WO2019141282A1 - 激光定位装置 - Google Patents

激光定位装置 Download PDF

Info

Publication number
WO2019141282A1
WO2019141282A1 PCT/CN2019/072621 CN2019072621W WO2019141282A1 WO 2019141282 A1 WO2019141282 A1 WO 2019141282A1 CN 2019072621 W CN2019072621 W CN 2019072621W WO 2019141282 A1 WO2019141282 A1 WO 2019141282A1
Authority
WO
WIPO (PCT)
Prior art keywords
positioning device
distance
laser positioning
laser
direction surface
Prior art date
Application number
PCT/CN2019/072621
Other languages
English (en)
French (fr)
Inventor
李忠山
石昕
邢星
Original Assignee
上海诺司纬光电仪器有限公司
美国西北仪器公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海诺司纬光电仪器有限公司, 美国西北仪器公司 filed Critical 上海诺司纬光电仪器有限公司
Publication of WO2019141282A1 publication Critical patent/WO2019141282A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/06Systems determining position data of a target
    • G01S17/08Systems determining position data of a target for measuring distance only
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements

Definitions

  • the present invention relates to the field of spatial positioning technologies, and in particular, to a laser positioning device.
  • laser range finder As a kind of distance measuring instrument, laser range finder is mostly used in construction engineering.
  • the prior art laser range finder performs distance measurement by pulse or phase. Firstly, two target points are measured, and then the vertical distance between two points of the measuring object surface is obtained by a default fixed algorithm, and the laser range finder is obtained.
  • the vertical distance of the target object surface can only be measured with visual aiming or with auxiliary accessories.
  • the measurement accuracy of the visual aiming is poor, which results in the positioning measurement being inaccurate and convenient; and the accessory-assisted measurement process is more cumbersome, which makes the measurement inconvenient and increases the error in the measurement.
  • the prior art assists the measurement by adding a horizontal bubble to the laser range finder.
  • the horizontal bubble assisted measurement must be measured when the horizontal bubble is adjusted to the center state, so it is prone to problems such as slow debugging, horizontal bubble bounce, and cumbersome operation.
  • the conventional laser range finder basically performs the distance measurement by manually visually measuring the laser range finder substantially horizontally or vertically, or after being calibrated by other calibration devices, which is cumbersome and large. The error makes the user's experience worse.
  • the present invention provides a laser positioning device with accurate positioning and easy operation, thereby improving the accuracy of spatial positioning and the user experience.
  • One aspect of the present invention provides a laser positioning apparatus including: a distance measuring unit, an acceleration sensing unit, and a control unit.
  • the distance measuring unit respectively measures a distance of the laser positioning device from the actual irradiation point on the horizontal direction surface in the target space and a distance from the actual illumination point on the vertical direction surface;
  • the acceleration sensing unit measures the laser positioning a current acceleration direction of the device;
  • the control unit uses the measured angular deviation between the current acceleration direction and the gravity direction, and uses the measured distance to the actual illumination point on the horizontal direction surface and the actual direction to the vertical direction
  • the distance of the illumination point calculates the positioning coordinates of the laser positioning device in the target space.
  • the ranging unit comprises: a first ranging module and a second ranging module.
  • the first ranging module transmits and receives a first measurement beam of a horizontal direction surface in the target space to measure a distance to an actual illumination point on a horizontal direction surface;
  • the second ranging module transmits and Receiving a second measuring beam of a vertical direction surface in the target space to measure a distance from the actual irradiation point on the vertical direction surface; wherein the first measuring beam and the second measuring beam The angle between the two is set to a fixed angle.
  • the ranging unit includes: a laser emitting module, a beam splitting module, and a laser receiving measuring module.
  • the laser emitting module emits a light beam;
  • the beam splitting module splits a light beam emitted by the laser emitting module into a first measuring beam of a horizontal direction surface in the target space and a vertical direction surface into the target space a second measuring beam; wherein the beam splitting module sets an angle between the first measuring beam and the second measuring beam to a fixed angle;
  • the laser receiving measurement module receives the first measuring beam and the first The measuring beam is measured to measure the distance from the actual illumination point on the horizontal direction surface and the distance from the actual illumination point on the vertical direction surface.
  • the ranging unit includes: a laser transceiver measurement module, a beam splitting module, wherein: the laser transceiver measurement module emits a light beam; and the beam splitting module divides the light beam into a level in the target space a first measuring beam of the direction plane and a second measuring beam to a vertical direction plane in the target space, wherein the beam splitting module sets an angle between the first measuring beam and the second measuring beam to Fixed angle; the laser transceiver measurement module receives the first measurement beam and the second measurement beam to measure the distance to the actual illumination point on the horizontal direction surface and the actual illumination point on the vertical direction surface the distance.
  • the fixed angle ranges from 85° to 95°.
  • the fixed angle is 90°.
  • the control unit when the fixed angle is greater than or less than 90°, the control unit is provided with a deviation repair value, and the deviation repair value, the gravity direction and the current acceleration are used.
  • the angular deviation, the distance to the actual illumination point on the horizontal direction surface, and the distance from the actual illumination point on the vertical direction surface are used to calculate the positioning coordinates of the laser positioning device in the target space.
  • the acceleration sensing unit transmits acceleration information of three orthogonal directions in a falling process to the control unit in real time, the control unit The height of the drop of the laser positioning device and the number of recorded drops are calculated by acquiring all the acceleration information of the three orthogonal directions in the falling process.
  • control unit further includes an alarm module; the alarm module issues an alarm signal when the height of the drop is higher than and/or equal to a height threshold.
  • control unit further includes an alarm module; when the height of the drop is lower than the height threshold, but the number of drops of the laser positioning device exceeds a threshold of the number of drops of the height of the drop, The alarm module sends an alarm signal.
  • the laser positioning device disclosed by the present invention utilizes the method for compensating the positioning accuracy of the target space by the target space, thereby realizing the desired rapid positioning of the target object in the target space, for example, equidistant placement or Proportional aliquots are placed to ultimately achieve the placement and placement of the target object in the target space.
  • Figure 1 is a schematic view showing the structure of a laser positioning device according to the present invention.
  • FIG. 2 is a schematic structural view of a laser positioning apparatus according to a first embodiment of the present invention
  • Fig. 3 shows a schematic view of an embodiment of a laser positioning device according to a first embodiment of the invention.
  • the invention aims to provide a laser positioning device capable of automatically correcting and correcting the measured distance error according to the angle between the current tilting direction of the laser positioning device and the horizontal reference plane to calculate the vertical distance;
  • the laser positioning device does not need to artificially ensure that the laser positioning device is placed in a horizontal or vertical state, as long as the laser positioning device is tilted within a certain angle (for example, within ⁇ 10°), the device can be obtained.
  • the laser positioning device includes an acceleration sensing unit, a control unit, and a ranging unit.
  • the distance measuring unit measures the distance to the horizontal direction surface in the target space and the distance to the vertical direction surface
  • the control unit receives the gravity direction obtained by the acceleration sensing unit and the measured distance to the horizontal direction surface and to the vertical
  • the distance of the direction plane is used to measure the positioning coordinates of the laser positioning device in the target space according to the angular deviation of the gravity direction from the current direction of the ranging unit.
  • Fig. 1 shows a schematic structural view of a laser positioning device according to the present invention.
  • the laser positioning device 101 includes a distance measuring unit 110, an acceleration sensing unit 104, and a control unit 105.
  • the distance measuring unit 110 is configured to respectively measure the distance from the laser positioning device 101 to the horizontal direction surface in the target space and the distance to the vertical direction surface;
  • the acceleration sensing unit 104 is configured to measure the gravity direction of the laser positioning device.
  • the control unit 105 is configured to calculate the positioning coordinates of the laser positioning device 101 in the target space by using the measured distance from the horizontal direction surface and the distance to the vertical direction surface according to the angular deviation of the gravity direction from the current direction of the ranging unit.
  • the ranging unit 110 in the laser positioning apparatus 101 in this embodiment, the ranging unit 110, the acceleration sensing unit 104, and the control unit 105 are included;
  • the unit 110 includes a first ranging module 102 and a second ranging module 103.
  • the first ranging module 102 is configured to transmit and receive a first measurement beam of a horizontal direction surface in the target space to measure a distance of an actual illumination point on the horizontal direction surface;
  • the second ranging module 103 A second measuring beam for emitting and receiving a vertical direction plane in the target space to measure the distance to the actual illumination point on the vertical direction.
  • the angle between the first measuring beam and the second measuring beam is set to a fixed angle.
  • Embodiment 1 As shown in FIG. 2 and FIG. 3, the specific working principle of Embodiment 1 is as follows:
  • the laser positioning device 101 is placed in a substantially horizontal or substantially vertical state in the target space, and the first ranging module 102 of the ranging unit 110 transmits and receives the first measuring beam of the horizontal plane in the target space, and measures a distance d2 to the actual illumination point on the horizontal direction; the second ranging module 103 is configured to emit and receive a second measurement beam of the vertical direction surface in the target space to measure the actual illumination point on the vertical direction surface Distance d1.
  • the acceleration sensing unit 104 senses the current acceleration direction of the laser positioning device 101 and transmits the acceleration direction information to the control unit 105.
  • the control unit 105 calculates the angular deviation of the current acceleration direction from the gravity direction as ⁇ , and then calculates the actual positioning coordinates (X1, Y1) of the laser positioning device 101 in the target space according to the angular deviation ⁇ and the following algorithm:
  • the laser positioning device 101 quickly makes accurate positioning using its previously positioned positioning reference point 120 (it should be noted that the positioning reference point 120 of the laser positioning device 101 is not limited to the position shown in FIG. 3).
  • the ranging unit 110 the acceleration sensing unit 104, and the control unit 105 are included; wherein the ranging unit 110 includes a laser emitting module, a beam splitting module, and a laser receiving measuring module (attached)
  • the laser emitting module laser receiving measurement module is not shown in the drawings.
  • Embodiment 2 The specific working principle of Embodiment 2 is as follows:
  • the laser positioning device 101 is placed in a substantially horizontal or substantially vertical state in the target space, the laser emitting module of the ranging unit 110 emits a light beam, and the beam splitting module splits the light beam emitted by the laser emitting module into the first horizontal plane in the target space. Measuring a beam and a second measuring beam to a vertical direction plane in the target space, the laser receiving measurement module receiving the first measuring beam and the second measuring beam to measure a distance d2 of the actual irradiation point on the horizontal direction surface and to the vertical The distance d1 of the actual illumination point on the direction of the direction.
  • the acceleration sensing unit 104 senses the acceleration direction of the laser positioning device 101 and transmits the acceleration direction information to the control unit 105. Subsequently, the operating principle of the control unit 105 is calculated in accordance with the working principle described in the above embodiment 1 to calculate the actual positioning coordinates of the laser positioning device 101 in the target space.
  • the beam splitting module sets the angle between the first measuring beam and the second measuring beam to a fixed angle.
  • the laser positioning device 101 in this embodiment includes a distance measuring unit 110, an acceleration sensing unit 104, and a control unit 105.
  • the ranging unit 110 includes a laser transceiver measurement module and a beam splitting module (both in the drawing) Not shown) laser transceiving measurement module.
  • Embodiment 3 The specific working principle of Embodiment 3 is as follows:
  • the laser positioning device 101 is placed in a substantially horizontal or substantially vertical state in the target space, the laser transceiver measurement module of the ranging unit 110 emits a light beam, and the beam splitting module splits the light beam emitted by the laser transceiver measurement module into a horizontal plane in the target space. a first measuring beam and a second measuring beam to a vertical direction surface in the target space, and the laser transceiver measurement module receives the first measuring beam and the second measuring beam to measure a distance d2 of the actual irradiation point on the horizontal direction surface and The distance d1 of the actual irradiation point on the vertical direction.
  • the acceleration sensing unit 104 senses the acceleration direction of the laser positioning device 101 and transmits the acceleration direction information to the control unit 105. Subsequently, the operating principle of the control unit 105 is calculated in accordance with the working principle described in the above embodiment 1 to calculate the actual positioning coordinates of the laser positioning device 101 in the target space.
  • the beam splitting module sets the angle between the first measuring beam and the second measuring beam to a fixed angle.
  • the acceleration sensing unit 104 is preferably a gravity acceleration sensor.
  • the fixed angle between the first measuring beam and the second measuring beam ranges from 85° to 95°, and preferably, the fixed angle is 90°.
  • the control unit 105 is provided with a deviation repair value i (the difference between the fixed angle and 90°), and uses the deviation to repair the value i.
  • the angle deviation ⁇ , the measured distance d2 from the actual irradiation point on the horizontal direction surface, and the distance d1 from the actual irradiation point on the vertical direction surface are calculated according to the following formula:
  • X1 d1 ⁇ cos( ⁇ -i)
  • Y1 d2 ⁇ cos ⁇ (where 90° ⁇ fixed angle ⁇ 95°).
  • the automatic vertical correction compensates the actual vertical distance of the laser positioning device 101 from the target object surface by the setting of the acceleration sensing unit 104.
  • the operation is simple, convenient, and accurate, thereby greatly improving the measurement efficiency.
  • the laser positioning device does not need to be placed in an absolute horizontal or vertical state, and the vertical distance between the device and the wall or object can be obtained by tilting at a certain angle ( ⁇ 10°).
  • the laser positioning device 101 can implement the positioning measurement using any of the structures of Embodiments 1-3.
  • the laser positioning device 101 also includes an alarm module (not shown in the drawings).
  • the acceleration sensing unit 104 transmits acceleration information of three orthogonal directions (X-axis, Y-axis, and Z-axis) in the falling process to the control unit 105 in real time, and the control unit 105 passes All acceleration information of the three orthogonal directions in the falling process is acquired to calculate the height of the drop of the laser positioning device 101 and the number of recorded drops.
  • the alarm module issues an alarm signal when the height of the drop is above and/or equal to the altitude threshold. When the height of the drop is lower than the height threshold, but the number of drops of the laser positioning device 101 exceeds the threshold of the number of drops of the height of the drop, the alarm module issues an alarm signal.
  • This embodiment is preferably a three-axis acceleration sensor as the acceleration sensing unit 104.
  • the preferred three-axis accelerometer of this embodiment has a variable measurement range of +/-2g, +/-4g, +/-8g, +/-16g, maximum 13bit resolution, fixed 4mg/LSB sensitivity, multiple motions Features such as state detection and flexible interrupt mode. All of these features help detect object drop applications.
  • the specific working principle of this embodiment is as follows:
  • the vector sum of accelerations of the object during the falling of the free fall will drop to near 0 g, that is, the laser positioning device 101 is in a weightless state, and the duration is related to the height of the free fall.
  • the weight loss phenomenon will not be as obvious as the free fall, but the combined acceleration is less than 1g (normally, the combined acceleration should be greater than 1g). Therefore, this can be used as the first judgment basis for the drop state, at which time the triaxial acceleration sensor detects the weight loss state.
  • the laser positioning device 101 falls to the horizontal direction surface or collides with other objects, a large impact force is generated, and the impact force can be judged by the three-axis acceleration sensor detecting that the acceleration exceeds a certain threshold.
  • the laser positioning device 101 may be flipped, so the direction of the object may be different from the original initial state of rest. This makes the value of the triaxial acceleration in the stationary state after the fall different from the triaxial acceleration in the initial state.
  • the triaxial acceleration sensor detects the weightless state and transmits the weightlessness state information to the control unit 105; then when the laser positioning device 101 hits a horizontal plane or other object, The triaxial acceleration sensor detects the occurrence of an impact (or impact) state and transmits the impact state information to the control unit 105; the control unit 105 calculates the height of the object drop using the time interval between obtaining the weight loss state information and the impact state information:
  • the height of s-drop the time of t-fall state, g-gravity acceleration.
  • the triaxial acceleration sensor detects the stationary state after the impact
  • the acceleration information corresponding to the stationary state is sent to the control unit 105, and when the control unit 105 receives the above information, the current drop is indicated.
  • the control unit 105 receives the above information, the current drop is indicated. In order to effectively fall, record the number of falls.
  • the alarm module issues an alarm signal.
  • the height of a certain drop is calculated by the acceleration sensing unit 104 and the control unit 105 to be greater than and/or equal to 1.6 m, the alarm module issues an alarm signal.
  • the alarm module issues an alarm signal.
  • the alarm module sends an alarm signal, the user is reminded that the laser positioning device needs to be corrected and/or repaired.
  • the laser positioning device uses the acceleration sensing unit to determine whether the impact force generated by the inertia of the free positioning of the laser positioning device when the height is dropped exceeds the rated protection range of the reliability of the positioning device, so as to remind the user whether it is necessary Calibrate or repair the device; thereby improving the reliability and accuracy of use of the laser positioning device.
  • the laser positioning device 101 can implement the positioning measurement using any of the structures of Embodiments 1-3, and/or the laser positioning device 101 can include the alarm module used in Embodiment 4.
  • the laser positioning device 101 can respectively emit and receive a measuring beam to a vertical direction surface in the target space and a plane parallel to the horizontal direction surface (for example, a ceiling) to measure a plane parallel to the horizontal plane. The distance from the actual exposure point and the distance to the actual illumination point on the vertical direction. Further, the actual positioning coordinates of the laser positioning device 101 in the target space are calculated according to the specific working principle in Embodiment 1-3.
  • the laser positioning device can also realize a specific position of the laser positioning device positioned in the target space to a plane (for example, a ceiling) parallel to the horizontal direction surface, which improves the flexibility of the laser positioning device disclosed in the present invention. Increase the scope of its use.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Electromagnetism (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Optical Radar Systems And Details Thereof (AREA)

Abstract

一种激光定位装置(101),包括:测距单元(110)、加速度感测单元(104)以及控制单元(105);测距单元(110)分别测量激光定位装置(101)在目标空间中到水平方向面上实际照射点的距离和到铅垂方向面上实际照射点的距离;加速度感测单元(104)测量激光定位装置(101)的当前加速度方向;控制单元(105)根据当前加速度方向与测距单元(110)当前方向重力方向之间的角度偏差,利用测量的到水平方向面上实际照射点的距离和到铅垂方向面上实际照射点的距离计算激光定位装置(101)在目标空间中的定位坐标。通过获取到水平方向面的距离和/或到铅垂方向面的垂直距离的准确度补偿,实现目标物体在目标空间中的快速精准定位。

Description

激光定位装置 技术领域
本发明涉及空间定位技术领域,尤其涉及一种激光定位装置。
背景技术
激光测距仪作为一种测距仪器,大多在建筑工程施工中使用。现有技术中的激光测距仪通过脉冲或相位进行距离测量,其首先测量两个目标点然后再通过默认式固定算法获取测量物体面的两点之间垂直距离,而获取激光测距仪与目标物体面的垂直距离只能用目视瞄准测量或使用辅助配件。然而目视瞄准的测量准确度较差从而导致定位测量不够准确和方便;而配件辅助测量过程更加繁琐,导致测量不够方便同时也会增加测量中的误差。
为了改善上述测量方法,现有技术中通过在激光测距仪上加装水平泡来辅助测量。但是,水平泡辅助测量必须在水平泡调试为居中状态时方可进行测量,因此容易出现调试慢、水平泡容易出现抖动、使用操作繁琐等问题。也即,传统的激光测距仪基本上通过人工目测激光测距仪基本水平或竖直后进行测距定位,或通过其他校准装置校准后再进行测量,这些操作既繁琐,又会产生较大的误差,使得用户的体验度比较差。
因此,亟需一种测量精准、操作简单的激光定位装置来实现简单、准确、快速的空间定位。
发明内容
针对上述问题,本发明提出了一种定位精准、便于操作的激光定位装置,进而提高了空间定位的准确度和用户的体验度。
本发明一方面提出了一种激光定位装置,其包括:测距单元、加速度感测单元和控制单元。所述测距单元分别测量所述激光定位装置在目标空间中到水平方向面上实际照射点的距离和到铅垂方向面上实际照射点的距离;所述加速度感测单元测量所述激光定位装置的当前加速度方向;所述控制单元根据所述当前加速度方向与重力方向之间的角度偏差,利用测量 的所述到水平方向面上实际照射点的距离和所述到铅垂方向面上实际照射点的距离计算所述激光定位装置在所述目标空间中的定位坐标。
在一种实施方式中,所述测距单元包括:第一测距模块和第二测距模块。所述第一测距模块发射并接收到所述目标空间中的水平方向面的第一测量光束,以测量所述到水平方向面上实际照射点的距离;所述第二测距模块发射并接收到所述目标空间中的铅垂方向面的第二测量光束,以测量所述到铅垂方向面上实际照射点的距离;其中,所述第一测量光束与所述第二测量光束之间的夹角设置为固定角度。
在一种实施方式中,所述测距单元包括:激光发射模块、分光模块和激光接收测量模块。所述激光发射模块发射光束;所述分光模块将所述激光发射模块发射的光束分成到所述目标空间中的水平方向面的第一测量光束和到所述目标空间中的铅垂方向面的第二测量光束;其中,分光模块将所述第一测量光束与所述第二测量光束之间的夹角设置为固定角度;所述激光接收测量模块接收所述第一测量光束和所述第二测量光束,以测量所述到水平方向面上实际照射点的距离和所述到铅垂方向面上实际照射点的距离。
在一种实施方式中,所述测距单元包括:激光收发测量模块、分光模块,其中:所述激光收发测量模块发射光束;所述分光模块将所述光束分成到所述目标空间中的水平方向面的第一测量光束和到所述目标空间中的铅垂方向面的第二测量光束,其中,分光模块将所述第一测量光束与所述第二测量光束之间的夹角设置为固定角度;所述激光收发测量模块接收所述第一测量光束和所述第二测量光束,以测量所述到水平方向面上实际照射点的距离和所述到铅垂方向面上实际照射点的距离。
在一种实施方式中,所述固定角度的范围是85°-95°。
在一种实施方式中,所述固定角度为90°。
在一种实施方式中,当所述固定角度大于或小于90°时,所述控制单元内设有偏差修复值,并利用所述偏差修复值、所述重力方向与所述当前加速度之间的所述角度偏差、所述到水平方向面上实际照射点的距离以及所述到铅垂方向面上实际照射点的距离来计算所述激光定位装置在所述目 标空间的定位坐标。
在一种实施方式中,当所述激光定位装置从任意高度跌落时,所述加速度感测单元将在跌落过程中三个正交方向的加速度信息实时发送到所述控制单元,所述控制单元通过获取所述跌落过程中所述三个正交方向的所有的加速度信息计算所述激光定位装置的跌落的高度以及记录跌落次数。
在一种实施方式中,所述控制单元还包括报警模块;当所述跌落的高度高于和/或等于高度阈值时,所述报警模块发出报警信号。
在一种实施方式中,所述控制单元还包括报警模块;当所述跌落的高度低于所述高度阈值,但所述激光定位装置的跌落次数超过所述跌落的高度的跌落次数阈值时,所述报警模块发出报警信号。
本发明相比于现有技术,本发明公开的激光定位装置借助了目标空间对目标位置进行定位准确度的补偿方法,实现了目标物体在目标空间中期望的快速定位,例如,等距放置或比例等分放置,以最终实现目标物体在目标空间中的摆放以及布局。
附图说明
参考附图示出并阐明实施例。这些附图用于阐明基本原理,从而仅仅示出了对于理解基本原理必要的方面。这些附图不是按比例的。在附图中,相同的附图标记表示相似的特征。
图1示出了根据本发明的激光定位装置的结构示意图;
图2示出了根据本发明的第一实施例的激光定位装置的结构示意图;
图3示出了根据本发明的第一实施例的激光定位装置的实施方式示意图。
具体实施方式
在以下优选的实施例的具体描述中,将参考构成本发明一部分的所附的附图。所附的附图通过示例的方式示出了能够实现本发明的特定的实施例。示例性的实施例并不旨在穷尽根据本发明的所有实施例。可以理解,在不偏离本发明的范围的前提下,可以利用其他实施例,也可以进行结构性或者逻辑性的修改。因此,以下的具体描述并非限制性的,且本发明的 范围由所附的权利要求所限定。
本发明旨在提出一种激光定位装置,该激光定位装置能够实现根据激光定位装置当前与水平基准面所倾斜的夹角来自动修正补偿所测得的距离误差,以计算出垂直距离;在使用空间定位时,采用该激光定位装置无需人为地确保将激光定位装置放置为水平或竖直状态,只要该激光定位装置倾斜在一定角度内(例如,±10°之内),便可获得装置与空间中的墙壁或物体的垂直距离。所述激光定位装置包括:加速度感测单元、控制单元以及测距单元。其中,测距单元测量在目标空间中到水平方向面的距离和到铅垂方向面的距离,控制单元接收到加速度感测单元获取的重力方向以及测量的到水平方向面的距离和到铅垂方向面的距离,根据重力方向与测距单元当前方向的角度偏差来测量激光定位装置在目标空间中的定位坐标。
图1示出了根据本发明的激光定位装置的结构示意图。在图1中,激光定位装置101包括:测距单元110、加速度感测单元104以及控制单元105。本实施例中,测距单元110用于分别测量激光定位装置101在目标空间中到水平方向面的距离和到铅垂方向面的距离;加速度感测单元104用于测量激光定位装置的重力方向;控制单元105用于根据重力方向与测距单元当前方向的角度偏差,利用测量的到水平方向面的距离和到铅垂方向面的距离计算激光定位装置101在目标空间中的定位坐标。
实施例1
根据图2、图3所示的本实施例的实施例1,在该实施例中的激光定位装置101中,包括了测距单元110、加速度感测单元104以及控制单元105;其中,测距单元110包括了第一测距模块102和第二测距模块103。在本实施例中,第一测距模块102用于发射并接收到目标空间中的水平方向面的第一测量光束,以测量到水平方向面上实际照射点的距离;第二测距模块103用于发射并接收到目标空间中的铅垂方向面的第二测量光束,以测量到铅垂方向面上实际照射点的距离。此外,在本实施例中,第一测量光束与第二测量光束之间的夹角设置为固定角度。
如图2、图3所示,实施例1的具体工作原理如下:
将激光定位装置101置于目标空间内基本水平或基本竖直状态,测距单元110的第一测距模块102发射并接收到所述目标空间中的水平方向面的第一测量光束,并测量到水平方向面上实际照射点的距离d2;第二测距 模块103用于发射并接收到目标空间中的铅垂方向面的第二测量光束,以测量到铅垂方向面上实际照射点的距离d1。加速度感测单元104感测到激光定位装置101的当前加速度方向,并将该加速度方向信息发送到控制单元105。控制单元105计算当前加速度方向与重力方向的角度偏差为α,则根据该角度偏差α以及以下算法进行修正计算得到激光定位装置101在目标空间中的实际定位坐标(X1,Y1):
X1=d1·cosα;Y1=d2·cosα。
也即,完成了在激光定位装置101位置处的空间定位。激光定位装置101利用其预先设置的定位基准点120迅速做出准确的定位(应说明的是,激光定位装置101的定位基准点120不限于图3所示的位置)。
实施例2
在该实施例中的激光定位装置101中,包括了测距单元110、加速度感测单元104以及控制单元105;其中,测距单元110包括了激光发射模块、分光模块以及激光接收测量模块(附图中均未示出)激光发射模块激光接收测量模块。
实施例2的具体工作原理如下:
将激光定位装置101置于目标空间内基本水平或基本竖直状态,测距单元110的激光发射模块发射光束,分光模块将激光发射模块发射的光束分成到目标空间中的水平方向面的第一测量光束和到目标空间中的铅垂方向面的第二测量光束,激光接收测量模块接收第一测量光束和第二测量光束,以测量到水平方向面上实际照射点的距离d2和到铅垂方向面上实际照射点的距离d1。加速度感测单元104感测到激光定位装置101的加速度方向,并将该加速度方向信息发送到控制单元105。随后,控制单元105的工作原理同上面实施例1所描述的工作原理来计算得到激光定位装置101在目标空间中的实际定位坐标。
需要注意的是,在本实施例中分光模块将第一测量光束与第二测量光束之间的夹角设置为固定角度。
实施例3
在该实施例中的激光定位装置101中,包括了测距单元110、加速度感 测单元104以及控制单元105;其中,测距单元110包括了激光收发测量模块、、分光模块(附图中均未示出)激光收发测量模块。
实施例3的具体工作原理如下:
将激光定位装置101置于目标空间内基本水平或基本竖直状态,测距单元110的激光收发测量模块发射光束,分光模块将激光收发测量模块发射的光束分成到目标空间中的水平方向面的第一测量光束和到目标空间中的铅垂方向面的第二测量光束,激光收发测量模块接收第一测量光束和第二测量光束,以测量到水平方向面上实际照射点的距离d2和到铅垂方向面上实际照射点的距离d1。加速度感测单元104感测到激光定位装置101的加速度方向,并将该加速度方向信息发送到控制单元105。随后,控制单元105的工作原理同上面实施例1所描述的工作原理来计算得到激光定位装置101在目标空间中的实际定位坐标。
需要注意的是,在本实施例中分光模块将第一测量光束与第二测量光束之间的夹角设置为固定角度。
在实施例1-3中,加速度感测单元104优选重力加速度传感器。另外,第一测量光束与第二测量光束之间的固定角度的范围是85°-95°,并且优选地,该固定角度为90°。当该固定角度大于或小于90°(例如,83°、91°等)时,控制单元105内设有偏差修复值i(该固定角度与90°的差值),并利用该偏差修复值i、角度偏差α、测量的到水平方向面上实际照射点的距离d2以及到铅垂方向面上实际照射点的距离d1根据如下公式计算所述激光定位装置在目标空间的定位坐标(X1,Y1):
X1=d1·cos(α+i),Y1=d2·cosα(其中,85°≤固定角度<90°);
X1=d1·cos(α-i),Y1=d2·cosα(其中,90°<固定角度≤95°)。
综上所述,在实施例1-3中,通过加速度感测单元104的设置,自动修正补偿了激光定位装置101与目标物体面的实际垂直距离。采用该激光定位装置101进行定位测量时,操作简单、方便,测量准确,从而大大提高了测量效率。在进行空间定位时,激光定位装置不用人为的搁放于绝对水平或竖直状态,只要在倾斜一定角度(±10°)内便可获得装置与墙面或物体的垂直距离。
实施例4
在本实施例中,激光定位装置101可以采用实施例1-3的结构中的任何一个实现定位测量。激光定位装置101还包括报警模块(附图中未示出)。当激光定位装置101从任意高度跌落时,加速度感测单元104将在跌落过程中三个正交方向(X轴、Y轴和Z轴)的加速度信息实时发送到控制单元105,控制单元105通过获取所述跌落过程中所述三个正交方向的所有加速度信息计算激光定位装置101的跌落的高度以及记录跌落次数。当跌落的高度高于和/或等于高度阈值时,报警模块发出报警信号。当跌落的高度低于高度阈值,但激光定位装置101的跌落次数超过该跌落的高度的跌落次数阈值时,报警模块发出报警信号。
本实施例优选三轴加速度传感器作为加速度感测单元104。本实施例优选的三轴加速度传感器具有+/-2g、+/-4g、+/-8g、+/-16g可变的测量范围,最高13bit分辨率,固定的4mg/LSB灵敏度,多种运动状态检测和灵活的中断方式等特性。所有这些特性,有助于检测物体跌落应用。该实施例的具体工作原理如下:
当激光定位装置101静止时,加速度感测单元104的初始状态为:a X=0g、a Y=-1g、a Z=0g。当激光定位装置101跌落时,由于物体在自由落体的下降过程中加速度的矢量和会下降到接近0g,也即激光定位装置101处于失重状态,并且持续时间与自由落体的高度有关。针对一般的跌落情况而言,失重现象虽然不会有像自由落体那么明显,但也会发生合加速度小于1g的情况(通常情况下合加速度应大于1g)。因此,这可以作为跌落状态的第一个判断依据,此时该三轴加速度传感器检测到失重状态。
当激光定位装置101跌落到水平方向面或与其他物体发生撞击时,则会产生很大的冲击力,这个冲击力可以通过该三轴加速度传感器检测到加速度超出一定门限而进行判断。
在跌落之后,激光定位装置101可能发生翻转,因此物体的方向会与原先静止初始状态不同。这使得跌落之后的静止状态下的三轴加速度的数值与初始状态下的三轴加速度不同。例如,重力加速度由a Y=-1g变成了a Z=-1g,则说明激光定位装置101发生了侧向跌落。综上所述即构成了跌落检测的整个技术方案。具体如下:
当激光定位装置101从静止状态开始发生跌落时,三轴加速度传感器 检测到失重状态,并将该失重状态信息发送到控制单元105;随后当激光定位装置101撞击到水平方向面或其他物体时,三轴加速度传感器检测到冲击(或撞击)状态的出现,并将该冲击状态信息发送到控制单元105;控制单元105利用获得失重状态信息和冲击状态信息之间的时间间隔计算物体跌落的高度:
Figure PCTCN2019072621-appb-000001
其中,s-跌落的高度,t-跌落状态存在的时间,g-重力加速度。
在本实施例中,当该三轴加速度传感器检测到撞击后的静止状态时,将该静止状态对应的加速度信息发送到控制单元105,当该控制单元105接收到上述信息时,表明本次跌落为有效跌落,从而记录跌落次数。
例如,当通过加速度感测单元104、控制单元105计算激光定位装置101的某次跌落的高度大于和/或等于1.6m时,报警模块发出报警信号。当通过加速度感测单元104、控制单元105计算某次跌落的高度等于400mm时,并且判断激光定位装置101的总的跌落次数大于和/或等于6次时,报警模块发出报警信号。当报警模块发出报警信号时,提醒用户需要校正和/或维修处理该激光定位装置。
在实施例4中,激光定位装置利用加速度感测单元判断在所在高度跌落时激光定位装置自由落体的惯量产生的冲击力是否超出了定位装置使用的可靠性的额定保护范围,以便提醒用户是否需要校准或维修该装置;从而提高了激光定位装置使用的可靠性、使用精确度。
实施例5
在本实施例中,激光定位装置101可以采用实施例1-3的结构中的任何一个实现定位测量,和/或激光定位装置101可以包括实施例4中使用的报警模块。在本实施例中,激光定位装置101可以分别向目标空间中的铅垂方向面、与水平方向面平行的平面(例如,天花板)发射并接收测量光束,以测量到与水平方向面平行的平面上实际照射点的距离和到铅垂方向面上实际照射点的距离。进而根据实施例1-3中的具体工作原理计算出激光定位装置101在目标空间中的实际定位坐标。和/或利用激光定位装置101中的加速度感测单元104、控制单元以及控制单元中的报警模块根据实施例 4的工作原理以实现当报警模块发出报警信号时,提醒用户需要校正和/或维修处理该激光定位装置。
在实施例5中,激光定位装置还能够实现定位在目标空间中激光定位装置到与水平方向面平行的平面(例如,天花板)的具体位置,提高了本发明所公开的激光定位装置使用灵活度、增大了其使用范围。
因此,虽然参照特定的示例来描述了本发明,其中这些特定的示例仅仅旨在是示例性的,而不是对本发明进行限制,但对于本领域普通技术人员来说显而易见的是,在不脱离本发明的精神和保护范围的基础上,可以对所公开的实施例进行改变、增加或者删除。
本文中所列举的实施例数据仅是说明性的而非限制性的,本领域技术人员可以根据本文的实施例、技术方案采用其他适当的试验数据以实现本文中权利要求书要求保护的范围。

Claims (10)

  1. 一种激光定位装置,其特征在于,包括:
    测距单元,分别测量所述激光定位装置在目标空间中到水平方向面上实际照射点的距离和到铅垂方向面上实际照射点的距离;
    加速度感测单元,测量所述激光定位装置的当前加速度方向;
    控制单元,根据所述当前加速度方向与重力方向之间的角度偏差,利用测量的所述到水平方向面上实际照射点的距离和所述到铅垂方向面上实际照射点的距离计算所述激光定位装置在所述目标空间中的定位坐标。
  2. 根据权利要求1所述的激光定位装置,其特征在于,所述测距单元包括:
    第一测距模块,发射并接收到所述目标空间中的水平方向面的第一测量光束,以测量所述到水平方向面上实际照射点的距离;
    第二测距模块,发射并接收到所述目标空间中的铅垂方向面的第二测量光束,以测量所述到铅垂方向面上实际照射点的距离;
    其中,所述第一测量光束与所述第二测量光束之间的夹角设置为固定角度。
  3. 根据权利要求1所述的激光定位装置,其特征在于,所述测距单元包括:
    激光发射模块,发射光束;
    分光模块,将所述激光发射模块发射的光束分成到所述目标空间中的水平方向面的第一测量光束和到所述目标空间中的铅垂方向面的第二测量光束;其中,分光模块将所述第一测量光束与所述第二测量光束之间的夹角设置为固定角度;
    激光接收测量模块,接收所述第一测量光束和所述第二测量光束,以测量所述到水平方向面上实际照射点的距离和所述到铅垂方向面上实际照射点的距离。
  4. 根据权利要求1所述的激光定位装置,其特征在于,所述测距单元 包括:激光收发测量模块、分光模块,其中:
    所述激光收发测量模块发射光束;
    所述分光模块将所述光束分成到所述目标空间中的水平方向面的第一测量光束和到所述目标空间中的铅垂方向面的第二测量光束,其中,分光模块将所述第一测量光束与所述第二测量光束之间的夹角设置为固定角度;
    所述激光收发测量模块接收所述第一测量光束和所述第二测量光束,以测量所述到水平方向面上实际照射点的距离和所述到铅垂方向面上实际照射点的距离。
  5. 根据权利要求2-4中任一项所述的激光定位装置,其特征在于,所述固定角度的范围是85°-95°。
  6. 根据权利要求5所述的激光定位装置,其特征在于,所述固定角度为90°。
  7. 根据权利要求5所述的激光定位装置,其特征在于,当所述固定角度大于或小于90°时,所述控制单元内设有偏差修复值,并利用所述偏差修复值、所述重力方向与所述当前加速度之间的所述角度偏差、所述到水平方向面上实际照射点的距离以及所述到铅垂方向面上实际照射点的距离来计算所述激光定位装置在所述目标空间的定位坐标。
  8. 根据权利要求1所述的激光定位装置,其特征在于,当所述激光定位装置从任意高度跌落时,所述加速度感测单元将在跌落过程中三个正交方向的加速度信息实时发送到所述控制单元,所述控制单元通过获取所述跌落过程中所述三个正交方向的所有的加速度信息计算所述激光定位装置的跌落的高度以及记录跌落次数。
  9. 根据权利要求8所述的激光定位装置,其特征在于,所述控制单元还包括报警模块;当所述跌落的高度高于和/或等于高度阈值时,所述报警模块发出报警信号。
  10. 根据权利要求8所述的激光定位装置,其特征在于,所述控制单元还包括报警模块;当所述跌落的高度低于所述高度阈值,但所述激光定位装置的跌落次数超过所述跌落的高度的跌落次数阈值时,所述报警模块发出报警信号。
PCT/CN2019/072621 2018-01-22 2019-01-22 激光定位装置 WO2019141282A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810059756.1A CN108196263A (zh) 2018-01-22 2018-01-22 激光定位装置
CN201810059756.1 2018-01-22

Publications (1)

Publication Number Publication Date
WO2019141282A1 true WO2019141282A1 (zh) 2019-07-25

Family

ID=62590238

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/072621 WO2019141282A1 (zh) 2018-01-22 2019-01-22 激光定位装置

Country Status (2)

Country Link
CN (1) CN108196263A (zh)
WO (1) WO2019141282A1 (zh)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108196263A (zh) * 2018-01-22 2018-06-22 上海诺司纬光电仪器有限公司 激光定位装置
CN108813789B (zh) * 2018-06-14 2021-08-31 深圳市沃特沃德股份有限公司 防鞋体踏空的警示方法及装置
CN109949306B (zh) * 2019-04-02 2021-06-01 森思泰克河北科技有限公司 反射面角度偏差检测方法、终端设备及存储介质
CN109917411B (zh) * 2019-04-17 2023-04-18 重庆大学 基于激光测距和三轴加速度计的障碍物检测装置及方法
CN110425989A (zh) * 2019-08-28 2019-11-08 中国计量大学 楼板测厚仪检测点快速定位装置与方法
CN110702062B (zh) * 2019-09-06 2020-11-17 山东科技大学 平面移动变形测量系统及其在二维相似模拟实验中的应用
CN110702061A (zh) * 2019-09-06 2020-01-17 山东科技大学 三维移动变形测量系统及其在三维相似模拟实验中的应用
CN110967700B (zh) * 2019-11-27 2020-10-13 深圳市宝万利科技有限公司 一种基于激光测距的测量系统
CN111811452A (zh) * 2020-06-23 2020-10-23 维沃移动通信有限公司 测距方法、装置及电子设备
CN113701720B (zh) * 2021-08-31 2023-08-15 中煤科工集团重庆研究院有限公司 一种用于摄影测量坐标定位的标识系统

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100892147B1 (ko) * 2008-06-02 2009-04-08 (주)원지리정보 지피에스 확인을 통한 기준점별 지리정보와 지형지물을관측하여 확인하는 지형측지시스템
CN104062626A (zh) * 2014-07-03 2014-09-24 吴晓栋 一种室内定位方法和装置
CN104730533A (zh) * 2015-03-13 2015-06-24 陈蔼珊 一种移动终端及基于移动终端的测距方法、系统
CN106289132A (zh) * 2015-06-03 2017-01-04 中国移动通信集团设计院有限公司 一种测距装置及测距方法
CN107064950A (zh) * 2017-02-24 2017-08-18 上海诺司纬光电仪器有限公司 激光定位装置及激光定位方法
CN108196263A (zh) * 2018-01-22 2018-06-22 上海诺司纬光电仪器有限公司 激光定位装置
CN207717976U (zh) * 2018-01-22 2018-08-10 上海诺司纬光电仪器有限公司 激光定位装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101206113A (zh) * 2006-12-20 2008-06-25 方础光电科技股份有限公司 测距仪及其测距方法
JP5145011B2 (ja) * 2007-10-26 2013-02-13 株式会社トプコン レーザ測量システム
CN104224062B (zh) * 2014-09-03 2017-09-15 深圳市大疆创新科技有限公司 Uav及其清洁墙体的方法、采用该uav的墙体清洁系统
CN106886027B (zh) * 2017-02-24 2020-04-10 上海诺司纬光电仪器有限公司 激光定位装置及激光定位方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100892147B1 (ko) * 2008-06-02 2009-04-08 (주)원지리정보 지피에스 확인을 통한 기준점별 지리정보와 지형지물을관측하여 확인하는 지형측지시스템
CN104062626A (zh) * 2014-07-03 2014-09-24 吴晓栋 一种室内定位方法和装置
CN104730533A (zh) * 2015-03-13 2015-06-24 陈蔼珊 一种移动终端及基于移动终端的测距方法、系统
CN106289132A (zh) * 2015-06-03 2017-01-04 中国移动通信集团设计院有限公司 一种测距装置及测距方法
CN107064950A (zh) * 2017-02-24 2017-08-18 上海诺司纬光电仪器有限公司 激光定位装置及激光定位方法
CN108196263A (zh) * 2018-01-22 2018-06-22 上海诺司纬光电仪器有限公司 激光定位装置
CN207717976U (zh) * 2018-01-22 2018-08-10 上海诺司纬光电仪器有限公司 激光定位装置

Also Published As

Publication number Publication date
CN108196263A (zh) 2018-06-22

Similar Documents

Publication Publication Date Title
WO2019141282A1 (zh) 激光定位装置
AU2009328380B2 (en) Laser receiver for detecting a relative position
CN104364609B (zh) 多功能激光标线仪
EP2825843B1 (en) Laser system with a laser receiver capable to detect its own movements
US8852016B2 (en) Golf swing analysis apparatus
CN110108224B (zh) 一种形变监测方法
CN108981676A (zh) 大地测量
US20190170865A1 (en) Surveying device, and calibration method and calibration program for surveying device
US20190390955A1 (en) Method of vertical displacement measurement of building structural elements
US10495456B2 (en) Method for calibrating a detection device, and detection device
JP2007040762A (ja) 光ジャイロ較正装置、光ジャイロを搭載するロボット及び光ジャイロ較正プログラム
WO2001065207A2 (en) Apparatus and method for determining position
EP3274648B1 (en) Device system and method for determining the relative orientation between two different locations
JP2011158371A (ja) 三次元位置計測及び墨出しシステムとその使用方法
US20190010928A1 (en) Method And Apparatus For Weighing An Elongate Object
JP2010223754A (ja) 三次元位置計測及び位置決めシステム
CN113447003B (zh) 一种全站仪用三脚架的消除误差装置及消除误差方法
TW201018871A (en) Verticality detector calibration device and method thereof
CN207717976U (zh) 激光定位装置
CN206113941U (zh) 一种测绘装置
US20050206882A1 (en) Method and apparatus for measuring face angle
KR101103356B1 (ko) 자동제어기능을 갖는 측량장치
CN105403194A (zh) 一种光学标定测距测长装置和测距测长的方法
JPS58191917A (ja) 経緯儀対による対象測定のための校正法及び校正装置
CN106643640A (zh) 一种机载角度校正装置及校正方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19741856

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19741856

Country of ref document: EP

Kind code of ref document: A1