WO2019142270A1 - Internal combustion engine manufacturing method, internal combustion engine, and coupling cylinder - Google Patents

Internal combustion engine manufacturing method, internal combustion engine, and coupling cylinder Download PDF

Info

Publication number
WO2019142270A1
WO2019142270A1 PCT/JP2018/001243 JP2018001243W WO2019142270A1 WO 2019142270 A1 WO2019142270 A1 WO 2019142270A1 JP 2018001243 W JP2018001243 W JP 2018001243W WO 2019142270 A1 WO2019142270 A1 WO 2019142270A1
Authority
WO
WIPO (PCT)
Prior art keywords
cylinder
internal combustion
combustion engine
peripheral surface
connecting cylinder
Prior art date
Application number
PCT/JP2018/001243
Other languages
French (fr)
Japanese (ja)
Inventor
正巳 堀米
佐藤 陽
貴志 大泉
高志 井上
顕 彦根
Original Assignee
Tpr株式会社
Tpr工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tpr株式会社, Tpr工業株式会社 filed Critical Tpr株式会社
Priority to PCT/JP2018/001243 priority Critical patent/WO2019142270A1/en
Priority to EP18901094.5A priority patent/EP3741980A1/en
Priority to CN201880076557.XA priority patent/CN111406151A/en
Priority to JP2019566035A priority patent/JPWO2019142270A1/en
Publication of WO2019142270A1 publication Critical patent/WO2019142270A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02FCYLINDERS, PISTONS OR CASINGS, FOR COMBUSTION ENGINES; ARRANGEMENTS OF SEALINGS IN COMBUSTION ENGINES
    • F02F1/00Cylinders; Cylinder heads 
    • F02F1/02Cylinders; Cylinder heads  having cooling means
    • F02F1/10Cylinders; Cylinder heads  having cooling means for liquid cooling
    • F02F1/16Cylinder liners of wet type
    • F02F1/163Cylinder liners of wet type the liner being midsupported

Definitions

  • the present invention relates to a method of manufacturing an internal combustion engine, an internal combustion engine, and a connecting cylinder.
  • a so-called Siamese-type cylinder block having a structure in which cylinder liners forming adjacent cylinder bores are integrally coupled is known. It is done.
  • a method of manufacturing such a cylinder block for example, (1) after setting an assembly of cylinder liners in a mold at the time of casting a cylinder block, fixing it to the cylinder block body by casting around the cylinder block body
  • Methods and (2) methods of fixing a cylinder liner assembly to a cylinder body by fitting are known (Patent Documents 1 and 2).
  • Patent Documents 1 and 2 In the method of manufacturing the cylinder block described in these Patent Documents 1 and 2, a plurality of cylinder liners are integrally formed, and a cylinder liner assembly formed of one member is used.
  • the present invention has been made in view of the above circumstances, and is a method of manufacturing an internal combustion engine which is excellent in maintainability and recyclability of the internal combustion engine and has a high design freedom of the internal combustion engine, and an internal combustion engine manufactured using the same.
  • An object of the present invention is to provide a connected cylinder used for the same.
  • a method of manufacturing an internal combustion engine according to the present invention comprises: (1) a first connecting cylinder including two or more cylinder liners and a connecting portion connecting two or more cylinder liners to each other; and (2) two or more Any of the connecting cylinders selected from the group consisting of: a second connecting cylinder including a connecting cylinder body provided with the first cylinder bore and a coating covering the inner peripheral surface of the connecting cylinder body provided with the cylinder bore;
  • the crank chamber is formed on one end side, the cylinder head is assembled on the other end side, and the fitting step is fitted to the hollow portion of the cylinder block main body provided with the hollow portion penetrating from one end side to the other end side
  • two or more cylinder liners and the connecting portion are integrally and inseparably formed.
  • the connecting portion covers the entire outer peripheral surface of the two or more cylinder liners.
  • the material forming the connecting portion is a material different from the material forming the cylinder block body.
  • the material forming the connecting cylinder main body is a material different from the material forming the cylinder block main body.
  • the fitting process be performed in any fitting mode selected from a loose fit, an intermediate fit and a tight fit.
  • the connecting cylinder is a first connecting cylinder, and a sliding surface forming step of forming a sliding surface by finishing the inner peripheral surface of the cylinder liner. Is preferably performed only before the fitting process.
  • the connecting cylinder is the first connecting cylinder, and the surface of the film is formed after performing a film forming step of forming a film on the inner peripheral surface of the cylinder liner. It is preferable to carry out the sliding surface forming step of forming the sliding surface by finish processing, and to carry out the sliding surface forming step only before the fitting step.
  • the connecting cylinder is the second connecting cylinder, and the surface of the coating covering the inner peripheral surface of the connecting cylinder body provided with the cylinder bore is finished. It is preferable to carry out the sliding surface forming step of forming the sliding surface accordingly only before the fitting step.
  • the fitting step be performed by any fitting method selected from a loose fit and an intermediate fit.
  • the fitting step be performed by close fitting.
  • the connecting cylinder is a first connecting cylinder, and a sliding surface forming step of forming a sliding surface by finishing the inner peripheral surface of the cylinder liner. Is preferably performed only after the fitting process.
  • the connecting cylinder is the first connecting cylinder, and the surface of the film is formed after performing a film forming step of forming a film on the inner peripheral surface of the cylinder liner. It is preferable to carry out the sliding surface forming step of forming the sliding surface by finish processing, and to carry out the sliding surface forming step only after the fitting step.
  • the connecting cylinder is the second connecting cylinder, and the surface of the coating covering the inner peripheral surface of the connecting cylinder body provided with the cylinder bore is finished. It is preferable to carry out the sliding surface forming step of forming the sliding surface accordingly only after the fitting step.
  • the sliding surface forming step is performed in a state where at least the connecting cylinder is heated while assembling the connecting cylinder to a jig simulating the cylinder block body and cylinder head.
  • the connecting cylinder is heated while assembling the connecting cylinder to a jig simulating the cylinder block body and cylinder head.
  • Another embodiment of the method of manufacturing an internal combustion engine according to the present invention carries out at least the step of forming a coolant passage, which forms a coolant passage between two adjacent cylinder bores of the connecting cylinder, at least before the fitting step. It is preferable to do.
  • the coolant passage is provided inside the end face on the side where the cylinder head of the connecting cylinder is disposed, and each cylinder bore provided in the connecting cylinder It is preferable that the cross-sectional shape of the coolant passage in a plane parallel to the center line of the above is slit-like.
  • the cylinder block body is manufactured by any method selected from casting and resin molding.
  • the internal combustion engine of the present invention comprises: (1) a first connecting cylinder including two or more cylinder liners and a connecting portion connecting the two or more cylinder liners to each other; and (2) two or more cylinder bores
  • a connecting cylinder selected from the group consisting of a provided connecting cylinder body and a second connecting cylinder including a coating covering the inner peripheral surface of the connecting cylinder body provided with a cylinder bore, and one end
  • the connecting cylinder is fitted in the hollow portion of the cylinder block body in any fitting method selected from a loose fit and an intermediate fit.
  • the coolant passage is provided between the two adjacent cylinder bores of the connecting cylinder inside the end face on the side where the cylinder head of the connecting cylinder is disposed.
  • the cross-sectional shape of the coolant passage in a plane parallel to the center line of each cylinder bore provided in the connecting cylinder is a slit.
  • a fixing flange portion is provided on the outer peripheral surface of the connecting cylinder along a direction parallel to the center line of each cylinder bore provided in the connecting cylinder. It is preferable that a guide groove fitted to the fixing collar portion be provided on the inner peripheral surface of the hollow portion.
  • the fixing flanges are provided on the outer peripheral surface of the connecting cylinder at both end sides in the arrangement direction of each cylinder bore, and the guide groove is in the longitudinal direction of the opening of the hollow portion. It is preferable to be provided on the inner peripheral surface of the hollow portion of the cylinder block main body at both end sides.
  • a fixing flange is provided on the inner peripheral surface of the hollow portion of the cylinder block main body along a direction parallel to the penetrating direction of the hollow portion.
  • a guide groove fitted to the fixing collar portion is provided.
  • the fixing flanges are provided on the inner peripheral surface of the hollow portion of the cylinder block main body at both ends in the longitudinal direction of the opening of the hollow portion, and the guide groove is the connecting cylinder It is preferable to be provided on the outer peripheral surface of the connecting cylinder at both end sides of the respective cylinder bores provided in the arrangement direction of the cylinder bores.
  • the internal combustion engine is preferably a horizontally opposed engine.
  • a coolant jacket is provided between the outer peripheral surface of the connecting cylinder and the inner peripheral surface of the hollow portion of the cylinder block body.
  • the dividing collar for dividing the coolant jacket into two or more parts is selected from the outer peripheral surface of the connecting cylinder and the inner peripheral surface of the hollow portion of the cylinder block body. Preferably, it is provided on at least one of the surfaces.
  • the fixing collar also has a function of a dividing collar.
  • the dividing collar does not have a through hole penetrating in the width direction of the dividing collar.
  • the dividing collar has a through hole penetrating in the width direction of the dividing collar and a closing member capable of closing the through hole.
  • the through hole is closed by the closing member during operation of the internal combustion engine.
  • no coolant jacket spacer is arranged in the coolant jacket.
  • the depth D of the coolant jacket is not more than 1/2 times the total length L of the coolant jacket in the direction parallel to the center line of each cylinder bore provided in the connecting cylinder. Is preferred.
  • the depth D of the coolant jacket is not more than 1/2 times the total length L of the coolant jacket in the direction parallel to the center line of each cylinder bore provided in the connecting cylinder.
  • no coolant jacket spacer is arranged in the coolant jacket.
  • At least a part of the outer peripheral surface on the other end side (the cylinder head side) of the outer peripheral surface of the connecting cylinder is provided with a protrusion, and the tip of the protrusion is a cylinder It is preferable to be in close contact with the inner peripheral surface of the other end side (the cylinder head side) of the hollow portion of the block main body.
  • Another embodiment of the internal combustion engine of the present invention is connected between an outer peripheral surface on the other end side (cylinder head side) of the connecting cylinder and an inner peripheral surface on the other end side (cylinder head side) of the cylinder block main body.
  • a fixing member for fixing the cylinder and the cylinder block body to each other is provided.
  • the first connection cylinder has a continuous annular outer peripheral shape in which the bore diameter of each cylinder liner is enlarged, and the cylinder in the centerline direction of each cylinder liner
  • An outer diameter D1 based on a center line of each cylinder liner in a first region consisting of an outer peripheral surface from near the head side to a central portion vicinity is each cylinder liner in a second region consisting of an outer peripheral surface near the crank chamber side
  • a step parallel to and continuous with the outer peripheral direction is formed between the first region and the second region, and is further formed with the first region and the second region.
  • a coolant jacket is formed between the inner circumferential surface of the hollow portion of the cylinder block body and the inner circumferential surface of the hollow portion.
  • the second connecting cylinder has a continuous annular outer peripheral shape in which the bore diameter of each cylinder bore is enlarged, and the cylinder head side in the center line direction of each cylinder bore
  • the outer diameter D1 based on the center line of each cylinder bore in the first region consisting of the outer peripheral surface from the vicinity to the central portion vicinity is the center line of each cylinder bore in the second region consisting of the outer peripheral surface near the crank chamber side
  • a step which is larger than the reference outer diameter D2 and is continuous and continuous with the outer peripheral direction is formed between the first region and the second region, and further, the first region and the cylinder block body It is preferable that a coolant jacket be formed between the inner circumferential surface of the hollow portion and the hollow portion.
  • a flange portion for dividing the first region into a region on the cylinder head side and a region on the crank chamber side is provided in the first region.
  • the liquid jacket is divided with respect to the centerline direction of the cylinder liner or the cylinder bore.
  • the connecting cylinder according to the first aspect of the present invention is characterized by including two or more cylinder liners and a connecting portion connecting two or more cylinder liners to each other.
  • One embodiment of the connecting cylinder of the first invention of the present invention has a continuous annular outer peripheral shape in which the bore diameter of each cylinder liner is expanded, and from the vicinity of the cylinder head side in the centerline direction of each cylinder liner
  • the outer diameter D1 based on the center line of each cylinder liner in the first area consisting of the outer peripheral face up to the vicinity of the part is based on the center line of each cylinder liner in the second area consisting of the outer peripheral face near the crank chamber
  • a step that is larger than the outer diameter D2 to be made and that is parallel and continuous with the outer circumferential direction be formed between the first region and the second region.
  • the connecting cylinder according to the second aspect of the present invention is characterized by including a connecting cylinder body provided with two or more cylinder bores and a coating covering the inner peripheral surface of the connecting cylinder body provided with the cylinder bore. .
  • One embodiment of the connecting cylinder of the second invention of the present invention has a continuous annular outer peripheral shape in which the bore diameter of each cylinder bore is expanded, and from the vicinity of the cylinder head side to the vicinity of the central portion in the centerline direction of each cylinder bore
  • a step parallel to and continuous with the outer circumferential direction be formed between the first region and the second region, which is larger than D2.
  • a collar portion is provided on the outer peripheral surface.
  • the first region is provided with a flange portion which divides the first region into a region on the cylinder head side and a region on the crank chamber side Is preferred.
  • the ridge portion does not have a through hole penetrating in the width direction of the ridge portion.
  • the collar portion has a through hole penetrating in the width direction of the collar portion and a closing member capable of closing the through hole.
  • the coolant passage is provided between the two cylinder bores of the connecting cylinder adjacent to each other from the end face of the connecting cylinder on which the cylinder head is disposed. It is preferable that the cross-sectional shape of the cooling fluid passage in a plane parallel to the center line of each cylinder bore provided in the connecting cylinder is a slit shape.
  • connection cylinder of the first and second inventions preferably have no protrusions in the first region.
  • connection cylinders preferably do not have protrusions in the second region.
  • a method of manufacturing an internal combustion engine which is excellent in maintainability and recyclability of the internal combustion engine and has a high design freedom of the internal combustion engine, an internal combustion engine manufactured using the same and a connecting cylinder used therefor are provided. be able to.
  • FIG. 3 is an enlarged cross-sectional view showing an example of a cross-sectional structure taken along the line III-III of the first coupled cylinder shown in FIG. 2; It is an expansion perspective view showing an example near the cylinder head side of the 2nd connecting cylinder used for a manufacturing method of an internal-combustion engine of this embodiment.
  • FIG. 5 is an enlarged cross-sectional view showing an example of a cross-sectional structure taken along the line VV of the second connection cylinder shown in FIG.
  • FIG. 4 It is a disassembled perspective view which fractures
  • FIG. 8 is a schematic cross sectional view showing an example of a cross sectional structure taken along the line VIII-VIII of the internal combustion engine shown in FIG. 7;
  • FIG. 5 is a schematic cross-sectional view showing an example of a cross-sectional structure between a symbol IX and a symbol IX of the first coupled cylinder shown in FIG.
  • FIG. 3 It is a schematic cross section which shows an example of the cross-section between the code
  • FIG. 14 (A) is an end view showing a coolant passage having a circular cross-sectional shape
  • FIG. 14 (B) is an opening also in the end face of the other end side (Z1 side) of the connecting cylinder.
  • 14C is an end view showing a passage for a coolant having a slit-like cross-sectional shape having a portion
  • FIG. 14C is an inner side (an end side (Z2 side) than an end face of the other end side (Z1 side) of the connecting cylinder 10. 2.
  • It is an end view showing a passage for coolant having a slit-like cross-sectional shape provided. It is an external appearance perspective view which shows the other modification of the 1st connection cylinder shown in FIG.
  • the X direction, the Y direction, and the Z direction shown in the drawings are directions orthogonal to each other.
  • the X direction is the alignment direction of the cylinder bores
  • the Y direction is orthogonal to the alignment direction of the cylinder bores and also orthogonal to the center line C of the cylinder bores (in the first connection cylinder, the center line C of the cylinder bore and cylinder liner)
  • the Z direction is a direction parallel to the center line C of the cylinder bore.
  • the X1 side In the X direction, the X1 side is opposite to the X2 side, and in the Y direction, the Y1 side is opposite to the Y2 side, and in the Z direction, the Z1 side (cylinder head side) is the Z2 side It is the opposite direction to (the crank chamber side).
  • a first connecting cylinder including (1) two or more cylinder liners and a connecting portion connecting the two or more cylinder liners to each other, and (2) two Any connection selected from the group consisting of a second connecting cylinder including a connecting cylinder body provided with the above-mentioned cylinder bore and a coating covering the inner peripheral surface of the connecting cylinder body provided with the cylinder bore.
  • FIGS. 1 to 3 are schematic views showing an example of a connecting cylinder used in the method of manufacturing an internal combustion engine of the present embodiment, and more specifically, a view for explaining an example of a first connecting cylinder.
  • FIG. 1 shows an external perspective view of the first connecting cylinder
  • FIG. 2 shows an enlarged perspective view of the vicinity of the cylinder head side of the first connecting cylinder
  • 3 is an enlarged cross-sectional view showing an example of a cross-sectional structure in the vicinity of the cylinder head side of the first connection cylinder, and is a cross-sectional structure in which the first connection cylinder is cut along the line III-III in FIG. XY cross section structure is shown.
  • the first connecting cylinder 10A1 (10A, 10) illustrated in FIGS. 1 to 3 is provided with four cylinder bores 20, and in each cylinder bore 20, the center lines C of each are in the same plane (XZ plane) It is provided along the X direction so as to be located above. Further, the first connecting cylinder 10A1 has four cylinder liners 40 and a connecting portion 42 connecting the four cylinder liners 40 to each other. In the example shown in FIGS. 1 to 3, the connecting portion 42 is provided so as to at least cover the entire outer peripheral surface 40 A of each of the four cylindrical cylinder liners 40, and the bores of the respective cylinder liners 40. It has a continuous annular outer peripheral shape in which the diameter Db is expanded.
  • one cylinder liner 40 and another cylinder liner 40 adjacent to each other in the X direction are spaced apart by a predetermined distance so that the outer peripheral surfaces 40A do not contact each other. That is, the space between the two cylinder liners 40 adjacent to each other is filled with the material of the connecting portion 42 without any gap.
  • the end face on the cylinder head side and the crank chamber side of the cylinder liner 40 is also covered by the connecting portion 42. However, the end face of the cylinder liner 40 does not have to be covered by the connecting portion 42 either or both of the end faces on the cylinder head side and the crank chamber side.
  • FIGS. 4 to 5 are schematic views showing another example of the connecting cylinder used in the method of manufacturing an internal combustion engine according to the present embodiment, and specifically, a view for explaining an example of the second connecting cylinder.
  • FIG. 4 shows an enlarged perspective view of the vicinity of the cylinder head side of the second connection cylinder.
  • 5 is an enlarged cross-sectional view showing an example of the cross-sectional structure in the vicinity of the cylinder head side of the second connection cylinder, and the cross-sectional structure in which the connection cylinder is cut between the symbols V and V in FIG. ) Is shown.
  • the outer peripheral shape of the second connection cylinder 10B (10) illustrated in FIGS. 4 to 5 is the same as the first connection cylinder 10A1 illustrated in FIG. And four cylinder bores 20 are provided also in the 2nd connection cylinder 10B, and each cylinder bore 20 is along the X direction so that that center line C may be located on the same plane (XZ plane). It is arranged.
  • the second connecting cylinder 10B includes a connecting cylinder body 50 provided with four cylinder bores 20, and a coating 52 covering the inner circumferential surface 50B provided with the cylinder bore 20 of the connecting cylinder body 50.
  • the connecting cylinder main body 50 has a continuous annular outer peripheral shape in which the bore diameters Db of the four circular bore cylinder bores 20 are expanded.
  • first connecting cylinder 10A1 illustrated in FIGS. 1 to 3 shows the case where four cylinder liners 40 are provided
  • the number of cylinder liners 40 is not particularly limited as long as it is two or more. Can be selected in the range of about 2-8.
  • the second connecting cylinder 10B illustrated in FIGS. 4 to 5 the case where four cylinder bores 20 are provided is shown, but the number of cylinder bores 20 is not particularly limited as long as it is two or more. Can be selected in the range of about 2-8.
  • the internal combustion engine is manufactured by at least a fitting step of fitting the connecting cylinder 10 as illustrated in FIGS. 1 to 5 to the cylinder block body.
  • a crank chamber 62 is formed at one end side (Z2 side) in the cylinder block main body 60A (60), and a cylinder head is assembled at the other end side (Z1 side), It has a structure provided with a hollow portion 64 penetrating from one end side to the other end side. Then, in the fitting process, the connecting cylinder 10 is fitted in the hollow portion 64. In addition, after the fitting process is performed, the internal combustion engine is completed by further performing various other processes. As another process, for example, a process of assembling a cylinder head to the cylinder head side (Z1 side) of the cylinder block main body 60 in which the connecting cylinder 10 fitted and fixed in the hollow portion 64 is arranged.
  • the connecting cylinder 10 can be fitted to the hollow portion 64 of the cylinder block body 60 by any fitting method selected from a loose fit, an intermediate fit and a tight fit.
  • “spacing fit” is a fitting in which a gap is generated between members even in consideration of the tolerance of each member to be fitted
  • “squeezing fit” is: Interfering is a fitting that causes an interference between the members even in consideration of the tolerance of each member to be fitted, and “intermediate fit” means the tolerance in each member to be fitted, Both when there is a gap between the members and when there is interference is a fit (intermediate fit between a loose fit and a tight fit).
  • the fitting method by tight fitting is not particularly limited.
  • the coupling cylinder 10 in a cooled state is fitted in the hollow portion 64 of the cylinder block main body 60 by cold fitting, and the cylinder in a state where the coupling cylinder 10 is heated
  • Examples of the method include shrink fitting to be fitted into the hollow portion 64 of the block main body 60 and strong press-fit.
  • the fitting method by the intermediate fitting is not particularly limited, for example, after the fitting in a state in which the sliding of the fitting portion is improved using a lubricant or the like, or after performing positioning with high accuracy, the connecting cylinder For example, fitting using a jig made of a material softer than 10 (for example, driving using a resin or wooden hammer, etc.), etc.
  • connection cylinder 10 is mounted on the cylinder block main body 60 by loose fitting.
  • fitting is performed in a state in which a deformable or easily flowable material including a resin material, a rubber material, a fibrous material such as glass fiber, a paste-like material, etc. is disposed between both members as needed. A combination may be performed.
  • Which fitting method is selected can be selected according to the required design specifications of the internal combustion engine 100 or the like.
  • tight fitting is preferable.
  • fitting by tight fitting for example, in a state where the internal combustion engine 100 is attached to equipment such as a car such as a V-type engine or a horizontally opposed engine, and at the time of assembly.
  • the center line C of the cylinder bore is greatly inclined or perpendicular to the vertical direction can be exemplified.
  • internal combustion engine 100 in a state where internal combustion engine 100 is attached to a device such as an automobile and at the time of assembly, internal combustion engine 100 has a configuration in which the vertical direction and center line C of the cylinder bore are parallel or substantially parallel. It is easy to stably fix the connecting cylinder 10 in the cylinder block main body 60 without causing positional deviation of the connecting cylinder 10 in the direction orthogonal to the center line C of the cylinder bore. In such a case, loose fitting is also suitable.
  • the internal combustion engine 100 in the state where internal combustion engine 100 is attached to a device such as a car, the internal combustion engine 100 usually has a configuration in which the center line C of the cylinder bore is largely inclined or orthogonal to the vertical direction.
  • the vertical direction and center line C of the cylinder bore are parallel or substantially parallel.
  • a loose fit is also suitable. Further, as compared with tight fit and middle fit, loose fit is less likely to cause breakage of the joint portion between connecting cylinder 10 and cylinder block main body 60 when disassembling internal combustion engine 100, so that the parts are reworked. It is also advantageous in terms of use.
  • the outer peripheral surface 10S at one end side (Z2 side) of the connecting cylinder 10 is made to be a tapered surface in order to improve the positioning and insertion of the connecting cylinder 10 with respect to the hollow portion 64. Is also suitable.
  • FIG. 7 shows an external perspective view showing an example of an internal combustion engine manufactured by the method of manufacturing an internal combustion engine according to the present embodiment
  • FIG. 8 shows the case where the internal combustion engine shown in FIG. It is a schematic cross section which shows an example of a cross-section (YZ cross section structure).
  • the description of the other main members constituting the internal combustion engine other than the connecting cylinder and the cylinder block main body is omitted.
  • the internal combustion engine 100A (100) shown in FIGS. 7 and 8 has a connecting cylinder 10 and a cylinder block main body 60.
  • the connecting cylinder 10 is a portion on one end side of the hollow portion 64 of the cylinder block main body 60. It is detachably fitted in (fitting portion 64J).
  • the first connecting cylinder 10A1 illustrated in FIGS. 1 to 3 is used as the connecting cylinder 10.
  • a second connecting cylinder 10A1 is used instead of the first connecting cylinder 10A1 .
  • the connecting cylinder 10B can be used, or the connecting cylinder 10 having a flange portion 16 as illustrated in FIGS. 11 and 15 to 17 described later can be used.
  • the cylinder block main body 60A shown in FIG. 6 is used as the cylinder block main body 60.
  • a cylinder block body 60B (60) as exemplified in 13 can also be used.
  • connection cylinder 10 is fitted to the hollow portion 64 when the connection cylinder 10 is fixed to the cylinder block main body 60. Is done. Therefore, the connecting cylinder 10 once fixed to the cylinder block main body 60 can be easily removed from the cylinder block main body 60. Therefore, when maintaining internal combustion engine 100, connecting cylinder 10 can be removed from cylinder block main body 60, and either or both of connecting cylinder 10 and cylinder block main body 60 can be repaired or replaced separately. For this reason, the internal combustion engine 100 manufactured by the method for manufacturing an internal combustion engine of the present embodiment is excellent in maintainability.
  • the cylinder block main body 60 used in the method for manufacturing an internal combustion engine according to the present embodiment is usually a member manufactured using casting, resin molding or the like (a member made of one type of integral material). It consists of
  • the cylinder block main body 60 removed from the internal combustion engine 100 can be recycled as it is without performing further separation processing and the like.
  • the cylinder block body 60 is a cast manufactured using an aluminum alloy, cast iron or the like, the cylinder block body 60 can be melted and reused. Therefore, the internal combustion engine 100 manufactured by the method of manufacturing an internal combustion engine of the present embodiment is also excellent in recyclability.
  • the cylinder block main body 60 is generally composed of a member made of one type of material which is integral with the whole, it has substantially the same degree of recyclability as such a member.
  • the structure of the cylinder block main body 60 is not limited only to the case where the whole is constituted by a member made of one kind of integrally and indivisible material.
  • any one member of the connecting cylinder 10 and the cylinder block main body 60 constituting the internal combustion engine 100 to be disposed of can withstand reuse, one of the members is reused and only the other member is disposed of It is also possible.
  • the connecting cylinder 10 is loosely fitted to the hollow portion 64 of the cylinder block main body 60. It is preferable to be fitted by any fitting method selected from the middle fitting, and it is further preferable to be fitted by a loose fitting.
  • the internal combustion engine 100 is manufactured by combining two components (the connection cylinder 10 and the cylinder block body 60) after preparing them. Therefore, even if a defect defect is found in any of the parts after the fitting process is finished, only the part in which the defect defect is found can be discarded. That is, therefore, even if defective defects occur, the waste loss in the manufacturing process can be further reduced.
  • the internal combustion engine is required to satisfy various performances such as output, fuel consumption, small size and lightness according to the required specification of the vehicle in which the internal combustion engine is used or equipment other than the vehicle.
  • characteristics particularly important for an internal combustion engine such as output and fuel efficiency tend to be greatly influenced by the material and structure near the cylinder bore. Therefore, in the internal combustion engine, it is important that the design freedom is high, particularly, the design freedom near the center of the internal combustion engine (near the cylinder bore) is high so that various performances can be flexibly satisfied. .
  • the connecting cylinder 10 used in the method of manufacturing an internal combustion engine according to the present embodiment is configured such that its main part is a combination of two types of members. That is, the main portion of the first connecting cylinder 10A is configured by a combination of the cylinder liner 40 and the connecting portion 42, and the main portion of the second connecting cylinder 10B is the connecting cylinder main portion 50 and the film 52. And a combination of Therefore, it is easy to satisfy various performances according to the required specifications of the vehicle in which the internal combustion engine is used or devices other than the vehicle by appropriately changing the combination of the materials and shapes of these two types of members.
  • the main part of the entire internal combustion engine 100 is composed of the connecting cylinder 10 and the cylinder block main body 60, which are separate and independent members, and therefore, the combination of materials and shapes of these two types of members
  • a general-purpose internal combustion engine having a structure in which both members are integrally formed and a plurality of cylinder liners are integrally formed by casting the cylinder liner into a cylinder block, and is configured from one member.
  • the internal combustion engine 100 manufactured by the method of manufacturing an internal combustion engine according to the present embodiment has a high degree of freedom in design as compared with the internal combustion engines disclosed in Patent Documents 1 and 2 which use an assembly of cylinder liners. Therefore, the internal combustion engine 100 can easily meet a wide variety of required specifications.
  • Internal combustion engine 100 is not limited to a specific design specification, and can be designed flexibly based on various required specifications or technical concepts. Examples of the design of the internal combustion engine 100 include, for example, the design examples shown below as basic technical concepts.
  • Design example 1 a) Connecting cylinder 10 used for internal combustion engine 100: First connecting cylinder 10A. b) Material constituting the cylinder liner 40: A material excellent in sliding characteristics (abrasion resistance, seizure resistance, low friction) relative to the connecting portion 42 is used. c) Material constituting the connecting portion 42: A material having a relatively low density (light weight) relative to the material constituting the cylinder liner 40 and high thermal conductivity (heat dissipation) is used. In this design example 1, it is possible to provide an internal combustion engine 100 which is excellent in sliding characteristics, lightness and heat dissipation.
  • Design example 2 a) Connecting cylinder 10 used for internal combustion engine 100: First connecting cylinder 10A. b) Material constituting the connecting portion 42: A material having high strength is used. In this design example 2, the strength of the connecting portion 42 is increased. Therefore, thinning of the cylinder liner 40 and thinning of the thickness between two adjacent cylinder bores 20 are facilitated, and as a result, weight reduction of the internal combustion engine 100 can be achieved. Alternatively, in the case where the thickness between the two adjacent cylinder bores 20 is not reduced, when the cooling medium flow path is provided between the two adjacent cylinder bores 20, the necessary strength for the first connecting cylinder 10A is secured. However, the volume of the cooling medium channel can be increased. In addition, it is possible to suppress bore deformation due to an increase in in-cylinder pressure due to engine combustion.
  • Design example 3 As a connecting cylinder 10 used for the internal combustion engine 100, a second connecting cylinder 10B is used. In this design example 3, the sliding characteristics can be ensured by the coating 52 whose mass is substantially negligible compared to the cylinder liner 40.
  • a structural part in the vicinity of the part where the cylinder bores are arranged that is, a part consisting of the cylinder liner and a cast member covering the cylinder liner in a conventional general internal combustion engine
  • the portion consisting of the first connecting cylinder 10A and the connecting portion 42 provided so as to cover the whole surface of the cylinder liner 40 and the outer peripheral surface 40A of the cylinder liner 40 the portion consisting of the second connecting cylinder 10B It is easy to reduce the mass and volume significantly. Therefore, remarkable weight reduction and miniaturization of the internal combustion engine 100 can be achieved.
  • Design example 4 a) Connecting cylinder 10 used for internal combustion engine 100: First connecting cylinder 10A. b) Materials constituting the connecting portion 42 and the cylinder liner 40: A metal material having high strength is used. c) Material constituting the cylinder block main body 60: material lighter than metal material such as resin material or organic-inorganic composite material In this design example 4, since the strength of the first connecting cylinder 10A is high, even a high in-cylinder pressure It is possible to suppress bore deformation. Moreover, since the cylinder block main body 60 which comprises the principal part of the internal combustion engine 100 consists of lightweight materials, the weight reduction of the internal combustion engine 100 whole can be achieved.
  • Design example 5 a) Connecting cylinder 10 used for internal combustion engine 100: First connecting cylinder 10A. b) Materials constituting the connecting portion 42 and the cylinder liner 40: A metal material having high strength is used. c) Simplification of the structure of the cylinder block body 60 (for example, the groove 66 is omitted in the cylinder block body 60A shown in FIG. 6).
  • the strength of the first connection cylinder 10A is high, it is possible to suppress the bore deformation even with a high in-cylinder pressure. Further, since the structure of the cylinder block main body 60 constituting the main part of the internal combustion engine 100 is simplified, the productivity of the internal combustion engine 100 is improved.
  • the two or more cylinder liners 40 and the connecting portion 42 may be integrally inseparable (in other words, non-detachable) or may be configured to be removable. Good.
  • the first connection cylinder 10A is a member formed so that two or more cylinder liners 40 and the connection portion 42 form an integral part, each cylinder liner 40 and the connection portion 42 An interface (bonding interface) for bonding both members is formed between them.
  • each cylinder liner 40 and the connecting portion 42 are discontinuous members.
  • the connecting portion 42 may be provided so as to cover the entire outer peripheral surface 40A of the cylinder liner 40 as illustrated in FIGS. 1 to 3, and covers only a part of the outer peripheral surface 40A of the cylinder liner 40. It may be provided to The selection and combination of these aspects can be appropriately selected according to the required specifications of the internal combustion engine 100 to be manufactured.
  • connection portion 42 can cover the entire outer peripheral surface 40A of the cylinder liner 40 by appropriately selecting the shape of the mold, or can cover only a part of the outer peripheral surface 40A of the cylinder liner 40. it can.
  • the cylinder liner 40 is fitted and fixed in the through holes of the connecting portion 42 having a continuous annular shape in which two or more circular through holes are provided and the center lines of the respective through holes are parallel. It is also possible to obtain a first connection cylinder 10A in which two or more cylinder liners 40 and the connection portion 42 are configured to be removable.
  • the connecting portion 42 can cover the entire outer peripheral surface 40A of the cylinder liner 40, for example, by appropriately selecting the length of the connecting portion 42 in the center line direction. It is also possible to coat only a part of.
  • the connecting portion 42 be formed by casting (for example, die casting, gravity casting, etc.) rather than using a member having a shape formed in a continuous ring shape in advance. In this case, the number of parts can be reduced when manufacturing the first connecting cylinder 10A.
  • the connecting portion 42 is formed integrally with the cylinder liner 40 by casting as compared with the case of using a member having a shape formed in a continuous annular shape as the connecting portion 42, the connecting portion 42 and the cylinder Since the heat transfer resistance at the interface with the liner 40 can be reduced, the cooling performance of the internal combustion engine 100 can be easily improved.
  • connection part 42 When forming the connection part 42 by casting, in order to improve the joint strength of the connection part 42 and the cylinder liner 40, in the outer peripheral surface 40A of the cylinder liner 40, protrusion with a height of about 0.1 mm-1.5 mm Or a groove or recess with a depth of about 0.1 mm to 1.5 mm.
  • the thickness of the cylinder liner 40 can be selected appropriately, it is generally about 1.0 mm to 4.0 mm. Further, a more preferable shape and structure of the connecting cylinder 10 will be described later.
  • the film 52 is formed to cover the inner peripheral surface 50B provided with the cylinder bore 20 of the connection cylinder main body 50.
  • a known film forming method such as a thermal spraying method can be appropriately used to form the film 52.
  • the thickness of the coating 52 can be selected as appropriate, but it is generally in the range of about 0.02 mm to 0.2 mm. In this case, for example, when a thermal spraying method is employed as a method for forming the film 52, the thickness of the film 52 is preferably about 0.1 mm to 0.2 mm, and PVD (Physical Vapor Deposition) as a method for forming the film 52.
  • PVD Physical Vapor Deposition
  • the thickness of the film 52 is preferably about 0.02 mm to 0.03 mm.
  • a plating method can also be used as a film formation method of the film 52.
  • the thickness of the coating 52 is preferably about 0.02 mm to 0.2 mm.
  • the film 52 made of a plating film for example, a Cr-based plating film, a plating film containing Ni and SiC (so-called Nicadyl plating film) and the like can be mentioned.
  • the material forming the connecting portion 42 may be the same material as the material forming the cylinder block main body 60, but is different from the material forming the cylinder block main body 60 Is particularly preferred.
  • the material forming the connecting cylinder main body 50 may be the same material as the material forming the cylinder block main body 60, but with the material forming the cylinder block main body 60 Particular preference is given to different materials.
  • two kinds of materials are different from each other means a) when the composition of each material is fundamentally different, such as a) aluminum alloy and steel, b) the same composition type In the material, for example, even if two types of aluminum alloys, one is an aluminum alloy having a high Al content, and the other is an aluminum alloy having a low Al content, c) In materials of the same composition and the same quantitative composition, the degree of crystallinity-amorphism, the type of crystal phase, or the difference in the other structure exist in one material and the other material.
  • one material and the other material contain the same material X, such as plastic and fiber reinforced plastic
  • one material is the material It consists of a single material consisting only if the other material is a composite material including other materials Y in addition to the material X, and the like.
  • the material constituting the main portion of the connecting cylinder 10 (the connecting portion 42 of the first connecting cylinder 10A, and the connecting cylinder main portion 50 of the second connecting cylinder 10B) is different from the material of the cylinder block main body 60 By doing this, the design freedom of the entire internal combustion engine 100 can be further improved. Therefore, for example, it becomes extremely easy to manufacture an internal combustion engine 100 of various specifications as exemplified in the following (1) to (3).
  • connecting part 42 or connecting cylinder main part 50 metal materials, such as aluminum alloy (preferably high rigidity type aluminum alloy), magnesium alloy, steel, etc. are mentioned, for example, and cylinder block main body 60 is constituted.
  • Materials include metal materials such as aluminum alloy and magnesium alloy, resin materials, organic-inorganic composite materials including resin and inorganic materials (for example, inorganic fillers such as glass fibers or carbon fibers in a heat resistant resin matrix such as phenol resin) And the like) and the like.
  • the thermal expansion coefficient of the material forming the cylinder block main body 60 is the heat of the material forming the connecting portion 42 of the first connecting cylinder 10A.
  • the coefficient of thermal expansion of the material constituting the cylinder block body 60 is equal to or greater than the coefficient of thermal expansion of the material constituting the connecting cylinder body portion 50 of the second connecting cylinder 10B. Is preferred.
  • cast iron materials such as flake graphite cast iron
  • various well-known hard materials can be utilized without restriction as a material which comprises the film 52
  • the film 52 In the case of film formation by the thermal spraying method, Fe-based, WC-based, etc. may be mentioned, and in the case of forming the film 52 by PVD or CVD, C-based, Cr-based, etc. may be mentioned.
  • the layer structure of the film 52 is also not particularly limited, and may be, for example, a single layer structure or a laminated structure in which different materials or different crystal phases are combined.
  • the crank chamber 62 is formed at one end and the cylinder head is assembled at the other end.
  • the structure is not particularly limited as long as it has a hollow portion 64 penetrating from one end side to the other end side and has a structure in which the connecting cylinder 10 can be fitted and fitted in the hollow portion 64.
  • the cylinder block main body 60 can be manufactured using a well-known method suitably, it is preferable to manufacture by casting or resin molding.
  • a coolant jacket is provided to the cylinder block body 60 as compared with the coolant jacket provided to the cylinder block of the conventional internal combustion engine, or the inner peripheral surface 64S of the hollow portion 64 of the cylinder block body 60 and the connecting cylinder 10
  • the coolant jacket is provided between the outer surface 10S and the outer circumferential surface 10S, it is extremely easy to form a coolant jacket having a shallower depth from the other end side.
  • the step of assembling various parts such as the cylinder head after the connecting cylinder 10 is attached to the cylinder block main body 60 and the inner periphery of the cylinder bore 20
  • a sliding surface forming process for forming a sliding surface by finishing such as honing, lapping and dimple processing, or a coolant passage between two cylinder bores 20 adjacent to each other in the connecting cylinder 10.
  • Various processes, such as a process to form, can be suitably implemented if needed.
  • the “sliding surface” refers to a piston ring or a contact slide mounted on a piston or a groove provided on an outer peripheral surface of the piston when the completed internal combustion engine 100 is operated. It means a moving face. Then, in the manufacturing process of the internal combustion engine 100 of the present embodiment, after the formation of the “sliding surface” is completed, further finishing is not performed on the “sliding surface”.
  • the “sliding surface” is a surface that slides in contact with the piston or a piston ring mounted in a groove provided on the outer peripheral surface of the piston when the completed internal combustion engine 100 is operated. It may be a surface formed for the purpose.
  • the sliding surface may be formed incidentally and inevitably.
  • the sliding surface is a surface finished for the main purpose of improving and improving seizure resistance and suppressing oil consumption.
  • the “sliding surface” may be formed by performing the processing only once on the inner peripheral surface of the cylinder bore 20, or may be formed by performing the processing multiple times.
  • the “sliding surface” means only the surface formed after the final processing of the final processing, and
  • the process of performing the finishing process is referred to as "sliding surface forming process”.
  • the process of carrying out the processing other than the final round of finishing (the first processing to the final -1st processing) is referred to as a "roughly processed surface forming step".
  • the surface form of the "sliding surface” varies depending on the finishing method, and is not particularly limited.
  • cross hatches fine grid lines or grooves or oblique parallel lines
  • Surface etc.
  • the surface roughness can be, for example, about 0.1 .mu.m to 0.8 .mu.m in arithmetic average roughness Ra.
  • the sliding surface forming step of forming the sliding surface by finishing the inner peripheral surface 20B of the cylinder bore 20 can be performed at any timing in the manufacturing process of the internal combustion engine 100.
  • the sliding surface forming step is performed before the fitting step, or (II) the sliding surface forming step is performed after the fitting step.
  • another process may be performed between the fitting process and the sliding surface forming process, as necessary.
  • (I) As a case where a sliding face formation process is implemented before a fitting process, the following three modes are mentioned, for example.
  • the connecting cylinder 10 is the first connecting cylinder 10A
  • the dynamic surface forming process can be performed, and the sliding surface forming process can be performed only before the fitting process.
  • the connecting cylinder 10 is the second connecting cylinder 10B, (Ic) by finishing the surface 52B of the coating 52 covering the inner circumferential surface 50B provided with the cylinder bore 20 of the connecting cylinder main body 50
  • the sliding surface forming process for forming the sliding surface can be performed only before the fitting process.
  • the fitting process when the sliding surface forming process is carried out before (I) the fitting process, it is preferable to carry out the fitting process by a fitting method other than tight fitting, specifically, the loose fitting Or it is more preferable to carry out by middle fitting.
  • the fitting process is performed by close fitting, the cylinder bore 20 of the connecting cylinder 10 is easily deformed, and as a result, airtightness between the piston and the sliding surface of the cylinder bore 20 is easily generated. This is because, after the fitting process, there is also an increase in the possibility that the sliding surface forming process needs to be performed again to also correct the deformation of the cylinder bore 20. In order to prevent such problems more reliably, it is particularly preferable to carry out the fitting step by loose fitting.
  • a sliding face formation process is implemented after (II) fitting process
  • the following three aspects are mentioned, for example.
  • the connecting cylinder 10 is the first connecting cylinder 10A
  • the sliding surface is formed by finishing the surface of the film.
  • the dynamic surface forming process can be performed, and the sliding surface forming process can be performed only after the fitting process.
  • the roughing surface forming step may be performed before the fitting step, It may be carried out after the fitting process, and a part may be carried out before the fitting process and the rest may be carried out after the fitting process.
  • the sliding surface forming step is performed after the cylinder block is formed by casting the cylinder liner. . For this reason, it is necessary to inspect the sliding surface after carrying out the sliding surface forming process and discard the entire cylinder block cast in the cylinder liner if the inspection result is judged to be a defect. .
  • the sliding surface forming process may be performed on the connecting cylinder 10 alone, but the connecting cylinder 10 may be a cylinder block.
  • the sliding surface forming step may be carried out in a state of being assembled to a jig simulating the main body 60 and the cylinder head.
  • the cylinder head is further assembled to the internal combustion engine 100 in a state where the connecting cylinder 10 is fitted to the cylinder block main body 60, the cylinder bore 20 is easily deformed when the cylinder head is assembled. For this reason, when performing a sliding face formation process using a jig in consideration of such a modification, it becomes easy to raise processing accuracy of a sliding face more.
  • the temperature of the member to be heated in this case is particularly preferably as close as possible to the average temperature during operation of the internal combustion engine 100.
  • the heating method is not particularly limited. For example, a method of carrying out the sliding surface forming step in a state where warm water (for example, warm water of 30 ° to 95 °) is flowed through the coolant jacket can be mentioned.
  • the coolant jacket referred to here includes (i) a coolant jacket formed in the connecting cylinder 10, and (ii) an outer peripheral surface of the connecting cylinder 10 and an inner peripheral surface of a jig imitating the cylinder block main body 60. Or (iii) a (simulated) coolant jacket formed in a jig imitating the cylinder block body 60, and the like.
  • the sliding surface forming process is performed before or after the fitting process can be appropriately selected according to the entire manufacturing process of the internal combustion engine 100, the specification of the internal combustion engine 100, and the like. For example, in manufacturing internal combustion engine 100, it is difficult to use a connecting cylinder 10 or cylinder block main body 60 having high dimensional accuracy and high strength and difficult to deform, or applying a pressing force that causes deformation of cylinder bore 20 when assembling a cylinder head.
  • the sliding surface forming process may be performed before the (I) fitting process, and in the opposite case, the sliding surface forming process may be performed after the (II) fitting process.
  • a coolant fluid passage forming step is performed to form a coolant fluid passage between two adjacent cylinder bores 20 of the connecting cylinder 10. It is preferable to do.
  • the coolant passage forming step may be performed after the fitting step, but is more preferably performed before the fitting step. In any case, another process may be performed between the coolant passage forming process and the fitting process, as needed.
  • the coolant passage can be formed using various processing means such as a water jet, a laser, an end mill, a cutter, etc., in addition to generally used drills. .
  • the cross-sectional shape of the coolant passage in a plane (ZX plane) parallel to the center line C of each cylinder bore 20 provided in the connecting cylinder 10 is a simple circular shape as shown in FIG. 14 (A).
  • Various shapes can be selected other than the coolant passage 30A (30).
  • the ratio (Lz / Lx) of the maximum width Lz in the direction (Z direction) parallel to the center line C to the maximum width Lx in the alignment direction (X direction) of the cylinder bores 20 is larger than one.
  • a coolant passage can be formed.
  • the ratio (Lz / Lx) is, for example, preferably 2 to 10, and more preferably 2.5 to 8.
  • the values of Lz and Lx are not particularly limited, but for example, Lz is preferably in the range of 5 mm to 30 mm, and Lx is preferably in the range of 2 mm to 4 mm.
  • the coolant passage 30 having such a slit-like cross-sectional shape, (a) for a coolant having an opening 34 continuing in the Y direction also on the end face 36 on the other end side (Z1 side) of the connecting cylinder 10 Passage 30B (30) (FIG. 14 (B)) or (b) inner side (one end side (Z2 side)) than the end face of the other end side (Z1 side, the side where the cylinder head is disposed) of the connecting cylinder 10
  • the coolant passage 30C (30) (FIG. 14 (C)) provided in FIG.
  • the coolant passage 30C having a slit-like cross-sectional shape as illustrated in FIG.
  • the coolant passage 30C is (a) inside the end surface 36 on the other end side (Z1 side) of the connecting cylinder 10 (one end side (Z2 By providing it on the side), it is possible to further increase the degree of freedom in the cooling design around the cylinder bore 20.
  • the coolant passage 30C having a slit-like cross-sectional shape as illustrated in FIG. 14C is formed, it is preferable to carry out the coolant passage forming step at least before the fitting step. With such a process sequence, the degree of freedom in selecting the processing means and processing method required to form the coolant passage 30C is extremely high.
  • the coolant passage 30 may be formed between two cylinder bores 20 adjacent to each other.
  • the space between the outer peripheral surfaces 40A of the two cylinder liners 40 normally adjacent to each other is generally used.
  • An internal combustion engine 100 manufactured by the method of manufacturing an internal combustion engine according to the present embodiment includes at least a connecting cylinder 10 and a cylinder block body 60 as illustrated in FIGS. 7 and 8, and the connecting cylinder 10 is a cylinder block The hollow portion 64 of the main body 60 is detachably fitted.
  • the coolant jacket provided so as to surround the outer peripheral side of the cylinder bore 20 is (i) inside the connecting cylinder 10 (inner than the outer peripheral surface 10S of the connecting cylinder 10), (ii ) Between the outer peripheral surface 10S of the connecting cylinder 10 and the inner peripheral surface 64S of the hollow portion of the cylinder block main body 60, or (iii) inside the cylinder block main body 60 (outer peripheral side than the inner peripheral surface 64S of the hollow portion 64) It can be provided in any of.
  • the connecting cylinder 10 is provided with a coolant jacket, so the structure of the connecting cylinder 10 is complicated, and in the case shown in the above (iii) As a result, the structure of the cylinder block body 60 is complicated. For this reason, it is preferable that the coolant jacket be provided between the connecting cylinder 10 and the cylinder block body 60. Moreover, it is preferable not to provide a cooling fluid jacket in the connecting cylinder 10, since the manufacturing efficiency tends to be reduced due to the complexity of the structure.
  • the internal combustion engine 100 can be compared to the conventional internal combustion engine in which the cylinder block including the coolant jacket is formed in the cylinder block by casting the cylinder liner. It is not necessary to use a mold of complicated shape in manufacturing. For this reason, the manufacturability of the internal combustion engine 100 is improved.
  • a coolant jacket spacer may be additionally disposed within the coolant jacket. Also in the case shown in (ii) above, either the first embodiment in which the coolant jacket spacer is disposed in the coolant jacket or the second embodiment in which the coolant jacket spacer is not disposed in the coolant jacket is selected. Although possible, the second aspect is more preferable. The reason is as follows.
  • the shape and depth of the coolant jacket are determined by the shape of the outer peripheral surface 10S of the connecting cylinder 10 and the inner peripheral surface 64S of the hollow portion of the cylinder block main body 60.
  • the connecting cylinder 10 and the cylinder block body 60 are separate and independent members, the degree of freedom in the shape design of both members is extremely high. Therefore, the design freedom of the shape and depth of the coolant jacket is also extremely high. Therefore, even in the second embodiment, it is extremely easy to bring the flow of the coolant in the coolant jacket close to an ideal state so that the temperature distribution on the sliding surface of the cylinder bore 20 is in a desired state. Further, the reduction in the number of parts constituting the internal combustion engine 100 and the simplification of the structure of the internal combustion engine 100 can also be realized.
  • a coolant jacket 70 is provided between the other end (the cylinder head side) and the other end (the cylinder head side) of the inner peripheral surface 64S of the hollow portion 64 of the cylinder block main body 60. Further, the one end side of the outer peripheral surface 10S of the connecting cylinder 10 and the one end side of the inner peripheral surface 64S of the hollow portion 64 of the cylinder block main body 60 contact each other, so that the connecting cylinder 10 is a hollow of the cylinder block main body 60 In one end portion (fitting portion 64J) of the portion 64, the portion 64 can be detachably fitted.
  • the depth D (the length in the Z direction) of the coolant jacket 70 is not particularly limited and may be appropriately selected according to the design specification of the internal combustion engine 100. Based on the total length L of the connecting cylinder 10 in the direction of the center line C of each cylinder bore 20 provided in the cylinder 10, for example, the depth D is in the range of about 1/6 to 5/6 times the total length L Can be selected as appropriate.
  • the depth D is in the range of 1/6 to 1/2 times the total length L, It may be in the range of 1/6 times to 1/3 times, or in the range of 1/6 times to 1/4 times.
  • (ii) is most preferable from the viewpoint of easy formation of the shallow coolant jacket 70 having a depth D of 1/2 or less of the total length L.
  • the depth D is 1/2 times the total length L. The formation of the following shallow coolant jacket 70 is preferred.
  • the inner peripheral surface 64S of the fitting portion 64J and the inner peripheral surface 64S of the fitting portion 64J are provided so that the coolant (water and the like) in the coolant jacket 70 does not leak to the crank chamber 62 side.
  • a seal member such as an O-ring, for example, is disposed between the opposing outer peripheral surface 10S of the connecting cylinder 10. At least one surface selected from the outer circumferential surface 10S of the connecting cylinder 10 facing the inner circumferential surface 64S of the fitting portion 64J and the inner circumferential surface 64S of the fitting portion 64J may be circumferential as necessary.
  • a groove may be provided which is continuous in the direction, and the seal member may be attached to the groove.
  • a protrusion may be provided on at least a part of the outer peripheral surface 10S, and the tip of the protrusion may be in close contact with the inner peripheral surface 64S on the other end side of the hollow portion 64 of the cylinder block main body 60.
  • a protrusion may be provided on at least a part of the inner peripheral surface 64S on the other end side of the hollow portion 64 of the (a2) cylinder block main body 60.
  • a fixing member 80 may be provided to fix the connecting cylinder 10 and the cylinder block body 60 to each other. From the viewpoint of easier manufacture of the connecting cylinder 10, it is more desirable to use the fixing member 80 than providing the projecting portion on the outer peripheral surface 10S of the connecting cylinder 10 or the inner peripheral surface 64S of the cylinder block main body 60. .
  • the fitting of the fitting portion may be any fitting method selected from loose fit, middle fit and tight fit.
  • a first fitting portion is formed by the portion on the other end side of the connecting cylinder 10 and the fixing member 80, and the portion on the other end side of the cylinder block main body 60 and the fixing member 80
  • the fitting method of the first fitting portion and the second fitting portion is any fitting selected from a loose fit, an intermediate fit and a tight fit. May be used.
  • a loose fit or an intermediate fit is preferable, and a loose fit is particularly preferable.
  • Such a fitting method is particularly suitable when employing a process in which a sliding surface forming step is performed prior to the (I) fitting step in assembling the internal combustion engine 100.
  • the outer peripheral surface 10S on the other end side of the connecting cylinder 10 is as illustrated in FIG. 1, FIG. 2, FIG. 4 and FIG. 8 so that the fixing member 80 does not shift from the predetermined position.
  • a groove 12 is provided, and the inner peripheral surface 64S on the other end side of the hollow portion 64 of the cylinder block main body 60 also corresponds to the groove 12 provided in the outer peripheral surface 10S of the connecting cylinder 10 as illustrated in FIGS.
  • the groove 66 may be provided at the position where In this case, one end of the fixing member 80 is fitted in the groove 12 and the other end is fitted in the groove 66, so that between the outer peripheral surface 10S of the connecting cylinder 10 and the inner peripheral surface 64S of the hollow portion 64 of the cylinder block main body 60.
  • the fixing member 80 can be arranged on the
  • the groove 12 may be formed in advance in the connecting cylinder 10, and the groove 66 may also be formed in the cylinder block body 60 in advance. However, it is preferable to form the grooves 12, 66 after the coupling cylinder 10 in which the grooves 12 are not formed and the cylinder block body 60 in which the grooves 66 are not formed.
  • the cross-sectional shape of the fixing member 80 is rectangular, and the interface (first interface) between the fixing member 80 and the connecting cylinder 10, and the fixing member 80 and the cylinder block main body 60 All of the interfaces (second interfaces) are parallel to the center line C of the cylinder bore 20. Therefore, even when fixing member 80 is disposed between coupling cylinder 10 and cylinder block body 60 by close fitting during assembly of internal combustion engine 100, the piston is near the top dead center of the piston when internal combustion engine 100 is in operation. When the vicinity of the other end side (Z1 side) of the connecting cylinder 10 is thermally expanded, the gap between the first interface and the second interface may be lost.
  • the other end side (Z1 side) of the connecting cylinder 10 is pressed by the fixing member 80, and as a result, the cylinder bore 20 is easily deformed.
  • the dimension is designed so that the minimum clearance at the first interface and the second interface becomes large in order to prevent such deformation, it becomes difficult to firmly fix the other end side (Z1 side) of the connecting cylinder 10.
  • the cross-sectional shape of the fixing member 80 may be, for example, an inverted trapezoidal shape.
  • the interface between the fixing member 80 and the connecting cylinder 10 is inclined so as to approach the center line C of the cylinder bore 20 as it goes from one end side (Z2 side) to the other end side (Z1 side) of the cylinder block main body 60
  • the interface between the fixing member 80 and the cylinder block main body 60 is inclined away from the center line C of the cylinder bore 20 as it goes from one end side (Z2 side) to the other end side (Z1 side) of the cylinder block main body 60.
  • the material constituting the fixing member 80 is not particularly limited.
  • various metal materials such as aluminum alloy, magnesium alloy, iron alloy such as steel, resin material, organic-inorganic composite material, ceramics such as alumina are used it can.
  • the connecting cylinder 10 used in the method of manufacturing an internal combustion engine according to the present embodiment includes two or more cylinder liners 40 and a connecting portion 42 for connecting two or more cylinder liners 40 to each other for the first connecting cylinder 10A.
  • the shape and structure of the second connection cylinder 10B is not particularly limited as long as the second connection cylinder 10B includes the connection cylinder body 50 provided with two or more cylinder bores 20 and the cylinder bore 20 of the connection cylinder body 50.
  • the shape and structure thereof are not particularly limited as long as they include the coating 52 covering the inner circumferential surface 50B provided with.
  • a crank chamber 62 is formed on one end side (Z2 side), and a cylinder head is assembled on the other end side (Z1 side), and a hollow portion penetrating from one end side to the other end side
  • the shape / structure is not particularly limited as long as 64 is provided.
  • connecting cylinder 10 and cylinder block main body 60 have both the excellent maintainability, the excellent recyclability, and the high degree of freedom of design of internal combustion engine 100 manufactured using them, and also have a shape that is easy to manufacture It is preferable to further have a structure.
  • the connecting cylinder 10 and the cylinder block body 60 are used to manufacture the internal combustion engine 100 by combining the two members. Therefore, even if the shape and structure of the connecting cylinder 10 are determined in consideration of only the manufacturability of the connecting cylinder 10, the shape and structure of the cylinder block main body 60 used in combination with the connecting cylinder 10 is complicated and the cylinder block main body 60 The productivity of the internal combustion engine 100 may be reduced, or the productivity of the internal combustion engine 100 may be reduced.
  • first connecting cylinder 10A two or more cylinder liners 40 and a cross-sectional structure (YZ cross-sectional structure) shown in FIG. 1 and FIG. And a connecting portion 42 that connects two or more cylinder liners 40 to each other, and has a continuous annular outer peripheral shape in which the bore diameter Db of each cylinder liner 40 is expanded.
  • the step 14 is formed in parallel with and continuous with the outer peripheral direction.
  • connection cylinder 10B as illustrated in FIG. 10 illustrating the cross-sectional structure (YZ cross-sectional structure) between the symbols XX illustrated in FIG. 5, a connection in which two or more cylinder bores 20 are provided. It has a continuous annular outer peripheral shape including a cylinder body 50 and a coating 52 covering the inner circumferential surface 50B of the connecting cylinder body 50 provided with the cylinder bore 20, and the bore diameter Db of each cylinder bore 20 is expanded. .
  • the opening shape of the hollow portion 64 be a continuous annular shape corresponding to the outer peripheral shape of the connecting cylinder 10 illustrated in FIGS. Specifically, as illustrated in FIG. 6 and FIG. 8, on the inner circumferential surface 64S of the hollow portion 64, a first step 68A continuous in the circumferential direction and a first step 68A continuous in the circumferential direction are provided.
  • the opening widths W1, W2 and W3 mean the opening width in any direction regardless of the opening width in the short direction (Y direction) and the opening width in the longitudinal direction (X direction) of the opening shape of the hollow portion 64. That is, it is preferable to satisfy the relationship of W1> W2> W3 regardless of the short direction (Y direction) and the longitudinal direction (X direction).
  • the opening widths W1sm, W2sm, W3sm illustrated in FIG. 8 mean the maximum opening width in the short side direction (Y direction) of the opening shape of the hollow portion 64, and for the opening widths W1, W2, W3, respectively. It corresponds.
  • the opening widths W2sm and W3sm are equal to the outer diameters D1 and D2 of the connecting cylinder 10, respectively.
  • the connecting cylinder 10 having the step 14 provided on the outer peripheral surface 10S is fitted.
  • the second step 68B provided on the inner peripheral surface 64S of the cylinder block main body 60 and the step 14 provided on the outer peripheral surface 10S of the connecting cylinder 10 are fitted in the center line C direction.
  • the inner peripheral surface 64S2 of the cylinder block main body 60 and the outer peripheral surface 10S are in direct contact or in intimate contact via the seal member.
  • the inner peripheral surface 64S3 of the cylinder block main body 60 and the outer peripheral surface 10S are in direct contact or in intimate contact via the seal member. That is, in the outer peripheral surface 10S of the connecting cylinder 10, the portion on the second region 10S2 side of the first region 10S1 and the second region 10S2 form a fitting portion corresponding to the fitting portion 64J of the cylinder block main body 60 Do. For this reason, the coolant jacket 70 formed between the inner peripheral surface 64S1 of the cylinder block main body 60 and the outer peripheral surface 10S of the connecting cylinder 10 (the first region 10S1) on the cylinder head side than the first step 68A. The coolant inside can be prevented from leaking to the crank chamber 62 side.
  • the volume of the coolant jacket 70 which controls the cooling characteristics in the cylinder bore 20 and in the vicinity of the cylinder bore 20 and the formation position of the coolant jacket 70 in the center line C direction for example, This can be easily adjusted by selecting 1) the size of the maximum opening width W1sm and (2) the formation position of the first step 68A in the center line C direction. And the change of the dimensional shape of the cylinder block main body 60 shown to said (1) and (2) is very easy also when the cylinder block main body 60 is manufactured by casting or resin molding. Even when the cylinder block body 60 is manufactured by casting or resin molding in which defects due to volume contraction easily occur, the cylinder block body 60 has a volume capacity higher than that of a conventional cylinder block formed by casting a cylinder liner. Is so small that these defects are less likely to occur.
  • the step 14 provided at the position corresponding to the second step 68B provided on the cylinder block main body 60 side can be provided at an appropriate position on the outer peripheral surface 10S with respect to the center line C direction.
  • the step 14 exceeds 0 and is 1 ⁇ 2L or less It is preferable to provide in the range, more preferably in the range of 1/6 L to 3/7 L, and still more preferably in the range of 1/6 L to 1/3 L.
  • the first step 68A provided on the cylinder block main body 60 side has to be provided at a position closer to the cylinder head side. Therefore, the range in which the first step 68A is provided becomes narrower in the direction of the center line C, and as a result, the depth D of the coolant jacket 70 is made deeper by design change in accordance with the required specification of the internal combustion engine 100. The margin that can be made shallower is smaller.
  • the outer peripheral shape of the connecting cylinder 10 is basically a simple shape provided with a step 14 which divides the outer peripheral surface 10S into the first region 10S1 and the second region 10S2, and as necessary, A groove 12 for fitting the fixing member 80 or a groove for mounting the sealing member may be provided.
  • the outer peripheral surface 10S of the connecting cylinder 10 can be provided with a projecting portion which protrudes from the outer peripheral surface 10S if necessary, and the outer peripheral surface 10S of the connecting cylinder 10 has a first region 10S1 and a second region. Even if it is any of 10S2, it is not necessary to provide a protrusion part.
  • the outer circumferential surface 10S when the outer circumferential surface 10S is provided with the projecting portion, the outer circumferential surface when manufacturing the connecting portion 42 of the first connecting cylinder 10A or the connecting cylinder main portion 50 of the second connecting cylinder 10B by casting.
  • the shape of the mold is slightly complicated and the manufacturability is somewhat reduced.
  • the first step 68A in the direction of the (1) maximum opening width W1sm of the cylinder block main body 60 and (2) the center line C direction is appropriately reviewed. It becomes more difficult to redesign the volume of the coolant jacket 70 and the formation position of the coolant jacket 70 in the center line C direction. However, such a problem can be suppressed if the projecting portion is not provided on the outer circumferential surface 10S.
  • cooling control of internal combustion engine 100 can also be performed more precisely by providing a projection part in the 1st field 10S1 of peripheral face 10S.
  • the region of the first region 10S1 is the cylinder head side (Z1 direction side) and the crank chamber side
  • a ridge portion 16A (16) is preferable to provide to be divided into the region in the Z2 direction).
  • the collar portion 16A is continuously formed along the outer peripheral direction, and the arrangement position of the cylinder liner 40 with respect to the center line C direction is the same at any position in the outer peripheral direction.
  • the first connecting cylinder 10A2 shown in FIG. 11 is a member having the same structure as that of the first connecting cylinder 10A1 shown in FIG. 9 except that the flange portion 16A is provided in the first region 10S1. is there. Further, a flange portion 16A similar to that shown in FIG. 11 can also be provided in the first region 10S1 of the second connecting cylinder 10B (10) shown in FIG.
  • FIGS. 12 and 13 are schematic cross-sectional views showing an example of an internal combustion engine 100 provided with a connecting cylinder 10 in which a flange portion 16A is provided in the first region 10S1.
  • the first connecting cylinder 10A1 shown in FIG. 12 is schematic cross-sectional views showing an example of an internal combustion engine 100 provided with a connecting cylinder 10 in which a flange portion 16A is provided in the first region 10S1.
  • FIG. 8 is replaced with a first connecting cylinder 10A2 having a flange portion 16A shown in FIG. It has the same structure as the internal combustion engine 100A shown in FIG. Further, the internal combustion engine 100C (100) shown in FIG. 13 (i) replaces the first connecting cylinder 10A1 shown in FIG. 8 with a first connecting cylinder 10A2 having a flange portion 16A shown in FIG. And (ii) the cylinder block main body 60A shown in FIG. 8 is replaced by a cylinder block main body 60B having a third step 68C continuous in the circumferential direction on the inner peripheral surface 64S1 of the cylinder block main body 60A. Except for this, it has the same structure as the internal combustion engine 100A shown in FIG.
  • the third step 68C is provided at a position corresponding to the side surface of the flange portion 16A on the crank chamber side (Z2 direction side).
  • the inner circumferential surface 64S1 has the third step 68C as a boundary line, and the cylinder head side area 64S1A on the cylinder head side (Z1 direction side) of the third step 68C and the crank chamber than the third step 68C. It is divided into two regions of the side (Z2 direction side) of the crankcase side region 64S1B. Further, the crank chamber side region 64S1B is positioned relatively closer to the inner circumferential side than the cylinder head side region 64S1A. In the Y direction, the cylinder head side area 64S1A shown in FIG.
  • the coolant jacket 70 formed on the cylinder head is divided by the flange portion 16A into a portion on the cylinder head side (cylinder head side coolant jacket 70A) and a portion on the crank chamber side (crank chamber side coolant jacket 70B) . Therefore, as compared with the internal combustion engine 100A shown in FIG. 8, the internal combustion engines 100B, 100C shown in FIG. 12 and FIG.
  • the jacket 70A and the crankcase side coolant jacket 70B can be individually controlled.
  • the cylindricity of the cylinder bore 20 is improved.
  • the temperature of the cylinder bore 20 in the portion near the cylinder head side is lower than that in the case where the coolant jacket 70 is divided by the flange portion 16A, and the temperature of the cylinder bore 20 in the portion near the crank chamber is higher.
  • the top surface of the flange portion 16A is in contact with the inner peripheral surface 64S1 of the cylinder block main body 60A. Further, in the internal combustion engine 100C shown in FIG. 13, the top surface of the flange 16A contacts the cylinder head side area 64S1A of the inner peripheral surface 64S1 of the cylinder block main body 60A, and the crank chamber side (Z2 direction side) of the flange 16A. The portion on the top surface side of the side surface is in contact with the stepped surface portion of the third step 68C.
  • a seal member such as an O-ring at the interface between the top surface of the flange 16A and the inner circumferential surface 64S1 to completely seal the interface between the flange 16A and the inner circumferential surface 64S1.
  • the O-ring is provided with a groove along the circumferential direction of the top surface of the flange portion 16A, and is attached to this groove, or in the case of the internal combustion engine 100C shown in FIG.
  • a groove may be provided along the circumferential direction of the portion, and the groove may be mounted and used.
  • the seal is provided.
  • the members may be omitted, or some gap may be formed between the top surface of the collar portion 16A and the inner peripheral surface 64S1.
  • a flow path which penetrates in the direction of the center line C and connects the cylinder head side coolant jacket 70A and the crank chamber side coolant jacket 70B. It is also good.
  • any one of the first region 10S1 with respect to the center line C direction It can be provided at the position of However, assuming that the end on the cylinder head side of the first region 10S1 in the center line C direction is the reference position 0 and the total length of the first region 10S1 in the center line C direction is L1, the ridge portion 16A is 0.2 ⁇ L1. It is preferable to provide in the range of about 0.5 ⁇ L1.
  • the flange portion 16A is 0.14 ⁇ L to It is preferable to provide in the range of about 0.37 ⁇ L.
  • FIG. 15 is a schematic cross-sectional view showing another modification of the first connection cylinder shown in FIG.
  • the first connecting cylinder 10A3 (10A, 10) shown in FIG. 15 the ridge portion 16B (16) formed continuously along the center line C direction on the outer peripheral surface 10S at both ends in the alignment direction of the cylinder bores 20. Is provided.
  • the coolant jacket 70 is on one side (Y1 side) of the plane (ZX plane) including the center line C of each cylinder liner 40 or cylinder bore 20. And the other side (Y2 side).
  • the collar part 16B is provided in the outer peripheral surface 10S of the both end side of the alignment direction of the cylinder bore 20, you may be provided in positions other than this.
  • the collar portion 16B is provided in both the first region 10S1 and the second region 10S2 of the outer peripheral surface 10S. Therefore, of the inner peripheral surface 64S of the hollow portion 64 of the cylinder block main body 60 used in combination with the first connecting cylinder 10A3 shown in FIG. 15, at least the inner peripheral surfaces 64S2 and 64S3 guide grooves corresponding to the flange portion 16B. Is provided. In addition to the inner circumferential surfaces 64S2 and 64S3, a guide groove corresponding to the ridge 16B may be provided on the inner circumferential surface 64S1 in accordance with the height of the ridge 16B.
  • a guide groove corresponding to the flange portion 16B is formed on at least a part or all of the inner peripheral surface 64S on both ends of the opening of the hollow portion 64 in the longitudinal direction (X direction). Is continuously formed from one end side (Z2 side) to the other end side (Z1 side). Therefore, the first connection cylinder 10A3 is stably fixed by the cylinder block main body 60 having the guide groove on the inner peripheral surface 64S by the flange portion 16B fitting with the guide groove. Be done.
  • the flange portion 16B is continuously provided on the outer peripheral surface 10S from one end side (Z2 side) to the other end side (Z1 side) of the first connecting cylinder 10A3.
  • the inner circumferential surface 64S2 of the inner circumferential surface 64S of the hollow portion 64 In the outer peripheral surface 10S, the flange portion 16B is provided only from the position closer to the other end side (Z1 side) than the step 14 to the one end side (Z2 side) so as to correspond to the guide groove provided in 64S3.
  • FIG. 16 shows the first connecting cylinder 10A4 (10A, 10) in which the flange portion 16B is provided on the outer peripheral surface 10S as described above.
  • FIG. 17 shows the first connecting cylinder 10A5 (10A, 10) in which the flange portion 16B is provided on the outer peripheral surface 10S as described above.
  • first connecting cylinders 10A3, 10A4, 10A5 provided on outer peripheral surface 10S with flange 16B continuously formed along the direction of center line C of cylinder liner 40 or cylinder bore 20, and cylinder block main body 60
  • the internal combustion engine 100 assembled can be applied to all types of engines, such as an in-line engine, a V-type engine, and a horizontally opposed engine.
  • the internal combustion engine 100 using the first connecting cylinder 10A3 illustrated in FIG. 15 or the first connecting cylinder 10A4 illustrated in FIG. 16 be a horizontally opposed engine.
  • the first connection cylinder 10A4 is inclined relative to the horizontal surface It can be surely suppressed. Therefore, the cylinder block body 60 is assembled also when assembling the internal combustion engine 100 in a state where the cylinder block body 60 provided with the guide groove on the inner circumferential surface 64S is placed horizontally (the Z direction substantially matches the horizontal direction). It is easy to position the first connecting cylinder 10A4 with respect to the
  • FIG. 18 shows an example of a cylinder block main body used in combination with the first connecting cylinder 10A3 shown in FIG.
  • the cylinder block main body 60C (60) shown in FIG. 18 is a modified example of the cylinder block main body 60A shown in FIG. 6, except that a guide groove 69 is further provided to the cylinder block main body 60A. It is a member which has the same dimensional shape.
  • the guide groove 69 is provided on the inner circumferential surface 64S at both ends in the longitudinal direction (X direction) of the opening 64X of the hollow portion 64.
  • the guide groove 69 is provided on any of the inner circumferential surface 64S1, the inner circumferential surface 64S2, and the inner circumferential surface 64S3 so as to correspond to the flange portion 16B shown in FIG.
  • the guide groove 69 may be omitted in the inner circumferential surface 64S1 according to the height of the flange portion 16B.
  • the shape and formation position of the collar portion 16 are not limited to only the examples shown in FIGS. 11 to 13 and 15 to 17.
  • the ridge portion 16 is formed in a direction parallel to the center line C illustrated in FIGS. 15 to 17 and the ridge portion 16A continuously formed in the outer peripheral direction as illustrated in FIGS. It may be a combination of the ridge portion 16B formed continuously.
  • the first region 10S1 of the connecting cylinder 10 is divided into two as a division boundary surface including a plane (XZ plane) including the center line C of each cylinder liner 40 or each cylinder bore 20.
  • the position of the collar portion 16A of the semi-annular ring shape continuous in parallel with the outer peripheral direction is closer to the crank chamber side
  • the collar portion 16A of a continuous ring shape continuous to form a parallel with the outer peripheral direction is relatively closer to the cylinder head side It can be formed in position.
  • both end portions of one semi-annular collar portion 16A and both end portions of the other semi-annular collar portion 16A are ridge portions 16B in which respective end portions are continuous in a direction parallel to the center line C.
  • the ratio between the depth of the cylinder head side coolant jacket 70A and the depth of the crank chamber side coolant jacket 70B should be different on one side and the other side of the divided boundary surface.
  • Such a structure is effective, for example, when it is desired to perform asymmetric cooling control on one side and the other side of the division boundary surface.
  • the flange portion 16 divides the first region 10S1 into a region on the cylinder head side (Z1 direction side) and a region on the crank chamber side (Z2 direction side), and a first region 10S1
  • the second portion may be provided to divide the portion constituting the side wall surface of the coolant jacket 70 in the outer circumferential direction.
  • the coolant jacket 70 can be divided in the direction of the center line C of the cylinder liner 40 or the cylinder bore 20 by the first portion.
  • the coolant jacket 70 can be divided or divided in the circumferential direction by the second portion. Therefore, it becomes easy to perform more precise cooling control not only in the center line C direction but also in the outer peripheral direction.
  • a first portion which is continuously formed along the outer peripheral direction and has an annular shape in which the arrangement position in the center line C direction is the same at any position in the outer peripheral direction; Connecting cylinder 10 provided in a first region 10S1 with a collar portion 16 having a linear second portion (ridge portion 16B) provided along a portion where the division boundary surface and the first region 10S1 intersect An internal combustion engine 100 using this can be illustrated.
  • the coolant jacket 70 is divided by the first portion into a cylinder head side coolant jacket 70A and a crankcase side coolant jacket 70B.
  • the cylinder head side coolant jacket 70A is divided into a portion on one side (Y1 direction side) of the division boundary surface and a portion on the other side (Y2 direction side) by the second portion, and the crank chamber side
  • the coolant jacket 70B is also divided into a portion on one side (Y1 direction side) of the division boundary surface and a portion on the other side (Y2 direction side). That is, the coolant jacket 70 is divided into four.
  • the internal combustion engine 100 has a structure in which the coupling cylinder 10 is fixed to the cylinder block main body 60 by fitting the flange portion and the guide groove as described with reference to specific examples in FIGS. What is necessary is just to combine the connecting cylinder 10 and the cylinder block main body 60 which have the structure shown to the following (1) or (2) at least.
  • a connecting cylinder 10 provided with a collar 16B (fixing collar) along the direction parallel to the center line C of each cylinder bore 20 provided in the connecting cylinder 10 on the outer peripheral surface 10S, and a hollow portion
  • An internal combustion engine 100 having a cylinder block main body 60 provided with a guide groove 69 which is fitted to a collar portion 16B (fixing collar portion) on the inner peripheral surface 64S of 64.
  • a cylinder block main body 60 provided with a flange (fixing flange) along the direction parallel to the penetration direction (Z direction) of the hollow portion 64 on the inner peripheral surface 64S of the hollow portion 64;
  • An internal combustion engine 100 having a connecting cylinder 10 provided with a guide groove fitted on a collar (fixed collar) provided on an outer peripheral surface 10S of the cylinder 10 (provided on the cylinder block main body 60).
  • the internal combustion engine 100 shown to said (1) and (2) has a structure as shown below.
  • the connecting cylinder 10 at the both end sides in the arrangement direction (X direction) of the respective cylinder bores 20 provided in the connecting cylinder 10 with the flanges 16B (fixing flanges).
  • the guide groove 69 is provided on the inner peripheral surface 64S of the hollow portion 64 of the cylinder block main body 60 at both ends in the longitudinal direction (X direction) of the opening 64X of the hollow portion 64. Is preferred.
  • the flange portion is the hollow portion 64 of the cylinder block main body 60 at both ends in the longitudinal direction (X direction) of the opening 64X of the hollow portion 64.
  • the guide groove is provided on the inner circumferential surface 64S of the second embodiment and the guide groove is provided on the outer circumferential surface 10S of the connecting cylinder 10 at both ends in the arrangement direction (X direction) of each cylinder bore 20 provided in the connecting cylinder 10. .
  • the above-mentioned structure in which the fixing flange portion and the guide groove are fitted on both end sides in the X direction is particularly preferable when the internal combustion engine 100 is a horizontally opposed engine.
  • the inclination of the connecting cylinder 10 in the internal combustion engine 100 can be suppressed, and the positioning of the connecting cylinder 10 with respect to the cylinder block body 60 at the time of assembly can be facilitated.
  • the coolant jacket can be provided at any position shown in the following (i) to (iii) but it is provided in the position shown in (ii) Is particularly preferred.
  • a coolant jacket 70 forming a large space is provided between the outer peripheral surface 10S of the connecting cylinder 10 and the inner peripheral surface 64S of the hollow portion 64 of the cylinder block main body 60, the connecting cylinder 10 in the internal combustion engine 100 is The support / fixation tends to be unstable compared to the case where the coolant jacket is provided at the position shown in (i) or (iii).
  • the ridge portion (division ridge portion) for dividing the coolant jacket 70 into two or more parts is: It may be provided on at least one of the outer peripheral surface 10S and (b) the inner peripheral surface 64S of the hollow portion 64 of the cylinder block main body 60.
  • the coolant jacket 70 is divided into two parts by the flange 16B (dividing ridge). It is divided into a portion on one side (Y1 side) and a portion on the other side (Y2 side) with respect to a plane including a plurality of center lines C.
  • the collar part 16B in the internal combustion engine 100 which combined 1st connection cylinder 10A3 shown in FIG. 15 and the cylinder block main body 60C shown in FIG. 18 is used as a collar for fixation
  • the collar part for divisions also has the function of
  • the fixing collar may also have the function of the dividing collar.
  • the collar portion 16 is integrally formed with the main body portion of the first connecting cylinder 10A2 by casting.
  • the connecting cylinder 10 which is formed but does not have the ridge portion 16 as illustrated in FIGS.
  • the collar portion 16 may be provided by mounting and fixing a member having a shape corresponding to the collar portion 16 having the portion (bar portion 16B).
  • the fitting method of the fitting part in which the collar part 16 and the cylinder block main body 60 fit is not particularly limited, and any fitting method selected from loose fit, middle fit and tight fit Although it is preferable, if it is desired to suppress the deformation of the cylinder bore 20, a loose fit or an intermediate fit is preferable, and a loose fit is more preferable.
  • a flange portion (division flange portion) provided on the connection cylinder 10 side or the cylinder block main body 60 side for the purpose of dividing the coolant jacket 70 into two or more portions is a through hole penetrating in the width direction of the flange portion It is preferable not to have for example, the flange portion 16A continuously formed along the outer peripheral direction of the connecting cylinder 10 or the inner peripheral direction of the hollow portion 64 of the cylinder block main body 60 instead of the flange portion 16A is continuously formed If the flange portion has no through hole, the cylinder head side coolant jacket 70A and the crank chamber side coolant jacket 70B do not communicate via the through hole.
  • the control of the liquid temperature, the flow rate, and the like of the coolant independently performed independently of each other by the cylinder head side coolant jacket 70A and the crank chamber side coolant jacket 70B can be performed more reliably.
  • the width direction of the buttocks means a direction parallel to the surface on which the buttocks are provided and orthogonal to the longitudinal direction of the buttocks, and in the case of the buttocks 16A shown in FIG. It means the length of the direction, and in the flange portion 16B shown in FIG. 15, it means the length of the outer circumferential direction (or the Y direction).
  • the collar portion is a closing member such as a plug or lid capable of closing the through hole in addition to the through hole It is preferable to have
  • the through hole is closed by a closing member such as a plug or a lid.
  • the coolant is the cylinder head side coolant through this through hole. Since the jacket 70A and the crankcase side coolant jacket 70B can be moved back and forth, it becomes difficult to perform more precise cooling control.
  • the through hole may be opened for the purpose of maintenance / repair of internal combustion engine 100, for example, when internal combustion engine 100 is not in operation.
  • the portion excluding the cylinder liners is integrally formed by casting. Therefore, in the conventional internal combustion engine, as in the internal combustion engines 100B and 100C shown in FIGS. 12 and 13, the coolant jacket 70 is divided into the cylinder head side coolant jacket 70A and the crankcase side coolant jacket 70B. It was impossible to realize the above structure (coolant jacket split structure) only by the casting process. Also, in order to realize the coolant jacket split structure after casting, it is necessary to construct a coolant jacket split structure within a coolant jacket having a narrow width at the opening on the cylinder head side. The productivity is extremely bad, and mass production is impossible.
  • the coolant jacket split structure is manufactured by casting the connecting cylinder 10 having the flange portion 16 manufactured by casting and
  • the combination with the cylinder block body 60 can be extremely easily realized, and the mass productivity is also extremely excellent.
  • At least one fitting portion in which the connecting cylinder 10 and the cylinder block main body 60 fit may be provided.
  • the fitting portion in this case is a portion (fitting portion 64J) on one end side of the hollow portion 64 of the cylinder block main body 60.
  • the internal combustion engine 100 of the present embodiment is not limited to the first fitting portion (fitting portion 64J) positioned closest to one end side (Z2 side).
  • a second fitting portion (for example, a fitting portion via the fixing member 80 illustrated in FIGS.
  • fitting portions located closest to the other end side (Z1 side), or one end side in the Z direction (Z2 Such as a third fitting portion (between the flange portion 16 and the cylinder block body 60 illustrated in FIGS. 12 and 13 etc.) positioned between the side) and the other end side (Z1 side)
  • two or more fitting portions may be provided in the Z direction.
  • the fitting method in each fitting part may be the same or different.
  • the aspect illustrated below is mentioned as a combination of the suitable fitting system in each fitting part.
  • Combination example A1 First to third fitting parts: clearance fitting In this combination, it is extremely easy to suppress the deformation of the cylinder bore 20 in the entire Z direction.
  • Combination example B1 First fitting portion and third fitting portion loose fitting In this combination, it is extremely easy to suppress the deformation of the cylinder bore 20 in the entire Z direction.
  • the connecting cylinder 10 can be fixed to the cylinder block body 60 more stably.
  • Combination example C1 First fitting portion and second fitting portion clearance fit In this combination, it is extremely easy to suppress the deformation of the cylinder bore 20 in the entire Z direction.
  • the connecting cylinder 10 can be fixed to the cylinder block body 60 more stably.
  • the internal combustion engine 100 according to the present embodiment is used as a liquid-cooled gasoline engine, a liquid-cooled diesel engine, a liquid-cooled engine using fuel other than gasoline or light oil (alcohol, natural gas, hydrogen gas, etc.) it can.
  • the application of the internal combustion engine 100 according to the present embodiment is not particularly limited, and can be used for various applications such as automobiles, motorbikes, railway vehicles, ships, aircraft, power generation, etc. is there.
  • the displacement of the internal combustion engine 100 of the present embodiment is not particularly limited and may be appropriately selected in accordance with the application, but is generally selected in the range of 20 cc to 60 L according to the application. For automobile applications including large vehicles such as large trucks and buses, it is preferable to select, for example, in the range of 50 cc to 30 L.
  • the internal combustion engine 100 according to the present embodiment is applicable to a large engine (for example, a large diesel engine for ships and / or a large engine whose displacement exceeds 30 L or 60 L). It becomes difficult to manufacture the connecting cylinder 10 and the cylinder block body 60 (in particular, the cylinder block body 60) corresponding to the amount or the size of the engine size. Therefore, 60 L or less is preferable, as for the displacement of the internal combustion engine 100 of this embodiment, 30 L or less is preferable, and 10 L or less is especially preferable. Further, for the same reason, it is preferable that the internal combustion engine 100 of the present embodiment is an internal combustion engine excluding the above-described large engine.
  • connection cylinder 10 of the present embodiment may be combined with members other than the cylinder block main body 60 to constitute an internal combustion engine.
  • the structure of such an internal combustion engine is not particularly limited, and may be either liquid-cooled or air-cooled.
  • a cover surrounding the connecting cylinder 10 and the outer peripheral surface 10S of the connecting cylinder 10 near the cylinder head An internal combustion engine having a member can be provided.
  • the cover member is fixed to the connecting cylinder 10 by a plurality of bolts.
  • the cooling fluid is supplied to the cooling chamber formed between the outer circumferential surface 10S of the connecting cylinder 10 and the cover member.

Abstract

The present invention enhances the ease of maintenance and the recycle-ability of an internal combustion engine and increases the degree of freedom of designing internal combustion engines. Provided is an internal combustion engine manufacturing method for manufacturing an internal combustion engine 100, the method comprising at least a fitting step for fitting, to a hollow portion 64 of a cylinder block body 60 that has a crank chamber 62 formed on one end side thereof, that has a cylinder head attached thereto on the other end side, and that has the hollow portion 64 provided therein so as to penetrate the cylinder block body 60 from the one end side to the other end side, a coupling cylinder 10 being selected from the group consisting of: (1) a first coupling cylinder including two or more cylinder liners and a coupling part for coupling the two or more cylinder liners to each other; and (2) a second coupling cylinder including a coupling cylinder body part provided with two or more cylinder bores and including a coating that covers the inner circumferential surface of the coupling cylinder body part in which the cylinder bores are provided. Also provided are an internal combustion engine manufactured by said method, and a coupling cylinder used therefor.

Description

内燃機関の製造方法、内燃機関および連結シリンダMethod of manufacturing internal combustion engine, internal combustion engine and coupling cylinder
 本発明は、内燃機関の製造方法、内燃機関および連結シリンダに関するものである。 The present invention relates to a method of manufacturing an internal combustion engine, an internal combustion engine, and a connecting cylinder.
 従来、往復動式多気筒内燃機関の小型軽量化などを目的としたシリンダブロックとして、隣接するシリンダボアを形成するシリンダライナ同士が一体結合されて形成された構造を有するいわゆるサイアミーズ型のシリンダブロックが知られている。このようなシリンダブロックの製造方法としては、たとえば、(1)シリンダライナの集合体を、シリンダブロック鋳造時に金型にセットした後、シリンダブロック本体に鋳ぐるむことで、シリンダブロック本体に固定する方法や、(2)シリンダライナの集合体を、シリンダ本体に対して嵌合により固定する方法などが知られている(特許文献1、2)。これら特許文献1、2に記載のシリンダブロックの製造方法では、複数のシリンダライナが一体成形され、かつ、一部材から構成されるシリンダライナの集合体を用いている。 Conventionally, as a cylinder block for the purpose of reducing the size and weight of a reciprocating multi-cylinder internal combustion engine, a so-called Siamese-type cylinder block having a structure in which cylinder liners forming adjacent cylinder bores are integrally coupled is known. It is done. As a method of manufacturing such a cylinder block, for example, (1) after setting an assembly of cylinder liners in a mold at the time of casting a cylinder block, fixing it to the cylinder block body by casting around the cylinder block body Methods and (2) methods of fixing a cylinder liner assembly to a cylinder body by fitting are known (Patent Documents 1 and 2). In the method of manufacturing the cylinder block described in these Patent Documents 1 and 2, a plurality of cylinder liners are integrally formed, and a cylinder liner assembly formed of one member is used.
特許第2813947号Patent No. 2813947 特許第4278125号Patent No. 4278125
 一方、内燃機関には、内燃機関が用いられる車両あるいは車両以外の機器の要求仕様に応じて各種性能を満足させる必要がある。このためには、内燃機関を設計する場合、その自由度が高い方が有利である。また、内燃機関にはメンテナンス性に優れることも求められる。さらに、近年では、環境負荷の観点から、内燃機関にはリサイクル性も求められている。しかしながら、本発明者らが検討したところ、特許文献1、2に記載のシリンダブロックの製造方法やこれを用いて製造された内燃機関では、メンテナンス性、リサイクル性および設計自由度の3つを全て満足させることが困難であることが判った。 On the other hand, in the internal combustion engine, it is necessary to satisfy various performances in accordance with the required specifications of the vehicle in which the internal combustion engine is used or equipment other than the vehicle. For this purpose, when designing an internal combustion engine, it is advantageous if the degree of freedom is high. In addition, internal combustion engines are also required to be excellent in maintainability. Furthermore, in recent years, recyclability is also required of internal combustion engines from the viewpoint of environmental load. However, when the present inventors examined, in the method for manufacturing a cylinder block described in Patent Documents 1 and 2 or an internal combustion engine manufactured using the same, all three of maintainability, recyclability and design freedom are all considered. It proved to be difficult to satisfy.
 本発明は、上記事情に鑑みてなされたものであり、内燃機関のメンテナンス性およびリサイクル性に優れると共に、内燃機関の設計自由度も高い内燃機関の製造方法、これを用いて製造された内燃機関およびこれに用いる連結シリンダを提供することを課題とする。 The present invention has been made in view of the above circumstances, and is a method of manufacturing an internal combustion engine which is excellent in maintainability and recyclability of the internal combustion engine and has a high design freedom of the internal combustion engine, and an internal combustion engine manufactured using the same. An object of the present invention is to provide a connected cylinder used for the same.
 上記課題は以下の本発明により達成される。すなわち、
 本発明の内燃機関の製造方法は、(1)2つ以上のシリンダライナと、2つ以上のシリンダライナを互いに連結する連結部とを含む第一の連結シリンダ、および、(2)2つ以上のシリンダボアが設けられた連結シリンダ本体部と、連結シリンダ本体部のシリンダボアが設けられた内周面を被覆する被膜とを含む第二の連結シリンダ、からなる群より選択されるいずれかの連結シリンダを、一端側にクランク室が形成され、他端側にシリンダヘッドが組み付けられると共に、一端側から他端側へと貫通する中空部が設けられたシリンダブロック本体の中空部に嵌め合わせる嵌合工程を、少なくとも経て内燃機関を製造することを特徴とする。
The above object is achieved by the present invention described below. That is,
A method of manufacturing an internal combustion engine according to the present invention comprises: (1) a first connecting cylinder including two or more cylinder liners and a connecting portion connecting two or more cylinder liners to each other; and (2) two or more Any of the connecting cylinders selected from the group consisting of: a second connecting cylinder including a connecting cylinder body provided with the first cylinder bore and a coating covering the inner peripheral surface of the connecting cylinder body provided with the cylinder bore; The crank chamber is formed on one end side, the cylinder head is assembled on the other end side, and the fitting step is fitted to the hollow portion of the cylinder block main body provided with the hollow portion penetrating from one end side to the other end side To produce an internal combustion engine at least.
 本発明の内燃機関の製造方法の一実施形態は、2つ以上のシリンダライナと連結部とは一体不可分に形成されていることが好ましい。 In one embodiment of the method of manufacturing an internal combustion engine according to the present invention, preferably, two or more cylinder liners and the connecting portion are integrally and inseparably formed.
 本発明の内燃機関の製造方法の他の実施形態は、連結部が、2つ以上のシリンダライナの外周面全面を覆っていることが好ましい。 In another embodiment of the method of manufacturing an internal combustion engine according to the present invention, preferably, the connecting portion covers the entire outer peripheral surface of the two or more cylinder liners.
 本発明の内燃機関の製造方法の他の実施形態は、連結部を構成する材料が、シリンダブロック本体を構成する材料とは異なる材料であることが好ましい。 In another embodiment of the method of manufacturing an internal combustion engine according to the present invention, it is preferable that the material forming the connecting portion is a material different from the material forming the cylinder block body.
 本発明の内燃機関の製造方法の他の実施形態は、連結シリンダ本体部を構成する材料が、シリンダブロック本体を構成する材料とは異なる材料であることが好ましい。 In another embodiment of the method of manufacturing an internal combustion engine according to the present invention, preferably, the material forming the connecting cylinder main body is a material different from the material forming the cylinder block main body.
 本発明の内燃機関の製造方法の他の実施形態は、嵌合工程が、すきまばめ、中間ばめおよびしまりばめから選択されるいずれかの嵌合方式で実施されることが好ましい。 In another embodiment of the method of manufacturing an internal combustion engine according to the present invention, it is preferable that the fitting process be performed in any fitting mode selected from a loose fit, an intermediate fit and a tight fit.
 本発明の内燃機関の製造方法の他の実施形態は、連結シリンダが、第一の連結シリンダであり、シリンダライナの内周面を仕上げ加工することにより摺動面を形成する摺動面形成工程を、嵌合工程の前のみにおいて実施することが好ましい。 In another embodiment of the method for manufacturing an internal combustion engine according to the present invention, the connecting cylinder is a first connecting cylinder, and a sliding surface forming step of forming a sliding surface by finishing the inner peripheral surface of the cylinder liner. Is preferably performed only before the fitting process.
 本発明の内燃機関の製造方法の他の実施形態は、連結シリンダが、第一の連結シリンダであり、シリンダライナの内周面に被膜を形成する被膜形成工程を実施した後に、被膜の表面を仕上げ加工することにより摺動面を形成する摺動面形成工程を実施し、かつ、摺動面形成工程を嵌合工程の前のみにおいて実施することが好ましい。 In another embodiment of the method for manufacturing an internal combustion engine according to the present invention, the connecting cylinder is the first connecting cylinder, and the surface of the film is formed after performing a film forming step of forming a film on the inner peripheral surface of the cylinder liner. It is preferable to carry out the sliding surface forming step of forming the sliding surface by finish processing, and to carry out the sliding surface forming step only before the fitting step.
 本発明の内燃機関の製造方法の他の実施形態は、連結シリンダが、第二の連結シリンダであり、連結シリンダ本体部のシリンダボアが設けられた内周面を被覆する被膜の表面を仕上げ加工することにより摺動面を形成する摺動面形成工程を、嵌合工程の前のみにおいて実施することが好ましい。 In another embodiment of the method for manufacturing an internal combustion engine of the present invention, the connecting cylinder is the second connecting cylinder, and the surface of the coating covering the inner peripheral surface of the connecting cylinder body provided with the cylinder bore is finished. It is preferable to carry out the sliding surface forming step of forming the sliding surface accordingly only before the fitting step.
 本発明の内燃機関の製造方法の他の実施形態は、嵌合工程が、すきまばめおよび中間ばめから選択されるいずれかの嵌合方式で実施されることが好ましい。 In another embodiment of the method of manufacturing an internal combustion engine according to the present invention, it is preferable that the fitting step be performed by any fitting method selected from a loose fit and an intermediate fit.
 本発明の内燃機関の製造方法の他の実施形態は、嵌合工程が、すきまばめにより実施されることが好ましい。 In another embodiment of the method of manufacturing an internal combustion engine according to the present invention, it is preferable that the fitting step be performed by close fitting.
 本発明の内燃機関の製造方法の他の実施形態は、連結シリンダが、第一の連結シリンダであり、シリンダライナの内周面を仕上げ加工することにより摺動面を形成する摺動面形成工程を、嵌合工程の後のみにおいて実施することが好ましい。 In another embodiment of the method for manufacturing an internal combustion engine according to the present invention, the connecting cylinder is a first connecting cylinder, and a sliding surface forming step of forming a sliding surface by finishing the inner peripheral surface of the cylinder liner. Is preferably performed only after the fitting process.
 本発明の内燃機関の製造方法の他の実施形態は、連結シリンダが、第一の連結シリンダであり、シリンダライナの内周面に被膜を形成する被膜形成工程を実施した後に、被膜の表面を仕上げ加工することにより摺動面を形成する摺動面形成工程を実施し、かつ、摺動面形成工程を嵌合工程の後のみにおいて実施することが好ましい。 In another embodiment of the method for manufacturing an internal combustion engine according to the present invention, the connecting cylinder is the first connecting cylinder, and the surface of the film is formed after performing a film forming step of forming a film on the inner peripheral surface of the cylinder liner. It is preferable to carry out the sliding surface forming step of forming the sliding surface by finish processing, and to carry out the sliding surface forming step only after the fitting step.
 本発明の内燃機関の製造方法の他の実施形態は、連結シリンダが、第二の連結シリンダであり、連結シリンダ本体部のシリンダボアが設けられた内周面を被覆する被膜の表面を仕上げ加工することにより摺動面を形成する摺動面形成工程を、嵌合工程の後のみにおいて実施することが好ましい。 In another embodiment of the method for manufacturing an internal combustion engine of the present invention, the connecting cylinder is the second connecting cylinder, and the surface of the coating covering the inner peripheral surface of the connecting cylinder body provided with the cylinder bore is finished. It is preferable to carry out the sliding surface forming step of forming the sliding surface accordingly only after the fitting step.
 本発明の内燃機関の製造方法の他の実施形態は、摺動面形成工程が、連結シリンダをシリンダブロック本体およびシリンダヘッドを模擬した治具に組み付けると共に、少なくとも連結シリンダを加温した状態で実施されることが好ましい。 In another embodiment of the method for manufacturing an internal combustion engine according to the present invention, the sliding surface forming step is performed in a state where at least the connecting cylinder is heated while assembling the connecting cylinder to a jig simulating the cylinder block body and cylinder head. Preferably.
 本発明の内燃機関の製造方法の他の実施形態は、連結シリンダの互いに隣り合う2つのシリンダボアの間に冷却液用通路を形成する冷却液用通路形成工程を、少なくとも嵌合工程の前に実施することが好ましい。 Another embodiment of the method of manufacturing an internal combustion engine according to the present invention carries out at least the step of forming a coolant passage, which forms a coolant passage between two adjacent cylinder bores of the connecting cylinder, at least before the fitting step. It is preferable to do.
 本発明の内燃機関の製造方法の他の実施形態は、冷却液用通路が、連結シリンダのシリンダヘッドが配置される側の端面よりも内側に設けられると共に、連結シリンダに設けられた各々のシリンダボアの中心線と平行を成す平面における冷却液用通路の断面形状がスリット状であることが好ましい。 In another embodiment of the method of manufacturing an internal combustion engine according to the present invention, the coolant passage is provided inside the end face on the side where the cylinder head of the connecting cylinder is disposed, and each cylinder bore provided in the connecting cylinder It is preferable that the cross-sectional shape of the coolant passage in a plane parallel to the center line of the above is slit-like.
 本発明の内燃機関の製造方法の他の実施形態は、シリンダブロック本体が、鋳造および樹脂成形から選択されるいずれかの方法により作製されることが好ましい。 In another embodiment of the method of manufacturing an internal combustion engine according to the present invention, preferably, the cylinder block body is manufactured by any method selected from casting and resin molding.
 本発明の内燃機関は、(1)2つ以上のシリンダライナと、2つ以上のシリンダライナを互いに連結する連結部とを含む第一の連結シリンダ、および、(2)2つ以上のシリンダボアが設けられた連結シリンダ本体部と、連結シリンダ本体部のシリンダボアが設けられた内周面を被覆する被膜とを含む第二の連結シリンダ、からなる群より選択されるいずれかの連結シリンダと、一端側にクランク室が形成され、他端側にシリンダヘッドが組み付けられると共に、一端側から他端側へと貫通する中空部が設けられたシリンダブロック本体と、を少なくとも備え、連結シリンダが、シリンダブロック本体の中空部に脱着可能に嵌め合されていることを特徴とする。 The internal combustion engine of the present invention comprises: (1) a first connecting cylinder including two or more cylinder liners and a connecting portion connecting the two or more cylinder liners to each other; and (2) two or more cylinder bores A connecting cylinder selected from the group consisting of a provided connecting cylinder body and a second connecting cylinder including a coating covering the inner peripheral surface of the connecting cylinder body provided with a cylinder bore, and one end At least a cylinder block main body having a crank chamber formed on one side, a cylinder head assembled on the other end, and a hollow portion penetrating from one end to the other end, the connecting cylinder being the cylinder block It is characterized in that it is detachably fitted to the hollow portion of the main body.
 本発明の内燃機関の他の実施形態は、連結シリンダが、シリンダブロック本体の中空部に、すきまばめおよび中間ばめから選択されるいずれかの嵌合方式で嵌め合わされていることが好ましい。 In another embodiment of the internal combustion engine according to the present invention, preferably, the connecting cylinder is fitted in the hollow portion of the cylinder block body in any fitting method selected from a loose fit and an intermediate fit.
 本発明の内燃機関の他の実施形態は、冷却液用通路が、連結シリンダの互いに隣り合う2つのシリンダボアの間において、連結シリンダのシリンダヘッドが配置される側の端面よりも内側に設けられると共に、連結シリンダに設けられた各々のシリンダボアの中心線と平行を成す平面における冷却液用通路の断面形状がスリット状であることが好ましい。 In another embodiment of the internal combustion engine according to the present invention, the coolant passage is provided between the two adjacent cylinder bores of the connecting cylinder inside the end face on the side where the cylinder head of the connecting cylinder is disposed. Preferably, the cross-sectional shape of the coolant passage in a plane parallel to the center line of each cylinder bore provided in the connecting cylinder is a slit.
 本発明の内燃機関の他の実施形態は、連結シリンダの外周面に、連結シリンダに設けられた各々のシリンダボアの中心線と平行な方向に沿って固定用鍔部が設けられ、シリンダブロック本体の中空部の内周面に、固定用鍔部と嵌合するガイド溝が設けられていることが好ましい。 In another embodiment of the internal combustion engine according to the present invention, a fixing flange portion is provided on the outer peripheral surface of the connecting cylinder along a direction parallel to the center line of each cylinder bore provided in the connecting cylinder. It is preferable that a guide groove fitted to the fixing collar portion be provided on the inner peripheral surface of the hollow portion.
 本発明の内燃機関の他の実施形態は、固定用鍔部が、各々のシリンダボアの配列方向の両端側における連結シリンダの外周面に設けられ、ガイド溝が、中空部の開口部の長手方向の両端側におけるシリンダブロック本体の中空部の内周面に設けられていることが好ましい。 In another embodiment of the internal combustion engine according to the present invention, the fixing flanges are provided on the outer peripheral surface of the connecting cylinder at both end sides in the arrangement direction of each cylinder bore, and the guide groove is in the longitudinal direction of the opening of the hollow portion. It is preferable to be provided on the inner peripheral surface of the hollow portion of the cylinder block main body at both end sides.
 本発明の内燃機関の他の実施形態は、シリンダブロック本体の中空部の内周面に、中空部の貫通方向と平行な方向に沿って固定用鍔部が設けられ、連結シリンダの外周面に、固定用鍔部と嵌合するガイド溝が設けられていることが好ましい。 In another embodiment of the internal combustion engine according to the present invention, a fixing flange is provided on the inner peripheral surface of the hollow portion of the cylinder block main body along a direction parallel to the penetrating direction of the hollow portion. Preferably, a guide groove fitted to the fixing collar portion is provided.
 本発明の内燃機関の他の実施形態は、固定用鍔部が、中空部の開口部の長手方向の両端側におけるシリンダブロック本体の中空部の内周面に設けられ、ガイド溝が、連結シリンダに設けられた各々のシリンダボアの配列方向の両端側における連結シリンダの外周面に設けられていることが好ましい。 In another embodiment of the internal combustion engine according to the present invention, the fixing flanges are provided on the inner peripheral surface of the hollow portion of the cylinder block main body at both ends in the longitudinal direction of the opening of the hollow portion, and the guide groove is the connecting cylinder It is preferable to be provided on the outer peripheral surface of the connecting cylinder at both end sides of the respective cylinder bores provided in the arrangement direction of the cylinder bores.
 本発明の内燃機関の他の実施形態は、内燃機関が水平対向型エンジンであることが好ましい。 In another embodiment of the internal combustion engine of the present invention, the internal combustion engine is preferably a horizontally opposed engine.
 本発明の内燃機関の他の実施形態は、連結シリンダの外周面と、シリンダブロック本体の中空部の内周面との間に冷却液ジャケットが設けられていることが好ましい。 In another embodiment of the internal combustion engine according to the present invention, preferably, a coolant jacket is provided between the outer peripheral surface of the connecting cylinder and the inner peripheral surface of the hollow portion of the cylinder block body.
 本発明の内燃機関の他の実施形態は、冷却液ジャケットを2つ以上の部分に分割する分割用鍔部が、連結シリンダの外周面およびシリンダブロック本体の中空部の内周面、から選択される少なくともいずれかの面に設けられていることが好ましい。 In another embodiment of the internal combustion engine according to the present invention, the dividing collar for dividing the coolant jacket into two or more parts is selected from the outer peripheral surface of the connecting cylinder and the inner peripheral surface of the hollow portion of the cylinder block body. Preferably, it is provided on at least one of the surfaces.
 本発明の内燃機関の他の実施形態は、固定用鍔部が、分割用鍔部の機能も有することが好ましい。 In another embodiment of the internal combustion engine of the present invention, preferably, the fixing collar also has a function of a dividing collar.
 本発明の内燃機関の他の実施形態は、分割用鍔部が、分割用鍔部の幅方向に貫通する貫通穴を有さないことが好ましい。 In another embodiment of the internal combustion engine of the present invention, it is preferable that the dividing collar does not have a through hole penetrating in the width direction of the dividing collar.
 本発明の内燃機関の他の実施形態は、分割用鍔部が、分割用鍔部の幅方向に貫通する貫通穴と、貫通穴を閉塞可能な閉塞部材とを有することが好ましい。 In another embodiment of the internal combustion engine according to the present invention, it is preferable that the dividing collar has a through hole penetrating in the width direction of the dividing collar and a closing member capable of closing the through hole.
 本発明の内燃機関の他の実施形態は、内燃機関の稼働時において、貫通穴が、閉塞部材により閉塞されていることが好ましい。 In another embodiment of the internal combustion engine of the present invention, preferably, the through hole is closed by the closing member during operation of the internal combustion engine.
 本発明の内燃機関の他の実施形態は、冷却液ジャケット内に、冷却液ジャケットスペーサが配置されていないことが好ましい。 In another embodiment of the internal combustion engine of the present invention, preferably, no coolant jacket spacer is arranged in the coolant jacket.
 本発明の内燃機関の他の実施形態は、冷却液ジャケットの深さDが、連結シリンダに設けられた各々のシリンダボアの中心線と平行な方向における冷却液ジャケットの全長Lの1/2倍以下であることが好ましい。 In another embodiment of the internal combustion engine of the present invention, the depth D of the coolant jacket is not more than 1/2 times the total length L of the coolant jacket in the direction parallel to the center line of each cylinder bore provided in the connecting cylinder. Is preferred.
 本発明の内燃機関の他の実施形態は、冷却液ジャケットの深さDが、連結シリンダに設けられた各々のシリンダボアの中心線と平行な方向における冷却液ジャケットの全長Lの1/2倍以下であり、かつ、冷却液ジャケット内に、冷却液ジャケットスペーサが配置されていないことが好ましい。 In another embodiment of the internal combustion engine of the present invention, the depth D of the coolant jacket is not more than 1/2 times the total length L of the coolant jacket in the direction parallel to the center line of each cylinder bore provided in the connecting cylinder. Preferably, no coolant jacket spacer is arranged in the coolant jacket.
 本発明の内燃機関の他の実施形態は、連結シリンダの外周面のうち、他端側(シリンダヘッド側)の外周面の少なくとも一部に突出部が設けられ、突出部の先端部が、シリンダブロック本体の中空部の他端側(シリンダヘッド側)の内周面と密着していることが好ましい。 In another embodiment of the internal combustion engine according to the present invention, at least a part of the outer peripheral surface on the other end side (the cylinder head side) of the outer peripheral surface of the connecting cylinder is provided with a protrusion, and the tip of the protrusion is a cylinder It is preferable to be in close contact with the inner peripheral surface of the other end side (the cylinder head side) of the hollow portion of the block main body.
 本発明の内燃機関の他の実施形態は、連結シリンダの他端側(シリンダヘッド側)の外周面と、シリンダブロック本体の他端側(シリンダヘッド側)の内周面との間に、連結シリンダとシリンダブロック本体とを互いに固定する固定部材が設けられていることが好ましい。 Another embodiment of the internal combustion engine of the present invention is connected between an outer peripheral surface on the other end side (cylinder head side) of the connecting cylinder and an inner peripheral surface on the other end side (cylinder head side) of the cylinder block main body. Preferably, a fixing member for fixing the cylinder and the cylinder block body to each other is provided.
 本発明の内燃機関の他の実施形態は、第一の連結シリンダが、各々のシリンダライナのボア径を拡径した連環状の外周形状を有し、各々のシリンダライナの中心線方向において、シリンダヘッド側近傍から中央部近傍までの外周面からなる第一領域における各々のシリンダライナの中心線を基準とする外径D1が、クランク室側近傍の外周面からなる第二領域における各々のシリンダライナの中心線を基準とする外径D2よりも大きく、かつ、第一領域と、第二領域との間には、外周方向と平行かつ連続する段差が形成されており、さらに、第一領域と、シリンダブロック本体の中空部の内周面との間に冷却液ジャケットが形成されていることが好ましい。 In another embodiment of the internal combustion engine of the present invention, the first connection cylinder has a continuous annular outer peripheral shape in which the bore diameter of each cylinder liner is enlarged, and the cylinder in the centerline direction of each cylinder liner An outer diameter D1 based on a center line of each cylinder liner in a first region consisting of an outer peripheral surface from near the head side to a central portion vicinity is each cylinder liner in a second region consisting of an outer peripheral surface near the crank chamber side Between the first region and the second region, a step parallel to and continuous with the outer peripheral direction is formed between the first region and the second region, and is further formed with the first region and the second region. Preferably, a coolant jacket is formed between the inner circumferential surface of the hollow portion of the cylinder block body and the inner circumferential surface of the hollow portion.
 本発明の内燃機関の他の実施形態は、第二の連結シリンダが、各々のシリンダボアのボア径を拡径した連環状の外周形状を有し、各々のシリンダボアの中心線方向において、シリンダヘッド側近傍から中央部近傍までの外周面からなる第一領域における各々のシリンダボアの中心線を基準とする外径D1が、クランク室側近傍の外周面からなる第二領域における各々のシリンダボアの中心線を基準とする外径D2よりも大きく、かつ、第一領域と、第二領域との間には、外周方向と平行かつ連続する段差が形成されており、さらに、第一領域と、シリンダブロック本体の中空部の内周面との間に冷却液ジャケットが形成されていることが好ましい。 In another embodiment of the internal combustion engine of the present invention, the second connecting cylinder has a continuous annular outer peripheral shape in which the bore diameter of each cylinder bore is enlarged, and the cylinder head side in the center line direction of each cylinder bore The outer diameter D1 based on the center line of each cylinder bore in the first region consisting of the outer peripheral surface from the vicinity to the central portion vicinity is the center line of each cylinder bore in the second region consisting of the outer peripheral surface near the crank chamber side A step which is larger than the reference outer diameter D2 and is continuous and continuous with the outer peripheral direction is formed between the first region and the second region, and further, the first region and the cylinder block body It is preferable that a coolant jacket be formed between the inner circumferential surface of the hollow portion and the hollow portion.
 本発明の内燃機関の他の実施形態は、第一領域には、第一領域をシリンダヘッド側の領域とクランク室側の領域とに分断する鍔部が設けられており、鍔部により、冷却液ジャケットが、シリンダライナあるいはシリンダボアの中心線方向に対して分割されていることが好ましい。 In another embodiment of the internal combustion engine according to the present invention, a flange portion for dividing the first region into a region on the cylinder head side and a region on the crank chamber side is provided in the first region. Preferably, the liquid jacket is divided with respect to the centerline direction of the cylinder liner or the cylinder bore.
 第一の本発明の連結シリンダは、2つ以上のシリンダライナと、2つ以上のシリンダライナを互いに連結する連結部とを含むことを特徴とする。 The connecting cylinder according to the first aspect of the present invention is characterized by including two or more cylinder liners and a connecting portion connecting two or more cylinder liners to each other.
 第一の本発明の連結シリンダの一実施形態は、各々のシリンダライナのボア径を拡径した連環状の外周形状を有し、各々のシリンダライナの中心線方向において、シリンダヘッド側近傍から中央部近傍までの外周面からなる第一領域における各々のシリンダライナの中心線を基準とする外径D1が、クランク室側近傍の外周面からなる第二領域における各々のシリンダライナの中心線を基準とする外径D2よりも大きく、かつ、第一領域と、第二領域との間には、外周方向と平行かつ連続する段差が形成されていることが好ましい。 One embodiment of the connecting cylinder of the first invention of the present invention has a continuous annular outer peripheral shape in which the bore diameter of each cylinder liner is expanded, and from the vicinity of the cylinder head side in the centerline direction of each cylinder liner The outer diameter D1 based on the center line of each cylinder liner in the first area consisting of the outer peripheral face up to the vicinity of the part is based on the center line of each cylinder liner in the second area consisting of the outer peripheral face near the crank chamber It is preferable that a step that is larger than the outer diameter D2 to be made and that is parallel and continuous with the outer circumferential direction be formed between the first region and the second region.
 第二の本発明の連結シリンダは、2つ以上のシリンダボアが設けられた連結シリンダ本体部と、連結シリンダ本体部のシリンダボアが設けられた内周面を被覆する被膜とを含むことを特徴とする。 The connecting cylinder according to the second aspect of the present invention is characterized by including a connecting cylinder body provided with two or more cylinder bores and a coating covering the inner peripheral surface of the connecting cylinder body provided with the cylinder bore. .
 第二の本発明の連結シリンダの一実施形態は、各々のシリンダボアのボア径を拡径した連環状の外周形状を有し、各々のシリンダボアの中心線方向において、シリンダヘッド側近傍から中央部近傍までの外周面からなる第一領域における各々のシリンダボアの中心線を基準とする外径D1が、クランク室側近傍の外周面からなる第二領域における各々のシリンダボアの中心線を基準とする外径D2よりも大きく、かつ、第一領域と、第二領域との間には、外周方向と平行かつ連続する段差が形成されていることが好ましい。 One embodiment of the connecting cylinder of the second invention of the present invention has a continuous annular outer peripheral shape in which the bore diameter of each cylinder bore is expanded, and from the vicinity of the cylinder head side to the vicinity of the central portion in the centerline direction of each cylinder bore The outer diameter D1 based on the center line of each cylinder bore in the first region consisting of the outer peripheral surfaces up to the outer diameter based on the center line of each cylinder bore in the second region consisting of the outer peripheral surface near the crank chamber side It is preferable that a step parallel to and continuous with the outer circumferential direction be formed between the first region and the second region, which is larger than D2.
 第一および第二の本発明の連結シリンダの一実施形態は、外周面に、鍔部が設けられていることが好ましい。 In one embodiment of the connecting cylinder of the first and second inventions, it is preferable that a collar portion is provided on the outer peripheral surface.
 第一および第二の本発明の連結シリンダの他の実施形態は、第一領域には、第一領域をシリンダヘッド側の領域とクランク室側の領域とに分断する鍔部が設けられていることが好ましい。 In another embodiment of the connecting cylinder of the first and second inventions, the first region is provided with a flange portion which divides the first region into a region on the cylinder head side and a region on the crank chamber side Is preferred.
 第一および第二の本発明の連結シリンダの他の実施形態は、鍔部が、鍔部の幅方向に貫通する貫通穴を有さないことが好ましい。 In the other embodiments of the connecting cylinder of the first and second inventions, it is preferable that the ridge portion does not have a through hole penetrating in the width direction of the ridge portion.
 第一および第二の本発明の連結シリンダの他の実施形態は、鍔部が、鍔部の幅方向に貫通する貫通穴と、貫通穴を閉塞可能な閉塞部材とを有することが好ましい。 In another embodiment of the connecting cylinder of the first and second inventions, it is preferable that the collar portion has a through hole penetrating in the width direction of the collar portion and a closing member capable of closing the through hole.
 第一および第二の本発明の連結シリンダの他の実施形態は、冷却液用通路が、連結シリンダの互いに隣り合う2つのシリンダボアの間において、連結シリンダのシリンダヘッドが配置される側の端面よりも内側に設けられると共に、連結シリンダに設けられた各々のシリンダボアの中心線と平行を成す平面における冷却液用通路の断面形状がスリット状であることが好ましい。 In another embodiment of the connecting cylinder according to the first and second inventions, the coolant passage is provided between the two cylinder bores of the connecting cylinder adjacent to each other from the end face of the connecting cylinder on which the cylinder head is disposed. It is preferable that the cross-sectional shape of the cooling fluid passage in a plane parallel to the center line of each cylinder bore provided in the connecting cylinder is a slit shape.
 第一および第二の本発明の連結シリンダの他の実施形態は、第一領域に突出部を有さないことが好ましい。 Other embodiments of the connecting cylinder of the first and second inventions preferably have no protrusions in the first region.
 第一および第二の本発明の連結シリンダの他の実施形態は、第二領域に突出部を有さないことが好ましい。 Other embodiments of the first and second inventive connection cylinders preferably do not have protrusions in the second region.
 本発明によれば、内燃機関のメンテナンス性およびリサイクル性に優れると共に、内燃機関の設計自由度も高い内燃機関の製造方法、これを用いて製造された内燃機関およびこれに用いる連結シリンダを提供することができる。 According to the present invention, a method of manufacturing an internal combustion engine which is excellent in maintainability and recyclability of the internal combustion engine and has a high design freedom of the internal combustion engine, an internal combustion engine manufactured using the same and a connecting cylinder used therefor are provided. be able to.
本実施形態の内燃機関の製造方法に用いられる第一の連結シリンダの一例を示す外観斜視図である。It is an external appearance perspective view which shows an example of the 1st connection cylinder used for the manufacturing method of the internal combustion engine of this embodiment. 図1に示す第一の連結シリンダのシリンダヘッド側近傍の拡大斜視図である。It is an enlarged perspective view of the cylinder head side vicinity of the 1st connection cylinder shown in FIG. 図2に示す第一の連結シリンダの符号III-III間の断面構造の一例を示す拡大断面図である。FIG. 3 is an enlarged cross-sectional view showing an example of a cross-sectional structure taken along the line III-III of the first coupled cylinder shown in FIG. 2; 本実施形態の内燃機関の製造方法に用いられる第二の連結シリンダのシリンダヘッド側近傍の一例を示す拡大斜視図である。It is an expansion perspective view showing an example near the cylinder head side of the 2nd connecting cylinder used for a manufacturing method of an internal-combustion engine of this embodiment. 図4に示す第二の連結シリンダの符号V-V間の断面構造の一例を示す拡大断面図である。FIG. 5 is an enlarged cross-sectional view showing an example of a cross-sectional structure taken along the line VV of the second connection cylinder shown in FIG. 4; 本実施形態の内燃機関の製造方法に用いられるシリンダブロック本体の一例について、シリンダブロック本体の一部を破断して示す分解斜視図である。It is a disassembled perspective view which fractures | ruptures and shows a part of cylinder block main body about an example of the cylinder block main body used for the manufacturing method of the internal combustion engine of this embodiment. 本実施形態の内燃機関の製造方法により製造された第一の連結シリンダを用いた内燃機関の一例を示す外観斜視図である。It is an appearance perspective view showing an example of an internal-combustion engine using the 1st connecting cylinder manufactured by the manufacturing method of an internal-combustion engine of this embodiment. 図7に示す内燃機関の符号VIII-VIII間の断面構造の一例を示す模式断面図である。FIG. 8 is a schematic cross sectional view showing an example of a cross sectional structure taken along the line VIII-VIII of the internal combustion engine shown in FIG. 7; 図3に示す第一の連結シリンダの符号IX-符号IX間の断面構造の一例を示す模式断面図である。FIG. 5 is a schematic cross-sectional view showing an example of a cross-sectional structure between a symbol IX and a symbol IX of the first coupled cylinder shown in FIG. 3; 図5に示す第二の連結シリンダの符号X-X間の断面構造の一例を示す模式断面図である。It is a schematic cross section which shows an example of the cross-section between the code | symbol XX of a 2nd connection cylinder shown in FIG. 図9に示す第一の連結シリンダの一変形例を示す模式断面図である。It is a schematic cross section which shows one modification of the 1st connection cylinder shown in FIG. 図8に示す内燃機関の一変形例を示す模式断面図である。It is a schematic cross section which shows one modification of the internal combustion engine shown in FIG. 図8に示す内燃機関の他の変形例を示す模式断面図である。It is a schematic cross section which shows the other modification of the internal combustion engine shown in FIG. 冷却液用通路の断面形状の一例を示す模式端面図であり、第一の連結シリンダの他端側(Z1側)の端面近傍における拡大端面(ZX断面)について示す図である。ここで、図14(A)は、円形状の断面形状を有する冷却液用通路を示す端面図であり、図14(B)は、連結シリンダの他端側(Z1側)の端面にも開口部を有するスリット状の断面形状を有する冷却液用通路を示す端面図であり、図14(C)は、連結シリンダ10の他端側(Z1側)の端面よりも内側(一端側(Z2側))設けられたスリット状の断面形状を有する冷却液用通路を示す端面図である。It is a model end view which shows an example of the cross-sectional shape of the channel for coolants, and is a figure shown about the expansion end face (ZX section) in the end face neighborhood of the other end side (Z1 side) of the 1st connection cylinder. Here, FIG. 14 (A) is an end view showing a coolant passage having a circular cross-sectional shape, and FIG. 14 (B) is an opening also in the end face of the other end side (Z1 side) of the connecting cylinder. 14C is an end view showing a passage for a coolant having a slit-like cross-sectional shape having a portion, and FIG. 14C is an inner side (an end side (Z2 side) than an end face of the other end side (Z1 side) of the connecting cylinder 10. 2.) It is an end view showing a passage for coolant having a slit-like cross-sectional shape provided. 図1に示す第一の連結シリンダの他の変形例を示す外観斜視図である。It is an external appearance perspective view which shows the other modification of the 1st connection cylinder shown in FIG. 図1に示す第一の連結シリンダの他の変形例を示す外観斜視図である。It is an external appearance perspective view which shows the other modification of the 1st connection cylinder shown in FIG. 図1に示す第一の連結シリンダの他の変形例を示す外観斜視図である。It is an external appearance perspective view which shows the other modification of the 1st connection cylinder shown in FIG. 図15に示す第一の連結シリンダと組み合わせて用いるシリンダブロック本体の一例を示す上面図である。It is a top view which shows an example of the cylinder block main body used combining with the 1st connection cylinder shown in FIG.
 以下に本実施形態の内燃機関の製造方法、内燃機関および連結シリンダについて、図面を参照しながら説明する。なお、以下の説明において、図中に示すX方向、Y方向およびZ方向は互いに直交する方向である。ここで、X方向はシリンダボアの並び方向であり、Y方向はシリンダボアの並び方向と直交しかつシリンダボアの中心線C(第一の連結シリンダにおいては、シリンダボアおよびシリンダライナの中心線C)とも直交する方向であり、Z方向はシリンダボアの中心線Cと平行な方向である。また、X方向において、X1側はX2側に対して逆方向であり、Y方向において、Y1側はY2側に対して逆方向であり、Z方向において、Z1側(シリンダヘッド側)はZ2側(クランク室側)に対して逆方向である。 Hereinafter, a method of manufacturing an internal combustion engine, an internal combustion engine, and a connecting cylinder of the present embodiment will be described with reference to the drawings. In the following description, the X direction, the Y direction, and the Z direction shown in the drawings are directions orthogonal to each other. Here, the X direction is the alignment direction of the cylinder bores, and the Y direction is orthogonal to the alignment direction of the cylinder bores and also orthogonal to the center line C of the cylinder bores (in the first connection cylinder, the center line C of the cylinder bore and cylinder liner) And the Z direction is a direction parallel to the center line C of the cylinder bore. In the X direction, the X1 side is opposite to the X2 side, and in the Y direction, the Y1 side is opposite to the Y2 side, and in the Z direction, the Z1 side (cylinder head side) is the Z2 side It is the opposite direction to (the crank chamber side).
<内燃機関の製造方法>
 本実施形態の内燃機関の製造方法では、(1)2つ以上のシリンダライナと、2つ以上のシリンダライナを互いに連結する連結部とを含む第一の連結シリンダ、および、(2)2つ以上のシリンダボアが設けられた連結シリンダ本体部と、連結シリンダ本体部のシリンダボアが設けられた内周面を被覆する被膜とを含む第二の連結シリンダ、からなる群より選択されるいずれかの連結シリンダを用いる。
<Method of Manufacturing Internal Combustion Engine>
In the method of manufacturing an internal combustion engine according to the present embodiment, a first connecting cylinder including (1) two or more cylinder liners and a connecting portion connecting the two or more cylinder liners to each other, and (2) two Any connection selected from the group consisting of a second connecting cylinder including a connecting cylinder body provided with the above-mentioned cylinder bore and a coating covering the inner peripheral surface of the connecting cylinder body provided with the cylinder bore. Use a cylinder.
 図1~図3は、本実施形態の内燃機関の製造方法に用いられる連結シリンダの一例を示す模式図であり、具体的には、第一の連結シリンダの一例について説明する図である。ここで、図1は、第一の連結シリンダの外観斜視図を示し、図2は、第一の連結シリンダのシリンダヘッド側近傍の拡大斜視図を示す。また、図3は、第一の連結シリンダのシリンダヘッド側近傍の断面構造の一例を示す拡大断面図であり、第一の連結シリンダを図2中の符号III-III間で切断した断面構造(XY断面構造)を示している。 FIGS. 1 to 3 are schematic views showing an example of a connecting cylinder used in the method of manufacturing an internal combustion engine of the present embodiment, and more specifically, a view for explaining an example of a first connecting cylinder. Here, FIG. 1 shows an external perspective view of the first connecting cylinder, and FIG. 2 shows an enlarged perspective view of the vicinity of the cylinder head side of the first connecting cylinder. 3 is an enlarged cross-sectional view showing an example of a cross-sectional structure in the vicinity of the cylinder head side of the first connection cylinder, and is a cross-sectional structure in which the first connection cylinder is cut along the line III-III in FIG. XY cross section structure is shown.
 図1~図3に例示する第一の連結シリンダ10A1(10A、10)には、4つのシリンダボア20が設けられており、各々のシリンダボア20は、各々の中心線Cが同一平面(XZ平面)上に位置するように、X方向に沿って設けられている。また、第一の連結シリンダ10A1は、4つのシリンダライナ40と、これら4つのシリンダライナ40を互いに連結する連結部42とを有する。なお、図1~図3に示す例では、連結部42は、4本の円筒状のシリンダライナ40の各々の外周面40Aの全面を少なくとも覆うように設けられると共に、各々のシリンダライナ40のボア径Dbを拡径した連環状の外周形状を有している。また、X方向において互いに隣り合う一のシリンダライナ40と他のシリンダライナ40とは、外周面40A同士が接触しないように、一定の距離を置いて離間して配置されている。すなわち、互いに隣り合う2つのシリンダライナ40の間は、連結部42を構成する材料によって隙間なく充填されている。また、シリンダライナ40のシリンダヘッド側およびクランク室側の端面も連結部42によって覆われている。但し、シリンダライナ40の端面は、シリンダヘッド側およびクランク室側の端面のいずれか一方あるいは両方が、連結部42によって覆われていなくてもよい。 The first connecting cylinder 10A1 (10A, 10) illustrated in FIGS. 1 to 3 is provided with four cylinder bores 20, and in each cylinder bore 20, the center lines C of each are in the same plane (XZ plane) It is provided along the X direction so as to be located above. Further, the first connecting cylinder 10A1 has four cylinder liners 40 and a connecting portion 42 connecting the four cylinder liners 40 to each other. In the example shown in FIGS. 1 to 3, the connecting portion 42 is provided so as to at least cover the entire outer peripheral surface 40 A of each of the four cylindrical cylinder liners 40, and the bores of the respective cylinder liners 40. It has a continuous annular outer peripheral shape in which the diameter Db is expanded. In addition, one cylinder liner 40 and another cylinder liner 40 adjacent to each other in the X direction are spaced apart by a predetermined distance so that the outer peripheral surfaces 40A do not contact each other. That is, the space between the two cylinder liners 40 adjacent to each other is filled with the material of the connecting portion 42 without any gap. Further, the end face on the cylinder head side and the crank chamber side of the cylinder liner 40 is also covered by the connecting portion 42. However, the end face of the cylinder liner 40 does not have to be covered by the connecting portion 42 either or both of the end faces on the cylinder head side and the crank chamber side.
 図4~図5は、本実施形態の内燃機関の製造方法に用いられる連結シリンダの他の例を示す模式図であり、具体的には、第二の連結シリンダの一例について説明する図である。ここで、図4は、第二の連結シリンダのシリンダヘッド側近傍の拡大斜視図を示す。また、図5は、第二の連結シリンダのシリンダヘッド側近傍の断面構造の一例を示す拡大断面図であり、連結シリンダを図4中の符号V-V間で切断した断面構造(XY断面構造)を示している。 FIGS. 4 to 5 are schematic views showing another example of the connecting cylinder used in the method of manufacturing an internal combustion engine according to the present embodiment, and specifically, a view for explaining an example of the second connecting cylinder. . Here, FIG. 4 shows an enlarged perspective view of the vicinity of the cylinder head side of the second connection cylinder. 5 is an enlarged cross-sectional view showing an example of the cross-sectional structure in the vicinity of the cylinder head side of the second connection cylinder, and the cross-sectional structure in which the connection cylinder is cut between the symbols V and V in FIG. ) Is shown.
 図4~図5に例示する第二の連結シリンダ10B(10)の外周形状は、図1に例示した第一の連結シリンダ10A1と同様である。そして、第二の連結シリンダ10Bにも、4つのシリンダボア20が設けられており、各々のシリンダボア20は、その中心線Cが同一平面(XZ平面)上に位置するように、X方向に沿って配置されている。また、第二の連結シリンダ10Bは、4つのシリンダボア20が設けられた連結シリンダ本体部50と、連結シリンダ本体部50のシリンダボア20が設けられた内周面50Bを被覆する被膜52とを含む。なお、図4~図5に示す例では、連結シリンダ本体部50は、4つの円穴状のシリンダボア20のボア径Dbを拡径した連環状の外周形状を有している。 The outer peripheral shape of the second connection cylinder 10B (10) illustrated in FIGS. 4 to 5 is the same as the first connection cylinder 10A1 illustrated in FIG. And four cylinder bores 20 are provided also in the 2nd connection cylinder 10B, and each cylinder bore 20 is along the X direction so that that center line C may be located on the same plane (XZ plane). It is arranged. Further, the second connecting cylinder 10B includes a connecting cylinder body 50 provided with four cylinder bores 20, and a coating 52 covering the inner circumferential surface 50B provided with the cylinder bore 20 of the connecting cylinder body 50. In the examples shown in FIGS. 4 to 5, the connecting cylinder main body 50 has a continuous annular outer peripheral shape in which the bore diameters Db of the four circular bore cylinder bores 20 are expanded.
 なお、図1~図3に例示する第一の連結シリンダ10A1では、4つのシリンダライナ40を有する場合について示しているが、シリンダライナ40の数は2以上であれば特に制限されず、一般的には2~8程度の範囲内で選択できる。また、図4~図5に例示する第二の連結シリンダ10Bでは、4つのシリンダボア20が設けられた場合について示しているが、シリンダボア20の数は2以上であれば特に制限されず、一般的には2~8程度の範囲内で選択できる。 Although the first connecting cylinder 10A1 illustrated in FIGS. 1 to 3 shows the case where four cylinder liners 40 are provided, the number of cylinder liners 40 is not particularly limited as long as it is two or more. Can be selected in the range of about 2-8. Further, in the second connecting cylinder 10B illustrated in FIGS. 4 to 5, the case where four cylinder bores 20 are provided is shown, but the number of cylinder bores 20 is not particularly limited as long as it is two or more. Can be selected in the range of about 2-8.
 本実施形態の内燃機関の製造方法では、図1~図5に例示したような連結シリンダ10を、シリンダブロック本体に嵌め合せる嵌合工程を少なくとも経ることで内燃機関を製造する。 In the method of manufacturing an internal combustion engine of the present embodiment, the internal combustion engine is manufactured by at least a fitting step of fitting the connecting cylinder 10 as illustrated in FIGS. 1 to 5 to the cylinder block body.
 ここで、図6に例示したように、シリンダブロック本体60A(60)には、一端側(Z2側)にクランク室62が形成され、他端側(Z1側)にシリンダヘッドが組み付けられると共に、一端側から他端側へと貫通する中空部64が設けられた構造を有する。そして、嵌合工程では、連結シリンダ10が中空部64に嵌め合せられる。また、嵌合工程を実施した後、さらに各種のその他の工程を実施することで内燃機関を完成させる。その他の工程としては、たとえば、中空部64内に嵌合・固定された連結シリンダ10が配置されたシリンダブロック本体60のシリンダヘッド側(Z1側)にシリンダヘッドを組み付ける工程などが挙げられる。 Here, as illustrated in FIG. 6, a crank chamber 62 is formed at one end side (Z2 side) in the cylinder block main body 60A (60), and a cylinder head is assembled at the other end side (Z1 side), It has a structure provided with a hollow portion 64 penetrating from one end side to the other end side. Then, in the fitting process, the connecting cylinder 10 is fitted in the hollow portion 64. In addition, after the fitting process is performed, the internal combustion engine is completed by further performing various other processes. As another process, for example, a process of assembling a cylinder head to the cylinder head side (Z1 side) of the cylinder block main body 60 in which the connecting cylinder 10 fitted and fixed in the hollow portion 64 is arranged.
 嵌合工程では、すきまばめ、中間ばめおよびしまりばめから選択されるいずれかの嵌合方式で、連結シリンダ10をシリンダブロック本体60の中空部64に嵌め合せることができる。ここで、本願明細書において、「すきまばめ」とは、嵌合対象となる各々の部材の公差を考慮しても部材間に隙間が生じる嵌め合いであり、「しまりばめ」とは、嵌合対象となる各々の部材の公差を考慮しても部材間に締め代が生じる嵌め合いであり、「中間ばめ」とは嵌合対象となる各々の部材の公差を考慮した際に、部材間に隙間が生じる場合および締め代が生じる場合の両方が存在し得る嵌め合い(すきまばめとしまりばめとの中間的な嵌め合い)である。 In the fitting process, the connecting cylinder 10 can be fitted to the hollow portion 64 of the cylinder block body 60 by any fitting method selected from a loose fit, an intermediate fit and a tight fit. Here, in the specification of the present application, “spacing fit” is a fitting in which a gap is generated between members even in consideration of the tolerance of each member to be fitted, and “squeezing fit” is: Interfering is a fitting that causes an interference between the members even in consideration of the tolerance of each member to be fitted, and “intermediate fit” means the tolerance in each member to be fitted, Both when there is a gap between the members and when there is interference is a fit (intermediate fit between a loose fit and a tight fit).
 なお、しまりばめによる嵌合方法は特に限定されないが、たとえば、冷却した状態の連結シリンダ10をシリンダブロック本体60の中空部64に嵌め合せる冷しばめ、連結シリンダ10を加熱した状態のシリンダブロック本体60の中空部64に嵌め合せる焼きばめ、強圧入などが挙げられる。また、中間ばめによる嵌合方法は特に限定されないが、たとえば、潤滑剤等を利用して嵌合部分の滑りを良くした状態での嵌合や、高精度の位置決めを行った後に、連結シリンダ10よりも軟らかい材料からなる治具を用いた嵌合((たとえば、樹脂製あるいは木製のハンマーなどを用いた打ち込み)などが挙げられる。また、すきまばめにより連結シリンダ10をシリンダブロック本体60の中空部64に嵌め合せる場合、必要に応じて両部材の間に、樹脂材料、ゴム材料、ガラス繊維などの繊維状材料、ペースト状材料などを含む変形あるいは流動容易な材料を配置した状態で嵌め合せを実施してもよい。 The fitting method by tight fitting is not particularly limited. For example, the coupling cylinder 10 in a cooled state is fitted in the hollow portion 64 of the cylinder block main body 60 by cold fitting, and the cylinder in a state where the coupling cylinder 10 is heated Examples of the method include shrink fitting to be fitted into the hollow portion 64 of the block main body 60 and strong press-fit. Although the fitting method by the intermediate fitting is not particularly limited, for example, after the fitting in a state in which the sliding of the fitting portion is improved using a lubricant or the like, or after performing positioning with high accuracy, the connecting cylinder For example, fitting using a jig made of a material softer than 10 (for example, driving using a resin or wooden hammer, etc.), etc. Further, the connection cylinder 10 is mounted on the cylinder block main body 60 by loose fitting. When fitting in the hollow portion 64, fitting is performed in a state in which a deformable or easily flowable material including a resin material, a rubber material, a fibrous material such as glass fiber, a paste-like material, etc. is disposed between both members as needed. A combination may be performed.
 いずれの嵌合方式を選択するかは、内燃機関100の要求設計仕様等に応じて選択することができる。シリンダブロック本体60に対して連結シリンダ10を強固に固定したい場合は、しまりばめによる嵌め合せが好ましい。しまりばめによる嵌め合せが好適な場合としては、たとえば、内燃機関100が、V型エンジンあるいは水平対向型エンジンなどのように、内燃機関100が自動車等の機器に取付けられた状態および組立時において、通常、鉛直方向に対してシリンダボアの中心線Cが大きく傾いたりあるいは直交している構成を有する場合などが例示できる。 Which fitting method is selected can be selected according to the required design specifications of the internal combustion engine 100 or the like. When it is desired to firmly fix the connecting cylinder 10 to the cylinder block main body 60, tight fitting is preferable. In the case where fitting by tight fitting is preferable, for example, in a state where the internal combustion engine 100 is attached to equipment such as a car such as a V-type engine or a horizontally opposed engine, and at the time of assembly. In general, the case where the center line C of the cylinder bore is greatly inclined or perpendicular to the vertical direction can be exemplified.
 一方、内燃機関100が自動車等の機器に取付けられた状態および組立時において、内燃機関100が、直列型エンジンなどのように、鉛直方向とシリンダボアの中心線Cとが平行または略平行を成す構成を有する場合、シリンダボアの中心線Cと直交する方向への連結シリンダ10の位置ずれを生じることなく、連結シリンダ10をシリンダブロック本体60内に安定的に固定することが容易である。このようなケースでは、すきまばめによる嵌め合せも好適である。また、内燃機関100が自動車等の機器に取付けられた状態において、通常、鉛直方向に対してシリンダボアの中心線Cが大きく傾いたりあるいは直交している構成を有する内燃機関100であっても、この内燃機関100の組立時(特に好ましくは、連結シリンダ10をシリンダブロック本体60に取付ける直前からシリンダヘッドの組み付けが完了するまでの期間)において、鉛直方向とシリンダボアの中心線Cとが平行または略平行を成すように配置されるケースでは、すきまばめによる嵌め合せも好適である。また、しまりばめおよび中間ばめに比べて、すきまばめは、内燃機関100を分解する際に、連結シリンダ10とシリンダブロック本体60との篏合部分の破損が生じ難いため、部品の再利用という点でも有利である。 On the other hand, in a state where internal combustion engine 100 is attached to a device such as an automobile and at the time of assembly, internal combustion engine 100 has a configuration in which the vertical direction and center line C of the cylinder bore are parallel or substantially parallel. It is easy to stably fix the connecting cylinder 10 in the cylinder block main body 60 without causing positional deviation of the connecting cylinder 10 in the direction orthogonal to the center line C of the cylinder bore. In such a case, loose fitting is also suitable. In addition, in the state where internal combustion engine 100 is attached to a device such as a car, the internal combustion engine 100 usually has a configuration in which the center line C of the cylinder bore is largely inclined or orthogonal to the vertical direction. At the time of assembly of internal combustion engine 100 (particularly preferably, a period from immediately before attaching coupling cylinder 10 to cylinder block body 60 to completion of cylinder head assembly), the vertical direction and center line C of the cylinder bore are parallel or substantially parallel. In the case where they are arranged in such a way, a loose fit is also suitable. Further, as compared with tight fit and middle fit, loose fit is less likely to cause breakage of the joint portion between connecting cylinder 10 and cylinder block main body 60 when disassembling internal combustion engine 100, so that the parts are reworked. It is also advantageous in terms of use.
 また、(i)嵌合後の連結シリンダ10、シリンダボア20、シリンダブロック本体60若しくは中空部64の変形を抑制したい場合、あるいは、(ii)内燃機関100の修理・メンテナンス時若しくは廃棄処分時などにおいて、シリンダブロック本体60から連結シリンダ10の取り外しをより容易にしたい場合は、すきまばめにより嵌め合せることが好ましい。また、しまりばめによる嵌め合せとすきまばめにより嵌め合せとの中間的な効果を得たい場合は、中間ばめによる嵌め合せが好ましい。 Further, (i) when it is desired to suppress deformation of coupling cylinder 10, cylinder bore 20, cylinder block main body 60 or hollow portion 64 after fitting, or (ii) at the time of repair / maintenance of internal combustion engine 100 or disposal. When it is desired to make it easier to remove the connecting cylinder 10 from the cylinder block main body 60, it is preferable to fit by loose fitting. In addition, when it is desired to obtain an intermediate effect between fitting by tight fitting and loose fitting, fitting by medium fitting is preferable.
 さらに、連結シリンダ10を中空部64に嵌め合せる際に、中空部64に対する連結シリンダ10の位置決めや挿入性を向上させるべく、連結シリンダ10の一端側(Z2側)の外周面10Sをテーパー面とすることも好適である。 Furthermore, when fitting the connecting cylinder 10 to the hollow portion 64, the outer peripheral surface 10S at one end side (Z2 side) of the connecting cylinder 10 is made to be a tapered surface in order to improve the positioning and insertion of the connecting cylinder 10 with respect to the hollow portion 64. Is also suitable.
 図7は、本実施形態の内燃機関の製造方法により製造された内燃機関の一例を示す外観斜視図を示し、図8は、図7に示す内燃機関を符号IV-IV間で切断した場合の断面構造(YZ断面構造)の一例を示す模式断面図である。なお、図7および図8に示す内燃機関において、連結シリンダおよびシリンダブロック本体以外の内燃機関を構成するその他の主要な部材については記載を省略してある。 FIG. 7 shows an external perspective view showing an example of an internal combustion engine manufactured by the method of manufacturing an internal combustion engine according to the present embodiment, and FIG. 8 shows the case where the internal combustion engine shown in FIG. It is a schematic cross section which shows an example of a cross-section (YZ cross section structure). In the internal combustion engine shown in FIGS. 7 and 8, the description of the other main members constituting the internal combustion engine other than the connecting cylinder and the cylinder block main body is omitted.
 図7および図8に示す内燃機関100A(100)は、連結シリンダ10と、シリンダブロック本体60とを、有しており、連結シリンダ10は、シリンダブロック本体60の中空部64の一端側の部分(嵌合部64J)において脱着可能に嵌め合せされている。なお、図7および図8に示す例では、連結シリンダ10として、図1~図3に例示した第一の連結シリンダ10A1を用いているが、第一の連結シリンダ10A1の代わりに、第二の連結シリンダ10Bを用いることもできるし、後述する図11、15~17に例示したような鍔部16を有する連結シリンダ10を用いることもできる。また、図7および図8に示す例では、シリンダブロック本体60としては、図6に示すシリンダブロック本体60Aが用いられているが、鍔部16を有する連結シリンダ10を用いる場合は、後述する図13に例示したようなシリンダブロック本体60B(60)を用いることもできる。 The internal combustion engine 100A (100) shown in FIGS. 7 and 8 has a connecting cylinder 10 and a cylinder block main body 60. The connecting cylinder 10 is a portion on one end side of the hollow portion 64 of the cylinder block main body 60. It is detachably fitted in (fitting portion 64J). In the examples shown in FIGS. 7 and 8, the first connecting cylinder 10A1 illustrated in FIGS. 1 to 3 is used as the connecting cylinder 10. However, instead of the first connecting cylinder 10A1, a second connecting cylinder 10A1 is used. The connecting cylinder 10B can be used, or the connecting cylinder 10 having a flange portion 16 as illustrated in FIGS. 11 and 15 to 17 described later can be used. In the examples shown in FIGS. 7 and 8, the cylinder block main body 60A shown in FIG. 6 is used as the cylinder block main body 60. However, in the case of using the connecting cylinder 10 having the flange portion 16, a diagram to be described later A cylinder block body 60B (60) as exemplified in 13 can also be used.
 一方、複数本のシリンダライナがシリンダブロックに鋳包まれた構造を持つ一般的な内燃機関では、内燃機関の一部分の修理・交換作業が必要となったとしても、シリンダライナおよびシリンダブロックを含む内燃機関の主要部全体をハンドリングする必要がある。これに加えて、一般的な内燃機関では、複数種類の材質の異なる2種類以上の材料(たとえば、シリンダライナを構成する材料およびシリンダライナを鋳ぐるむシリンダブロックを構成する材料)が一体不可分に構成されている。このため、材料種類毎にリサイクル処理しようとした場合、材料の溶解温度の違いを利用することによって、材料種類毎に分別する必要がある。この点は、シリンダライナの集合体をシリンダブロック本体に鋳ぐるんだ構造を有する特許文献1に開示された内燃機関においても同様である。 On the other hand, in a general internal combustion engine having a structure in which a plurality of cylinder liners are cast in a cylinder block, the internal combustion including the cylinder liner and the cylinder block even if repair and replacement work of a part of the internal combustion engine becomes necessary. It is necessary to handle the main part of the engine. In addition to this, in a general internal combustion engine, two or more kinds of different materials (for example, a material forming a cylinder liner and a material forming a cylinder block in which a cylinder liner is cast) are integrally and inseparably It is configured. For this reason, when it is going to carry out recycling processing for every kind of material, it is necessary to separate according to every kind of material by utilizing the difference in the dissolution temperature of the material. This point is the same as in the internal combustion engine disclosed in Patent Document 1 having a structure in which a cylinder liner assembly is cast in a cylinder block body.
 これに対して、本実施形態の内燃機関の製造方法では、図7および図8に例示したように、連結シリンダ10のシリンダブロック本体60への固定は、連結シリンダ10を中空部64に嵌め合せることで行われる。このため、シリンダブロック本体60に一旦固定された連結シリンダ10は、シリンダブロック本体60から容易に取り外すこともできる。したがって、内燃機関100をメンテナンスする場合、シリンダブロック本体60から連結シリンダ10を取り外して、連結シリンダ10およびシリンダブロック本体60のいずれか一方あるいは双方を、それぞれ別個に修理あるいは交換することができる。このため、本実施形態の内燃機関の製造方法によって製造された内燃機関100は、メンテナンス性に優れる。 On the other hand, in the method of manufacturing an internal combustion engine according to the present embodiment, as illustrated in FIGS. 7 and 8, the connection cylinder 10 is fitted to the hollow portion 64 when the connection cylinder 10 is fixed to the cylinder block main body 60. Is done. Therefore, the connecting cylinder 10 once fixed to the cylinder block main body 60 can be easily removed from the cylinder block main body 60. Therefore, when maintaining internal combustion engine 100, connecting cylinder 10 can be removed from cylinder block main body 60, and either or both of connecting cylinder 10 and cylinder block main body 60 can be repaired or replaced separately. For this reason, the internal combustion engine 100 manufactured by the method for manufacturing an internal combustion engine of the present embodiment is excellent in maintainability.
 これに加えて、内燃機関100を廃棄処分する場合、内燃機関100を構成する主要部材である連結シリンダ10とシリンダブロック本体60とを、容易に分別して別々に廃棄処分できる。ここで、本実施形態の内燃機関の製造方法に用いられるシリンダブロック本体60は、通常、鋳造または樹脂成形などを利用して作製された部材(全体が一体不可分な1種類の材料からなる部材)から構成される。 In addition to this, when the internal combustion engine 100 is disposed of, it is possible to easily separate and dispose separately the connecting cylinder 10 and the cylinder block main body 60 which are main components of the internal combustion engine 100. Here, the cylinder block main body 60 used in the method for manufacturing an internal combustion engine according to the present embodiment is usually a member manufactured using casting, resin molding or the like (a member made of one type of integral material). It consists of
 それゆえ、内燃機関100から取り外したシリンダブロック本体60は、これ以上の分離処理等を行わずにそのままリサイクル処理できる。たとえば、シリンダブロック本体60がアルミニウム合金や鋳鉄などを用いて製造された鋳造物であれば、シリンダブロック本体60を溶解処理して再利用することができる。したがって、本実施の内燃機関の製造方法によって製造された内燃機関100は、リサイクル性にも優れる。なお、シリンダブロック本体60は、通常、全体が一体不可分な1種類の材料からなる部材から構成されることが特に好ましいが、このような部材と実質的に同程度のリサイクル性を有するのであれば、シリンダブロック本体60の構造は、全体が一体不可分な1種類の材料からなる部材から構成される場合のみに限定されるものでは無い。 Therefore, the cylinder block main body 60 removed from the internal combustion engine 100 can be recycled as it is without performing further separation processing and the like. For example, if the cylinder block body 60 is a cast manufactured using an aluminum alloy, cast iron or the like, the cylinder block body 60 can be melted and reused. Therefore, the internal combustion engine 100 manufactured by the method of manufacturing an internal combustion engine of the present embodiment is also excellent in recyclability. Although it is particularly preferable that the cylinder block main body 60 is generally composed of a member made of one type of material which is integral with the whole, it has substantially the same degree of recyclability as such a member. The structure of the cylinder block main body 60 is not limited only to the case where the whole is constituted by a member made of one kind of integrally and indivisible material.
 なお、廃棄処分する内燃機関100を構成する連結シリンダ10およびシリンダブロック本体60のいずれか一方の部材が再利用に耐え得る場合は、一方の部材は再利用し、他方の部材のみを廃棄処分することも可能である。 If any one member of the connecting cylinder 10 and the cylinder block main body 60 constituting the internal combustion engine 100 to be disposed of can withstand reuse, one of the members is reused and only the other member is disposed of It is also possible.
 内燃機関100のリサイクルあるいは廃棄処分時における連結シリンダ10とシリンダブロック本体60との分離・分解が容易である観点からは、連結シリンダ10は、シリンダブロック本体60の中空部64に、すきまばめおよび中間ばめから選択されるいずれかの嵌合方式で嵌め合わされていることが好ましく、すきまばめにより嵌め合わされていることがさらに好ましい。 From the viewpoint of easy separation and disassembly of the connecting cylinder 10 and the cylinder block main body 60 at the time of recycling or disposal of the internal combustion engine 100, the connecting cylinder 10 is loosely fitted to the hollow portion 64 of the cylinder block main body 60. It is preferable to be fitted by any fitting method selected from the middle fitting, and it is further preferable to be fitted by a loose fitting.
 一方、連結シリンダ10がシリンダブロック本体60の中空部64に対してしまりばめにより嵌合された内燃機関100をリサイクルあるいは廃棄処分する場合、冷しばめおよび/または焼きばめと逆のプロセスを実施することが好ましい。すなわち、連結シリンダ10側を冷却した状態、および/または、シリンダブロック本体60側を加熱した状態であれば、連結シリンダ10とシリンダブロック本体60とを容易に分離・分解することができる。このような内燃機関100の分解方法は、必要に応じて、連結シリンダ10がシリンダブロック本体60の中空部64に対して中間ばめあるいはすきまばめにより嵌合された内燃機関100にも適用してもよい。 On the other hand, when recycling or disposing of the internal combustion engine 100 in which the connecting cylinder 10 is fitted to the hollow portion 64 of the cylinder block main body 60 by tight fitting, a process opposite to cold fitting and / or shrink fitting Is preferred. That is, when the connecting cylinder 10 side is cooled and / or the cylinder block main body 60 side is heated, the connecting cylinder 10 and the cylinder block main body 60 can be easily separated and disassembled. Such a disassembling method of the internal combustion engine 100 is also applied to the internal combustion engine 100 in which the connecting cylinder 10 is fitted to the hollow portion 64 of the cylinder block main body 60 by an intermediate fitting or gap fitting, if necessary. May be
 また、シリンダライナを鋳ぐるむことでシリンダライナとシリンダブロックとを一体化して内燃機関を製造する従来の一般的な内燃機関の製造方法では、鋳造後に、シリンダライナ部分あるいはその近傍部分のみに欠陥が発見されたり、シリンダブロック側のみに欠陥が発見されても、シリンダライナとシリンダブロックとが一体化された部材全体を廃棄処分する必要がある。これに対して、本実施形態の内燃機関の製造方法では、内燃機関100は、2つの部品(連結シリンダ10およびシリンダブロック本体60)をそれぞれ準備した上で、これらを組み合わせて製造される。それゆえ、仮に嵌合工程を終えた後に、各部品のいずれかに、不良欠陥が見つかったとしても、廃棄対象となるのは、不良欠陥が見つかった部品のみで済む。すなわち、それゆえ、不良欠陥が発生しても製造過程における廃棄ロスをより少なくできる。 Further, in a conventional general internal combustion engine manufacturing method in which an internal combustion engine is manufactured by integrating a cylinder liner and a cylinder block by casting the cylinder liner, defects are found only in the cylinder liner portion or in the vicinity thereof after casting. However, even if a defect is found only on the cylinder block side, it is necessary to dispose of the entire member in which the cylinder liner and the cylinder block are integrated. On the other hand, in the method of manufacturing an internal combustion engine according to the present embodiment, the internal combustion engine 100 is manufactured by combining two components (the connection cylinder 10 and the cylinder block body 60) after preparing them. Therefore, even if a defect defect is found in any of the parts after the fitting process is finished, only the part in which the defect defect is found can be discarded. That is, therefore, even if defective defects occur, the waste loss in the manufacturing process can be further reduced.
 また、内燃機関には、内燃機関が用いられる車両あるいは車両以外の機器の要求仕様に応じて、出力、燃費、小型軽量性などの各種性能を満足させることが求められる。これに加えて出力や燃費などの内燃機関にとって特に重要な特性は、シリンダボア近傍の材質や構造により大きく左右される傾向にある。それゆえ、内燃機関には、各種性能を柔軟に満たすことができるように、設計自由度が高いこと、特に、内燃機関の中央部近傍(シリンダボア近傍)の設計自由度が高いことが重要である。 Further, the internal combustion engine is required to satisfy various performances such as output, fuel consumption, small size and lightness according to the required specification of the vehicle in which the internal combustion engine is used or equipment other than the vehicle. In addition to this, characteristics particularly important for an internal combustion engine such as output and fuel efficiency tend to be greatly influenced by the material and structure near the cylinder bore. Therefore, in the internal combustion engine, it is important that the design freedom is high, particularly, the design freedom near the center of the internal combustion engine (near the cylinder bore) is high so that various performances can be flexibly satisfied. .
 一方、本実施形態の内燃機関の製造方法に用いられる連結シリンダ10は、その主要部が2種類の部材の組み合わせから構成される。すなわち、第一の連結シリンダ10Aは、その主要部がシリンダライナ40と連結部42との組み合わせから構成されており、第二の連結シリンダ10Bは、その主要部が連結シリンダ本体部50と被膜52との組み合わせから構成されている。したがって、これら2種類の部材の材質および形状の組み合わせを適宜変更することで、内燃機関が用いられる車両あるいは車両以外の機器の要求仕様に応じた各種性能を満足させることが容易である。これに加えて、内燃機関100全体についても、その主要部が、互いに分離独立した部材である連結シリンダ10とシリンダブロック本体60とから構成されるため、これら2種類の部材の材質および形状の組み合わせを適宜変更することで、内燃機関が用いられる車両あるいは車両以外の機器の要求仕様に応じた各種性能を満足させることが容易である。 On the other hand, the connecting cylinder 10 used in the method of manufacturing an internal combustion engine according to the present embodiment is configured such that its main part is a combination of two types of members. That is, the main portion of the first connecting cylinder 10A is configured by a combination of the cylinder liner 40 and the connecting portion 42, and the main portion of the second connecting cylinder 10B is the connecting cylinder main portion 50 and the film 52. And a combination of Therefore, it is easy to satisfy various performances according to the required specifications of the vehicle in which the internal combustion engine is used or devices other than the vehicle by appropriately changing the combination of the materials and shapes of these two types of members. In addition to this, the main part of the entire internal combustion engine 100 is composed of the connecting cylinder 10 and the cylinder block main body 60, which are separate and independent members, and therefore, the combination of materials and shapes of these two types of members By appropriately changing the above, it is easy to satisfy various performances according to the required specifications of the vehicle in which the internal combustion engine is used or equipment other than the vehicle.
 それゆえ、シリンダライナがシリンダブロックに鋳ぐるまれることで、両部材が一体不可分に形成された構造を持つ一般的な内燃機関や、複数のシリンダライナが一体成形され、かつ、一部材から構成されるシリンダライナの集合体を用いている特許文献1,2に開示された内燃機関と比べて、本実施形態の内燃機関の製造方法により製造される内燃機関100は、設計自由度が高い。したがって、内燃機関100は、様々な要求仕様に幅広く対応することが容易である。 Therefore, a general-purpose internal combustion engine having a structure in which both members are integrally formed and a plurality of cylinder liners are integrally formed by casting the cylinder liner into a cylinder block, and is configured from one member. The internal combustion engine 100 manufactured by the method of manufacturing an internal combustion engine according to the present embodiment has a high degree of freedom in design as compared with the internal combustion engines disclosed in Patent Documents 1 and 2 which use an assembly of cylinder liners. Therefore, the internal combustion engine 100 can easily meet a wide variety of required specifications.
 なお、内燃機関100は、特定の設計仕様に限定されるものでは無く、様々な要求仕様あるいは技術コンセプトに基づいて柔軟に設計することができる。内燃機関100の設計例としては、たとえば、基本的技術コンセプトとして以下に示す設計例が挙げられる。 Internal combustion engine 100 is not limited to a specific design specification, and can be designed flexibly based on various required specifications or technical concepts. Examples of the design of the internal combustion engine 100 include, for example, the design examples shown below as basic technical concepts.
(設計例1)
a)内燃機関100に使用する連結シリンダ10:第一の連結シリンダ10A。
b)シリンダライナ40を構成する材料:連結部42に対して相対的に摺動特性(耐摩耗性、耐焼き付き性、低摩擦性)に優れた材料を使用する。
c)連結部42を構成する材料:シリンダライナ40を構成する材料に対して相対的に低密度(軽量)で、熱伝導性(放熱性)の高い材料を使用する。
 この設計例1では、摺動特性、軽量性および放熱性に優れた内燃機関100を提供できる。
(Design example 1)
a) Connecting cylinder 10 used for internal combustion engine 100: First connecting cylinder 10A.
b) Material constituting the cylinder liner 40: A material excellent in sliding characteristics (abrasion resistance, seizure resistance, low friction) relative to the connecting portion 42 is used.
c) Material constituting the connecting portion 42: A material having a relatively low density (light weight) relative to the material constituting the cylinder liner 40 and high thermal conductivity (heat dissipation) is used.
In this design example 1, it is possible to provide an internal combustion engine 100 which is excellent in sliding characteristics, lightness and heat dissipation.
(設計例2)
a)内燃機関100に使用する連結シリンダ10:第一の連結シリンダ10A。
b)連結部42を構成する材料:強度の高い材料を用いる。
 この設計例2では、連結部42の強度が高くなる。このため、シリンダライナ40の薄肉化および隣り合う2つのシリンダボア20間の肉厚の薄肉化が容易になり、結果的に、内燃機関100の軽量化が図れる。あるいは、隣り合う2つのシリンダボア20間の肉厚を薄肉化しない場合は、隣り合う2つのシリンダボア20間に冷却媒体用流路を設けた際に、第一の連結シリンダ10Aに必要な強度を確保しつつ、この冷却媒体用流路の容積の増大を図れる。また、エンジン燃焼による筒内圧増大に対するボア変形の抑制が可能になる。
(Design example 2)
a) Connecting cylinder 10 used for internal combustion engine 100: First connecting cylinder 10A.
b) Material constituting the connecting portion 42: A material having high strength is used.
In this design example 2, the strength of the connecting portion 42 is increased. Therefore, thinning of the cylinder liner 40 and thinning of the thickness between two adjacent cylinder bores 20 are facilitated, and as a result, weight reduction of the internal combustion engine 100 can be achieved. Alternatively, in the case where the thickness between the two adjacent cylinder bores 20 is not reduced, when the cooling medium flow path is provided between the two adjacent cylinder bores 20, the necessary strength for the first connecting cylinder 10A is secured. However, the volume of the cooling medium channel can be increased. In addition, it is possible to suppress bore deformation due to an increase in in-cylinder pressure due to engine combustion.
(設計例3)
 内燃機関100に使用する連結シリンダ10として、第二の連結シリンダ10Bを用いる。
 この設計例3では、摺動特性は、シリンダライナ40と比べて実質的に質量が無視できる程に小さい被膜52により確保できる。このため、内燃機関において、シリンダボアが配列された部分近傍の構造部分:すなわち、従来の一般的な内燃機関においてシリンダライナとシリンダライナを覆う鋳造部材とからなる部分や、図1~3に例示したようなシリンダライナ40とシリンダライナ40の外周面40Aの全面を覆うように設けられた連結部42と有する第一の連結シリンダ10Aからなる部分と比べて、第二の連結シリンダ10Bからなる部分の質量および体積を、大幅に小さくすることが容易である。それゆえ、内燃機関100の顕著な軽量化および小型化が図れる。
(Design example 3)
As a connecting cylinder 10 used for the internal combustion engine 100, a second connecting cylinder 10B is used.
In this design example 3, the sliding characteristics can be ensured by the coating 52 whose mass is substantially negligible compared to the cylinder liner 40. For this reason, in the internal combustion engine, a structural part in the vicinity of the part where the cylinder bores are arranged: that is, a part consisting of the cylinder liner and a cast member covering the cylinder liner in a conventional general internal combustion engine Compared to the portion consisting of the first connecting cylinder 10A and the connecting portion 42 provided so as to cover the whole surface of the cylinder liner 40 and the outer peripheral surface 40A of the cylinder liner 40, the portion consisting of the second connecting cylinder 10B It is easy to reduce the mass and volume significantly. Therefore, remarkable weight reduction and miniaturization of the internal combustion engine 100 can be achieved.
(設計例4)
a)内燃機関100に使用する連結シリンダ10:第一の連結シリンダ10A。
b)連結部42およびシリンダライナ40を構成する材料:強度の高い金属材料を用いる。
c)シリンダブロック本体60を構成する材料:樹脂材料あるいは有機無機複合材料などの金属材料よりも軽量な材料
 この設計例4では、第一の連結シリンダ10Aの強度が高くなるため、高い筒内圧でもボア変形の抑制が可能である。また、内燃機関100の主要部を構成するシリンダブロック本体60が軽量の材料からなるため、内燃機関100全体の軽量化が図れる。
(Design example 4)
a) Connecting cylinder 10 used for internal combustion engine 100: First connecting cylinder 10A.
b) Materials constituting the connecting portion 42 and the cylinder liner 40: A metal material having high strength is used.
c) Material constituting the cylinder block main body 60: material lighter than metal material such as resin material or organic-inorganic composite material In this design example 4, since the strength of the first connecting cylinder 10A is high, even a high in-cylinder pressure It is possible to suppress bore deformation. Moreover, since the cylinder block main body 60 which comprises the principal part of the internal combustion engine 100 consists of lightweight materials, the weight reduction of the internal combustion engine 100 whole can be achieved.
(設計例5)
a)内燃機関100に使用する連結シリンダ10:第一の連結シリンダ10A。
b)連結部42およびシリンダライナ40を構成する材料:強度の高い金属材料を用いる。
c)シリンダブロック本体60の構造の簡素化(たとえば、図6に示すシリンダブロック本体60Aにおいて溝66を省略するなど)。
 この設計例5では、第一の連結シリンダ10Aの強度が高くなるため、高い筒内圧でもボア変形の抑制が可能である。また、内燃機関100の主要部を構成するシリンダブロック本体60の構造が簡素化されるため、内燃機関100の生産性が向上する。
(Design example 5)
a) Connecting cylinder 10 used for internal combustion engine 100: First connecting cylinder 10A.
b) Materials constituting the connecting portion 42 and the cylinder liner 40: A metal material having high strength is used.
c) Simplification of the structure of the cylinder block body 60 (for example, the groove 66 is omitted in the cylinder block body 60A shown in FIG. 6).
In Design Example 5, since the strength of the first connection cylinder 10A is high, it is possible to suppress the bore deformation even with a high in-cylinder pressure. Further, since the structure of the cylinder block main body 60 constituting the main part of the internal combustion engine 100 is simplified, the productivity of the internal combustion engine 100 is improved.
 次に、本実施形態の内燃機関の製造方法に用いられる連結シリンダ10およびシリンダブロック本体60について説明する。 Next, the connecting cylinder 10 and the cylinder block main body 60 used in the method of manufacturing an internal combustion engine of the present embodiment will be described.
 まず、第一の連結シリンダ10Aにおいて、2つ以上のシリンダライナ40と、連結部42とは一体不可分(言い換えれば、脱着不可能)に形成されていてもよく、脱着可能に構成されていてもよい。(a)第一の連結シリンダ10Aが、2つ以上のシリンダライナ40と、連結部42とが一体不可分を成すように形成された部材である場合、各々のシリンダライナ40と連結部42との間には、両部材を接合する界面(接合界面)が形成される。(b)また、第一の連結シリンダ10Aが、2つ以上のシリンダライナ40と、連結部42とが脱着可能に形成された部材である場合、各々のシリンダライナ40と連結部42との間には、両部材が単に接触した状態の界面(接触界面)が形成される。なお、(a)および(b)のいずれのケースにおいても、各々のシリンダライナ40と、連結部42とは、非連続な部材である。また、連結部42は、図1~図3に例示したようにシリンダライナ40の外周面40Aの全体を被覆するように設けられていてもよく、シリンダライナ40の外周面40Aの一部分のみを被覆するように設けられていてもよい。これらの態様の選択および組み合わせは、製造する内燃機関100の要求仕様に応じて適宜選択することができる。 First, in the first connecting cylinder 10A, the two or more cylinder liners 40 and the connecting portion 42 may be integrally inseparable (in other words, non-detachable) or may be configured to be removable. Good. (A) In the case where the first connection cylinder 10A is a member formed so that two or more cylinder liners 40 and the connection portion 42 form an integral part, each cylinder liner 40 and the connection portion 42 An interface (bonding interface) for bonding both members is formed between them. (B) Also, in the case where the first connection cylinder 10A is a member in which two or more cylinder liners 40 and the connection portion 42 are formed so as to be removable, between each cylinder liner 40 and the connection portion 42 In this case, an interface (contact interface) in which both members are simply in contact with each other is formed. In each of the cases (a) and (b), each cylinder liner 40 and the connecting portion 42 are discontinuous members. The connecting portion 42 may be provided so as to cover the entire outer peripheral surface 40A of the cylinder liner 40 as illustrated in FIGS. 1 to 3, and covers only a part of the outer peripheral surface 40A of the cylinder liner 40. It may be provided to The selection and combination of these aspects can be appropriately selected according to the required specifications of the internal combustion engine 100 to be manufactured.
 たとえば、a)金型内に、2つ以上のシリンダライナ40を配置した後、金型内に溶湯を流し込んで、2つ以上のシリンダライナ40を、鋳鉄やアルミニウム合金などの鋳造材料で鋳ぐるむ方法や、b)金型内に、2つ以上のシリンダライナ40を配置した後、金型内に溶融状態の樹脂材料を射出または注入する樹脂成形などにより、2つ以上のシリンダライナ40、連結部42とが一体不可分に形成された第一の連結シリンダ10Aを得ることができる。この場合、金型の形状を適宜選択することで、連結部42が、シリンダライナ40の外周面40Aの全体を被覆することもでき、シリンダライナ40の外周面40Aの一部分のみを被覆することもできる。 For example, a) After placing two or more cylinder liners 40 in a mold, pour molten metal into the mold and cast two or more cylinder liners 40 with a cast material such as cast iron or aluminum alloy Two or more cylinder liners 40, such as b) by disposing two or more cylinder liners 40 in a mold and injecting or injecting a molten resin material into the mold; It is possible to obtain the first connection cylinder 10A in which the connection portion 42 is formed integrally and indivisiblely. In this case, the connecting portion 42 can cover the entire outer peripheral surface 40A of the cylinder liner 40 by appropriately selecting the shape of the mold, or can cover only a part of the outer peripheral surface 40A of the cylinder liner 40. it can.
 また、2つ以上の円形の貫通穴が設けられると共に、各々の貫通穴の中心線が平行を成す連環状の形状を持つ連結部42の貫通穴にシリンダライナ40を嵌め込んで固定することで、2つ以上のシリンダライナ40と、連結部42とが脱着可能に構成された第一の連結シリンダ10Aを得ることもできる。この場合、たとえば、連結部42の中心線方向の長さを適宜選択することで、連結部42が、シリンダライナ40の外周面40Aの全体を被覆することもでき、シリンダライナ40の外周面40Aの一部分のみを被覆することもできる。 Also, the cylinder liner 40 is fitted and fixed in the through holes of the connecting portion 42 having a continuous annular shape in which two or more circular through holes are provided and the center lines of the respective through holes are parallel. It is also possible to obtain a first connection cylinder 10A in which two or more cylinder liners 40 and the connection portion 42 are configured to be removable. In this case, the connecting portion 42 can cover the entire outer peripheral surface 40A of the cylinder liner 40, for example, by appropriately selecting the length of the connecting portion 42 in the center line direction. It is also possible to coat only a part of.
 但し、連結部42は、予め連環状に形成された形状を持つ部材を用いるよりも鋳造(たとえば、ダイカスト、重力鋳造など)で形成されることが好ましい。この場合、第一の連結シリンダ10Aを製造する際に部品点数を削減できる。これに加えて、連結部42として予め連環状に形成された形状を持つ部材を用いる場合と比べて、連結部42が鋳造によりシリンダライナ40と一体不可分に形成した場合では、連結部42とシリンダライナ40との界面における伝熱抵抗を小さくできるため、内燃機関100の冷却性能を向上させることも容易である。鋳造により連結部42を形成する場合、連結部42とシリンダライナ40との接合強度を向上させるために、シリンダライナ40の外周面40Aには、高さが0.1mm~1.5mm程度の突起を設けたり、深さが0.1mm~1.5mm程度の溝あるいは凹み部を設けたりしてもよい。 However, it is preferable that the connecting portion 42 be formed by casting (for example, die casting, gravity casting, etc.) rather than using a member having a shape formed in a continuous ring shape in advance. In this case, the number of parts can be reduced when manufacturing the first connecting cylinder 10A. In addition to this, in the case where the connecting portion 42 is formed integrally with the cylinder liner 40 by casting as compared with the case of using a member having a shape formed in a continuous annular shape as the connecting portion 42, the connecting portion 42 and the cylinder Since the heat transfer resistance at the interface with the liner 40 can be reduced, the cooling performance of the internal combustion engine 100 can be easily improved. When forming the connection part 42 by casting, in order to improve the joint strength of the connection part 42 and the cylinder liner 40, in the outer peripheral surface 40A of the cylinder liner 40, protrusion with a height of about 0.1 mm-1.5 mm Or a groove or recess with a depth of about 0.1 mm to 1.5 mm.
 なお、シリンダライナ40の肉厚は適宜選択できるが、一般的には1.0mm~4.0mm程度である。また、連結シリンダ10のさらに好ましい形状・構造については後述する。 Although the thickness of the cylinder liner 40 can be selected appropriately, it is generally about 1.0 mm to 4.0 mm. Further, a more preferable shape and structure of the connecting cylinder 10 will be described later.
 一方、第二の連結シリンダ10Bについては、たとえば、連結シリンダ本体部50を鋳造により作製した後、連結シリンダ本体部50のシリンダボア20が設けられた内周面50Bを覆うように被膜52を成膜する。この被膜52の成膜には、溶射法など、公知の成膜方法が適宜利用できる。被膜52の厚さは適宜選択できるが、一般的には0.02mm~0.2mm程度内である。この場合、たとえば、被膜52の成膜方法として溶射法を採用するときは、被膜52の厚さは0.1mm~0.2mm程度が好ましく、被膜52の成膜方法としてPVD(Physical Vapor Deposition)法あるいはCVD(Chemical Vapor Deposition)法を採用するときは、被膜52の厚さは0.02mm~0.03mm程度が好ましい。また、被膜52の成膜方法として、メッキ法を用いることもできる。この場合、被膜52の厚さは0.02mm~0.2mm程度が好ましい。また、メッキ膜からなる被膜52としては、たとえば、Cr系メッキ被膜や、NiとSiCとを含むメッキ被膜(いわゆるニカジルメッキ被膜)などを挙げることができる。 On the other hand, for the second connection cylinder 10B, for example, after manufacturing the connection cylinder main body 50 by casting, the film 52 is formed to cover the inner peripheral surface 50B provided with the cylinder bore 20 of the connection cylinder main body 50. Do. A known film forming method such as a thermal spraying method can be appropriately used to form the film 52. The thickness of the coating 52 can be selected as appropriate, but it is generally in the range of about 0.02 mm to 0.2 mm. In this case, for example, when a thermal spraying method is employed as a method for forming the film 52, the thickness of the film 52 is preferably about 0.1 mm to 0.2 mm, and PVD (Physical Vapor Deposition) as a method for forming the film 52. When the method or the CVD (Chemical Vapor Deposition) method is employed, the thickness of the film 52 is preferably about 0.02 mm to 0.03 mm. Moreover, as a film formation method of the film 52, a plating method can also be used. In this case, the thickness of the coating 52 is preferably about 0.02 mm to 0.2 mm. Further, as the film 52 made of a plating film, for example, a Cr-based plating film, a plating film containing Ni and SiC (so-called Nicadyl plating film) and the like can be mentioned.
 第一の連結シリンダ10Aにおいて、連結部42を構成する材料は、シリンダブロック本体60を構成する材料と同一の材料であってもよいが、シリンダブロック本体60を構成する材料と異なる材料であることが特に好ましい。同様に、第二の連結シリンダ10Bにおいて、連結シリンダ本体部50を構成する材料は、シリンダブロック本体60を構成する材料と同一の材料であってもよいが、シリンダブロック本体60を構成する材料と異なる材料であることが特に好ましい。 In the first connecting cylinder 10A, the material forming the connecting portion 42 may be the same material as the material forming the cylinder block main body 60, but is different from the material forming the cylinder block main body 60 Is particularly preferred. Similarly, in the second connecting cylinder 10B, the material forming the connecting cylinder main body 50 may be the same material as the material forming the cylinder block main body 60, but with the material forming the cylinder block main body 60 Particular preference is given to different materials.
 なお、本願明細書において、「2種類の材料が互いに異なる」とは、a)アルミニウム合金とスチールとのように、各々の材料を構成する組成が根本的に異なる場合、b)同一組成系の材料においては、たとえば、2種類のアルミニウム合金であっても、一方がAl含有量が多いアルミニウム合金であり、他方のAl含有量が少ないアルミニウム合金といったように、定量的組成が異なる場合、c)同一組成系でかつ定量的組成も同一の材料においては、一方の材料と他方の材料とで、結晶性-アモルファス性の度合いや、結晶相の種類の違い、もしくはその他の組織構造の違いが存在する場合、あるいは、d)プラスチックと繊維強化プラスチックとのように、一方の材料と他方の材料とが同一の素材Xを含むものの、一方の材料が素材Xのみから構成される単一材料からなり、他方の材料が素材Xに加えてその他の素材Yも含む複合材料からなる場合、などが挙げられる。 In the specification of the present application, “two kinds of materials are different from each other” means a) when the composition of each material is fundamentally different, such as a) aluminum alloy and steel, b) the same composition type In the material, for example, even if two types of aluminum alloys, one is an aluminum alloy having a high Al content, and the other is an aluminum alloy having a low Al content, c) In materials of the same composition and the same quantitative composition, the degree of crystallinity-amorphism, the type of crystal phase, or the difference in the other structure exist in one material and the other material. Or if d) one material and the other material contain the same material X, such as plastic and fiber reinforced plastic, one material is the material It consists of a single material consisting only if the other material is a composite material including other materials Y in addition to the material X, and the like.
 連結シリンダ10の主要部(第一の連結シリンダ10Aにおける連結部42、第二の連結シリンダ10Bにおける連結シリンダ本体部50)を構成する材料を、シリンダブロック本体60を構成する材料とは異なる材料とすることで、内燃機関100全体の設計自由度をより向上させることができる。このため、たとえば、下記(1)~(3)に例示するような様々な仕様の内燃機関100を製造することが極めて容易となる。
(1)連結シリンダ10の主要部を構成する材料として、シリンダブロック本体60に対して相対的に剛性の高い材料を用いることで、シリンダブロック本体60を低コスト化・軽量化した仕様の内燃機関100。
(2)シリンダブロック本体60を構成する材料として、連結シリンダ10の主要部に対して相対的に熱伝導性の高い材料を用いることで、高負荷での冷却系の負担を減らした仕様の内燃機関100。
(3)シリンダブロック本体60を構成する材料として、連結シリンダ10の主要部に対して相対的に熱伝導性の低い材料を用いることで、低負荷および暖気中の冷却液温上昇を早めて燃費を改善した仕様の内燃機関100。
The material constituting the main portion of the connecting cylinder 10 (the connecting portion 42 of the first connecting cylinder 10A, and the connecting cylinder main portion 50 of the second connecting cylinder 10B) is different from the material of the cylinder block main body 60 By doing this, the design freedom of the entire internal combustion engine 100 can be further improved. Therefore, for example, it becomes extremely easy to manufacture an internal combustion engine 100 of various specifications as exemplified in the following (1) to (3).
(1) An internal combustion engine having a specification that reduces the cost and weight of the cylinder block main body 60 by using a material having high rigidity relative to the cylinder block main body 60 as a material constituting the main part of the connecting cylinder 10 100.
(2) By using a material having high thermal conductivity relative to the main part of the connecting cylinder 10 as the material forming the cylinder block main body 60, the internal combustion of the specification whose load on the cooling system at high load is reduced Institution 100.
(3) By using a material having a low thermal conductivity relative to the main part of the connecting cylinder 10 as the material constituting the cylinder block main body 60, the coolant temperature rise during low load and warm air can be accelerated to improve fuel consumption The internal combustion engine 100 with improved specifications.
 連結部42あるいは連結シリンダ本体部50を構成する材料としては、たとえば、アルミニウム合金(好ましくは高剛性タイプのアルミニウム合金)、マグネシウム合金、スチールなどの金属材料が挙げられ、シリンダブロック本体60を構成する材料としては、アルミニウム合金、マグネシウム合金などの金属材料、樹脂材料、樹脂と無機材料とを含む有機無機複合材料(たとえば、フェノール樹脂等の耐熱性樹脂マトリックスにガラス繊維あるいは炭素繊維などの無機フィラーを分散させた材料など)などが挙げられる。 As a material which constitutes connecting part 42 or connecting cylinder main part 50, metal materials, such as aluminum alloy (preferably high rigidity type aluminum alloy), magnesium alloy, steel, etc. are mentioned, for example, and cylinder block main body 60 is constituted. Materials include metal materials such as aluminum alloy and magnesium alloy, resin materials, organic-inorganic composite materials including resin and inorganic materials (for example, inorganic fillers such as glass fibers or carbon fibers in a heat resistant resin matrix such as phenol resin) And the like) and the like.
 また、内燃機関100の稼働時におけるシリンダボア20の変形を抑制する観点からは、シリンダブロック本体60を構成する材料の熱膨張係数が、第一の連結シリンダ10Aの連結部42を構成する材料の熱膨張係数と同等あるいはそれ以上であり、シリンダブロック本体60を構成する材料の熱膨張係数が、第二の連結シリンダ10Bの連結シリンダ本体部50を構成する材料の熱膨張係数と同等あるいはそれ以上であることが好ましい。 Further, from the viewpoint of suppressing the deformation of the cylinder bore 20 during operation of the internal combustion engine 100, the thermal expansion coefficient of the material forming the cylinder block main body 60 is the heat of the material forming the connecting portion 42 of the first connecting cylinder 10A. The coefficient of thermal expansion of the material constituting the cylinder block body 60 is equal to or greater than the coefficient of thermal expansion of the material constituting the connecting cylinder body portion 50 of the second connecting cylinder 10B. Is preferred.
 また、シリンダライナ40を構成する材料としては、片状黒鉛鋳鉄などの鋳鉄材が挙げられ、被膜52を構成する材料としては、公知の各種硬質材料が制限無く利用できるが、たとえば、被膜52を溶射法により成膜する場合では、Fe系、WC系などが挙げられ、被膜52をPVD法あるいはCVD法で成膜する場合では、C系、Cr系などが挙げられる。また、被膜52の層構造も特に限定されず、たとえば、単層構造であってもよく、あるいは、異種材料もしくは異種結晶相を組み合わせた積層構造であってもよい。 Moreover, as a material which comprises the cylinder liner 40, cast iron materials, such as flake graphite cast iron, are mentioned, Although various well-known hard materials can be utilized without restriction as a material which comprises the film 52, For example, the film 52 In the case of film formation by the thermal spraying method, Fe-based, WC-based, etc. may be mentioned, and in the case of forming the film 52 by PVD or CVD, C-based, Cr-based, etc. may be mentioned. The layer structure of the film 52 is also not particularly limited, and may be, for example, a single layer structure or a laminated structure in which different materials or different crystal phases are combined.
 一方、本実施形態の内燃機関の製造方法に用いられるシリンダブロック本体60は、図6~図8に例示したように、一端側にクランク室62が形成され、他端側にシリンダヘッドが組み付けられると共に、一端側から他端側へと貫通する中空部64が設けられ、中空部64に連結シリンダ10を嵌め合せて嵌合可能な構造を有するものであれば、その構造は特に限定されない。また、シリンダブロック本体60は、公知の方法を適宜利用して製造できるが、鋳造あるいは樹脂成形により製造することが好ましい。なお、鋳造、樹脂成形以外のその他の製造法の具体例としては、たとえば、原料粉末を用いたホットプレス処理あるいはHIP(Hot Isostatic Pressing)処理や、原料粉末からなる層の積層とレーザー焼結とを交互に繰り返すレーザー焼結処理などが挙げられる。ここで、鋳造あるいは樹脂成形によりシリンダブロック本体60を製造する場合、以下に説明するメリットがある。 On the other hand, in the cylinder block main body 60 used in the method of manufacturing an internal combustion engine according to the present embodiment, as illustrated in FIGS. 6 to 8, the crank chamber 62 is formed at one end and the cylinder head is assembled at the other end. The structure is not particularly limited as long as it has a hollow portion 64 penetrating from one end side to the other end side and has a structure in which the connecting cylinder 10 can be fitted and fitted in the hollow portion 64. Moreover, although the cylinder block main body 60 can be manufactured using a well-known method suitably, it is preferable to manufacture by casting or resin molding. In addition, as a specific example of other manufacturing methods other than casting and resin molding, for example, a hot pressing process or HIP (Hot Isostatic Pressing) process using raw material powder, lamination of a layer made of raw material powder and laser sintering The laser sintering process etc. which repeat alternately are mentioned. Here, in the case where the cylinder block body 60 is manufactured by casting or resin molding, there are merits described below.
 まず、鋳造により部材を製造する場合、金型内に注入された溶湯が冷却される過程で体積収縮が生じる。このため、部材の体積が大きくなるほど鋳巣などの欠陥が発生しやすくなる。一方、シリンダライナをアルミニウム合金などで鋳ぐるむことによりシリンダブロックを形成する従来の内燃機関の製造方法と比べて、本実施形態の内燃機関の製造方法では、別箇独立して製造された連結シリンダ10と、シリンダブロック本体60とを機械的な嵌め合せを行うことで内燃機関100を製造する。このため、従来の内燃機関のシリンダブロックの体積と比べると、シリンダブロック本体60の体積を、大幅に小さくできる。それゆえ、シリンダブロック本体60を鋳造で製造する場合、体積収縮に起因する鋳巣などの欠陥の発生を抑制することが容易になる。これに加えて、従来の内燃機関のシリンダブロックを鋳造する場合と比べて、これら欠陥を抑制するための各種対策(たとえば、鋳造により製造される部材の肉厚を出来る限り一定にするなど)を積極的に採用しなくてもよくなる。したがって、シリンダブロック本体60の形状・構造・鋳造プロセスに関して設計自由度をより高くすることが可能となる。たとえば、従来の内燃機関のシリンダブロックに設けられる冷却液ジャケットと比べて、シリンダブロック本体60に冷却液ジャケットを設ける場合、あるいは、シリンダブロック本体60の中空部64の内周面64Sと連結シリンダ10の外周面10Sとの間に冷却液ジャケットを設ける場合、他端側からの深さがより浅い冷却液ジャケットを形成することが極めて容易である。なお、これらの点は、金型内に射出または注入された溶融状態の樹脂材料が冷却される過程で体積収縮が生じる樹脂成形によりシリンダブロック本体60を製造する場合においても実質同様である。 First, when manufacturing a member by casting, volume contraction occurs in the process of cooling the molten metal injected into the mold. Therefore, as the volume of the member increases, defects such as cavities easily occur. On the other hand, in the method of manufacturing an internal combustion engine according to the present embodiment, a separately manufactured connection is made as compared with the conventional method of manufacturing an internal combustion engine in which a cylinder block is formed by casting a cylinder liner with aluminum alloy or the like. The internal combustion engine 100 is manufactured by mechanically fitting the cylinder 10 and the cylinder block body 60. Therefore, the volume of the cylinder block body 60 can be made much smaller than the volume of the cylinder block of the conventional internal combustion engine. Therefore, in the case of manufacturing the cylinder block body 60 by casting, it is easy to suppress the occurrence of defects such as void caused by volume contraction. In addition to this, various measures for suppressing these defects (for example, making the wall thickness of a member manufactured by casting as constant as possible) as compared with the case of casting a cylinder block of a conventional internal combustion engine It does not have to be adopted positively. Therefore, it is possible to further increase the design freedom regarding the shape, structure, and casting process of the cylinder block body 60. For example, when a coolant jacket is provided to the cylinder block body 60 as compared with the coolant jacket provided to the cylinder block of the conventional internal combustion engine, or the inner peripheral surface 64S of the hollow portion 64 of the cylinder block body 60 and the connecting cylinder 10 In the case where the coolant jacket is provided between the outer surface 10S and the outer circumferential surface 10S, it is extremely easy to form a coolant jacket having a shallower depth from the other end side. These points are substantially the same as in the case of manufacturing the cylinder block main body 60 by resin molding in which volume contraction occurs in the process of cooling the molten resin material injected or injected into the mold.
 なお、本実施形態の内燃機関の製造方法では、嵌合工程以外にも、シリンダブロック本体60に連結シリンダ10が取り付けられた後にさらにシリンダヘッドなどの各種部品を組み付ける工程や、シリンダボア20の内周面を、ホーニング加工、ラッピング加工、ディンプル加工などの仕上げ加工によって、摺動面を形成する摺動面形成工程、あるいは、連結シリンダ10の互いに隣り合う2つのシリンダボア20の間に冷却液用通路を形成する工程など、各種工程を必要に応じて適宜実施することができる。 In the method of manufacturing the internal combustion engine according to the present embodiment, the step of assembling various parts such as the cylinder head after the connecting cylinder 10 is attached to the cylinder block main body 60 and the inner periphery of the cylinder bore 20 A sliding surface forming process for forming a sliding surface by finishing such as honing, lapping and dimple processing, or a coolant passage between two cylinder bores 20 adjacent to each other in the connecting cylinder 10. Various processes, such as a process to form, can be suitably implemented if needed.
 ここで、本願明細書において、「摺動面」とは、完成した状態の内燃機関100を稼働させた際に、ピストンあるいはピストンの外周面に設けられた溝に装着されたピストンリングと接触摺動する面を意味する。そして、本実施形態の内燃機関100の製造プロセスにおいて、一旦「摺動面」の形成が完了した後は、この「摺動面」に対しては、さらなる仕上げ加工は実施されない。「摺動面」は、完成した状態の内燃機関100を稼働させた際に、ピストンあるいはピストンの外周面に設けられた溝に装着されたピストンリングと接触摺動する面であれば、如何様な目的で形成された面であってもよい。たとえば、(a)シリンダボア20の変形を修正することを主目的とした仕上げ加工、あるいは、(b)シリンダライナ40の肉厚もしくは被膜52の膜厚の調整を主目的とした仕上げ加工の実施に伴い、付帯的かつ必然的に摺動面が形成されてもよい。しかし、摺動面は、耐焼き付き性の向上・改善およびオイル消費量の抑制などを主目的として仕上げ加工された面であることが好ましい。 Here, in the present specification, the “sliding surface” refers to a piston ring or a contact slide mounted on a piston or a groove provided on an outer peripheral surface of the piston when the completed internal combustion engine 100 is operated. It means a moving face. Then, in the manufacturing process of the internal combustion engine 100 of the present embodiment, after the formation of the “sliding surface” is completed, further finishing is not performed on the “sliding surface”. The “sliding surface” is a surface that slides in contact with the piston or a piston ring mounted in a groove provided on the outer peripheral surface of the piston when the completed internal combustion engine 100 is operated. It may be a surface formed for the purpose. For example, in the case of (a) finish processing mainly aiming to correct deformation of the cylinder bore 20 or (b) finish processing mainly aiming to adjust the thickness of the cylinder liner 40 or the film thickness of the film 52 Accompanyingly, the sliding surface may be formed incidentally and inevitably. However, it is preferable that the sliding surface is a surface finished for the main purpose of improving and improving seizure resistance and suppressing oil consumption.
 「摺動面」は、シリンダボア20の内周面に対して加工を1回のみ実施することで形成されてもよく、複数回の加工を実施することで形成されてもよい。なお、「摺動面」が複数回の加工を実施することで形成される場合、「摺動面」とは最終回の仕上げ加工を実施した後に形成された面のみを意味し、最終回の仕上げ加工を実施する工程を「摺動面形成工程」という。また、最終回の仕上げ加工以外の加工(1回目の加工~最終回-1回目の加工)を実施する工程は「粗加工面形成工程」という。 The “sliding surface” may be formed by performing the processing only once on the inner peripheral surface of the cylinder bore 20, or may be formed by performing the processing multiple times. In the case where the “sliding surface” is formed by carrying out a plurality of processings, the “sliding surface” means only the surface formed after the final processing of the final processing, and The process of performing the finishing process is referred to as "sliding surface forming process". In addition, the process of carrying out the processing other than the final round of finishing (the first processing to the final -1st processing) is referred to as a "roughly processed surface forming step".
 「摺動面」の表面形態については仕上げ加工方法により様々であり、特に限定されるものではないが、たとえば、表面形状に関しては、クロスハッチ(網状の細かい筋もしくは溝、あるいは、斜交平行線状の細かい筋もしくは溝が形成された面)などが例示でき、表面粗さに関しては、算術平均粗さRaで0.1μm~0.8μm程度が例示できる。 The surface form of the "sliding surface" varies depending on the finishing method, and is not particularly limited. For example, with respect to the surface form, cross hatches (fine grid lines or grooves or oblique parallel lines) Surface, etc., and the surface roughness can be, for example, about 0.1 .mu.m to 0.8 .mu.m in arithmetic average roughness Ra.
 シリンダボア20の内周面20Bを仕上げ加工することにより摺動面を形成する摺動面形成工程は、内燃機関100の製造プロセスにおいて、任意のタイミングで実施できるが、大別すると、(I)嵌合工程の前に摺動面形成工程を実施するか、あるいは、(II)嵌合工程の後に摺動面形成工程を実施する。なお、上記のプロセス(I)、(II)において、必要に応じて、嵌合工程と、摺動面形成工程との間に他の工程を実施してもよい。 The sliding surface forming step of forming the sliding surface by finishing the inner peripheral surface 20B of the cylinder bore 20 can be performed at any timing in the manufacturing process of the internal combustion engine 100. The sliding surface forming step is performed before the fitting step, or (II) the sliding surface forming step is performed after the fitting step. In the processes (I) and (II) described above, another process may be performed between the fitting process and the sliding surface forming process, as necessary.
 (I)嵌合工程の前に摺動面形成工程を実施する場合としては、たとえば、以下の3つの態様が挙げられる。まず、連結シリンダ10が第一の連結シリンダ10Aである場合、(Ia)シリンダライナ40の内周面40Bを仕上げ加工することにより摺動面を形成する摺動面形成工程を、嵌合工程の前のみにおいて実施したり、あるいは、(Ib)シリンダライナ40の内周面40Bに被膜を形成する被膜形成工程を実施した後に、この被膜の表面を仕上げ加工することにより摺動面を形成する摺動面形成工程を実施し、かつ、摺動面形成工程を嵌合工程の前のみにおいて実施することができる。また、連結シリンダ10が、第二の連結シリンダ10Bである場合、(Ic)連結シリンダ本体部50のシリンダボア20が設けられた内周面50Bを被覆する被膜52の表面52Bを仕上げ加工することにより摺動面を形成する摺動面形成工程を、嵌合工程の前のみにおいて実施することができる。 (I) As a case where a sliding face formation process is implemented before a fitting process, the following three modes are mentioned, for example. First, when the connecting cylinder 10 is the first connecting cylinder 10A, (Ia) a sliding surface forming step of forming a sliding surface by finish working the inner peripheral surface 40B of the cylinder liner 40 A slide that forms a sliding surface by finishing the surface of the coating after performing a coating forming step of forming a coating on the inner circumferential surface 40B of the cylinder liner 40 or performed only before or (Ib) The dynamic surface forming process can be performed, and the sliding surface forming process can be performed only before the fitting process. Further, when the connecting cylinder 10 is the second connecting cylinder 10B, (Ic) by finishing the surface 52B of the coating 52 covering the inner circumferential surface 50B provided with the cylinder bore 20 of the connecting cylinder main body 50 The sliding surface forming process for forming the sliding surface can be performed only before the fitting process.
 ここで、(I)嵌合工程の前に摺動面形成工程を実施する場合、嵌合工程は、しまりばめ以外の嵌合方式で実施することが好ましく、具体的には、すきまばめあるいは中間ばめにより実施することがより好ましい。嵌合工程をしまりばめにより実施した場合、連結シリンダ10のシリンダボア20が変形し易くなるため、結果的に、ピストンとシリンダボア20の摺動面との間の気密不良が生じ易くなる上に、嵌合工程の後に、再度、シリンダボア20の変形の修正を兼ねて摺動面形成工程を実施が必要となる可能性も増えるためである。なお、このような問題をより確実に防ぐためには、嵌合工程はすきまばめにより実施することが特に好ましい。 Here, when the sliding surface forming process is carried out before (I) the fitting process, it is preferable to carry out the fitting process by a fitting method other than tight fitting, specifically, the loose fitting Or it is more preferable to carry out by middle fitting. When the fitting process is performed by close fitting, the cylinder bore 20 of the connecting cylinder 10 is easily deformed, and as a result, airtightness between the piston and the sliding surface of the cylinder bore 20 is easily generated. This is because, after the fitting process, there is also an increase in the possibility that the sliding surface forming process needs to be performed again to also correct the deformation of the cylinder bore 20. In order to prevent such problems more reliably, it is particularly preferable to carry out the fitting step by loose fitting.
 また、(II)嵌合工程の後に摺動面形成工程を実施する場合としては、たとえば、以下の3つの態様が挙げられる。まず、連結シリンダ10が第一の連結シリンダ10Aである場合、(IIa)シリンダライナ40の内周面40Bを仕上げ加工することにより摺動面を形成する摺動面形成工程を、嵌合工程の後のみにおいて実施したり、あるいは、(IIb)シリンダライナ40の内周面40Bに被膜を形成する被膜形成工程を実施した後に、この被膜の表面を仕上げ加工することにより摺動面を形成する摺動面形成工程を実施し、かつ、摺動面形成工程を嵌合工程の後のみにおいて実施することができる。また、連結シリンダ10が、第二の連結シリンダ10Bである場合、(IIc)連結シリンダ本体部50のシリンダボア20が設けられた内周面50Bを被覆する被膜52の表面52Bを仕上げ加工することにより摺動面を形成する摺動面形成工程を、嵌合工程の後のみにおいて実施することができる。 Moreover, as a case where a sliding face formation process is implemented after (II) fitting process, the following three aspects are mentioned, for example. First, when the connecting cylinder 10 is the first connecting cylinder 10A, (IIa) a sliding surface forming step of forming a sliding surface by finish working the inner peripheral surface 40B of the cylinder liner 40 After performing a film forming step of forming a film on the inner circumferential surface 40B of the cylinder liner 40 or implemented only after (IIb), the sliding surface is formed by finishing the surface of the film. The dynamic surface forming process can be performed, and the sliding surface forming process can be performed only after the fitting process. When the connecting cylinder 10 is the second connecting cylinder 10B, (IIc) by finishing the surface 52B of the coating 52 covering the inner peripheral surface 50B provided with the cylinder bore 20 of the connecting cylinder main body 50 The sliding surface forming process for forming the sliding surface can be performed only after the fitting process.
 ここで、摺動面が、シリンダボア20の内周面に対して複数回の加工を実施することで形成される場合、粗加工面形成工程は、嵌合工程の前に実施してもよく、嵌合工程の後に実施してもよく、嵌合工程の前に一部を実施して嵌合工程の後に残りを実施してもよい。 Here, when the sliding surface is formed by carrying out machining a plurality of times with respect to the inner peripheral surface of the cylinder bore 20, the roughing surface forming step may be performed before the fitting step, It may be carried out after the fitting process, and a part may be carried out before the fitting process and the rest may be carried out after the fitting process.
 なお、摺動面形成工程は、シリンダライナを鋳ぐるむことでシリンダブロックを形成する従来の一般的な内燃機関においては、シリンダライナを鋳ぐるむことでシリンダブロックを形成した後に行われている。このため、摺動面形成工程を実施した後に、摺動面の検査を行い、検査結果が不良判定となった場合には、シリンダライナが鋳ぐるまれたシリンダブロック全体を廃棄処分する必要がある。 In the conventional general internal combustion engine in which the cylinder block is formed by casting the cylinder liner, the sliding surface forming step is performed after the cylinder block is formed by casting the cylinder liner. . For this reason, it is necessary to inspect the sliding surface after carrying out the sliding surface forming process and discard the entire cylinder block cast in the cylinder liner if the inspection result is judged to be a defect. .
 これに対して、(I)嵌合工程の前に摺動面形成工程を実施する場合、連結シリンダ10単体の状態で摺動面形成工程を実施することになる。このため、摺動面形成工程を実施した後に、摺動面の検査を行い、検査結果が不良判定となった場合、連結シリンダ10のみを廃棄処分すればよい。それゆえ、不良欠陥が発生しても製造過程における廃棄ロスをより少なくできる。 On the other hand, when performing a sliding surface formation process before (I) fitting process, a sliding surface formation process will be implemented in the state of the connection cylinder 10 single-piece | unit. For this reason, after the sliding surface forming process is performed, the sliding surface is inspected, and when the inspection result is determined to be defective, only the connecting cylinder 10 may be disposed of. Therefore, even if defective defects occur, waste loss in the manufacturing process can be further reduced.
 なお、(I)嵌合工程の前に摺動面形成工程を実施する場合、連結シリンダ10単体に対して、そのまま摺動面形成工程を実施してもよいが、連結シリンダ10を、シリンダブロック本体60およびシリンダヘッドを模擬した治具に組み付けた状態で摺動面形成工程を実施してもよい。シリンダブロック本体60に連結シリンダ10が嵌合された状態の内燃機関100にさらにシリンダヘッドを組み付ける場合、シリンダヘッドの組付時に、シリンダボア20が変形し易くなる。このため、このような変形も考慮して、治具を用いて摺動面形成工程を行う場合、摺動面の加工精度をより高めることが容易になる。 In the case where the sliding surface forming process is performed before (I) the fitting process, the sliding surface forming process may be performed on the connecting cylinder 10 alone, but the connecting cylinder 10 may be a cylinder block. The sliding surface forming step may be carried out in a state of being assembled to a jig simulating the main body 60 and the cylinder head. When the cylinder head is further assembled to the internal combustion engine 100 in a state where the connecting cylinder 10 is fitted to the cylinder block main body 60, the cylinder bore 20 is easily deformed when the cylinder head is assembled. For this reason, when performing a sliding face formation process using a jig in consideration of such a modification, it becomes easy to raise processing accuracy of a sliding face more.
 また、治具を用いて摺動面形成工程を行う場合、少なくとも連結シリンダ10を加温した状態で実施することが好ましく、連結シリンダ10および治具を加温した状態で実施することがより好ましい。これにより運転時の部材の温度に近い状態にした上で、最適な摺動面形状を作り込むことが出来る。なお、この場合の加温対象となる部材の温度は、内燃機関100の運転時の平均的な温度に出来る限り近い温度であることが特に好ましい。加温方法としては特に限定されないが、たとえば、冷却液ジャケットに温水(たとえば、30度~95度の温水)を流した状態で摺動面形成工程を実施する方法などが挙げられる。なお、ここで言う冷却液ジャケットとしては、(i)連結シリンダ10内に形成された冷却液ジャケット、(ii)連結シリンダ10の外周面とシリンダブロック本体60を模した治具の内周面との間に形成された(疑似)冷却液ジャケット、あるいは、(iii)シリンダブロック本体60を模した治具内に形成された(疑似)冷却液ジャケットなどが挙げられる。 Moreover, when performing a sliding face formation process using a jig | tool, it is preferable to carry out in the state which heated at least the connection cylinder 10, and it is more preferable to carry out in the state which heated the connection cylinder 10 and a jig | tool . As a result, it is possible to create an optimal sliding surface shape while keeping the temperature close to the temperature of the member at the time of operation. The temperature of the member to be heated in this case is particularly preferably as close as possible to the average temperature during operation of the internal combustion engine 100. The heating method is not particularly limited. For example, a method of carrying out the sliding surface forming step in a state where warm water (for example, warm water of 30 ° to 95 °) is flowed through the coolant jacket can be mentioned. The coolant jacket referred to here includes (i) a coolant jacket formed in the connecting cylinder 10, and (ii) an outer peripheral surface of the connecting cylinder 10 and an inner peripheral surface of a jig imitating the cylinder block main body 60. Or (iii) a (simulated) coolant jacket formed in a jig imitating the cylinder block body 60, and the like.
 摺動面形成工程を、嵌合工程の前に実施するか後に実施するかは、内燃機関100の製造プロセス全体や、内燃機関100の仕様などに応じて適宜選択することができる。たとえば、内燃機関100の製造に、寸法精度が高く、高強度で変形し難い連結シリンダ10やシリンダブロック本体60を用いたり、シリンダヘッドの組み付け時にシリンダボア20の変形を招くような押圧力が加わりにくい場合などでは、(I)嵌合工程の前に摺動面形成工程を実施し、逆の場合は、(II)嵌合工程の後に摺動面形成工程を実施してもよい。 Whether the sliding surface forming process is performed before or after the fitting process can be appropriately selected according to the entire manufacturing process of the internal combustion engine 100, the specification of the internal combustion engine 100, and the like. For example, in manufacturing internal combustion engine 100, it is difficult to use a connecting cylinder 10 or cylinder block main body 60 having high dimensional accuracy and high strength and difficult to deform, or applying a pressing force that causes deformation of cylinder bore 20 when assembling a cylinder head. In some cases, the sliding surface forming process may be performed before the (I) fitting process, and in the opposite case, the sliding surface forming process may be performed after the (II) fitting process.
 また、製造する内燃機関100のシリンダボア20周辺部の冷却能力を向上させたい場合、連結シリンダ10の互いに隣り合う2つのシリンダボア20の間に冷却液用通路を形成する冷却液用通路形成工程を実施することが好ましい。この場合、冷却液用通路形成工程は、嵌合工程の後に実施してもよいが、嵌合工程の前に実施することがより好ましい。なお、いずれのケースにおいても、必要に応じて、冷却液用通路形成工程と嵌合工程との間に他の工程を実施してもよい。なお、冷却液用通路形成工程では、一般的によく利用されているドリル以外にも、ウォータージェット、レーザ、エンドミル、カッターなどの様々な加工手段を用いて冷却液用通路を形成することができる。 Also, when it is desired to improve the cooling capacity of the peripheral portion of the cylinder bore 20 of the internal combustion engine 100 to be manufactured, a coolant fluid passage forming step is performed to form a coolant fluid passage between two adjacent cylinder bores 20 of the connecting cylinder 10. It is preferable to do. In this case, the coolant passage forming step may be performed after the fitting step, but is more preferably performed before the fitting step. In any case, another process may be performed between the coolant passage forming process and the fitting process, as needed. In the coolant passage forming step, the coolant passage can be formed using various processing means such as a water jet, a laser, an end mill, a cutter, etc., in addition to generally used drills. .
 それゆえ、(i)嵌合工程の後に冷却液用通路形成工程を実施する場合、あるいは、(ii)シリンダライナを鋳ぐるむことでシリンダブロックを形成する従来の内燃機関の製造方法において冷却液用通路形成工程を実施する場合と比べて、嵌合工程の前に冷却液用通路形成工程する場合、冷却液用通路の加工形成の自由度をより大きくできる。これは、上記(i)および(ii)に示す場合では、冷却液用通路を形成する場合、冷却液用通路を形成するためにシリンダヘッド側のみからしか掘り進むことができないのに対して、嵌合工程の前に冷却液用通路形成工程する場合では、シリンダヘッド側(連結シリンダ10のシリンダヘッド側の端面側)およびシリンダヘッド側以外(連結シリンダ10の外周面10S)のいずれの側からでも掘り進むことができるためである。また、削掘方向の選択の自由度が大きいため、一般的に用いられているドリル以外の加工手段を用いることも容易である。 Therefore, (i) when the coolant passage forming step is carried out after the fitting step, or (ii) the coolant in the conventional internal combustion engine manufacturing method for forming the cylinder block by casting the cylinder liner. When the coolant passage forming step is performed before the fitting step as compared with the case where the passage forming step is performed, the degree of freedom in forming the coolant passage can be increased. This is because, in the cases shown in the above (i) and (ii), when the coolant passage is formed, it is possible to dig only from the cylinder head side to form the coolant passage, whereas In the case where the coolant passage forming process is performed before the joining process, from either side of the cylinder head side (the end face side of the connecting cylinder 10 on the cylinder head side) and the cylinder head side (the outer peripheral surface 10S of the connecting cylinder 10) It is because it is possible to dig in. In addition, since the degree of freedom in selecting the direction of excavation is large, it is also easy to use processing means other than the commonly used drill.
 それゆえ、シリンダボア20周囲の冷却設計を行う場合に、より理想的な設計を実現することが容易になる。たとえば、上記(i)および(ii)に示すケースでは通常は不可能な冷却液用通路の形成、すなわち、連結シリンダ10のシリンダヘッド側の端面と平行に伸びる冷却液用通路を形成することも可能となる。また、連結シリンダ10に設けられた各々のシリンダボア20の中心線Cと平行を成す平面(ZX平面)における冷却液用通路の断面形状は、図14(A)に示すような単純な円形状の冷却液用通路30A(30)以外にも、様々な形状を選択することが可能である。たとえば、シリンダボア20の並び方向(X方向)の最大幅Lxに対する中心線Cと平行な方向(Z方向)における最大幅Lzの比率(Lz/Lx)が1よりも大きいスリット状の断面形状を持つ冷却液用通路を形成することができる。比率(Lz/Lx)は、たとえば、2~10とすることが好ましく、2.5~8とすることがより好ましい。また、Lz、Lxの値は特に制限されないが、たとえば、Lzは5mm~30mmの範囲が好ましく、Lxは2mm~4mmの範囲内が好ましい。 Therefore, when performing a cooling design around the cylinder bore 20, it is easy to realize a more ideal design. For example, it is also possible to form a coolant passage which can not normally be achieved in the cases shown in the above (i) and (ii), that is, to form a coolant passage extending parallel to the end face of the connecting cylinder 10 on the cylinder head side. It becomes possible. Further, the cross-sectional shape of the coolant passage in a plane (ZX plane) parallel to the center line C of each cylinder bore 20 provided in the connecting cylinder 10 is a simple circular shape as shown in FIG. 14 (A). Various shapes can be selected other than the coolant passage 30A (30). For example, it has a slit-like cross-sectional shape in which the ratio (Lz / Lx) of the maximum width Lz in the direction (Z direction) parallel to the center line C to the maximum width Lx in the alignment direction (X direction) of the cylinder bores 20 is larger than one. A coolant passage can be formed. The ratio (Lz / Lx) is, for example, preferably 2 to 10, and more preferably 2.5 to 8. The values of Lz and Lx are not particularly limited, but for example, Lz is preferably in the range of 5 mm to 30 mm, and Lx is preferably in the range of 2 mm to 4 mm.
 このようなスリット状の断面形状を持つ冷却液用通路30としては、(a)連結シリンダ10の他端側(Z1側)の端面36にもY方向に連続する開口部34を有する冷却液用通路30B(30)(図14(B))、あるいは、(b)連結シリンダ10の他端側(Z1側、シリンダヘッドが配置される側)の端面よりも内側(一端側(Z2側))に設けられた冷却液用通路30C(30)(図14(C))を挙げることもできる。しかし、図14(C)に例示したようなスリット状の断面形状を持つ冷却液用通路30Cを(a)連結シリンダ10の他端側(Z1側)の端面36よりも内側(一端側(Z2側))に設けることで、シリンダボア20周囲の冷却設計の自由度をより大きくすることが可能となる。なお、図14(C)に例示したようなスリット状の断面形状を持つ冷却液用通路30Cを形成する場合、少なくとも嵌合工程の前に冷却液用通路形成工程を実施することが好ましい。このような工程順序であれば、冷却液用通路30Cを形成するために必要な加工手段・加工方法の選択の自由度が極めて高いためである。 As the coolant passage 30 having such a slit-like cross-sectional shape, (a) for a coolant having an opening 34 continuing in the Y direction also on the end face 36 on the other end side (Z1 side) of the connecting cylinder 10 Passage 30B (30) (FIG. 14 (B)) or (b) inner side (one end side (Z2 side)) than the end face of the other end side (Z1 side, the side where the cylinder head is disposed) of the connecting cylinder 10 The coolant passage 30C (30) (FIG. 14 (C)) provided in FIG. However, the coolant passage 30C having a slit-like cross-sectional shape as illustrated in FIG. 14C is (a) inside the end surface 36 on the other end side (Z1 side) of the connecting cylinder 10 (one end side (Z2 By providing it on the side), it is possible to further increase the degree of freedom in the cooling design around the cylinder bore 20. When the coolant passage 30C having a slit-like cross-sectional shape as illustrated in FIG. 14C is formed, it is preferable to carry out the coolant passage forming step at least before the fitting step. With such a process sequence, the degree of freedom in selecting the processing means and processing method required to form the coolant passage 30C is extremely high.
 また、冷却液用通路30の加工ミスが生じるケースでは、冷却液用通路形成工程を嵌合工程の前後のいずれのタイミングで実施する場合においても、上記(ii)に示す場合と比較すると、廃棄処分の対象は連結シリンダ10のみでよい。このため、加工ミスによる廃棄ロスを小さくすることもできる。 Further, in the case where a processing error occurs in the coolant passage 30, even when the coolant passage forming step is performed at any timing before and after the fitting step, it is discarded as compared with the case shown in the above (ii). The object of disposal may be only the connecting cylinder 10. For this reason, it is possible to reduce waste loss due to processing errors.
 なお、冷却液用通路30は、互いに隣り合う2つのシリンダボア20の間に形成されればよいが、第一の連結シリンダ10Aにおいては、通常隣り合う2つのシリンダライナ40の外周面40Aの間の領域(図3および図14中に示す領域M1)に形成され、第二の連結シリンダ10Bにおいては、通常、隣り合う2つのシリンダボア20の内周面20Bを構成する被膜52の外周側面52Aの間の領域(図5中に示す領域M2)に形成される。 The coolant passage 30 may be formed between two cylinder bores 20 adjacent to each other. However, in the first connecting cylinder 10A, the space between the outer peripheral surfaces 40A of the two cylinder liners 40 normally adjacent to each other is generally used. Between the outer peripheral side surfaces 52A of the coatings 52 which are formed in the region (region M1 shown in FIGS. 3 and 14) and which normally form the inner peripheral surface 20B of the two adjacent cylinder bores 20 in the second connecting cylinder 10B. (Area M2 shown in FIG. 5).
<内燃機関、連結シリンダおよびシリンダブロック本体>
 次に、本実施形態の内燃機関の製造方法により製造される内燃機関100、ならびに、これに用いる連結シリンダ10およびシリンダブロック本体60のより好適な形状・構造について以下に説明する。本実施形態の内燃機関の製造方法により製造される内燃機関100は、図7および図8に例示したように、連結シリンダ10と、シリンダブロック本体60とを少なくとも備え、連結シリンダ10が、シリンダブロック本体60の中空部64に脱着可能に嵌め合された構造を有する。
<Internal combustion engine, connected cylinder and cylinder block body>
Next, the internal combustion engine 100 manufactured by the method of manufacturing an internal combustion engine according to the present embodiment, and more preferable shapes and structures of the connecting cylinder 10 and the cylinder block main body 60 used for the same will be described below. An internal combustion engine 100 manufactured by the method of manufacturing an internal combustion engine according to this embodiment includes at least a connecting cylinder 10 and a cylinder block body 60 as illustrated in FIGS. 7 and 8, and the connecting cylinder 10 is a cylinder block The hollow portion 64 of the main body 60 is detachably fitted.
 ここで、本実施形態の内燃機関100において、シリンダボア20の外周側を囲むように設けられる冷却液ジャケットは、(i)連結シリンダ10内(連結シリンダ10の外周面10Sよりも内側)、(ii)連結シリンダ10の外周面10Sと、シリンダブロック本体60の中空部の内周面64Sとの間、あるいは、(iii)シリンダブロック本体60内(中空部64の内周面64Sよりも外周側)、のいずれかに設けることができる。しかしながら、上記(i)に示すケースでは連結シリンダ10に冷却液ジャケットを設けることになるため、連結シリンダ10の構造が複雑化し、上記(iii)に示すケースではシリンダブロック本体60に冷却液ジャケットを設けることになるため、シリンダブロック本体60の構造が複雑化する。このため、冷却液ジャケットは、連結シリンダ10と、シリンダブロック本体60との間に設けることが好ましい。また、構造の複雑化による製造性の低下を招きやすいことから、連結シリンダ10内には冷却液ジャケットを設けないことが好ましい。 Here, in the internal combustion engine 100 of the present embodiment, the coolant jacket provided so as to surround the outer peripheral side of the cylinder bore 20 is (i) inside the connecting cylinder 10 (inner than the outer peripheral surface 10S of the connecting cylinder 10), (ii ) Between the outer peripheral surface 10S of the connecting cylinder 10 and the inner peripheral surface 64S of the hollow portion of the cylinder block main body 60, or (iii) inside the cylinder block main body 60 (outer peripheral side than the inner peripheral surface 64S of the hollow portion 64) It can be provided in any of. However, in the case shown in the above (i), the connecting cylinder 10 is provided with a coolant jacket, so the structure of the connecting cylinder 10 is complicated, and in the case shown in the above (iii) As a result, the structure of the cylinder block body 60 is complicated. For this reason, it is preferable that the coolant jacket be provided between the connecting cylinder 10 and the cylinder block body 60. Moreover, it is preferable not to provide a cooling fluid jacket in the connecting cylinder 10, since the manufacturing efficiency tends to be reduced due to the complexity of the structure.
 これに対して、上記(ii)に示すケースでは、シリンダライナを鋳ぐるむことで、シリンダブロック内に冷却液ジャケットを備えたシリンダブロックを形成した従来の内燃機関と比べて、内燃機関100の製造に際して複雑な形状の金型を使用しなくてもよくなる。このため、内燃機関100の製造性が向上する。 On the other hand, in the case shown in the above (ii), the internal combustion engine 100 can be compared to the conventional internal combustion engine in which the cylinder block including the coolant jacket is formed in the cylinder block by casting the cylinder liner. It is not necessary to use a mold of complicated shape in manufacturing. For this reason, the manufacturability of the internal combustion engine 100 is improved.
 また、本実施形態の内燃機関100では、シリンダボア20の摺動面の温度分布が所望の状態となるように、冷却液ジャケット内の冷却液の流れを理想的な状態に近づけるために、必要に応じて冷却液ジャケット内に冷却液ジャケットスペーサをさらに配置してもよい。なお、上記(ii)に示すケースでも、冷却液ジャケット内に冷却液ジャケットスペーサが配置された第一の態様と、冷却液ジャケット内に冷却液ジャケットスペーサが配置されない第二の態様のいずれも選択できるが、第二の態様がより好適である。この理由は以下の通りである。すなわち、冷却液ジャケットの形状および深さは、連結シリンダ10の外周面10Sの形状と、シリンダブロック本体60の中空部の内周面64Sとによって決定される。そして、連結シリンダ10とシリンダブロック本体60とは別個独立した部材であるため、両部材の形状設計の自由度は極めて高い。したがって、冷却液ジャケットの形状および深さの設計自由度も極めて高くなる。それゆえ、第二の態様でも、シリンダボア20の摺動面の温度分布が所望の状態となるように、冷却液ジャケット内の冷却液の流れを理想的な状態に近づけることが極めて容易である。また、これにより内燃機関100を構成する部品点数の削減および内燃機関100の構造簡略化も実現できる。 Further, in the internal combustion engine 100 of the present embodiment, it is necessary to bring the flow of the coolant in the coolant jacket closer to an ideal state so that the temperature distribution on the sliding surface of the cylinder bore 20 is in a desired state. Accordingly, a coolant jacket spacer may be additionally disposed within the coolant jacket. Also in the case shown in (ii) above, either the first embodiment in which the coolant jacket spacer is disposed in the coolant jacket or the second embodiment in which the coolant jacket spacer is not disposed in the coolant jacket is selected. Although possible, the second aspect is more preferable. The reason is as follows. That is, the shape and depth of the coolant jacket are determined by the shape of the outer peripheral surface 10S of the connecting cylinder 10 and the inner peripheral surface 64S of the hollow portion of the cylinder block main body 60. Further, since the connecting cylinder 10 and the cylinder block body 60 are separate and independent members, the degree of freedom in the shape design of both members is extremely high. Therefore, the design freedom of the shape and depth of the coolant jacket is also extremely high. Therefore, even in the second embodiment, it is extremely easy to bring the flow of the coolant in the coolant jacket close to an ideal state so that the temperature distribution on the sliding surface of the cylinder bore 20 is in a desired state. Further, the reduction in the number of parts constituting the internal combustion engine 100 and the simplification of the structure of the internal combustion engine 100 can also be realized.
 冷却液ジャケットを、連結シリンダ10の外周面10Sと、シリンダブロック本体60の中空部64の内周面64Sとの間に設ける場合、図8に例示したように、連結シリンダ10の外周面10Sの他端側(シリンダヘッド側)と、シリンダブロック本体60の中空部64の内周面64Sの他端側(シリンダヘッド側)との間に冷却液ジャケット70を設ける。また、連結シリンダ10の外周面10Sの一端側と、シリンダブロック本体60の中空部64の内周面64Sの一端側とは、互いに接触することで、連結シリンダ10が、シリンダブロック本体60の中空部64の一端側の部分(嵌合部64J)において脱着可能に嵌め合せられる部分となる。 When the coolant jacket is provided between the outer peripheral surface 10S of the connection cylinder 10 and the inner peripheral surface 64S of the hollow portion 64 of the cylinder block main body 60, as illustrated in FIG. A coolant jacket 70 is provided between the other end (the cylinder head side) and the other end (the cylinder head side) of the inner peripheral surface 64S of the hollow portion 64 of the cylinder block main body 60. Further, the one end side of the outer peripheral surface 10S of the connecting cylinder 10 and the one end side of the inner peripheral surface 64S of the hollow portion 64 of the cylinder block main body 60 contact each other, so that the connecting cylinder 10 is a hollow of the cylinder block main body 60 In one end portion (fitting portion 64J) of the portion 64, the portion 64 can be detachably fitted.
 上記(i)~(iii)のいずれのケースにおいても、冷却液ジャケット70の深さD(Z方向の長さ)は特に制限されず内燃機関100の設計仕様に応じて適宜選択できるが、連結シリンダ10に設けられた各々のシリンダボア20の中心線C方向における連結シリンダ10の全長Lを基準とした場合、たとえば、深さDを全長Lの1/6倍~5/6倍程度の範囲内で適宜選択できる。たとえば、シリンダボア20のシリンダヘッド側近傍の部分を選択的・集中的に冷却する仕様の内燃機関100であれば、深さDを全長Lの1/6倍~1/2倍の範囲としたり、1/6倍~1/3倍の範囲としたり、あるいは、1/6倍~1/4倍の範囲とすることができる。なお、深さDが全長Lの1/2倍以下の浅い冷却液ジャケット70の形成が容易である観点からは、上記(i)~(iii)のうち、(ii)が最も好適である。また、冷却液ジャケット70内に冷却液ジャケットスペーサを配置せずに、冷却液ジャケット70内の冷却液の流れをより理想的な状態に近づけたい場合、深さDが全長Lの1/2倍以下の浅い冷却液ジャケット70の形成することが好ましい。 In any of the above cases (i) to (iii), the depth D (the length in the Z direction) of the coolant jacket 70 is not particularly limited and may be appropriately selected according to the design specification of the internal combustion engine 100. Based on the total length L of the connecting cylinder 10 in the direction of the center line C of each cylinder bore 20 provided in the cylinder 10, for example, the depth D is in the range of about 1/6 to 5/6 times the total length L Can be selected as appropriate. For example, in the case of an internal combustion engine 100 having a specification for selectively and intensively cooling a portion in the vicinity of the cylinder head side of the cylinder bore 20, the depth D is in the range of 1/6 to 1/2 times the total length L, It may be in the range of 1/6 times to 1/3 times, or in the range of 1/6 times to 1/4 times. Among the above (i) to (iii), (ii) is most preferable from the viewpoint of easy formation of the shallow coolant jacket 70 having a depth D of 1/2 or less of the total length L. Further, when it is desired to bring the flow of the coolant in the coolant jacket 70 closer to a more ideal state without arranging the coolant jacket spacer in the coolant jacket 70, the depth D is 1/2 times the total length L. The formation of the following shallow coolant jacket 70 is preferred.
 なお、冷却液ジャケット70内の冷却液(水等)が、クランク室62側へと漏れることが無いように、嵌合部64Jの内周面64Sと、嵌合部64Jの内周面64Sに対向する連結シリンダ10の外周面10Sとの間には、たとえば、Oリングなどのシール部材が配置される。また、嵌合部64Jの内周面64S、および、嵌合部64Jの内周面64Sに対向する連結シリンダ10の外周面10Sから選択される少なくとも一方の面には、必要に応じて、周方向に連続する溝を設け、この溝にシール部材を装着してもよい。 The inner peripheral surface 64S of the fitting portion 64J and the inner peripheral surface 64S of the fitting portion 64J are provided so that the coolant (water and the like) in the coolant jacket 70 does not leak to the crank chamber 62 side. A seal member such as an O-ring, for example, is disposed between the opposing outer peripheral surface 10S of the connecting cylinder 10. At least one surface selected from the outer circumferential surface 10S of the connecting cylinder 10 facing the inner circumferential surface 64S of the fitting portion 64J and the inner circumferential surface 64S of the fitting portion 64J may be circumferential as necessary. A groove may be provided which is continuous in the direction, and the seal member may be attached to the groove.
 また、シリンダボア20のシリンダヘッド側の強度向上および変形抑制、ならびに、高過給時の内燃機関100の信頼性を向上させるために、(a1)連結シリンダ10の外周面10Sのうち、他端側の外周面10Sの少なくとも一部に突出部を設け、この突出部の先端部を、シリンダブロック本体60の中空部64の他端側の内周面64Sと略密着させてもよい。また、同様の観点からは、(a2)シリンダブロック本体60の中空部64の他端側の内周面64Sの少なくとも一部に突出部を設けることもできる。あるいは、図7および図8に例示したように、(b)連結シリンダ10の他端側の外周面10Sと、シリンダブロック本体60の中空部64の他端側の内周面64Sとの間に、連結シリンダ10とシリンダブロック本体60とを互いに固定する固定部材80を設けてもよい。なお、連結シリンダ10の製造がより容易となる観点からは、連結シリンダ10の外周面10Sあるいはシリンダブロック本体60の内周面64Sに突出部を設けるよりも、固定部材80を用いる方がより望ましい。 Further, in order to improve the strength and the deformation of the cylinder head side of the cylinder bore 20 and to suppress the deformation, and to improve the reliability of the internal combustion engine 100 at high supercharging, (a1) the other end side of the outer peripheral surface 10S of the connecting cylinder 10 A protrusion may be provided on at least a part of the outer peripheral surface 10S, and the tip of the protrusion may be in close contact with the inner peripheral surface 64S on the other end side of the hollow portion 64 of the cylinder block main body 60. From the same point of view, a protrusion may be provided on at least a part of the inner peripheral surface 64S on the other end side of the hollow portion 64 of the (a2) cylinder block main body 60. Alternatively, as illustrated in FIGS. 7 and 8, (b) between the outer peripheral surface 10S on the other end side of the connecting cylinder 10 and the inner peripheral surface 64S on the other end side of the hollow portion 64 of the cylinder block body 60. A fixing member 80 may be provided to fix the connecting cylinder 10 and the cylinder block body 60 to each other. From the viewpoint of easier manufacture of the connecting cylinder 10, it is more desirable to use the fixing member 80 than providing the projecting portion on the outer peripheral surface 10S of the connecting cylinder 10 or the inner peripheral surface 64S of the cylinder block main body 60. .
 上記(a1)および(a2)に例示したように、連結シリンダ10の他端側の部分と、シリンダブロック本体の他端側の部分とで嵌合部を形成する場合、嵌合部の嵌合方式は、すきまばめ、中間ばめおよびしまりばめから選択されるいずれの嵌合方式でもよい。また、(b)に例示したように連結シリンダ10の他端側の部分と固定部材80とで第一の嵌合部を形成し、シリンダブロック本体60の他端側の部分と固定部材80とで第二の嵌合部を形成する場合も、第一の嵌合部および第二の嵌合部の嵌合方式は、すきまばめ、中間ばめおよびしまりばめから選択されるいずれの嵌合方式でもよい。しかしながら、内燃機関100の組立時におけるシリンダボア20の変形を抑制する観点からは、すきまばめまたは中間ばめが好ましく、すきまばめが特に好ましい。このような嵌合方式は、内燃機関100の組立てに際して、(I)嵌合工程の前に摺動面形成工程を実施するプロセスを採用する場合に特に好適である。 As illustrated in the above (a1) and (a2), when the fitting portion is formed by the portion on the other end side of the connecting cylinder 10 and the portion on the other end side of the cylinder block main body, the fitting of the fitting portion The method may be any fitting method selected from loose fit, middle fit and tight fit. Further, as illustrated in (b), a first fitting portion is formed by the portion on the other end side of the connecting cylinder 10 and the fixing member 80, and the portion on the other end side of the cylinder block main body 60 and the fixing member 80 In the case where the second fitting portion is formed in the second fitting portion, the fitting method of the first fitting portion and the second fitting portion is any fitting selected from a loose fit, an intermediate fit and a tight fit. May be used. However, from the viewpoint of suppressing the deformation of the cylinder bore 20 at the time of assembly of the internal combustion engine 100, a loose fit or an intermediate fit is preferable, and a loose fit is particularly preferable. Such a fitting method is particularly suitable when employing a process in which a sliding surface forming step is performed prior to the (I) fitting step in assembling the internal combustion engine 100.
 固定部材80を用いる場合、固定部材80が所定の位置からずれないように、連結シリンダ10の他端側の外周面10Sには、図1、図2、図4および図8に例示したように溝12を設け、シリンダブロック本体60の中空部64の他端側の内周面64Sにも、図6および図8に例示したように連結シリンダ10の外周面10Sに設けられた溝12に対応する位置に溝66を設けてもよい。この場合、固定部材80の一端を溝12に嵌め込み、他端を溝66に嵌め込むことで、連結シリンダ10の外周面10Sと、シリンダブロック本体60の中空部64の内周面64Sとの間に固定部材80を配置することができる。なお、溝12は予め連結シリンダ10に形成されており、溝66も予めシリンダブロック本体60に形成されていてもよい。しかしながら、溝12が形成されていない連結シリンダ10と、溝66が形成されていないシリンダブロック本体60とを嵌合した後に、溝12、66を形成することが好ましい。 When the fixing member 80 is used, the outer peripheral surface 10S on the other end side of the connecting cylinder 10 is as illustrated in FIG. 1, FIG. 2, FIG. 4 and FIG. 8 so that the fixing member 80 does not shift from the predetermined position. A groove 12 is provided, and the inner peripheral surface 64S on the other end side of the hollow portion 64 of the cylinder block main body 60 also corresponds to the groove 12 provided in the outer peripheral surface 10S of the connecting cylinder 10 as illustrated in FIGS. The groove 66 may be provided at the position where In this case, one end of the fixing member 80 is fitted in the groove 12 and the other end is fitted in the groove 66, so that between the outer peripheral surface 10S of the connecting cylinder 10 and the inner peripheral surface 64S of the hollow portion 64 of the cylinder block main body 60. The fixing member 80 can be arranged on the The groove 12 may be formed in advance in the connecting cylinder 10, and the groove 66 may also be formed in the cylinder block body 60 in advance. However, it is preferable to form the grooves 12, 66 after the coupling cylinder 10 in which the grooves 12 are not formed and the cylinder block body 60 in which the grooves 66 are not formed.
 なお、図8に示す例では、固定部材80の断面形状は方形を成しており、固定部材80と連結シリンダ10との界面(第一界面)、および、固定部材80とシリンダブロック本体60との界面(第二界面)はいずれもシリンダボア20の中心線Cと平行を成している。したがって、内燃機関100の組立に際して、すきまばめにより固定部材80を、連結シリンダ10とシリンダブロック本体60との間に配置しても、内燃機関100の稼働時に、ピストンの上死点付近である連結シリンダ10の他端側(Z1側)近傍が熱膨張した際に、第一界面および第二界面の隙間が無くなってしまうことがある。この場合、連結シリンダ10の他端側(Z1側)が、固定部材80により押圧されて、結果的にシリンダボア20が変形し易くなる。しかし、このような変形を防ぐために、第一界面および第二界面における最小すきまが大きくなるように寸法設計すると、連結シリンダ10の他端側(Z1側)を強固に固定することが難しくなる。 In the example shown in FIG. 8, the cross-sectional shape of the fixing member 80 is rectangular, and the interface (first interface) between the fixing member 80 and the connecting cylinder 10, and the fixing member 80 and the cylinder block main body 60 All of the interfaces (second interfaces) are parallel to the center line C of the cylinder bore 20. Therefore, even when fixing member 80 is disposed between coupling cylinder 10 and cylinder block body 60 by close fitting during assembly of internal combustion engine 100, the piston is near the top dead center of the piston when internal combustion engine 100 is in operation. When the vicinity of the other end side (Z1 side) of the connecting cylinder 10 is thermally expanded, the gap between the first interface and the second interface may be lost. In this case, the other end side (Z1 side) of the connecting cylinder 10 is pressed by the fixing member 80, and as a result, the cylinder bore 20 is easily deformed. However, if the dimension is designed so that the minimum clearance at the first interface and the second interface becomes large in order to prevent such deformation, it becomes difficult to firmly fix the other end side (Z1 side) of the connecting cylinder 10.
 上述したジレンマを抑制するために、固定部材80の断面形状を、たとえば、逆台形状としてもよい。この場合、固定部材80と連結シリンダ10との界面は、シリンダブロック本体60の一端側(Z2側)から他端側(Z1側)に向かうに従って、シリンダボア20の中心線Cに近づくように傾斜し、固定部材80とシリンダブロック本体60との界面は、シリンダブロック本体60の一端側(Z2側)から他端側(Z1側)に向かうに従って、シリンダボア20の中心線Cから離れるように傾斜する。このため、内燃機関100の稼働時においてピストンの上死点付近である連結シリンダ10の他端側(Z1側)近傍が熱膨張した際に、連結シリンダ10側から固定部材80側へと加わる押圧力を、固定部材80が他端側(Z1側)へとスライドすることで緩和し易くなる。 In order to suppress the above-described dilemma, the cross-sectional shape of the fixing member 80 may be, for example, an inverted trapezoidal shape. In this case, the interface between the fixing member 80 and the connecting cylinder 10 is inclined so as to approach the center line C of the cylinder bore 20 as it goes from one end side (Z2 side) to the other end side (Z1 side) of the cylinder block main body 60 The interface between the fixing member 80 and the cylinder block main body 60 is inclined away from the center line C of the cylinder bore 20 as it goes from one end side (Z2 side) to the other end side (Z1 side) of the cylinder block main body 60. For this reason, when the vicinity of the other end side (Z1 side) of the connecting cylinder 10 which is near the top dead center of the piston is thermally expanded during operation of the internal combustion engine 100, the pressure applied from the connecting cylinder 10 side to the fixing member 80 side The pressure is easily relieved by the fixing member 80 sliding to the other end side (Z1 side).
 また、固定部材80を構成する材料としては、特に制限されず、たとえば、アルミニウム合金、マグネシウム合金、スチール等の鉄合金などの各種金属材料、樹脂材料、有機無機複合材料、アルミナなどのセラミックスが利用できる。 Further, the material constituting the fixing member 80 is not particularly limited. For example, various metal materials such as aluminum alloy, magnesium alloy, iron alloy such as steel, resin material, organic-inorganic composite material, ceramics such as alumina are used it can.
 本実施形態の内燃機関の製造方法に用いられる連結シリンダ10は、第一の連結シリンダ10Aについては、2つ以上のシリンダライナ40と、2つ以上のシリンダライナ40を互いに連結する連結部42とを含むものであればその形状・構造は特に限定されず、第二の連結シリンダ10Bについては、2つ以上のシリンダボア20が設けられた連結シリンダ本体部50と、連結シリンダ本体部50のシリンダボア20が設けられた内周面50Bを被覆する被膜52とを含むものであればその形状・構造は特に限定されない。同様に、シリンダブロック本体60も、一端側(Z2側)にクランク室62が形成され、他端側(Z1側)にシリンダヘッドが組み付けられると共に、一端側から他端側へと貫通する中空部64が設けられたものであればその形状・構造は特に限定されない。 The connecting cylinder 10 used in the method of manufacturing an internal combustion engine according to the present embodiment includes two or more cylinder liners 40 and a connecting portion 42 for connecting two or more cylinder liners 40 to each other for the first connecting cylinder 10A. The shape and structure of the second connection cylinder 10B is not particularly limited as long as the second connection cylinder 10B includes the connection cylinder body 50 provided with two or more cylinder bores 20 and the cylinder bore 20 of the connection cylinder body 50. The shape and structure thereof are not particularly limited as long as they include the coating 52 covering the inner circumferential surface 50B provided with. Similarly, in the cylinder block body 60, a crank chamber 62 is formed on one end side (Z2 side), and a cylinder head is assembled on the other end side (Z1 side), and a hollow portion penetrating from one end side to the other end side The shape / structure is not particularly limited as long as 64 is provided.
 一方、連結シリンダ10およびシリンダブロック本体60は、これらを用いて製造された内燃機関100の優れたメンテナンス性、優れたリサイクル性および設計自由度の高さを両立させると共に、さらに製造しやすい形状・構造をさらに有していることが好ましい。しかしながら、連結シリンダ10およびシリンダブロック本体60は、両部材を組み合わせて内燃機関100を製造するために用いられる。このため、連結シリンダ10の製造性のみを考慮して連結シリンダ10の形状・構造を決定しても、連結シリンダ10と組み合わせて用いるシリンダブロック本体60の形状・構造が複雑化してシリンダブロック本体60の製造性が低下したり、さらには、内燃機関100の製造性が低下してしまうこともある。また、この点は、シリンダブロック本体60の製造性のみを考慮してシリンダブロック本体60の形状・構造を決定する場合も同様である。したがって、本発明者らは、これらの点を考慮して、連結シリンダ10およびこれと組み合わせて用いるシリンダブロック本体60の形状・構造として、以下に説明する形状・構造が好適であることを見出した。 On the other hand, connecting cylinder 10 and cylinder block main body 60 have both the excellent maintainability, the excellent recyclability, and the high degree of freedom of design of internal combustion engine 100 manufactured using them, and also have a shape that is easy to manufacture It is preferable to further have a structure. However, the connecting cylinder 10 and the cylinder block body 60 are used to manufacture the internal combustion engine 100 by combining the two members. Therefore, even if the shape and structure of the connecting cylinder 10 are determined in consideration of only the manufacturability of the connecting cylinder 10, the shape and structure of the cylinder block main body 60 used in combination with the connecting cylinder 10 is complicated and the cylinder block main body 60 The productivity of the internal combustion engine 100 may be reduced, or the productivity of the internal combustion engine 100 may be reduced. Moreover, this point is the same also when determining the shape and structure of the cylinder block main body 60 in consideration of only the manufacturability of the cylinder block main body 60. Therefore, in view of these points, the inventors have found that the shape and structure described below are preferable as the shape and structure of the connecting cylinder 10 and the cylinder block main body 60 used in combination with the connecting cylinder 10. .
 まず、第一の連結シリンダ10Aについては、図1および図3中に示す符号IX-IX間の断面構造(YZ断面構造)を図示した図9に例示したように2つ以上のシリンダライナ40と、2つ以上のシリンダライナ40を互いに連結する連結部42とを含み、各々のシリンダライナ40のボア径Dbを拡径した連環状の外周形状を有する。そして、各々のシリンダライナ40の中心線C方向において、シリンダヘッド側近傍から中央部近傍までの外周面(第一領域10S1)における各々のシリンダライナ40の中心線Cを基準とする外径D1が、クランク室側近傍の外周面(第二領域10S2)における各々のシリンダライナ40の中心線Cを基準とする外径D2よりも大きく、かつ、第一領域10S1と、第二領域10S2との間には、外周方向と平行かつ連続する段差14が形成されていることが好ましい。 First, with regard to the first connecting cylinder 10A, two or more cylinder liners 40 and a cross-sectional structure (YZ cross-sectional structure) shown in FIG. 1 and FIG. And a connecting portion 42 that connects two or more cylinder liners 40 to each other, and has a continuous annular outer peripheral shape in which the bore diameter Db of each cylinder liner 40 is expanded. Then, in the direction of the center line C of each cylinder liner 40, the outer diameter D1 based on the center line C of each cylinder liner 40 on the outer peripheral surface (first region 10S1) from the vicinity of the cylinder head side to the vicinity of the central portion Between the first region 10S1 and the second region 10S2, which is larger than the outer diameter D2 based on the center line C of each cylinder liner 40 in the outer peripheral surface (second region 10S2) near the crank chamber side; Preferably, the step 14 is formed in parallel with and continuous with the outer peripheral direction.
 また、第二の連結シリンダ10Bについては、図5中に示す符号X-X間の断面構造(YZ断面構造)を図示した図10に例示したように2つ以上のシリンダボア20が設けられた連結シリンダ本体部50と、連結シリンダ本体部50のシリンダボア20が設けられた内周面50Bを被覆する被膜52とを含み、各々のシリンダボア20のボア径Dbを拡径した連環状の外周形状を有する。そして、各々のシリンダボア20の中心線C方向において、シリンダヘッド側近傍から中央部近傍までの外周面(第一領域10S1)における各々のシリンダボア20の中心線Cを基準とする外径D1が、クランク室側近傍の外周面(第二領域10S2)における各々のシリンダボア20の中心線Cを基準とする外径D2よりも大きく、かつ、第一領域10S1と、第二領域10S2との間には、外周方向と平行かつ連続する段差14が形成されていることが好ましい。なお、図10に示す第二の連結シリンダ10Bの外周形状は、図1に示す第一の連結シリンダ10Aの外周形状と同様である。 In addition, in the second connection cylinder 10B, as illustrated in FIG. 10 illustrating the cross-sectional structure (YZ cross-sectional structure) between the symbols XX illustrated in FIG. 5, a connection in which two or more cylinder bores 20 are provided. It has a continuous annular outer peripheral shape including a cylinder body 50 and a coating 52 covering the inner circumferential surface 50B of the connecting cylinder body 50 provided with the cylinder bore 20, and the bore diameter Db of each cylinder bore 20 is expanded. . Then, in the direction of the center line C of each cylinder bore 20, the outer diameter D1 based on the center line C of each cylinder bore 20 on the outer peripheral surface (first region 10S1) from the vicinity of the cylinder head side to the vicinity of the central portion Between the first region 10S1 and the second region 10S2, which is larger than the outer diameter D2 based on the center line C of each cylinder bore 20 in the outer peripheral surface (second region 10S2) near the chamber side, It is preferable that a step 14 parallel and continuous to the outer peripheral direction be formed. The outer peripheral shape of the second connecting cylinder 10B shown in FIG. 10 is the same as the outer peripheral shape of the first connecting cylinder 10A shown in FIG.
 さらに、シリンダブロック本体60については、中空部64の開口形状が、図1、図9および図10に例示した連結シリンダ10の外周形状に対応する連環状であることが好ましい。具体的には、図6および図8に例示したように、中空部64の内周面64Sには、周方向に連続する第一の段差68Aと、周方向に連続しかつ第一の段差68Aよりも一端側(クランク室側)に設けられた第二の段差68Bと、を有し、第一の段差68Aの他端側(シリンダヘッド側)の内周面64S1における中空部64の開口幅W1と、第一の段差68Aの一端側(クランク室側)かつ第二の段差68Bの他端側(シリンダヘッド側)の内周面64S2における中空部64の開口幅W2と、第二の段差68Bの一端側(クランク室側)の内周面64S3における中空部64の開口幅W3とが、W1>W2>W3なる関係を満たすことが好ましい。開口幅W1、W2、W3は、中空部64の開口形状の短手方向(Y方向)の開口幅および長手方向(X方向)の開口幅を問わず、任意の方向における開口幅を意味する。すなわち、短手方向(Y方向)および長手方向(X方向)を問わずW1>W2>W3なる関係を満たすことが好ましい。なお、図8中に図示される開口幅W1sm、W2sm、W3smは、中空部64の開口形状の短手方向(Y方向)おける最大開口幅を意味し、それぞれ、開口幅W1、W2、W3に対応している。また、開口幅W2sm、W3smは、それぞれ、連結シリンダ10の外径D1、D2に等しい Furthermore, in the cylinder block main body 60, it is preferable that the opening shape of the hollow portion 64 be a continuous annular shape corresponding to the outer peripheral shape of the connecting cylinder 10 illustrated in FIGS. Specifically, as illustrated in FIG. 6 and FIG. 8, on the inner circumferential surface 64S of the hollow portion 64, a first step 68A continuous in the circumferential direction and a first step 68A continuous in the circumferential direction are provided. The opening width of the hollow portion 64 at the inner peripheral surface 64S1 at the other end side (cylinder head side) of the first step 68A, having a second step 68B provided on one end side (crank chamber side) W1, an opening width W2 of the hollow portion 64 in the inner peripheral surface 64S2 on one end side (crank chamber side) of the first step 68A and the other end side (cylinder head side) of the second step 68B, and a second step It is preferable that the opening width W3 of the hollow portion 64 on the inner circumferential surface 64S3 on one end side (crank chamber side) of the 68B satisfy the relationship of W1> W2> W3. The opening widths W1, W2 and W3 mean the opening width in any direction regardless of the opening width in the short direction (Y direction) and the opening width in the longitudinal direction (X direction) of the opening shape of the hollow portion 64. That is, it is preferable to satisfy the relationship of W1> W2> W3 regardless of the short direction (Y direction) and the longitudinal direction (X direction). Note that the opening widths W1sm, W2sm, W3sm illustrated in FIG. 8 mean the maximum opening width in the short side direction (Y direction) of the opening shape of the hollow portion 64, and for the opening widths W1, W2, W3, respectively. It corresponds. Further, the opening widths W2sm and W3sm are equal to the outer diameters D1 and D2 of the connecting cylinder 10, respectively.
 ここで、内周面64Sに第一の段差68Aおよび第二の段差68Bが設けられたシリンダブロック本体60の中空部64に、外周面10Sに段差14が設けられた連結シリンダ10を嵌め合せた場合、中心線C方向において、シリンダブロック本体60の内周面64Sに設けられた第二の段差68Bと連結シリンダ10の外周面10Sに設けられた段差14とが一致するように嵌め合せされる。同時に、第一の段差68Aよりもクランク室側では、シリンダブロック本体60の内周面64S2と連結シリンダ10の外周面10S(の第一領域10S1)とが直接密着あるいはシール部材を介して密着すると共に、シリンダブロック本体60の内周面64S3と連結シリンダ10の外周面10S(の第二領域10S2)とが直接密着あるいはシール部材を介して密着する。すなわち、連結シリンダ10の外周面10Sのうち、第一領域10S1の第二領域10S2側の部分、および、第二領域10S2が、シリンダブロック本体60の嵌合部64Jに対応する嵌合部分を形成する。このため、第一の段差68Aよりもシリンダヘッド側において、シリンダブロック本体60の内周面64S1と連結シリンダ10の外周面10S(の第一領域10S1)との間に形成される冷却液ジャケット70内の冷却液が、クランク室62側に漏れるのを防ぐことができる。 Here, in the hollow portion 64 of the cylinder block main body 60 provided with the first step 68A and the second step 68B on the inner peripheral surface 64S, the connecting cylinder 10 having the step 14 provided on the outer peripheral surface 10S is fitted. In this case, the second step 68B provided on the inner peripheral surface 64S of the cylinder block main body 60 and the step 14 provided on the outer peripheral surface 10S of the connecting cylinder 10 are fitted in the center line C direction. . At the same time, on the crank chamber side of the first step 68A, the inner peripheral surface 64S2 of the cylinder block main body 60 and the outer peripheral surface 10S (the first region 10S1 of the connecting cylinder 10) are in direct contact or in intimate contact via the seal member. At the same time, the inner peripheral surface 64S3 of the cylinder block main body 60 and the outer peripheral surface 10S (the second region 10S2 of the connecting cylinder 10) are in direct contact or in intimate contact via the seal member. That is, in the outer peripheral surface 10S of the connecting cylinder 10, the portion on the second region 10S2 side of the first region 10S1 and the second region 10S2 form a fitting portion corresponding to the fitting portion 64J of the cylinder block main body 60 Do. For this reason, the coolant jacket 70 formed between the inner peripheral surface 64S1 of the cylinder block main body 60 and the outer peripheral surface 10S of the connecting cylinder 10 (the first region 10S1) on the cylinder head side than the first step 68A. The coolant inside can be prevented from leaking to the crank chamber 62 side.
 また、シリンダボア20内およびシリンダボア20近傍の冷却特性を支配する冷却液ジャケット70の容量および中心線C方向における冷却液ジャケット70の形成位置については、たとえば、シリンダブロック本体60側に着目した場合、(1)最大開口幅W1smの大きさおよび(2)中心線C方向における第一の段差68Aの形成位置を選択することにより容易に調整できる。そして、上記(1)および(2)に示すシリンダブロック本体60の寸法形状の変更は、シリンダブロック本体60が鋳造あるいは樹脂成形により製造される場合においても極めて容易である。シリンダブロック本体60を、体積収縮による不良欠陥が生じやすい鋳造あるいは樹脂成形により製造する場合であっても、シリンダブロック本体60は、シリンダライナを鋳ぐるんで形成される従来のシリンダブロックよりも体積容量が非常に小さいため、これらの不良欠陥が生じにくいためである。 Further, for the volume of the coolant jacket 70 which controls the cooling characteristics in the cylinder bore 20 and in the vicinity of the cylinder bore 20 and the formation position of the coolant jacket 70 in the center line C direction, for example, This can be easily adjusted by selecting 1) the size of the maximum opening width W1sm and (2) the formation position of the first step 68A in the center line C direction. And the change of the dimensional shape of the cylinder block main body 60 shown to said (1) and (2) is very easy also when the cylinder block main body 60 is manufactured by casting or resin molding. Even when the cylinder block body 60 is manufactured by casting or resin molding in which defects due to volume contraction easily occur, the cylinder block body 60 has a volume capacity higher than that of a conventional cylinder block formed by casting a cylinder liner. Is so small that these defects are less likely to occur.
 シリンダブロック本体60側に設けられる第二の段差68Bに対応する位置に設けられる段差14は、中心線C方向に対して外周面10Sの適当な位置に設けることができる。しかしながら、段差14は、連結シリンダ10の中心線C方向のクランク室62側の端面を基準位置(位置0)とし、シリンダヘッド側の端面を位置Lとした場合、0を超え1/2L以下の範囲に設けることが好ましく、1/6L以上3/7L以下の範囲に設けることがより好ましく、1/6L以上1/3L以下の範囲に設けることがさらに好ましい。段差14を1/2Lを超える位置に設けた場合、シリンダブロック本体60側に設けられる第一の段差68Aを、よりシリンダヘッド側に近い位置に設けなければならなくなる。このため、中心線C方向において、第一の段差68Aが設けられる範囲がより狭くなり、結果的に、内燃機関100の要求仕様に合わせて、冷却液ジャケット70の深さDを設計変更により深くしたりより浅くしたりできるマージンが小さくなる。 The step 14 provided at the position corresponding to the second step 68B provided on the cylinder block main body 60 side can be provided at an appropriate position on the outer peripheral surface 10S with respect to the center line C direction. However, when the end surface on the side of the crank chamber 62 in the direction of the center line C of the connecting cylinder 10 is the reference position (position 0) and the end surface on the cylinder head side is the position L, the step 14 exceeds 0 and is 1⁄2L or less It is preferable to provide in the range, more preferably in the range of 1/6 L to 3/7 L, and still more preferably in the range of 1/6 L to 1/3 L. When the step 14 is provided at a position exceeding 1/2 L, the first step 68A provided on the cylinder block main body 60 side has to be provided at a position closer to the cylinder head side. Therefore, the range in which the first step 68A is provided becomes narrower in the direction of the center line C, and as a result, the depth D of the coolant jacket 70 is made deeper by design change in accordance with the required specification of the internal combustion engine 100. The margin that can be made shallower is smaller.
 なお、連結シリンダ10の外周形状は、基本的に、外周面10Sを第一領域10S1と第二領域10S2とに分割する段差14を設けたシンプルな形状であることが好ましく、必要に応じて、固定部材80を嵌め込むための溝12や、シール部材を装着するための溝を設けてもよい。 In addition, it is preferable that the outer peripheral shape of the connecting cylinder 10 is basically a simple shape provided with a step 14 which divides the outer peripheral surface 10S into the first region 10S1 and the second region 10S2, and as necessary, A groove 12 for fitting the fixing member 80 or a groove for mounting the sealing member may be provided.
 一方、連結シリンダ10の外周面10Sには、必要であれば、外周面10Sから突出する突出部を設けることもできるし、連結シリンダ10の外周面10Sには、第一領域10S1および第二領域10S2のいずれであっても、突出部を設けなくてもよい。 On the other hand, the outer peripheral surface 10S of the connecting cylinder 10 can be provided with a projecting portion which protrudes from the outer peripheral surface 10S if necessary, and the outer peripheral surface 10S of the connecting cylinder 10 has a first region 10S1 and a second region. Even if it is any of 10S2, it is not necessary to provide a protrusion part.
 外周面10Sに突出部を設けない場合は、以下に説明するメリットがある。すなわち、外周面10Sにフランジなどの突出部を設けた場合、連結シリンダ10の取り扱い時あるいは保管時に、不注意などにより、連結シリンダ10を他の部材にぶつけた際に、突出部が破壊され易くなる。しかしながら、外周面10Sに突出部を設けなければ、このような破損を抑制できる。 When the projecting portion is not provided on the outer circumferential surface 10S, there are advantages described below. That is, when the projecting portion such as a flange is provided on the outer peripheral surface 10S, the projecting portion is easily broken when the connecting cylinder 10 is hit against another member due to carelessness or the like when handling or storing the connecting cylinder 10. Become. However, such a breakage can be suppressed if the protruding portion is not provided on the outer circumferential surface 10S.
 これに加えて、外周面10Sに突出部が設けられていると、第一の連結シリンダ10Aの連結部42あるいは第二の連結シリンダ10Bの連結シリンダ本体部50を鋳造により製造する場合、外周面10Sに突出部が設けられていると、金型の形状が若干複雑になる上に製造性も多少低下する。また、第一領域10S1に突出部を設けた場合は、シリンダブロック本体60の(1)最大開口幅W1smの大きさおよび(2)中心線C方向における第一の段差68Aを適宜見直すことで、冷却液ジャケット70の容量および中心線C方向における冷却液ジャケット70の形成位置を設計し直すことがより困難になる。しかしながら、外周面10Sに突出部を設けなければ、このような問題を抑制できる。 In addition to this, when the outer circumferential surface 10S is provided with the projecting portion, the outer circumferential surface when manufacturing the connecting portion 42 of the first connecting cylinder 10A or the connecting cylinder main portion 50 of the second connecting cylinder 10B by casting. When the projecting portion is provided in 10S, the shape of the mold is slightly complicated and the manufacturability is somewhat reduced. In the case where the first region 10S1 is provided with a protrusion, the first step 68A in the direction of the (1) maximum opening width W1sm of the cylinder block main body 60 and (2) the center line C direction is appropriately reviewed. It becomes more difficult to redesign the volume of the coolant jacket 70 and the formation position of the coolant jacket 70 in the center line C direction. However, such a problem can be suppressed if the projecting portion is not provided on the outer circumferential surface 10S.
 一方、上述したメリットは失われるものの、外周面10Sの第一領域10S1に突出部を設けることで、内燃機関100の冷却制御をより精密に行うこともできる。この場合、図11に例示する第一の連結シリンダ10A2(10A、10)のように、第一領域10S1には、第一領域10S1をシリンダヘッド側(Z1方向側)の領域とクランク室側(Z2方向側)の領域とに分断する鍔部16A(16)を設けることが好ましい。ここで、図11に示す例では、鍔部16Aは、外周方向に沿って連続的に形成されると共に、シリンダライナ40の中心線C方向に対する配置位置が外周方向のいずれの位置においても同一である連環形状を成している。なお、図11に示す第一の連結シリンダ10A2は、第一領域10S1に鍔部16Aが設けられている点を除けば、図9に示す第一の連結シリンダ10A1と同様の構造を有する部材である。また、図11に示したものと同様の鍔部16Aは、図10に示す第二の連結シリンダ10B(10)の第一領域10S1にも設けることができる。 On the other hand, although the merit mentioned above is lost, cooling control of internal combustion engine 100 can also be performed more precisely by providing a projection part in the 1st field 10S1 of peripheral face 10S. In this case, as in the first connecting cylinder 10A2 (10A, 10) illustrated in FIG. 11, in the first region 10S1, the region of the first region 10S1 is the cylinder head side (Z1 direction side) and the crank chamber side It is preferable to provide a ridge portion 16A (16) to be divided into the region in the Z2 direction). Here, in the example shown in FIG. 11, the collar portion 16A is continuously formed along the outer peripheral direction, and the arrangement position of the cylinder liner 40 with respect to the center line C direction is the same at any position in the outer peripheral direction. It has a form of connected rings. The first connecting cylinder 10A2 shown in FIG. 11 is a member having the same structure as that of the first connecting cylinder 10A1 shown in FIG. 9 except that the flange portion 16A is provided in the first region 10S1. is there. Further, a flange portion 16A similar to that shown in FIG. 11 can also be provided in the first region 10S1 of the second connecting cylinder 10B (10) shown in FIG.
 第一領域10S1をシリンダヘッド側(Z1方向側)の領域とクランク室側(Z2方向側)の領域とに分断する鍔部16Aが設けられた連結シリンダ10を用いた内燃機関100では、鍔部16Aにより冷却液ジャケット70が、シリンダライナ40あるいはシリンダボア20の中心線C方向に対して分割された構造を有する。図12および図13は、第一領域10S1に鍔部16Aが設けられた連結シリンダ10を備えた内燃機関100の一例を示す模式断面図である。ここで、図12に示す内燃機関100B(100)は、図8中に示される第一の連結シリンダ10A1を、図11に示す鍔部16Aを有する第一の連結シリンダ10A2に置換した以外は、図8に示す内燃機関100Aと同様の構造を有するものである。また、図13に示す内燃機関100C(100)は、(i)図8中に示される第一の連結シリンダ10A1を、図11に示す鍔部16Aを有する第一の連結シリンダ10A2に置換し、かつ、(ii)図8中に示されるシリンダブロック本体60Aを、シリンダブロック本体60Aの内周面64S1に周方向に連続する第三の段差68Cを設けた構造を有するシリンダブロック本体60Bに置換した以外は、図8に示す内燃機関100Aと同様の構造を有するものである。 In the internal combustion engine 100 using the connecting cylinder 10 provided with the flange portion 16A that divides the first region 10S1 into the region on the cylinder head side (Z1 direction side) and the region on the crank chamber side (Z2 direction side), the flange portion The coolant jacket 70 has a structure divided in the direction of the center line C of the cylinder liner 40 or the cylinder bore 20 by 16A. FIGS. 12 and 13 are schematic cross-sectional views showing an example of an internal combustion engine 100 provided with a connecting cylinder 10 in which a flange portion 16A is provided in the first region 10S1. Here, in the internal combustion engine 100B (100) shown in FIG. 12, the first connecting cylinder 10A1 shown in FIG. 8 is replaced with a first connecting cylinder 10A2 having a flange portion 16A shown in FIG. It has the same structure as the internal combustion engine 100A shown in FIG. Further, the internal combustion engine 100C (100) shown in FIG. 13 (i) replaces the first connecting cylinder 10A1 shown in FIG. 8 with a first connecting cylinder 10A2 having a flange portion 16A shown in FIG. And (ii) the cylinder block main body 60A shown in FIG. 8 is replaced by a cylinder block main body 60B having a third step 68C continuous in the circumferential direction on the inner peripheral surface 64S1 of the cylinder block main body 60A. Except for this, it has the same structure as the internal combustion engine 100A shown in FIG.
 なお、第三の段差68Cは、鍔部16Aのクランク室側(Z2方向側)の側面に対応する位置に設けられている。また、内周面64S1は、第三の段差68Cを境界線として、第三の段差68Cよりもシリンダヘッド側(Z1方向側)のシリンダヘッド側領域64S1Aと、第三の段差68Cよりもクランク室側(Z2方向側)のクランク室側領域64S1Bと、の2つの領域に分断されている。そして、シリンダヘッド側領域64S1Aに対してクランク室側領域64S1Bが、相対的により内周側に位置している。なお、Y方向において、図13に示すシリンダヘッド側領域64S1Aは、図12に示すシリンダブロック本体60Aの内周面64S1と面一を成す位置に設けられている。但し、図13に示すシリンダヘッド側領域64S1Aは、クランク室側領域64S1Bに対して相対的に外周側に位置する限り、図12に示すシリンダブロック本体60Aの内周面64S1と面一を成す位置に設けられていなくてもよい。 The third step 68C is provided at a position corresponding to the side surface of the flange portion 16A on the crank chamber side (Z2 direction side). The inner circumferential surface 64S1 has the third step 68C as a boundary line, and the cylinder head side area 64S1A on the cylinder head side (Z1 direction side) of the third step 68C and the crank chamber than the third step 68C. It is divided into two regions of the side (Z2 direction side) of the crankcase side region 64S1B. Further, the crank chamber side region 64S1B is positioned relatively closer to the inner circumferential side than the cylinder head side region 64S1A. In the Y direction, the cylinder head side area 64S1A shown in FIG. 13 is provided at a position flush with the inner peripheral surface 64S1 of the cylinder block main body 60A shown in FIG. However, as long as the cylinder head side area 64S1A shown in FIG. 13 is positioned on the outer peripheral side relative to the crank chamber side area 64S1B, the cylinder head side area 64S1A is flush with the inner peripheral surface 64S1 of the cylinder block main body 60A shown in FIG. Need not be provided.
 図12および図13に示す内燃機関100B、100Cでは、第一の連結シリンダ10Aの外周面10S(第一領域10S1)と、シリンダブロック本体60A、60Bの中空部64の内周面64S1との間に形成される冷却液ジャケット70が、鍔部16Aによりシリンダヘッド側の部分(シリンダヘッド側冷却液ジャケット70A)と、クランク室側の部分(クランク室側冷却液ジャケット70B)とに分割されている。このため、図12および図13に示す内燃機関100B、100Cは、図8に示す内燃機関100Aと比べて、冷却液ジャケット70内を流れる冷却液の流速、流量および水温を、シリンダヘッド側冷却液ジャケット70Aと、クランク室側冷却液ジャケット70Bとで、個別に制御できる。したがって、内燃機関100B、100Cでは、シリンダボア20の冷却液ジャケット70で囲まれた部分のうち、シリンダヘッド側寄りの部分と、クランク室側寄りの部分との温度制御を個別に行うことが極めて容易である。そして、このような特性を利用すれば、たとえば、以下の(a)~(c)に例示するような様々なメリットを容易に実現できる。 In the internal combustion engines 100B and 100C shown in FIGS. 12 and 13, between the outer peripheral surface 10S (first region 10S1) of the first connecting cylinder 10A and the inner peripheral surface 64S1 of the hollow portion 64 of the cylinder block main bodies 60A and 60B. The coolant jacket 70 formed on the cylinder head is divided by the flange portion 16A into a portion on the cylinder head side (cylinder head side coolant jacket 70A) and a portion on the crank chamber side (crank chamber side coolant jacket 70B) . Therefore, as compared with the internal combustion engine 100A shown in FIG. 8, the internal combustion engines 100B, 100C shown in FIG. 12 and FIG. The jacket 70A and the crankcase side coolant jacket 70B can be individually controlled. Therefore, in the internal combustion engines 100B and 100C, it is extremely easy to individually perform temperature control of the portion near the cylinder head and the portion near the crank chamber among the portions of the cylinder bore 20 surrounded by the coolant jacket 70. It is. And, if such characteristics are used, various merits as exemplified in the following (a) to (c) can be easily realized.
(a)シリンダボア20の冷却液ジャケット70で囲まれた部分のうち、シリンダヘッド側寄りの部分と、クランク室側寄りの部分との温度を制御することにより、内燃機関100B、100Cの稼働中におけるシリンダボア20の円筒度を向上させる。たとえば、鍔部16Aにより冷却液ジャケット70を分割する前と比べて、シリンダヘッド側寄りの部分のシリンダボア20の温度をより低くし、かつ、クランク室側寄りの部分のシリンダボア20の温度をより高くする制御することができる。この場合、シリンダヘッド側寄りの部分のシリンダボア20の温度をより低くすることで、出力の増大、および、進角をより進めることが容易になる。また、クランク室側寄りの部分のシリンダボア20の温度をより高くすることでフリクションの低下および暖気性の向上が容易になる。これに加えて、シリンダボア20の円筒度も向上するため、これに伴い、ブローバイガス量および潤滑油消費量の低減も容易になる。
(b)シリンダボア20の冷却液ジャケット70で囲まれた部分のうち、クランク室側寄りの部分に対して、シリンダヘッド側寄りの部分の冷却効率を相対的に向上させることで、シリンダヘッド側寄りのシリンダボア20の内壁面(摺動面)の温度を下げて、耐ノック性を向上させて燃費を改善する。
(c)内燃機関100B、100Cの稼働状況に応じて、最適な出力、燃費等が得られるように、シリンダヘッド側冷却液ジャケット70Aの冷却液の流速、流量および水温と、クランク室側冷却液ジャケット70Bの冷却液の流速、流量および水温とを、個別に設定する。
(A) Of the portions of the cylinder bore 20 surrounded by the coolant jacket 70, by controlling the temperatures of the portion near the cylinder head and the portion near the crank chamber, the internal combustion engines 100B and 100C are in operation. The cylindricity of the cylinder bore 20 is improved. For example, the temperature of the cylinder bore 20 in the portion near the cylinder head side is lower than that in the case where the coolant jacket 70 is divided by the flange portion 16A, and the temperature of the cylinder bore 20 in the portion near the crank chamber is higher. Can be controlled. In this case, by lowering the temperature of the cylinder bore 20 in the portion closer to the cylinder head side, it becomes easier to increase the output and to advance the lead angle. Further, by raising the temperature of the cylinder bore 20 at the portion near the crank chamber side, it is possible to easily reduce the friction and improve the warm-up performance. In addition to this, the cylindricity of the cylinder bore 20 is also improved, which makes it easy to reduce the amount of blow-by gas and the amount of lubricating oil consumption.
(B) With respect to the portion of the cylinder bore 20 surrounded by the coolant jacket 70, the cooling efficiency of the portion near the cylinder head is relatively improved with respect to the portion near the crank chamber side. The temperature of the inner wall surface (sliding surface) of the cylinder bore 20 is lowered to improve the knock resistance and improve the fuel consumption.
(C) The flow rate, flow rate, and water temperature of the coolant in the cylinder head side coolant jacket 70A, and the crankcase side coolant so that optimum output, fuel efficiency, etc. can be obtained according to the operating conditions of the internal combustion engines 100B and 100C. The flow rate, the flow rate and the water temperature of the cooling fluid of the jacket 70B are set individually.
 なお、図12に示す内燃機関100Bでは、鍔部16Aの頂面は、シリンダブロック本体60Aの内周面64S1と接触している。また、図13に示す内燃機関100Cでは鍔部16Aの頂面が、シリンダブロック本体60Aの内周面64S1のシリンダヘッド側領域64S1Aと接触すると共に、鍔部16Aのクランク室側(Z2方向側)の側面の頂面側の部分が、第三の段差68Cの段差面部分と接触している。この場合、鍔部16Aの頂面と内周面64S1との界面にOリングなどのシール部材を設けて、鍔部16Aと内周面64S1との界面を完全にシールすることが好ましい。Oリングは、たとえば、鍔部16Aの頂面の周方向に沿って溝を設け、この溝に装着して用いたり、図13に示す内燃機関100Cであれば、第三の段差68Cの段差面部分の周方向に沿って溝を設け、この溝に装着して用いることができる。 In the internal combustion engine 100B shown in FIG. 12, the top surface of the flange portion 16A is in contact with the inner peripheral surface 64S1 of the cylinder block main body 60A. Further, in the internal combustion engine 100C shown in FIG. 13, the top surface of the flange 16A contacts the cylinder head side area 64S1A of the inner peripheral surface 64S1 of the cylinder block main body 60A, and the crank chamber side (Z2 direction side) of the flange 16A. The portion on the top surface side of the side surface is in contact with the stepped surface portion of the third step 68C. In this case, it is preferable to provide a seal member such as an O-ring at the interface between the top surface of the flange 16A and the inner circumferential surface 64S1 to completely seal the interface between the flange 16A and the inner circumferential surface 64S1. For example, the O-ring is provided with a groove along the circumferential direction of the top surface of the flange portion 16A, and is attached to this groove, or in the case of the internal combustion engine 100C shown in FIG. A groove may be provided along the circumferential direction of the portion, and the groove may be mounted and used.
 また、冷却液の流速、流量および水温を、シリンダヘッド側冷却液ジャケット70Aと、クランク室側冷却液ジャケット70Bとで、個別に制御する際の制御性が大きく損なわれない範囲であれば、シール部材を省略してもよく、あるいは、鍔部16Aの頂面と内周面64S1との間には多少の隙間が形成されていてもよい。また、鍔部16Aの周方向の一部には、必要に応じて、中心線C方向に貫通し、シリンダヘッド側冷却液ジャケット70Aとクランク室側冷却液ジャケット70Bを接続する流路を設けてもよい。 In addition, if the controllability at the time of individually controlling the flow rate, flow rate and water temperature of the coolant between cylinder head side coolant jacket 70A and crankcase side coolant jacket 70B is not significantly impaired, the seal is provided. The members may be omitted, or some gap may be formed between the top surface of the collar portion 16A and the inner peripheral surface 64S1. In addition, in part of the circumferential direction of the collar portion 16A, if necessary, there is provided a flow path which penetrates in the direction of the center line C and connects the cylinder head side coolant jacket 70A and the crank chamber side coolant jacket 70B. It is also good.
 なお、鍔部16Aは、冷却液ジャケット70を、シリンダヘッド側冷却液ジャケット70Aと、クランク室側冷却液ジャケット70Bとに分割できるのであれば、中心線C方向に対して第一領域10S1の任意の位置に設けることができる。しかしながら、中心線C方向の第一領域10S1のシリンダヘッド側の端を基準位置0とし、中心線C方向の第一領域10S1の全長をL1とした場合、鍔部16Aは、0.2×L1~0.5×L1程度の範囲内に設けることが好ましい。同様に、中心線C方向の連結シリンダ10のシリンダヘッド側の端を基準位置0とし、中心線C方向の連結シリンダ10の全長をLとした場合、鍔部16Aは、0.14×L~0.37×L程度の範囲内に設けることが好ましい。 In addition, if the flange portion 16A can divide the cooling fluid jacket 70 into the cylinder head side cooling fluid jacket 70A and the crankcase side cooling fluid jacket 70B, any one of the first region 10S1 with respect to the center line C direction It can be provided at the position of However, assuming that the end on the cylinder head side of the first region 10S1 in the center line C direction is the reference position 0 and the total length of the first region 10S1 in the center line C direction is L1, the ridge portion 16A is 0.2 × L1. It is preferable to provide in the range of about 0.5 × L1. Similarly, assuming that the end on the cylinder head side of the connecting cylinder 10 in the center line C direction is the reference position 0 and the total length of the connecting cylinder 10 in the center line C direction is L, the flange portion 16A is 0.14 × L to It is preferable to provide in the range of about 0.37 × L.
 また、外周面10Sに設けられる鍔部16は、シリンダライナ40あるいはシリンダボア20の中心線C方向に沿って連続的に形成されていてもよい。図15は、図1に示す第一の連結シリンダの他の変形例を示す模式断面図である。図15に示す第一の連結シリンダ10A3(10A、10)では、シリンダボア20の並び方向の両端側の外周面10Sに、中心線C方向に沿って連続的に形成された鍔部16B(16)が設けられている。図15に示す第一の連結シリンダ10A3を用いた内燃機関100では、冷却液ジャケット70が、各々のシリンダライナ40あるいはシリンダボア20の中心線Cを含む面(ZX平面)の一方側(Y1側)の部分と、他方側(Y2側)の部分とに分割される。なお、図15に示す例では、鍔部16Bは、シリンダボア20の並び方向の両端側の外周面10Sに設けられているが、これ以外の位置に設けられていてもよい。 Further, the flange portion 16 provided on the outer circumferential surface 10S may be formed continuously along the centerline C direction of the cylinder liner 40 or the cylinder bore 20. FIG. 15 is a schematic cross-sectional view showing another modification of the first connection cylinder shown in FIG. In the first connecting cylinder 10A3 (10A, 10) shown in FIG. 15, the ridge portion 16B (16) formed continuously along the center line C direction on the outer peripheral surface 10S at both ends in the alignment direction of the cylinder bores 20. Is provided. In the internal combustion engine 100 using the first connecting cylinder 10A3 shown in FIG. 15, the coolant jacket 70 is on one side (Y1 side) of the plane (ZX plane) including the center line C of each cylinder liner 40 or cylinder bore 20. And the other side (Y2 side). In the example shown in FIG. 15, although the collar part 16B is provided in the outer peripheral surface 10S of the both end side of the alignment direction of the cylinder bore 20, you may be provided in positions other than this.
 図15に示す例では、鍔部16Bは、外周面10Sの第一領域10S1および第二領域10S2の双方に設けられている。このため、図15に示す第一の連結シリンダ10A3と組み合わせて用いるシリンダブロック本体60の中空部64の内周面64Sのうち、少なくとも内周面64S2、64S3に、鍔部16Bに対応するガイド溝が設けられる。また、鍔部16Bの高さに応じて、内周面64S2、64S3に加えて内周面64S1にも鍔部16Bに対応するガイド溝が設けられてもよい。すなわち、シリンダブロック本体60には、中空部64の開口部の長手方向(X方向)の両端側の内周面64Sの少なくとも一部分あるいは全部に、鍔部16Bに対応するガイド溝が、中空部64の一端側(Z2側)から他端側(Z1側)へと連続的に形成される。よって、第一の連結シリンダ10A3は、鍔部16Bがガイド溝と嵌合することで、第一の連結シリンダ10A3は、内周面64Sにガイド溝を備えたシリンダブロック本体60により安定して固定される。 In the example shown in FIG. 15, the collar portion 16B is provided in both the first region 10S1 and the second region 10S2 of the outer peripheral surface 10S. Therefore, of the inner peripheral surface 64S of the hollow portion 64 of the cylinder block main body 60 used in combination with the first connecting cylinder 10A3 shown in FIG. 15, at least the inner peripheral surfaces 64S2 and 64S3 guide grooves corresponding to the flange portion 16B. Is provided. In addition to the inner circumferential surfaces 64S2 and 64S3, a guide groove corresponding to the ridge 16B may be provided on the inner circumferential surface 64S1 in accordance with the height of the ridge 16B. That is, in the cylinder block body 60, a guide groove corresponding to the flange portion 16B is formed on at least a part or all of the inner peripheral surface 64S on both ends of the opening of the hollow portion 64 in the longitudinal direction (X direction). Is continuously formed from one end side (Z2 side) to the other end side (Z1 side). Therefore, the first connection cylinder 10A3 is stably fixed by the cylinder block main body 60 having the guide groove on the inner peripheral surface 64S by the flange portion 16B fitting with the guide groove. Be done.
 なお、図15に示す例では、外周面10Sにおいて、鍔部16Bが、第一の連結シリンダ10A3の一端側(Z2側)から他端側(Z1側)まで連続的に設けられている。しかし、第一の連結シリンダ10A3をシリンダブロック本体60に対してより安定して固定することを主目的として鍔部16Bを設ける場合、中空部64の内周面64Sのうち、内周面64S2、64S3に設けられたガイド溝に対応するように、外周面10Sにおいて、鍔部16Bが段差14よりも他端側(Z1側)寄りの位置から一端側(Z2側)までにおいてのみ設けられていればよい。図16に、上述したように鍔部16Bが外周面10Sに設けられた第一の連結シリンダ10A4(10A,10)を示す。 In the example shown in FIG. 15, the flange portion 16B is continuously provided on the outer peripheral surface 10S from one end side (Z2 side) to the other end side (Z1 side) of the first connecting cylinder 10A3. However, when the flange portion 16B is provided for the purpose of fixing the first connecting cylinder 10A3 more stably to the cylinder block main body 60, the inner circumferential surface 64S2 of the inner circumferential surface 64S of the hollow portion 64, In the outer peripheral surface 10S, the flange portion 16B is provided only from the position closer to the other end side (Z1 side) than the step 14 to the one end side (Z2 side) so as to correspond to the guide groove provided in 64S3. Just do it. FIG. 16 shows the first connecting cylinder 10A4 (10A, 10) in which the flange portion 16B is provided on the outer peripheral surface 10S as described above.
 また、冷却液ジャケット70の分割を主目的として鍔部16Bを設ける場合は、中空部64の内周面64S1に対応するように、外周面10Sにおいて、鍔部16Bが他端側(Z1側)から段差14よりも他端側(Z1側)寄りの位置までにおいてのみ設けられていればよい。図17に、上述したように鍔部16Bが外周面10Sに設けられた第一の連結シリンダ10A5(10A,10)を示す。 When the flange portion 16B is provided mainly for dividing the coolant jacket 70, the flange portion 16B is on the other end side (Z1 side) on the outer peripheral surface 10S so as to correspond to the inner peripheral surface 64S1 of the hollow portion 64. It suffices to be provided only to the position from the step 14 closer to the other end side (Z1 side). FIG. 17 shows the first connecting cylinder 10A5 (10A, 10) in which the flange portion 16B is provided on the outer peripheral surface 10S as described above.
 シリンダライナ40あるいはシリンダボア20の中心線C方向に沿って連続的に形成された鍔部16Bが外周面10Sに設けられた第一の連結シリンダ10A3、10A4、10A5と、シリンダブロック本体60とを用いて組み立てられた内燃機関100は、直列型エンジン、V型エンジン、水平対向型エンジン等、あらゆるタイプのエンジンに適用できる。 Using first connecting cylinders 10A3, 10A4, 10A5 provided on outer peripheral surface 10S with flange 16B continuously formed along the direction of center line C of cylinder liner 40 or cylinder bore 20, and cylinder block main body 60 The internal combustion engine 100 assembled can be applied to all types of engines, such as an in-line engine, a V-type engine, and a horizontally opposed engine.
 しかしながら、図15に例示した第一の連結シリンダ10A3あるいは図16に例示した第一の連結シリンダ10A4を用いた内燃機関100は、水平対向型エンジンであることが特に好ましい。この場合、水平対向型エンジン内において、第一の連結シリンダ10A4に対してシリンダボア20の中心線Cと略直交する方向から重力が作用しても、第一の連結シリンダ10A4が水平面に対して傾斜するのを確実に抑制できる。それゆえ、ガイド溝が内周面64Sに設けられたシリンダブロック本体60を横置きにした状態(Z方向が水平方向と略一致した状態)で内燃機関100を組み立てる際にも、シリンダブロック本体60に対する第一の連結シリンダ10A4の位置決めが容易である。 However, it is particularly preferable that the internal combustion engine 100 using the first connecting cylinder 10A3 illustrated in FIG. 15 or the first connecting cylinder 10A4 illustrated in FIG. 16 be a horizontally opposed engine. In this case, even if gravity acts on the first connection cylinder 10A4 in a direction substantially orthogonal to the center line C of the cylinder bore 20 in the horizontally opposed engine, the first connection cylinder 10A4 is inclined relative to the horizontal surface It can be surely suppressed. Therefore, the cylinder block body 60 is assembled also when assembling the internal combustion engine 100 in a state where the cylinder block body 60 provided with the guide groove on the inner circumferential surface 64S is placed horizontally (the Z direction substantially matches the horizontal direction). It is easy to position the first connecting cylinder 10A4 with respect to the
 図18に、図15に示す第一の連結シリンダ10A3と組み合わせて用いるシリンダブロック本体の一例を示す。図18に示すシリンダブロック本体60C(60)は、図6に示すシリンダブロック本体60Aの変形例であり、シリンダブロック本体60Aに対してガイド溝69がさらに設けられている以外はシリンダブロック本体60Aと同様の寸法形状を有する部材である。図18に示すようにガイド溝69は、中空部64の開口部64Xの長手方向(X方向)の両端側における内周面64Sに設けられている。ここで、ガイド溝69は、図15に示す鍔部16Bに対応するように内周面64S1、内周面64S2、内周面64S3のいずれにも設けられている。しかし、鍔部16Bの高さに応じて、内周面64S1においてはガイド溝69を省略してもよい。また、図16に示す第一の連結シリンダ10A4を用いる場合も、内周面64S1にはガイド溝69を設ける必要は無い。 FIG. 18 shows an example of a cylinder block main body used in combination with the first connecting cylinder 10A3 shown in FIG. The cylinder block main body 60C (60) shown in FIG. 18 is a modified example of the cylinder block main body 60A shown in FIG. 6, except that a guide groove 69 is further provided to the cylinder block main body 60A. It is a member which has the same dimensional shape. As shown in FIG. 18, the guide groove 69 is provided on the inner circumferential surface 64S at both ends in the longitudinal direction (X direction) of the opening 64X of the hollow portion 64. Here, the guide groove 69 is provided on any of the inner circumferential surface 64S1, the inner circumferential surface 64S2, and the inner circumferential surface 64S3 so as to correspond to the flange portion 16B shown in FIG. However, the guide groove 69 may be omitted in the inner circumferential surface 64S1 according to the height of the flange portion 16B. Further, also in the case of using the first connecting cylinder 10A4 shown in FIG. 16, it is not necessary to provide the guide groove 69 in the inner peripheral surface 64S1.
 また、鍔部16の形状および形成位置は、図11~図13、図15~図17に示す例のみに限定されるものでは無い。たとえば、鍔部16は、図11~図13に例示したような外周方向に連続して形成された鍔部16Aと、図15~図17に例示したような中心線Cと平行を成す方向に連続して形成された鍔部16Bとを組み合わせたものであってもよい。 Further, the shape and formation position of the collar portion 16 are not limited to only the examples shown in FIGS. 11 to 13 and 15 to 17. For example, the ridge portion 16 is formed in a direction parallel to the center line C illustrated in FIGS. 15 to 17 and the ridge portion 16A continuously formed in the outer peripheral direction as illustrated in FIGS. It may be a combination of the ridge portion 16B formed continuously.
 たとえば、連結シリンダ10の第一領域10S1を、各々のシリンダライナ40あるいは各々のシリンダボア20の中心線Cを含む平面(XZ平面)を分割境界面として2分割したと仮定する。この場合、2分割された一方の側(Y1方向側)の第一領域10S1には、外周方向と平行を成すように連続する半連環形状の鍔部16Aを相対的によりクランク室側に近い位置に形成し、2分割された他方の側(Y2方向側)の第一領域10S1には、外周方向と平行を成すように連続する半連環形状の鍔部16Aを相対的によりシリンダヘッド側に近い位置に形成できる。そして、一方の半連環形状の鍔部16Aの両端部分と、他方の半連環形状の鍔部16Aの両端部分とは、各々の端部同士が中心線Cと平行な方向に連続する鍔部16Bにより接続される。このような構成を採用すれば、シリンダヘッド側冷却液ジャケット70Aの深さと、クランク室側冷却液ジャケット70Bの深さとの比率を、分割境界面の一方側と他方側とで異なるものとすることができる。このような構造は、たとえば、分割境界面の一方側と他方側とで非対称な冷却制御を行いたい場合などにおいて有効である。 For example, it is assumed that the first region 10S1 of the connecting cylinder 10 is divided into two as a division boundary surface including a plane (XZ plane) including the center line C of each cylinder liner 40 or each cylinder bore 20. In this case, in the first region 10S1 on one side (the Y1 direction side) divided into two, the position of the collar portion 16A of the semi-annular ring shape continuous in parallel with the outer peripheral direction is closer to the crank chamber side In the first region 10S1 on the other side (Y2 direction side) divided into two, the collar portion 16A of a continuous ring shape continuous to form a parallel with the outer peripheral direction is relatively closer to the cylinder head side It can be formed in position. Then, both end portions of one semi-annular collar portion 16A and both end portions of the other semi-annular collar portion 16A are ridge portions 16B in which respective end portions are continuous in a direction parallel to the center line C. Connected by If such a configuration is adopted, the ratio between the depth of the cylinder head side coolant jacket 70A and the depth of the crank chamber side coolant jacket 70B should be different on one side and the other side of the divided boundary surface. Can. Such a structure is effective, for example, when it is desired to perform asymmetric cooling control on one side and the other side of the division boundary surface.
 また、鍔部16は、第一領域10S1をシリンダヘッド側(Z1方向側)の領域とクランク室側(Z2方向側)の領域とに分断する第一部分(鍔部16A)と、第一領域10S1のうち冷却液ジャケット70の側壁面を構成する部分を外周方向に対して分断する第二部分(鍔部16B)とを有していてもよい。このような鍔部16を有する連結シリンダ10を備えた内燃機関100では、第一部分によって、冷却液ジャケット70を、シリンダライナ40あるいはシリンダボア20の中心線C方向に対して分割できる。これに加えて、第二部分によって、冷却液ジャケット70を、外周方向に対しても分断または分割できる。それゆえ、中心線C方向のみならず、外周方向に対してもより精密な冷却制御を行うことが容易になる。 Further, the flange portion 16 divides the first region 10S1 into a region on the cylinder head side (Z1 direction side) and a region on the crank chamber side (Z2 direction side), and a first region 10S1 Among the above, the second portion (the flange portion 16B) may be provided to divide the portion constituting the side wall surface of the coolant jacket 70 in the outer circumferential direction. In the internal combustion engine 100 provided with the connecting cylinder 10 having the flange portion 16 as described above, the coolant jacket 70 can be divided in the direction of the center line C of the cylinder liner 40 or the cylinder bore 20 by the first portion. In addition to this, the coolant jacket 70 can be divided or divided in the circumferential direction by the second portion. Therefore, it becomes easy to perform more precise cooling control not only in the center line C direction but also in the outer peripheral direction.
 具体例としては、外周方向に沿って連続的に形成されると共に、中心線C方向に対する配置位置が外周方向のいずれの位置においても同一である連環形状を成す第一部分(鍔部16A)と、分割境界面と第一領域10S1とが交差する部分に沿って設けられた直線状の2つの第二部分(鍔部16B)とを有する鍔部16を第一領域10S1に設けた連結シリンダ10およびこれを用いた内燃機関100を例示することができる。この場合、冷却液ジャケット70は、第一部分によって、シリンダヘッド側冷却液ジャケット70Aと、クランク室側冷却液ジャケット70Bとに分割される。さらに、第二部分によって、シリンダヘッド側冷却液ジャケット70Aが分割境界面の一方側(Y1方向側)の部分と、他方の側(Y2方向側)の部分とに分割されると共に、クランク室側冷却液ジャケット70Bも分割境界面の一方側(Y1方向側)の部分と、他方の側(Y2方向側)の部分とに分割される。すなわち、冷却液ジャケット70は4分割される。 As a specific example, a first portion (ridge portion 16A) which is continuously formed along the outer peripheral direction and has an annular shape in which the arrangement position in the center line C direction is the same at any position in the outer peripheral direction; Connecting cylinder 10 provided in a first region 10S1 with a collar portion 16 having a linear second portion (ridge portion 16B) provided along a portion where the division boundary surface and the first region 10S1 intersect An internal combustion engine 100 using this can be illustrated. In this case, the coolant jacket 70 is divided by the first portion into a cylinder head side coolant jacket 70A and a crankcase side coolant jacket 70B. Furthermore, the cylinder head side coolant jacket 70A is divided into a portion on one side (Y1 direction side) of the division boundary surface and a portion on the other side (Y2 direction side) by the second portion, and the crank chamber side The coolant jacket 70B is also divided into a portion on one side (Y1 direction side) of the division boundary surface and a portion on the other side (Y2 direction side). That is, the coolant jacket 70 is divided into four.
 図15、16、18に具体例を挙げて説明したような、鍔部とガイド溝とを嵌合させて、連結シリンダ10がシリンダブロック本体60に対して固定された構造を有する内燃機関100は、少なくとも以下の(1)または(2)に示す構造を有する連結シリンダ10とシリンダブロック本体60とを組み合わせたものであればよい。
(1)外周面10Sに、連結シリンダ10に設けられた各々のシリンダボア20の中心線Cと平行な方向に沿って鍔部16B(固定用鍔部)が設けられた連結シリンダ10と、中空部64の内周面64Sに、鍔部16B(固定用鍔部)と嵌合するガイド溝69が設けられたシリンダブロック本体60とを有する内燃機関100。
(2)中空部64の内周面64Sに、中空部64の貫通方向(Z方向)と平行な方向に沿って鍔部(固定用鍔部)が設けられたシリンダブロック本体60と、連結シリンダ10の外周面10Sに、(シリンダブロック本体60に設けられた)鍔部(固定用鍔部)と嵌合するガイド溝が設けられた連結シリンダ10とを有する内燃機関100。
The internal combustion engine 100 has a structure in which the coupling cylinder 10 is fixed to the cylinder block main body 60 by fitting the flange portion and the guide groove as described with reference to specific examples in FIGS. What is necessary is just to combine the connecting cylinder 10 and the cylinder block main body 60 which have the structure shown to the following (1) or (2) at least.
(1) A connecting cylinder 10 provided with a collar 16B (fixing collar) along the direction parallel to the center line C of each cylinder bore 20 provided in the connecting cylinder 10 on the outer peripheral surface 10S, and a hollow portion An internal combustion engine 100 having a cylinder block main body 60 provided with a guide groove 69 which is fitted to a collar portion 16B (fixing collar portion) on the inner peripheral surface 64S of 64.
(2) A cylinder block main body 60 provided with a flange (fixing flange) along the direction parallel to the penetration direction (Z direction) of the hollow portion 64 on the inner peripheral surface 64S of the hollow portion 64; An internal combustion engine 100 having a connecting cylinder 10 provided with a guide groove fitted on a collar (fixed collar) provided on an outer peripheral surface 10S of the cylinder 10 (provided on the cylinder block main body 60).
 ここで、上記(1)および(2)に示す内燃機関100は、以下に示すような構造を有することが好ましい。 Here, it is preferable that the internal combustion engine 100 shown to said (1) and (2) has a structure as shown below.
 すなわち、上記(1)に示す内燃機関100においては、鍔部16B(固定用鍔部)が、連結シリンダ10に設けられた各々のシリンダボア20の配列方向(X方向)の両端側における連結シリンダ10の外周面10Sに設けられ、ガイド溝69が、中空部64の開口部64Xの長手方向(X方向)の両端側におけるシリンダブロック本体60の中空部64の内周面64Sに設けられていることが好ましい。また、上記(2)に示す内燃機関100においては、鍔部(固定用鍔部)が、中空部64の開口部64Xの長手方向(X方向)の両端側におけるシリンダブロック本体60の中空部64の内周面64Sに設けられ、ガイド溝が、連結シリンダ10に設けられた各々のシリンダボア20の配列方向(X方向)の両端側における連結シリンダ10の外周面10Sに設けられていることが好ましい。 That is, in the internal combustion engine 100 shown in the above (1), the connecting cylinder 10 at the both end sides in the arrangement direction (X direction) of the respective cylinder bores 20 provided in the connecting cylinder 10 with the flanges 16B (fixing flanges). The guide groove 69 is provided on the inner peripheral surface 64S of the hollow portion 64 of the cylinder block main body 60 at both ends in the longitudinal direction (X direction) of the opening 64X of the hollow portion 64. Is preferred. Further, in the internal combustion engine 100 shown in the above (2), the flange portion (fixing flange portion) is the hollow portion 64 of the cylinder block main body 60 at both ends in the longitudinal direction (X direction) of the opening 64X of the hollow portion 64. It is preferable that the guide groove is provided on the inner circumferential surface 64S of the second embodiment and the guide groove is provided on the outer circumferential surface 10S of the connecting cylinder 10 at both ends in the arrangement direction (X direction) of each cylinder bore 20 provided in the connecting cylinder 10. .
 上述したようなX方向の両端側で、固定用鍔部とガイド溝とが嵌合する構造は、内燃機関100が水平対向型エンジンである場合に、特に好適である。この場合、内燃機関100内における連結シリンダ10の傾斜を抑制したり、組立時のシリンダブロック本体60に対する連結シリンダ10の位置決めを容易にできる。 The above-mentioned structure in which the fixing flange portion and the guide groove are fitted on both end sides in the X direction is particularly preferable when the internal combustion engine 100 is a horizontally opposed engine. In this case, the inclination of the connecting cylinder 10 in the internal combustion engine 100 can be suppressed, and the positioning of the connecting cylinder 10 with respect to the cylinder block body 60 at the time of assembly can be facilitated.
 なお、上記(1)および(2)に示す内燃機関100では、冷却液ジャケットは、下記(i)~(iii)に示すいずれの位置に設けることもできるが、(ii)に示す位置に設けることが特に好ましい。連結シリンダ10の外周面10Sと、シリンダブロック本体60の中空部64の内周面64Sとの間に大きな空間を構成する冷却液ジャケット70が設けられた場合、内燃機関100内における連結シリンダ10の支持・固定は、(i)または(iii)に示す位置に冷却液ジャケットが設けられた場合と比べて不安定になりやすい。しかし、固定用鍔部とガイド溝とが嵌合する構造を有する上記(1)および(2)に示す内燃機関100では、上述した問題を抑制できる。
(i)連結シリンダ10内(連結シリンダ10の外周面10Sよりも内側)
(ii)連結シリンダ10の外周面10Sと、シリンダブロック本体60の中空部64の内周面64Sとの間
(iii)シリンダブロック本体60内(中空部64の内周面64Sよりも外周側)
In the internal combustion engine 100 shown in the above (1) and (2), the coolant jacket can be provided at any position shown in the following (i) to (iii) but it is provided in the position shown in (ii) Is particularly preferred. When a coolant jacket 70 forming a large space is provided between the outer peripheral surface 10S of the connecting cylinder 10 and the inner peripheral surface 64S of the hollow portion 64 of the cylinder block main body 60, the connecting cylinder 10 in the internal combustion engine 100 is The support / fixation tends to be unstable compared to the case where the coolant jacket is provided at the position shown in (i) or (iii). However, in the internal combustion engine 100 shown in the above (1) and (2) having a structure in which the fixing flange portion and the guide groove are fitted, the above-mentioned problem can be suppressed.
(I) Inside the connecting cylinder 10 (inner than the outer peripheral surface 10S of the connecting cylinder 10)
(Ii) between the outer peripheral surface 10S of the connecting cylinder 10 and the inner peripheral surface 64S of the hollow portion 64 of the cylinder block main body 60 (iii) inside the cylinder block main body 60 (outer peripheral side than the inner peripheral surface 64S of the hollow portion 64)
 また、(ii)に示す位置に冷却液ジャケット70を有する内燃機関100では、冷却液ジャケット70を2つ以上の部分に分割する鍔部(分割用鍔部)を、(a)連結シリンダ10の外周面10S、および、(b)シリンダブロック本体60の中空部64の内周面64S、から選択される少なくともいずれかの面に設けられていればよい。 Further, in the internal combustion engine 100 having the coolant jacket 70 at the position shown in (ii), the ridge portion (division ridge portion) for dividing the coolant jacket 70 into two or more parts is: It may be provided on at least one of the outer peripheral surface 10S and (b) the inner peripheral surface 64S of the hollow portion 64 of the cylinder block main body 60.
 ここで、(a)連結シリンダ10の外周面10Sに分割用鍔部を設けた具体例としては、図12に示す内燃機関100B、図13に示す内燃機関100C、図15に示す第一の連結シリンダ10A3と図18に示すシリンダブロック本体60Cとを組み合わせた内燃機関100が挙げられる。図12に示す内燃機関100Bおよび図13に示す内燃機関100Cでは、鍔部16A(分割用鍔部)により冷却液ジャケット70が、2つの部分(シリンダヘッド側冷却液ジャケット70Aおよびクランク室側冷却液ジャケット70B)に分割されている。 Here, as a specific example in which (a) the dividing collar portion is provided on the outer peripheral surface 10S of the connecting cylinder 10, an internal combustion engine 100B shown in FIG. 12, an internal combustion engine 100C shown in FIG. The internal combustion engine 100 which combined cylinder 10A3 and the cylinder block main body 60C shown in FIG. 18 is mentioned. In the internal combustion engine 100B shown in FIG. 12 and the internal combustion engine 100C shown in FIG. 13, the cooling fluid jacket 70 is divided into two parts (a cylinder head side cooling fluid jacket 70A and a crankcase side cooling fluid) It is divided into a jacket 70B).
 また、図15に示す第一の連結シリンダ10A3と図18に示すシリンダブロック本体60Cとを組み合わせた内燃機関100では、鍔部16B(分割用鍔部)により冷却液ジャケット70が、2つの部分(複数の中心線Cを含む平面に対して一方側(Y1側)の部分および他方側(Y2側)の部分)に分割されている。なお、図15に示す第一の連結シリンダ10A3と図18に示すシリンダブロック本体60Cとを組み合わせた内燃機関100における鍔部16Bは、固定用鍔部として用いられるものであるが、分割用鍔部の機能も有している。このように固定用鍔部が分割用鍔部の機能も有していてもよい。 Further, in the internal combustion engine 100 in which the first connecting cylinder 10A3 shown in FIG. 15 and the cylinder block main body 60C shown in FIG. 18 are combined, the coolant jacket 70 is divided into two parts by the flange 16B (dividing ridge). It is divided into a portion on one side (Y1 side) and a portion on the other side (Y2 side) with respect to a plane including a plurality of center lines C. In addition, although the collar part 16B in the internal combustion engine 100 which combined 1st connection cylinder 10A3 shown in FIG. 15 and the cylinder block main body 60C shown in FIG. 18 is used as a collar for fixation, the collar part for divisions Also has the function of Thus, the fixing collar may also have the function of the dividing collar.
 一方、(b)シリンダブロック本体60の中空部64の内周面64Sに分割用鍔部を設けた具体例としては、図12および図13に示す内燃機関100B、100Cや、図15に示す第一の連結シリンダ10A3と図18に示すシリンダブロック本体60Cとを組み合わせた内燃機関100において、鍔部(分割用鍔部)を、連結シリンダ10側ではなく、シリンダブロック本体60側に設けた内燃機関100が挙げられる。 On the other hand, as a specific example in which (b) the dividing collar portion is provided on the inner peripheral surface 64S of the hollow portion 64 of the cylinder block main body 60, internal combustion engines 100B and 100C shown in FIGS. In an internal combustion engine 100 in which one coupling cylinder 10A3 and a cylinder block main body 60C shown in FIG. 18 are combined, an internal combustion engine in which a collar (division collar) is provided not on the coupling cylinder 10 side but on the cylinder block main body 60 side. One hundred can be mentioned.
 また、図11~図13、図15~図17に例示した第一の連結シリンダ10A2、10A3、10A4、10A5では、鍔部16は、鋳造により第一の連結シリンダ10A2の本体部分と一体的に形成されているが、図9および図10に例示したような鍔部16を有さない連結シリンダ10に、(1)連環状の鍔部16Aに対応する形状を有する部材、(2)中心線Cと平行な方向に沿って伸びる直線状の鍔部16Bに対応する形状を有する部材、あるいは、(3)上述した半連環状若しくは連環状の第一部分(鍔部16A)と直線状の第二部分(鍔部16B)とを有する鍔部16に対応する形状を有する部材を装着・固定することで、鍔部16を設けてもよい。 Further, in the first connecting cylinders 10A2, 10A3, 10A4, and 10A5 illustrated in FIGS. 11 to 13 and 15 to 17, the collar portion 16 is integrally formed with the main body portion of the first connecting cylinder 10A2 by casting. In the connecting cylinder 10 which is formed but does not have the ridge portion 16 as illustrated in FIGS. 9 and 10, (1) a member having a shape corresponding to the annular collar portion 16A, (2) center line A member having a shape corresponding to a linear ridge 16B extending along a direction parallel to C, or (3) the above-described semi-annular or annular first portion (ridge 16A) and a linear second The collar portion 16 may be provided by mounting and fixing a member having a shape corresponding to the collar portion 16 having the portion (bar portion 16B).
 鍔部16とシリンダブロック本体60とが嵌合する嵌合部の嵌合方式は特に限定されず、すきまばめ、中間ばめおよびしまりばめから選択されるいずれの嵌合方式であってもよいが、シリンダボア20の変形を抑制したい場合は、すきまばめあるいは中間ばめが好ましく、すきまばめがより好ましい。 The fitting method of the fitting part in which the collar part 16 and the cylinder block main body 60 fit is not particularly limited, and any fitting method selected from loose fit, middle fit and tight fit Although it is preferable, if it is desired to suppress the deformation of the cylinder bore 20, a loose fit or an intermediate fit is preferable, and a loose fit is more preferable.
 また、冷却液ジャケット70を2つ以上の部分に分割する目的で連結シリンダ10側あるいはシリンダブロック本体60側に設けられる鍔部(分割用鍔部)は、鍔部の幅方向に貫通する貫通穴を有さないことが好ましい。たとえば、連結シリンダ10の外周方向に沿って連続的に形成される鍔部16A、あるいは、鍔部16Aの代わりにシリンダブロック本体60の中空部64の内周方向に沿って連続的に形成される鍔部が、貫通穴を有さなければ、シリンダヘッド側冷却液ジャケット70Aと、クランク室側冷却液ジャケット70Bとが貫通穴を介して連通しない。このため、シリンダヘッド側冷却液ジャケット70Aと、クランク室側冷却液ジャケット70Bとで各々別個独立した冷却液の液温・流量等の制御がより確実に行える。なお、「鍔部の幅方向」とは、鍔部が設けられた面と平行を成し、かつ、鍔部の長手方向と直交する方向を意味し、図11に示す鍔部16Aでは、Z方向の長さを意味し、図15に示す鍔部16Bでは、外周方向(あるいはY方向)の長さを意味する。 Further, a flange portion (division flange portion) provided on the connection cylinder 10 side or the cylinder block main body 60 side for the purpose of dividing the coolant jacket 70 into two or more portions is a through hole penetrating in the width direction of the flange portion It is preferable not to have For example, the flange portion 16A continuously formed along the outer peripheral direction of the connecting cylinder 10 or the inner peripheral direction of the hollow portion 64 of the cylinder block main body 60 instead of the flange portion 16A is continuously formed If the flange portion has no through hole, the cylinder head side coolant jacket 70A and the crank chamber side coolant jacket 70B do not communicate via the through hole. For this reason, the control of the liquid temperature, the flow rate, and the like of the coolant independently performed independently of each other by the cylinder head side coolant jacket 70A and the crank chamber side coolant jacket 70B can be performed more reliably. Note that “the width direction of the buttocks” means a direction parallel to the surface on which the buttocks are provided and orthogonal to the longitudinal direction of the buttocks, and in the case of the buttocks 16A shown in FIG. It means the length of the direction, and in the flange portion 16B shown in FIG. 15, it means the length of the outer circumferential direction (or the Y direction).
 また、鍔部(分割用鍔部)が、鍔部の幅方向に貫通する貫通穴を有する場合、鍔部は、貫通穴に加えて、この貫通穴を閉塞可能な栓や蓋などの閉塞部材を有することが好ましい。この場合、内燃機関100の稼働時においては貫通穴が栓や蓋などの閉塞部材により閉塞されていることが好ましい。たとえば、図12に例示した内燃機関100Bの稼働時において鍔部16Aが、内燃機関100の稼働時において閉塞されない状態の貫通穴を有する場合、この貫通穴を介して冷却液がシリンダヘッド側冷却液ジャケット70Aと、クランク室側冷却液ジャケット70Bとの間を行き来できるため、より精密な冷却制御を行うことが困難となる。これらの点は、鍔部16がシリンダブロック本体60の内周面64S1に設けられる場合も同様である。なお、貫通穴は、内燃機関100の非稼働時には、たとえば、内燃機関100のメンテナンス・修理などを目的として開放してもよい。 In addition, when the collar portion (dividing collar portion) has a through hole penetrating in the width direction of the collar portion, the collar portion is a closing member such as a plug or lid capable of closing the through hole in addition to the through hole It is preferable to have In this case, when the internal combustion engine 100 is in operation, it is preferable that the through hole is closed by a closing member such as a plug or a lid. For example, when internal combustion engine 100B illustrated in FIG. 12 has flange portion 16A having a through hole in a non-closed state when internal combustion engine 100 operates, the coolant is the cylinder head side coolant through this through hole. Since the jacket 70A and the crankcase side coolant jacket 70B can be moved back and forth, it becomes difficult to perform more precise cooling control. These points also apply to the case where the collar portion 16 is provided on the inner peripheral surface 64S1 of the cylinder block main body 60. The through hole may be opened for the purpose of maintenance / repair of internal combustion engine 100, for example, when internal combustion engine 100 is not in operation.
 なお、複数本のシリンダライナがシリンダブロックに鋳包まれた構造を持つ従来の内燃機関では、シリンダライナを除いた部分が鋳造により一体的に形成される。このため、従来の内燃機関では、図12および図13に示す内燃機関100B、100Cのように、冷却液ジャケット70が、シリンダヘッド側冷却液ジャケット70Aと、クランク室側冷却液ジャケット70Bとに分割された構造(冷却液ジャケット分割構造)を鋳造プロセスのみで実現することは不可能であった。また、鋳造後に冷却液ジャケット分割構造を実現するためには、シリンダヘッド側の開口部の幅が狭く深さのある冷却液ジャケット内で、冷却液ジャケット分割構造を構築する作業が必要になるため、製造性が極めて悪く、量産は不可能である。しかしながら、鍔部16を有する連結シリンダ10を用いた本実施形態の内燃機関100であれば、冷却液ジャケット分割構造を、鋳造で製造された鍔部16を有する連結シリンダ10と、鋳造で製造されたシリンダブロック本体60とを組み合わせることで極めて容易に実現でき、量産性も極めて優れる。 In a conventional internal combustion engine having a structure in which a plurality of cylinder liners are cast and wrapped in a cylinder block, the portion excluding the cylinder liners is integrally formed by casting. Therefore, in the conventional internal combustion engine, as in the internal combustion engines 100B and 100C shown in FIGS. 12 and 13, the coolant jacket 70 is divided into the cylinder head side coolant jacket 70A and the crankcase side coolant jacket 70B. It was impossible to realize the above structure (coolant jacket split structure) only by the casting process. Also, in order to realize the coolant jacket split structure after casting, it is necessary to construct a coolant jacket split structure within a coolant jacket having a narrow width at the opening on the cylinder head side. The productivity is extremely bad, and mass production is impossible. However, in the case of the internal combustion engine 100 of the present embodiment using the connecting cylinder 10 having the flange portion 16, the coolant jacket split structure is manufactured by casting the connecting cylinder 10 having the flange portion 16 manufactured by casting and The combination with the cylinder block body 60 can be extremely easily realized, and the mass productivity is also extremely excellent.
 本実施形態の内燃機関100では、連結シリンダ10とシリンダブロック本体60とが嵌合する嵌合部を最低1つ有していればよい。この場合の嵌合部は、シリンダブロック本体60の中空部64の一端側の部分(嵌合部64J)である。しかし、本実施形態の内燃機関100は、図8、図12および図13に例示したように、最も一端側(Z2側)寄りに位置する第一嵌合部(嵌合部64J)以外にも、最も他端側(Z1側)寄りに位置する第二嵌合部(図8、図12および図13に例示した固定部材80を介した篏合部など)や、Z方向において一端側(Z2側)と他端側(Z1側)との間に位置する第三嵌合部(図12および図13に例示した鍔部16とシリンダブロック本体60との間の嵌合部など)などのように、Z方向に対して2つ以上の嵌合部を有する場合もある。 In the internal combustion engine 100 of the present embodiment, at least one fitting portion in which the connecting cylinder 10 and the cylinder block main body 60 fit may be provided. The fitting portion in this case is a portion (fitting portion 64J) on one end side of the hollow portion 64 of the cylinder block main body 60. However, as illustrated in FIGS. 8, 12 and 13, the internal combustion engine 100 of the present embodiment is not limited to the first fitting portion (fitting portion 64J) positioned closest to one end side (Z2 side). A second fitting portion (for example, a fitting portion via the fixing member 80 illustrated in FIGS. 8, 12 and 13) located closest to the other end side (Z1 side), or one end side in the Z direction (Z2 Such as a third fitting portion (between the flange portion 16 and the cylinder block body 60 illustrated in FIGS. 12 and 13 etc.) positioned between the side) and the other end side (Z1 side) In some cases, two or more fitting portions may be provided in the Z direction.
 このように本実施形態の内燃機関100がZ方向に対して2つ以上の嵌合部を有する場合、各々の嵌合部における嵌合方式は同一であってもよく異なっていてもよい。また、各嵌合部における好適な嵌合方式の組み合わせとしては以下に例示する態様が挙げられる。 As described above, when the internal combustion engine 100 of the present embodiment has two or more fitting parts in the Z direction, the fitting method in each fitting part may be the same or different. Moreover, the aspect illustrated below is mentioned as a combination of the suitable fitting system in each fitting part.
(内燃機関100が、第一、第二および第三嵌合部を有する場合)
・組み合わせ例A1
第一嵌合部~第三嵌合部:すきまばめ
 この組み合わせでは、Z方向全域においてシリンダボア20の変形抑制が極めて容易である。
・組み合わせ例A2
第一嵌合部:中間ばめ、第二嵌合部および第三嵌合部:すきまばめ
 この組み合わせでは、ピストンが往復運動する領域近傍でのシリンダボア20の変形抑制が極めて容易である一方、組み合わせ例A1と比べて連結シリンダ10をより安定的にシリンダブロック本体60に固定できる。
(In the case where the internal combustion engine 100 has the first, second and third fitting portions)
・ Combination example A1
First to third fitting parts: clearance fitting In this combination, it is extremely easy to suppress the deformation of the cylinder bore 20 in the entire Z direction.
・ Combination example A2
1st fitting part: middle fit, 2nd fitting part and 3rd fitting part: loose fitting In this combination, while it is very easy to suppress deformation of the cylinder bore 20 in the vicinity of the area where the piston reciprocates, The connecting cylinder 10 can be more stably fixed to the cylinder block body 60 as compared to the combination example A1.
(内燃機関100が、第一および第三嵌合部を有する場合)
・組み合わせ例B1
第一嵌合部および第三嵌合部:すきまばめ
 この組み合わせでは、Z方向全域においてシリンダボア20の変形抑制が極めて容易である。
・組み合わせ例B2
第一嵌合部:中間ばめ、第三嵌合部:すきまばめ
 この組み合わせでは、ピストンが往復運動する領域近傍でのシリンダボア20の変形抑制が極めて容易である一方、組み合わせ例B1と比べて連結シリンダ10をより安定的にシリンダブロック本体60に固定できる。
(In the case where the internal combustion engine 100 has the first and third fitting portions)
・ Combination example B1
First fitting portion and third fitting portion: loose fitting In this combination, it is extremely easy to suppress the deformation of the cylinder bore 20 in the entire Z direction.
・ Combination example B2
First fitting part: middle fit, third fitting part: clearance fit In this combination, it is extremely easy to suppress the deformation of the cylinder bore 20 in the vicinity of the region where the piston reciprocates, compared to the combination example B1. The connecting cylinder 10 can be fixed to the cylinder block body 60 more stably.
(内燃機関100が、第一および第二嵌合部を有する場合)
・組み合わせ例C1
第一嵌合部および第二嵌合部:すきまばめ
 この組み合わせでは、Z方向全域においてシリンダボア20の変形抑制が極めて容易である。
・組み合わせ例C2
第一嵌合部:中間ばめ、第二嵌合部:すきまばめ
 この組み合わせでは、ピストンが往復運動する領域近傍でのシリンダボア20の変形抑制が極めて容易である一方、組み合わせ例C1と比べて連結シリンダ10をより安定的にシリンダブロック本体60に固定できる。
(In the case where the internal combustion engine 100 has the first and second fitting portions)
・ Combination example C1
First fitting portion and second fitting portion: clearance fit In this combination, it is extremely easy to suppress the deformation of the cylinder bore 20 in the entire Z direction.
・ Combination example C2
1st fitting part: middle fit, 2nd fitting part: gap fitting It is extremely easy to suppress the deformation of the cylinder bore 20 in the vicinity of the region where the piston reciprocates, compared with the combination example C1. The connecting cylinder 10 can be fixed to the cylinder block body 60 more stably.
 本実施形態の内燃機関100は、液冷式のガソリンエンジン、液冷式のディーゼルエンジン、ガソリンあるいは軽油以外の燃料(アルコール、天然ガス、水素ガス等)を用いた液冷式のエンジン等として利用できる。本実施形態の内燃機関100の用途は特に制限されず、自動車、バイク、鉄道車両などの車両用、船舶用、航空機用、発電用等の様々な用途に利用できるが、特に車両用が好適である。本実施形態の内燃機関100の排気量は特に制限されず、用途に応じて適宜選択できるが、一般的には、20cc~60Lの範囲で用途に応じて選択される。大型のトラック・バス等の大型自動車も含めた自動車用途であれば、たとえば、50cc~30Lの範囲で選択することが好ましく、大型のトラック・バス等の大型自動車を除いた自動車用途であれば、たとえば、50cc~7Lの範囲で選択することが好ましく、300cc~4Lの範囲で選択することがより好ましい。また、バイク用であれば、20cc~1.5Lの範囲で選択することが好ましく、50cc~1.2Lの範囲で選択することがより好ましい。 The internal combustion engine 100 according to the present embodiment is used as a liquid-cooled gasoline engine, a liquid-cooled diesel engine, a liquid-cooled engine using fuel other than gasoline or light oil (alcohol, natural gas, hydrogen gas, etc.) it can. The application of the internal combustion engine 100 according to the present embodiment is not particularly limited, and can be used for various applications such as automobiles, motorbikes, railway vehicles, ships, aircraft, power generation, etc. is there. The displacement of the internal combustion engine 100 of the present embodiment is not particularly limited and may be appropriately selected in accordance with the application, but is generally selected in the range of 20 cc to 60 L according to the application. For automobile applications including large vehicles such as large trucks and buses, it is preferable to select, for example, in the range of 50 cc to 30 L. For automotive applications excluding large vehicles such as large trucks and buses, for example, For example, it is preferable to select in the range of 50 cc to 7 L, and more preferable to select in the range of 300 cc to 4 L. In addition, for motorcycles, it is preferable to select in the range of 20 cc to 1.5 L, and more preferable to select in the range of 50 cc to 1.2 L.
 本実施形態の内燃機関100は、大型のエンジン(たとえば、船舶用などの大型ディーゼルエンジン、および/または、排気量が30Lもしくは60Lを超えるような大型エンジン)などにも適用可能であるが、排気量あるいはエンジンサイズの大きさに対応する連結シリンダ10およびシリンダブロック本体60(特に、シリンダブロック本体60)の製造が困難になる。よって、本実施形態の内燃機関100の排気量は、60L以下が好ましく、30L以下が好ましく、10L以下が特に好ましい。また、同様の理由から、本実施形態の内燃機関100は、上述したような大型のエンジンを除いた内燃機関であることが好適である。 The internal combustion engine 100 according to the present embodiment is applicable to a large engine (for example, a large diesel engine for ships and / or a large engine whose displacement exceeds 30 L or 60 L). It becomes difficult to manufacture the connecting cylinder 10 and the cylinder block body 60 (in particular, the cylinder block body 60) corresponding to the amount or the size of the engine size. Therefore, 60 L or less is preferable, as for the displacement of the internal combustion engine 100 of this embodiment, 30 L or less is preferable, and 10 L or less is especially preferable. Further, for the same reason, it is preferable that the internal combustion engine 100 of the present embodiment is an internal combustion engine excluding the above-described large engine.
 また、本実施形態の連結シリンダ10は、シリンダブロック本体60以外の部材と組み合わせて内燃機関を構成してもよい。このような内燃機関の構造は特に制限されず、また、液冷式、空冷式のいずれでもよい。たとえば、船舶用などの大型ディーゼルエンジン、および/または、排気量が30Lもしくは60Lを超えるような大型エンジンであれば、連結シリンダ10と、連結シリンダ10のシリンダヘッド側寄りの外周面10Sを囲うカバー部材とを有する内燃機関とすることができる。このカバー部材は、複数のボルトにより連結シリンダ10に固定される。この場合、連結シリンダ10の外周面10Sと、カバー部材との間に形成された冷却室に冷却液が供給される。このような大排気量の内燃機関では、排気量に応じた寸法・体積の大きいシリンダブロック本体60を鋳造により作製しようとしても鋳巣等の問題により製造困難であるが、カバー部材であればシリンダブロック本体60よりも遥かに寸法・体積が小さいため製造容易である。 Further, the connection cylinder 10 of the present embodiment may be combined with members other than the cylinder block main body 60 to constitute an internal combustion engine. The structure of such an internal combustion engine is not particularly limited, and may be either liquid-cooled or air-cooled. For example, in the case of a large diesel engine for ships and / or a large engine whose displacement exceeds 30 L or 60 L, a cover surrounding the connecting cylinder 10 and the outer peripheral surface 10S of the connecting cylinder 10 near the cylinder head An internal combustion engine having a member can be provided. The cover member is fixed to the connecting cylinder 10 by a plurality of bolts. In this case, the cooling fluid is supplied to the cooling chamber formed between the outer circumferential surface 10S of the connecting cylinder 10 and the cover member. In such a large displacement internal combustion engine, although it is difficult to manufacture the cylinder block main body 60 having a large size and size according to the displacement by casting, it is difficult to manufacture due to problems such as blows. Since the size and volume are much smaller than the block body 60, manufacture is easy.
10    :連結シリンダ
10A、10A1、10A2、10A3、10A4、10A5  :第一の連結シリンダ
10B   :第二の連結シリンダ
10S   :外周面
10S1  :第一領域(外周面10Sの一部分)
10S2  :第二領域(外周面10Sの一部分)
10ES  :端面
12    :溝
14    :段差
16、16A、16B    :鍔部
20    :シリンダボア
20B   :内周面
30、30A、30B、30C    :冷却液用通路
34    :開口部
36    :端面
40    :シリンダライナ
40A   :外周面
40B   :内周面
42    :連結部
50    :連結シリンダ本体部
50B   :内周面
52    :被膜
52A   :外周側面
52B   :表面
60、60A、60B、60C    :シリンダブロック本体
62    :クランク室
64    :中空部
64J   :嵌合部
64X   :開口部
64S、64S1、64S2、64S3   :内周面
64S1A :シリンダヘッド側領域(内周面64S1の一部分)
64S1B :クランク室側領域(内周面64S1の一部分)
66    :溝
68A   :第一の段差
68B   :第二の段差
68C   :第三の段差
69    :ガイド溝
70    :冷却液ジャケット
70A   :シリンダヘッド側冷却液ジャケット
70B   :クランク室側冷却液ジャケット
80    :(ヘッド側)固定部材
100、100A、100B、100C   :内燃機関
10: connecting cylinder 10A, 10A1, 10A2, 10A3, 10A4, 10A5: first connecting cylinder 10B: second connecting cylinder 10S: outer peripheral surface 10S1: first region (part of outer peripheral surface 10S)
10S2: Second region (part of outer peripheral surface 10S)
10ES: end face 12: groove 14: step 16, 16A, 16B: ridge portion 20: cylinder bore 20B: inner circumferential surface 30, 30A, 30B, 30C: coolant passage 34: opening 36: end face 40: cylinder liner 40A: Outer peripheral surface 40B: inner peripheral surface 42: connecting portion 50: connecting cylinder main body 50B: inner peripheral surface 52: coating 52A: outer peripheral side surface 52B: surface 60, 60A, 60B, 60C: cylinder block main body 62: crank chamber 64: hollow Part 64J: Fitting part 64X: Opening 64S, 64S1, 64S2, 64S3: Inner peripheral surface 64S1A: Cylinder head side area (part of inner peripheral surface 64S1)
64S1B: Crank chamber side area (part of the inner circumferential surface 64S1)
66: groove 68A: first step 68B: second step 68C: third step 69: guide groove 70: coolant jacket 70A: cylinder head side coolant jacket 70B: crankcase side coolant jacket 80: (head Side) Fixing members 100, 100A, 100B, 100C: Internal combustion engine

Claims (35)

  1.  (1)2つ以上のシリンダライナと、前記2つ以上のシリンダライナを互いに連結する連結部とを含む第一の連結シリンダ、および、
     (2)2つ以上のシリンダボアが設けられた連結シリンダ本体部と、前記連結シリンダ本体部の前記シリンダボアが設けられた内周面を被覆する被膜とを含む第二の連結シリンダ、
     からなる群より選択されるいずれかの連結シリンダを、一端側にクランク室が形成され、他端側にシリンダヘッドが組み付けられると共に、前記一端側から前記他端側へと貫通する中空部が設けられたシリンダブロック本体の前記中空部に嵌め合わせる嵌合工程を、少なくとも経て内燃機関を製造することを特徴とする内燃機関の製造方法。
    (1) a first connecting cylinder including two or more cylinder liners and a connecting portion connecting the two or more cylinder liners to each other;
    (2) A second connection cylinder including a connection cylinder main body provided with two or more cylinder bores and a coating that covers the inner peripheral surface of the connection cylinder main body provided with the cylinder bore,
    The crank chamber is formed on one end side of one of the connecting cylinders selected from the group consisting of: a cylinder head is assembled on the other end side; and a hollow portion penetrating from the one end side to the other end side is provided. A method of manufacturing an internal combustion engine, comprising: manufacturing an internal combustion engine through at least a fitting step of fitting the hollow portion of the cylinder block body.
  2.  前記嵌合工程が、すきまばめ、中間ばめおよびしまりばめから選択されるいずれかの嵌合方式で実施されることを特徴とする請求項1に記載の内燃機関の製造方法。 The method for manufacturing an internal combustion engine according to claim 1, wherein the fitting step is performed by any fitting method selected from a loose fit, an intermediate fit and a tight fit.
  3.  前記連結シリンダが、前記第一の連結シリンダであり、
     前記シリンダライナの内周面を仕上げ加工することにより摺動面を形成する摺動面形成工程を、前記嵌合工程の前のみにおいて実施することを特徴とする請求項1または2に記載の内燃機関の製造方法。
    The connection cylinder is the first connection cylinder,
    3. The internal combustion engine according to claim 1, wherein a sliding surface forming step of forming a sliding surface by finishing the inner peripheral surface of the cylinder liner is performed only before the fitting step. How to make an organization.
  4.  前記連結シリンダが、前記第一の連結シリンダであり、
     前記シリンダライナの内周面に被膜を形成する被膜形成工程を実施した後に、前記被膜の表面を仕上げ加工することにより摺動面を形成する摺動面形成工程を実施し、
     かつ、前記摺動面形成工程を前記嵌合工程の前のみにおいて実施することを特徴とする請求項1~3のいずれか1つに記載の内燃機関の製造方法。
    The connection cylinder is the first connection cylinder,
    After performing a film forming step of forming a film on the inner peripheral surface of the cylinder liner, a sliding surface forming step of forming a sliding surface by finishing the surface of the film is performed.
    The method for manufacturing an internal combustion engine according to any one of claims 1 to 3, wherein the sliding surface forming step is performed only before the fitting step.
  5.  前記連結シリンダが、前記第二の連結シリンダであり、
     前記連結シリンダ本体部の前記シリンダボアが設けられた内周面を被覆する被膜の表面を仕上げ加工することにより摺動面を形成する摺動面形成工程を、前記嵌合工程の前のみにおいて実施することを特徴とする請求項1または2に記載の内燃機関の製造方法。
    The connection cylinder is the second connection cylinder,
    A sliding surface forming step of forming a sliding surface by finishing the surface of the coating covering the inner peripheral surface provided with the cylinder bore of the connecting cylinder main body is carried out only before the fitting step. The method for manufacturing an internal combustion engine according to claim 1 or 2, characterized in that
  6.  前記嵌合工程が、すきまばめおよび中間ばめから選択されるいずれかの嵌合方式で実施されることを特徴とする請求項3~5のいずれか1つに記載の内燃機関の製造方法。 The method for manufacturing an internal combustion engine according to any one of claims 3 to 5, wherein the fitting step is performed by any fitting method selected from a loose fit and an intermediate fit. .
  7.  前記嵌合工程が、すきまばめにより実施されることを特徴とする請求項3~5のいずれか1つに記載の内燃機関の製造方法。 The method for manufacturing an internal combustion engine according to any one of claims 3 to 5, wherein the fitting step is carried out by close fitting.
  8.  前記摺動面形成工程が、前記連結シリンダを前記シリンダブロック本体および前記シリンダヘッドを模擬した治具に組み付けると共に、少なくとも前記連結シリンダを加温した状態で実施されることを特徴とすることを特徴とする請求項3~7のいずれか1つに記載の内燃機関の製造方法。 The sliding surface forming step is characterized in that the connecting cylinder is assembled to a jig simulating the cylinder block body and the cylinder head, and at least the connecting cylinder is heated. The method for manufacturing an internal combustion engine according to any one of claims 3 to 7, wherein
  9.  前記連結シリンダの互いに隣り合う2つのシリンダボアの間に冷却液用通路を形成する冷却液用通路形成工程を、少なくとも前記嵌合工程の前に実施することを特徴とする請求項1~8のいずれか1つに記載の内燃機関の製造方法。 9. A coolant passage forming step for forming a coolant passage between two adjacent cylinder bores of the connecting cylinder is performed at least before the fitting step. A method of manufacturing an internal combustion engine according to any one of the items.
  10.  前記冷却液用通路が、前記連結シリンダの前記シリンダヘッドが配置される側の端面よりも内側に設けられると共に、
     前記連結シリンダに設けられた各々のシリンダボアの中心線と平行を成す平面における前記冷却液用通路の断面形状がスリット状であることを特徴とする請求項9に記載の内燃機関の製造方法。
    The coolant passage is provided inside the end face of the connecting cylinder on which the cylinder head is disposed, and
    10. The method for manufacturing an internal combustion engine according to claim 9, wherein a cross-sectional shape of the coolant passage in a plane parallel to a center line of each cylinder bore provided in the connection cylinder is a slit.
  11.  (1)2つ以上のシリンダライナと、前記2つ以上のシリンダライナを互いに連結する連結部とを含む第一の連結シリンダ、および、
     (2)2つ以上のシリンダボアが設けられた連結シリンダ本体部と、前記連結シリンダ本体部の前記シリンダボアが設けられた内周面を被覆する被膜とを含む第二の連結シリンダ、
     からなる群より選択されるいずれかの連結シリンダと、
     一端側にクランク室が形成され、他端側にシリンダヘッドが組み付けられると共に、前記一端側から前記他端側へと貫通する中空部が設けられたシリンダブロック本体と、を少なくとも備え、
     前記連結シリンダが、前記シリンダブロック本体の前記中空部に脱着可能に嵌め合されていることを特徴とする内燃機関。
    (1) a first connecting cylinder including two or more cylinder liners and a connecting portion connecting the two or more cylinder liners to each other;
    (2) A second connection cylinder including a connection cylinder main body provided with two or more cylinder bores and a coating that covers the inner peripheral surface of the connection cylinder main body provided with the cylinder bore,
    Any connected cylinder selected from the group consisting of
    At least a cylinder block main body having a crank chamber formed at one end, a cylinder head assembled at the other end, and a hollow portion penetrating from the one end to the other end;
    The internal combustion engine according to claim 1, wherein the connecting cylinder is detachably fitted to the hollow portion of the cylinder block body.
  12.  前記連結シリンダが、前記シリンダブロック本体の前記中空部に、すきまばめおよび中間ばめから選択されるいずれかの嵌合方式で嵌め合わされていることを特徴とする請求項11に記載の内燃機関。 The internal combustion engine according to claim 11, wherein the connecting cylinder is fitted in the hollow portion of the cylinder block body in any fitting method selected from a loose fit and an intermediate fit. .
  13.  冷却液用通路が、前記連結シリンダの互いに隣り合う2つのシリンダボアの間において、前記連結シリンダの前記シリンダヘッドが配置される側の端面よりも内側に設けられると共に、
     前記連結シリンダに設けられた各々のシリンダボアの中心線と平行を成す平面における前記冷却液用通路の断面形状がスリット状であることを特徴とする請求項11または12に記載の内燃機関。
    A coolant passage is provided between two adjacent cylinder bores of the connecting cylinder on the inner side of the end face of the connecting cylinder on which the cylinder head is disposed,
    13. The internal combustion engine according to claim 11, wherein a cross-sectional shape of the coolant passage in a plane parallel to a center line of each cylinder bore provided in the connecting cylinder is a slit.
  14.  前記連結シリンダの外周面に、前記連結シリンダに設けられた各々のシリンダボアの中心線と平行な方向に沿って固定用鍔部が設けられ、
     前記シリンダブロック本体の前記中空部の内周面に、前記固定用鍔部と嵌合するガイド溝が設けられていることを特徴とする請求項11~13のいずれか1つに記載の内燃機関。
    A fixing collar is provided on the outer peripheral surface of the connecting cylinder along a direction parallel to the center line of each cylinder bore provided in the connecting cylinder,
    The internal combustion engine according to any one of claims 11 to 13, wherein a guide groove fitted to the fixing flange portion is provided on an inner peripheral surface of the hollow portion of the cylinder block main body. .
  15.  前記固定用鍔部が、前記各々のシリンダボアの配列方向の両端側における前記連結シリンダの外周面に設けられ、
     前記ガイド溝が、前記中空部の開口部の長手方向の両端側における前記シリンダブロック本体の前記中空部の内周面に設けられていることを特徴とする請求項14に記載の内燃機関。
    The fixing collar portion is provided on the outer peripheral surface of the connecting cylinder at both ends in the arrangement direction of the cylinder bores,
    The internal combustion engine according to claim 14, wherein the guide groove is provided on the inner peripheral surface of the hollow portion of the cylinder block main body at both ends in the longitudinal direction of the opening of the hollow portion.
  16.  前記シリンダブロック本体の前記中空部の内周面に、前記中空部の貫通方向と平行な方向に沿って固定用鍔部が設けられ、
     前記連結シリンダの外周面に、前記固定用鍔部と嵌合するガイド溝が設けられていることを特徴とする請求項11~13のいずれか1つに記載の内燃機関。
    A collar for fixing is provided on an inner peripheral surface of the hollow portion of the cylinder block main body along a direction parallel to a penetrating direction of the hollow portion,
    The internal combustion engine according to any one of claims 11 to 13, wherein a guide groove fitted to the fixing flange portion is provided on an outer peripheral surface of the connecting cylinder.
  17.  前記固定用鍔部が、前記中空部の開口部の長手方向の両端側における前記シリンダブロック本体の前記中空部の内周面に設けられ、
     前記ガイド溝が、前記連結シリンダに設けられた各々のシリンダボアの配列方向の両端側における前記連結シリンダの外周面に設けられていることを特徴とする請求項16に記載の内燃機関。
    The fixing collar portion is provided on the inner peripheral surface of the hollow portion of the cylinder block main body at both ends in the longitudinal direction of the opening portion of the hollow portion,
    The internal combustion engine according to claim 16, wherein the guide groove is provided on the outer peripheral surface of the connecting cylinder at both ends in the arrangement direction of each cylinder bore provided in the connecting cylinder.
  18.  水平対向型エンジンであることを特徴とする請求項15または17に記載の内燃機関。 The internal combustion engine according to claim 15 or 17, which is a horizontally opposed engine.
  19.  前記連結シリンダの外周面と、前記シリンダブロック本体の前記中空部の内周面との間に冷却液ジャケットが設けられていることを特徴とする請求項11~18のいずれか1つに記載の内燃機関。 19. A liquid coolant jacket is provided between the outer peripheral surface of the connecting cylinder and the inner peripheral surface of the hollow portion of the cylinder block main body, according to any one of claims 11 to 18. Internal combustion engine.
  20.  前記冷却液ジャケットを2つ以上の部分に分割する分割用鍔部が、前記連結シリンダの外周面および前記シリンダブロック本体の前記中空部の内周面、から選択される少なくともいずれかの面に設けられていることを特徴とする請求項19に記載の内燃機関。 A dividing ridge portion for dividing the coolant jacket into two or more portions is provided on at least one of the outer peripheral surface of the connecting cylinder and the inner peripheral surface of the hollow portion of the cylinder block main body. 20. The internal combustion engine of claim 19, wherein:
  21.  前記分割用鍔部が、前記分割用鍔部の幅方向に貫通する貫通穴を有さないことを特徴とする請求項20に記載の内燃機関。 21. The internal combustion engine according to claim 20, wherein the dividing ridge portion does not have a through hole penetrating in a width direction of the dividing ridge portion.
  22.  前記分割用鍔部が、前記分割用鍔部の幅方向に貫通する貫通穴と、前記貫通穴を閉塞可能な閉塞部材とを有することを特徴とする請求項20に記載の内燃機関。 21. The internal combustion engine according to claim 20, wherein the dividing collar portion has a through hole penetrating in the width direction of the dividing collar portion, and a closing member capable of closing the through hole.
  23.  前記内燃機関の稼働時において、前記貫通穴が、前記閉塞部材により閉塞されていることを特徴とする請求項22に記載の内燃機関。 The internal combustion engine according to claim 22, wherein the through hole is closed by the closing member during operation of the internal combustion engine.
  24.  前記冷却液ジャケット内に、冷却液ジャケットスペーサが配置されていないことを特徴とする請求項20~23のいずれか1つに記載の内燃機関。 The internal combustion engine according to any one of claims 20 to 23, wherein a coolant jacket spacer is not disposed in the coolant jacket.
  25.  前記冷却液ジャケットの深さDが、前記連結シリンダに設けられた各々のシリンダボアの中心線と平行な方向における前記冷却液ジャケットの全長Lの1/2倍以下であることを特徴とする請求項20~24のいずれか1つに記載の内燃機関。 The depth D of the coolant jacket is equal to or less than half the total length L of the coolant jacket in a direction parallel to the center line of each cylinder bore provided in the connecting cylinder. 20. The internal combustion engine of any one of 20 to 24.
  26.  前記冷却液ジャケットの深さDが、前記連結シリンダに設けられた各々のシリンダボアの中心線と平行な方向における前記冷却液ジャケットの全長Lの1/2倍以下であり、かつ、前記冷却液ジャケット内に、冷却液ジャケットスペーサが配置されていないことを特徴とする請求項20~25のいずれか1つに記載の内燃機関。 The depth D of the coolant jacket is equal to or less than 1/2 times the total length L of the coolant jacket in a direction parallel to the center line of each cylinder bore provided in the connection cylinder, and the coolant jacket Internal combustion engine according to any one of claims 20 to 25, characterized in that no coolant jacket spacer is arranged therein.
  27.  2つ以上のシリンダライナと、前記2つ以上のシリンダライナを互いに連結する連結部とを含むことを特徴とする連結シリンダ。 A connecting cylinder comprising: two or more cylinder liners; and a connecting portion connecting the two or more cylinder liners to each other.
  28.  各々のシリンダライナのボア径を拡径した連環状の外周形状を有し、
     各々のシリンダライナの中心線方向において、シリンダヘッド側近傍から中央部近傍までの外周面からなる第一領域における各々のシリンダライナの中心線を基準とする外径D1が、クランク室側近傍の外周面からなる第二領域における各々のシリンダライナの中心線を基準とする外径D2よりも大きく、
     かつ、前記第一領域と、前記第二領域との間には、外周方向と平行かつ連続する段差が形成されていることを特徴とする請求項27に記載の連結シリンダ。
    It has a continuous annular outer peripheral shape in which the bore diameter of each cylinder liner is expanded,
    The outer diameter D1 based on the centerline of each cylinder liner in the first region consisting of the outer peripheral surface from the vicinity of the cylinder head side to the vicinity of the central portion in the centerline direction of each cylinder liner is the outer periphery near the crankcase side. Greater than the outer diameter D2 relative to the centerline of each cylinder liner in the second region of the surface,
    The connection cylinder according to claim 27, wherein a step parallel to and continuous with the outer peripheral direction is formed between the first area and the second area.
  29.  2つ以上のシリンダボアが設けられた連結シリンダ本体部と、前記連結シリンダ本体部の前記シリンダボアが設けられた内周面を被覆する被膜とを含むことを特徴とする連結シリンダ。 A connecting cylinder comprising: a connecting cylinder body provided with two or more cylinder bores; and a coating covering an inner peripheral surface of the connecting cylinder body provided with the cylinder bore.
  30.  2つ以上のシリンダボアが設けられた連結シリンダ本体部と、前記連結シリンダ本体部の前記シリンダボアが設けられた内周面を被覆する被膜とを含み、
     各々のシリンダボアのボア径を拡径した連環状の外周形状を有し、
     各々のシリンダボアの中心線方向において、シリンダヘッド側近傍から中央部近傍までの外周面からなる第一領域における各々のシリンダボアの中心線を基準とする外径D1が、クランク室側近傍の外周面からなる第二領域における各々のシリンダボアの中心線を基準とする外径D2よりも大きく、
     かつ、前記第一領域と、前記第二領域との間には、外周方向と平行かつ連続する段差が形成されていることを特徴とする請求項29に記載の連結シリンダ。
    A connecting cylinder body provided with two or more cylinder bores, and a coating covering an inner circumferential surface of the connecting cylinder body provided with the cylinder bore,
    It has a continuous annular outer peripheral shape in which the bore diameter of each cylinder bore is expanded,
    The outer diameter D1 based on the center line of each cylinder bore in the first region consisting of the outer peripheral surface from the vicinity of the cylinder head side to the vicinity of the central portion in the center line direction of each cylinder bore is from the outer peripheral surface near the crank chamber side. Greater than the outer diameter D2 relative to the center line of each cylinder bore in the second region
    The connection cylinder according to claim 29, wherein a step parallel to and continuous with the outer peripheral direction is formed between the first region and the second region.
  31.  外周面に、鍔部が設けられていることを特徴とする請求項27~30のいずれか1つに記載の連結シリンダ。 The connection cylinder according to any one of claims 27 to 30, wherein a collar portion is provided on the outer peripheral surface.
  32.  前記第一領域には、前記第一領域を前記シリンダヘッド側の領域と前記クランク室側の領域とに分断する鍔部が設けられていることを特徴とする請求項28または30に記載の連結シリンダ。 31. The connection according to claim 28 or 30, wherein the first area is provided with a flange portion for dividing the first area into an area on the cylinder head side and an area on the crank chamber side. Cylinder.
  33.  前記鍔部が、前記鍔部の幅方向に貫通する貫通穴を有さないことを特徴とする請求項31または32に記載の連結シリンダ。 The connection cylinder according to claim 31 or 32, wherein the ridge portion does not have a through hole penetrating in a width direction of the ridge portion.
  34.  前記鍔部が、前記鍔部の幅方向に貫通する貫通穴と、前記貫通穴を閉塞可能な閉塞部材とを有することを特徴とする請求項31または32に記載の連結シリンダ。 The connection cylinder according to claim 31 or 32, wherein the collar portion has a through hole penetrating in a width direction of the collar portion, and a closing member capable of closing the through hole.
  35.  冷却液用通路が、前記連結シリンダの互いに隣り合う2つのシリンダボアの間において、前記連結シリンダのシリンダヘッドが配置される側の端面よりも内側に設けられると共に、
     前記連結シリンダに設けられた各々のシリンダボアの中心線と平行を成す平面における前記冷却液用通路の断面形状がスリット状であることを特徴とする請求項27~34のいずれか1つに記載の連結シリンダ。
    A coolant passage is provided between two adjacent cylinder bores of the connecting cylinder on the inner side of the end face of the connecting cylinder on which the cylinder head is disposed,
    35. The cross section of the coolant passage in a plane parallel to the center line of each cylinder bore provided in the connecting cylinder is in the form of a slit, according to any one of claims 27 to 34. Connection cylinder.
PCT/JP2018/001243 2018-01-17 2018-01-17 Internal combustion engine manufacturing method, internal combustion engine, and coupling cylinder WO2019142270A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PCT/JP2018/001243 WO2019142270A1 (en) 2018-01-17 2018-01-17 Internal combustion engine manufacturing method, internal combustion engine, and coupling cylinder
EP18901094.5A EP3741980A1 (en) 2018-01-17 2018-01-17 Internal combustion engine manufacturing method, internal combustion engine, and coupling cylinder
CN201880076557.XA CN111406151A (en) 2018-01-17 2018-01-17 Method for manufacturing internal combustion engine, and connecting cylinder
JP2019566035A JPWO2019142270A1 (en) 2018-01-17 2018-01-17 Manufacturing method of internal combustion engine, internal combustion engine and connecting cylinder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/001243 WO2019142270A1 (en) 2018-01-17 2018-01-17 Internal combustion engine manufacturing method, internal combustion engine, and coupling cylinder

Publications (1)

Publication Number Publication Date
WO2019142270A1 true WO2019142270A1 (en) 2019-07-25

Family

ID=67300956

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/001243 WO2019142270A1 (en) 2018-01-17 2018-01-17 Internal combustion engine manufacturing method, internal combustion engine, and coupling cylinder

Country Status (4)

Country Link
EP (1) EP3741980A1 (en)
JP (1) JPWO2019142270A1 (en)
CN (1) CN111406151A (en)
WO (1) WO2019142270A1 (en)

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6094230A (en) * 1983-10-31 1985-05-27 Toyota Motor Corp Method of manufacturing cylinder block
JPH05296103A (en) * 1992-04-15 1993-11-09 Nissan Motor Co Ltd Structure of engine block
JPH08246944A (en) * 1995-03-08 1996-09-24 Suzuki Motor Corp Cylinder for internal combustion engine and manufacture thereof
JPH0996245A (en) * 1995-09-29 1997-04-08 Suzuki Motor Corp Cylinder block structure for automobile engine
JP2813947B2 (en) 1993-09-24 1998-10-22 本田技研工業株式会社 Siamese type cylinder block and casting method therefor
JPH11101155A (en) * 1997-09-29 1999-04-13 Fuji Heavy Ind Ltd Connecting bolt fitting hole structure for cylinder block
JP2004036511A (en) * 2002-07-04 2004-02-05 Toyota Motor Corp Cylinder block for internal combustion engine and its machining method
JP2005201084A (en) * 2004-01-13 2005-07-28 Toyota Motor Corp Cylinder block
JP2005307953A (en) * 2004-04-26 2005-11-04 Toyota Motor Corp Cylinder liner positioning structure
JP2006312905A (en) * 2005-05-09 2006-11-16 Toyota Motor Corp Cylinder block and its assembling method
JP4278125B2 (en) 2000-09-26 2009-06-10 本田技研工業株式会社 Cylinder block of multi-cylinder internal combustion engine

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6094230A (en) * 1983-10-31 1985-05-27 Toyota Motor Corp Method of manufacturing cylinder block
JPH05296103A (en) * 1992-04-15 1993-11-09 Nissan Motor Co Ltd Structure of engine block
JP2813947B2 (en) 1993-09-24 1998-10-22 本田技研工業株式会社 Siamese type cylinder block and casting method therefor
JPH08246944A (en) * 1995-03-08 1996-09-24 Suzuki Motor Corp Cylinder for internal combustion engine and manufacture thereof
JPH0996245A (en) * 1995-09-29 1997-04-08 Suzuki Motor Corp Cylinder block structure for automobile engine
JPH11101155A (en) * 1997-09-29 1999-04-13 Fuji Heavy Ind Ltd Connecting bolt fitting hole structure for cylinder block
JP4278125B2 (en) 2000-09-26 2009-06-10 本田技研工業株式会社 Cylinder block of multi-cylinder internal combustion engine
JP2004036511A (en) * 2002-07-04 2004-02-05 Toyota Motor Corp Cylinder block for internal combustion engine and its machining method
JP2005201084A (en) * 2004-01-13 2005-07-28 Toyota Motor Corp Cylinder block
JP2005307953A (en) * 2004-04-26 2005-11-04 Toyota Motor Corp Cylinder liner positioning structure
JP2006312905A (en) * 2005-05-09 2006-11-16 Toyota Motor Corp Cylinder block and its assembling method

Also Published As

Publication number Publication date
EP3741980A1 (en) 2020-11-25
CN111406151A (en) 2020-07-10
JPWO2019142270A1 (en) 2020-11-19

Similar Documents

Publication Publication Date Title
JP6371458B2 (en) Internal combustion engine manufacturing method, internal combustion engine, and connecting cylinder
US5005469A (en) Cylinder liner unit for use in an internal combustion engine
US5755028A (en) Process for producing engine cylinder blocks
EP3021998B1 (en) Engine block assembly and method of manufacturing the engine block assembly
EP0777043A1 (en) Method for manufacturing cylinder blocks
CN106168181B (en) Composite cylinder block for engine
US10690087B2 (en) Aluminum cylinder block and method of manufacture
US20110155091A1 (en) Inlay part for a piston of an internal combustion engine and piston or piston head provided with the inlay part
US20040244758A1 (en) Method for increasing the displacement of an internal combustion engine and engine having increased displacement thereby
US20050150476A1 (en) Combination of cylinder liners consisting of a light metal alloy
WO2019142270A1 (en) Internal combustion engine manufacturing method, internal combustion engine, and coupling cylinder
US10781769B2 (en) Method of manufacturing an engine block
US11193402B2 (en) Valve seat ring of a gas exchange valve and gas exchange valve
CN112211741A (en) Internal combustion engine cylinder partially made of plastic material and manufacturing method thereof
US6439173B1 (en) Internal combustion engine with cylinder insert
JP4466541B2 (en) Cylinder block and cylinder block assembly
KR100828803B1 (en) Method for manufacturing aluminium cylinder block with aluminium liner
JP7011561B2 (en) Manufacturing method of piston of internal combustion engine
JP5461120B2 (en) Cylinder block structure
US6263840B1 (en) Motorblock and cylinderliner therefor
JP2007278092A (en) Manufacturing method for cylinder block and cylinder block

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18901094

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019566035

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018901094

Country of ref document: EP

Effective date: 20200817