eye display.
  • the CPU 10a generates a virtual space image using the virtual space image acquisition unit 308, and stores the virtual space image in the RAM 10c or the like.
  • the CPU 10a reads the position (coordinates) and direction (vector) of the objective camera 60 stored in the objective camera table 560, acquired in the objective camera position specifying step S401, from the RAM 10c or the like, and a virtual space image corresponding to this. It is generated and stored in the RAM 10c or the like.
  • the CPU 10a generates an objective background image and an objective foreground image as virtual space images, and stores them in the RAM 10c or the like.
  • the CPU 10a generates and stores the objective background image 601 in a state where all of the object images arranged in the virtual space (background image, weapon image, shield image) are arranged.
  • the CPU 10a selects a part of the object image arranged in the virtual space according to the objective virtual camera position specified by the objective camera position specifying means 302 and / or the target position specified by the target position specifying means 303 (a weapon image,
  • the objective foreground image 602 is generated and stored in a state where a partial image which is a shield image) is arranged.
  • the CPU 10a uses the virtual space image acquisition means 308 to determine whether or not to arrange an object image (weapon image) in the objective foreground image 602 based on the position and orientation of the HMD 30, the objective camera 60 and the first controller 40. To generate an objective foreground image 602. The CPU 10a uses the virtual space image acquisition means 308 to determine whether to arrange an object image (shield image) in the objective foreground image 602 based on the position and orientation of the HMD 30, the objective camera 60 and the second controller 50. To generate an objective foreground image 602. The CPU 10a transmits and keys a portion other than a part of the object image to be arranged, and stores it as a transmitted objective foreground image 602 '.
  • the CPU 10a reads the generated objective background image from the RAM 10c or the like using the objective background image transmission means 309, and transmits it to the synthesizing device 20.
  • the CPU 10 a transmits the objective background image 601 from the generating device 10 to the combining device 20 via a dedicated interface for transmitting the objective background image 601.
  • the CPU 10 a reads the generated objective foreground image 602 or the transmitted objective foreground image 602 ′ from the RAM 10 c or the like using the objective foreground image transmission unit 310, and transmits the read object foreground image 602 or the transmitted objective foreground image 602 ′ to the combining device 20.
  • the CPU 10a transmits the objective foreground image 602 'from the generating device 10 to the synthesizing device 20 via a dedicated interface for transmitting the objective foreground image 602'.
  • End step S413 The CPU 10a determines whether or not an instruction to end the process of displaying the virtual game is given to the player P wearing the HMD 30. If the CPU 10a determines that an end instruction has been issued, the series of processing ends. If there is no end instruction, the CPU 10a returns the process to the objective camera position specifying step S401, and repeats a series of processes until the end instruction is given.
  • a series of processes performed by the combining device 20 of the image processing device 1 includes a real space image acquisition step 451, a transmission processing step 452, an objective background image reception step 453, an objective foreground image reception step 454, a mixed reality image generation step 455, a display It consists of a display control step 456 and an end step 457.
  • the CPU 20a acquires the physical space image 603 transmitted from the objective camera 60 using the physical space image acquisition means 352, and stores it in the RAM 20c or the like.
  • the CPU 20a transmits a predetermined color included in the physical space image 603 stored in the RAM 20c to generate an objective transmission reality space image 603 ′ and stores the objective transparent reality space image 603 ′ in the RAM 20c or the like.
  • the CPU 20a reads the physical space image 603 from the RAM 10c or the like, transmits a predetermined color of the physical space image 603 using the transmission processing means 353, generates an objective transparent reality space image 603 ', and stores it in the RAM 20c or the like. .
  • the real space image 603 since the portion other than the player P wearing the HMD 30 is green of the chroma key curtain 70, the real space image 603 is transmitted by changing the alpha value of this color.
  • the objective transparent reality space image 603 ′ is an image in which only the player P is extracted, and a portion covered by the chroma key curtain 70 other than the player P is transmitted.
  • the CPU 20a uses the objective background image transmission means 309 to receive information indicating the objective background image 601 transmitted from the generation device 10, and stores the information in the RAM 20c or the like.
  • the CPU 20a uses the objective foreground image transmission means 310 to receive the objective foreground image 602 transmitted from the generation device 10 or the information indicating the transmitted objective foreground image 602 ', and stores the information in the RAM 20c or the like.
  • the CPU 20a reads out the objective background image 601 stored in the RAM 20c etc., the objective transparent reality space image 603 'and the transmitted objective foreground image 602'. Then, the mixed reality image 604 is generated by superimposing the objective background image 601, the objective transmission reality space image 603 ′ and the transmitted objective foreground image 602 ′ using the mixed reality image generation means 356, and the mixed reality image 604 is generated.
  • the mixed reality image is superimposed from the bottom in the order of the objective background image 601, the objective transmission reality space image 603 'and the transmitted objective foreground image 602', and is stored in the RAM 20c or the like.
  • the CPU 20a reads the mixed reality image 604 generated in the mixed reality image generation step S455 from the RAM 20c or the like, and displays it on the display 80 through the video controller 20h using the display display control means 357.
  • End step S457 The CPU 20a determines whether or not an instruction to end the process of displaying the virtual game is given to the player P wearing the HMD 30. If the CPU 20a determines that an end instruction has been issued, the series of processing ends. If there is no end instruction, the CPU 20a returns the process to the physical space image acquisition step S451, and repeats a series of processes until the end instruction is given.
  • FIG. 7 shows a process of generating a mixed reality image.
  • the player P wears the HMD 30 on his head, holds the first controller 40 on his right hand, holds the second controller 50 on his left hand, in the space surrounded by the chroma key curtain 70, Is a game to defeat monsters.
  • the visitor V can grasp the state of the player P by performing chroma key composition while photographing the player P with one objective camera 60 that moves manually or automatically.
  • the moment when the player P faces the objective camera 60 will be described as an example.
  • the objective camera position specifying unit 302 acquires the position and the direction of the objective camera 60
  • the target position specifying unit 303 acquires the positions and the directions of the HMD 30, the first controller 40, and the second controller 50 S401, S402).
  • the arranging unit 305 arranges the object image in the virtual space based on the acquired position and orientation of the objective camera 60, the HMD 30, the first controller 40, and the second controller 50 (S404).
  • the subjective virtual space image acquiring unit 306 generates a subjective virtual space image (S405), and displays the subjective virtual space image on the HMD 30 (S406).
  • the virtual space image acquisition means 308 generates an objective background image 601 and an objective foreground image 602 as a virtual space image, as shown in FIG. 6, based on the position and orientation of the objective camera 60 (S407).
  • the second controller 50 held by the player P is between the HMD 30 and the objective camera 60. Therefore, only the shield image is displayed on the objective foreground image 602.
  • the virtual space image acquisition means 308 transmits the objective foreground image 602, generates keying and generates the transmitted objective foreground image (S407).
  • the objective background image transmission unit 309 transmits the objective background image 601 from the generation device 10 to the combining device 20 via the dedicated interface (S408).
  • the objective foreground image transmission means 310 transmits the transmitted objective foreground image 602 'from the generating device 10 to the synthesizing device 20 via the dedicated interface (S409).
  • the physical space image acquisition means 352 acquires the physical space image 603 transmitted from the objective camera 60 (S 451), and the transmission processing means 353 transmits a predetermined color of the physical space image to generate an objective transmission real space image 603 ′ (S452).
  • the objective background image receiving unit 354 receives the objective background image 601 from the generation device 10 to the combining device 20 via the dedicated interface (S 453).
  • the objective foreground image receiving means 355 receives the transmitted objective foreground image 602 'from the generating device 10 to the synthesizing device via the dedicated interface (S454).
  • the mixed reality image generation unit 356 generates a mixed reality image 604 by superimposing the objective background image 601, the objective transmission reality space image 603 ′ and the transmitted objective foreground image 602 ′ in this order from below. (S456).
  • the display display control means 357 displays the mixed reality image 604 on the display 80.
  • a weapon image is displayed on the objective foreground image 602, so the image of the player P of the objective transmission reality space image 603 ' Is placed so that the weapon image overlaps the.
  • a weapon image and a shield image are displayed only on the objective background image 601, so an objective transmission reality space is obtained.
  • the weapon image and the shield image do not overlap in front of the image of the player P of the image 603 ′, and are placed behind.
  • the depth which can not be expressed by ordinary chroma key composition can be expressed by the objective background image 601, the objective transparent reality space image 603 'and the transmitted objective foreground image 602'. That is, a predetermined image can be arranged in front of the player P extracted by chroma key combination.
  • the generation device 10 mainly performs processing of constructing a virtual space
  • the synthesizing device 20 mainly performs composition and display of the generated image
  • the smooth mixed reality image 704 without a processing omission is a visitor V. Can see.
  • the first virtual game of the first embodiment uses only one objective camera 60 that moves manually or automatically, but the second virtual game of the second embodiment uses three cameras that move manually or automatically (The objective camera 60, the objective camera 160 and the objective camera 260) are used.
  • the second virtual game will not be described in detail for the same part as the first virtual game, and different parts will be described.
  • FIG. 7 is an external view showing an image processing apparatus 101 to which the second embodiment of the present invention is applied and a state in which the image processing apparatus 101 is used.
  • FIG. 8 is a diagram showing a functional configuration of the image processing apparatus 101.
  • FIG. 9 is a diagram showing the state of image composition.
  • FIG. 10 is a diagram showing the state of image composition.
  • FIG. 11 is a diagram showing the state of image composition.
  • the second virtual game is different from the first virtual game, and in addition to the objective camera 60, an objective camera 160 and an objective camera 260 are prepared.
  • the second virtual game differs from the first virtual game in that the generating device 10 has an objective camera selection control means 301 'and the combining device 20 has an objective camera identification control means 351'.
  • the objective camera selection control means 301 ′ has a function of controlling which one of the objective camera 60, the objective camera 160 and the objective camera 260 is to be selected.
  • the objective camera selection control means 301 ′ selects one of the objective camera 60, the objective camera 160, and the objective camera 260 by the program incorporated in the generation device 10 and / or the input operation of the operator using the generation device 10, or the like. .
  • the objective camera selection control unit 301 ′ transmits information of the selected camera to the combining device 20 after storing the information in the generating device 10.
  • the objective camera identification control means 351 ′ has a function of identifying the camera selected by the generation device 10. Based on the camera specified by the objective camera specification control means 351 ′, the real space image acquisition means 352 acquires a real space image. For example, when the objective camera 60 is selected by the objective camera selection control means 301 ′, the generation device 10 generates an objective background image 701 and a transmitted objective foreground image 702 ′ as shown in FIG. Then, an objective transmission reality space image 703 'is generated, and a mixed reality image 704 is generated.
  • the generation device 10 when the objective camera 160 is selected by the objective camera selection control means 301 ′, as shown in FIG. 10, the generation device 10 generates an objective background image 711 and a transmitted objective foreground image 712 ′. Then, an objective transmission reality space image 713 'is generated, and a mixed reality image 714 is generated.
  • the generation device 10 when the objective camera 260 is selected by the objective camera selection control means 301 ′, as shown in FIG. 10, the generation device 10 generates an objective background image 721 and a transmitted objective foreground image 722 ′. Then, an objective transparent reality space image 723 'is generated, and a mixed reality image 724 is generated.
  • the mixed reality image is displayed switchably from a plurality of cameras, so that visual effects can be further enhanced.
  • the synthesizing device 20 is not limited to the video switching device, and may be a general-purpose device equipped with an operating system.
  • the HMD 30 includes the right-eye video camera and the left-eye video camera, but these may not be present or may be one video camera.
  • the mixed reality image 604 is displayed on the display 80, the image which the player P is looking at may be inserted as a wipe at a small corner or the like of the screen.
  • the subjective virtual space image may be transmitted to the synthesizing device 20.
  • the generating device 10 may transmit to the synthesizing device 20 via a dedicated interface for transmitting a subjective virtual space image.
  • the base station 90 may emit infrared light while detecting the position and orientation of each device, or each device emits infrared light. However, those positions and orientations may be detected. Further, the base station 90 irradiates infrared rays, and the HMD sensor 31, the first controller sensor 41, the second controller sensor 51, and the objective camera sensor 61 pick up these to detect their positions and directions. However, if these positions and directions are to be detected, for example, magnetic detection may be performed, or images captured by the HMD 30 or the objective camera 60 may be analyzed to specify the positions and directions.
  • the object of the three-dimensional model existing in the virtual space has been described using a weapon image, a shield image, and a background image, it may be a monster image or a camera image which is a camera object indicating the position of the objective camera 60.
  • the monster image is also disposed at an appropriate position before or after the image of the player P in the mixed reality image 704 viewed by the visitor V, similarly to the weapon image and the shield image.
  • the viewpoints of the subjective virtual space image viewed by the player P with the HMD 30 and the mixed reality image 704 viewed by the visitor V with the display 80 differ according to the position of the HMD 30 and the objective camera 60.
  • the present invention can also be implemented, for example, as a system, an apparatus, a method, a control method, a program or a storage medium. Specifically, the present invention may be applied to a system configured of a plurality of devices, or may be applied to an apparatus configured of a single device.
  • Image processing device 10 Generation device 10a: CPU 10b: ROM 10c: RAM 10d: General-purpose bus 10e: Communication I / F controller 10f: Input controller 10g: Memory controller 10h: Video controller 10i: Input device 10j: External memory 11: System bus 20: Synthesizer 20a: CPU 20c: RAM 20d: general purpose bus 20h: video controller 20k: display 30: HMD 31: HMD sensor 40: first controller 41: first controller sensor 50: second controller 51: second controller sensor 60: objective camera 61: objective camera sensor 70: chroma key curtain 80: display 90: base station

Abstract

[Problem] To provide an image processing device and a program which provide a smooth video for video content such as a game that uses a head-tracking type HMD. [Solution] An image processing device configured from a generation device and a synthesis device. The generation device is characterized by comprising: an objective camera position identification means for repeatedly identifying an objective virtual camera position, which is the position and orientation of a virtual camera; an object position identification means for repeatedly identifying an object position, which is the position and orientation of an object in virtual space; a positioning means for moving and thereby positioning a three-dimensional model in the virtual space; a virtual space image acquisition means for generating one or a plurality of virtual space images; and a transmission means for transmitting the one or plurality of virtual space images generated by the virtual space image acquisition means to the synthesis device. The synthesis device is characterized by comprising: a reception means for receiving a virtual space image; a real space image acquisition means for acquiring a real space image; and a mixed reality image acquisition means for generating a mixed reality image.

Description

画像処理装置、画像処理装置の制御方法及びプログラムImage processing apparatus, control method for image processing apparatus, and program
 本発明は、画像処理装置、画像処理装置の制御方法及びプログラムに関する。特にヘッドトラッキング式のHMDを使用したゲーム等の映像コンテンツにおいて、滑らかな映像を提供する画像処理装置、画像処理装置の制御方法及びプログラムに関するものである。 The present invention relates to an image processing apparatus, a control method of the image processing apparatus, and a program. In particular, the present invention relates to an image processing apparatus that provides smooth video in video content such as a game using a head tracking HMD, and a control method and program for the image processing apparatus.
 近年では、様々なヘッドマウントディスプレイ(Head Mounted Display、以下、「HMD」という。)が登場し、バーチャルリアリティ(Virtual Reality、以下「VR」という。)の表現の可能性が広がっている。HMDは、それを頭部に装着したプレイヤの左右の目に視差画像を表示することで立体映像を表示する装置である。HMDは、プレイヤの頭部の動きを追跡しその結果を映像に反映させることでVRへの没入感や臨場感を与えることもできる。 In recent years, various head mounted displays (hereinafter referred to as "HMD") have appeared, and the possibility of expressing virtual reality (hereinafter referred to as "VR") has expanded. The HMD is a device that displays a stereoscopic image by displaying parallax images on the left and right eyes of a player wearing it on the head. The HMD can also impart immersive feeling and reality to the VR by tracking the movement of the player's head and reflecting the result in the image.
 また、カメラ等で撮像した現実の世界(以下、「現実空間」という。)の画像に、コンピュータで生成された仮想の世界(以下、「仮想空間」という。)の画像を重ね合わせて、画像表示装置に表示する技術が存在する。このような技術には、複合現実(Mixed Reality、以下「MR」という。)や拡張現実(Augmented Reality、以下「AR」という。)等がある。このMRにおいては、没入感や臨場感を高めるために、HMDを装着したプレイヤの位置と向きをリアルタイムに取得し、現実空間を撮像した画像の変化に追従させて仮想空間の画像を生成し、HMDを通じてプレイヤに対してリアルタイムに表示する。 In addition, an image of a virtual world (hereinafter, referred to as “virtual space”) generated by a computer is superimposed on an image of the real world (hereinafter, referred to as “real space”) captured by a camera or the like. Techniques exist for displaying on a display device. Such techniques include Mixed Reality (hereinafter referred to as "MR") and Augmented Reality (hereinafter referred to as "AR"). In this MR, in order to enhance immersiveness and reality, the position and orientation of the player wearing the HMD are acquired in real time, and images of the virtual space are generated following the change of the image obtained by imaging the real space, Display to the player in real time through the HMD.
 そのため、MRは、センサ等によって計測したプレイヤの位置と向きを仮想空間での仮想の位置と向きとして設定し、この設定に基づいて仮想空間の画像をCGによって描画し、現実空間の画像と合成している。これにより、HMDを装着しているプレイヤは、あたかも現実空間の中に仮想の物体が存在しているかのような画像を観察できる。このような技術の発達に応じて、HMDを装着しているプレイヤが、MRによって複合現実を体験している様子を撮像したり、その撮像したものを第三者が見たいという要望がある。 Therefore, the MR sets the position and orientation of the player measured by a sensor or the like as the virtual position and orientation in the virtual space, draws an image of the virtual space by CG based on the setting, and combines it with the image of the real space doing. Thereby, the player wearing the HMD can observe an image as if a virtual object exists in the real space. According to the development of such technology, there is a demand that a player wearing the HMD may image a situation in which the mixed reality is experienced by MR, or a third party may want to view the imaged image.
 しかし、現実空間でHMDを装着しているプレイヤを撮像したとしても、そのプレイヤと現実空間が撮像されるだけで、仮想空間に存在する3次元モデルのオブジェクト等を含めて撮像することはできない。そこで、MRとクロマキー合成を用いる技術について検討されている。つまり、複合現実を体験する部屋を均質な色(例えば、緑色)にし、HMDを装着しているプレイヤを撮像して、撮像した画像や映像の中の均質な色を透明にして、そこに仮想空間の画像と重ね合わせる。こうすることで、MRを体験しているプレイヤと同じ仮想空間を含めた画像を撮像したり、その撮像したものを第三者が見ることができる。 However, even if the player wearing the HMD is imaged in the real space, it can not be imaged including the object of the three-dimensional model existing in the virtual space only by imaging the player and the real space. Therefore, techniques using MR and chroma key composition are being studied. That is, the room experiencing the mixed reality is made homogeneous color (for example, green), the player wearing the HMD is imaged, the homogeneous color in the imaged image or video is made transparent, and virtual Overlap with the image of space. By doing this, it is possible to capture an image including the same virtual space as the player who is experiencing MR, or a third party can view the captured image.
 しかし、このような方法ではMRを体験しているプレイヤが、仮想空間の画像において、適切に表示できない場合がある。例えば、HMDを使用したゲームにおいては、プレイヤの背景となる背景オブジェクトとプレイヤが持つアイテムとなるアイテムオブジェクトが使用される。このとき、背景オブジェクトはプレイヤの後ろ側に表示され、アイテムオブジェクトはプレイヤの位置や向きに応じて前や後に表示されなければならない。しかし、プレイヤは、自由に歩き回ることができるため、仮想空間におけるプレイヤの位置を考慮しないと、アイテムオブジェクトが常にプレイヤの後ろ側に表示されるような不自然な画像となってしまう。このように、HMDを使用したゲーム等の映像コンテンツには様々な提案がなされているが、特許文献を基に従来の技術を説明する。 However, in such a method, a player experiencing MR may not be able to properly display an image in a virtual space. For example, in a game using an HMD, a background object serving as a player's background and an item object serving as an item possessed by the player are used. At this time, the background object is displayed behind the player, and the item object has to be displayed before or after depending on the position and orientation of the player. However, since the player can roam freely, if the position of the player in the virtual space is not taken into consideration, the item object will be an unnatural image such that the item object is always displayed behind the player. As described above, various proposals have been made for video contents such as games using an HMD, but the related art will be described based on patent documents.
 例えば、撮影現場において合成結果を確認しながら役者が演技をしたりCGの操作者が操作を行うことを可能とする映像合成装置の技術が知られている(特許文献1参照)。また、画像処理装置の負担を軽減しつつ、リアリティの高い拡張現実を提供することが可能な画像処理装置、画像装置の制御方法及びプログラムの技術が知られている(特許文献2参照)。さらに、現実空間のプレイヤを撮像することにより生成される画像を仮想空間上の適切な位置に表示する情報処理装置、その制御方法及びプログラムの技術が知られている(特許文献3参照)。 For example, there is known a technology of a video compositing apparatus that enables an actor to perform and a CG operator to perform an operation while checking a compositing result at a shooting site (see Patent Document 1). Further, there is known an image processing apparatus capable of providing a highly realistic augmented reality while reducing the burden on the image processing apparatus, a control method of the image apparatus, and a program technology (see Patent Document 2). Further, there is known an information processing apparatus that displays an image generated by imaging a player in a real space at an appropriate position on the virtual space, and a control method and program technology thereof (see Patent Document 3).
特開2000-230374号公報Japanese Patent Laid-Open No. 2000-230374 特開2013-8297号公報JP, 2013-8297, A 特開2015-170232号公報JP, 2015-170232, A
 特許文献1に記載された発明は、実写画像とCGデータの合成の際に、実際の空間の奥行きを示す3次元情報を取得し、この3次元情報に基づいて実写画像とCGデータとの前後関係を考慮した合成を行うものである。特許文献1に記載された発明では、対象物を含む現実空間画像を仮想空間上に単に配置しただけでは、仮想空間上に設定された視点から見た場合の対象物の大きさと、現実空間において撮像装置から見た場合の対象物の大きさとが異なってしまうという問題点があった。 The invention described in Patent Document 1 acquires three-dimensional information indicating the depth of an actual space when combining a photographed image and CG data, and based on the three-dimensional information, before and after the photographed image and CG data The composition is performed taking into consideration the relationship. In the invention described in Patent Document 1, the size of the object as viewed from the viewpoint set in the virtual space and the size of the object in the real space can be obtained by merely arranging the physical space image including the object in the virtual space. There is a problem that the size of the object when viewed from the imaging device is different.
 特許文献2に記載された発明は、移動しない物体の被写体画像を被写体オブジェクトにマッピングして仮想空間に配置するものである。特許文献2に記載された発明では、現実空間を移動する対象物の現在位置をリアルタイムに特定し、対象物を撮像した現実空間画像を仮想空間に配置できないという問題点があった。特許文献3に記載された発明は、客観カメラから見た対象物の大きさと、仮想空間に設定される視点から見た現実空間画像に含まれる対象物の大きさとが略同一になるよう、現実空間画像のサイズを変更するものである。特許文献3に記載された発明では、仮想空間に現実空間画像を配置した上で、画像の生成と画像の合成を同じ情報処理装置で行われるため、処理落ちが頻繁に発生し滑らかな映像が提供できないという問題点があった。 In the invention described in Patent Document 2, a subject image of a non-moving object is mapped to a subject object and arranged in a virtual space. The invention described in Patent Document 2 has a problem that the current position of the object moving in the real space is specified in real time, and the real space image obtained by imaging the object can not be arranged in the virtual space. According to the invention described in Patent Document 3, the size of the object viewed from the objective camera and the size of the object included in the real space image viewed from the viewpoint set in the virtual space are substantially the same. The size of the space image is changed. In the invention described in Patent Document 3, after the physical space image is arranged in the virtual space, the generation of the image and the synthesis of the image are performed by the same information processing apparatus, so processing omission frequently occurs and a smooth image is generated. There was a problem that it could not provide.
 本発明は、以上のような従来の問題点を解決するために創作されたもので、次の目的を達成する。本発明の目的は、滑らかな映像を提供する画像処理装置、画像処理装置の制御方法及びプログラムに関するものである。 The present invention is created to solve the above-mentioned conventional problems, and achieves the following object. The object of the present invention relates to an image processing apparatus that provides smooth video, a control method of the image processing apparatus, and a program.
 本発明は、前記目的を達成するために次の手段をとる。
 本発明1の画像処理装置は、3次元モデルが配置される仮想空間を生成する生成装置と、撮像装置と通信可能に接続され撮像した画像を加工する合成装置とからなる画像処理装置であって、前記生成装置は、現実空間における前記撮像装置の位置と向きを繰り返し取得し、前記仮想空間における仮想カメラの位置と向きである客観仮想カメラ位置を繰り返し特定する客観カメラ位置特定手段と、現実空間における対象の位置と向きを繰り返し取得し、前記仮想空間における前記対象の位置と向きである対象位置を繰り返し特定する対象位置特定手段と、前記客観仮想カメラ位置及び/又は前記対象位置に従って、前記3次元モデルを前記仮想空間に配置すると共に、前記撮像装置及び/又は前記対象の移動に応じて、前記3次元モデルを移動して前記仮想空間に配置する配置手段と、前記仮想空間に配置された前記3次元モデルを前記客観カメラ位置特定手段で特定された前記客観仮想カメラ位置を視点として、一又は複数の仮想空間画像を生成する仮想空間画像取得手段と、前記仮想空間画像取得手段で生成された前記仮想空間画像を前記合成装置に送信する送信手段とを有し、前記合成装置は、前記生成装置から送信された前記仮想空間画像を受信する受信手段と、前記撮像装置で前記対象を含む現実空間を撮像することにより生成された現実空間画像を取得する現実空間画像取得手段と、前記仮想空間画像と前記現実空間画像とを重ね合わせて複合現実画像を生成する複合現実画像取得手段とを有することを特徴とする。
The present invention takes the following means to achieve the above object.
An image processing apparatus according to the first aspect of the present invention is an image processing apparatus including a generating device for generating a virtual space in which a three-dimensional model is arranged, and a synthesizing device communicably connected to the imaging device and processing the captured image. An objective camera position specifying unit that repeatedly acquires the position and the orientation of the imaging device in the real space and repeatedly specifies the objective virtual camera position that is the position and the orientation of the virtual camera in the virtual space; Target position specifying means for repeatedly obtaining the position and the direction of the target in the target position repeatedly specifying the target position and the position of the target in the virtual space, and the objective virtual camera position and / or the target position according to While arranging a three-dimensional model in the virtual space, the three-dimensional model is moved according to the movement of the imaging device and / or the object Placement means for placing in the virtual space, and the three-dimensional model placed in the virtual space as one or more virtual space images with the objective virtual camera position specified by the objective camera position specifying means as a viewpoint The apparatus includes: virtual space image acquisition means for generating; and transmission means for transmitting the virtual space image generated by the virtual space image acquisition means to the synthesizing device, wherein the synthesizing device transmits the virtual space image acquired from the generating device. Receiving means for receiving a virtual space image, Real space image acquiring means for acquiring a real space image generated by imaging a physical space including the object by the imaging device, The virtual space image and the real space image And a mixed reality image acquisition unit that generates a mixed reality image by overlapping the
 本発明2の画像処理装置は、本発明1であって、
 前記仮想空間画像取得手段は、前記客観カメラ位置特定手段で特定された前記客観仮想カメラ位置及び/又は前記対象位置特定手段で特定された前記対象位置に応じて、前記客観背景画像と前記客観前景画像を生成することを特徴とする。
An image processing apparatus of the second invention is the first invention, wherein
The virtual space image acquisition means is configured to obtain the objective background image and the objective foreground according to the objective virtual camera position specified by the objective camera position specifying means and / or the target position specified by the target position specifying means. Generating an image.
 本発明3の画像処理装置は、本発明2であって、前記客観背景画像には、前記仮想空間に配置された前記3次元モデルの全部が配置され、前記客観前景画像には、前記客観カメラ位置特定手段で特定された前記客観仮想カメラ位置及び/又は前記対象位置特定手段で特定された前記対象位置に応じて、前記仮想空間に配置された前記3次元モデルの一部である一部画像が配置されることを特徴とする。 An image processing apparatus according to the third aspect of the present invention is the second aspect, wherein the objective background image includes all of the three-dimensional model disposed in the virtual space, and the objective foreground image includes the objective camera. A partial image which is a part of the three-dimensional model arranged in the virtual space according to the objective virtual camera position specified by the position specifying means and / or the target position specified by the target position specifying means Are arranged.
 本発明4の画像処理装置は、本発明3であって、前記客観背景画像には、前記仮想空間に配置された前記3次元モデルの全部が配置され、前記客観前景画像には、前記客観カメラ位置特定手段で特定された前記客観仮想カメラ位置及び/又は前記対象位置特定手段で特定された前記対象位置に応じて、前記仮想空間に配置された前記3次元モデルの一部である一部画像が配置されることを特徴とする。 The image processing device of the fourth aspect of the present invention is the third aspect of the present invention, wherein all of the three-dimensional model disposed in the virtual space is disposed in the objective background image, and the objective camera is disposed in the objective foreground image. A partial image which is a part of the three-dimensional model arranged in the virtual space according to the objective virtual camera position specified by the position specifying means and / or the target position specified by the target position specifying means Are arranged.
 本発明5の画像処理装置は、本発明4であって、前記仮想空間画像取得手段は、前記客観背景画像から前記一部画像を抽出することを特徴とする。 An image processing apparatus according to a fifth aspect of the present invention is the fourth aspect, wherein the virtual space image acquiring unit extracts the partial image from the objective background image.
 本発明6の画像処理装置は、本発明5であって、前記仮想空間画像取得手段は、前記客観背景画像から特定の色を透過することにより、前記一部画像を抽出することを特徴とする。 An image processing apparatus according to the sixth aspect of the present invention is the fifth aspect, wherein the virtual space image acquiring unit extracts the partial image by transmitting a specific color from the objective background image. .
 本発明7の画像処理装置は、本発明1~6のいずれかであって、前記現実空間画像取得手段は、前記撮像装置で撮像された前記現実空間画像から前記対象を含む特定画像を抽出することを特徴とする。 An image processing apparatus according to a seventh aspect of the present invention is the image processing apparatus according to any one of the first to sixth aspects, wherein the physical space image acquiring unit extracts a specific image including the object from the physical space image captured by the imaging device. It is characterized by
 本発明8の画像処理装置は、本発明7であって、前記現実空間画像取得手段は、前記撮像装置で撮像された前記現実空間画像から特定の色を透過することにより、前記特定画像を抽出する透過処理手段を有することを特徴とする。 An image processing apparatus according to an eighth aspect of the present invention is the seventh aspect, wherein the physical space image acquiring unit extracts the specific image by transmitting a specific color from the physical space image captured by the imaging device. And a transparent processing unit.
 本発明9の画像処理装置は、本発明1~8のいずれかであって、前記生成装置には、ヘッドマウントディスプレイが接続され、前記生成装置は、現実空間における前記ヘッドマウントディスプレイの位置と向きを繰り返し取得し、前記仮想空間における主観仮想カメラの位置と向きである主観仮想カメラ位置を繰り返し特定する主観カメラ位置特定手段と、前記仮想空間に配置された前記3次元モデルを前記主観カメラ位置特定手段で特定された前記主観仮想カメラ位置を視点として、主観仮想空間画像を生成する主観仮想空間画像取得手段と、前記主観仮想空間画像を表示するように制御するHMD表示制御手段とを有することを特徴とする。 An image processing apparatus according to a ninth aspect of the present invention is the image processing apparatus according to any one of the first to eighth aspects, wherein a head mount display is connected to the generation device, and the generation device determines the position and orientation of the head mount display in real space. Subjective camera position specifying means for repeatedly specifying the position of the subjective virtual camera in the virtual space and the position of the subjective virtual camera in the virtual space repeatedly; Subjective virtual space image acquiring means for generating a subjective virtual space image with the subjective virtual camera position specified by the means as a viewpoint, and HMD display control means for controlling to display the subjective virtual space image It features.
 本発明10の画像処理装置は、本発明9であって、前記主観仮想空間画像取得手段は、前記客観カメラ位置特定手段で特定された前記客観仮想カメラ位置にカメラオブジェクトを表示するように制御することを特徴とする。 An image processing apparatus according to a tenth aspect of the present invention is the ninth aspect, wherein the subjective virtual space image acquiring unit controls to display a camera object at the objective virtual camera position identified by the objective camera position identifying unit. It is characterized by
 本発明11の画像処理装置は、本発明1~10のいずれかであって、前記合成装置は、一又は複数の画像を加工するビデオミキサー、ビデオスイッチャーその他の映像切替装置であることを特徴とする。 An image processing apparatus according to an eleventh aspect of the present invention is the image processing apparatus according to any one of the first to tenth aspects, wherein the combining apparatus is a video mixer, a video switcher or other video switching apparatus for processing one or more images. Do.
 本発明12の画像処理装置の制御方法は、3次元モデルが配置される仮想空間を生成する生成装置と、撮像装置と通信可能に接続され撮像した画像を加工する合成装置とからなる画像処理装置の制御方法であって、前記生成装置の客観カメラ位置特定手段が、現実空間における前記撮像装置の位置と向きを繰り返し取得し、前記仮想空間における仮想カメラの位置と向きである客観仮想カメラ位置を繰り返し特定する客観カメラ位置特定工程と、前記生成装置の対象位置特定手段が、現実空間における対象の位置と向きを繰り返し取得し、前記仮想空間における前記対象の位置と向きである対象位置を繰り返し特定する対象位置特定工程と、前記生成装置の配置手段が、前記客観仮想カメラ位置及び/又は前記対象位置に従って、前記3次元モデルを前記仮想空間に配置すると共に、前記撮像装置及び/又は前記対象の移動に応じて、前記3次元モデルを移動して前記仮想空間に配置する配置工程と、前記生成装置の仮想空間画像取得手段が、前記仮想空間に配置された前記3次元モデルを前記客観カメラ位置特定手段で特定された前記客観仮想カメラ位置を視点として、一又は複数の仮想空間画像を生成する仮想空間画像取得工程と、前記生成装置の送信手段が、前記仮想空間画像取得手段で生成された前記仮想空間画像を前記合成装置に送信する送信工程とを有し、前記合成装置の現実空間画像取得手段が、前記生成装置から送信された前記仮想空間画像を受信する受信工程と、前記合成装置の現実空間画像取得手段が、前記撮像装置で前記対象を含む現実空間を撮像することにより生成された現実空間画像を取得する現実空間画像取得工程と、前記合成装置の複合現実画像取得手段が、前記仮想空間画像と前記現実空間画像とを重ね合わせて複合現実画像を生成する複合現実画像取得工程とを有することを特徴とする。 A control method of an image processing apparatus according to a twelfth aspect of the present invention is an image processing apparatus including: a generation device generating a virtual space in which a three-dimensional model is arranged; and a synthesis device communicably connected to an imaging device The objective camera position specifying means of the generation device repeatedly acquires the position and the orientation of the imaging device in the real space, and the objective virtual camera position which is the position and the orientation of the virtual camera in the virtual space is The objective camera position specifying step of repeatedly specifying, and the target position specifying means of the generating device repeatedly acquire the position and the direction of the target in the real space repeatedly, and repeatedly specify the target position which is the position and the direction of the target in the virtual space Target position specifying step, and placement means of the generation device, the third order according to the objective virtual camera position and / or the target position Arranging the model in the virtual space, moving the three-dimensional model to arrange the virtual space according to the movement of the imaging device and / or the object, and acquiring a virtual space image of the generating device Virtual space image acquiring step of generating one or a plurality of virtual space images by using the three-dimensional model arranged in the virtual space as a viewpoint with the objective virtual camera position specified by the objective camera position specifying means Transmitting means of the generating device transmits the virtual space image generated by the virtual space image acquiring means to the combining device, and the real space image acquiring means of the combining device generates the virtual space image A receiving step of receiving the virtual space image transmitted from the device, and a real space image acquiring unit of the combining device imaging the physical space including the object by the imaging device. Space acquisition step of acquiring a real space image generated by the method, and a mixed reality image acquisition means of the combining device generating a mixed reality image by superimposing the virtual space image and the real space image And an image acquisition step.
 本発明13のプログラムは、3次元モデルが配置される仮想空間を生成する生成装置と、撮像装置と通信可能に接続され撮像した画像を加工する合成装置とからなる画像処理装置の制御方法を実行可能なプログラムであって、前記生成装置を、現実空間における前記撮像装置の位置と向きを繰り返し取得し、前記仮想空間における仮想カメラの位置と向きである客観仮想カメラ位置を繰り返し特定する客観カメラ位置特定手段と、現実空間における対象の位置と向きを繰り返し取得し、前記仮想空間における前記対象の位置と向きである対象位置を繰り返し特定する対象位置特定手段と、前記客観仮想カメラ位置及び/又は前記対象位置に従って、前記3次元モデルを前記仮想空間に配置すると共に、前記撮像装置及び/又は前記対象の移動に応じて、前記3次元モデルを移動して前記仮想空間に配置する配置手段と、前記仮想空間に配置された前記3次元モデルを前記客観カメラ位置特定手段で特定された前記客観仮想カメラ位置を視点として、一又は複数の仮想空間画像を生成する仮想空間画像取得手段と、前記仮想空間画像取得手段で生成された前記仮想空間画像を前記合成装置に送信する送信手段として機能させ、前記合成装置を、前記生成装置から送信された前記仮想空間画像を受信する受信手段と、前記撮像装置で前記対象を含む現実空間を撮像することにより生成された現実空間画像を取得する現実空間画像取得手段と、前記仮想空間画像と前記現実空間画像とを重ね合わせて複合現実画像を生成する複合現実画像取得手段として機能させることを特徴とする。 A program according to a thirteenth aspect of the present invention executes a control method of an image processing apparatus including a generating device generating a virtual space in which a three-dimensional model is arranged, and a synthesizing device communicably connected to the imaging device and processing the captured image An objective camera position that repeatedly acquires the position and orientation of the imaging device in the real space, and repeatedly specifies the objective virtual camera position that is the position and orientation of the virtual camera in the virtual space; Specifying means, target position specifying means for repeatedly obtaining the position and direction of the target in the real space, and repeatedly specifying the target position which is the position and the direction of the target in the virtual space, the objective virtual camera position and / or the According to the target position, the three-dimensional model is arranged in the virtual space, and the imaging device and / or the transfer of the target are performed. According to the arrangement means for moving the three-dimensional model to arrange in the virtual space, and the objective virtual camera position specified by the objective camera position specifying means for the three-dimensional model arranged in the virtual space Virtual space image acquiring means for generating one or a plurality of virtual space images as a viewpoint, and transmitting means for transmitting the virtual space image generated by the virtual space image acquiring means to the synthesizing device, the synthesizing device A receiving unit for receiving the virtual space image transmitted from the generating device; a physical space image acquiring unit for acquiring a physical space image generated by imaging the physical space including the object by the imaging device; It is characterized in that the virtual space image and the real space image are superimposed to generate a mixed reality image, thereby functioning as mixed reality image acquisition means.
図1は、本発明の第一実施形態を適用した画像処理装置1とそれを使用した状態を示す外観図である。FIG. 1 is an external view showing an image processing apparatus 1 to which a first embodiment of the present invention is applied and a state in which it is used. 図2は、画像処理装置1のハードウェア構成を示す図である。FIG. 2 is a diagram showing a hardware configuration of the image processing apparatus 1. 図3は、画像処理装置1の機能構成を示す図である。FIG. 3 is a diagram showing a functional configuration of the image processing apparatus 1. 図4は、画像処理装置1の処理の流れを示すフローチャートである。FIG. 4 is a flowchart showing the flow of processing of the image processing apparatus 1. 図5は、各装置の位置と向きを格納するテーブルを示す図である。FIG. 5 is a diagram showing a table storing the position and orientation of each device.
図6は、画像の合成の状態を示す図である。FIG. 6 is a diagram showing the state of image composition. 図7は、本発明の第二実施形態を適用した画像処理装置101とそれを使用した状態を示す外観図である。FIG. 7 is an external view showing an image processing apparatus 101 to which the second embodiment of the present invention is applied and a state in which the image processing apparatus 101 is used. 図8は、画像処理装置101の機能構成を示す図である。FIG. 8 is a diagram showing a functional configuration of the image processing apparatus 101. As shown in FIG. 図9は、画像の合成の状態を示す図である。FIG. 9 is a diagram showing the state of image composition. 図10は、画像の合成の状態を示す図である。FIG. 10 is a diagram showing the state of image composition. 図11は、画像の合成の状態を示す図である。FIG. 11 is a diagram showing the state of image composition.
〔本発明の第一実施形態〕
 以下、本発明の画像処理装置1について、図面に基づいて、本発明の第一実施形態として詳細に説明する。図1は、本発明の第一実施形態を適用した画像処理装置1とそれを使用した状態を示す外観図である。図2は、画像処理装置1のハードウェア構成を示す図である。図3は、画像処理装置1の機能構成を示す図である。図4は、画像処理装置1の処理の流れを示すフローチャートである。図5は、各装置の位置と向きを格納するテーブルを示す図である。図6は、画像の合成の状態を示す図である。
First Embodiment of the Present Invention
Hereinafter, an image processing apparatus 1 of the present invention will be described in detail as a first embodiment of the present invention based on the drawings. FIG. 1 is an external view showing an image processing apparatus 1 to which a first embodiment of the present invention is applied and a state in which it is used. FIG. 2 is a diagram showing a hardware configuration of the image processing apparatus 1. FIG. 3 is a diagram showing a functional configuration of the image processing apparatus 1. FIG. 4 is a flowchart showing the flow of processing of the image processing apparatus 1. FIG. 5 is a diagram showing a table storing the position and orientation of each device. FIG. 6 is a diagram showing the state of image composition.
 なお、図1に示すように、矢印U方向を上方向とし、その逆方向である矢印D方向を下方向として説明を行う。水平面内で上下方向と直交する一の方向である矢印L方向を左方向とし、直交する他の方向である矢印R方向を右方向として説明を行う。図1に示すように、上下方向及び左右方向と直交する上側の方向である矢印F方向を前方向とし、下側の方向である矢印B方向を後方向として説明を行う。上方向側の面、下方向側の面、前方向側の面、後方向側の面、左方向側の面及び右方向側の面をそれぞれ平面、底面、正面、背面、左側面、右側面として説明を行う。 In addition, as shown in FIG. 1, the arrow U direction is taken as an upward direction, and the arrow D direction which is the reverse direction is demonstrated as a downward direction. The following description will be given assuming that the arrow L direction which is one direction orthogonal to the vertical direction in the horizontal plane is the left direction, and the arrow R direction which is the other direction orthogonal to the right direction. As shown in FIG. 1, the arrow F direction, which is the upper direction orthogonal to the vertical direction and the left-right direction, will be referred to as the forward direction, and the arrow B direction as the lower direction will be described as the backward direction. Top side, Bottom side, Front side, Back side, Left side and Right side are plane, bottom, front, back, left, right Explain as.
〔画像処理装置1〕
 画像処理装置1は、仮想空間画像による仮想ゲームをプレイヤPに提供し、複合現実画像をビジタVに提供するいわゆるMRシステムである。図1に示すように、画像処理装置1は、生成装置10、合成装置20、HMD30、第一コントローラ40、第二コントローラ50、客観カメラ60、クロマキーカーテン70、ディスプレイ80及びベースステーション90とから構成されている。なお、仮想現実の技術に関しては、従来技術を使用するため詳細な説明は省略する。
[Image processing apparatus 1]
The image processing apparatus 1 is a so-called MR system that provides a virtual game based on virtual space images to the player P and provides a mixed reality image to the visitor V. As shown in FIG. 1, the image processing apparatus 1 includes a generating device 10, a combining device 20, an HMD 30, a first controller 40, a second controller 50, an objective camera 60, a chroma key curtain 70, a display 80 and a base station 90. It is done. In addition, regarding the technology of virtual reality, detailed description will be omitted because the prior art is used.
〔生成装置10〕
 生成装置10は、オペレーティングシステムを搭載する汎用的な装置である。生成装置10は、各装置の位置と向きの情報に基づいて、合成装置20で合成する客観背景画像601及び客観前景画像602を生成する装置である。また、生成装置10は、複数の映像ソースとして、客観背景画像601及び客観前景画像602を別々に合成装置20に送信する装置でもある。図3に示すように、生成装置10には、合成装置20、HMD30、第一コントローラ40及び第二コントローラ50が接続されている。生成装置10は、合成装置20、HMD30、第一コントローラ40及び第二コントローラ50と有線又は無線で、相互にデータ通信可能に接続されている。生成装置10は、HMD30、第一コントローラ40及び第二コントローラ50の位置と向きに応じて仮想空間の画像(以下、仮想空間画像)を生成し、HMD30に送信する。
[Generation device 10]
The generation device 10 is a general-purpose device equipped with an operating system. The generation device 10 is a device that generates an objective background image 601 and an objective foreground image 602 to be combined by the combining device 20 based on the information on the position and orientation of each device. In addition, the generation device 10 is also a device that separately transmits the objective background image 601 and the objective foreground image 602 to the combining device 20 as a plurality of video sources. As shown in FIG. 3, the synthesizing device 20, the HMD 30, the first controller 40 and the second controller 50 are connected to the generating device 10. The generation device 10 is communicably connected to the synthesizer 20, the HMD 30, the first controller 40, and the second controller 50 in a wired or wireless manner. The generation device 10 generates an image of a virtual space (hereinafter, virtual space image) in accordance with the position and orientation of the HMD 30, the first controller 40, and the second controller 50, and transmits the image to the HMD 30.
〔合成装置20〕
 合成装置20は、ビデオミキサー、ビデオスイッチャーその他の映像切替装置であり、現実空間画像603を加工し、複合現実画像604を合成する装置である。また、合成装置20は、複数の映像ソースとして、生成装置10から別々に送信される客観背景画像601及び客観前景画像602を別々に受信する装置でもある。図3に示すように、合成装置20には、生成装置10、客観カメラ60及びディスプレイ80が接続されている。合成装置20は、生成装置10、客観カメラ60及びディスプレイ80と有線又は無線で、相互にデータ通信可能に接続されている。合成装置20は、客観カメラ60で撮像された現実空間画像603を受信して、この現実空間画像603の所定の色(青や緑等)を透過してキーイングして客観透過現実空間画像603’を生成する。合成装置20は、複数の映像ソースである客観透過現実空間画像603’と生成装置10で生成された客観背景画像601と客観前景画像602とを合成しディスプレイ80に送信する。
[Combining apparatus 20]
The combining device 20 is a video mixer, a video switcher, and other video switching devices, and is a device that processes the real space image 603 and combines the mixed reality image 604. The synthesizing device 20 is also a device that separately receives the objective background image 601 and the objective foreground image 602 separately transmitted from the generating device 10 as a plurality of video sources. As shown in FIG. 3, the synthesizing device 20 is connected to the generating device 10, the objective camera 60, and the display 80. The synthesizing device 20 is connected to the generating device 10, the objective camera 60, and the display 80 in a data communication manner in a wired or wireless manner. The synthesizing device 20 receives the real space image 603 captured by the objective camera 60, transmits a predetermined color (such as blue or green) of the real space image 603, and performs keying to the objective transparent reality space image 603 ′. Generate The synthesizing device 20 synthesizes an objective transparent reality space image 603 ′ which is a plurality of video sources, an objective background image 601 generated by the generating device 10, and an objective foreground image 602, and transmits the synthesized image to the display 80.
〔HMD30〕
 HMD30は、いわゆるヘッドマウントディスプレイである。図1に示すように、HMD30は、プレイヤPの頭部に装着するディスプレイであり、右目用ビデオカメラ、左目用のビデオカメラ、右目用ディスプレイ及び左目用ディスプレイを備えている。HMD30は、フレームレートが90fps(frames per second)である。HMD30は、右目用ビデオカメラ及び左目用ビデオカメラで撮像された現実空間画像を生成装置10に送信できる。HMD30は、生成装置10から送信されてきた仮想空間画像を受信し、右目用ディスプレイと左目用ディスプレイに表示する。
[HMD30]
The HMD 30 is a so-called head mounted display. As shown in FIG. 1, the HMD 30 is a display mounted on the head of the player P, and includes a right-eye video camera, a left-eye video camera, a right-eye display, and a left-eye display. The HMD 30 has a frame rate of 90 fps (frames per second). The HMD 30 can transmit the real space image captured by the right-eye video camera and the left-eye video camera to the generation device 10. The HMD 30 receives the virtual space image transmitted from the generation device 10 and displays it on the right-eye display and the left-eye display.
 HMD30は、プレイヤPの目のすぐ前の位置に、両目それぞれに画像を少しずらして右目用ディスプレイと左目用ディスプレイに表示される。このため、右目用ディスプレイと左目用ディスプレイに表示される画像が平面であるにも関わらず、立体的に見えるようになっている。なお、HMD30で撮像する現実空間画像及び表示する仮想空間画像は、動画でも良いし、所定の間隔で撮像された静止画であっても良い。HMD30には、HMD30の位置と向きを検出させるためのHMDセンサ31が取り付けられている。HMDセンサ31は、ベースステーション90よりに飛ばされた赤外線を拾うことができる。 The HMD 30 is displayed on the right-eye display and the left-eye display at a position immediately in front of the eyes of the player P, with the images slightly shifted between the two eyes. For this reason, although the images displayed on the right-eye display and the left-eye display are flat, they can be seen three-dimensionally. The real space image captured by the HMD 30 and the virtual space image displayed may be a moving image or a still image captured at a predetermined interval. An HMD sensor 31 for detecting the position and the orientation of the HMD 30 is attached to the HMD 30. The HMD sensor 31 can pick up the infrared rays blown by the base station 90.
〔第一コントローラ40、第二コントローラ50〕
 第一コントローラ40と第二コントローラ50は、仮想空間に配置される3次元モデルとなるオブジェクトの全部又は一部を操作するための装置である。図1に示すように、第一コントローラ40には、第一コントローラ40の位置と向きを検出させるための第一コントローラセンサ41が取り付けられている。第一コントローラセンサ41は、ベースステーション90よりに飛ばされた赤外線を拾うことができる。第二コントローラ50には、第二コントローラ50の位置と向きを検出させるための第二コントローラセンサ51が取り付けられている。第二コントローラセンサ51は、ベースステーション90より飛ばされた赤外線を拾うことができる。
[First controller 40, second controller 50]
The first controller 40 and the second controller 50 are devices for operating all or part of an object to be a three-dimensional model disposed in a virtual space. As shown in FIG. 1, a first controller sensor 41 for detecting the position and orientation of the first controller 40 is attached to the first controller 40. The first controller sensor 41 can pick up the infrared rays blown by the base station 90. A second controller sensor 51 for detecting the position and the orientation of the second controller 50 is attached to the second controller 50. The second controller sensor 51 can pick up the infrared rays blown from the base station 90.
〔客観カメラ60〕
 客観カメラ60は、手動又は自動で移動して現実空間を撮像する撮像装置である。図1に示すように、客観カメラ60は、クロマキーカーテン70の内側でゲームをするプレイヤPを撮像するように所定の位置に配置されている。客観カメラ60で撮像した現実空間画像は、合成装置20に送信される。本例において、客観カメラ60で撮像する現実空間画像は、動画であるが、所定の間隔で撮像される静止画であも良い。客観カメラ60には、客観カメラ60の位置と向きを検出させるための客観カメラセンサ61が取り付けられている。
[Objective camera 60]
The objective camera 60 is an imaging device that captures a real space by moving manually or automatically. As shown in FIG. 1, the objective camera 60 is disposed at a predetermined position so as to capture an image of the player P who plays a game inside the chroma key curtain 70. The physical space image captured by the objective camera 60 is transmitted to the combining device 20. In the present embodiment, the physical space image captured by the objective camera 60 is a moving image, but may be a still image captured at a predetermined interval. An objective camera sensor 61 for detecting the position and the direction of the objective camera 60 is attached to the objective camera 60.
〔クロマキーカーテン70〕
 クロマキーカーテン70は、仮想ゲームを体験する部屋を覆うためのカーテンである。図1に示すように、クロマキーカーテン70は、複合現実を体験するプレイヤPを覆うように配置する。本例においては、客観カメラ60でプレイヤPの全身を撮像ができるように、客観カメラ60が配置される背面以外の平面、底面、正面、左側面、右側面を覆うように配置する。本例において、クロマキーカーテン70は、プレイヤPとなる人を覆うため、人の肌の色の補色となる緑色のものを使用している。クロマキーカーテン70に使用する色は、複数色あっても良いし、色味や濃さによって透過する対象の色を変えても良い。
[Chroma key curtain 70]
The chroma key curtain 70 is a curtain for covering a room where a virtual game is to be experienced. As shown in FIG. 1, the chroma key curtain 70 is arranged to cover the player P who experiences the mixed reality. In this example, in order to be able to image the whole body of the player P with the objective camera 60, the objective camera 60 is disposed so as to cover a plane other than the rear surface, the bottom, the front, the left side, and the right side. In this example, the chroma key curtain 70 uses a green color which is complementary to the color of human skin in order to cover the person who is the player P. A plurality of colors may be used for the chroma key curtain 70, and the color of the object to be transmitted may be changed depending on the color and the density.
〔ディスプレイ80〕
 ディスプレイ80は、仮想ゲームを体験しているプレイヤPと同じ仮想空間を含めた複合現実画像704を見ることができる表示装置である。図1に示すように、ディスプレイ80は、薄型で大型の液晶テレビである。ディスプレイ80は、フレームレートが60fps(frames per second)である。本例では、多くのビジタVが仮想ゲームを体験しているプレイヤPと同じ仮想空間を含めた複合現実画像704を見ることができるように、薄型で大型の液晶テレビを使用しているが、小型のテレビ、スマートフォン及びタブレット等のその他の表示装置であっても良い。
[Display 80]
The display 80 is a display device capable of viewing the mixed reality image 704 including the same virtual space as the player P who is experiencing the virtual game. As shown in FIG. 1, the display 80 is a thin and large liquid crystal television. The display 80 has a frame rate of 60 fps (frames per second). In this example, a thin and large liquid crystal television is used so that many visitors V can view the mixed reality image 704 including the same virtual space as the player P who is experiencing the virtual game. Other display devices such as a small television, a smartphone, and a tablet may be used.
〔ベースステーション90〕
 ベースステーション90は、HMDセンサ31、第一コントローラセンサ41、第二コントローラセンサ51、客観カメラセンサ61の位置と向きを検出させるための装置である。ベースステーション90は、上下左右それぞれ約120度の範囲に赤外線を一定のパターンで照射し、HMDセンサ31、第一コントローラセンサ41、第二コントローラセンサ51、客観カメラセンサ61がこれを拾うことで、これらの位置と向きが検出される。
[Base station 90]
The base station 90 is a device for detecting the position and orientation of the HMD sensor 31, the first controller sensor 41, the second controller sensor 51, and the objective camera sensor 61. The base station 90 irradiates infrared rays in a predetermined pattern in the range of about 120 degrees in the vertical and horizontal directions, and the HMD sensor 31, the first controller sensor 41, the second controller sensor 51, and the objective camera sensor 61 pick up the infrared rays. These positions and orientations are detected.
 図1に示すように、ベースステーション90はクロマキーカーテン70の内側に2つ配置されている。しかし、ベースステーション90は、どのような状況下でもHMDセンサ31、第一コントローラセンサ41、第二コントローラセンサ51、客観カメラセンサ61を検出できるように2以上配置しても良い。また、ベースステーション90は、目立たないようにクロマキーカーテン70の外側に配置しても良い。 As shown in FIG. 1, two base stations 90 are disposed inside the chroma key curtain 70. However, two or more base stations 90 may be arranged so that the HMD sensor 31, the first controller sensor 41, the second controller sensor 51, and the objective camera sensor 61 can be detected under any circumstances. In addition, the base station 90 may be disposed outside the chroma key curtain 70 so as to be inconspicuous.
〔生成装置10のハードウェア構成図〕
 図2に基づいて、生成装置10のハードウェア構成を説明する。CPU10aは、システムバス11に接続されるデバイスやコントローラを制御する中央演算処理装置である。ROM10b又は外部メモリ10jは、CPU10aの制御プログラムであるBIOS(Basic Input / Output System)やオペレーティングシステムや、各種装置の実行する機能を実現するために必要な後述する各種プログラム等が記憶されている記憶装置である。RAM10cは、CPU10aの主メモリ、ワークエリア等として機能する装置である。CPU10aは、処理の実行に際して必要なプログラム等をRAM10cから読み込んで、それを実行することで各種動作を実現する。
[Hardware Configuration of Generation Device 10]
The hardware configuration of the generation device 10 will be described based on FIG. The CPU 10 a is a central processing unit that controls devices and controllers connected to the system bus 11. The ROM 10 b or the external memory 10 j is a memory in which is stored a BIOS (Basic Input / Output System) which is a control program of the CPU 10 a, an operating system, various programs to be described later to realize functions executed by various devices, It is an apparatus. The RAM 10 c is a device that functions as a main memory, a work area, and the like of the CPU 10 a. The CPU 10a reads various programs and the like necessary for execution of processing from the RAM 10c, and realizes various operations by executing the same.
 入力コントローラ10fは、第一コントローラ40、第二コントローラ50、キーボード及びマウスその他の入力デバイス10iからの入力を制御する装置である。ビデオコントローラ10hは、HMD30が備える右目ディスプレイ及び左目ディスプレイ等その他の表示装置への表示を制御する装置である。右目ディスプレイ及び左目ディスプレイに対しては、例えば高精細度マルチメディアインターフェース(High-Definition Multimedia Interface)を用いて出力される。 The input controller 10 f is a device that controls inputs from the first controller 40, the second controller 50, the keyboard, and the mouse or other input device 10 i. The video controller 10 h is a device that controls display on other display devices such as the right eye display and the left eye display included in the HMD 30. The right-eye display and the left-eye display are output using, for example, a high-definition multimedia interface.
 メモリコントローラ10gは、ブートプログラム、ブラウザソフトウエア、各種のアプリケーション、フォントデータ、プレイヤPファイル、編集ファイル、各種データ等を記憶するハードディスクやフレキシブルディスク或いはPCMCIAカードスロットにアダプタを介して接続されるカード型メモリ等の外部メモリ10jへのアクセスを制御する装置である。通信I/Fコントローラ10eは、ネットワークを介して、外部機器と接続・通信するものであり、通信制御処理を実行する装置である。 The memory controller 10g is a card type connected via an adapter to a hard disk, flexible disk, or PCMCIA card slot that stores a boot program, browser software, various applications, font data, player P files, editing files, various data, etc. It is an apparatus for controlling access to an external memory 10 j such as a memory. The communication I / F controller 10 e is for connecting / communicating with an external device via a network, and is a device that executes communication control processing.
 汎用バス10dは、HMD30の右目ビデオカメラ及び左目ビデオカメラからの映像を取り込むための装置である。汎用バス10dは、右目ビデオカメラ及び左目ビデオカメラと外部入力端子として、例えばユニバーサルシリアルバス(Universal Serial Bus)でつなげられている。生成装置10が各種処理を実行するために用いられるプログラム等は、外部メモリ10jに記録されており、必要に応じてRAM10cにロードされることによりCPU10aによって実行される。生成装置10が実行するプログラムが用いる定義ファイルや各種情報テーブルは、外部メモリ10jに格納されている。 The general-purpose bus 10d is a device for capturing an image from the right-eye video camera and the left-eye video camera of the HMD 30. The general-purpose bus 10d is connected as an external input terminal to the right-eye video camera and left-eye video camera by, for example, a universal serial bus. Programs and the like used to execute various processes by the generation device 10 are recorded in the external memory 10 j, and are executed by the CPU 10 a by being loaded into the RAM 10 c as necessary. The definition file and various information tables used by the program executed by the generation device 10 are stored in the external memory 10 j.
〔合成装置20のハードウェア構成図〕
 図2に基づいて、合成装置20のハードウェア構成を説明する。なお、合成装置20のハードウェア構成は、生成装置10のハードウェア構成とほぼ同様であるので、同じハードウェア構成については詳細な説明を省略する。合成装置20のビデオコントローラ20hには、生成装置10とは異なり、右目ディスプレイ及び左目ディスプレイが接続されない。合成装置20のビデオコントローラ20hには、ディスプレイ20kが接続される。合成装置20には、ベースステーション90が接続されない。合成装置20の汎用バス20dには、右目ビデオカメラ及び左目ビデオカメラが接続されない。合成装置20の汎用バス20dには、客観カメラ60が接続される。
[Hardware Configuration of Synthesizer 20]
The hardware configuration of the synthesizing device 20 will be described based on FIG. The hardware configuration of the combining device 20 is substantially the same as the hardware configuration of the generating device 10, and thus the detailed description of the same hardware configuration is omitted. Unlike the generating device 10, the right-eye display and the left-eye display are not connected to the video controller 20h of the synthesizing device 20. A display 20 k is connected to the video controller 20 h of the synthesizing device 20. The base station 90 is not connected to the synthesizer 20. The right-eye video camera and the left-eye video camera are not connected to the general-purpose bus 20 d of the synthesizing device 20. An objective camera 60 is connected to the general-purpose bus 20 d of the synthesizing device 20.
〔生成装置10の機能構成図〕
 図3に示すように、生成装置10は機能部として、通信制御手段301、客観カメラ位置特定手段302、対象位置特定手段303、HMD現実空間画像取得手段304、配置手段305、主観仮想空間画像取得手段306、HMD表示制御手段307、仮想空間画像取得手段308、客観背景画像送信手段309及び客観前景画像送信手段310とを備えている。
[Functional Configuration Diagram of Generating Device 10]
As illustrated in FIG. 3, the generation device 10 includes, as functional units, a communication control unit 301, an objective camera position specifying unit 302, an object position specifying unit 303, an HMD real space image acquisition unit 304, an arrangement unit 305, and a subjective virtual space image acquisition. Means 306, HMD display control means 307, virtual space image acquisition means 308, objective background image transmission means 309, and objective foreground image transmission means 310 are provided.
〔通信制御手段301〕
 通信制御手段301は、生成装置10と通信可能なHMD30、ベースステーション90及び合成装置20との各種情報の送受信を行う機能を有する。通信制御手段301は、ビデオコントローラ10h、通信I/Fコントローラ10e、汎用バス10d等を通じてこれらの装置と情報の送受信を行う。
[Communication control means 301]
The communication control unit 301 has a function of transmitting / receiving various information to / from the HMD 30 capable of communicating with the generating device 10, the base station 90, and the combining device 20. The communication control unit 301 transmits and receives information to and from these devices through the video controller 10h, the communication I / F controller 10e, the general-purpose bus 10d, and the like.
〔客観カメラ位置特定手段302〕
 客観カメラ位置特定手段302は、客観カメラ60の現実空間における位置と向きを示す情報を取得する機能を有する。客観カメラ位置特定手段302は、現実空間における客観カメラ60の位置と向きを繰り返し取得し、仮想空間における仮想カメラの位置と向きである客観仮想カメラ位置を繰り返し特定する。客観カメラ60の位置と向きは、客観カメラセンサ61がベースステーション90から飛ばされた赤外線を拾うタイミングで検出される。
[Objective camera position identification means 302]
The objective camera position specifying means 302 has a function of acquiring information indicating the position and orientation of the objective camera 60 in the real space. The objective camera position specifying means 302 repeatedly acquires the position and the orientation of the objective camera 60 in the real space, and repeatedly specifies the objective virtual camera position which is the position and the orientation of the virtual camera in the virtual space. The position and the orientation of the objective camera 60 are detected at the timing when the objective camera sensor 61 picks up the infrared rays blown from the base station 90.
〔対象位置特定手段303〕
 対象位置特定手段303は、HMD30、第一コントローラ40及び第二コントローラ50の現実空間における位置と向きを示す情報を取得する機能を有する。対象位置特定手段303は、現実空間における対象の位置と向きを繰り返し取得し、仮想空間における対象の位置と向きである対象位置を繰り返し特定する。HMD30の位置と向きは、HMDセンサ31がベースステーション90から飛ばされた赤外線を拾うタイミングで検出される。第一コントローラ40の位置と向きは、第一コントローラセンサ41がベースステーション90から飛ばされた赤外線を拾うタイミングで検出される。第二コントローラ50の位置と向きは、第二コントローラセンサ51がベースステーション90から飛ばされた赤外線を拾うタイミングで検出される。
[Target position specifying means 303]
The target position specifying means 303 has a function of acquiring information indicating the position and orientation of the HMD 30, the first controller 40 and the second controller 50 in the real space. The target position specifying means 303 repeatedly acquires the position and the direction of the target in the real space, and repeatedly specifies the target position which is the position and the direction of the target in the virtual space. The position and the orientation of the HMD 30 are detected at the timing when the HMD sensor 31 picks up the infrared rays blown off from the base station 90. The position and the orientation of the first controller 40 are detected at the timing when the first controller sensor 41 picks up the infrared rays blown off from the base station 90. The position and the orientation of the second controller 50 are detected at the timing when the second controller sensor 51 picks up the infrared rays blown off from the base station 90.
〔HMD現実空間画像取得手段304〕
 HMD現実空間画像取得手段304は、HMD30の右目ビデオカメラ及び左目ビデオカメラが撮像した現実空間画像を繰り返し取得する機能を有する。
[HMD real space image acquisition means 304]
The HMD real space image acquisition unit 304 has a function of repeatedly acquiring real space images captured by the right-eye video camera and the left-eye video camera of the HMD 30.
〔配置手段305〕
 配置手段305は、仮想空間に3次元モデルであるオブジェクト画像(例えば、背景画像、武器画像、盾画像)を配置する機能を有する。配置手段305は、客観カメラ位置特定手段302や対象位置特定手段303等で取得した位置と向きに基づいてオブジェクト画像を配置する。オブジェクト画像は、生成装置10の外部メモリ10j等に記憶されており、これらを適宜読み出して取得する。HMD30や客観カメラ60の位置と向きに基づいて、仮想空間上の位置と向きを決定し、この位置と向きから見た場合のオブジェクト画像(背景画像)を生成し、これを仮想空間に配置する。
[Placement means 305]
The arranging unit 305 has a function of arranging an object image (for example, a background image, a weapon image, a shield image) which is a three-dimensional model in a virtual space. The arranging unit 305 arranges the object image based on the position and the orientation acquired by the objective camera position specifying unit 302, the target position specifying unit 303, and the like. The object image is stored in the external memory 10 j or the like of the generation device 10, and these are read and acquired as appropriate. Determine the position and orientation in the virtual space based on the position and orientation of the HMD 30 and the objective camera 60, generate an object image (background image) when viewed from this position and orientation, and place this in the virtual space .
 第一コントローラ40の位置と向きに基づいて、仮想空間上の位置と向きを決定し、この位置と向きから見た場合のオブジェクト画像(武器画像)を生成し、これを仮想空間に配置する。第二コントローラ50の位置と向きに基づいて、仮想空間上の位置と向きを決定し、この位置と向きから見た場合のオブジェクト画像(盾画像)を生成し、これを取得する。 Based on the position and orientation of the first controller 40, the position and orientation in the virtual space are determined, and an object image (weapon image) when viewed from the position and orientation is generated and arranged in the virtual space. Based on the position and orientation of the second controller 50, the position and orientation in the virtual space are determined, and an object image (shield image) when viewed from this position and orientation is generated and acquired.
〔主観仮想空間画像取得手段306〕
 主観仮想空間画像取得手段306は、配置手段305で生成された仮想空間から主観仮想空間画像を生成する機能を有する。
[Subjective virtual space image acquisition means 306]
The subjective virtual space image acquisition unit 306 has a function of generating a subjective virtual space image from the virtual space generated by the arrangement unit 305.
〔HMD表示制御手段307〕
 HMD表示制御手段307は、生成装置10に接続されたHMD30の右目ディスプレイ及び左目ディスプレイの表示制御を行う機能を有する。HMD表示制御手段307は、主観仮想空間画像取得手段306で生成された主観仮想空間画像を、右目ディスプレイ及び左目ディスプレイに表示する。
[HMD display control means 307]
The HMD display control means 307 has a function of performing display control of the right-eye display and the left-eye display of the HMD 30 connected to the generation device 10. The HMD display control means 307 displays the subjective virtual space image generated by the subjective virtual space image acquisition means 306 on the right eye display and the left eye display.
〔仮想空間画像取得手段308〕
 仮想空間画像取得手段308は、生成装置10で仮想空間画像を生成する機能を有する。仮想空間画像取得手段308は、仮想空間に配置されたオブジェクト画像を客観カメラ位置特定手段302で特定された客観仮想カメラ位置を視点として、仮想空間画像である客観背景画像601と客観前景画像602を生成する。図6に示すように、客観背景画像601は、仮想空間に配置されたオブジェクト画像の全部(例えば、背景画像、武器画像、盾画像)が配置される。
[Virtual space image acquisition means 308]
The virtual space image acquisition unit 308 has a function of generating a virtual space image by the generation device 10. The virtual space image acquisition unit 308 sets an objective background image 601 and an objective foreground image 602, which are virtual space images, with the object image arranged in the virtual space as the viewpoint and the objective virtual camera position specified by the objective camera position specifying unit 302. Generate As shown in FIG. 6, in the objective background image 601, all object images (for example, background image, weapon image, shield image) arranged in the virtual space are arranged.
 図6に示すように、客観前景画像602は、客観カメラ位置特定手段302で特定された客観仮想カメラ位置及び/又は対象位置特定手段303で特定された対象位置に応じて、仮想空間に配置されたオブジェクト画像の一部(例えば、武器画像、盾画像)が配置される。仮想空間画像取得手段308は、HMD30、客観カメラ60及び第一コントローラ40の位置と向きに基づいて、客観前景画像602にオブジェクト画像(例えば、武器画像)を配置するか否かを決定する。仮想空間画像取得手段308は、HMD30、客観カメラ60及び第二コントローラ50の位置と向きに基づいて、客観前景画像602にオブジェクト画像(例えば、盾画像)を配置するか否かを決定する。客観前景画像602は、配置されたオブジェクト画像の一部以外の箇所はキーイングして透過された客観前景画像602’とする。 As shown in FIG. 6, the objective foreground image 602 is arranged in the virtual space according to the objective virtual camera position specified by the objective camera position specifying means 302 and / or the target position specified by the target position specifying means 303. A part of the object image (eg, a weapon image, a shield image) is placed. The virtual space image acquisition unit 308 determines whether to arrange an object image (for example, a weapon image) in the objective foreground image 602 based on the positions and orientations of the HMD 30, the objective camera 60, and the first controller 40. The virtual space image acquisition unit 308 determines whether to arrange an object image (for example, a shield image) in the objective foreground image 602 based on the positions and orientations of the HMD 30, the objective camera 60, and the second controller 50. The objective foreground image 602 is an objective foreground image 602 'which is keyed and transmitted except for a part of the arranged object image.
〔客観背景画像送信手段309〕
 客観背景画像送信手段309は、仮想空間画像取得手段308で生成した客観背景画像601を合成装置20に繰り返し送信する機能を有する。生成装置10は、合成装置20に客観背景画像601を送信する専用のインターフェースを介して送信する。
[Objective background image transmission means 309]
The objective background image transmission unit 309 has a function of repeatedly transmitting the objective background image 601 generated by the virtual space image acquisition unit 308 to the combining device 20. The generation device 10 transmits the objective background image 601 to the combining device 20 via a dedicated interface.
〔客観前景画像送信手段310〕
 客観前景画像送信手段310は、仮想空間画像取得手段308で生成した客観前景画像602又は透過された客観前景画像602’を合成装置20に来る返し送信する機能を有する。生成装置10は、合成装置20に客観前景画像602’を送信する専用のインターフェースを介して送信する。
[Objective foreground image transmission means 310]
The objective foreground image transmitting means 310 has a function of returning to the synthesizing device 20 the objective foreground image 602 generated by the virtual space image acquiring means 308 or the transmitted objective foreground image 602 ′ to the synthesizing device 20. The generator 10 transmits the objective foreground image 602 'to the synthesizer 20 via a dedicated interface.
〔合成装置20の機能構成図〕
 また、合成装置20は機能部として、通信制御手段351、現実空間画像取得手段352、透過処理手段353、客観背景画像受信手段354、客観前景画像受信手段355、複合現実画像生成手段356及びディスプレイ表示制御手段357を備えている。
[Functional Configuration Diagram of Combining Device 20]
In addition, as a functional unit, the synthesizing device 20 includes a communication control unit 351, a real space image acquisition unit 352, a transmission processing unit 353, an objective background image reception unit 354, an objective foreground image reception unit 355, a mixed reality image generation unit 356 and a display display. A control means 357 is provided.
〔通信制御手段351〕
 通信制御手段351は、合成装置20と通信可能な生成装置10と客観カメラ60との各種情報の送受信を行う機能部である。通信制御手段301は、通信I/Fコントローラ10e、汎用バス10d等を通じてこれらの装置と情報の送受信を行う。
[Communication control means 351]
The communication control unit 351 is a functional unit that transmits and receives various types of information between the generating device 10 capable of communicating with the combining device 20 and the objective camera 60. The communication control unit 301 transmits and receives information to and from these devices through the communication I / F controller 10 e, the general-purpose bus 10 d, and the like.
〔現実空間画像取得手段352〕
 現実空間画像取得手段352は、客観カメラ60が撮像した現実空間画像603を繰り返し取得する機能を有する。
[Real Space Image Acquisition Means 352]
The physical space image acquisition unit 352 has a function of repeatedly acquiring the physical space image 603 captured by the objective camera 60.
〔透過処理手段353〕
 透過処理手段353は、現実空間画像取得手段352で取得した現実空間画像603に含まれる所定の色を透過して、客観透過現実空間画像603’を生成する機能を有する。透過処理手段353は、クロマキーカーテン70の色が緑色でなので、取得した現実空間画像603に含まれる画素のうち、緑色の画素の不透明度を「0」にする。なお、不透明度は必ずしも「0」である必要はないが、完全に透過させることで、本願発明の効果をより向上することができる。
[Transparency processing means 353]
The transmission processing unit 353 has a function of transmitting a predetermined color included in the physical space image 603 acquired by the physical space image acquisition unit 352 to generate an objective transmission reality space image 603 ′. Since the color of the chroma key curtain 70 is green, the transmission processing unit 353 sets the opacity of the green pixel to “0” among the pixels included in the acquired real space image 603. The opacity does not necessarily have to be “0”, but the effect of the present invention can be further improved by completely transmitting.
〔客観背景画像受信手段354〕
 客観背景画像受信手段354は、客観背景画像送信手段309から送信された客観背景画像601を繰り返し受信する機能を有する。合成装置20は、生成装置10から客観背景画像601を受信する専用のインターフェースを介して受信する。
[Objective background image receiving means 354]
The objective background image receiving unit 354 has a function of repeatedly receiving the objective background image 601 transmitted from the objective background image transmitting unit 309. The combining device 20 receives the objective background image 601 from the generating device 10 via a dedicated interface.
〔客観前景画像受信手段355〕
 客観前景画像受信手段355は、客観前景画像送信手段310から送信された客観前景画像602又は透過された客観前景画像602’を繰り返し受信する機能を有する。合成装置20は、生成装置10から客観前景画像602’を受信する専用のインターフェースを介して受信する。
[Objective foreground image receiving means 355]
The objective foreground image receiving unit 355 has a function of repeatedly receiving the objective foreground image 602 transmitted from the objective foreground image transmitting unit 310 or the transmitted objective foreground image 602 ′. The synthesizer 20 receives the objective foreground image 602 'from the generator 10 via a dedicated interface.
〔複合現実画像生成手段356〕
 複合現実画像生成手段356は、客観背景画像601、客観透過現実空間画像603’及び透過された客観前景画像602’を重ねることにより、複合現実画像604を合成する機能を有する。複合現実画像604は、図6に示すように、下から客観背景画像601、客観透過現実空間画像603’及び透過された客観前景画像602’の順番で重ねられている。
[Mixed Reality Image Generating Means 356]
The mixed reality image generation means 356 has a function of combining the mixed reality image 604 by superposing the objective background image 601, the objective transmission reality space image 603 'and the transmitted objective foreground image 602'. As shown in FIG. 6, the mixed reality image 604 is superimposed from the bottom in the order of the objective background image 601, the objective transmission reality space image 603 'and the transmitted objective foreground image 602'.
〔ディスプレイ表示制御手段357〕
 ディスプレイ表示制御手段357は、合成装置20に接続されたディスプレイ80の表示制御を行う機能を有する。ディスプレイ表示制御手段357は、複合現実画像生成手段356で合成された複合現実画像604を、ディスプレイ80に表示する。
[Display Display Control Means 357]
The display display control means 357 has a function of performing display control of the display 80 connected to the combining device 20. The display display control means 357 displays the mixed reality image 604 synthesized by the mixed reality image generating means 356 on the display 80.
〔処理の流れ〕
 次に、本発明の実施形態における画像処理装置1によって行われる一連の処理について、図4に示すフローチャートを用いて説明する。
[Flow of processing]
Next, a series of processes performed by the image processing apparatus 1 according to the embodiment of the present invention will be described using the flowchart shown in FIG.
〔生成装置10の処理の流れ〕
 画像処理装置1の生成装置10によって行われる一連の処理は、客観カメラ位置特定工程401、対象位置特定工程402、HMD現実空間画像取得工程403、配置工程404、主観仮想空間画像取得工程405、HMD表示制御工程406、仮想空間画像取得工程407、客観背景画像送信工程408、客観前景画像送信工程409及び終了工程410とからなる。
[Flow of processing of generation device 10]
A series of processes performed by the generation device 10 of the image processing apparatus 1 includes an objective camera position identification step 401, an object position identification step 402, an HMD real space image acquisition step 403, an arrangement step 404, a subjective virtual space image acquisition step 405, and an HMD. It comprises a display control step 406, a virtual space image acquisition step 407, an objective background image transmission step 408, an objective foreground image transmission step 409 and an end step 410.
〔客観カメラ位置特定工程S401〕
 CPU10aは、客観カメラ60の現実空間における位置と向きを示す情報を取得して、RAM10c等に記憶する。CPU10aは、客観カメラ位置特定手段302を使用して、ベースステーション90から飛ばされた赤外線を拾うタイミングで、客観カメラ60の現実空間における位置と向きを示す情報を取得する。図5に示すように、客観カメラ60の位置(座標)、向き(ベクトル)は、現実空間の所定の場所を原点としたXYZ座標と、当該XYZ座標を用いたベクトルで表され、客観カメラテーブル560に格納される。
[Objective camera position identification process S401]
The CPU 10a acquires information indicating the position and orientation of the objective camera 60 in the real space, and stores the information in the RAM 10c or the like. The CPU 10a uses the objective camera position specifying means 302 to acquire information indicating the position and the orientation of the objective camera 60 in the real space at the timing of picking up the infrared rays blown from the base station 90. As shown in FIG. 5, the position (coordinates) and direction (vector) of the objective camera 60 are represented by XYZ coordinates with a predetermined place in the real space as the origin and a vector using the XYZ coordinates, and an objective camera table It is stored in 560.
〔対象位置特定工程S402〕
 CPU10aは、HMD30の現実空間における位置と向きを示す情報を取得して、RAM10c等に記憶する。CPU10aは、対象位置特定手段303を使用して、ベースステーション90から飛ばされた赤外線を拾うタイミングで、HMD30の現実空間における位置と向きを示す情報を取得する。図5に示すように、HMD30の位置(座標)、向き(ベクトル)は、現実空間の所定の場所を原点としたXYZ座標と、当該XYZ座標を用いたベクトルで表され、HMDテーブル530に格納される。同様に、CPU10aは、ベースステーション90を使用して第一コントローラ40及び第二コントローラ50のHMD30の位置(座標)、向き(ベクトル)を取得して、第一コントローラテーブル540及び第二コントローラテーブル550に格納する。
[Target position identification process S402]
The CPU 10a acquires information indicating the position and orientation of the HMD 30 in the real space, and stores the information in the RAM 10c or the like. The CPU 10a acquires the information indicating the position and the orientation of the HMD 30 in the real space at the timing of picking up the infrared rays skipped from the base station 90 using the target position specifying means 303. As shown in FIG. 5, the position (coordinates) and the direction (vector) of the HMD 30 are represented by XYZ coordinates with a predetermined place in the real space as the origin and a vector using the XYZ coordinates, and are stored in the HMD table 530 Be done. Similarly, the CPU 10 a acquires the position (coordinates) and the orientation (vector) of the HMD 30 of the first controller 40 and the second controller 50 using the base station 90, and the first controller table 540 and the second controller table 550. Store in
〔HMD現実空間画像取得工程S403〕
 CPU10aは、HMD30の右目ビデオカメラ及び左目ビデオカメラから送信される現実空間画像を、HMD現実空間画像取得手段304を用いて繰り返し取得し、RAM10c等に記憶する。右目ビデオカメラ及び左目ビデオカメラは、プレイヤPの右目に対応するビデオカメラと左目に対応するビデオカメラが用意され、これらから右目用と左目用の現実空間画像を繰り返し取得する。
[HMD real space image acquisition step S403]
The CPU 10a repeatedly acquires the physical space image transmitted from the right-eye video camera and the left-eye video camera of the HMD 30 using the HMD physical space image acquiring unit 304, and stores the same in the RAM 10c or the like. As the right-eye video camera and the left-eye video camera, a video camera corresponding to the right eye of the player P and a video camera corresponding to the left eye are prepared, and from these, real space images for the right eye and the left eye are repeatedly acquired.
〔配置工程S404〕
 CPU10aは、配置手段305を用いて仮想空間に3次元モデルであるオブジェクト画像を配置し、RAM10c等に記憶する。CPU10aは、客観カメラ位置特定工程S401で取得して、客観カメラテーブル560に格納された客観カメラ60の位置(座標)、向き(ベクトル)をRAM10c等から読み出して、これに対応するオブジェクト画像(例えば、背景画像)を仮想空間に配置して、RAM10c等に記憶する。
[Placement process S404]
The CPU 10a arranges an object image, which is a three-dimensional model, in the virtual space using the arranging means 305, and stores it in the RAM 10c or the like. The CPU 10a reads the position (coordinates) and direction (vector) of the objective camera 60 stored in the objective camera table 560, acquired in the objective camera position specifying step S401, from the RAM 10c or the like, and corresponds to the object image (for example, , Background image) in the virtual space and stored in the RAM 10 c or the like.
 CPU10aは、対象位置特定工程S402で取得して、HMDテーブル530に格納されたHMD30の位置(座標)、向き(ベクトル)をRAM10c等から読み出して、これに対応するオブジェクト画像(例えば、背景画像)を仮想空間に配置して、RAM10c等に記憶する。CPU10aは、対象位置特定工程S402で取得して、第一コントローラテーブル540に格納された第一コントローラの位置(座標)、向き(ベクトル)をRAM10c等から読み出して、これに対応するオブジェクト画像(例えば、武器画像)を仮想空間に配置して、RAM10c等に記憶する。 The CPU 10a reads the position (coordinates) and direction (vector) of the HMD 30 acquired in the target position specifying step S402 and stored in the HMD table 530 from the RAM 10c or the like, and an object image (for example, background image) corresponding thereto. Are arranged in the virtual space and stored in the RAM 10 c or the like. The CPU 10a reads the position (coordinates) and the orientation (vector) of the first controller acquired in the target position specifying step S402 and stored in the first controller table 540 from the RAM 10c or the like, and corresponds to the object image (for example, , Weapon images) are arranged in the virtual space and stored in the RAM 10 c or the like.
 CPU10aは、対象位置特定工程S402で取得して、第二コントローラテーブル550に格納された第二コントローラの位置(座標)、向き(ベクトル)をRAM10c等から読み出して、これに対応するオブジェクト画像(例えば、盾画像)を仮想空間に配置して、RAM10c等に記憶する。 The CPU 10a reads the position (coordinates) and the orientation (vector) of the second controller acquired in the target position specifying step S402 and stored in the second controller table 550 from the RAM 10c or the like, and corresponds to the object image (for example, , Shield image) in the virtual space and stored in the RAM 10 c or the like.
〔主観仮想空間画像取得工程405〕
 CPU10aは、主観仮想空間画像取得手段306を用いて主観仮想空間画像を生成し、RAM10c等に記憶する。CPU10aは、対象位置特定工程S402で取得して、HMDテーブル530に格納されたHMD30の位置(座標)、向き(ベクトル)をRAM10c等から読み出して、これに対応する主観仮想空間画像を生成して、RAM10c等に記憶する。CPU10aは、HMD30の右目ディスプレイ及び左目ディスプレイに表示するために、主観仮想空間を右目用の主観仮想空間画像と左目用の主観仮想空間画像を生成する。
[Subjective virtual space image acquisition process 405]
The CPU 10a generates a subjective virtual space image using the subjective virtual space image acquisition means 306, and stores it in the RAM 10c or the like. The CPU 10a reads the position (coordinates) and the direction (vector) of the HMD 30 acquired in the target position specifying step S402 and stored in the HMD table 530 from the RAM 10c or the like, and generates a subjective virtual space image corresponding thereto. , RAM 10c and the like. The CPU 10a generates a subjective virtual space image for the right eye and a subjective virtual space image for the left eye to display the subjective virtual space on the right eye display and the left eye display of the HMD 30.
〔HMD表示制御工程S406〕
 CPU10aは、主観仮想空間画像取得工程S405で生成された主観仮想空間画像をRAM10c等から読み出し、ビデオコントローラ10hを通じてHMD30の右目ディスプレイ及び左目ディスプレイに表示する。RAM10c等に記憶された主観仮想空間画像は、右目用と左目用がある。そのためHMD表示制御手段307を用いて、右目用の主観仮想空間画像を右目ディスプレイに表示するように制御し、左目用の主観仮想空間実画像を左目ディスプレイに表示するよう制御する。
[HMD display control step S406]
The CPU 10a reads the subjective virtual space image generated in the subjective virtual space image acquisition step S405 from the RAM 10c or the like, and displays it on the right eye display and the left eye display of the HMD 30 through the video controller 10h. Subjective virtual space images stored in the RAM 10c etc. are for the right eye and for the left eye. Therefore, the HMD display control means 307 is used to control to display the right-eye subjective virtual space image on the right-eye display, and to control to display the left-eye subjective virtual space real image on the left-eye display.
〔仮想空間画像取得工程S407〕
 CPU10aは、仮想空間画像取得手段308を用いて仮想空間画像を生成し、RAM10c等に記憶する。CPU10aは、客観カメラ位置特定工程S401で取得して、客観カメラテーブル560に格納された客観カメラ60の位置(座標)、向き(ベクトル)をRAM10c等から読み出して、これに対応する仮想空間画像を生成して、RAM10c等に記憶する。CPU10aは、仮想空間画像として客観背景画像と客観前景画像を生成して、RAM10c等に記憶する。
[Virtual Space Image Acquisition Step S407]
The CPU 10a generates a virtual space image using the virtual space image acquisition unit 308, and stores the virtual space image in the RAM 10c or the like. The CPU 10a reads the position (coordinates) and direction (vector) of the objective camera 60 stored in the objective camera table 560, acquired in the objective camera position specifying step S401, from the RAM 10c or the like, and a virtual space image corresponding to this. It is generated and stored in the RAM 10c or the like. The CPU 10a generates an objective background image and an objective foreground image as virtual space images, and stores them in the RAM 10c or the like.
 CPU10aは、仮想空間で配置されたオブジェクト画像の全部(背景画像、武器画像、盾画像)が配置された状態で客観背景画像601を生成して記憶する。CPU10aは、客観カメラ位置特定手段302で特定された客観仮想カメラ位置及び/又は対象位置特定手段303で特定された対象位置に応じて、仮想空間に配置されたオブジェクト画像の一部(武器画像、盾画像)である一部画像が配置された状態で客観前景画像602を生成して記憶する。 The CPU 10a generates and stores the objective background image 601 in a state where all of the object images arranged in the virtual space (background image, weapon image, shield image) are arranged. The CPU 10a selects a part of the object image arranged in the virtual space according to the objective virtual camera position specified by the objective camera position specifying means 302 and / or the target position specified by the target position specifying means 303 (a weapon image, The objective foreground image 602 is generated and stored in a state where a partial image which is a shield image) is arranged.
 CPU10aは、仮想空間画像取得手段308を用いて、HMD30、客観カメラ60及び第一コントローラ40の位置と向きに基づいて、客観前景画像602にオブジェクト画像(武器画像)を配置するか否かを決定し、客観前景画像602を生成する。CPU10aは、仮想空間画像取得手段308を用いて、HMD30、客観カメラ60及び第二コントローラ50の位置と向きに基づいて、客観前景画像602にオブジェクト画像(盾画像)を配置するか否かを決定し、客観前景画像602を生成する。CPU10aは、配置するオブジェクト画像の一部以外の箇所は透過してキーイングして、透過された客観前景画像602’として記憶する。 The CPU 10a uses the virtual space image acquisition means 308 to determine whether or not to arrange an object image (weapon image) in the objective foreground image 602 based on the position and orientation of the HMD 30, the objective camera 60 and the first controller 40. To generate an objective foreground image 602. The CPU 10a uses the virtual space image acquisition means 308 to determine whether to arrange an object image (shield image) in the objective foreground image 602 based on the position and orientation of the HMD 30, the objective camera 60 and the second controller 50. To generate an objective foreground image 602. The CPU 10a transmits and keys a portion other than a part of the object image to be arranged, and stores it as a transmitted objective foreground image 602 '.
〔客観背景画像送信工程S408〕
 CPU10aは、客観背景画像送信手段309を用いて、生成された客観背景画像をRAM10c等から読み込み、合成装置20に送信する。CPU10aは、客観背景画像601を送信する専用のインターフェースを介して、生成装置10から合成装置20に送信する。
[Objective background image transmission step S408]
The CPU 10a reads the generated objective background image from the RAM 10c or the like using the objective background image transmission means 309, and transmits it to the synthesizing device 20. The CPU 10 a transmits the objective background image 601 from the generating device 10 to the combining device 20 via a dedicated interface for transmitting the objective background image 601.
〔客観前景画像送信工程S409〕
 CPU10aは、客観前景画像送信手段310を用いて、生成された客観前景画像602又は透過された客観前景画像602’をRAM10c等から読み込み、合成装置20に送信する。CPU10aは、客観前景画像602’を送信する専用のインターフェースを介して、生成装置10から合成装置20に送信する。
[Objective foreground image transmission step S409]
The CPU 10 a reads the generated objective foreground image 602 or the transmitted objective foreground image 602 ′ from the RAM 10 c or the like using the objective foreground image transmission unit 310, and transmits the read object foreground image 602 or the transmitted objective foreground image 602 ′ to the combining device 20. The CPU 10a transmits the objective foreground image 602 'from the generating device 10 to the synthesizing device 20 via a dedicated interface for transmitting the objective foreground image 602'.
〔終了工程S413〕
 CPU10aは、HMD30を装着しているプレイヤPに仮想ゲームを表示する処理の終了指示があったか否かを判定する。CPU10aは、終了指示があったと判定した場合には、一連の処理を終了する。CPU10aは、終了指示がない場合には客観カメラ位置特定工程S401に処理を戻し、終了指示があるまで一連の処理を繰り返す。
[End step S413]
The CPU 10a determines whether or not an instruction to end the process of displaying the virtual game is given to the player P wearing the HMD 30. If the CPU 10a determines that an end instruction has been issued, the series of processing ends. If there is no end instruction, the CPU 10a returns the process to the objective camera position specifying step S401, and repeats a series of processes until the end instruction is given.
〔合成装置20の処理の流れ〕
 画像処理装置1の合成装置20によって行われる一連の処理は、現実空間画像取得工程451、透過処理工程452、客観背景画像受信工程453、客観前景画像受信工程454、複合現実画像生成工程455、ディスプレイ表示制御工程456、及び終了工程457とからなる。
[Flow of Processing of Synthesizer 20]
A series of processes performed by the combining device 20 of the image processing device 1 includes a real space image acquisition step 451, a transmission processing step 452, an objective background image reception step 453, an objective foreground image reception step 454, a mixed reality image generation step 455, a display It consists of a display control step 456 and an end step 457.
〔現実空間画像取得工程S451〕
 CPU20aは、客観カメラ60から送信される現実空間画像603を、現実空間画像取得手段352を用いて取得し、RAM20c等に記憶する。
[Real Space Image Acquisition Step S451]
The CPU 20a acquires the physical space image 603 transmitted from the objective camera 60 using the physical space image acquisition means 352, and stores it in the RAM 20c or the like.
〔透過処理工程S452〕
 CPU20aは、RAM20cに記憶された現実空間画像603に含まれる所定の色を透過して、客観透過現実空間画像603’を生成してRAM20c等に記憶する。CPU20aは、現実空間画像603をRAM10c等から読み出し、透過処理手段353を用いて当該現実空間画像603の所定の色を透過して客観透過現実空間画像603’を生成して、RAM20c等に記憶する。現実空間画像603は、HMD30を装着するプレイヤP以外の部分がクロマキーカーテン70の緑色になっているため、この色のアルファ値を変更することで現実空間画像603を透過する。図6に示すように、客観透過現実空間画像603’は、プレイヤPだけが抽出され、プレイヤP以外のクロマキーカーテン70で覆われた箇所が透過された画像となる。
[Permeable treatment step S452]
The CPU 20a transmits a predetermined color included in the physical space image 603 stored in the RAM 20c to generate an objective transmission reality space image 603 ′ and stores the objective transparent reality space image 603 ′ in the RAM 20c or the like. The CPU 20a reads the physical space image 603 from the RAM 10c or the like, transmits a predetermined color of the physical space image 603 using the transmission processing means 353, generates an objective transparent reality space image 603 ', and stores it in the RAM 20c or the like. . In the real space image 603, since the portion other than the player P wearing the HMD 30 is green of the chroma key curtain 70, the real space image 603 is transmitted by changing the alpha value of this color. As shown in FIG. 6, the objective transparent reality space image 603 ′ is an image in which only the player P is extracted, and a portion covered by the chroma key curtain 70 other than the player P is transmitted.
〔客観背景画像受信工程S453〕
 CPU20aは、CPU10aが客観背景画像送信手段309を用いて、生成装置10から送信された客観背景画像601を示す情報を受信し、RAM20c等に記憶する。
[Objective background image reception process S453]
The CPU 20a uses the objective background image transmission means 309 to receive information indicating the objective background image 601 transmitted from the generation device 10, and stores the information in the RAM 20c or the like.
〔客観前景画像受信工程S454〕
 CPU20aは、CPU10aが客観前景画像送信手段310を用いて、生成装置10から送信された客観前景画像602又は透過された客観前景画像602’を示す情報を受信し、RAM20c等に記憶する。
[Objective foreground image receiving step S454]
The CPU 20a uses the objective foreground image transmission means 310 to receive the objective foreground image 602 transmitted from the generation device 10 or the information indicating the transmitted objective foreground image 602 ', and stores the information in the RAM 20c or the like.
〔複合現実画像生成工程S455〕
 CPU20aは、RAM20c等に記憶した客観背景画像601、客観透過現実空間画像603’及び透過された客観前景画像602’を読み出す。そして、複合現実画像生成手段356を用いて、客観背景画像601、客観透過現実空間画像603’及び透過された客観前景画像602’を重ねることにより、複合現実画像604を生成して、RAM20c等に記憶する。複合現実画像は、下から客観背景画像601、客観透過現実空間画像603’及び透過された客観前景画像602’の順番で重ねられて、RAM20c等に記憶される。
[Mixed reality image generation process S455]
The CPU 20a reads out the objective background image 601 stored in the RAM 20c etc., the objective transparent reality space image 603 'and the transmitted objective foreground image 602'. Then, the mixed reality image 604 is generated by superimposing the objective background image 601, the objective transmission reality space image 603 ′ and the transmitted objective foreground image 602 ′ using the mixed reality image generation means 356, and the mixed reality image 604 is generated. Remember. The mixed reality image is superimposed from the bottom in the order of the objective background image 601, the objective transmission reality space image 603 'and the transmitted objective foreground image 602', and is stored in the RAM 20c or the like.
〔ディスプレイ表示制御工程S456〕
 CPU20aは、複合現実画像生成工程S455で生成された複合現実画像604をRAM20c等から読み出し、ディスプレイ表示制御手段357を用いてビデオコントローラ20hを通じてディスプレイ80に表示する。
[Display control step S456]
The CPU 20a reads the mixed reality image 604 generated in the mixed reality image generation step S455 from the RAM 20c or the like, and displays it on the display 80 through the video controller 20h using the display display control means 357.
〔終了工程S457〕
 CPU20aは、HMD30を装着しているプレイヤPに仮想ゲームを表示する処理の終了指示があったか否かを判定する。CPU20aは、終了指示があったと判定した場合には、一連の処理を終了する。CPU20aは、終了指示がない場合には現実空間画像取得工程S451に処理を戻し、終了指示があるまで一連の処理を繰り返す。
[End step S457]
The CPU 20a determines whether or not an instruction to end the process of displaying the virtual game is given to the player P wearing the HMD 30. If the CPU 20a determines that an end instruction has been issued, the series of processing ends. If there is no end instruction, the CPU 20a returns the process to the physical space image acquisition step S451, and repeats a series of processes until the end instruction is given.
〔第一仮想ゲーム〕
 次に画像処理装置1を利用した第一仮想ゲームを図3及び図7に基づいて説明する。図7は、複合現実画像が生成される過程を示す図である。第一仮想ゲームは、プレイヤPが、クロマキーカーテン70に囲まれた空間で、HMD30を頭に装着し、第一コントローラ40を右手に持ち、第二コントローラ50を左手に持って、仮想空間の中で怪物を退治するゲームである。この第一仮想ゲームは、手動又は自動で移動する1台の客観カメラ60でプレイヤPを撮影しながらクロマキー合成を行うことで、ビジタVがプレイヤPの状態を把握することができる。本例においては、図7に示すように、プレイヤPが客観カメラ60側を向いた瞬間を例に説明をする。
[First virtual game]
Next, a first virtual game using the image processing device 1 will be described based on FIGS. 3 and 7. FIG. 7 shows a process of generating a mixed reality image. In the first virtual game, the player P wears the HMD 30 on his head, holds the first controller 40 on his right hand, holds the second controller 50 on his left hand, in the space surrounded by the chroma key curtain 70, Is a game to defeat monsters. In this first virtual game, the visitor V can grasp the state of the player P by performing chroma key composition while photographing the player P with one objective camera 60 that moves manually or automatically. In this example, as shown in FIG. 7, the moment when the player P faces the objective camera 60 will be described as an example.
 この状態のとき、客観カメラ位置特定手段302は、客観カメラ60の位置と向きを取得し、対象位置特定手段303は、HMD30、第一コントローラ40及び第二コントローラ50の位置と向きを取得する(S401、S402)。配置手段305は、取得した客観カメラ60、HMD30、第一コントローラ40、第二コントローラ50の位置と向きに基づいて、仮想空間にオブジェクト画像を配置する(S404)。主観仮想空間画像取得手段306は、主観仮想空間画像を生成し(S405)、HMD30に主観仮想空間画像を表示する(S406)。 In this state, the objective camera position specifying unit 302 acquires the position and the direction of the objective camera 60, and the target position specifying unit 303 acquires the positions and the directions of the HMD 30, the first controller 40, and the second controller 50 S401, S402). The arranging unit 305 arranges the object image in the virtual space based on the acquired position and orientation of the objective camera 60, the HMD 30, the first controller 40, and the second controller 50 (S404). The subjective virtual space image acquiring unit 306 generates a subjective virtual space image (S405), and displays the subjective virtual space image on the HMD 30 (S406).
 仮想空間画像取得手段308は、客観カメラ60の位置と向きに基づいて、図6に示すように、仮想空間画像として客観背景画像601と客観前景画像602を生成する(S407)。本例において、プレイヤPがもつ第二コントローラ50は、HMD30と客観カメラ60との間にある。このため、客観前景画像602には、盾画像のみが表示される。仮想空間画像取得手段308は、客観前景画像602を透過してキーイングして透過された客観前景画像に生成する(S407)。客観背景画像送信手段309は、専用のインターフェースを介して、客観背景画像601を生成装置10から合成装置20に送信する(S408)。客観前景画像送信手段310は、専用のインターフェースを介して、透過された客観前景画像602’を生成装置10から合成装置20に送信する(S409)。 The virtual space image acquisition means 308 generates an objective background image 601 and an objective foreground image 602 as a virtual space image, as shown in FIG. 6, based on the position and orientation of the objective camera 60 (S407). In this example, the second controller 50 held by the player P is between the HMD 30 and the objective camera 60. Therefore, only the shield image is displayed on the objective foreground image 602. The virtual space image acquisition means 308 transmits the objective foreground image 602, generates keying and generates the transmitted objective foreground image (S407). The objective background image transmission unit 309 transmits the objective background image 601 from the generation device 10 to the combining device 20 via the dedicated interface (S408). The objective foreground image transmission means 310 transmits the transmitted objective foreground image 602 'from the generating device 10 to the synthesizing device 20 via the dedicated interface (S409).
 現実空間画像取得手段352は客観カメラ60から送信される現実空間画像603を取得し(S451)、透過処理手段353は現実空間画像の所定の色を透過して客観透過現実空間画像603’を生成する(S452)。客観背景画像受信手段354は、専用のインターフェースを介して、客観背景画像601を生成装置10から合成装置20に受信する(S453)。客観前景画像受信手段355は、専用のインターフェースを介して、透過された客観前景画像602’を生成装置10から合成装置に受信する(S454)。図6に示すように、複合現実画像生成手段356は、下から客観背景画像601、客観透過現実空間画像603’及び透過された客観前景画像602’の順番で重ねて複合現実画像604を生成する(S456)。 The physical space image acquisition means 352 acquires the physical space image 603 transmitted from the objective camera 60 (S 451), and the transmission processing means 353 transmits a predetermined color of the physical space image to generate an objective transmission real space image 603 ′ (S452). The objective background image receiving unit 354 receives the objective background image 601 from the generation device 10 to the combining device 20 via the dedicated interface (S 453). The objective foreground image receiving means 355 receives the transmitted objective foreground image 602 'from the generating device 10 to the synthesizing device via the dedicated interface (S454). As shown in FIG. 6, the mixed reality image generation unit 356 generates a mixed reality image 604 by superimposing the objective background image 601, the objective transmission reality space image 603 ′ and the transmitted objective foreground image 602 ′ in this order from below. (S456).
 本例においては、プレイヤPがもつ第二コントローラ50は、HMD30と客観カメラ60との間にあるため、客観前景画像602に盾画像のみが表示され、客観透過現実空間画像603’のプレイヤPの画像に盾画像が重なるように配置される。図6に示すように、ディスプレイ表示制御手段357は、複合現実画像604をディスプレイ80に表示する。 In this example, since the second controller 50 held by the player P is between the HMD 30 and the objective camera 60, only the shield image is displayed on the objective foreground image 602, and the player P's The shield image is arranged to overlap the image. As shown in FIG. 6, the display display control means 357 displays the mixed reality image 604 on the display 80.
 なお、プレイヤPがもつ第一コントローラ40が、HMD30と客観カメラ60との間にある場合は、客観前景画像602に武器画像が表示されるため、客観透過現実空間画像603’のプレイヤPの画像に武器画像が重なるように配置される。また、プレイヤPがもつ第一コントローラ40や第二コントローラが、HMD30と客観カメラ60の後側にある場合は、客観背景画像601にのみ武器画像と盾画像が表示されるため、客観透過現実空間画像603’のプレイヤPの画像の前には武器画像も盾画像も重なることはなく、後に配置される。 When the first controller 40 possessed by the player P is between the HMD 30 and the objective camera 60, a weapon image is displayed on the objective foreground image 602, so the image of the player P of the objective transmission reality space image 603 ' Is placed so that the weapon image overlaps the. In addition, when the first controller 40 and the second controller possessed by the player P are behind the HMD 30 and the objective camera 60, a weapon image and a shield image are displayed only on the objective background image 601, so an objective transmission reality space is obtained. The weapon image and the shield image do not overlap in front of the image of the player P of the image 603 ′, and are placed behind.
 このように、通常のクロマキー合成では表現できない奥行きを、客観背景画像601、客観透過現実空間画像603’及び透過された客観前景画像602’で表現することができる。つまり、クロマキー合成で抽出されたプレイヤPの前に所定の画像が配置できる。また、生成装置10は仮想空間を構築する処理を主に行い、合成装置20は生成された画像を合成し表示することを主に行うため、処理落ちがなく滑らかな複合現実画像704をビジタVは見ることができる。 As described above, the depth which can not be expressed by ordinary chroma key composition can be expressed by the objective background image 601, the objective transparent reality space image 603 'and the transmitted objective foreground image 602'. That is, a predetermined image can be arranged in front of the player P extracted by chroma key combination. In addition, since the generation device 10 mainly performs processing of constructing a virtual space, and the synthesizing device 20 mainly performs composition and display of the generated image, the smooth mixed reality image 704 without a processing omission is a visitor V. Can see.
〔本発明の第二実施形態〕
 以下、本発明の画像処理装置101について、図面に基づいて、本発明の第二実施形態として詳細に説明する。第一実施形態の第一仮想ゲームは、手動又は自動で移動する1台の客観カメラ60のみを使用したが、第二実施形態の第二仮想ゲームは、手動又は自動で移動する3台のカメラ(客観カメラ60、客観カメラ160及び客観カメラ260)を使用する。なお、第二仮想ゲームについて、第一仮想ゲームと同一の部分については詳細な説明は省略し、異なる部分について説明をする。
Second Embodiment of the Present Invention
Hereinafter, an image processing apparatus 101 of the present invention will be described in detail as a second embodiment of the present invention based on the drawings. The first virtual game of the first embodiment uses only one objective camera 60 that moves manually or automatically, but the second virtual game of the second embodiment uses three cameras that move manually or automatically (The objective camera 60, the objective camera 160 and the objective camera 260) are used. The second virtual game will not be described in detail for the same part as the first virtual game, and different parts will be described.
 図7は、本発明の第二実施形態を適用した画像処理装置101とそれを使用した状態を示す外観図である。図8は、画像処理装置101の機能構成を示す図である。図9は、画像の合成の状態を示す図である。図10は、画像の合成の状態を示す図である。図11は、画像の合成の状態を示す図である。図7に示すように、第二仮想ゲームは、第一仮想ゲームと異なり、客観カメラ60に加え、客観カメラ160及び客観カメラ260が用意されている。図8に示すように、第二仮想ゲームは、第一仮想ゲームと異なり、生成装置10に客観カメラ選択制御手段301’があり、合成装置20に客観カメラ特定制御手段351’がある。 FIG. 7 is an external view showing an image processing apparatus 101 to which the second embodiment of the present invention is applied and a state in which the image processing apparatus 101 is used. FIG. 8 is a diagram showing a functional configuration of the image processing apparatus 101. As shown in FIG. FIG. 9 is a diagram showing the state of image composition. FIG. 10 is a diagram showing the state of image composition. FIG. 11 is a diagram showing the state of image composition. As shown in FIG. 7, the second virtual game is different from the first virtual game, and in addition to the objective camera 60, an objective camera 160 and an objective camera 260 are prepared. As shown in FIG. 8, the second virtual game differs from the first virtual game in that the generating device 10 has an objective camera selection control means 301 'and the combining device 20 has an objective camera identification control means 351'.
〔客観カメラ選択制御手段301’〕
 客観カメラ選択制御手段301’は、客観カメラ60、客観カメラ160及び客観カメラ260のいずれかを選択するかを制御する機能を有する。客観カメラ選択制御手段301’は、生成装置10に組み込まれたプログラム及び/又は生成装置10を使用するオペレータの入力操作等によって、客観カメラ60、客観カメラ160及び客観カメラ260のいずれかを選択する。客観カメラ選択制御手段301’は、選択したカメラの情報を生成装置10に格納した後に合成装置20に送信する。
[Objective camera selection control means 301 ']
The objective camera selection control means 301 ′ has a function of controlling which one of the objective camera 60, the objective camera 160 and the objective camera 260 is to be selected. The objective camera selection control means 301 ′ selects one of the objective camera 60, the objective camera 160, and the objective camera 260 by the program incorporated in the generation device 10 and / or the input operation of the operator using the generation device 10, or the like. . The objective camera selection control unit 301 ′ transmits information of the selected camera to the combining device 20 after storing the information in the generating device 10.
〔客観カメラ特定制御手段351’〕
 客観カメラ特定制御手段351’は、生成装置10で選択されたカメラを特定する機能を有する。客観カメラ特定制御手段351’で特定されたカメラに基づいて、現実空間画像取得手段352は、現実空間画像を取得する。例えば、客観カメラ選択制御手段301’で客観カメラ60が選択された場合、図9に示すように、生成装置10では客観背景画像701、透過された客観前景画像702’を生成し、合成装置20では客観透過現実空間画像703’が生成され、複合現実画像704が生成される。
[Objective camera identification control means 351 ']
The objective camera identification control means 351 ′ has a function of identifying the camera selected by the generation device 10. Based on the camera specified by the objective camera specification control means 351 ′, the real space image acquisition means 352 acquires a real space image. For example, when the objective camera 60 is selected by the objective camera selection control means 301 ′, the generation device 10 generates an objective background image 701 and a transmitted objective foreground image 702 ′ as shown in FIG. Then, an objective transmission reality space image 703 'is generated, and a mixed reality image 704 is generated.
 例えば、客観カメラ選択制御手段301’で客観カメラ160が選択された場合、図10に示すように、生成装置10では客観背景画像711、透過された客観前景画像712’を生成し、合成装置20では客観透過現実空間画像713’が生成され、複合現実画像714が生成される。例えば、客観カメラ選択制御手段301’で客観カメラ260が選択された場合、図10に示すように、生成装置10では客観背景画像721、透過された客観前景画像722’を生成し、合成装置20では客観透過現実空間画像723’が生成され、複合現実画像724が生成される。このように、第二仮想ゲームは、複数台のカメラから複合現実画像が切り替え可能に表示されるため、より視覚的演出効果を高めることができる。 For example, when the objective camera 160 is selected by the objective camera selection control means 301 ′, as shown in FIG. 10, the generation device 10 generates an objective background image 711 and a transmitted objective foreground image 712 ′. Then, an objective transmission reality space image 713 'is generated, and a mixed reality image 714 is generated. For example, when the objective camera 260 is selected by the objective camera selection control means 301 ′, as shown in FIG. 10, the generation device 10 generates an objective background image 721 and a transmitted objective foreground image 722 ′. Then, an objective transparent reality space image 723 'is generated, and a mixed reality image 724 is generated. As described above, in the second virtual game, the mixed reality image is displayed switchably from a plurality of cameras, so that visual effects can be further enhanced.
 以上、本発明の種々の実施形態を説明したが、本発明は、この実施形態に限定されることはない。本発明の目的、趣旨を逸脱しない範囲内での変更が可能なことはいうまでもない。合成装置20は、映像切替装置に限らずオペレーティングシステムを搭載する汎用的な装置であっても良い。HMD30は、右目用ビデオカメラと左目用ビデオカメラを備えているが、これらがなくても良いし、1つのビデオカメラであっても良い。ディスプレイ80には、複合現実画像604のみを表示しているが、画面の片隅等に小さくプレイヤPが見ている画像をワイプとして挿入しても良い。この場合、図3や図8に示すように、主観仮想空間画像を合成装置20に送信すれば良い。このとき、生成装置10は、合成装置20に主観仮想空間画像を送信する専用のインターフェースを介して送信すると良い。 Although various embodiments of the present invention have been described above, the present invention is not limited to this embodiment. It is needless to say that changes can be made without departing from the object and the purpose of the present invention. The synthesizing device 20 is not limited to the video switching device, and may be a general-purpose device equipped with an operating system. The HMD 30 includes the right-eye video camera and the left-eye video camera, but these may not be present or may be one video camera. Although only the mixed reality image 604 is displayed on the display 80, the image which the player P is looking at may be inserted as a wipe at a small corner or the like of the screen. In this case, as shown in FIG. 3 and FIG. 8, the subjective virtual space image may be transmitted to the synthesizing device 20. At this time, the generating device 10 may transmit to the synthesizing device 20 via a dedicated interface for transmitting a subjective virtual space image.
 ベースステーション90は、赤外線を照射するもので説明をしたが、ベースステーション90が赤外線を照射しつつ、各装置の位置と向きを検出するものであっても良いし、各装置が赤外線を照射しつつそれらの位置と向きを検出するものであっても良い。また、ベースステーション90は、赤外線を照射しHMDセンサ31、第一コントローラセンサ41、第二コントローラセンサ51、客観カメラセンサ61がこれを拾うことで、これらの位置と向きを検出している。しかし、これらの位置と向きを検出するのであれば、例えば、磁気で検出しても良いし、HMD30や客観カメラ60で撮像された映像を解析して位置と向きを特定してもよい。 Although the base station 90 has been described as emitting infrared light, the base station 90 may emit infrared light while detecting the position and orientation of each device, or each device emits infrared light. However, those positions and orientations may be detected. Further, the base station 90 irradiates infrared rays, and the HMD sensor 31, the first controller sensor 41, the second controller sensor 51, and the objective camera sensor 61 pick up these to detect their positions and directions. However, if these positions and directions are to be detected, for example, magnetic detection may be performed, or images captured by the HMD 30 or the objective camera 60 may be analyzed to specify the positions and directions.
 仮想空間に存在する3次元モデルのオブジェクトは、武器画像、盾画像、背景画像で説明をしたが、怪物画像や客観カメラ60の位置を示すカメラオブジェクトであるカメラ画像でも良い。怪物画像も武器画像や盾画像と同様に、ビジタVが見る複合現実画像704において、プレイヤPの画像の前や後の適当な位置に配置される。プレイヤPがHMD30で見ている主観仮想空間画像と、ビジタVがディスプレイ80で見ている複合現実画像704とは、HMD30と客観カメラ60の位置に応じて視点が異なる。 Although the object of the three-dimensional model existing in the virtual space has been described using a weapon image, a shield image, and a background image, it may be a monster image or a camera image which is a camera object indicating the position of the objective camera 60. The monster image is also disposed at an appropriate position before or after the image of the player P in the mixed reality image 704 viewed by the visitor V, similarly to the weapon image and the shield image. The viewpoints of the subjective virtual space image viewed by the player P with the HMD 30 and the mixed reality image 704 viewed by the visitor V with the display 80 differ according to the position of the HMD 30 and the objective camera 60.
 このため、プレイヤPの視点から見えていない怪物画像について、ビジタVにはディスプレイ80から見える場合がある。このとき、ビジタVがプレイヤPに声をかけることで、せまる怪物画像に気づく場合がある。このように、プレイヤPとビジタVとが協力してゲームを進行することができるため面白みが増す。本発明は、例えば、システム、装置、方法、制御方法、プログラム若しくは記憶媒体等としての実施形態も実行可能である。具体的には、複数の機器から構成されるシステムに適用してもよいし、また、1つの機器からなる装置に適用してもよい。 For this reason, the visitor V may see from the display 80 the monster image which can not be seen from the viewpoint of the player P. At this time, when the visitor V calls the player P, the visitor image may be noticed. In this way, the player P and the visitor V can cooperate to advance the game, which increases the interest. The present invention can also be implemented, for example, as a system, an apparatus, a method, a control method, a program or a storage medium. Specifically, the present invention may be applied to a system configured of a plurality of devices, or may be applied to an apparatus configured of a single device.
1    :画像処理装置
10   :生成装置
10a  :CPU
10b  :ROM
10c  :RAM
10d  :汎用バス
10e  :通信I/Fコントローラ
10f  :入力コントローラ
10g  :メモリコントローラ
10h  :ビデオコントローラ
10i  :入力デバイス
10j  :外部メモリ
11   :システムバス
20   :合成装置
20a  :CPU
20c  :RAM
20d  :汎用バス
20h  :ビデオコントローラ
20k  :ディスプレイ
30   :HMD
31   :HMDセンサ
40   :第一コントローラ
41   :第一コントローラセンサ
50   :第二コントローラ
51   :第二コントローラセンサ
60   :客観カメラ
61   :客観カメラセンサ
70   :クロマキーカーテン
80   :ディスプレイ
90   :ベースステーション
1: Image processing device 10: Generation device 10a: CPU
10b: ROM
10c: RAM
10d: General-purpose bus 10e: Communication I / F controller 10f: Input controller 10g: Memory controller 10h: Video controller 10i: Input device 10j: External memory 11: System bus 20: Synthesizer 20a: CPU
20c: RAM
20d: general purpose bus 20h: video controller 20k: display 30: HMD
31: HMD sensor 40: first controller 41: first controller sensor 50: second controller 51: second controller sensor 60: objective camera 61: objective camera sensor 70: chroma key curtain 80: display 90: base station

Claims (13)

  1.  3次元モデルが配置される仮想空間を生成する生成装置(10)と、撮像装置と通信可能に接続され撮像した画像を加工する合成装置(20)とからなる画像処理装置であって、
     前記生成装置(10)は、
     現実空間における前記撮像装置(60)の位置と向きを繰り返し取得し、前記仮想空間における仮想カメラの位置と向きである客観仮想カメラ位置を繰り返し特定する客観カメラ位置特定手段と、
     現実空間における対象の位置と向きを繰り返し取得し、前記仮想空間における前記対象の位置と向きである対象位置を繰り返し特定する対象位置特定手段と、
     前記客観仮想カメラ位置及び/又は前記対象位置に従って、前記3次元モデルを前記仮想空間に配置すると共に、前記撮像装置及び/又は前記対象の移動に応じて、前記3次元モデルを移動して前記仮想空間に配置する配置手段と、
     前記仮想空間に配置された前記3次元モデルを前記客観カメラ位置特定手段で特定された前記客観仮想カメラ位置を視点として、一又は複数の仮想空間画像を生成する仮想空間画像取得手段と、
     前記仮想空間画像取得手段で生成された前記仮想空間画像を前記合成装置に送信する送信手段とを有し、
     前記合成装置(20)は、
     前記生成装置から送信された前記仮想空間画像を受信する受信手段と、
     前記撮像装置で前記対象を含む現実空間を撮像することにより生成された現実空間画像を取得する現実空間画像取得手段と、
     前記仮想空間画像と前記現実空間画像とを重ね合わせて複合現実画像を生成する複合現実画像取得手段とを有する
     ことを特徴とする画像処理装置。
    An image processing apparatus comprising: a generating device (10) for generating a virtual space in which a three-dimensional model is arranged; and a synthesizing device (20) communicably connected to the imaging device and processing the captured image,
    The generator (10) is
    Objective camera position specifying means for repeatedly acquiring the position and orientation of the imaging device (60) in the physical space and repeatedly specifying the objective virtual camera position which is the position and orientation of the virtual camera in the virtual space;
    Object position identification means for repeatedly acquiring the position and orientation of the object in the real space and repeatedly specifying the object position which is the position and orientation of the object in the virtual space;
    The three-dimensional model is arranged in the virtual space according to the objective virtual camera position and / or the target position, and the three-dimensional model is moved according to the movement of the imaging device and / or the target to perform the virtual Arrangement means for arranging in space;
    Virtual space image acquisition means for generating one or more virtual space images, with the objective virtual camera position specified by the objective camera position specifying means as a viewpoint, with the three-dimensional model arranged in the virtual space;
    And transmission means for transmitting the virtual space image generated by the virtual space image acquisition means to the combining device,
    The synthesizer (20) is
    Receiving means for receiving the virtual space image transmitted from the generating device;
    A physical space image acquisition unit that acquires a physical space image generated by imaging the physical space including the object by the imaging device;
    An image processing apparatus comprising: mixed reality image acquisition means for generating a mixed reality image by superimposing the virtual space image and the real space image.
  2.  請求項1に記載された画像処理装置であって、
     前記仮想空間画像取得手段は、
     前記仮想空間画像として、前記現実空間画像の後に配置する客観背景画像と、前記現実空間画像の前に配置する客観前景画像とを生成する
     ことを特徴とする画像処理装置。
    The image processing apparatus according to claim 1, wherein
    The virtual space image acquisition means
    An image processing apparatus characterized by generating, as the virtual space image, an objective background image arranged after the real space image and an objective foreground image arranged before the real space image.
  3.  請求項2に記載された画像処理装置であって、
     前記仮想空間画像取得手段は、
     前記客観カメラ位置特定手段で特定された前記客観仮想カメラ位置及び/又は前記対象位置特定手段で特定された前記対象位置に応じて、前記客観背景画像と前記客観前景画像を生成する
     ことを特徴とする画像処理装置。
    The image processing apparatus according to claim 2, wherein
    The virtual space image acquisition means
    The objective background image and the objective foreground image are generated according to the objective virtual camera position specified by the objective camera position specifying means and / or the target position specified by the target position specifying means. Image processing device.
  4.  請求項3に記載された画像処理装置であって、
     前記客観背景画像には、前記仮想空間に配置された前記3次元モデルの全部が配置され、
     前記客観前景画像には、前記客観カメラ位置特定手段で特定された前記客観仮想カメラ位置及び/又は前記対象位置特定手段で特定された前記対象位置に応じて、前記仮想空間に配置された前記3次元モデルの一部である一部画像が配置される
     ことを特徴とする画像処理装置。
    The image processing apparatus according to claim 3, wherein
    In the objective background image, all of the three-dimensional model arranged in the virtual space is arranged,
    The objective foreground image may be placed in the virtual space according to the objective virtual camera position identified by the objective camera position identifying means and / or the object position identified by the object position identifying means. An image processing apparatus characterized in that a partial image which is a part of a two-dimensional model is arranged.
  5.  請求項4に記載された画像処理装置であって、
     前記仮想空間画像取得手段は、
     前記客観背景画像から前記一部画像を抽出する
     ことを特徴とする画像処理装置。
    The image processing apparatus according to claim 4, wherein
    The virtual space image acquisition means
    An image processing apparatus characterized by extracting the partial image from the objective background image.
  6.  請求項5に記載の画像処理装置であって、
     前記仮想空間画像取得手段は、
     前記客観背景画像から特定の色を透過することにより、前記一部画像を抽出する
     ことを特徴とする画像処理装置。
    The image processing apparatus according to claim 5,
    The virtual space image acquisition means
    An image processing apparatus characterized in that the partial image is extracted by transmitting a specific color from the objective background image.
  7.  請求項1~6のいずれか1項に記載された画像処理装置であって、
     前記現実空間画像取得手段は、
     前記撮像装置で撮像された前記現実空間画像から前記対象を含む特定画像を抽出する
     ことを特徴とする画像処理装置。
    The image processing apparatus according to any one of claims 1 to 6, wherein
    The real space image acquisition means
    An image processing apparatus, which extracts a specific image including the object from the physical space image captured by the imaging device.
  8.  請求項7に記載の画像処理装置であって、
     前記現実空間画像取得手段は、
     前記撮像装置で撮像された前記現実空間画像から特定の色を透過することにより、前記特定画像を抽出する透過処理手段を有する
     ことを特徴とする画像処理装置。
    The image processing apparatus according to claim 7, wherein
    The real space image acquisition means
    An image processing apparatus comprising: transmission processing means for extracting the specific image by transmitting a specific color from the physical space image captured by the imaging device.
  9.  請求項1~8のいずれか1項に記載の画像処理装置であって、
     前記生成装置には、ヘッドマウントディスプレイが接続され、
     前記生成装置は(10)、
     現実空間における前記ヘッドマウントディスプレイ(30)の位置と向きを繰り返し取得し、前記仮想空間における主観仮想カメラの位置と向きである主観仮想カメラ位置を繰り返し特定する主観カメラ位置特定手段と、
     前記仮想空間に配置された前記3次元モデルを前記主観カメラ位置特定手段で特定された前記主観仮想カメラ位置を視点として、主観仮想空間画像を生成する主観仮想空間画像取得手段と、
     前記主観仮想空間画像を表示するように制御するHMD表示制御手段とを有する
     ことを特徴とする画像処理装置。
    The image processing apparatus according to any one of claims 1 to 8, wherein
    A head mounted display is connected to the generator,
    The generator is (10),
    Subjective camera position specifying means for repeatedly acquiring the position and orientation of the head mounted display (30) in the real space, and repeatedly specifying the position of the subjective virtual camera which is the position and orientation of the subjective virtual camera in the virtual space;
    Subjective virtual space image acquisition means for generating a subjective virtual space image, with the three-dimensional model disposed in the virtual space as a viewpoint, with the subjective virtual camera position specified by the subjective camera position specifying means as a viewpoint;
    And an HMD display control unit configured to control to display the subjective virtual space image.
  10.  請求項9に記載の画像処理装置であって、
     前記主観仮想空間画像取得手段は、前記客観カメラ位置特定手段で特定された前記客観仮想カメラ位置にカメラオブジェクトを表示するように制御する
     ことを特徴とする画像処理装置。
    The image processing apparatus according to claim 9,
    The image processing apparatus, wherein the subjective virtual space image acquisition means controls to display a camera object at the objective virtual camera position identified by the objective camera position identification means.
  11.  請求項1~10のいずれか1項に記載の画像処理装置であって、
     前記合成装置は、一又は複数の画像を加工するビデオミキサー、ビデオスイッチャーその他の映像切替装置である
     ことを特徴とす画像処理装置。
    The image processing apparatus according to any one of claims 1 to 10, wherein
    The image processing device is characterized in that the combining device is a video mixer, a video switcher, or other video switching device that processes one or more images.
  12.  3次元モデルが配置される仮想空間を生成する生成装置(10)と、撮像装置と通信可能に接続され撮像した画像を加工する合成装置(20)とからなる画像処理装置の制御方法であって、
     前記生成装置の客観カメラ位置特定手段が、現実空間における前記撮像装置(60)の位置と向きを繰り返し取得し、前記仮想空間における仮想カメラの位置と向きである客観仮想カメラ位置を繰り返し特定する客観カメラ位置特定工程と、
     前記生成装置の対象位置特定手段が、現実空間における対象の位置と向きを繰り返し取得し、前記仮想空間における前記対象の位置と向きである対象位置を繰り返し特定する対象位置特定工程と、
     前記生成装置の配置手段が、前記客観仮想カメラ位置及び/又は前記対象位置に従って、前記3次元モデルを前記仮想空間に配置すると共に、前記撮像装置及び/又は前記対象の移動に応じて、前記3次元モデルを移動して前記仮想空間に配置する配置工程と、
     前記生成装置の仮想空間画像取得手段が、前記仮想空間に配置された前記3次元モデルを前記客観カメラ位置特定手段で特定された前記客観仮想カメラ位置を視点として、一又は複数の仮想空間画像を生成する仮想空間画像取得工程と、
      前記生成装置の送信手段が、前記仮想空間画像取得手段で生成された前記仮想空間画像を前記合成装置に送信する送信工程とを有し、
     前記合成装置の現実空間画像取得手段が、前記生成装置から送信された前記仮想空間画像を受信する受信工程と、
     前記合成装置の現実空間画像取得手段が、前記撮像装置で前記対象を含む現実空間を撮像することにより生成された現実空間画像を取得する現実空間画像取得工程と、
     前記合成装置の複合現実画像取得手段が、前記仮想空間画像と前記現実空間画像とを重ね合わせて複合現実画像を生成する複合現実画像取得工程とを有する
     ことを特徴とする画像処理装置の制御方法。
    A control method of an image processing apparatus comprising: a generation device (10) for generating a virtual space in which a three-dimensional model is arranged; and a combining device (20) communicably connected to an imaging device and processing a captured image ,
    Objective camera position specifying means of the generating device repeatedly acquires the position and orientation of the imaging device (60) in the real space, and repeatedly specifies the objective virtual camera position which is the position and orientation of the virtual camera in the virtual space Camera position identification process,
    Target position specifying step of the target position specifying means of the generation device repeatedly acquiring the position and the direction of the target in the real space repeatedly and repeatedly specifying the target position which is the position and the direction of the target in the virtual space;
    The arrangement unit of the generation device arranges the three-dimensional model in the virtual space according to the objective virtual camera position and / or the object position, and the 3 according to the movement of the imaging device and / or the object. Placing a two-dimensional model and placing it in the virtual space;
    The virtual space image acquisition means of the generation device uses the three-dimensional model arranged in the virtual space as the viewpoint of the objective virtual camera position specified by the objective camera position specifying means as one or more virtual space images Virtual space image acquisition process to be generated;
    And transmitting the virtual space image generated by the virtual space image acquisition means to the synthesizing device.
    A receiving step of receiving the virtual space image transmitted from the generation device by a real space image acquisition unit of the combining device;
    A physical space image acquiring step of acquiring a physical space image generated by imaging the physical space including the object by the imaging device;
    A control method of an image processing apparatus, comprising: a mixed reality image obtaining step of combining the virtual space image and the real space image to generate a mixed reality image; .
  13.  3次元モデルが配置される仮想空間を生成する生成装置(10)と、撮像装置と通信可能に接続され撮像した画像を加工する合成装置(20)とからなる画像処理装置の制御方法を実行可能なプログラムであって、
     前記生成装置を、
     現実空間における前記撮像装置(60)の位置と向きを繰り返し取得し、前記仮想空間における仮想カメラの位置と向きである客観仮想カメラ位置を繰り返し特定する客観カメラ位置特定手段と、
     現実空間における対象の位置と向きを繰り返し取得し、前記仮想空間における前記対象の位置と向きである対象位置を繰り返し特定する対象位置特定手段と、
     前記客観仮想カメラ位置及び/又は前記対象位置に従って、前記3次元モデルを前記仮想空間に配置すると共に、前記撮像装置及び/又は前記対象の移動に応じて、前記3次元モデルを移動して前記仮想空間に配置する配置手段と、
     前記仮想空間に配置された前記3次元モデルを前記客観カメラ位置特定手段で特定された前記客観仮想カメラ位置を視点として、一又は複数の仮想空間画像を生成する仮想空間画像取得手段と、
     前記仮想空間画像取得手段で生成された前記仮想空間画像を前記合成装置に送信する送信手段として機能させ、
     前記合成装置を、
     前記生成装置から送信された前記仮想空間画像を受信する受信手段と、
     前記撮像装置で前記対象を含む現実空間を撮像することにより生成された現実空間画像を取得する現実空間画像取得手段と、
     前記仮想空間画像と前記現実空間画像とを重ね合わせて複合現実画像を生成する複合現実画像取得手段
     として機能させることを特徴とする画像処理のプログラム。
    A method of controlling an image processing apparatus can be implemented which includes a generating device (10) for generating a virtual space in which a three-dimensional model is arranged, and a synthesizing device (20) communicably connected to the imaging device and processing the captured image Program, and
    The generator,
    Objective camera position specifying means for repeatedly acquiring the position and orientation of the imaging device (60) in the physical space and repeatedly specifying the objective virtual camera position which is the position and orientation of the virtual camera in the virtual space;
    Object position identification means for repeatedly acquiring the position and orientation of the object in the real space and repeatedly specifying the object position which is the position and orientation of the object in the virtual space;
    The three-dimensional model is arranged in the virtual space according to the objective virtual camera position and / or the target position, and the three-dimensional model is moved according to the movement of the imaging device and / or the target to perform the virtual Arrangement means for arranging in space;
    Virtual space image acquisition means for generating one or more virtual space images, with the objective virtual camera position specified by the objective camera position specifying means as a viewpoint, with the three-dimensional model arranged in the virtual space;
    Allowing the virtual space image generated by the virtual space image acquisition means to function as a transmission means for transmitting the image to the combining device,
    The synthesizer is
    Receiving means for receiving the virtual space image transmitted from the generating device;
    A physical space image acquisition unit that acquires a physical space image generated by imaging the physical space including the object by the imaging device;
    An image processing program characterized by causing the virtual space image and the real space image to overlap each other to generate a mixed reality image.
PCT/JP2018/001294 2018-01-18 2018-01-18 Image processing device, image processing device control method, and program WO2019142283A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/001294 WO2019142283A1 (en) 2018-01-18 2018-01-18 Image processing device, image processing device control method, and program

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/001294 WO2019142283A1 (en) 2018-01-18 2018-01-18 Image processing device, image processing device control method, and program

Publications (1)

Publication Number Publication Date
WO2019142283A1 true WO2019142283A1 (en) 2019-07-25

Family

ID=67302060

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/001294 WO2019142283A1 (en) 2018-01-18 2018-01-18 Image processing device, image processing device control method, and program

Country Status (1)

Country Link
WO (1) WO2019142283A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002157606A (en) * 2000-11-17 2002-05-31 Canon Inc Image display controller, composite reality presentation system, image display control method, and medium providing processing program
US20040041822A1 (en) * 2001-03-13 2004-03-04 Canon Kabushiki Kaisha Image processing apparatus, image processing method, studio apparatus, storage medium, and program

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002157606A (en) * 2000-11-17 2002-05-31 Canon Inc Image display controller, composite reality presentation system, image display control method, and medium providing processing program
US20040041822A1 (en) * 2001-03-13 2004-03-04 Canon Kabushiki Kaisha Image processing apparatus, image processing method, studio apparatus, storage medium, and program

Similar Documents

Publication Publication Date Title
JP5145444B2 (en) Image processing apparatus, image processing apparatus control method, and program
US7843470B2 (en) System, image processing apparatus, and information processing method
JP4869430B1 (en) Image processing program, image processing apparatus, image processing system, and image processing method
KR102474088B1 (en) Method and device for compositing an image
CN108292489A (en) Information processing unit and image generating method
KR101822471B1 (en) Virtual Reality System using of Mixed reality, and thereof implementation method
US10386633B2 (en) Virtual object display system, and display control method and display control program for the same
US10896322B2 (en) Information processing device, information processing system, facial image output method, and program
JP6799017B2 (en) Terminal devices, systems, programs and methods
JP2018198025A (en) Image processing device, image processing device control method, and program
CN103248910B (en) Three-dimensional imaging system and image reproducing method thereof
JP6649010B2 (en) Information processing device
JP6687751B2 (en) Image display system, image display device, control method thereof, and program
JP5602702B2 (en) Image processing program, image processing apparatus, image processing system, and image processing method
CN114371779A (en) Visual enhancement method for sight depth guidance
JP6011567B2 (en) Information processing apparatus, control method thereof, and program
US9942540B2 (en) Method and a device for creating images
CN106686367A (en) Display mode switching method and display control system of virtual reality (VR) display
WO2018173207A1 (en) Information processing device
US11348252B1 (en) Method and apparatus for supporting augmented and/or virtual reality playback using tracked objects
WO2019142283A1 (en) Image processing device, image processing device control method, and program
US11579746B2 (en) Dynamic image capturing apparatus and method using arbitrary viewpoint image generation technology
JP6717486B1 (en) Extended virtual space providing system
KR102287939B1 (en) Apparatus and method for rendering 3dimensional image using video
CN113485547A (en) Interaction method and device applied to holographic sand table

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18901097

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18901097

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP