WO2019141088A1 - 一种传输信息的方法和装置 - Google Patents

一种传输信息的方法和装置 Download PDF

Info

Publication number
WO2019141088A1
WO2019141088A1 PCT/CN2019/070051 CN2019070051W WO2019141088A1 WO 2019141088 A1 WO2019141088 A1 WO 2019141088A1 CN 2019070051 W CN2019070051 W CN 2019070051W WO 2019141088 A1 WO2019141088 A1 WO 2019141088A1
Authority
WO
WIPO (PCT)
Prior art keywords
packet
transmission channel
transmission
frequency
message
Prior art date
Application number
PCT/CN2019/070051
Other languages
English (en)
French (fr)
Inventor
苏琪
王岩
李业兴
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP19741076.4A priority Critical patent/EP3720072A4/en
Publication of WO2019141088A1 publication Critical patent/WO2019141088A1/zh
Priority to US16/934,789 priority patent/US11483735B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L47/00Traffic control in data switching networks
    • H04L47/10Flow control; Congestion control
    • H04L47/24Traffic characterised by specific attributes, e.g. priority or QoS
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/0205Traffic management, e.g. flow control or congestion control at the air interface
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L67/00Network arrangements or protocols for supporting network services or applications
    • H04L67/14Session management
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/0268Traffic management, e.g. flow control or congestion control using specific QoS parameters for wireless networks, e.g. QoS class identifier [QCI] or guaranteed bit rate [GBR]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/10Flow control between communication endpoints
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/11Allocation or use of connection identifiers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/02Arrangements for optimising operational condition
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0011Control or signalling for completing the hand-off for data sessions of end-to-end connection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/20Manipulation of established connections
    • H04W76/22Manipulation of transport tunnels

Definitions

  • the present application relates to the field of communications, and more particularly to a method and apparatus for transmitting information in the field of communications.
  • the existing 5G defines a framework based on quality of service (QoS) flows. That is, in one session, different transmission requirements can be provided for the message based on the QoS flow. That is to say, packets belonging to the same QoS flow can obtain the same transmission service.
  • QoS quality of service
  • Existing 5G mobile networks implement QoS flow transmission requirements through differentiated services (DiffServ).
  • DiffServ differentiated services
  • the base station may add a differentiated service code point (DSCP) field in the message, where the DSCP value in the DSCP field is determined based on the parameters of the QoS flow.
  • DSCP differentiated service code point
  • the switch in the network can allocate different priority transmission queues to the packets according to the DSCP field in the packet, so as to provide different transmission services for different packets.
  • the packet forwarding mechanism of the prior art is a best-effort forwarding mechanism, that is, the switch preferentially forwards packets with higher priority in the packet.
  • the switch preferentially forwards packets with higher priority in the packet.
  • the present application provides a method and apparatus for transmitting information that helps meet the requirements for the transmission performance of messages in a mobile network.
  • a method for transmitting information comprising:
  • the control device determines a first transmission channel from at least one transmission channel configured between the first network device and the second network device, where the first transmission channel is configured to transmit a packet belonging to at least one packet flow, where the first transmission channel is currently
  • the transmission frequency of the supported packet is greater than or equal to the sum of the transmission frequencies of the at least one packet flow, and the transmission performance of the first transmission channel satisfies the transmission performance of the at least one packet stream;
  • the control device sends first identifier information to the first network device, where the first identifier information is used to identify the first transport channel.
  • the control device determines, from the at least one transmission channel configured between the first network device and the second network device, the first packet for transmitting the packet belonging to the at least one packet flow. Transmitting a channel, and by using the identification information for identifying the first transmission channel, the first network device can determine that a message belonging to the at least one packet flow can be transmitted using the first transmission channel, where the first transmission channel
  • the packet sending frequency is greater than or equal to the packet sending frequency of the at least one packet stream, and the transmission performance of the first transmission channel satisfies the transmission performance of the at least one packet stream, and further, the first network device may be caused.
  • the packet belonging to the at least one packet stream is sent, the packet is sent by using the first transmission channel according to the packet sending frequency of the first transmission channel, which can effectively reduce the transmission delay of the packet, thereby satisfying the mobile The need for the transmission performance of messages in the network.
  • the method further includes:
  • the control device sends the first indication information to the first network device, where the first indication information is used to indicate at least one packet flow.
  • the method further includes:
  • the control device sends the first packet flow frequency information to the terminal device, where the first packet flow frequency information is used to indicate the packet sending frequency of each packet flow in the at least one packet flow.
  • the control device may send the first packet flow frequency information indicating the packet transmission frequency of each packet flow in the at least one packet flow to the terminal device,
  • the terminal device can use the packet sending frequency corresponding to the packet flow to which the packet belongs to send the packet, which effectively avoids the other packet stream being affected because the terminal device does not send the packet according to the packet sending frequency of the packet flow.
  • the transmission performance of the message may be used.
  • the method further includes:
  • the control device sends the second identifier information and the second packet stream frequency information to the third network device, where the second identifier information and the second packet stream frequency information are used to update the first transmission channel frequency information, and the first transmission channel frequency information is used. Instructing the frequency of the currently supported message transmission of the first transmission channel,
  • the second identifier information is used to identify the first transmission channel, and the second packet flow frequency information is used to indicate the packet transmission frequency of each packet flow in the at least one packet flow, or the second packet flow frequency information.
  • the control device may send the second identifier information and the second packet stream frequency information to the third network device, so that the third network device may be based on the second identifier information and the
  • the second message stream frequency information updates the message transmission frequency of the first transmission channel at a time, so as to truly reflect the message transmission frequency that the first transmission channel can currently support, and provide real and effective data for other message stream selection transmission channels. In order to ensure the normal transmission of all message flows as much as possible.
  • the method further includes:
  • the control device determines the frequency information of the first transmission channel according to the first transmission channel, where the frequency information of the first transmission channel is used to indicate the transmission frequency of the packet currently supported by the first transmission channel;
  • the control device obtains the second packet flow frequency information, where the second packet flow frequency information is used to indicate the packet transmission frequency of each packet flow in the at least one packet flow, or the second packet flow frequency information is used to indicate The sum of the frequency of sending packets of at least one message stream;
  • the control device generates updated first transmission channel frequency information according to the first transmission channel frequency information and the second message flow frequency information.
  • the control device updates the message transmission frequency of the first transmission channel by using the first transmission channel frequency information and the second packet flow frequency information, so as to truly reflect the first transmission channel.
  • the current packet transmission frequency can be used to provide real and valid data for other packet flow transmission channels, so as to ensure the normal transmission of all message flows.
  • control device generates updated first transmission channel frequency information according to the first transmission channel frequency information and the second packet flow frequency information, including:
  • the control device subtracts each report from the packet transmission frequency currently supported by the first transmission channel.
  • the message transmission frequency of the stream is generated to generate updated first transmission channel frequency information;
  • the control device When the second message flow frequency information is used to indicate the message transmission frequency of each message flow in the at least one message flow, the control device adds each report from the message transmission frequency currently supported by the first transmission channel. The frequency of the message corresponding to the stream is sent to generate the updated first transmission channel frequency information; or
  • the control device subtracts at least one packet flow from the packet transmission frequency currently supported by the first transmission channel.
  • the sum of the transmission frequencies of the text to generate updated first transmission channel frequency information; or,
  • the control device When the second packet flow frequency information is used to indicate the sum of the packet transmission frequencies of the at least one packet flow, the control device adds at least one packet flow to the packet transmission frequency currently supported by the first transmission channel. The sum of the transmission frequencies to generate updated first transmission channel frequency information.
  • control device determines the first transmission channel from the at least one transmission channel configured between the first network device and the second network device, including:
  • the control device is configured to: according to the transmission performance of each packet flow in the at least one packet flow and the transmission performance of each of the at least one transmission channel, and according to the packet sending frequency of each packet flow in the at least one packet flow And a frequency of message transmission currently supported by each of the at least one transmission channel, and determining a first transmission channel from the at least one transmission channel.
  • the first network device is any one of the following: an access network device; or a user plane function network element; or an application server.
  • a method for transmitting information comprising:
  • the first network device receives the first identification information from the control device, where the first identification information is used to identify the first transmission channel configured in the at least one transmission channel between the first network device and the second network device, where the first transmission channel is used. And transmitting, by the first transmission channel, the transmission frequency of the first transmission channel is greater than or equal to the sum of the transmission frequencies of the at least one packet flow, and the transmission performance of the first transmission channel satisfies at least one of the packets of the at least one packet flow.
  • the transmission performance of the message stream
  • the first network device sends the second packet generated based on the first packet by using the first transmission channel according to the packet sending frequency of the first transmission channel.
  • the first network device by receiving the identification information that is sent by the control device and used to identify the first transmission channel, may enable the first network device to determine that the first transmission channel can be used to transmit the information.
  • the packet transmission frequency of the first transmission channel is greater than or equal to the packet transmission frequency of the at least one packet stream, and the transmission performance of the first transmission channel satisfies the at least one
  • the transmission performance of the packet stream and further, the first network device, when transmitting the packet belonging to the at least one packet flow, using the first transmission channel to send the packet according to the packet sending frequency of the first transmission channel
  • the transmission delay of the packet can be effectively reduced, thereby meeting the requirement for the transmission performance of the message in the mobile network.
  • the method further includes:
  • the first network device determines that the packet flow to which the first packet belongs belongs to at least one packet flow, and includes:
  • the first network device determines, according to the first indication information and the field of the first packet, that the packet flow to which the first packet belongs belongs to at least one packet flow, where the field of the first packet is used to indicate at least one packet flow. .
  • the first network device is any one of the following: an access network device; or a user plane function network element; or an application server.
  • a method of transmitting information comprising:
  • the third network device receives the identification information and the packet flow frequency information from the control device, where the identifier information is used to identify the first transmission channel configured in the at least one transmission channel between the first network device and the second network device, the first transmission The channel is configured to transmit the packet flow frequency information of the at least one packet flow to indicate the packet transmission frequency of each packet flow in the at least one packet flow, or the packet flow frequency information is used to indicate the at least one packet The sum of the frequency of sending packets of the stream;
  • the third network device determines the frequency information of the first transmission channel according to the identifier information, where the frequency information of the first transmission channel is used to indicate the frequency of the packet currently supported by the first transmission channel;
  • the third network device generates updated first transmission channel frequency information according to the first transmission channel frequency information and the message flow frequency information.
  • the control device may send the identifier information and the packet stream frequency information to the third network device, so that the third network device may update the identifier information and the packet stream frequency information from time to time.
  • the packet transmission frequency of the first transmission channel can truly reflect the transmission frequency of the packet currently supported by the first transmission channel, and provide real and effective data for the selection of the transmission channel of other packet streams, thereby ensuring all packet flows as much as possible. The normal transmission of the message.
  • the third network device generates the updated first transmission channel frequency information according to the first transmission channel frequency information and the message flow frequency information, including:
  • the third network device subtracts each report from the message transmission frequency currently supported by the first transmission channel.
  • the message transmission frequency of the stream is generated to generate updated first transmission channel frequency information;
  • the third network device adds each report from the message transmission frequency currently supported by the first transmission channel.
  • the frequency of the message corresponding to the stream is sent to generate the updated first transmission channel frequency information;
  • the third network device When the packet flow frequency information is used to indicate the sum of the packet transmission frequencies of the at least one packet flow, the third network device reduces the packet of the at least one packet flow from the currently supported packet transmission frequency of the first transmission channel. The sum of the transmission frequencies to generate updated first transmission channel frequency information; or,
  • the third network device adds at least one message flow report to the message transmission frequency currently supported by the first transmission channel. The sum of the transmission frequencies to generate updated first transmission channel frequency information.
  • a method of transmitting information comprising:
  • the terminal device Receiving, by the terminal device, the first packet flow frequency information, where the first packet flow frequency information is used to indicate a packet sending frequency of each packet flow in the at least one packet flow;
  • the terminal device determines, according to the packet flow to which the packet belongs, the packet sending frequency of the packet flow to which the packet belongs from the first packet flow frequency information, and the packet flow belongs to the at least one packet flow;
  • the terminal device sends a packet according to the packet sending frequency of the packet flow to which the packet belongs.
  • the control device may send the first packet flow frequency information indicating the packet transmission frequency of each packet flow in the at least one packet flow to the terminal device,
  • the terminal device uses the packet sending frequency corresponding to the packet flow to which the packet belongs to send the packet, which effectively avoids the other packet stream being affected because the terminal device does not send the packet according to the packet sending frequency of the packet stream.
  • the transmission performance of the message may be sent.
  • an apparatus for transmitting information is provided, the apparatus being operative to perform the operations of any of the first to fourth aspects, and any possible implementation of any of the aspects.
  • the apparatus can include a modular unit for performing various operations in any of the possible implementations of any of the first to fourth aspects above.
  • an apparatus for transmitting information comprising: a processor, a transceiver, and a memory.
  • the processor, the transceiver and the memory communicate with each other through an internal connection path.
  • the memory is for storing instructions for the processor to execute the instructions stored by the memory.
  • a chip system comprising: a memory for storing a computer program, the processor for calling and running the computer program from the memory, such that the communication device on which the chip system is mounted performs the first aspect to A method of any of the fourth aspect and its possible embodiments.
  • a computer program product comprising: computer program code, when the computer program code is communicated by a communication device (eg, a control device, a first network device, a third network device, or a terminal device)
  • a communication device eg, a control device, a first network device, a third network device, or a terminal device
  • the processing unit or transceiver when the processor is in operation, causes the communication device to perform any of the methods of the first to fourth aspects above and their possible implementations.
  • a ninth aspect a computer readable storage medium storing a program, the program causing a communication device (eg, a control device, a first network device, a third network device, or a terminal device) to perform the first Aspects to any of the fourth aspect and its possible embodiments.
  • a communication device eg, a control device, a first network device, a third network device, or a terminal device
  • a computer program which, when executed on a computer, causes the computer to implement any of the first to fourth aspects and its possible embodiments.
  • the control device acquires transmission channel information, the transmission channel information includes information indicating a transmission performance of each transmission channel, and information indicating a transmission frequency of a message currently supported by each transmission channel.
  • FIG. 1 is a schematic diagram of one possible network architecture in accordance with an embodiment of the present application.
  • FIG. 2 is a schematic interaction diagram of a method of transmitting information according to an embodiment of the present application.
  • FIG. 3 is a schematic flowchart of a method for transmitting information according to an embodiment of the present application.
  • FIG. 4 is a schematic flowchart of a method for transmitting information according to another embodiment of the present application.
  • FIG. 5 is a schematic flowchart of a method for transmitting information according to another embodiment of the present application.
  • FIG. 6 is a schematic flowchart of a method for transmitting information according to still another embodiment of the present application.
  • FIG. 7 to 10 are schematic block diagrams of an apparatus for transmitting information according to an embodiment of the present application.
  • GSM global system of mobile communication
  • CDMA code division multiple access
  • WCDMA wideband code division multiple access
  • GPRS general packet radio service
  • LTE long term evolution
  • FDD LTE frequency division duplex
  • TDD LTE time division duplex
  • UMTS universal mobile telecommunication system
  • WiMAX worldwide interoperability for microwave access
  • 5G future fifth generation
  • 5G fifth generation
  • NR new radio
  • 5G will support various types of network deployment and application types. These include: higher speed experience and greater bandwidth access capabilities, such as enhanced mobile broadband (eMBB); access and management of larger, lower cost machine-like devices, such as large-scale machines Massive machine type communication (mMTC); lower latency and highly reliable information interaction, such as ultra reliable and low latency communication (URLLC).
  • eMBB enhanced mobile broadband
  • mMTC massive machine type communication
  • URLLC ultra reliable and low latency communication
  • QoS quality of service
  • Existing 5G networks implement QoS flow transmission requirements through differentiated services (DiffServ).
  • DiffServ differentiated services
  • the base station may add a differentiated service code point (DSCP) field in the message, where the DSCP value in the DSCP field is determined based on the parameters of the QoS flow, and the switch in the network may The transmission queues of different priorities are assigned to the packets according to the DSCP field in the packet, so that different transmission services are provided for different packets.
  • DSCP differentiated service code point
  • this prior art message forwarding mechanism is a best-effort forwarding mechanism. After a large number of packets reach the port in an instant, the switch can forward packets with higher priority in the packets. However, when there are many packets of the same priority, the packets of the same priority are not forwarded within the valid delay range. Therefore, the transmission network in the prior art is a best-effort network. For any packet with priority transmission performance, the prior art cannot provide deterministic transmission performance for different messages. Especially for the URLLC service, the existing best-effort transmission network can not meet its transmission performance, which greatly affects the data transmission efficiency.
  • the embodiment of the present application provides a method for transmitting information, which helps meet the requirement for the transmission performance of a message in a mobile network.
  • FIG. 1 is a schematic diagram of a possible network architecture 100 according to an embodiment of the present application.
  • the network architecture 100 includes a control device 110, a terminal device 120, an access network device 130, a user plane function (UPF) network element 140, and an application server 150.
  • control device 110 controls access network device 110 and receives user plane function (UPF) packets from the network.
  • terminal device 120 controls access network device 130 and receives user plane function (UPF) network element 140
  • UPF user plane function
  • the control device 110 is mainly configured to send a message for transmitting a message to a device (for example, the terminal device 120, the access network device 130, the user plane function network element 140, and the application server 150) that is in communication connection with the control device.
  • a device for example, the terminal device 120, the access network device 130, the user plane function network element 140, and the application server 150.
  • Various information of the text for example, the first identification information, the first indication information, and the like in the following.
  • control device 110 can be a session management function (SMF) network element.
  • SMF session management function
  • the SMF network element is mainly used for session management, IP address allocation and management for terminal devices, and selection and control of UPF network elements.
  • the SMF network element can also be used to control the destination of the UPF network element forwarding traffic, policy enforcement in terms of control, and QoS management.
  • Terminal device 120 may include user equipment, access terminals, subscriber units, subscriber stations, mobile stations, mobile stations, remote stations, remote terminals, mobile devices, user terminals, terminals, wireless communication devices, user agents, or user devices.
  • the terminal device may also be a cellular phone, a cordless phone, a session initiation protocol (SIP) phone, a wireless local loop (WLL) station, a personal digital assistant (PDA), with wireless communication.
  • PLMNs public land mobile networks
  • the access network device 130 is configured to provide an access function for authorized users in a specific area, and can use different quality transmission tunnels according to requirements of user services and the like.
  • the access network device 130 can manage the radio resources and provide access services for the terminal devices, thereby completing the forwarding of control signals and user data between the terminal devices and the core network.
  • the access network devices can also be understood as base stations in the traditional network.
  • the access network device in the embodiment of the present application may be a base transceiver station (BTS) in the GSM system or CDMA, or a base station (NodeB, NB) in the WCDMA system, or may be an evolved type in the LTE system.
  • the evolutional node B (eNB or eNodeB) may also be a wireless controller in a cloud radio access network (CRAN) scenario, or may be a gNB (gNodeB), or the access network device may be a relay station.
  • CRAN cloud radio access network
  • gNodeB gNodeB
  • the embodiment of the present application is not limited, and the access point, the in-vehicle device, the wearable device, and the network device in the future 5G network or the network device in the future evolved PLMN network.
  • the UPF network element 140 is used for routing and forwarding of packet data, and QoS processing of user plane data.
  • the application server 150 is a server device that indicates that the terminal device needs to be accessed through the mobile network, and is used to provide a service service for the terminal device, which can be understood as an implementation part of the business logic.
  • the network architecture 100 includes a data network element.
  • the data network element may be a unified data management (UDM) network element, and is mainly used for authentication credential processing, user identification processing, access authorization, and subscription management. Wait.
  • the data network element may also be used to maintain information about the transmission channel in the network.
  • the network architecture 100 further includes an access and mobility management function (AMF) network element, which is mainly used for mobility management and access management.
  • the AMF network element can be used to implement functions other than session management in the mobility management entity (MME) function, such as lawful interception and access authorization/authentication.
  • the network between the access network device 130 and the UPF 140 is the transport network #A
  • the network between the UPF 140 and the application server 150 is the transport network #B.
  • the terminal device 120 and the access network device 130 transmit packets through air interfaces.
  • Each transport network includes at least a sender of the packet, a receiver of the packet, and a switch or router for packet forwarding (only the sender and the receiver in the transport network are shown in the figure, not shown in the transport network. Switch or router).
  • the transmission network #A in the uplink transmission, the transmitting end is the access network device 130, and the receiving end is the UPF network element 140. In the downlink transmission, the transmitting end is the UPF network element 140, and the receiving end is the access network device. 130.
  • the transmission network #B in the uplink transmission, the transmitting end is the UPF network element 140, and the receiving end is the application server 150. In the downlink transmission, the transmitting end is the application server 150, and the receiving end is the UPF network element 140.
  • each transmission network at least one transmission channel for transmitting a message is pre-configured in the system.
  • the transmission channel can be understood as a transmission resource for transmitting a message, and transmission resources of any two transmission channels are different.
  • one transmission channel includes various parameters. It should be noted that, in FIG. 1, a plurality of UPF network elements (for example, a target UPF network element and an anchor UPF network element in the method 500) may be included, and a transmission network between two adjacent UPF network elements is also used. At least one transmission channel can be pre-configured.
  • a transmission channel is taken as an example to describe various parameters of the transmission channel.
  • the first type of identification of the transmission channel is used to identify the transmission channel.
  • the first type of identifier of the transmission channel is an identifier for a transmission network, that is, in different transmission networks, the first type of identifiers of transmission channels of different transmission channels may be the same, but different in the same transmission network.
  • the transmission channel's transmission channel has the same type of identification.
  • the second type of identification of the transmission channel is used to uniquely identify the transmission channel.
  • the second type of identification of the transmission channel is for an identifier in the entire mobile network including at least one transmission network, that is, the second type of identification of the transmission channel of different transmission channels is different within the entire mobile network.
  • the sender identifier is used to identify the sender of the packet in the entire mobile network. For example, for the uplink transmission of the packet in the transmission network #A, the sender identifier is used to identify the access network device 130.
  • Receiver ID A receiver that is used to uniquely identify a packet in the entire mobile network. For example, for the uplink transmission of the packet in the transmission network #A, the receiver identifier is used to identify the UPF network element 140.
  • Transmission performance of the transmission channel indicates that the transmission channel can perform the performance of the deterministic transmission service provided in the message transmission process, wherein the performance of the deterministic transmission service includes: the maximum delay of the message transmission, and the maximum transmission of the message Delay jitter, at least one of the reliability of the message transmission service.
  • one transmission channel may correspond to at least one packet flow, that is, one transmission channel is used to transmit a packet belonging to the at least one packet flow.
  • Each packet stream includes at least the following parameters:
  • the transmission performance of the packet flow the performance of the deterministic service transmission required by the packet flow, wherein the performance of the deterministic transmission service includes: the maximum delay of packet transmission, the maximum delay jitter of the packet transmission, and the report At least one of the reliability of the text transmission service.
  • Packet transmission frequency of the packet flow The maximum packet transmission frequency required for the packet flow.
  • the related parameters of the packet flow can be pre-configured in the system.
  • it can be pre-configured on any network element with data maintenance function, for example, a UDM network element.
  • the message flow can be understood as a general term for a group of messages that meet preset conditions.
  • preset conditions There are a variety of preset conditions.
  • the preset condition may be that the destination IP address of the packet in the packet flow is the same, or the preset condition may be that the port number of the packet in the packet flow is the same, or the preset condition may be a report.
  • the QoS of the packets in the stream is the same.
  • the preset condition may also be any combination of the foregoing multiple preset conditions, which is not limited in any embodiment of the present application. For example, if the source IP address, the destination IP address, the protocol, and the port number of the multiple packets are the same, the four packets with the same parameters can be classified into one packet flow.
  • FIG. 2 is a schematic interaction diagram of a method of transmitting information according to an embodiment of the present application.
  • the transmission network between the access network device and the UPF network element is recorded as the transmission network #A, and the transmission network between the UPF network element and the application server is used.
  • the transmission network between the UPF network element and the application server is used.
  • transport network #B the first network device is referred to as network device #A, and the second network device is referred to as network device #B.
  • the network device #A is a transmitting end in a transmission network
  • the network device #B is a receiving end in a transmission network, and further includes a switch for forwarding a message in a transmission network.
  • the network device #A may be any one of an access network device, a UPF network element, or an application server.
  • the network device #A in the uplink transmission, the network device #A is the access network device, and the network device #B is the UPF network element.
  • the network device #A In the downlink transmission, the network device #A is the UPF network element.
  • the network device #B is an access network device.
  • the network device #A In the transmission network #B, in the uplink transmission, the network device #A is a UPF network element, and the network device #B is an application server.
  • the network device #A is an application server, and the network device #B is UPF network element.
  • the control device determines a first transmission channel from at least one transmission channel disposed between the network device #A and the network device #B (for convenience of distinction and understanding, denoted as transmission channel #1), the transmission channel #1 is used to transmit packets belonging to at least one packet flow.
  • the transmission frequency of the packet currently supported by the transmission channel #1 is greater than or equal to the sum of the transmission frequencies of the at least one packet stream, and the transmission performance of the transmission channel #1 satisfies the transmission performance of the at least one packet stream.
  • control device is an SMF network element.
  • the at least one transmission channel is pre-configured in the transmission network between the network device #A and the network device B, and the control device may acquire a packet flow corresponding to the session based on the session of the terminal device, thereby The packet flow corresponding to the session determines a transmission channel that satisfies the condition, wherein the transmission channel determined based on the packet flow of the session may be one transmission channel or multiple transmission channels, as long as the condition is met, the present application implements The example is not limited to this.
  • the transmission channel #1 corresponds to the at least one packet stream, that is, the transmission channel #1 is configured to transmit a packet belonging to the at least one packet stream, or the packet to which the packet transmitted by the transmission channel #1 belongs
  • the stream belongs to the at least one packet stream, wherein the at least one packet stream belongs to a packet stream corresponding to the session.
  • the control device determines the transmission channel #1 based on at least two parameters, that is, a message transmission frequency and a transmission performance.
  • control device determines the first transmission channel from the at least one transmission channel configured between the first network device and the second network device, including:
  • the control device is configured to: according to the transmission performance of each packet flow in the at least one packet flow and the transmission performance of the transmission channel in the at least one transmission channel, and according to the packet of each packet flow in the at least one packet flow The sending frequency and the message transmission frequency currently supported by the transmission channel in the at least one transmission channel, and determining the first transmission channel from the at least one transmission channel.
  • the control device obtains parameters of the at least one message stream.
  • the parameter of the packet flow includes at least one transmission performance of the packet flow and the transmission frequency of the packet, and the control device acquires at least two parameters of the transmission channel in the at least one transmission channel, that is, the transmission performance of the transmission channel.
  • the transmission frequency of the packet currently supported by the transmission channel is based on the packet transmission frequency of the packet flow and the transmission frequency of the packet currently supported by the transmission channel, and the transmission performance of the packet stream and the transmission channel. Transmission performance, the transmission channel #1 is determined from the at least one transmission channel.
  • the control device determines the packet transmission frequency of the packet flow and the packet transmission frequency currently supported by the transmission channel, and the transmission performance of the packet stream and the transmission performance of the transmission channel, respectively, from the at least one transmission channel.
  • the transmission channel corresponding to the at least one message stream ie, the transmission channel #1
  • Condition #1 The transmission frequency of the currently supported message transmission channel is greater than or equal to the sum of the message transmission frequencies of the at least one message stream;
  • Condition #2 The transmission performance of the transmission channel satisfies the transmission performance of the at least one message stream.
  • condition #1 if the sum of the packet transmission frequencies of the at least one packet stream is less than or equal to 100 times/second, the currently supported transmission channel determined based on the at least one packet flow The text transmission frequency is greater than or equal to 100 times/second.
  • condition #2 the performance of the transmission channel needs to satisfy the transmission performance of each packet flow in the at least one packet flow. For example, if the minimum delay in the at least one packet flow is 2 s, then based on the at least The delay of the transmission channel determined by a message flow is less than or equal to 2 s.
  • control device determines the transmission channel #1 that satisfies the condition from the at least one transmission channel based on the above-described condition #1 and condition #2.
  • the message transmission frequency currently supported by the transmission channel in the embodiment of the present application refers to the remaining message transmission frequency of the transmission channel.
  • control device there are multiple ways for the control device to obtain the parameters of the at least one packet flow, and the embodiment of the present application does not impose any limitation:
  • control device can receive parameters from at least one message stream sent by the application server.
  • control device may be configured with parameters of the packet flow that the system can support.
  • the control device acquires information for indicating at least one packet flow of the session, so that the configured device can be configured based on the information.
  • the parameters of the at least one message flow are determined in the parameters of the message flow.
  • other network elements may be configured with parameters of a message flow that the system can support.
  • the control device acquires at least one packet flow of the session, so that at least one session based session can be used.
  • a packet flow, and the other network element interacts with the related signaling to obtain parameters of the at least one packet flow.
  • the manner in which the control device obtains the parameters of the transmission channel in the at least one transmission channel may also be in various manners, which is not limited in the embodiment of the present application:
  • control device can be configured with parameters of the at least one transmission channel.
  • the parameters of the at least one transmission channel may be configured in other network elements (for example, the UDM network element), and the control device may acquire parameters of the at least one transmission channel from other network elements.
  • the control device may acquire parameters of the at least one transmission channel from other network elements.
  • the process of determining the transmission channel #1 is taken as an example, the embodiment of the present application should not be limited. In a specific implementation process, the process of determining other transmission channels based on other packet flows in the packet flow of the session is the same as the process of determining the transmission channel #1 based on the at least one packet flow. Narration.
  • step S212 the control device transmits identification information #1 for identifying the transmission channel #1 to the network device #A.
  • the network device #A can determine the transmission channel that can be used when transmitting the message based on the identification information #1. Certainly, the packet flow to which the packet that can be transmitted by the transmission channel #1 belongs belongs to the at least one packet stream.
  • the transmission channel has two types of identifiers, that is, the first type of identifier of the transmission channel and the second type of identifier of the transmission channel.
  • the identifier information #1 may be identification information for indicating the identifier of the first type of the transmission channel. Or, it may be identification information indicating the second type of identification of the transmission channel.
  • each identification information is used to identify one transmission channel, and multiple identification information for identifying multiple transmission channels can be carried in one message.
  • the control device sends the multiple pieces of identification information to the network device #A through a message; or the plurality of identification information used to identify the multiple transmission channels are respectively carried in different information, and the control device sends different information by sending The plurality of pieces of identification information are sent to the network device #A.
  • the network device #A obtains the first packet (indicated as message #1 for convenience of distinction and understanding), and determines which packet flows to which the packet flow to which the packet #1 belongs, if the packet If the packet flow to which the text #1 belongs belongs to the at least one packet flow, it indicates that the network device #A can use the transmission channel #1 to send the second packet generated based on the message #1 (for the purpose of distinguishing and understanding, It is message #2), and, in step S214, the network device #A transmits the message #2 using the transmission channel #1 in accordance with the message transmission frequency of the transmission channel #1.
  • the network device #A When the network device #A is an access network device, the network device #A receives the message #1 sent by the terminal device, and when the network device #A is the UPF network element, the network device #A Receiving the message #1 sent by the access network device;
  • the network device #A when the network device #A is an application server, the network device #A generates a message #1, and when the network device #A is a UPF network element, the network device #A receives the report sent by the application server. Text #1.
  • the network device #A is configured with forwarding information for sending a packet corresponding to the transmission channel in the at least one transmission channel, and the transmission channel #1 is taken as an example, and the transmission channel #1 is forwarded.
  • the information includes at least the message transmission frequency of the transmission channel #1, the label added to the message to identify the transmission channel #1, the queue allocated for message forwarding, and the time slice corresponding to the queue.
  • the time slice is the time allocated to a queue for transmitting messages.
  • the label for identifying the transmission channel #1 may be the same as or different from the content of the identification information #1, as long as the transmission channel #1 can be identified.
  • the switch for forwarding the message between the network device #A and the network device #B is also configured with forwarding information of the at least one transmission channel.
  • the network device #A determines that the message flow to which the message #1 belongs belongs to the at least one message flow, and determines to use the transmission channel #1 to send the message #2 generated based on the message #1. Then, the network device #A determines the forwarding information of the transmission channel #1 from the forwarding information of the at least one transmission channel based on the identification information #1, and determines the transmission channel in the forwarding information of the transmission channel #1. The message transmission frequency of #1 and the label used to identify the transmission channel #1. Further, the network device #A adds the label for identifying the transmission channel #1 to the message to be transmitted, to generate the message #2, and sends the message #2 according to the message transmission frequency of the transmission channel #1. .
  • the switch for forwarding the message between the network device #A and the network device #B may determine the forwarding information of the transmission channel #1 based on the label of the transmission channel #1. And determining a queue corresponding to the transmission channel #1 and a time slice for queue forwarding, and further forwarding the report to the network device #B through a queue corresponding to the transmission channel #1 and a time slice for queue forwarding Text #2.
  • the decapsulation and encapsulation process of the protocol stack is required to generate the packet #2. That is, the message #1 is the same as the original data of the message #2. Because the sender and the receiver of the two messages are different, the other information added in the message is different, and the other information may be a general packet.
  • GTP general packet radio service tunneling protocol
  • UDP user datagram protocol
  • the control device needs to be based on the packet flow generated by the current session, from the at least one transmission channel. Determining a transmission channel (eg, a first transmission channel) capable of transmitting a message belonging to the packet flow, and transmitting identification information for identifying the transmission channel to the first network device, so that the first network device can determine to be used for The transmission channel for transmitting messages.
  • a transmission channel eg, a first transmission channel
  • the packet sending frequency of the transmission channel (for example, the first transmission channel) determined by the control device from the at least one transmission channel is greater than or equal to the packet sending frequency of the at least one packet stream, and The transmission performance of the first transmission channel satisfies the transmission performance of the at least one packet stream.
  • the first network device sends the packet by using the first transmission channel based on the packet sending frequency of the first transmission channel.
  • the time slice for forwarding the message and the queue allocated for packet forwarding in the switch between the first network device and the second network device are all configured based on the frequency of the transmission channel, where the first network device When the packet is sent by using the first transmission channel corresponding to the packet, the time slice for forwarding the packet is determined, and the length of the queue allocated for packet forwarding is limited, so that the packet transmission delay is delayed. It can be controlled within a certain range and can meet the transmission requirements of different messages in the mobile network.
  • the control device determines, from the at least one transmission channel configured between the first network device and the second network device, the first packet for transmitting the packet belonging to the at least one packet flow. Transmitting a channel, and by identifying information identifying the first transmission channel, the first network device can determine that the message belonging to the at least one message stream can be transmitted using the first transmission channel.
  • the packet transmission frequency of the first transmission channel is greater than or equal to the packet transmission frequency of the at least one packet stream, and the transmission performance of the first transmission channel satisfies the transmission performance of the at least one packet stream.
  • the first transmission channel sends the packet according to the packet sending frequency of the first transmission channel, which can effectively reduce the packet transmission.
  • the delay in turn, satisfies the need for the transmission performance of messages in the mobile network.
  • step 213 before the network device #A sends the packet, it is determined whether the packet flow to which the first packet to be sent belongs belongs to the at least one packet flow. In the following, the determining process in step 213 is detailed. Description.
  • the method further includes:
  • the control device sends first indication information to the first network device, where the first indication information is used to indicate the at least one packet flow.
  • the first network device receives the first indication information, and determines, according to the first indication information and a field in the first packet, that the packet flow to which the first packet belongs belongs to the at least one packet flow.
  • the field of the first packet is used to indicate the at least one packet flow.
  • the field of the message #1 includes at least one field in the message #1, and the at least one field is a partial field in the message #1.
  • the plurality of fields are used in common to indicate the at least one message stream.
  • the network device #A matches the content of the received first indication information with the field in the message #1, and if the first indication information can be successfully matched with the field in the message #1, Indicates that the packet flow to which the packet #1 belongs belongs to the at least one packet flow. If the first indication information does not match the field in the packet #1, the packet belongs to the packet #1. Belongs to the at least one message stream.
  • the sender (for example, the network device or the terminal device) adds corresponding information to the specified location in the packet according to the network protocol before sending the packet (for example, the destination IP address specified by the sender device according to the network protocol in the packet)
  • the IP address of the application server is added to the location to correctly transmit the packet, and the control device may generate the first indication information based on the information added by the specified location in the packet, that is, the combination of multiple fields indicating different content in the information is formed into the first An indication message.
  • the information added in the specified location in the packet may include three fields, where the first field is used to indicate the destination address of the packet, the second field is used to indicate the port number, and the third field is used to identify the packet to which the packet belongs.
  • the message flow identifier of the stream, the control device may separately use the foregoing three fields as the content of the first indication information, that is, the first indication information includes the first field, the second field, or the third field.
  • control device may use the content of the combination of the two fields as the content of the first indication information, for example, the first indication information includes the first field and the second field, where The first field and the second field are used together to indicate the at least one packet flow; or the control device may use the three fields as the content of the first indication information, that is, the first indication information includes the first A field, a second field, and the third field, the three fields are used together to indicate the at least one message stream.
  • the control device when the control device determines, according to the session flow, a plurality of transmission channels including the first transmission channel, the control device sends the network device #A to identify the multiple transmission channels.
  • a plurality of pieces of indication information may also be transmitted to the network device #A.
  • the plurality of identification information corresponds to the plurality of indication information.
  • the packet flow corresponding to the transmission channel identified by each identifier information is the packet flow indicated by the corresponding indication information.
  • the network device #A determines, by using one of the indication information (for example, the first indication information), that the packet flow to which the packet to be sent belongs belongs to the packet flow indicated by the first indication information, and may use the corresponding first indication.
  • the transmission channel identified by the identification information of the information sends a message.
  • the network device #A may determine that the packet flow to which the message #1 belongs belongs to the at least one packet flow, not only based on the received first indication information and the field of the message #1. The packet flow to which the message #1 belongs belongs to the at least one packet flow.
  • the system may pre-configure a plurality of indication information based on a combination of packet flows, where each indication information is used to indicate a packet flow group, where a packet flow group includes at least one packet flow, and the plurality of packets
  • the indication information is stored in the network device #A, such that the network device #A matches the message with all the indication information before sending the message, if one of the indication information (for example, the first indication information) If the matching succeeds, it indicates that the packet flow to which the packet belongs belongs to at least one packet flow indicated by the first indication information, and then uses the corresponding transmission channel to send the packet.
  • the terminal device there is no transmission channel between the terminal device and the network device, and the terminal device and the network device transmit the packet through the air interface, and the terminal device needs to send the packet according to the packet sending frequency of the packet flow to which the packet belongs. If the terminal device does not send packets according to the packet sending frequency of the packet flow to which the packet belongs, it may affect the transmission performance requirements of other packet flows.
  • the embodiment of the present application further provides an optional manner, which continues as shown in FIG. 2:
  • step S221 the control device sends the first packet flow frequency information (referred to as message flow frequency information #1 for convenience of distinction and understanding) to the terminal device, where the message flow frequency information #1 is used to indicate the at least The frequency of sending packets of each packet flow in a packet flow. Further, the terminal device receives the packet flow frequency information #1.
  • message flow frequency information #1 for convenience of distinction and understanding
  • the terminal device determines, according to the packet flow to which the packet to be sent, the packet sending frequency of the packet flow to which the packet belongs, where the packet is sent.
  • the flow belongs to the at least one message stream.
  • step S223 the terminal device sends the packet according to the packet sending frequency of the packet flow to which the packet belongs.
  • control device may obtain a packet sending frequency of the at least one packet flow, and send a packet sending frequency to the terminal device for indicating each packet flow in the at least one packet flow.
  • the message flow frequency information #1 can be used to enable the terminal device to send the message using the message transmission frequency of the message flow to which the message belongs.
  • the message #1 acquired by the access network device is a message sent by the terminal device.
  • the control device may send the first packet flow frequency information indicating the packet transmission frequency of each packet flow in the at least one packet flow to the terminal device,
  • the terminal device can use the packet sending frequency corresponding to the packet flow to which the packet belongs to send the packet, which effectively avoids the other packet stream being affected because the terminal device does not send the packet according to the packet sending frequency of the packet flow.
  • the transmission performance of the message may be used.
  • the method for determining, by the terminal device, the packet sending frequency of the packet flow to which the packet belongs the terminal device determining, according to the first packet stream frequency information, the packet sending frequency of the packet flow.
  • the mode is merely illustrative, and the embodiment at the time of the present application is not limited thereto.
  • the packet transmission frequency of the packet flow is configured on the terminal device side, and the terminal device sends the packet from the packet transmission frequency of the packet flow configured in the terminal device based on the packet flow to which the packet belongs before sending the packet. Determine the frequency of sending packets of the packet flow to which the packet belongs.
  • the network device needs to update the transmission frequency of each transmission channel from time to time.
  • the embodiment of the present application further provides two optional implementation manners.
  • the third network device updates the packet sending frequency of the transmission channel
  • the The control device updates the frequency of sending packets of the transmission channel.
  • Mode A the third network device updates the transmission frequency of the transmission channel
  • step S231 the control device sends second identification information (referred to as identification information #2 for convenience of distinction and understanding) to the third network device (referred to as network device #C for convenience of distinction and understanding) and the second report.
  • the stream frequency information (referred to as the message stream frequency information #2 for convenience of distinction and understanding), wherein the identifier information #2 is used to identify the transmission channel #1, and the message stream frequency information #2 is used to indicate the a packet sending frequency of each packet stream in the at least one packet stream, or the packet stream frequency information #2 is used to indicate a sum of the packet sending frequencies of the at least one packet stream, and the network device# C receives the identification information #2 and the message stream frequency information #2.
  • the identification information #2 is identification information for uniquely identifying the transmission channel #1, that is, the first type of identification of the transmission channel described above.
  • the network device #C is a UDM network element.
  • the network device #C determines the first transmission channel frequency information (referred to as transmission channel frequency information #1 for convenience of distinction and understanding) according to the identification information #2, and the transmission channel frequency information #1 is used for Indicates the frequency of message transmission currently supported by this transmission channel #1.
  • transmission channel frequency information #1 for convenience of distinction and understanding
  • the network device #C is configured with transmission channel information of a transmission channel configured in each transmission network in the entire mobile network, where the transmission channel information of each transmission channel includes a packet transmission frequency for indicating the transmission channel. Transmitting the channel frequency information, then the network device #C determines the transmission channel information of the transmission channel #1 from the transmission channel information according to the identification information #2, and further determines the transmission channel information from the transmission channel #1. Transmission channel frequency information #1.
  • step S233 the network device #C generates updated transmission channel frequency information #1 based on the transmission channel frequency information #1 and the message stream frequency information #2.
  • the network device #C can update the transmission channel frequency information #1 according to two conditions, as described below.
  • the network device #C needs to reserve a message transmission frequency of the at least one message stream for the at least one message flow from the message transmission frequency of the transmission channel #1.
  • the network device #C ensures the correct transmission of the packet of the at least one packet flow and subsequent packets.
  • the transmission frequency of the message occupied by the at least one message stream in the transmission channel #1 is subtracted, and the message transmission frequency of the remaining transmission channel #1 is used for other message stream selection transmission channels, that is, in the control
  • the device determines whether other packet streams can use the transmission channel #1 to send a message based on the message transmission frequency in the updated transmission channel frequency information #1.
  • the network device #C updates the transmission channel frequency information #1 based on two ways:
  • the network device #C sends the frequency of the message currently supported by the transmission channel #1.
  • the message transmission frequency of each message stream is subtracted, and the updated transmission channel frequency information #1 is generated.
  • the control device subtracts the at least one of the message transmission frequencies currently supported by the transmission channel #1. The sum of the transmission frequencies of the message flows, and the updated transmission channel frequency information is generated.
  • the mode A2 is different from the mode A1 in that, in the mode A2, the sum of the message sending frequencies of all the message flows in the at least one packet flow indicated by the message flow frequency information #2 can make the network
  • the device #C directly subtracts the sum of the message transmission frequencies of all the message flows in the at least one packet flow from the message transmission frequency currently supported by the transmission channel #1, and in the mode A1, the message flow
  • the frequency information #2 indicates the message transmission frequency of each message stream in the at least one message stream, and the network device #C needs to subtract each of the message transmission frequencies currently supported by the transmission channel #1.
  • the transmission frequency of the message stream, or the sum of the message transmission frequencies generated by the network device #C based on the message transmission frequency of each message stream in the at least one message stream.
  • the network device #C may determine the case 1 according to the type of the received information, that is, whether the network device #C needs to reserve a message transmission frequency for the at least one message stream.
  • the message flow frequency information #2 and the identification information #2 may be carried in the transmission channel request information, so that the network device #C can determine based on the information type of the transmission channel request information.
  • the resource needs to be reserved for the at least one packet flow. For details, refer to the description of step 308 in the method 300 below.
  • the network device #C needs to add the message transmission frequency of each message stream in the at least one message stream to the message transmission frequency of the transmission channel #1, so that the control device is based on The message transmission frequency in the updated transmission channel frequency information #1 determines whether other message streams can use the transmission channel #1 to transmit the message.
  • the message transmission frequency in the transmission channel frequency information #1 determined based on the identification information #1 is the message transmission frequency of the transmission channel that has been updated in the case 1.
  • the network device #C updates the transmission channel frequency information #1 based on two ways:
  • the network device #C sends the frequency of the message currently supported by the transmission channel #1. The frequency of sending the message of each message stream is added, and the updated transmission channel frequency information #1 is generated.
  • the control device When the message flow frequency information #2 is used to indicate the sum of the message transmission frequencies of the at least one message stream, the control device adds the at least one of the message transmission frequencies currently supported by the transmission channel #1. The sum of the message transmission frequencies of the message stream generates the updated transmission channel frequency information #1.
  • the network device #C can determine, according to the type of the received information, whether the message transmission frequency of the at least one message stream needs to be released. For example, during the end of the session, the message flow frequency information #2 and the identification information #2 may be carried in the transmission channel release information, so that the network device #C can determine the information type of the release information based on the transmission channel. The frequency of sending packets of the at least one packet stream needs to be released.
  • the network device #C may send the updated transmission channel frequency information in the transmission channel information to the control device,
  • the message flow of other sessions selects the transmission channel to provide real and valid data.
  • Mode B the control device can also update the transmission channel frequency information
  • control device may also update the transmission channel frequency information.
  • the method further includes:
  • the control device determines the first transmission channel frequency information according to the first transmission channel, where the first transmission channel frequency information is used to indicate a packet transmission frequency currently supported by the first transmission channel;
  • the control device obtains the second packet flow frequency information, where the second packet flow frequency information is used to indicate the packet sending frequency of each packet flow in the at least one packet flow, or the second packet flow frequency The information is used to indicate the sum of the sending frequencies of the at least one packet flow;
  • the control device generates updated first transmission channel frequency information according to the first transmission channel frequency information and the second packet flow frequency information.
  • control device generates the updated first transmission channel frequency information according to the first transmission channel frequency information and the second packet flow frequency information, including:
  • the control device When the second packet flow frequency information is used to indicate a packet transmission frequency of each packet flow in the at least one packet flow, the control device subtracts the packet transmission frequency currently supported by the first transmission channel. Sending a frequency of the message transmission of each packet flow, and generating the updated first transmission channel frequency information; or
  • the control device When the second packet flow frequency information is used to indicate a packet transmission frequency of each packet flow in the at least one packet flow, the control device adds the frequency of the packet currently supported by the first transmission channel. Sending a frequency of the message corresponding to each packet flow, and generating the updated first transmission channel frequency information; or
  • the control device subtracts the at least one of the message transmission frequencies currently supported by the first transmission channel.
  • the sum of the transmission frequency of the message flow of the message flow, and the frequency information of the first transmission channel of the update is generated;
  • the control device When the second packet flow frequency information is used to indicate the sum of the message transmission frequencies of the at least one packet flow, the control device adds the at least one of the message transmission frequencies currently supported by the first transmission channel. The sum of the transmission frequencies of the message flows, and the updated first transmission channel frequency information is generated.
  • the specific process of updating the transmission channel frequency information #1 by the control device is the same as the specific process of updating the transmission channel frequency information #1 by the network device #C, and details are not described herein again.
  • control device may determine, according to the specific content of the current step, whether to reserve a message transmission frequency for the at least one packet flow or release a message transmission frequency of the at least one message flow. For example, during the session, after the control device determines the transmission channel for the network device #A, the control device can reserve the message transmission frequency for the at least one packet flow. For another example, after the session ends, the control device performs a session release process with the UDM network element. In this case, the control device determines that the network device #A has completed the session, and then the control device can be released in the session. The frequency of sending the message of the at least one packet stream during the process or after the session release process.
  • the control device may send the second identifier information and the second packet stream frequency information to the third network device, so that the third network device may be based on the second identifier information and the
  • the second message stream frequency information updates the message transmission frequency of the first transmission channel at a time, so as to truly reflect the message transmission frequency that the first transmission channel can currently support, and provide real and effective data for other message stream selection transmission channels. In order to ensure the normal transmission of all message flows as much as possible.
  • the method for transmitting information is described by using only one transmission channel as an example, but this should not be construed as limiting the embodiment of the present application.
  • generating, by the control device, information related to each of the plurality of transmission channels eg, first identification information, first indication information, second identification information, etc.
  • information related to the first transmission channel The generation and transfer process are the same.
  • information related to multiple transmission channels may be carried in the same message, or may be carried in multiple messages respectively.
  • FIG. 3 is a schematic flowchart of a method 300 for transmitting information according to an embodiment of the present application.
  • the SMF network element is used as the control device, and any one of the access network device, the UPF network element, or the application server is used as the network device #A, and the UDM network element is the network device #C.
  • the network architecture further includes an AMF network element, a policy control function (PCF) network element, and a UDM network element.
  • the transmission network between the access network device and the UPF network element is recorded as the transmission network #A
  • the transmission network between the UPF network element and the application server is recorded as the transmission network #B.
  • the terminal device initiates a packet data unit (PDU) session establishment request to the AMF network element.
  • PDU packet data unit
  • the message used to indicate the session establishment request includes a parameter corresponding to the packet flow of the session.
  • the AMF network element selects an appropriate SMF network element.
  • the AMF network element sends an Nsmf_PDU session_create SM (session manage) request message to the SMF network element, where the message includes information used to create a PDU session.
  • Nsmf_PDU session_create SM session manage
  • the SMF obtains subscription data, where the subscription data includes parameters of a message flow corresponding to the session.
  • the SMF network element sends a Nudm subscriber data request (Nudm subscriber data get request) message to the UDM network element, where the message is used to request the subscription data of the terminal device in a specific server (for example, an application server), and
  • the UDM network element sends a Nudm subscriber data get response (Nudm subscriber data get response) message to the SMF network element, and sends the corresponding subscription data to the SMF network element by using the message.
  • the subscription data may further include information such as an authorized PDU type, an authorized session, and a session and service continuity (SSC) mode.
  • information such as an authorized PDU type, an authorized session, and a session and service continuity (SSC) mode.
  • SSC session and service continuity
  • the SMF network element acquires, from the UDM network element, transmission channel information of all transmission channels pre-configured by the system for the transmission network #A and the transmission network #B.
  • the SMF network element sends request information for requesting transmission channel information to the UDM network element, and the UDM sends transmission channel information to the SMF.
  • the subscription channel information may also include the transmission channel information, that is, the SMF network element may also obtain the transmission channel information from the subscription data, which is not limited in this embodiment of the present application. .
  • the SMF network element is a packet flow of the session, and at least one transmission channel corresponding to the message flow of the session is determined from all the transmission channels pre-configured in the transmission network #A (for the purpose of distinguishing and understanding, it is recorded as Transmission channel group #A), at least one transmission channel corresponding to the message flow of the session is determined from all the transmission channels pre-configured in the transmission network #B (for convenience of distinction and understanding, it is recorded as transmission channel group #B).
  • the process of determining, by the SMF network element, the corresponding transmission channel in each transport network based on the packet flow of the session may refer to the process of determining the transmission channel #1 based on the at least one packet flow, and details are not described herein. .
  • the packet flow of the session includes three packet flows, the packet flow #1 and the packet flow #2 are the uplink packet flows, and the packet flow #3 is the downlink packet flow, and in different transmission networks, A transmission channel for uplink transmission is determined for message stream #1 and message stream #2, respectively, and a transmission channel for downlink transmission is determined for message stream #3.
  • a transmission channel for uplink transmission is determined for message stream #1 and message stream #2, respectively, and a transmission channel for downlink transmission is determined for message stream #3.
  • the transmission network #A two transmission channels are determined for the three message flows, and the two transmission channels are respectively recorded as the uplink transmission channel #A1 and the downlink transmission channel #A2, wherein the uplink transmission channel #A1 is used.
  • the downlink transmission channel #A2 is for transmitting the packet belonging to the packet stream #3; in the transmission network #B, for the three packet streams Two transmission channels are also determined, and the two transmission channels are respectively recorded as an uplink transmission channel #B1 and a downlink transmission channel #B2, wherein the uplink transmission channel #B1 is used to transmit belonging to the message stream #1 and the message stream.
  • the packet of #2, the downlink transmission channel #B2 is used to transmit the packet belonging to the packet stream #3.
  • the SMF network element sends a transmission channel request message to the UDM network element.
  • the transmission channel request message includes a packet sending frequency of each packet flow in the packet flow of the session in each transport network and an identifier of a transmission channel corresponding to each packet flow.
  • the transmission channel request information includes a packet transmission frequency of three packet flows in the transmission network #A and corresponding identifiers of the uplink transmission channel #A1 and the downlink transmission channel #A2, and simultaneously
  • the transmission channel request information includes a packet transmission frequency of the three packet flows in the transmission network #B and an identifier of the corresponding uplink transmission channel #B1 and an identifier of the uplink transmission channel #B2.
  • the UDM network element determines, according to the identifier of the transmission channel, a packet transmission frequency currently supported by each transmission channel, and subtracts the packet transmission of the corresponding packet flow from the packet transmission frequency of each transmission channel. Frequency, generating updated transmission channel frequency information.
  • the transmission channel information sent by the UDM network element includes the updated transmission channel frequency information.
  • Steps S307 and S308 can refer to the descriptions of S231 to S233 in FIG. 2, and details are not described herein again.
  • the SMF network element sends, to the application server, at least one identifier information for identifying a transmission channel in the transmission network #B and corresponding at least one indication information.
  • Each of the indication information is used to indicate at least one packet flow to which the packet flow to which the packet transmitted by the corresponding transmission channel belongs, and the description of the identifier information and the corresponding indication information may be referred to the foregoing first identifier information. And the description of the first indication information, and details are not described herein again.
  • the application server is the transmitting end of the downlink transmission, and therefore, the at least one identification information only includes the identification information for identifying the downlink transmission channel #B2 (for the purpose of distinguishing It is understood that the downlink transmission channel identification information #B2), correspondingly, the at least one indication information includes indication information corresponding to the downlink transmission channel identification information #B2 (denoted as indication information #B2 for convenience of distinction and understanding).
  • the application server can send a message based on the downlink transmission channel identification information #B2 and the indication information #B2.
  • the process of sending a packet refer to the foregoing process of sending a packet based on the first indication information and the first identifier information for the network device #A, and details are not described herein again.
  • the application server sends an acknowledgement message to the SMF network element, where the acknowledgement message indicates that the application server successfully receives the at least one identifier information and the corresponding at least one indication information sent by the SMF network element in step S309.
  • the SMF network element sends, to the UPF network element, at least one identifier information for identifying a transmission channel in the transmission network #A and the transmission network #B, and corresponding at least one indication information.
  • the SMF network element may send an N4 session establishment/modification request message, where the message includes at least one identification information and corresponding information for identifying a transmission channel in the transmission network #A and the transmission network #B. At least one indication.
  • Each of the indication information is used to indicate at least one packet flow to which the packet flow to which the packet transmitted by the corresponding transmission channel belongs, and the description of the identifier information and the corresponding indication information may be referred to the foregoing first identifier information. And the description of the first indication information, and details are not described herein again.
  • the UPF network element is the transmitting end of the downlink transmission.
  • the UPF network element is the transmitting end of the uplink transmission, and therefore, for the UPF network element
  • the at least one identification information includes identifier information for identifying the downlink transmission channel #A2 (denoted as downlink transmission channel identification information #A2 for convenience of distinction and understanding) and identification information for identifying the uplink transmission channel #B1 (in order to For easy identification and understanding, it is recorded as uplink transmission channel identification information #B1).
  • the at least one indication information includes indication information corresponding to the downlink transmission channel identification information #A2 (for indication and understanding, it is recorded as indication information # A2) and indication information corresponding to the uplink transmission channel identification information #B1 (denoted as indication information #B1 for convenience of distinction and understanding).
  • the UPF network element sends an acknowledgment message to the SMF network element, where the acknowledgment message indicates that the UPF network element successfully receives the at least one identification information and the corresponding at least one indication information sent by the SMF network element in step S311.
  • the confirmation message may be N4.
  • N4 session establishment/modification response message when the at least one identification information for identifying the transmission channel in the transmission network #A and the transmission network #B and the corresponding at least one indication information are carried in the N4 session establishment/modification request message, the confirmation message may be N4.
  • N4 session establishment/modification response message when the at least one identification information for identifying the transmission channel in the transmission network #A and the transmission network #B and the corresponding at least one indication information are carried in the N4 session establishment/modification request message, the confirmation message may be N4.
  • the SMF network element sends the message frequency information to the AMF network element, at least one identifier information for identifying a transmission channel in the transmission network #A, and corresponding at least one indication information.
  • the SMF network element may send a Nsmf PDU session create SM context response message, where the message includes the message flow frequency information, and the identifier is used to identify at least the transmission channel in the transmission network #A.
  • An identification information and corresponding at least one indication information may be used to identify at least the transmission channel in the transmission network #A.
  • the packet flow frequency information is used to indicate a packet transmission frequency of each packet flow in all the packet flows of the session, and each identifier information is used to identify a transmission channel, and each indication information is used to indicate a corresponding transmission.
  • the description may be made by referring to the foregoing first packet flow frequency information, first, for the packet flow to which the packet is to be transmitted. The description of the identification information and the first indication information is not described here.
  • the AMF network element sends, to the access network device, the packet flow frequency information, the at least one identifier information, and the corresponding at least one indication information that are received by the AMF in step S313.
  • the AMF network element forwards or transparently transmits the message flow frequency information, the at least one identification information, and the corresponding at least one indication information received in step S313.
  • the AMF network element may send an N2 PDU session request message, where the message includes the message flow frequency information, at least one identification information, and corresponding at least one indication information.
  • the access network device since the at least one identification information and the at least one identification information are ultimately information sent to the access network device, in the transmission network #A, the access network device is the transmitting end of the uplink transmission. Therefore, the at least one identification information only includes the identification information for identifying the uplink transmission channel #A1 (referred to as the uplink transmission channel identification information #A1 for convenience of distinction and understanding), and correspondingly, the at least one indication information includes the corresponding information.
  • the indication information of the uplink transmission channel identification information #A1 (referred to as the indication information #A1 for convenience of distinction and understanding).
  • the access network device can send a message based on the uplink transmission channel identification information #A1 and the indication information #A1.
  • the process of sending a packet refer to the foregoing process of sending a packet based on the first indication information and the first identifier information for the network device #A, and details are not described herein again.
  • the access network device sends packet flow frequency information to the terminal device.
  • the access network device may send a non-access stratum (NAS) message, where the NAS message includes the message flow frequency information.
  • NAS non-access stratum
  • the terminal device may send a packet based on the packet flow frequency information.
  • the terminal device may send a packet based on the packet flow frequency information.
  • the access network device sends an N2 PDU session response message to the AMF network element.
  • steps S309, S311, S313, and S315 does not imply a sequence of execution orders, and the order of execution of the steps should be determined by its function and intrinsic logic.
  • steps S309, S311, S313, and S315 can be performed simultaneously.
  • FIG. 4 is a schematic flowchart of a method 400 of transmitting information according to another embodiment of the present application.
  • the SMF network element is used as the control device
  • the UDM network element is the network device #C as an example, and the scenario between the control device and the network device #C in the scenario where the session is released after the session ends is described.
  • a process of transmitting information, wherein the release process of the session may be a release process for the session established in method 400.
  • S401 Complete a session release process by multiple network elements including an SMF network element and a UDM network element.
  • the SMF network element sends a transmission channel release message to the UDM network element, where the message includes a packet sending frequency of each packet flow in the packet flow of each session in the transmission network, and a corresponding packet flow. The identity of the transmission channel.
  • the transmission channel release information includes the packet transmission frequency and the corresponding uplink of the three packet flows in the transmission network #A.
  • the identifier of the transmission channel #A1 and the downlink transmission channel #A2 and the transmission channel request information includes the packet transmission frequency of the three packet flows in the transmission network #B and the identifier and uplink of the corresponding uplink transmission channel #B1.
  • the UDM network element determines, according to the identifier of the transmission channel, the transmission frequency of the packet currently supported by each transmission channel, and adds the packet transmission frequency of the corresponding packet flow from the packet transmission frequency of each transmission channel. Generate updated transmission channel frequency information.
  • Step S402 can refer to the description of step S233 in FIG. 2, and details are not described herein again.
  • the UDM network element sends an acknowledgment message to the SMF network element, where the acknowledgment message is used to indicate that the UDM network element successfully releases the used packet transmission frequency in each transmission channel.
  • FIG. 5 is a schematic flowchart of a method 500 of transmitting information according to another embodiment of the present application.
  • the SMF network element is used as the control device, and any one of the access network device, the UPF network element, or the application server is used as the network device #A, and the UDM network element is the network device #C.
  • the network architecture further includes an AMF network element and a UDM network element, where the UPF network element includes a source UPF network element, a target UPF network element, and an anchor UPF network element, and the access network device includes a source access network. Equipment and target access network equipment.
  • the transmission path of the packet before the UPF network element is switched is: the terminal device ⁇ the access network device ⁇ the source UPF network element ⁇ the anchor point UPF network element, and the packet after the UPF network element is switched.
  • the transmission path is: terminal device ⁇ access network device ⁇ target UPF network element ⁇ anchor UPF network element.
  • the transmission network between the target access network device and the target UPF network element is recorded as the transmission network #C1
  • the transmission network between the target UPF network element and the anchor point UPF network element is recorded as the transmission network.
  • C2 the transmission network between the anchor UPF network element and the application server is recorded as the transmission network #C3.
  • the target access network device sends an N2 path switch request message to the AMF network element, where the N2 Path Switch Request message is used to notify the terminal device that the mobile device has moved to the new cell and at least one PDU session that needs to be switched.
  • the AMF network element sends session management information (N2 SM information) to the SMF network element, where the information includes an ID of the PDU session corresponding to the SMF network element, a parameter of the corresponding packet flow, and N3 tunnel information. It should be noted that if there are multiple SMF network elements related to multiple PDU sessions to be switched as described in S501, the AMF network element will also be sent to other SMF networks other than the SMF network element shown in FIG. 5. The element sends an N2 SM information message, where one SMF network element corresponds to at least one session.
  • N2 SM information session management information
  • the SMF network element acquires, from the UDM network element, transmission channel information of a transmission channel pre-configured by the system for the foregoing transmission network #C1, transmission network #C2, and transmission network #C3.
  • the SMF network element sends request information for requesting transmission channel information to the UDM network element, and the UDM sends transmission channel information to the SMF.
  • the SMF network element selects a target UPF network element.
  • the SMF network element needs to determine whether the current UPF network element (ie, the source UPF network element) can meet the requirements of the message flow corresponding to the session #1, and the specific determination condition includes at least: In the case of changing the UPF, whether the transmission channel between the source UPF network element and the anchor UPF network element and the transmission channel between the anchor UPF network element and the application server can meet the performance requirements of the packet flow. If the SMF network element determines that the current UPF network element does not meet the foregoing determination condition, and needs to switch from the current UPF network element (ie, the source UPF network element) to the target UPF network element, select the target access network device and the target UPF network. a transmission channel between the element, a transmission channel between the target UPF network element and the anchor point UPF network element, and a transmission channel between the anchor point UPF network element and the application server.
  • the specific determination condition includes at least: In the case of changing the UPF, whether the transmission channel between the source UPF network element and the anchor UPF network element and
  • the transmission channel between the source UPF network element and the anchor UPF network element and the transmission channel between the anchor UPF network element and the application server may be the transmission channel that has been selected for the message flow before the SMF, or may be pre- The configured transmission channel.
  • the transmission channel when determining whether the transmission channel meets the performance requirement of the packet flow, it may first determine whether the transmission channel selected by the SMF network element for the packet flow satisfies the performance requirement of the packet flow, and if not, It is determined whether the other transmission channels pre-configured between the UPF network element and the application server meet the performance requirements of the packet flow.
  • the SMF network element determines whether the transmission channel meets the performance requirement of the packet flow (or the manner in which the SMF network element selects a transmission channel for the packet flow). For reference, refer to the related description above, and details are not described herein again.
  • the SMF network element sends a transmission channel request message to the UDM network element.
  • the transmission channel request message includes a packet sending frequency of each packet flow in the packet flow of the session in each transport network and an identifier of a transmission channel corresponding to each packet flow.
  • step S604 a new transmission channel is added, so that the transmission channel request message may include only the newly added transmission channel.
  • the UDM network element determines, according to the identifier of the transmission channel, a packet transmission frequency currently supported by each transmission channel, and subtracts a packet transmission of the corresponding packet flow from a packet transmission frequency of each transmission channel. Frequency, generating updated transmission channel frequency information.
  • the transmission channel information sent by the UDM network element includes the updated transmission channel frequency information.
  • the SMF network element sends, to the target UPF network element, at least one identifier information for identifying a transmission channel in the transport network #C1 and the transport network #C2, and corresponding at least one indication information.
  • the SMF network element may send an N4 session establishment/modification request message, where the message includes at least one identification information for identifying a transmission channel in the transmission network #C1 and the transmission network #C2, and Corresponding at least one indication information.
  • Each of the indication information is used to indicate at least one packet flow to which the packet flow to which the packet transmitted by the corresponding transmission channel belongs, and the description of the identifier information and the corresponding indication information may be referred to the foregoing first identifier information. And the description of the first indication information, and details are not described herein again.
  • the target UPF network element is the transmitting end of the downlink transmission.
  • the target UPF network element is the transmitting end of the uplink transmission, and the at least one identification information is identified.
  • the transmission channel includes the uplink transmission channel for the uplink transmission and the downlink transmission channel for the downlink transmission. For details, refer to the related description of step S311 in the method 300.
  • the target UPF network element sends an acknowledgement message to the SMF network element, and the SMF network element starts a timer, which is used in the subsequent step S516.
  • the confirmation message indicates that the target UPF network element successfully receives the at least one identification information and the corresponding at least one indication information that are sent by the SMF network element in step 507.
  • the confirmation message may be an N4 session establishment. /N4 session establishment/modification response message.
  • the SMF network element sends, to the anchor UPF network element, at least one identifier information and a corresponding at least one indication information for identifying a transmission channel in the transmission network #C2 and/or the transmission network #C3.
  • the SMF network element may send an N4 session modification request message, where the message includes at least one identification information for identifying a transmission channel in the transmission network #C2 and/or the transmission network #C3. Corresponding at least one indication information.
  • Each of the indication information is used to indicate at least one packet flow to which the packet flow to which the packet transmitted by the corresponding transmission channel belongs, and the description of the identifier information and the corresponding indication information may be referred to the foregoing first identifier information. And the description of the first indication information, and details are not described herein again.
  • the anchor UPF network element is the transmitting end of the downlink transmission.
  • the anchor point UPF network element is the transmitting end of the uplink transmission, and the at least one identification information
  • the identified transmission channel may include an uplink transmission channel for uplink transmission, and may also include a downlink transmission channel for downlink transmission. For details, refer to the related description of step S311 in the method 300.
  • the anchor point UPF network element sends an acknowledgement message to the SMF network element, where the acknowledgement message indicates that the anchor point UPF network element successfully receives the at least one identifier information sent by the SMF network element in step S509 and the corresponding at least one indication information. .
  • the confirmation message may be an N4 session. Modify the response (N4 session modification response) message.
  • the SMF network element sends, to the application server, at least one identifier information for identifying a transmission channel in the transmission network #C3 and corresponding at least one indication information.
  • Each of the indication information is used to indicate at least one packet flow to which the packet flow to which the packet transmitted by the corresponding transmission channel belongs, and the description of the identifier information and the corresponding indication information may be referred to the foregoing first identifier information. And the description of the first indication information, and details are not described herein again.
  • the application server is the transmitting end of the downlink transmission, and therefore, the transmission channel identified by the at least one identification information may include only the downlink transmission channel for downlink transmission.
  • the application server sends an acknowledgement message to the SMF network element, where the acknowledgement message indicates that the application server successfully receives the at least one identifier information sent by the SMF network element in step S511 and the corresponding at least one indication information.
  • the SMF network element sends, to the AMF network element, at least one identifier information for identifying a transmission channel in the transmission network #C1 and corresponding at least one indication information.
  • the SMF network element may send an Nsmf PDU session create SM context response message, where the message includes at least one identification information for identifying a transmission channel in the transmission network #C1 and a corresponding At least one indication.
  • Each of the indication information is used to indicate at least one packet flow to which the packet flow to which the packet transmitted by the corresponding transmission channel belongs, and the description of the identifier information and the corresponding indication information may be referred to the foregoing first identifier information. And the description of the first indication information, and details are not described herein again.
  • the transmission channel identified by the at least one identification information may only include an uplink transmission channel for uplink transmission.
  • steps S507, S509, S511, and S513 does not imply a sequence of execution orders, and the order of execution of the steps should be determined by its function and intrinsic logic.
  • steps S507, S509, S511, and S513 can be performed simultaneously.
  • the AMF network element sends the at least one identifier information and the corresponding at least one indication information received in step S513 to the target access network device.
  • the AMF network element may send an N2 path switch request Ack message, where the message includes the at least one identifier information and the corresponding at least one indication information.
  • the AMF network element forwards or transparently transmits at least one identification information and at least one indication information received in step S513.
  • step S502 if there are more SMF network elements related to multiple PDU sessions that need to be switched as described in S501, the AMF network element will also be shown in FIG.
  • the SMF network element other than the SMF network element sends the N2 SM information message, so in step S513, the AMF receives the Nsmf PDU conference establishment context response message sent by the network element other than the SMF network element shown in FIG.
  • step S514 the AMF network element aggregates the Nsmf PDU conference setup context response message sent by all the SMF network elements, and then sends the N2 Path Switch Request Ack message to the target access network device.
  • the target access network device sends a resource release message to the source access network device, where the resource release message is used to indicate that the terminal device successfully switches from the source access network device to the target access network device.
  • the source access network device releases the air interface resource between the source access network device and the terminal device.
  • the SMF sends a N4 session release request message to the source UPF network element to start the resource release process of the source UPF network element.
  • the source UPF network element sends an N4 session release response message to the SMF network element to confirm the release of the resource.
  • the SMF network element sends a transmission channel release message to the UDM network element, where the transmission channel release message includes the identification information of the transmission channel that is no longer used for transmitting the message and the message transmission frequency of the corresponding message flow.
  • the transmission channel release message includes The transmission information of the transmission channel determined by the SMF network element in the source access network device and the source UPF network element and the packet transmission frequency of the corresponding packet flow.
  • the transmission channel release message is not available, and the transmission channel release message also includes the identifier information for identifying the transmission channel between the source access network device and the source UPF network element, and the packet sending frequency of the corresponding packet flow, and
  • the transmission channel release information includes a packet transmission frequency indicating the identification information of the source UPF network element and the transmission channel between the anchor UPF network element and the corresponding packet flow.
  • the UDM network element determines, according to the identifier of the transmission channel, the transmission frequency of the packet currently supported by each transmission channel, and adds the packet transmission frequency of the corresponding packet flow from the packet transmission frequency of each transmission channel. Generate updated transmission channel frequency information.
  • the UDM network element sends an acknowledgment message to the SMF network element, where the acknowledgment message is used to indicate that the UDM network element successfully releases the used packet transmission frequency in the transmission channel.
  • FIG. 6 is a schematic flowchart of a method 600 of transmitting information according to still another embodiment of the present application.
  • the SMF network element is used as the control device, and any one of the access network device, the UPF network element, or the application server is used as the network device #A, and the UDM network element is the network device #C.
  • the process of transmitting information between the network elements in the scenario of reselecting the UPF network element is not performed in the process of switching the access network device.
  • the network architecture further includes an AMF network element and a UDM network element, where the access network device includes a source access network device and a target access network device.
  • the transmission network between the target access network device and the UPF network element is recorded as the transmission network #D1
  • the transmission network between the UPF network element and the application server is recorded as the transmission network #D2.
  • the target access network device sends an N2 path switch request message to the AMF network element, where the N2 path switch request message is used to notify the terminal device that the mobile device has moved to the new cell and multiple PDU sessions that need to be switched.
  • the AMF network element sends an N2 SM information message to the SMF network element.
  • step S502 For a description of the step, refer to the description of step S502 in the method 500 above, and details are not described herein again.
  • the SMF network element acquires, from the UDM network element, transmission channel information of all transmission channels pre-configured by the system for the foregoing transmission network #D1 and the transmission network #D2.
  • step S503 For a description of the step, refer to the description of step S503 in the method 500 above, and details are not described herein again.
  • the SMF selects a UPF network element.
  • the SMF network element needs to determine whether the current UPF network element can meet the requirements of the packet flow.
  • the specific judgment condition includes at least whether the transmission channel between the current UPF network element and the application server can be satisfied without changing the UPF.
  • the performance requirement of the packet flow if the current UPF network element meets the above-mentioned judgment condition, the SMF network element determines that the target access network device and the UPF network element are selected after the current UPD network element is not required to be switched, and/or A transmission channel between the UPF network element and the application server.
  • the transmission channel between the current UPF network element and the application server may be a transmission channel that has been selected for the packet flow before the SMF network element, or may be other transmissions pre-configured between the UPF network element and the application server. aisle.
  • the transmission channel when determining whether the transmission channel meets the performance requirement of the packet flow, it may first determine whether the transmission channel selected by the SMF network element for the packet flow satisfies the performance requirement of the packet flow, and if not, It is determined whether the other transmission channels pre-configured between the UPF network element and the application server meet the performance requirements of the packet flow.
  • the SMF network element needs to reselect the transmission channel between the UPF network element and the application server.
  • the SMF network element determines whether the transmission channel meets the performance requirement of the packet flow (or the manner in which the SMF network element selects a transmission channel for the packet flow). For reference, refer to the related description above, and details are not described herein.
  • the SMF network element sends a transmission channel request message to the UDM network element.
  • step S505 For a description of the step, refer to the description of step S505 in the method 500 above, and details are not described herein again.
  • the UDM network element determines, according to the identifier of the transmission channel, a packet transmission frequency currently supported by each transmission channel, and subtracts the packet transmission of the corresponding packet flow from the packet transmission frequency of each transmission channel. Frequency, generating updated transmission channel frequency information.
  • the transmission channel information sent by the UDM network element includes the updated transmission channel frequency information.
  • the SMF network element sends, to the target UPF network element, at least one identifier information for identifying a transmission channel in the transport network #D1 and the transport network #D2, and corresponding at least one indication information.
  • the SMF network element may send an N4 session establishment/modification request message, where the message includes at least one identification information for identifying a transmission channel in the transmission network #D1 and the transmission network #D2, and Corresponding at least one indication information.
  • Each of the indication information is used to indicate at least one packet flow to which the packet flow to which the packet transmitted by the corresponding transmission channel belongs, and the description of the identifier information and the corresponding indication information may be referred to the foregoing first identifier information. And the description of the first indication information, and details are not described herein again.
  • the UPF network element in the transmission network #D1, the UPF network element is a transmitting end of the downlink transmission, and in the transmission network #D2, the UPF network element is a transmitting end of the uplink transmission, and the transmission identified by the at least one identification information
  • the channel includes both an uplink transmission channel for uplink transmission and a downlink transmission channel for downlink transmission.
  • the UPF network element sends an acknowledgment message to the SMF network element, where the acknowledgment message indicates that the UPF network element successfully receives the at least one identification information and the corresponding at least one indication information sent by the SMF network element in step S607.
  • the confirmation message may be an N4 session establishment. /N4 session establishment/modification response message.
  • the SMF network element sends, to the application server, at least one identifier information for identifying a transmission channel in the transmission network #D2 and corresponding at least one indication information.
  • Each of the indication information is used to indicate at least one packet flow to which the packet flow to which the packet transmitted by the corresponding transmission channel belongs, and the description of the identifier information and the corresponding indication information may be referred to the foregoing first identifier information. And the description of the first indication information, and details are not described herein again.
  • the application server is the transmitting end of the downlink transmission, and therefore, the transmission channel identified by the at least one identification information may only include the downlink transmission channel for downlink transmission.
  • the application server sends an acknowledgement message to the SMF network element, where the acknowledgement message indicates that the application server successfully receives the at least one identifier information and the corresponding at least one indication information sent by the SMF network element in step S609.
  • the SMF network element sends, to the AMF network element, at least one identifier information for identifying a transmission channel in the transmission network #D1 and corresponding at least one indication information.
  • the SMF network element may send an Nsmf PDU session create SM context response message, where the message includes at least one identification information for identifying a transmission channel in the transmission network #D1 and a corresponding At least one indication.
  • the transmission channel identified by the at least one identification information may only include an uplink transmission channel for uplink transmission.
  • steps S607, S609, and S611 does not imply a sequence of execution orders, and the order of execution of the steps should be determined by its function and intrinsic logic. For example, steps S607, S609, and S611 can be performed simultaneously.
  • the AMF network element sends the at least one identifier information and the corresponding at least one indication information received in step S611 to the target access network device.
  • the AMF network element may send an N2 path switch request Ack message, where the message includes at least one identifier information and at least one indication information received in step S611.
  • the AMF network element forwards or transparently transmits at least one piece of identification information and at least one piece of indication information received in step S611.
  • the target access network device sends a resource release message to the source access network device, where the resource release message is used to indicate that the terminal device successfully switches from the source access network device to the target access network device.
  • the source access network device releases the air interface resource between the source access network device and the terminal device.
  • the SMF network element sends a transmission channel release message to the UDM network element, where the transmission channel release message includes the identification information of the transmission channel that is no longer used to transmit the message in the transmission network, and the packet transmission frequency of the corresponding packet flow.
  • the UDM network element determines, according to the identifier of the transmission channel, the transmission frequency of the packet currently supported by each transmission channel, and adds the packet transmission frequency of the corresponding packet flow from the packet transmission frequency of each transmission channel. Generate updated transmission channel frequency information.
  • the UDM network element sends an acknowledgment message to the SMF network element, where the acknowledgment message is used to indicate that the UDM network element successfully releases the used packet transmission frequency in the transmission channel.
  • the control device determines, from the at least one transmission channel configured between the first network device and the second network device, the packet for transmitting at least one packet flow. a first transmission channel, and the identification information for identifying the first transmission channel enables the first network device to determine that the first transmission channel can be used to transmit a message belonging to the at least one packet flow, where the first The packet transmission frequency of the transmission channel is greater than or equal to the packet transmission frequency of the at least one packet stream, and the transmission performance of the first transmission channel satisfies the transmission performance of the at least one packet stream, and further, the first When the network device sends the packet that belongs to the at least one packet flow, the packet is sent by using the first transmission channel according to the packet sending frequency of the first transmission channel, which can effectively reduce the transmission delay of the packet, thereby satisfying The need for the transmission performance of messages in mobile networks;
  • control device can enable the terminal device to use the packet to which the packet belongs, by sending the first packet stream frequency information indicating the packet sending frequency of each packet stream in the at least one packet flow to the terminal device.
  • the packet transmission frequency corresponding to the packet flow is used to transmit the packet, which effectively avoids the transmission performance of the packet that affects other packet flows because the terminal device does not send the packet according to the packet transmission frequency of the packet flow;
  • control device may send the second identifier information and the second packet stream frequency information to the third network device, so that the third network device may be based on the second identifier information and the second packet stream frequency information duration Update the packet transmission frequency of the first transmission channel to truly reflect the packet transmission frequency that the first transmission channel can currently support, and provide real and valid data for other packet stream selection transmission channels, thereby ensuring all packets as much as possible. The normal transmission of the streamed message.
  • the size of the sequence numbers of the foregoing processes does not mean the order of execution sequence, and the order of execution of each process should be determined by its function and internal logic, and should not be applied to the embodiment of the present application.
  • the implementation process constitutes any limitation.
  • the method for transmitting information according to the embodiment of the present application is described in detail above with reference to FIG. 1 to FIG. 6.
  • the following describes the device for transmitting information according to the embodiment of the present application, and the technical features described in the method embodiment are described with reference to FIG. 7 to FIG. The same applies to the following device embodiments.
  • FIG. 7 is a schematic block diagram of an apparatus 700 for transmitting information according to an embodiment of the present application. As shown in FIG. 7, the apparatus 700 includes:
  • the processing unit 710 is configured to determine, by using at least one transmission channel configured between the first network device and the second network device, the first transmission channel, where the first transmission channel is configured to transmit a packet that belongs to the at least one packet flow.
  • the transmission frequency of the packet currently supported by the first transmission channel is greater than or equal to the sum of the transmission frequencies of the at least one packet flow, and the transmission performance of the first transmission channel satisfies the transmission performance of the at least one packet stream;
  • the sending unit 720 sends first identifier information to the first network device, where the first identifier information is used to identify the first transmission channel.
  • the apparatus determines, from the at least one transmission channel configured between the first network device and the second network device, a first packet for transmitting a packet belonging to the at least one packet flow. Transmitting a channel, and by using the identification information for identifying the first transmission channel, the first network device may determine that the packet belonging to the at least one packet flow can be transmitted using the first transmission channel, where the first transmission channel
  • the packet sending frequency is greater than or equal to the packet sending frequency of the at least one packet stream, and the transmission performance of the first transmission channel satisfies the transmission performance of the at least one packet stream, and further, the first network device may be configured
  • the packet belonging to the at least one packet stream is sent, the packet is sent by using the first transmission channel according to the packet sending frequency of the first transmission channel, which can effectively reduce the transmission delay of the packet, thereby satisfying the requirement for the mobile network.
  • the transmission performance requirements of the medium message are examples of the packet belonging to the at least one packet flow.
  • the sending unit 720 is further configured to:
  • the sending unit 720 is further configured to:
  • the first packet flow frequency information is sent to the terminal device, where the first packet flow frequency information is used to indicate a packet sending frequency of each packet flow in the at least one packet flow.
  • the apparatus for transmitting information may cause the first packet stream frequency information for indicating a packet transmission frequency of each packet stream in the at least one packet stream by using the terminal device,
  • the terminal device can use the packet sending frequency corresponding to the packet flow to which the packet belongs to send the packet, which effectively avoids the other packet stream being affected because the terminal device does not send the packet according to the packet sending frequency of the packet flow.
  • the transmission performance of the message may cause the first packet stream frequency information for indicating a packet transmission frequency of each packet stream in the at least one packet stream by using the terminal device.
  • the sending unit 720 is further configured to:
  • the second identification information is used to identify the first transmission channel, and the second packet flow frequency information is used to indicate a packet transmission frequency of each packet flow in the at least one packet flow, or the second The message flow frequency information is used to indicate the sum of the message transmission frequencies of the at least one message stream.
  • the apparatus for transmitting information in the embodiment of the present application by transmitting the second identifier information and the second packet stream frequency information to the third network device, may enable the third network device to be based on the second identifier information and the The second message stream frequency information updates the message transmission frequency of the first transmission channel at a time, so as to truly reflect the message transmission frequency that the first transmission channel can currently support, and provide real and effective data for other message stream selection transmission channels. In order to ensure the normal transmission of all message flows as much as possible.
  • processing unit 710 is further configured to:
  • the second packet flow frequency information is used to indicate a packet sending frequency of each packet flow in the at least one packet flow, or the second packet flow frequency information is used to And a total of the frequency of sending the message indicating the at least one packet flow;
  • the apparatus updates the packet transmission frequency of the first transmission channel by using the first transmission channel frequency information and the second packet flow frequency information to be able to truly reflect the first transmission channel.
  • the current packet transmission frequency can be used to provide real and valid data for other packet flow transmission channels, so as to ensure the normal transmission of all message flows.
  • processing unit 710 is specifically configured to:
  • the control device When the second packet flow frequency information is used to indicate a packet transmission frequency of each packet flow in the at least one packet flow, the control device subtracts the packet transmission frequency currently supported by the first transmission channel. Sending a message transmission frequency of each packet flow to generate the updated first transmission channel frequency information; or
  • the control device When the second packet flow frequency information is used to indicate a packet transmission frequency of each packet flow in the at least one packet flow, the control device adds the frequency of the packet currently supported by the first transmission channel. Sending a frequency of the message corresponding to each packet flow to generate the updated first transmission channel frequency information; or
  • the control device subtracts the at least one of the message transmission frequencies currently supported by the first transmission channel. The sum of the message transmission frequencies of the message flow to generate the updated first transmission channel frequency information;
  • the control device When the second packet flow frequency information is used to indicate the sum of the message transmission frequencies of the at least one packet flow, the control device adds the at least one of the message transmission frequencies currently supported by the first transmission channel. The sum of the message transmission frequencies of the message stream to generate the updated first transmission channel frequency information.
  • processing unit 710 is specifically configured to:
  • the first network device is any one of the following: an access network device; or a user plane function network element; or an application server.
  • the device 700 for transmitting information may correspond to (eg, may be configured or itself) the control device described in the above method 200, and each module or unit in the device 700 for transmitting information is used to perform the control in the method 200 described above, respectively. Detailed descriptions of the operations and processes performed by the device are omitted here to avoid redundancy.
  • the device 700 may be a control device.
  • the device 700 may include: a processor, a transmitter, and a receiver. Processor, transmitter, and receiver communication connections.
  • the apparatus further includes a memory in communication with the processor.
  • the processor, the memory, the transmitter and the receiver may be communicatively coupled, the memory being operative to store instructions for executing the instructions stored by the memory to control the transmitter to transmit information or the receiver to receive signals.
  • the processing unit 710 in the apparatus 700 shown in FIG. 7 can correspond to the processor, and the transmitting unit 720 in the apparatus 700 shown in FIG. 7 can correspond to the transmitter.
  • the transmitter and receiver can be implemented by the same component transceiver.
  • the device 700 may be a chip (or a chip system) installed in the control device.
  • the device 700 may include: a processor and an input and output interface.
  • the processor can communicate with the transceiver of the network device through the input and output interface.
  • the apparatus further includes a memory in communication with the processor.
  • the processor, the memory and the transceiver can be communicatively coupled, the memory being operative to store instructions for executing the memory stored instructions to control the transceiver to transmit information or signals.
  • the processing unit 710 in the apparatus 700 shown in FIG. 7 can correspond to the processor, and the transmitting unit 720 in the apparatus 700 shown in FIG. 7 can correspond to the output interface.
  • FIG. 8 is a schematic block diagram of an apparatus 800 for transmitting information in accordance with an embodiment of the present application. As shown in FIG. 8, the apparatus 800 includes:
  • the receiving unit 810 is configured to receive, by the control device, first identifier information, where the first identifier information is used to identify a first transmission channel configured in the at least one transmission channel between the first network device and the second network device, where a transmission channel is configured to transmit a sum of message transmission frequencies of the at least one packet stream, where the transmission performance of the first transmission channel satisfies the transmission performance of the at least one packet stream;
  • the processing unit 820 is configured to determine that the packet flow to which the first packet belongs belongs to the at least one packet flow
  • the sending unit 830 is configured to send, according to the packet sending frequency of the first transmission channel, the second packet generated based on the first packet by using the first transmission channel.
  • the apparatus for transmitting information in the embodiment of the present application by receiving the identification information sent by the control device for identifying the first transmission channel, may enable the apparatus to determine that the first transmission channel can be used to transmit the at least one packet. a packet of the flow, wherein the packet transmission frequency of the first transmission channel is greater than or equal to the packet transmission frequency of the at least one packet flow, and the transmission performance of the first transmission channel satisfies the at least one packet flow.
  • the transmission performance, and further, the first network device can use the first transmission channel to send a message according to the packet sending frequency of the first transmission channel when transmitting the packet belonging to the at least one packet flow, which can effectively The transmission delay of the packet is reduced, thereby meeting the requirement for the transmission performance of the message in the mobile network.
  • the receiving unit 810 is further configured to: receive, by the control device, first indication information, where the first indication information is used to indicate at least one packet flow;
  • the processing unit 820 is configured to determine, according to the first indication information and the field of the first packet, that the packet flow to which the first packet belongs belongs to the at least one packet flow, where the first packet is A field is used for at least the at least one message stream.
  • the device is any one of the following devices: an access network device; or a user plane function network element; or an application server.
  • the device 800 for transmitting information may correspond to (for example, may be configured or be itself) the first network device described in the foregoing method 200, and the first network device may be an access network device, a UPF network element or an application server, and Each module or unit in the apparatus 800 for transmitting information is used to perform each action or process performed by the first network device in the above method 200.
  • the first network device may be an access network device, a UPF network element or an application server, and
  • Each module or unit in the apparatus 800 for transmitting information is used to perform each action or process performed by the first network device in the above method 200.
  • detailed description thereof is omitted.
  • the device 800 may be a first network device.
  • the device 800 may include: a processor, a transmitter, and a receiver. Processor, transmitter, and receiver communication connections.
  • the apparatus further includes a memory in communication with the processor.
  • the processor, the memory, the transmitter and the receiver may be communicatively coupled, the memory being operative to store instructions for executing the instructions stored by the memory to control the transmitter to transmit information or the receiver to receive signals.
  • the receiving unit 810 in the device 800 shown in FIG. 8 can correspond to the receiver
  • the processing unit 820 in the device 800 shown in FIG. 8 can correspond to the processor, in the device 800 shown in FIG.
  • the transmitting unit 830 can correspond to the transmitter.
  • the transmitter and receiver can be implemented by the same component transceiver.
  • the device 800 may be a chip (or a chip system) installed in the first network device.
  • the device 800 may include: a processor and an input and output interface.
  • the processor can communicate with the transceiver of the network device through the input and output interface.
  • the apparatus further includes a memory in communication with the processor.
  • the processor, the memory and the transceiver can be communicatively coupled, the memory being operative to store instructions for executing the memory stored instructions to control the transceiver to transmit information or signals.
  • the receiving unit 810 in the device 800 shown in FIG. 8 can correspond to the input interface
  • the processing unit 820 in the device 800 shown in FIG. 8 can correspond to the processor
  • the sending in the device 800 shown in FIG. Unit 830 can correspond to an output interface
  • FIG. 9 is a schematic block diagram of an apparatus 900 for transmitting information in accordance with an embodiment of the present application. As shown in FIG. 9, the apparatus 900 includes:
  • the receiving unit 910 is configured to receive, by the control device, the identifier information and the packet stream frequency information, where the identifier information is used to indicate the first transmission channel configured in the at least one transmission channel between the first network device and the second network device,
  • the first transmission channel is configured to transmit a packet that belongs to the at least one packet flow, where the packet flow frequency information is used to indicate a packet sending frequency of each packet flow in the at least one packet flow, or the packet
  • the stream frequency information is used to indicate a sum of message transmission frequencies of the at least one packet stream;
  • the processing unit 920 is configured to determine, according to the identifier information, the first transmission channel frequency information, where the first transmission channel frequency information is used to indicate a packet transmission frequency currently supported by the first transmission channel;
  • the processing unit 930 is further configured to generate updated first transmission channel frequency information according to the first transmission channel frequency information and the message flow frequency information.
  • the apparatus for transmitting information in the embodiment of the present application by receiving the second identification information and the second message flow frequency information sent by the control device, may enable the device to be based on the second identification information and the second packet flow.
  • the frequency information updates the message transmission frequency of the first transmission channel at a time, so as to truly reflect the message transmission frequency that the first transmission channel can currently support, and provide real and effective data for other message stream selection transmission channels, thereby ensuring as much as possible Normal transmission of packets of all message flows.
  • processing unit 920 is specifically configured to:
  • the each report is subtracted from the currently supported message transmission frequency of the first transmission channel.
  • the frequency of the message transmission of the stream, and the frequency information of the first transmission channel of the update is generated;
  • the message flow frequency information is used to indicate the message transmission frequency of each message flow in the at least one message flow
  • the message is added from the currently supported message transmission frequency of the first transmission channel.
  • the frequency of the message corresponding to the stream is generated, and the updated first channel frequency information is generated; or
  • the report of the at least one message flow is subtracted from the currently supported message transmission frequency of the first transmission channel.
  • the message flow frequency information is used to indicate the sum of the message transmission frequencies of the at least one message flow
  • adding the at least one message flow to the message transmission frequency currently supported by the first transmission channel The sum of the transmission frequencies of the text generates the updated first transmission channel frequency information.
  • the device 900 for transmitting information may correspond to (for example, may be configured or itself) a third network device described in the above method 200, and each module or unit in the device 900 for transmitting information is used to perform the above method 200, respectively.
  • the details of the operations or processes performed by the third network device are omitted here to avoid redundancy.
  • the device 900 may be a third network device.
  • the device 900 may include: a processor, a transmitter, and a receiver. Processor, transmitter, and receiver communication connections.
  • the apparatus further includes a memory in communication with the processor.
  • the processor, the memory, the transmitter and the receiver may be communicatively coupled, the memory being operative to store instructions for executing the instructions stored by the memory to control the transmitter to transmit information or the receiver to receive signals.
  • the receiving unit 99 in the apparatus 900 shown in FIG. 9 can correspond to the receiver, and the processing unit 920 in the apparatus 900 shown in FIG. 9 can correspond to the processor.
  • the device 900 may be a chip (or a chip system) installed in a third network device.
  • the device 900 may include: a processor and an input and output interface.
  • the processor can communicate with the transceiver of the network device through the input and output interface.
  • the apparatus further includes a memory in communication with the processor.
  • the processor, the memory and the transceiver can be communicatively coupled, the memory being operative to store instructions for executing the memory stored instructions to control the transceiver to transmit information or signals.
  • the receiving unit 910 in the apparatus 900 shown in FIG. 9 can correspond to the input interface
  • the processing unit 920 in the apparatus 900 shown in FIG. 9 can correspond to the processor.
  • FIG. 10 is a schematic block diagram of an apparatus 1000 for transmitting information according to an embodiment of the present application. As shown in FIG. 10, the apparatus 1000 includes:
  • the receiving unit 1010 is configured to receive, by the control device, the first packet flow frequency information, where the first packet flow frequency information is used to indicate a packet sending frequency of each packet flow in the at least one packet flow;
  • the processing unit 1020 is configured to determine, according to the packet flow to which the packet belongs, a packet sending frequency of the packet flow to which the packet belongs, the packet flow belongs to the at least one packet. flow;
  • the sending unit 1030 is configured to send the packet according to a packet sending frequency of the packet flow to which the packet belongs.
  • the apparatus for transmitting information may receive the first packet stream frequency information of the packet sending frequency used by the control device to indicate the packet sending frequency of each packet stream in the at least one packet stream.
  • the device is configured to use the packet sending frequency corresponding to the packet flow to which the packet belongs to send the packet, which effectively avoids the packet that affects other packet flows because the device does not send the packet according to the packet sending frequency of the packet flow.
  • the transmission performance of the text may be used to use the packet sending frequency corresponding to the packet flow to which the packet belongs to send the packet, which effectively avoids the packet that affects other packet flows because the device does not send the packet according to the packet sending frequency of the packet flow.
  • the device 1000 for transmitting information may correspond to (for example, may be configured or be itself) the terminal device described in the above method 200, and each module or unit in the device 1000 for transmitting information is used to execute the terminal in the method 200 described above, respectively. Detailed descriptions of the operations and processes performed by the device are omitted here to avoid redundancy.
  • the device 1000 may be a terminal device.
  • the device 1000 may include: a processor, a transmitter, and a receiver. Processor, transmitter, and receiver communication connections.
  • the apparatus further includes a memory in communication with the processor.
  • the processor, the memory, the transmitter and the receiver may be communicatively coupled, the memory being operative to store instructions for executing the instructions stored by the memory to control the transmitter to transmit information or the receiver to receive signals.
  • the receiving unit 1010 in the device 1000 shown in FIG. 10 can correspond to the receiver
  • the processing unit 1020 in the device 1000 shown in FIG. 10 can correspond to the processor
  • the sending unit 1030 can correspond to the sender.
  • the transmitter and receiver can be implemented by the same component transceiver.
  • the device 1000 may be a chip (or a chip system) installed in the terminal device.
  • the device 1000 may include: a processor and an input and output interface.
  • the processor can communicate with the transceiver of the network device through the input and output interface.
  • the apparatus further includes a memory in communication with the processor.
  • the processor, the memory and the transceiver can be communicatively coupled, the memory being operative to store instructions for executing the memory stored instructions to control the transceiver to transmit information or signals.
  • the receiving unit 1010 in the device 1000 shown in FIG. 10 can correspond to the input interface
  • the processing unit 1020 in the device 1000 shown in FIG. 10 can correspond to the processor
  • the sending in the device 1000 shown in FIG. Unit 1030 can correspond to an output interface
  • the processor may be an integrated circuit chip with signal processing capabilities.
  • each step of the foregoing method embodiment may be completed by an integrated logic circuit of hardware in a processor or an instruction in a form of software.
  • the above processor may be a general purpose processor, a digital signal processor (DSP), an application specific integrated circuit (ASIC), a field programmable gate array (FPGA) or the like. Programming logic devices, discrete gates or transistor logic devices, discrete hardware components.
  • the methods, steps, and logical block diagrams disclosed in the embodiments of the present application can be implemented or executed.
  • the general purpose processor may be a microprocessor or the processor or any conventional processor or the like.
  • the steps of the method disclosed in the embodiments of the present application may be directly implemented by the hardware decoding processor, or may be performed by a combination of hardware and software modules in the decoding processor.
  • the software module can be located in a conventional storage medium such as random access memory, flash memory, read only memory, programmable read only memory or electrically erasable programmable memory, registers, and the like.
  • the storage medium is located in the memory, and the processor reads the information in the memory and combines the hardware to complete the steps of the above method.
  • the memory in the embodiments of the present application may be a volatile memory or a non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory may be a read-only memory (ROM), a programmable read only memory (ROMM), an erasable programmable read only memory (erasable PROM, EPROM), or an electrical Erase programmable EPROM (EEPROM) or flash memory.
  • the volatile memory can be a random access memory (RAM) that acts as an external cache.
  • RAM random access memory
  • RAM random access memory
  • many forms of RAM are available, such as static random access memory (SRAM), dynamic random access memory (DRAM), synchronous dynamic random access memory (Synchronous DRAM).
  • SDRAM double data rate synchronous DRAM
  • DDR SDRAM double data rate synchronous DRAM
  • ESDRAM enhanced synchronous dynamic random access memory
  • SLDRAM synchronously connected dynamic random access memory
  • DR RAM direct memory bus random access memory
  • the disclosed systems, devices, and methods may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the division of the unit is only a logical function division.
  • there may be another division manner for example, multiple units or components may be combined or Can be integrated into another system, or some features can be ignored or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be in an electrical, mechanical or other form.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the functions may be stored in a computer readable storage medium if implemented in the form of a software functional unit and sold or used as a standalone product.
  • the technical solution of the present application which is essential or contributes to the prior art, or a part of the technical solution, may be embodied in the form of a software product, which is stored in a storage medium, including
  • the instructions are used to cause a computer device (which may be a personal computer, server, or network device, etc.) to perform all or part of the steps of the methods described in various embodiments of the present application.
  • the foregoing storage medium includes: a U disk, a mobile hard disk, a read-only memory (ROM), a random access memory (RAM), a magnetic disk, or an optical disk, and the like, which can store program code. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供了一种传输信息的方法和装置,该方法包括:控制设备从配置于第一网络设备和第二网络设备之间的至少一条传输通道中确定第一传输通道,该第一传输通道用于传输属于至少一个报文流的报文,该第一传输通道当前所支持的报文发送频率大于或等于该至少一个报文流的报文发送频率的总和,该第一传输通道的传输性能满足该至少一个报文流的传输性能;该控制设备向该第一网络设备发送第一标识信息,该第一标识信息用于标识该第一传输通道。因此,有助于满足针对移动网络中报文的传输性能的需求。

Description

一种传输信息的方法和装置
本申请要求于2018年1月22日提交中国专利局、申请号为201810060201.9、申请名称为“一种传输信息的方法和装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信领域,更具体地,涉及通信领域中一种传输信息的方法和装置。
背景技术
现有的5G定义了基于服务质量(quality of service,QoS)流(flow)的框架。即,在一个会话中,可以基于QoS流为报文提供不同的传输需求。也就是说,属于同一个QoS流的报文可以获得相同的传输服务。
现有的5G移动网络通过区分服务(differentiated services,DiffServ)来实现QoS流的传输需求。例如,在上行传输时,基站可以在报文中添加区分服务代码点(differentiated services code point,DSCP)字段,其中,DSCP字段中的DSCP值是基于QoS流的参数确定的。这样,可以通过DSCP值区分不同的QoS服务。网络中的交换机可以根据报文中的DSCP字段为报文分配不同的优先级的传输队列,从而为不同的报文提供不同的传输服务。
该现有技术的报文转发机制是一种尽力而为的转发机制,即,交换机对报文中优先级较高的报文进行优先转发。当大量的报文在一瞬间达到端口并且相同优先级的报文较多时,基于交换机的端口的缓存能力以及队列的长度等原因,并不能保证所有相同优先级的报文都能在有效的时延范围内被转发,即,无法对不同的报文提供确定性的传输性能。尤其是对于低时延高可靠通信(ultra-reliable and low latency communications,URLLC)的业务而言,现有技术更是不能满足其传输性能。
因而,亟需提供一种技术,有助于满足针对移动网络中报文的传输性能的需求。
发明内容
本申请提供一种传输信息的方法和装置,有助于满足针对移动网络中报文的传输性能的需求。
第一方面,提供了一种传输信息的方法,方法包括:
控制设备从配置于第一网络设备和第二网络设备之间的至少一条传输通道中确定第一传输通道,第一传输通道用于传输属于至少一个报文流的报文,第一传输通道当前所支持的报文发送频率大于或等于至少一个报文流的报文发送频率的总和,第一传输通道的传输性能满足至少一个报文流的传输性能;
所述控制设备向第一网络设备发送第一标识信息,第一标识信息用于标识第一传输通 道。
因此,本申请实施例的传输信息的方法,控制设备从配置于第一网络设备和第二网络设备之间的至少一个传输通道中确定用于传输属于至少一个报文流的报文的第一传输通道,且通过用于标识该第一传输通道的标识信息使得该第一网络设备可以确定能够使用该第一传输通道传输属于该至少一个报文流的报文,其中,该第一传输通道的报文发送频率大于或等于该至少一个报文流的报文发送频率,且,该第一传输通道的传输性能满足该至少一个报文流的传输性能,进而,可以使得该第一网络设备在发送属于该至少一个报文流的报文时,按照该第一传输通道的报文发送频率使用该第一传输通道发送报文,能够有效地减少报文的传输时延,进而满足针对移动网络中报文的传输性能的需求。
在一种可能的设计中,方法还包括:
控制设备向第一网络设备发送第一指示信息,第一指示信息用于指示至少一个报文流。
在一种可能的设计中,方法还包括:
控制设备向终端设备发送第一报文流频率信息,所述第一报文流频率信息用于指示至少一个报文流中每个报文流的报文发送频率。
因此,本申请实施例提供的传输信息的方法,控制设备通过向终端设备发送用于指示至少一个报文流中每个报文流的报文发送频率的第一报文流频率信息,可以使得该终端设备可以使用报文所属的报文流对应的报文发送频率发送报文,有效地避免了由于该终端设备未按照报文流的报文发送频率发送报文而影响了其他报文流的报文的传输性能。
在一种可能的设计中,所述方法还包括:
控制设备向第三网络设备发送第二标识信息和第二报文流频率信息,第二标识信息和第二报文流频率信息用于更新第一传输通道频率信息,第一传输通道频率信息用于指示第一传输通道当前所支持的报文发送频率,
其中,第二标识信息用于标识第一传输通道,第二报文流频率信息用于指示至少一个报文流中每个报文流的报文发送频率,或,第二报文流频率信息用于指示至少一个报文流的报文发送频率的总和。
因此,本申请实施例的传输信息的方法,控制设备通过向第三网络设备发送第二标识信息和第二报文流频率信息,可以使得该第三网络设备可以基于该第二标识信息和该第二报文流频率信息时时更新第一传输通道的报文发送频率,以能够真实反映该第一传输通道当前能够支持的报文发送频率,为其他报文流选择传输通道提供真实有效的数据,从而尽可能保证所有报文流的报文的正常传输。
在一种可能的设计中,方法还包括:
控制设备根据第一传输通道,确定第一传输通道频率信息,第一传输通道频率信息用于指示第一传输通道当前所支持的报文发送频率;
控制设备获取第二报文流频率信息,第二报文流频率信息用于指示至少一个报文流中每个报文流的报文发送频率,或,第二报文流频率信息用于指示至少一个报文流的报文发送频率的总和;
控制设备根据第一传输通道频率信息和第二报文流频率信息,生成更新的第一传输通道频率信息。
因此,本申请实施例的传输信息的方法,控制设备通过第一传输通道频率信息和第二报文流频率信息时时更新第一传输通道的报文发送频率,以能够真实反映该第一传输通道当前能够支持的报文发送频率,为其他报文流选择传输通道提供真实有效的数据,从而尽可能保证所有报文流的报文的正常传输。
在一种可能的设计中,所述控制设备根据第一传输通道频率信息和第二报文流频率信息,生成更新的第一传输通道频率信息,包括:
当第二报文流频率信息用于指示至少一个报文流中每个报文流的报文发送频率时,控制设备从第一传输通道当前所支持的报文发送频率中减去每个报文流的报文发送频率,以生成更新的第一传输通道频率信息;或,
当第二报文流频率信息用于指示至少一个报文流中每个报文流的报文发送频率时,控制设备从第一传输通道当前所支持的报文发送频率中加上每个报文流对应的报文发送频率,以生成更新的第一传输通道频率信息;或,
当第二报文流频率信息用于指示至少一个报文流的报文发送频率的总和时,控制设备从第一传输通道当前所支持的报文发送频率中减去至少一个报文流的报文发送频率的总和,以生成更新的第一传输通道频率信息;或,
当第二报文流频率信息用于指示至少一个报文流的报文发送频率的总和时,控制设备从第一传输通道当前所支持的报文发送频率中加上至少一个报文流的报文发送频率的总和,以生成更新的第一传输通道频率信息。
在一种可能的设计中,控制设备从配置于第一网络设备和第二网络设备之间的至少一条传输通道中确定第一传输通道,包括:
控制设备根据至少一个报文流中每个报文流的传输性能和至少一条传输通道中每条传输通道的传输性能,并且,根据至少一条报文流中每个报文流的报文发送频率和至少一条传输通道中每条传输通道当前所支持的报文发送频率,从至少一条传输通道中确定第一传输通道。
在一种可能的设计中,第一网络设备为以下任一种设备:接入网设备;或,用户面功能网元;或,应用服务器。
第二方面,提供了一种传输信息的方法,方法包括:
第一网络设备从控制设备接收第一标识信息,第一标识信息用于标识配置于第一网络设备和第二网络设备之间的至少一条传输通道中的第一传输通道,第一传输通道用于传输属于至少一个报文流的报文,第一传输通道当前所支持的报文发送频率大于或等于至少一个报文流的报文发送频率的总和,第一传输通道的传输性能满足至少一个报文流的传输性能;
第一网络设备确定第一报文所属的报文流属于至少一个报文流;
第一网络设备按照第一传输通道的报文发送频率,使用第一传输通道发送基于第一报文生成的第二报文。
因此,本申请实施例的传输信息的方法,第一网络设备通过接收控制设备发送的用于标识第一传输通道的标识信息,可以使得第一网络设备确定能够使用该第一传输通道传输属于该至少一个报文流的报文,其中,该第一传输通道的报文发送频率大于或等于该至少一个报文流的报文发送频率,且,该第一传输通道的传输性能满足该至少一个报文流的传 输性能,进而,可以使得该第一网络设备在发送属于该至少一个报文流的报文时,按照该第一传输通道的报文发送频率使用该第一传输通道发送报文,能够有效地减少报文的传输时延,进而满足针对移动网络中报文的传输性能的需求。
在一种可能的设计中,方法还包括:
第一网络设备从控制设备接收第一指示信息,第一指示信息用于指示所述至少一个报文流;以及,
第一网络设备确定第一报文所属的报文流属于至少一个报文流,包括:
第一网络设备根据第一指示信息与第一报文的字段,确定第一报文所属的报文流属于至少一个报文流,其中,第一报文的字段用于指示至少一个报文流。
在一种可能的设计中,第一网络设备为以下任一种设备:接入网设备;或,用户面功能网元;或,应用服务器。
第三方面,提供了一种传输信息的方法,所述方法包括:
第三网络设备从控制设备接收标识信息和报文流频率信息,标识信息用于标识配置于第一网络设备和第二网络设备之间的至少一条传输通道中的第一传输通道,第一传输通道用于传输属于至少一个报文流的报文流频率信息用于指示至少一个报文流中每个报文流的报文发送频率,或,报文流频率信息用于指示至少一个报文流的报文发送频率的总和;
第三网络设备根据标识信息,确定第一传输通道频率信息,第一传输通道频率信息用于指示第一传输通道当前所支持的报文发送频率;
第三网络设备根据第一传输通道频率信息和报文流频率信息,生成更新的第一传输通道频率信息。
因此,本申请实施例的传输信息的方法,控制设备通过向第三网络设备发送标识信息和报文流频率信息,可以使得该第三网络设备基于该标识信息和该报文流频率信息时时更新第一传输通道的报文发送频率,以能够真实反映该第一传输通道当前能够支持的报文发送频率,为其他报文流选择传输通道提供真实有效的数据,从而尽可能保证所有报文流的报文的正常传输。
在一种可能的设计中,第三网络设备根据第一传输通道频率信息和报文流频率信息,生成更新的第一传输通道频率信息,包括:
当报文流频率信息用于指示至少一个报文流中每个报文流的报文发送频率时,第三网络设备从第一传输通道当前所支持的报文发送频率中减去每个报文流的报文发送频率,以生成更新的第一传输通道频率信息;或,
当报文流频率信息用于指示至少一个报文流中每个报文流的报文发送频率时,第三网络设备从第一传输通道当前所支持的报文发送频率中加上每个报文流对应的报文发送频率,以生成更新的第一传输通道频率信息;或,
当报文流频率信息用于指示至少一个报文流的报文发送频率的总和时,第三网络设备从第一传输通道当前所支持的报文发送频率中减至少一个报文流的报文发送频率的总和,以生成更新的第一传输通道频率信息;或,
当报文流频率信息用于指示至少一个报文流的报文发送频率的总和时,第三网络设备从第一传输通道当前所支持的报文发送频率中加上至少一个报文流的报文发送频率的总和,以生成更新的第一传输通道频率信息。
第四方面,提供了一种传输信息的方法,所述方法包括:
终端设备从控制设备接收第一报文流频率信息,第一报文流频率信息用于指示至少一个报文流中每个报文流的报文发送频率;
终端设备根据报文所属的报文流,从第一报文流频率信息中确定报文所属的报文流的报文发送频率,报文流属于所述至少一个报文流;
终端设备按照报文所属的报文流的报文发送频率发送报文。
因此,本申请实施例提供的传输信息的方法,控制设备通过向终端设备发送用于指示至少一个报文流中每个报文流的报文发送频率的第一报文流频率信息,可以使得该终端设备使用报文所属的报文流对应的报文发送频率发送报文,有效地避免了由于该终端设备未按照报文流的报文发送频率发送报文而影响了其他报文流的报文的传输性能。
第五方面,提供了一种传输信息的装置,装置可以用来执行上述第一方面至第四方面中任一方面及任一方面的任意可能的实现方式中的操作。例如,装置可以包括用于执行上述第一方面至第四方面中任一方面或任一方面的任意可能的实现方式中的各个操作的模块单元。
第六方面,提供了一种传输信息的装置,装置包括:处理器、收发器和存储器。其中,处理器、收发器和存储器之间通过内部连接通路互相通信。存储器用于存储指令,处理器用于执行所述存储器存储的指令。当处理器执行存储器存储的指令时,上述执行使得装置执行上述第一方面至第四方面中任一方面或任一方面的任意可能的实现方式中的任一方法。
第七方面,提供了一种芯片系统,包括存储器和处理器,存储器用于存储计算机程序,处理器用于从存储器中调用并运行计算机程序,使得安装有芯片系统的通信设备执行上述第一方面至第四方面及其可能的实施方式中的任一方法。
第八方面,提供了一种计算机程序产品,计算机程序产品包括:计算机程序代码,当计算机程序代码被通信设备(例如,控制设备、第一网络设备、第三网络设备或终端设备)的通信单元、处理单元或收发器、处理器运行时,使得通信设备执行上述第一方面至第四方面及其可能的实施方式中的任一方法。
第九方面,提供了一种计算机可读存储介质,计算机可读存储介质存储有程序,程序使得通信设备(例如,控制设备、第一网络设备、第三网络设备或终端设备)执行上述第一方面至第四六方面及其可能的实施方式中的任一方法。
第十方面,提供了一种计算机程序,计算机程序在某一计算机上执行时,将会使计算机实现上述第一方面至第四方面及其可能的实施方式中的任一方法。
在上述某些实现方式中,控制设备获取传输通道信息,传输通道信息包括用于指示每条传输通道的传输性能的信息和用于指示每条传输通道当前所支持的报文发送频率的信息。
附图说明
图1是根据本申请实施例的一种可能的网络架构的示意图。
图2是根据本申请实施例的传输信息的方法的示意性交互图。
图3是根据本申请一实施例的传输信息的方法的示意性流程图。
图4是根据本申请另一实施例的传输信息的方法的示意性流程图。
图5是根据本申请另一实施例的传输信息的方法的示意性流程图。
图6是根据本申请再一实施例的传输信息的方法的示意性流程图。
图7至图10根据本申请实施例的传输信息的装置的示意性框图。
具体实施方式
下面将结合附图,对本申请中的技术方案进行描述。
本申请实施例的技术方案可以应用于各种通信系统,例如:全球移动通讯(global system of mobile communication,GSM)系统、码分多址(code division multiple access,CDMA)系统、宽带码分多址(wideband code division multiple access,WCDMA)系统、通用分组无线业务(general packet radio service,GPRS)系统、长期演进(long term evolution,LTE)系统、LTE频分双工(frequency division duplex,FDD)系统、LTE时分双工(time division duplex,TDD)系统、通用移动通信系统(universal mobile telecommunication system,UMTS)、全球互联微波接入(worldwide interoperability for microwave access,WiMAX)通信系统、未来的第五代(5th generation,5G)系统或新无线(new radio,NR)通信系统等。
随着下一代通信系统研究的全面开展并逐渐深入,5G将支持各种类型的网络部署和应用类型。其中包括:更高速率体验和更大带宽的接入能力,例如增强型移动宽带(enhanced mobile broadband,eMBB);更大规模、更低成本的机器类设备的接入和管理,例如大规模机器类通信(massive machine type communication,mMTC);更低时延和高可靠的信息交互,例如超高可靠与低延迟通信(ultra reliable and low latency communication,URLLC)等。为了满足上述需求,5G定义了基于服务质量(quality of service,QoS)流(flow)的框架。其可以支持保障流速率的QoS流或不保障流速率的QoS流。
现有的5G网络通过区分服务(differentiated services,DiffServ)来实现QoS流的传输需求。例如,在上行传输时,基站可以在报文中添加区分服务代码点(differentiated services code point,DSCP)字段,其中,DSCP字段中的DSCP值是基于QoS流的参数确定的,网络中的交换机可以根据报文中的DSCP字段为报文分配不同优先级的传输队列,从而为不同的报文提供不同的传输服务。
但是,该现有技术的报文转发机制是一种尽力而为的转发机制。当大量的报文在一瞬间达到端口后,交换机只能对报文中优先级较高的报文进行优先转发。但是,当相同优先级的报文较多时,基于交换机的端口的缓存能力以及队列的长度等原因,并不能保证所有相同优先级的报文都能在有效的时延范围内被转发。因此,现有技术中的传输网络是一种尽力而为的网络。对于任何优先级传输性能的报文,该现有技术都无法对不同的报文提供确定性的传输性能。尤其是对于URLLC业务而言,现有的尽力而为的传输网络更是不能满足其传输性能,大大影响了数据传输效率。
因而,本申请实施例提供了一种传输信息的方法,有助于满足针对移动网络中报文的传输性能的需求。
下面,结合图1至图6对本申请实施例进行详细说明。
首先,对本申请实施例的网络架构进行简单说明。图1所示为本申请实施例的一种可能的网络架构100的示意图。如图1所示,该网络架构100包括控制设备110、终端设备 120、接入网设备130、用户面功能(user plane function,UPF)网元140和应用服务器150。下面,对每个设备进行简单描述:
控制设备110:主要用于向与该控制设备通信连接的设备(例如,该终端设备120、接入网设备130、用户面功能网元140和应用服务器150中的任一个)发送用于发送报文的各种信息。例如,下文中的第一标识信息、第一指示信息等。
可选地,该控制设备110可以为会话管理功能(session management function,SMF)网元。SMF网元主要用于会话管理、针对终端设备的IP地址分配和管理、UPF网元的选择和控制。SMF网元还可用于控制UPF网元转发流量的目的地、控制方面的策略执行以及QoS管理。
终端设备120:可以包括用户设备、接入终端、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置。终端设备还可以是蜂窝电话、无绳电话、会话启动协议(session initiation protocol,SIP)电话、无线本地环路(wireless local loop,WLL)站、个人数字处理(personal digital assistant,PDA)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备,未来5G网络中的终端设备或者未来演进的公用陆地移动通信网络(public land mobile network,PLMN)中的终端设备等,本申请实施例对此并不限定。
接入网设备130:用于为特定区域的授权用户提供入网功能,并能够根据用户业务的需求等使用不同质量的传输隧道。接入网设备130能够管理无线资源,为终端设备提供接入服务,进而完成控制信号和用户数据在终端设备和核心网之间的转发,接入网设备也可以理解为传统网络中的基站。
本申请实施例中的接入网设备可以是GSM系统或CDMA中的基站(base transceiver station,BTS),也可以是WCDMA系统中的基站(NodeB,NB),还可以是LTE系统中的演进型基站(evolutional nodeB,eNB或eNodeB),还可以是云无线接入网络(cloud radio access network,CRAN)场景下的无线控制器,还可以是gNB(gNodeB),或者该接入网设备可以为中继站、接入点、车载设备、可穿戴设备以及未来5G网络中的网络设备或者未来演进的PLMN网络中的网络设备等,本申请实施例并不限定。
UPF网元140:用于分组数据的路由和转发,以及用户面数据的QoS处理等。
应用服务器150:表示终端设备需要通过移动网络访问的服务端设备,用于为终端设备提供业务服务,可以理解为业务逻辑的实现部分。
应理解,上述网络架构100中包括的各个设备仅为示意性说明,该网络架构100中还包括其他设备,只是图1中未示出而已。例如,该网络架构100包括数据网元,例如,该数据网元可以是统一数据管理(unified data management,UDM)网元,主要用于鉴权凭据处理、用户标识处理、接入授权和订阅管理等。此外,在本申请实施例中,数据网元还可以用于维护网络中关于传输通道的信息。再例如,该网络架构100还包括接入和移动管理功能(access and mobility management function,AMF)网元,主要用于移动性管理和接入管理等。AMF网元可以用于实现移动性管理实体(mobility management entity,MME)功能中除会话管理之外的其它功能,例如合法监听以及接入授权\鉴权等功能。
在图1中,接入网设备130与UPF140之间的网络为传输网络#A,UPF140与应用服 务器150之间的网络为传输网络#B。其中,该终端设备120与该接入网设备130之间通过空口传输报文。每个传输网络至少包括报文的发送端、报文的接收端以及用于报文转发的交换机或路由器(图中仅示出传输网络中的发送端和接收端,未示出传输网络中的交换机或路由器)。对于传输网络#A而言,在上行传输时,发送端为接入网设备130,接收端为UPF网元140,在下行传输时,发送端为UPF网元140,接收端为接入网设备130。对于传输网络#B而言,在上行传输时,发送端为UPF网元140,接收端为应用服务器150,在下行传输时,发送端为应用服务器150,接收端为UPF网元140。
在每个传输网络中,系统中都预配置有至少一条用于传输报文的传输通道,这里,传输通道可以理解为用于传输报文的传输资源,任意两条传输通道的传输资源不同。在本申请实施例中,一个传输通道包括多种参数。需要说明的是,图1中还可以包括多个UPF网元(例如,下文方法500中的目标UPF网元和锚点UPF网元),相邻的两个UPF网元之间的传输网络也可以预配置有至少一条传输通道。
下面,以一条传输通道为例,对传输通道的各种参数进行说明。
传输通道第一类标识:该传输通道第一类标识用于标识该传输通道。其中,该传输通道第一类标识是针对于一个传输网络的标识,即,在不同的传输网络中,不同传输通道的传输通道第一类标识可能相同,但是,在同一个传输网络中,不同传输通道的传输通道第一类标识不同。
传输通道第二类标识:该传输通道第二类标识用于唯一标识该传输通道。其中,该传输通道第二类标识针对包括至少一个传输网络的整个移动网络中的标识,即,在整个移动网络范围内,不同传输通道的传输通道第二类标识都不同。
发送端标识:用于在整个移动网络范围内唯一标识报文的发送端,例如,针对于传输网络#A中报文的上行传输,发送端标识用于标识接入网设备130。
接收端标识:用于在整个移动网络范围内唯一标识报文的接收端,例如,针对于传输网络#A中报文的上行传输,接收端标识用于标识UPF网元140。
传输通道的传输性能:表示传输通道能够为报文传输过程中提供的确定性传输服务的性能,其中,该确定性传输服务的性能包括:报文传输的最大时延、报文传输的最大的时延抖动,报文传输服务的可靠性中的至少一项。
在本申请实施例中,在同一个传输网络中,一条传输通道可以对应至少一个报文流,即,一个传输通道用于传输属于该至少一个报文流的报文。其中,每个报文流至少包括如下参数:
报文流的传输性能:报文流所需要的确定性服务传输的性能,其中,该确定性传输服务的性能包括:报文传输的最大时延、报文传输的最大的时延抖动、报文传输服务的可靠性中的至少一项。
报文流的报文发送频率:报文流所需要的最大的报文发送频率。
上述报文流的相关参数可以预配置在系统,例如,可以预配置于任一个具有数据维护功能的网元,例如,UDM网元。
在本申请实施例中,报文流可以理解为满足预设条件的一组报文的总称。该预设条件可以有多种。例如,该预设条件可以是报文流中的报文的目标IP地址相同,或者,该预设条件可以是报文流中的报文的端口号相同,或者,该预设条件可以是报文流中报文的 QoS相同。
当然,该预设条件也可以是上述多个预设条件的任意组合,本申请实施例不做任何限定。例如,若多个报文的源IP、目的IP、协议、端口号相同,可以将上述4个参数相同的报文归为一个报文流。
应理解,上述列举的报文流的预设条件仅为示意性说明,任何能够区分报文流的预设条件都在本申请实施例的保护范围内。
图2所示为根据本申请实施例的传输信息的方法的示意性交互图。
在本申请实施例中,为了便于区分与理解,将该接入网设备与该UPF网元之间的传输网络记为传输网络#A,将该UPF网元与该应用服务器之间的传输网络记为传输网络#B,将该第一网络设备记为网络设备#A,将第二网络设备记为网络设备#B。
该网络设备#A为一个传输网络中的发送端,该网络设备#B是一个传输网络中的接收端,并且,在一个传输网络中还包括用于转发报文的交换机。其中,该网络设备#A可以是接入网设备、UPF网元或应用服务器中的任一个。
例如,在传输网络#A中,在上行传输中,该网络设备#A为该接入网设备,该网络设备#B为UPF网元,在下行传输中,该网络设备#A为UPF网元,该网络设备#B为接入网设备。在传输网络#B中,在上行传输中,该网络设备#A为UPF网元,该网络设备#B为应用服务器,在下行传输中,该网络设备#A为应用服务器,网络设备#B为UPF网元。
在步骤S211中,控制设备从配置于网络设备#A与网络设备#B之间的至少一条传输通道中确定第一传输通道(为了便于区分与理解,记为传输通道#1),该传输通道#1用于传输属于至少一个报文流的报文。该传输通道#1当前所支持的报文发送频率大于或等于该至少一个报文流的报文发送频率的总和,该传输通道#1的传输性能满足该至少一个报文流的传输性能。
可选地,该控制设备为SMF网元。
例如,在该网络设备#A与该网络设备B之间的传输网络中预配置有该至少一条传输通道,该控制设备可以基于终端设备的会话获取与该会话对应的报文流,从而为与该会话对应的报文流确定满足条件的传输通道,其中,基于该会话的报文流确定的传输通道可以是一条传输通道,也可以是多条传输通道,只要满足条件即可,本申请实施例并不限于此。
下面,以基于该会话的报文流确定的传输通道中的传输通道#1为例进行说明。该传输通道#1与该至少一个报文流对应,即,该传输通道#1用于传输属于该至少一个报文流的报文,或者说,该传输通道#1传输的报文所属的报文流属于该至少一个报文流,其中,该至少一个报文流属于对应于该会话的报文流。
其中,该控制设备至少基于两种参数确定该传输通道#1,即报文发送频率和传输性能。
可选地,该控制设备从配置于第一网络设备和第二网络设备之间的至少一条传输通道中确定第一传输通道,包括:
该控制设备根据该至少一个报文流中每个报文流的传输性能和该至少一条传输通道中传输通道的传输性能,并且,根据该至少一条报文流中每个报文流的报文发送频率和该至少一条传输通道中传输通道当前所支持的报文发送频率,从该至少一条传输通道中确定该第一传输通道。
例如,该控制设备获得该至少一个报文流的参数。其中,一个报文流的参数至少包括 一个报文流的传输性能和报文发送频率,并且,该控制设备获取该至少一条传输通道中传输通道的至少两个参数,即传输通道的传输性能和传输通道当前所支持的报文发送频率,这样,该控制设备分别基于报文流的报文发送频率和传输通道当前所支持的报文发送频率,以及,报文流的传输性能和传输通道的传输性能,从该至少一条传输通道中确定该传输通道#1。
其中,该控制设备分别基于报文流的报文发送频率和传输通道当前所支持的报文发送频率,以及,报文流的传输性能和传输通道的传输性能,从该至少一条传输通道中确定与该至少一个报文流对应的传输通道(即,该传输通道#1),应该至少满足两个条件:
条件#1:传输通道当前所支持的报文发送频率大于或等于该至少一个报文流的报文发送频率的总和;
条件#2:传输通道的传输性能满足该至少一个报文流的传输性能。
举例来说,在条件#1中,若该至少一个报文流的报文发送频率的和小于或等于100次/秒,那么,基于该至少一个报文流确定的传输通道当前所支持的报文发送频率大于或等于100次/秒。在条件#2中,传输通道的性能需要满足该至少一个报文流中每个报文流的传输性能,例如,若该至少一个报文流中最小的时延为2s,那么,基于该至少一个报文流确定的传输通道的时延小于或等于2s。
这样,该控制设备基于上述条件#1和条件#2,从该至少一个传输通道中确定满足条件的该传输通道#1。
应理解,本申请实施例中所说的传输通道当前所支持的报文发送频率指的是该传输通道剩余的报文发送频率。
在本申请实施例中,该控制设备获取该至少一个报文流的参数的方式有多种方式,本申请实施例不做任何限定:
例如,在会话建立过程中,该控制设备可以接收来自应用服务器发送的至少一个报文流的参数。
再例如,该控制设备可以配置有系统能够支持的报文流的参数,在会话建立过程中,该控制设备获取用于指示会话的至少一个报文流的信息,从而可以基于该信息从配置的报文流的参数中确定该至少一个报文流的参数。
再例如,其他网元(例如,UDM网元)可以配置有系统能够支持的报文流的参数,在会话建立过程中,该控制设备获取会话的至少一个报文流,从而可以基于会话的至少一个报文流,与该其他网元通过相关信令交互获取该至少一个报文流的参数。
同理,该控制设备获取该至少一条传输通道中传输通道的参数的方式也可以有多种方式,本申请实施例不做任何限定:
例如,该控制设备可以配置有该至少一条传输通道的参数。
再例如,其他网元(例如,UDM网元)中可以配置有该至少一条传输通道的参数,该控制设备可以从其他网元处获取该至少一条传输通道的参数。
应理解,上述虽然以确定传输通道#1的过程为例进行说明,但不应对本申请实施例构成限定。在具体实现过程中,基于该会话的报文流中的其他报文流确定其他传输通道的过程与基于该至少一个报文流确定该传输通道#1的过程相同,为了简洁,此处不再赘述。
在步骤S212中,该控制设备向该网络设备#A发送用于标识该传输通道#1的标识信 息#1。
这样,该网络设备#A可以基于该标识信息#1,确定发送报文时可以使用的传输通道。当然,该传输通道#1能够传输的报文所属的报文流属于该至少一个报文流。
其中,如上文所述,传输通道有两种标识,即传输通道第一类标识和传输通道第二类标识,这里,该标识信息#1可以是用于指示传输通道第一类标识的标识信息,或者,也可以是用于指示传输通道第二类标识的标识信息。
需要说明的是,当基于该会话的报文流确定有多条传输通道时,每个标识信息用于标识一个传输通道,用于标识多条传输通道的多个标识信息都可以承载于一个消息中,该控制设备通过一个消息将该多条标识信息发送给该网络设备#A;或者,用于标识多条传输通道的多个标识信息分别承载于不同信息中,该控制设备通过发送不同信息将该多条标识信息发送给该网络设备#A。
下面,对该网络设备#A在该传输通道#1上发送报文的过程进行详细说明。
在步骤S213中,该网络设备#A获取第一报文(为了便于区分与理解,记为报文#1),确定该报文#1所属的报文流属于哪些报文流,若该报文#1所属的报文流属于该至少一个报文流,则表示该网络设备#A可以使用该传输通道#1发送基于报文#1生成的第二报文(为了便于区分与理解,记为报文#2),并且,在步骤S214中,该网络设备#A按照该传输通道#1的报文发送频率,使用该传输通道#1发送该报文#2。
这里,首先对该网络设备#A获取报文#1的方式进行说明:
在上行传输时,当该网络设备#A为接入网设备时,该网络设备#A接收终端设备发送的报文#1,当该网络设备#A为UPF网元时,该网络设备#A接收接入网设备发送的报文#1;
在下行传输时,当该网络设备#A为应用服务器时,该网络设备#A生成报文#1,当该网络设备#A为UPF网元时,该网络设备#A接收应用服务器发送的报文#1。
在本申请实施例中,该网络设备#A中配置有与该至少一个传输通道中传输通道对应的用于发送报文的转发信息,以传输通道#1为例,该传输通道#1的转发信息至少包括该传输通道#1的报文发送频率、在报文中添加的用于标识该传输通道#1的标签、为报文转发分配的队列和对应于队列的时间片。其中,时间片是分配给一个队列中用于传输报文的时间。此外,该用于标识该传输通道#1的标签可以与该标识信息#1的内容相同,也可以不同,只要能够标识该传输通道#1即可。
并且,用于在该网络设备#A与该网络设备#B之间转发报文的交换机也配置有该至少一个传输通道的转发信息。
例如,该网络设备#A确定该报文#1所属的报文流属于该至少一个报文流,也就确定了使用该传输通道#1发送基于该报文#1生成的该报文#2,那么,该网络设备#A基于该标识信息#1,从至少一个传输通道的转发信息中确定该传输通道#1的转发信息,并且,在该传输通道#1的转发信息中确定该传输通道#1的报文发送频率和用于标识该传输通道#1的标签。进而,网络设备#A将该用于标识该传输通道#1的标签添加至待发送报文,以生成该报文#2,按照该传输通道#1的报文发送频率发送该报文#2。用于在该网络设备#A与该网络设备#B之间转发报文的交换机在接收到该报文#2后,可以基于该传输通道#1的标签确定该传输通道#1的转发信息,并且,确定与该传输通道#1对应的队列以及用于队列 转发的时间片,进而,通过与该传输通道#1对应的队列以及用于队列转发的时间片向该网络设备#B转发该报文#2。
需要说明的是,该网络设备#A获取该报文#1后,需要进行协议栈的解封装和封装过程,生成报文#2。也就是说,该报文#1与该报文#2的原始数据相同,由于两个报文的发送端与接收端的不同,使得报文中添加的其他信息不同,该其他信息可以是通用分组无线服务隧道协议(general packet radio service tunneling protocol,GTP)报文头、用户数据报协议(user datagram protocol,UDP)报文头、IP报文头。
在移动网络中,由于移动性的存在,使得在不同时段内移动网络中传输的业务可能不同,从而导致在不同时段内移动网络中的带宽不同。因此,在系统为由第一网络设备和第二网络设备构成的传输网络中预配置至少一条传输通道的情况下,该控制设备需要基于当前会话生成的报文流,从该至少一条传输通道中确定能够传输属于报文流的报文的传输通道(例如,第一传输通道),并且将用于标识传输通道的标识信息发送给该第一网络设备,使得该第一网络设备可以确定用于传输报文的传输通道。
在本申请实施例中,控制设备从该至少一个传输通道中确定的传输通道(例如,第一传输通道)的报文发送频率大于或等于该至少一个报文流的报文发送频率,以及,该第一传输通道的传输性能满足该至少一个报文流的传输性能。这样,该第一网络设备在确定报文所属的报文流属于该至少一个报文流时,基于该第一传输通道的报文发送频率使用该第一传输通道发送报文。由于在该第一网络设备和该第二网络设备之间的交换机中用于转发报文的时间片以及为报文转发分配的队列都是基于传输通道的频率配置的,在该第一网络设备使用对应于报文的第一传输通道发送报文时,用于转发报文的时间片是确定的,并且,为报文转发分配的队列的长度是有限制的,使得报文的传输时延可以控制在一定范围内,能够满足移动网络中不同报文的传输需求。
因此,本申请实施例的传输信息的方法,控制设备从配置于第一网络设备和第二网络设备之间的至少一个传输通道中确定用于传输属于至少一个报文流的报文的第一传输通道,且通过用于标识该第一传输通道的标识信息使得第一网络设备可以确定能够使用该第一传输通道传输属于该至少一个报文流的报文。其中,该第一传输通道的报文发送频率大于或等于该至少一个报文流的报文发送频率,且,该第一传输通道的传输性能满足该至少一个报文流的传输性能。进而,该第一网络设备在发送属于该至少一个报文流的报文时,按照该第一传输通道的报文发送频率使用该第一传输通道发送报文,能够有效地减少报文的传输时延,进而满足针对移动网络中报文的传输性能的需求。
在步骤213中,在该网络设备#A发送报文之前,需要确定待发送的第一报文所属的报文流是否属于该至少一个报文流,下面,对步骤213中的确定过程做详细说明。
可选地,该方法还包括:
该控制设备向该第一网络设备发送第一指示信息,该第一指示信息用于指示该至少一个报文流。
对应地,该第一网络设备接收该第一指示信息,且根据该第一指示信息和该第一报文中的字段,确定该第一报文所属的报文流属于该至少一个报文流,其中,该第一报文的字段用于指示该至少一个报文流。
其中,该报文#1的字段包括该报文#1中的至少一个字段,该至少一个字段是该报文 #1中的部分字段,当该报文#1的字段为多个字段时,该多个字段共同用于指示该至少一个报文流。
例如,该网络设备#A将接收到的该第一指示信息的内容与该报文#1中的字段进行匹配,若该第一指示信息能够与该报文#1中的字段匹配成功,则表示该报文#1所属的报文流属于该至少一个报文流,若该第一指示信息与该报文#1中的字段不能匹配成功,则表示该报文#1所属的报文不属于该至少一个报文流。
应理解,这里所说的匹配是否成功表示的是该第一指示信息与该报文#1中的至少一个字段匹配是否成功。
下面,对该指示信息的生成与该报文#1的关系进行说明。
发送端(例如,网络设备或终端设备)在发送报文前,会按照网络协议在报文中规定位置上添加对应的信息(例如,发送端设备按照网络协议在报文中规定的目的IP地址位置上添加应用服务器的IP地址),从而正确传输报文,控制设备可以基于报文中规定位置添加的信息生成第一指示信息,即,将信息中指示不同内容的多个字段组合形成为第一指示信息。
例如,报文中规定位置上添加的信息中可以包括三个字段,第一字段用于指示报文的目的地址、第二字段用于指示端口号、第三字段用于标识报文所属的报文流的报文流标识,那么,该控制设备可以分别将上述三个字段作为该第一指示信息的内容,即,该第一指示信息包括该第一字段、第二字段或第三字段中的任一个;或者,该控制设备可以将该上述三个字段的两两组合的内容作为该第一指示信息的内容,例如,该第一指示信息包括该第一字段和该第二字段,该第一字段和该第二字段共同用于指示该至少一个报文流;再或者,该控制设备可以将上述三个字段作为该第一指示信息的内容,即,该第一指示信息包括该第一字段、第二字段和该第三字段,三个字段共同用于指示该至少一个报文流。此外,当多个字段共同用于指示该至少一个报文流,多个字段可以通过逻辑表达式来指示该至少一个报文流,例如,(not(字段1=a))and(字段2=b or字段3=c)。
需要说明的是,当该控制设备基于会话的报文流确定包括该第一传输通道在内的多条传输通道时,该控制设备在向该网络设备#A发送用于标识该多个传输通道的多个标识信息时,也可以向该网络设备#A发送多个指示信息。该多个标识信息与该多个指示信息对应。每个标识信息所标识的传输通道对应的报文流即为对应的指示信息所指示的报文流。这样,该网络设备#A通过其中一个指示信息(例如,第一指示信息)确定待发送报文所属的报文流属于该第一指示信息所指示的报文流,可以使用对应该第一指示信息的标识信息所标识的传输通道发送报文。
作为示例而非限定,该网络设备#A不仅可以基于接收到的该第一指示信息和该报文#1的字段确定该报文#1所属的报文流属于该至少一个报文流,也可以采用其他方式确定该报文#1所属的报文流属于该至少一个报文流。例如,系统可以基于报文流的组合方式预配置多个指示信息,每个指示信息用于指示一个报文流组,其中,一个报文流组中包括至少一个报文流,且将该多个指示信息存储于该网络设备#A中,这样,该网络设备#A在发送报文之前,将报文与所有指示信息挨个进行匹配,若与其中一个指示信息(例如,第一指示信息)匹配成功,则表示报文所属的报文流属于该第一指示信息所指示的至少一个报文流,进而使用对应的传输通道发送报文。
在本申请实施例中,终端设备与网络设备之间不存在传输通道,终端设备与网络设备之间通过空口传输报文,且终端设备需要按照报文所属的报文流的报文发送频率发送报文,若该终端设备未按照报文所属的报文流的报文发送频率发送报文,可能会影响其他报文流对于传输性能的需求。
因此,本申请实施例还提供了一种可选的方式,继续如图2所示:
在步骤S221中,该控制设备向终端设备发送第一报文流频率信息(为了便于区分与理解,记为报文流频率信息#1),该报文流频率信息#1用于指示该至少一个报文流中每个报文流的报文发送频率,进而,该终端设备接收该报文流频率信息#1。
在步骤S222中,该终端设备根据待发送的报文所属的报文流,从该报文流频率信息#1中确定该报文所属的报文流的报文发送频率,其中,该报文流属于该至少一个报文流。
在步骤S223中,该终端设备按照该报文所属的报文流的报文发送频率发送该报文。
例如,该控制设备可以通过上文所述方式获取该至少一个报文流的报文发送频率,向该终端设备发送用于指示该至少一个报文流中每个报文流的报文发送频率的报文流频率信息#1,可以使得终端设备使用报文所属的报文流的报文发送频率发送该报文。
应理解,当该网络设备#A为接入网设备时,该接入网设备获取的报文#1即为该终端设备发送的报文。
因此,本申请实施例提供的传输信息的方法,控制设备通过向终端设备发送用于指示至少一个报文流中每个报文流的报文发送频率的第一报文流频率信息,可以使得该终端设备可以使用报文所属的报文流对应的报文发送频率发送报文,有效地避免了由于该终端设备未按照报文流的报文发送频率发送报文而影响了其他报文流的报文的传输性能。
作为示例而非限定,针对该终端设备确定该报文所属的报文流的报文发送频率的方式,上述该终端设备基于该第一报文流频率信息确定报文流的报文发送频率的方式仅为示意性说明,本申请时候实施例并不限于此。例如,在该终端设备侧配置报文流的报文发送频率,该终端设备在发送报文之前,基于报文所属的报文流从该终端设备中配置的报文流的报文发送频率中确定该报文所属的报文流的报文发送频率。
在移动网络中,由于移动性的存在,每条传输通道在不同时段所支持的报文发送频率可能都不一样,因此,需要网络设备时时更新每条传输通道的报文发送频率,鉴于此,本申请实施例还提供了两种可选的实现方式,在一种可选的实现方式中,第三网络设备更新传输通道的报文发送频率,在另一种可选的实现方式中,该控制设备更新传输通道的报文发送频率。下面,分别对两种可选的实现方式分别进行说明。
方式A(第三网络设备更新传输通道的报文发送频率)
在步骤S231中,该控制设备向第三网络设备(为了便于区分与理解,记为网络设备#C)发送第二标识信息(为了便于区分与理解,记为标识信息#2)和第二报文流频率信息(为了便于区分与理解,记为报文流频率信息#2),其中,该标识信息#2用于标识该传输通道#1,该报文流频率信息#2用于指示该至少一个报文流中每个报文流的报文发送频率,或,该报文流频率信息#2用于指示该至少一个报文流的报文发送频率的总和,并且,该网络设备#C接收该标识信息#2和该报文流频率信息#2。
其中,该标识信息#2为用于唯一标识该传输通道#1的标识信息,即,上文所述的传输通道第一类标识。
可选地,该网络设备#C为UDM网元。
在步骤S232中,该网络设备#C根据该标识信息#2,确定第一传输通道频率信息(为了便于区分与理解,记为传输通道频率信息#1),该传输通道频率信息#1用于指示该传输通道#1当前所支持的报文发送频率。
例如,该网络设备#C中配置有整个移动网络中每个传输网络中配置的传输通道的传输通道信息,其中,每个传输通道的传输通道信息包括用于指示传输通道的报文发送频率的传输通道频率信息,那么,该网络设备#C根据该标识信息#2从传输通道信息中确定该传输通道#1的传输通道信息,进而,再从该传输通道#1的传输通道信息中确定该传输通道频率信息#1。
在步骤S233中,该网络设备#C根据该传输通道频率信息#1和该报文流频率信息#2,生成更新的传输通道频率信息#1。
其中,该网络设备#C可以分别根据两种情况更新传输通道频率信息#1,具体如下描述。
情况1(为该至少一个报文流预留报文发送频率)
在该情况1中,该网络设备#C需要从该传输通道#1的报文发送频率中为该至少一个报文流预留该至少一个报文流的报文发送频率。
例如,该控制设备在为该至少一个报文流选择该传输通道#1后,为了保证该至少一个报文流的报文以及后续其他报文流的报文的正确传输,该网络设备#C将该传输通道#1中被该至少一个报文流占用的报文发送频率减去,剩下的传输通道#1的报文发送频率用于其他报文流选择传输通道,即,在该控制设备基于更新的传输通道频率信息#1中的报文发送频率确定其他报文流是否可以使用该传输通道#1发送报文。
其中,该网络设备#C分别基于两种方式更新传输通道频率信息#1:
方式A1
当该报文流频率信息#2用于指示该至少一个报文流中每个报文流的报文发送频率时,该网络设备#C从该传输通道#1当前所支持的报文发送频率中减去该每个报文流的报文发送频率,生成该更新的传输通道频率信息#1。
方式A2
当该报文流频率信息#2用于指示该至少一个报文流的报文发送频率的总和时,该控制设备从该传输通道#1当前所支持的报文发送频率中减去该至少一个报文流的报文发送频率的总和,生成更新的传输通道频率信息。
其中,方式A2与方式A1不同之处在于,在方式A2中,该报文流频率信息#2表示的该至少一个报文流中所有报文流的报文发送频率的总和,可以使得该网络设备#C直接从该传输通道#1当前所支持的报文发送频率中减去该至少一个报文流中所有报文流的报文发送频率的总和,而在方式A1中,该报文流频率信息#2表示的是该至少一个报文流中每个报文流的报文发送频率,该网络设备#C需要从该传输通道#1当前所支持的报文发送频率中减去每个报文流的发送频率,或,减去该网络设备#C基于该至少一个报文流中的每个报文流的报文发送频率生成的报文发送频率的总和。
这里,该网络设备#C可以根据接收到的信息的类型确定情况1,即该网络设备#C是否需要为该至少一个报文流预留报文发送频率。例如,在会话过程中,该报文流频率信息 #2和该标识信息#2可以承载在传输通道请求信息中,这样,该网络设备#C可以基于该传输通道请求信息的信息类型就可以确定需要为该至少一个报文流预留资源,具体内容可以参考下文关于方法300中的步骤308的描述。
情况2(释放该至少一个报文流的报文发送频率)
在该情况2中,该网络设备#C需要在该传输通道#1的报文发送频率中加上该至少一个报文流中每个报文流的报文发送频率,这样,该控制设备基于更新的传输通道频率信息#1中的报文发送频率确定其他报文流是否可以使用该传输通道#1发送报文。
需要说明的是,在这种情况下,基于该标识信息#1确定的传输通道频率信息#1中的报文发送频率是在情况1中已经更新后的传输通道的报文发送频率。
同理,该网络设备#C分别基于两种方式更新传输通道频率信息#1:
方式A3
当该报文流频率信息#2用于指示该至少一个报文流中每个报文流的报文发送频率时,该网络设备#C从该传输通道#1当前所支持的报文发送频率中加上该每个报文流的报文发送频率,生成该更新的传输通道频率信息#1。
方式A4
当该报文流频率信息#2用于指示该至少一个报文流的报文发送频率的总和时,该控制设备从该传输通道#1当前所支持的报文发送频率中加上该至少一个报文流的报文发送频率的总和,生成更新的传输通道频率信息#1。
同理,该网络设备#C可以基于接收到的信息的类型来确定是否需要释放该至少一个报文流的报文发送频率。例如,在会话结束过程中,该报文流频率信息#2和该标识信息#2可以承载在传输通道释放信息,这样,该网络设备#C可以基于该传输通道释放信息的信息类型就可以确定需要释放该至少一个报文流的报文发送频率。
这样,后续控制设备需要基于所有传输通道的信息为其他会话的报文流确定对应的传输通道时,该网络设备#C可以将传输通道信息中更新的传输通道频率信息发送给该控制设备,为其他会话的报文流选择传输通道提供真实有效的数据。
方式B(控制设备也可以更新传输通道频率信息)
在另一种可选的实现方式中,该控制设备也可以更新传输通道频率信息。
可选地,该方法还包括:
该控制设备根据该第一传输通道,确定第一传输通道频率信息,该第一传输通道频率信息用于指示该第一传输通道当前所支持的报文发送频率;
该控制设备获取第二报文流频率信息,该第二报文流频率信息用于指示该至少一个报文流中每个报文流的报文发送频率,或,该第二报文流频率信息用于指示该至少一个报文流的报文发送频率的总和;
该控制设备根据该第一传输通道频率信息和该第二报文流频率信息,生成更新的第一传输通道频率信息。
可选地,该控制设备根据该第一传输通道频率信息和该第二报文流频率信息,生成更新的第一传输通道频率信息,包括:
当该第二报文流频率信息用于指示该至少一个报文流中每个报文流的报文发送频率时,该控制设备从该第一传输通道当前所支持的报文发送频率中减去该每个报文流的报文 发送频率,生成该更新的第一传输通道频率信息;或,
当该第二报文流频率信息用于指示该至少一个报文流中每个报文流的报文发送频率时,该控制设备从该第一传输通道当前所支持的报文发送频率中加上该每个报文流对应的报文发送频率,生成该更新的第一传输通道频率信息;或,
当该第二报文流频率信息用于指示该至少一个报文流的报文发送频率的总和时,该控制设备从该第一传输通道当前所支持的报文发送频率中减去该至少一个报文流的报文发送频率的总和,生成该更新的第一传输通道频率信息;或,
当该第二报文流频率信息用于指示该至少一个报文流的报文发送频率的总和时,该控制设备从该第一传输通道当前所支持的报文发送频率中加上该至少一个报文流的报文发送频率的总和,生成该更新的第一传输通道频率信息。其中,该控制设备更新该传输通道频率信息#1的具体过程与上文中该网络设备#C更新该传输通道频率信息#1的具体过程相同,此处不再赘述。
这里需要说明的是,控制设备可以根据当前步骤的具体内容确定是为该至少一个报文流预留报文发送频率还是释放该至少一个报文流的报文发送频率。例如,在会话过程中,该控制设备在为网络设备#A确定好传输通道后,就可以为该至少一个报文流预留报文发送频率。再例如,在会话结束后,该控制设备与UDM网元进行会话释放的流程,在此种情况下,该控制设备确定网络设备#A已经完成了会话,那么,该控制设备可以在会话释放的流程的过程中或会话释放的流程之后释放该至少一个报文流的报文发送频率。
因此,本申请实施例的传输信息的方法,控制设备通过向第三网络设备发送第二标识信息和第二报文流频率信息,可以使得该第三网络设备可以基于该第二标识信息和该第二报文流频率信息时时更新第一传输通道的报文发送频率,以能够真实反映该第一传输通道当前能够支持的报文发送频率,为其他报文流选择传输通道提供真实有效的数据,从而尽可能保证所有报文流的报文的正常传输。
需要说明的是,在本申请实施例中,上述仅以一条传输通道为例说明传输信息的方法,但这不应对本申请实施例构成任何限定。控制设备针对多条传输通道中每条传输通道有关的信息(例如,第一标识信息、第一指示信息、第二标识信息等)的生成以及传输过程可以与第一传输通道的有关的信息的生成以及传输过程的相同。并且,与多条传输通道有关的信息可以承载于同一个消息中,也可以分别承载于多个消息中。
以上,结合图2,从该控制设备与网络设备#A、终端设备和网络设备#C之间交互的角度对本申请实施例进行了详细说明。下面,分别结合图3至图6对本申请实施例在具体场景中的具体流程做一详细说明。
图3是根据本申请一实施例的传输信息的方法300的示意性流程图。在该方法300中,以SMF网元作为该控制设备,接入网设备、UPF网元或应用服务器中任一个作为该网络设备#A,UDM网元为该网络设备#C为例,描述了在会话建立的场景中,各个网元之间传输信息的过程。
此外,在该方法300中,该网络架构中还包括AMF网元、策略控制功能(policy control function,PCF)网元以及UDM网元。其中,将该接入网设备与该UPF网元之间的传输网络记为传输网络#A,将该UPF网元与该应用服务器之间的传输网络记为传输网络#B。
S301,终端设备向AMF网元发起分组数据单元(packet data unit,PDU)会话建立请 求。
可选地,用于指示该会话建立请求的消息中包括对应于该会话的报文流的参数。
S302,该AMF网元选择合适的SMF网元。
S303,该AMF网元向SMF网元发送Nsmf PDU会话建立会话管理请求(Nsmf_PDU session_create SM(session manage)request)消息,其中,该消息包含用于创建PDU会话的信息。
S304,该SMF获取签约数据,该签约数据包括对应于该会话的报文流的参数。
例如,该SMF网元向UDM网元发送Nudm签约数据获取请求(Nudm subscriber data get request)消息,该消息用于请求该终端设备在特定服务器(例如,应用服务器)中的签约数据,同时,该UDM网元向该SMF网元发送Nudm签约数据获取应答(Nudm subscriber data get response)消息,通过该消息将相应的签约数据发送给该SMF网元。
可选的,该签约数据还可以包括被授权的PDU类型,被授权会话和业务连续性(session and service continuity,SSC)模式等信息。
S305,该SMF网元从UDM网元处获取系统为传输网络#A和传输网络#B预配置的所有传输通道的传输通道信息。
例如,该SMF网元向该UDM网元发送用于请求传输通道信息的请求信息,该UDM向该SMF发送传输通道信息。
其中,传输通道信息中包括每个传输通道的相关参数,具体针对每条传输通道的参数的描述可以参考上文描述,此处不再赘述。
作为示例而非限定,在步骤S304中,该签约数据中也可以包括该传输通道信息,即,该SMF网元也可以从包括签约数据中获取该传输通道信,本申请实施例不做任何限定。
S306,该SMF网元为该会话的报文流,从传输网络#A中预配置的所有传输通道中确定对应于该会话的报文流的至少一条传输通道(为了便于区分与理解,记为传输通道组#A),从传输网络#B中预配置的所有传输通道中确定对应于该会话的报文流的至少一条传输通道(为了便于区分与理解,记为传输通道组#B)。
其中,该SMF网元基于该会话的报文流在每个传输网络中确定对应的传输通道的过程可以参考上文关于基于至少一个报文流确定传输通道#1的过程,此处不再赘述。
例如,该会话的报文流包括3个报文流,报文流#1和报文流#2为上行报文流,报文流#3为下行报文流,在不同的传输网络中,分别为报文流#1和报文流#2确定用于上行传输的传输通道,为报文流#3确定用于下行传输的传输通道。在传输网络#A中,为3个报文流确定了两条传输通道,将这两条传输通道分别记为上行传输通道#A1和下行传输通道#A2,其中,该上行传输通道#A1用于传输属于报文流#1和报文流#2的报文,该下行传输通道#A2用于传输属于报文流#3的报文;在传输网络#B中,为3个报文流也确定了两条传输通道,将这两条传输通道分别记为上行传输通道#B1和下行传输通道#B2,其中,该上行传输通道#B1用于传输属于报文流#1和报文流#2的报文,该下行传输通道#B2用于传输属于报文流#3的报文。
S307,该SMF网元向该UDM网元发送传输通道请求消息。
其中,该传输通道请求消息中包括在每个传输网络中该会话的报文流中每个报文流的报文发送频率以及对应于每个报文流的传输通道的标识。
继续以上述例子为例进行说明,该传输通道请求信息中包括在传输网络#A中3个报文流的报文发送频率和对应的上行传输通道#A1和下行传输通道#A2的标识,同时,该传输通道请求信息中包括在传输网络#B中3个报文流的报文发送频率和对应的上行传输通道#B1的标识和上行传输通道#B2的标识。
S308,该UDM网元基于传输通道的标识,确定每个传输通道当前所支持的报文发送频率,并且,从每个传输通道的报文发送频率中减去对应的报文流的报文发送频率,生成更新的传输通道频率信息。
在后续该SMF网元向该UDM网元发送用于请求传输通道信息的请求信息时,该UDM网元发送的传输通道信息中包括的是更新后的传输通道频率信息。
步骤S307和S308可参考图2中S231至S233的描述,此处不再赘述。
S309,该SMF网元向该应用服务器发送用于标识在传输网络#B中传输通道的至少一个标识信息和对应的至少一个指示信息。
其中,每个指示信息用于指示对应的传输通道传输的报文所属的报文流所属的至少一个报文流,具体针对标识信息和对应的指示信息的描述可以参考上文针对第一标识信息和第一指示信息的描述,此处不再赘述。
继续以上述例子为例进行说明,在传输网络#B中,应用服务器是下行传输的发送端,因此,该至少一个标识信息仅包括用于标识下行传输通道#B2的标识信息(为了便于区分与理解,记为下行传输通道标识信息#B2),对应地,该至少一个指示信息包括对应于该下行传输通道标识信息#B2的指示信息(为了便于区分与理解,记为指示信息#B2)。
因此,该应用服务器可以基于该下行传输通道标识信息#B2和该指示信息#B2发送报文。具体发送报文的过程,可以参考上文针对网络设备#A发送基于第一指示信息和第一标识信息发送报文的过程,此处不再赘述。
S310,该应用服务器向该SMF网元发送确认消息,该确认消息表示该应用服务器成功接收SMF网元在步骤S309中发送的至少一个标识信息和对应的至少一个指示信息。
S311,该SMF网元向该UPF网元发送用于标识传输网络#A和传输网络#B中传输通道的至少一个标识信息和对应的至少一个指示信息。
例如,该SMF网元可以发送N4会话建立/修改请求(N4 session establishment/modification request)消息,该消息中包括用于标识传输网络#A和传输网络#B中传输通道的至少一个标识信息和对应的至少一个指示信息。
其中,每个指示信息用于指示对应的传输通道传输的报文所属的报文流所属的至少一个报文流,具体针对标识信息和对应的指示信息的描述可以参考上文针对第一标识信息和第一指示信息的描述,此处不再赘述。
继续以上述例子进行说明,在传输网络#A中,该UPF网元是下行传输的发送端,在传输网络#B中,该UPF网元是上行传输的发送端,因此,针对该UPF网元,该至少一个标识信息即包括用于标识下行传输通道#A2的标识信息(为了便于区分与理解,记为下行传输通道标识信息#A2)和用于标识上行传输通道#B1的标识信息(为了便于区分与理解,记为上行传输通道标识信息#B1),对应地,该至少一个指示信息包括对应于该下行传输通道标识信息#A2的指示信息(为了便于区分与理解,记为指示信息#A2)和对应于该上行传输通道标识信息#B1的指示信息(为了便于区分与理解,记为指示信息#B1)。
S312,该UPF网元向该SMF网元发送确认消息,该确认消息表示该UPF网元成功接收该SMF网元在步骤S311中发送的至少一个标识信息和对应的至少一个指示信息。
例如,当步骤S311中用于标识传输网络#A和传输网络#B中传输通道的至少一个标识信息和对应的至少一个指示信息承载于N4 session establishment/modification request消息时,该确认消息可以是N4会话建立/修改响应(N4 session establishment/modification response)消息。
S313,该SMF网元向该AMF网元报文流频率信息、用于标识在传输网络#A中传输通道的至少一个标识信息和对应的至少一个指示信息。
例如,该SMF网元可以发送Nsmf PDU会议建立上下文应答(Nsmf PDU session create SM context response)消息,该消息中包括该报文流频率信息、该用于标识在传输网络#A中传输通道的至少一个标识信息和对应的至少一个指示信息。
其中,该报文流频率信息用于指示该会话的所有报文流中每个报文流的报文发送频率,每个标识信息用于标识传输通道,每个指示信息用于指示对应的传输通道传输的报文所属的报文流所属的至少一个报文流,具体针对报文流频率信息、标识信息和对应的指示信息的描述可以参考上文针对第一报文流频率信息、第一标识信息和第一指示信息的描述,此处不再赘述。
S314,该AMF网元向该接入网设备发送该AMF在步骤S313中接收到的报文流频率信息、至少一个标识信息和对应的至少一个指示信息。
即,该AMF网元转发或透传在步骤S313中接收到的该报文流频率信息、至少一个标识信息和对应的至少一个指示信息。
例如,该AMF网元可以发送N2 PDU会话请求(N2 PDU session request)消息,该消息中包括该报文流频率信息、至少一个标识信息和对应的至少一个指示信息。
继续以上述例子为例进行说明,由于该至少一个标识信息和该至少一个标识信息最终是发送至接入网设备的信息,在传输网络#A中,接入网设备是上行传输的发送端,因此,该至少一个标识信息仅包括用于标识上行传输通道#A1的标识信息(为了便于区分与理解,记为上行传输通道标识信息#A1),对应地,该至少一个指示信息包括对应于该上行传输通道标识信息#A1的指示信息(为了便于区分与理解,记为指示信息#A1)。
因此,该接入网设备可以基于该上行传输通道标识信息#A1和该指示信息#A1发送报文。具体发送报文的过程,可以参考上文针对网络设备#A发送基于第一指示信息和第一标识信息发送报文的过程,此处不再赘述。
S315,该接入网设备向终端设备发送报文流频率信息。
例如,该接入网设备可以发送非接入层(Non access stratum,NAS)消息,该NAS消息中包括该报文流频率信息。
后续,该终端设备可以基于该报文流频率信息发送报文,具体过程可以参考上文针对终端设备基于第一报文流频率信息发送报文的过程,此处不再赘述。
S316,该接入网设备向该AMF网元发送N2 PDU会话响应(N2 PDU session response)消息。
应理解,步骤S309、S311、S313和S315的序号的大小并不意味着执行顺序的先后,步骤的执行顺序应该以其功能和内在逻辑确定。例如,步骤S309、S311、S313和S315 可以同时执行。
图4是根据本申请另一实施例的传输信息的方法400的示意性流程图。在该方法400中,以SMF网元作为该控制设备,UDM网元为该网络设备#C为例,描述了在会话结束后进行会话释放的场景中该控制设备与该网络设备#C之间传输信息的过程,其中,会话的释放流程可以是针对方法400中建立的会话的释放流程。
S401,由包括SMF网元和UDM网元在内的多个网元完成会话的释放流程。
S402,该SMF网元向该UDM网元发送传输通道释放消息,该消息包括每个传输网络中会话的报文流中每个报文流的报文发送频率以及对应于每个报文流的传输通道的标识。
继续以方法300中传输通道#A与传输通道#B中的传输通道的例子为例,该传输通道释放信息中包括在传输网络#A中3个报文流的报文发送频率和对应的上行传输通道#A1和下行传输通道#A2的标识,同时,该传输通道请求信息中包括在传输网络#B中3个报文流的报文发送频率和对应的上行传输通道#B1的标识和上行传输通道#B2的标识。
该UDM网元基于传输通道的标识,确定每条传输通道当前所支持的报文发送频率,并且,从每条传输通道的报文发送频率中加上对应的报文流的报文发送频率,生成更新的传输通道频率信息。
步骤S402可参考图2中步骤S233的描述,此处不再赘述。
S403,该UDM网元向该SMF网元发送确认消息,该确认消息用于指示该UDM网元成功释放每条传输通道中被占用的报文发送频率。
图5是根据本申请另一实施例的传输信息的方法500的示意性流程图。在该方法500中,以SMF网元作为该控制设备,接入网设备、UPF网元或应用服务器中任一个作为该网络设备#A,UDM网元为该网络设备#C为例,描述了在切换接入网设备的过程中重选UPF网元的场景中各个网元之间传输信息的过程。
在该方法中,该网络架构中还包括AMF网元、UDM网元,其中,UPF网元包括源UPF网元、目标UPF网元和锚点UPF网元,接入网设备包括源接入网设备和目标接入网设备。其中,在重选UPF网元场景中,切换UPF网元之前报文的传输路径为:终端设备→接入网设备→源UPF网元→锚点UPF网元,切换UPF网元之后报文的传输路径为:终端设备→接入网设备→目标UPF网元→锚点UPF网元。
这里,将该目标接入网设备与该目标UPF网元之间的传输网络记为传输网络#C1,将该目标UPF网元与该锚点UPF网元之间的传输网络记为传输网络#C2,将该锚点UPF网元与应用服务器之间的传输网络记为传输网络#C3。
S501,目标接入网设备向AMF网元发送N2路径切换请求(N2 path switch request)消息,该N2 Path Switch Request消息用于通知终端设备已经移动至新的小区以及至少一个需要切换的PDU会话。
S502,该AMF网元向SMF网元发送会话管理信息(N2 SM information),该信息中包括与该SMF网元对应的PDU会话的ID、对应的报文流的参数以及N3隧道信息等。需要说明的是,若与S501中所述的多个需要切换的PDU会话相关的SMF网元有多个的话,该AMF网元还会向除图5所示的SMF网元以外的其他SMF网元发送N2 SM information消息,其中,一个SMF网元对应至少一个会话。
此外,与其他SMF相关的所有步骤以及信息都与该方法500中与SMF相关的步骤以及信息类似,因此,在本申请实施例中,仅以一个SMF为例进行说明,并且,将对应图5所示的SMF的至少一个会话的一个会话记为会话#1。
S503,该SMF网元从UDM网元处获取系统为上述传输网络#C1、传输网络#C2和传输网络#C3预配置的传输通道的传输通道信息。
例如,该SMF网元向该UDM网元发送用于请求传输通道信息的请求信息,该UDM向该SMF发送传输通道信息。
其中,传输通道信息中包括每个传输通道的相关参数,具体针对每条传输通道的参数的描述可以参考上文描述,此处不再赘述。
S504,该SMF网元选择目标UPF网元。
例如,针对切换的会话#1,该SMF网元需要判断当前的UPF网元(即,源UPF网元)是否可以满足会话#1对应的报文流的需要,具体判断条件至少包括:在不改变UPF的情况下,源UPF网元与锚点UPF网元之间的传输通道以及锚点UPF网元与应用服务器之间的传输通道是否可以满足报文流的性能需求。若该SMF网元确定当前UPF网元不符合上述判断条件,需要从当前UPF网元(即,源UPF网元)切换至目标UPF网元,则选择该目标接入网设备与该目标UPF网元之间的传输通道、该目标UPF网元与该锚点UPF网元之间的传输通道、该锚点UPF网元与该应用服务器之间的传输通道。
这里,源UPF网元与锚点UPF网元之间的传输通道以及锚点UPF网元与应用服务器之间的传输通道可以是该SMF之前已经为报文流选择的传输通道,也可以是预配置的传输通道。
作为示例而非限定,在确定传输通道是否满足报文流的性能需求时,可以先确定该SMF网元之前已经为报文流选择的传输通道是否满足报文流的性能需求,若不满足,再确定预配置在该UPF网元与该应用服务器之间的其他传输通道是否满足报文流的性能需求。
该SMF网元确定传输通道是否满足报文流的性能需求(或者,该SMF网元为报文流选择传输通道的方式)可以参考上文的相关描述,此处不再赘述。
S505,该SMF网元向UDM网元发送传输通道请求消息。
其中,该传输通道请求消息中包括在每个传输网络中该会话的报文流中每个报文流的报文发送频率以及对应于每个报文流的传输通道的标识。
需要说明的是,对于在切换接入网设备以及重选UPF网元的过程中,在步骤S604中,会增加新的传输通道,这样,该传输通道请求消息中可以仅包括新增加的传输通道的标识。
S506,该UDM网元基于传输通道的标识,确定每个传输通道当前所支持的报文发送频率,并且,从每个传输通道的报文发送频率中减去对应的报文流的报文发送频率,生成更新的传输通道频率信息。
在后续该SMF向该UDM网元发送用于请求传输通道信息的请求信息时,该UDM网元发送的传输通道信息中包括的是更新后的传输通道频率信息。
S507,该SMF网元向目标UPF网元发送用于标识在传输网络#C1和传输网络#C2中传输通道的至少一个标识信息和对应的至少一个指示信息。
例如,该SMF网元可以发送N4会话建立/修改请求(N4 session  establishment/modification request)消息,该消息中包括用于标识在传输网络#C1和传输网络#C2中传输通道的至少一个标识信息和对应的至少一个指示信息。
其中,每个指示信息用于指示对应的传输通道传输的报文所属的报文流所属的至少一个报文流,具体针对标识信息和对应的指示信息的描述可以参考上文针对第一标识信息和第一指示信息的描述,此处不再赘述。
需要说明的是,在传输网络#C1中,该目标UPF网元是下行传输的发送端,在传输网络#C2中,该目标UPF网元是上行传输的发送端,该至少一个标识信息所标识的传输通道既包括用于上行传输的上行传输通道,也包括用于下行传输的下行传输通道,具体描述可以参考方法300中步骤S311的相关描述。
S508,该目标UPF网元向该SMF网元发送确认消息,并且,该SMF网元启动一个计时器,将在后续步骤S516中使用。其中,该确认消息表示该目标UPF网元成功接收该SMF网元在步骤507中发送的至少一个标识信息和对应的至少一个指示信息。
例如,当用于标识在传输网络#C1和传输网络#C2中传输通道的至少一个标识信息和对应的至少一个指示信息承载于N4 session establishment/modification request消息时,该确认消息可以是N4会话建立/修改响应(N4 session establishment/modification response)消息。
S509,该SMF网元向锚点UPF网元发送用于标识在传输网络#C2和/或传输网络#C3中传输通道的至少一个标识信息和对应的至少一个指示信息。
例如,该SMF网元可以发送N4会话修改请求(N4 session modification request)消息,其中,该消息中包括用于标识在传输网络#C2和/或传输网络#C3中传输通道的至少一个标识信息和对应的至少一个指示信息。
其中,每个指示信息用于指示对应的传输通道传输的报文所属的报文流所属的至少一个报文流,具体针对标识信息和对应的指示信息的描述可以参考上文针对第一标识信息和第一指示信息的描述,此处不再赘述。
需要说明的是,在传输网络#C2中,该锚点UPF网元是下行传输的发送端,在传输网络#C3中,该锚点UPF网元是上行传输的发送端,该至少一个标识信息所标识的传输通道既可以包括用于上行传输的上行传输通道,也可以包括用于下行传输的下行传输通道,具体描述可以参考方法300中步骤S311的相关描述。
S510,该锚点UPF网元向该SMF网元发送确认消息,该确认消息表示该锚点UPF网元成功接收该SMF网元在步骤S509中发送的至少一个标识信息和对应的至少一个指示信息。
例如,当该用于标识在传输网络#C2和/或传输网络#C3中传输通道的至少一个标识信息和对应的至少一个指示信息承载于N4 session modification request消息中,该确认消息可以是N4会话修改响应(N4 session modification response)消息。
S511,该SMF网元向应用服务器发送用于标识在传输网络#C3中传输通道的至少一个标识信息和对应的至少一个指示信息。
其中,每个指示信息用于指示对应的传输通道传输的报文所属的报文流所属的至少一个报文流,具体针对标识信息和对应的指示信息的描述可以参考上文针对第一标识信息和第一指示信息的描述,此处不再赘述。
需要说明的是,在传输网络#C3中,应用服务器是下行传输的发送端,因此,该至少一个标识信息所标识的传输通道可以仅包括用于下行传输的下行传输通道。
S512,该应用服务器向该SMF网元发送确认消息,该确认消息表示该应用服务器成功接收该SMF网元在步骤S511中发送的至少一个标识信息和对应的至少一个指示信息。
S513,该SMF网元向该AMF网元发送用于标识在传输网络#C1中传输通道的至少一个标识信息和对应的至少一个指示信息。
例如,该SMF网元可以发送Nsmf PDU会议建立上下文应答(Nsmf PDU session create SM context response)消息,其中,该消息中包括用于标识在传输网络#C1中传输通道的至少一个标识信息和对应的至少一个指示信息。
其中,每个指示信息用于指示对应的传输通道传输的报文所属的报文流所属的至少一个报文流,具体针对标识信息和对应的指示信息的描述可以参考上文针对第一标识信息和第一指示信息的描述,此处不再赘述。
需要说明的是,由于该至少一个标识信息和该至少一个标识信息最终是发送至目标接入网设备的信息,在传输网络#C1中,目标接入网设备是上行传输的发送端,因此,该至少一个标识信息所标识的传输通道可以仅包括用于上行传输的上行传输通道。
应理解,步骤S507、S509、S511和S513的序号的大小并不意味着执行顺序的先后,步骤的执行顺序应该以其功能和内在逻辑确定。例如,步骤S507、S509、S511和S513可以同时执行。
S514,该AMF网元向该目标接入网设备发送在步骤S513中接收到的至少一个标识信息和对应的至少一个指示信息。
例如,该AMF网元可以发送N2路径切换请求应答(N2 path switch request Ack)消息,该消息中包括该至少一个标识信息和对应的至少一个指示信息。
即,该AMF网元转发或透传在步骤S513中接收到的至少一个标识信息和对应的至少一个指示信息。
需要说明的是,如在步骤S502中所述,若与S501中所述的多个需要切换的PDU会话相关的SMF网元有个多的话,该AMF网元还会向除图5所示的SMF网元以外的SMF网元发送N2 SM information消息,这样,在步骤S513中,该AMF会接收到包括图5所示的SMF网元以外的其他网元发送的Nsmf PDU会议建立上下文应答消息,在步骤S514中,该AMF网元会将所有SMF网元发送的Nsmf PDU会议建立上下文应答消息聚合后,通过N2 Path Switch Request Ack消息发送给该目标接入网设备。S515,该目标接入网设备向源接入网设备发送资源释放消息,该资源释放消息用于指示终端设备成功从该源接入网设备切换至该目标接入网设备。
这样,源接入网设备在接收到该资源释放消息后,释放该源接入网设备与终端设备之间的空口资源。
S516,当步骤518中的计时器到时后,该SMF通过向源UPF网元发送N4会话释放请求(N4 session release request)消息,以启动源UPF网元的资源释放流程。
S517,该源UPF网元向该SMF网元发送N4会话释放响应(N4 session release response)消息,以确认资源的释放。
S518,该SMF网元向UDM网元发送传输通道释放消息,该传输通道释放消息包括 不再用于传输报文的传输通道的标识信息和对应的报文流的报文发送频率。
例如,在将终端设备切换至目标接入网设备之后,SMF网元在源接入网设备与源UPF网元之间确定的传输通道已经不能使用,那么,该传输通道释放消息包括用于标识该SMF网元在该源接入网设备与源UPF网元中确定的传输通道的标识信息和对应的报文流的报文发送频率。
再例如,若该SMF网元重选UPF网元,SMF网元确定的源接入网设备与源UPF网元之间的传输通道和确定的源UPF网元与锚点UPF网元之间的传输通道已经不能使用,那么,该传输通道释放消息也包括用于标识该源接入网设备与源UPF网元之间的传输通道的标识信息和对应的报文流的报文发送频率,以及,该传输通道释放信息包括用于表示该源UPF网元和与该锚点UPF网元之间的传输通道的标识信息和对应的报文流的报文发送频率。
该UDM网元基于传输通道的标识,确定每个传输通道当前所支持的报文发送频率,并且,从每个传输通道的报文发送频率中加上对应的报文流的报文发送频率,生成更新的传输通道频率信息。
S519,该UDM网元向该SMF网元发送确认消息,该确认消息用于指示该UDM网元成功释放传输通道中被占用的报文发送频率。
图6是根据本申请再一实施例的传输信息的方法600的示意性流程图。在该方法600中,以SMF网元作为该控制设备,接入网设备、UPF网元或应用服务器中任一个作为该网络设备#A,UDM网元为该网络设备#C为例,描述了在切换接入网设备的过程中不进行重选UPF网元的场景中各个网元之间传输信息的过程。
在该方法中,该网络架构中还包括AMF网元、UDM网元,其中,接入网设备包括源接入网设备和目标接入网设备。这里,将该目标接入网设备与该UPF网元之间的传输网络记为传输网络#D1,将该UPF网元与应用服务器之间的传输网络记为传输网络#D2。
S601,目标接入网设备向AMF网元发送N2路径切换请求(N2 path switch request)消息,该N2 path switch request消息用于通知终端设备已经移动至新的小区以及多个需要切换的PDU会话。
S602,该AMF网元向SMF网元发送N2 SM information消息。
其中,此步骤的相关描述参考上文方法500中的步骤S502的描述,此处不再赘述。
S603,该SMF网元从UDM网元处获取系统为上述传输网络#D1和传输网络#D2预配置的所有传输通道的传输通道信息。
其中,此步骤的相关描述参考上文方法500中的步骤S503的描述,此处不再赘述。
S604,该SMF选择UPF网元。
例如,该SMF网元需要判断当前的UPF网元是否可以满足报文流的需要,具体判断条件至少包括在不改变UPF的情况下,当前UPF网元与应用服务器之间的传输通道是否可以满足报文流的性能需求;若当前UPF网元符合上述判断条件,则该SMF网元确定不需要切换当前UPD网元后,则选择该目标接入网设备与该UPF网元,和/或,该UPF网元与该应用服务器之间的传输通道。
这里,当前UPF网元与应用服务器之间的传输通道可以是该SMF网元之前已经为报文流选择的传输通道,也可以是预配置在该UPF网元与该应用服务器之间的其他传输通 道。
作为示例而非限定,在确定传输通道是否满足报文流的性能需求时,可以先确定该SMF网元之前已经为报文流选择的传输通道是否满足报文流的性能需求,若不满足,再确定预配置在该UPF网元与该应用服务器之间的其他传输通道是否满足报文流的性能需求。
此外,当满足报文流需求的传输通道是该其他传输通道时,该SMF网元需要重新选择该UPF网元与该应用服务器之间的传输通道。其中,该SMF网元确定传输通道是否满足报文流的性能需求(或者,该SMF网元为报文流选择传输通道的方式)可以参考上文的相关描述,此处不再赘述。
S605,该SMF网元向UDM网元发送传输通道请求消息。
其中,此步骤的相关描述参考上文方法500中的步骤S505的描述,此处不再赘述。
S606,该UDM网元基于传输通道的标识,确定每个传输通道当前所支持的报文发送频率,并且,从每个传输通道的报文发送频率中减去对应的报文流的报文发送频率,生成更新的传输通道频率信息。
在后续该SMF向该UDM网元发送用于请求传输通道信息的请求信息时,该UDM网元发送的传输通道信息中包括的是更新后的传输通道频率信息。
S607,该SMF网元向目标UPF网元发送用于标识在传输网络#D1和传输网络#D2中传输通道的至少一个标识信息和对应的至少一个指示信息。
例如,该SMF网元可以发送N4会话建立/修改请求(N4 session establishment/modification request)消息,该消息中包括用于标识在传输网络#D1和传输网络#D2中传输通道的至少一个标识信息和对应的至少一个指示信息。
其中,每个指示信息用于指示对应的传输通道传输的报文所属的报文流所属的至少一个报文流,具体针对标识信息和对应的指示信息的描述可以参考上文针对第一标识信息和第一指示信息的描述,此处不再赘述。
需要说明的是,在传输网络#D1中,该UPF网元是下行传输的发送端,在传输网络#D2中,该UPF网元是上行传输的发送端,该至少一个标识信息所标识的传输通道既包括用于上行传输的上行传输通道,也包括用于下行传输的下行传输通道,具体描述可以参考方法300中步骤S311的相关描述。
S608,该UPF网元向该SMF网元发送确认消息,该确认消息表示该UPF网元成功接收该SMF网元在步骤S607中发送的至少一个标识信息和对应的至少一个指示信息。
例如,当用于标识在传输网络#D1和传输网络#D2中传输通道的至少一个标识信息和对应的至少一个指示信息承载于N4 session establishment/modification request消息中,该确认消息可以是N4会话建立/修改响应(N4 session establishment/modification response)消息。
S609,该SMF网元向应用服务器发送用于标识在传输网络#D2中传输通道的至少一个标识信息和对应的至少一个指示信息。
其中,每个指示信息用于指示对应的传输通道传输的报文所属的报文流所属的至少一个报文流,具体针对标识信息和对应的指示信息的描述可以参考上文针对第一标识信息和第一指示信息的描述,此处不再赘述。
需要说明的是,在传输网络#D2中,应用服务器是下行传输的发送端,因此,该至少一个标识信息所标识的传输通道可以仅包括用于下行传输的下行传输通道。
S610,该应用服务器向该SMF网元发送确认消息,该确认消息表示该应用服务器成功接收该SMF网元在步骤S609中发送的至少一个标识信息和对应的至少一个指示信息。
S611,该SMF网元向该AMF网元发送用于标识在传输网络#D1中传输通道的至少一个标识信息和对应的至少一个指示信息。
例如,该SMF网元可以发送Nsmf PDU会议建立上下文应答(Nsmf PDU session create SM context response)消息,其中,该消息中包括用于标识在传输网络#D1中传输通道的至少一个标识信息和对应的至少一个指示信息。
需要说明的是,由于该至少一个标识信息和该至少一个标识信息最终是发送至目标接入网设备的信息,在传输网络#D1中,目标接入网设备是上行传输的发送端,因此,该至少一个标识信息所标识的传输通道可以仅包括用于上行传输的上行传输通道。
应理解,步骤S607、S609和S611的序号的大小并不意味着执行顺序的先后,步骤的执行顺序应该以其功能和内在逻辑确定。例如,步骤S607、S609和S611可以同时执行。
S612,该AMF网元向该目标接入网设备发送在步骤S611中接收到的至少一个标识信息和对应的至少一个指示信息。
例如,该AMF网元可以发送N2路径切换请求正确应答(N2 path switch request Ack)消息,该消息中包括在步骤S611中接收到的至少一个标识信息和对应的至少一个指示信息。
即,该AMF网元转发或透传在步骤S611中接收到的至少一个标识信息和对应的至少一个指示信息。
S613,该目标接入网设备向源接入网设备发送资源释放消息,该资源释放消息用于指示终端设备成功从该源接入网设备切换至该目标接入网设备。
这样,源接入网设备在接收到该资源释放消息后,释放该源接入网设备与终端设备之间的空口资源。
S614,该SMF网元向UDM网元发送传输通道释放消息,该传输通道释放消息包括传输网络中不再用于传输报文的传输通道的标识信息和对应的报文流的报文发送频率。
该UDM网元基于传输通道的标识,确定每个传输通道当前所支持的报文发送频率,并且,从每个传输通道的报文发送频率中加上对应的报文流的报文发送频率,生成更新的传输通道频率信息。
S615,该UDM网元向该SMF网元发送确认消息,该确认消息用于指示该UDM网元成功释放传输通道中被占用的报文发送频率。
因此,本申请实施例的传输信息的方法,一方面,控制设备从配置于第一网络设备和第二网络设备之间的至少一个传输通道中确定用于传输属于至少一个报文流的报文的第一传输通道,且通过用于标识该第一传输通道的标识信息使得第一网络设备可以确定能够使用该第一传输通道传输属于该至少一个报文流的报文,其中,该第一传输通道的报文发送频率大于或等于该至少一个报文流的报文发送频率,且,该第一传输通道的传输性能满足该至少一个报文流的传输性能,进而,可以使得该第一网络设备在发送属于该至少一个报文流的报文时,按照该第一传输通道的报文发送频率使用该第一传输通道发送报文,能 够有效地减少报文的传输时延,进而满足针对移动网络中报文的传输性能的需求;
另一方面,控制设备通过向终端设备发送用于指示至少一个报文流中每个报文流的报文发送频率的第一报文流频率信息,可以使得该终端设备可以使用报文所属的报文流对应的报文发送频率发送报文,有效地避免了由于该终端设备未按照报文流的报文发送频率发送报文而影响了其他报文流的报文的传输性能;
再一方面,控制设备通过向第三网络设备发送第二标识信息和第二报文流频率信息,可以使得该第三网络设备可以基于该第二标识信息和该第二报文流频率信息时时更新第一传输通道的报文发送频率,以能够真实反映该第一传输通道当前能够支持的报文发送频率,为其他报文流选择传输通道提供真实有效的数据,从而尽可能保证所有报文流的报文的正常传输。
应理解,在本申请的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
以上,结合图1至图6详细描述了根据本申请实施例的传输信息的方法,下面,结合图7至图10描述根据本申请实施例的传输信息的装置,方法实施例所描述的技术特征同样适用于以下装置实施例。
图7所示为根据本申请实施例的传输信息的装置700的示意性框图。如图7所示,该装置700包括:
处理单元710,用于从配置于第一网络设备和第二网络设备之间的至少一条传输通道中确定第一传输通道,该第一传输通道用于传输属于至少一个报文流的报文,该第一传输通道当前所支持的报文发送频率大于或等于该至少一个报文流的报文发送频率的总和,该第一传输通道的传输性能满足该至少一个报文流的传输性能;
发送单元720,向该第一网络设备发送第一标识信息,该第一标识信息用于标识该第一传输通道。
因此,本申请实施例的传输信息的装置,该装置从配置于第一网络设备和第二网络设备之间的至少一个传输通道中确定用于传输属于至少一个报文流的报文的第一传输通道,且通过用于标识该第一传输通道的标识信息使得第一网络设备可以确定能够使用该第一传输通道传输属于该至少一个报文流的报文,其中,该第一传输通道的报文发送频率大于或等于该至少一个报文流的报文发送频率,且,该第一传输通道的传输性能满足该至少一个报文流的传输性能,进而,可以使得该第一网络设备在发送属于该至少一个报文流的报文时,按照该第一传输通道的报文发送频率使用该第一传输通道发送报文,能够有效地减少报文的传输时延,进而满足针对移动网络中报文的传输性能的需求。
可选地,该发送单元720还用于:
向该第一网络设备发送第一指示信息,该第一指示信息用于指示该至少一个报文流。
可选地,该发送单元720还用于:
向终端设备发送第一报文流频率信息,该第一报文流频率信息用于指示该至少一个报文流中每个报文流的报文发送频率。
因此,本申请实施例提供的传输信息的装置,该装置通过向终端设备发送用于指示至少一个报文流中每个报文流的报文发送频率的第一报文流频率信息,可以使得该终端设备 可以使用报文所属的报文流对应的报文发送频率发送报文,有效地避免了由于该终端设备未按照报文流的报文发送频率发送报文而影响了其他报文流的报文的传输性能。
可选地,该发送单元720还用于:
向第三网络设备发送第二标识信息和第二报文流频率信息,该第二标识信息和该第二报文流频率信息用于更新第一传输通道频率信息,该第一传输通道频率信息用于指示该第一传输通道当前所支持的报文发送频率,
其中,该第二标识信息用于标识该第一传输通道,该第二报文流频率信息用于指示该至少一个报文流中每个报文流的报文发送频率,或,该第二报文流频率信息用于指示该至少一个报文流的报文发送频率的总和。
因此,本申请实施例的传输信息的装置,该装置通过向第三网络设备发送第二标识信息和第二报文流频率信息,可以使得该第三网络设备可以基于该第二标识信息和该第二报文流频率信息时时更新第一传输通道的报文发送频率,以能够真实反映该第一传输通道当前能够支持的报文发送频率,为其他报文流选择传输通道提供真实有效的数据,从而尽可能保证所有报文流的报文的正常传输。
可选地,该处理单元710还用于:
根据该第一传输通道确定第一传输通道频率信息,该第一传输通道频率信息用于指示该第一传输通道当前所支持的报文发送频率;
获取第二报文流频率信息,该第二报文流频率信息用于指示该至少一个报文流中每个报文流的报文发送频率,或,该第二报文流频率信息用于指示该至少一个报文流的报文发送频率的总和;
根据该第一传输通道频率信息和该第二报文流频率信息,生成更新的第一传输通道频率信息。
因此,本申请实施例的传输信息的装置,该装置通过第一传输通道频率信息和第二报文流频率信息时时更新第一传输通道的报文发送频率,以能够真实反映该第一传输通道当前能够支持的报文发送频率,为其他报文流选择传输通道提供真实有效的数据,从而尽可能保证所有报文流的报文的正常传输。
可选地,该处理单元710具体用于:
当该第二报文流频率信息用于指示该至少一个报文流中每个报文流的报文发送频率时,该控制设备从该第一传输通道当前所支持的报文发送频率中减去该每个报文流的报文发送频率,以生成该更新的第一传输通道频率信息;或,
当该第二报文流频率信息用于指示该至少一个报文流中每个报文流的报文发送频率时,该控制设备从该第一传输通道当前所支持的报文发送频率中加上该每个报文流对应的报文发送频率,以生成该更新的第一传输通道频率信息;或,
当该第二报文流频率信息用于指示该至少一个报文流的报文发送频率的总和时,该控制设备从该第一传输通道当前所支持的报文发送频率中减去该至少一个报文流的报文发送频率的总和,以生成该更新的第一传输通道频率信息;或,
当该第二报文流频率信息用于指示该至少一个报文流的报文发送频率的总和时,该控制设备从该第一传输通道当前所支持的报文发送频率中加上该至少一个报文流的报文发送频率的总和,以生成该更新的第一传输通道频率信息。
可选地,该处理单元710具体用于:
根据该至少一个报文流中每个报文流的传输性能和该至少一条传输通道中每条传输通道的传输性能,并且,根据该至少一个报文流中每个报文流的报文发送频率和该至少一个一条传输通道中每条传输通道当前所支持的报文发送频率,从该至少一条传输通道中确定该第一传输通道。
可选地,该第一网络设备为以下任一种设备:接入网设备;或,用户面功能网元;或,应用服务器。
该传输信息的装置700可以对应(例如,可以配置于或本身即为)上述方法200中描述的控制设备,并且,该传输信息的装置700中各模块或单元分别用于执行上述方法200中控制设备所执行的各动作或处理过程,这里,为了避免赘述,省略其详细说明。
在本申请实施例中,该装置700可以为控制设备,此种情况下,该装置700可以包括:处理器、发送器和接收器。处理器、发送器和接收器通信连接。可选地,该装置还包括存储器,存储器与处理器通信连接。可选地,处理器、存储器、发送器和接收器可以通信连接,该存储器可以用于存储指令,该处理器用于执行该存储器存储的指令,以控制发送器发送信息或接收器接收信号。
此种情况下,图7所示的装置700中的处理单元710可以对应该处理器,图7所示的装置700中的发送单元720可以对应该发送器。另一种实施方式中,发送器和接收器可以由同一个部件收发器实现。
在本申请实施例中,该装置700可以为安装在控制设备中的芯片(或者说,芯片系统),此情况下,该装置700可以包括:处理器和输入输出接口。处理器可以通过输入输出接口与网络设备的收发器通信连接。可选地,该装置还包括存储器,存储器与处理器通信连接。可选地,处理器、存储器和收发器可以通信连接,该存储器可以用于存储指令,该处理器用于执行该存储器存储的指令,以控制收发器发送信息或信号。
此情况下,图7所示的装置700中的处理单元710可以对应该处理器,图7所示的装置700中的发送单元720可以对应该输出接口。
图8所示为根据本申请实施例的传输信息的装置800的示意性框图。如图8所示,该装置800包括:
接收单元810,用于从控制设备接收第一标识信息,该第一标识信息用于标识配置于第一网络设备和第二网络设备之间的至少一条传输通道中的第一传输通道,该第一传输通道用于传输属于至少一个报文流的报文发送频率的总和,该第一传输通道的传输性能满足该至少一个报文流的传输性能;
处理单元820,用于确定第一报文所属的报文流属于该至少一个报文流;
发送单元830,用于按照该第一传输通道的报文发送频率,使用该第一传输通道发送基于该第一报文生成的第二报文。
因此,本申请实施例的传输信息的装置,该装置通过接收控制设备发送的用于标识第一传输通道的标识信息,可以使得该装置确定能够使用该第一传输通道传输属于该至少一个报文流的报文,其中,该第一传输通道的报文发送频率大于或等于该至少一个报文流的报文发送频率,且,该第一传输通道的传输性能满足该至少一个报文流的传输性能,进而,可以使得该第一网络设备在发送属于该至少一个报文流的报文时,按照该第一传输通道的 报文发送频率使用该第一传输通道发送报文,能够有效地减少报文的传输时延,进而满足针对移动网络中报文的传输性能的需求。
可选地,该接收单元810还用于:从该控制设备接收第一指示信息,该第一指示信息用于指示至少一个报文流;以及
该处理单元820具体用于:根据该第一指示信息和该第一报文的字段,确定该第一报文所属的报文流属于该至少一个报文流,其中,该第一报文的字段用于至少该至少一个报文流。
可选地,该装置为以下任一种设备:接入网设备;或,用户面功能网元;或,应用服务器。
该传输信息的装置800可以对应(例如,可以配置于或本身即为)上述方法200中描述的第一网络设备,该第一网络设备可以为接入网设备、UPF网元或应用服务器,并且,该传输信息的装置800中各模块或单元分别用于执行上述方法200中第一网络设备所执行的各动作或处理过程,这里,为了避免赘述,省略其详细说明。
在本申请实施例中,该装置800可以为第一网络设备,此种情况下,该装置800可以包括:处理器、发送器和接收器。处理器、发送器和接收器通信连接。可选地,该装置还包括存储器,存储器与处理器通信连接。可选地,处理器、存储器、发送器和接收器可以通信连接,该存储器可以用于存储指令,该处理器用于执行该存储器存储的指令,以控制发送器发送信息或接收器接收信号。
此种情况下,图8所示的装置800中的接收单元810可以对应该接收器,图8所示的装置800中的处理单元820可以对应该处理器,图8所示的装置800中的发送单元830可以对应该发送器。另一种实施方式中,发送器和接收器可以由同一个部件收发器实现。
在本申请实施例中,该装置800可以为安装在第一网络设备中的芯片(或者说,芯片系统),此情况下,该装置800可以包括:处理器和输入输出接口。处理器可以通过输入输出接口与网络设备的收发器通信连接。可选地,该装置还包括存储器,存储器与处理器通信连接。可选地,处理器、存储器和收发器可以通信连接,该存储器可以用于存储指令,该处理器用于执行该存储器存储的指令,以控制收发器发送信息或信号。
此情况下,图8所示的装置800中的接收单元810可以对应该输入接口,图8所示的装置800中的处理单元820可以对应该处理器,图8所示的装置800中的发送单元830可以对应该输出接口。
图9所示为根据本申请实施例的传输信息的装置900的示意性框图。如图9所示,该装置900包括:
接收单元910,用于从控制设备接收标识信息和报文流频率信息,该标识信息用于表示配置于第一网络设备和第二网络设备之间的至少一条传输通道中的第一传输通道,该第一传输通道用于传输属于至少一个报文流的报文,该报文流频率信息用于指示该至少一个报文流中每个报文流的报文发送频率,或,该报文流频率信息用于指示该至少一个报文流的报文发送频率的总和;
处理单元920,用于根据该标识信息,确定第一传输通道频率信息,该第一传输通道频率信息用于指示该第一传输通道当前所支持的报文发送频率;
处理单元930还用于,根据该第一传输通道频率信息和报文流频率信息,生成更新的 第一传输通道频率信息。
因此,本申请实施例的传输信息的装置,该装置通过接收控制设备发送的第二标识信息和第二报文流频率信息,可以使得该装置基于该第二标识信息和该第二报文流频率信息时时更新第一传输通道的报文发送频率,以能够真实反映该第一传输通道当前能够支持的报文发送频率,为其他报文流选择传输通道提供真实有效的数据,从而尽可能保证所有报文流的报文的正常传输。
可选地,该处理单元920具体用于:
当该报文流频率信息用于指示该至少一个报文流中每个报文流的报文发送频率时,从该第一传输通道当前所支持的报文发送频率中减去该每个报文流的报文发送频率,生成该更新的第一传输通道频率信息;或,
当该报文流频率信息用于指示该至少一个报文流中每个报文流的报文发送频率时,从该第一传输通道当前所支持的报文发送频率中加上该每个报文流对应的报文发送频率,生成该更新的第一传输通道频率信息;或,
当该报文流频率信息用于指示该至少一个报文流的报文发送频率的总和时,从该第一传输通道当前所支持的报文发送频率中减去该至少一个报文流的报文发送频率的总和,生成该更新的第一传输通道频率信息;或,
当该报文流频率信息用于指示该至少一个报文流的报文发送频率的总和时,从该第一传输通道当前所支持的报文发送频率中加上该至少一个报文流的报文发送频率的总和,生成该更新的第一传输通道频率信息。
该传输信息的装置900可以对应(例如,可以配置于或本身即为)上述方法200中描述的第三网络设备,并且,该传输信息的装置900中各模块或单元分别用于执行上述方法200中第三网络设备所执行的各动作或处理过程,这里,为了避免赘述,省略其详细说明。
在本申请实施例中,该装置900可以为第三网络设备,此种情况下,该装置900可以包括:处理器、发送器和接收器。处理器、发送器和接收器通信连接。可选地,该装置还包括存储器,存储器与处理器通信连接。可选地,处理器、存储器、发送器和接收器可以通信连接,该存储器可以用于存储指令,该处理器用于执行该存储器存储的指令,以控制发送器发送信息或接收器接收信号。
此种情况下,图9所示的装置900中的接收单元99可以对应该接收器,图9所示的装置900中的处理单元920可以对应该处理器。
在本申请实施例中,该装置900可以为安装在第三网络设备中的芯片(或者说,芯片系统),此情况下,该装置900可以包括:处理器和输入输出接口。处理器可以通过输入输出接口与网络设备的收发器通信连接。可选地,该装置还包括存储器,存储器与处理器通信连接。可选地,处理器、存储器和收发器可以通信连接,该存储器可以用于存储指令,该处理器用于执行该存储器存储的指令,以控制收发器发送信息或信号。
此情况下,图9所示的装置900中的接收单元910可以对应该输入接口,图9所示的装置900中的处理单元920可以对应该处理器。
图10所示为根据本申请实施例的传输信息的装置1000的示意性框图。如图10所示,该装置1000包括:
接收单元1010,用于从控制设备接收第一报文流频率信息,该第一报文流频率信息 用于指示至少一个报文流中每个报文流的报文发送频率;
处理单元1020,用于根据报文所属的报文流,从该第一报文流频率信息中确定该报文所属的报文流的报文发送频率,该报文流属于该至少一个报文流;
发送单元1030,用于按照该报文所属的报文流的报文发送频率发送该报文。
因此,本申请实施例提供的传输信息的装置,该装置通过接收控制设备发送的用于指示至少一个报文流中每个报文流的报文发送频率的第一报文流频率信息,可以使得该装置使用报文所属的报文流对应的报文发送频率发送报文,有效地避免了由于该装置未按照报文流的报文发送频率发送报文而影响了其他报文流的报文的传输性能。
该传输信息的装置1000可以对应(例如,可以配置于或本身即为)上述方法200中描述的终端设备,并且,该传输信息的装置1000中各模块或单元分别用于执行上述方法200中终端设备所执行的各动作或处理过程,这里,为了避免赘述,省略其详细说明。
在本申请实施例中,该装置1000可以为终端设备,此种情况下,该装置1000可以包括:处理器、发送器和接收器。处理器、发送器和接收器通信连接。可选地,该装置还包括存储器,存储器与处理器通信连接。可选地,处理器、存储器、发送器和接收器可以通信连接,该存储器可以用于存储指令,该处理器用于执行该存储器存储的指令,以控制发送器发送信息或接收器接收信号。
此种情况下,图10所示的装置1000中的接收单元1010可以对应该接收器,图10所示的装置1000中的处理单元1020可以对应该处理器,图10所示的装置1000中的发送单元1030可以对应该发送器。另一种实施方式中,发送器和接收器可以由同一个部件收发器实现。
在本申请实施例中,该装置1000可以为安装在终端设备中的芯片(或者说,芯片系统),此情况下,该装置1000可以包括:处理器和输入输出接口。处理器可以通过输入输出接口与网络设备的收发器通信连接。可选地,该装置还包括存储器,存储器与处理器通信连接。可选地,处理器、存储器和收发器可以通信连接,该存储器可以用于存储指令,该处理器用于执行该存储器存储的指令,以控制收发器发送信息或信号。
此情况下,图10所示的装置1000中的接收单元1010可以对应该输入接口,图10所示的装置1000中的处理单元1020可以对应该处理器,图10所示的装置1000中的发送单元1030可以对应该输出接口。
应注意,本申请实施例上述方法实施例可以应用于处理器中,或者由处理器实现。处理器可能是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法实施例的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器可以是通用处理器、数字信号处理器(digital signal processor,DSP)、专用集成电路(application specific integrated circuit,ASIC)、现成可编程门阵列(field programmable gate array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处 理器读取存储器中的信息,结合其硬件完成上述方法的步骤。
可以理解,本申请实施例中的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(read-only memory,ROM)、可编程只读存储器(programmable ROM,PROM)、可擦除可编程只读存储器(erasable PROM,EPROM)、电可擦除可编程只读存储器(electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(random access memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(dynamic RAM,DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(direct rambus RAM,DR RAM)。应注意,本文描述的系统和方法的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(read-only memory,ROM)、随机存取存储器(random access memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (29)

  1. 一种传输信息的方法,其特征在于,所述方法包括:
    控制设备从配置于第一网络设备和第二网络设备之间的至少一条传输通道中确定第一传输通道,所述第一传输通道用于传输属于至少一个报文流的报文,所述第一传输通道当前所支持的报文发送频率大于或等于所述至少一个报文流的报文发送频率的总和,所述第一传输通道的传输性能满足所述至少一个报文流的传输性能;
    所述控制设备向所述第一网络设备发送第一标识信息,所述第一标识信息用于标识所述第一传输通道。
  2. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    所述控制设备向所述第一网络设备发送第一指示信息,所述第一指示信息用于指示所述至少一个报文流。
  3. 根据权利要求1或2所述的方法,其特征在于,所述方法还包括:
    所述控制设备向终端设备发送第一报文流频率信息,所述第一报文流频率信息用于指示所述至少一个报文流中每个报文流的报文发送频率。
  4. 根据权利要求1至3中任一项所述的方法,其特征在于,所述方法还包括:
    所述控制设备向第三网络设备发送第二标识信息和第二报文流频率信息,所述第二标识信息和所述第二报文流频率信息用于更新第一传输通道频率信息,所述第一传输通道频率信息用于指示所述第一传输通道当前所支持的报文发送频率,
    其中,所述第二标识信息用于标识所述第一传输通道,所述第二报文流频率信息用于指示所述至少一个报文流中每个报文流的报文发送频率,或,所述第二报文流频率信息用于指示所述至少一个报文流的报文发送频率的总和。
  5. 根据权利要求1至3中任一项所述的方法,其特征在于,所述方法还包括:
    所述控制设备根据所述第一传输通道确定第一传输通道频率信息,所述第一传输通道频率信息用于指示所述第一传输通道当前所支持的报文发送频率;
    所述控制设备获取第二报文流频率信息,所述第二报文流频率信息用于指示所述至少一个报文流中每个报文流的报文发送频率,或,所述第二报文流频率信息用于指示所述至少一个报文流的报文发送频率的总和;
    所述控制设备根据所述第一传输通道频率信息和所述第二报文流频率信息,生成更新的第一传输通道频率信息。
  6. 根据权利要求5所述的方法,其特征在于,所述控制设备根据所述第一传输通道频率信息和所述第二报文流频率信息,生成更新的第一传输通道频率信息,包括:
    当所述第二报文流频率信息用于指示所述至少一个报文流中每个报文流的报文发送频率时,所述控制设备从所述第一传输通道当前所支持的报文发送频率中减去所述每个报文流的报文发送频率,以生成所述更新的第一传输通道频率信息;或,
    当所述第二报文流频率信息用于指示所述至少一个报文流中每个报文流的报文发送频率时,所述控制设备从所述第一传输通道当前所支持的报文发送频率中加上所述每个报文流对应的报文发送频率,以生成所述更新的第一传输通道频率信息;或,
    当所述第二报文流频率信息用于指示所述至少一个报文流的报文发送频率的总和时,所述控制设备从所述第一传输通道当前所支持的报文发送频率中减去所述至少一个报文流的报文发送频率的总和,以生成所述更新的第一传输通道频率信息;或,
    当所述第二报文流频率信息用于指示所述至少一个报文流的报文发送频率的总和时,所述控制设备从所述第一传输通道当前所支持的报文发送频率中加上所述至少一个报文流的报文发送频率的总和,以生成所述更新的第一传输通道频率信息。
  7. 根据权利要求1至6中任一项所述的方法,其特征在于,所述控制设备从配置于第一网络设备和第二网络设备之间的至少一条传输通道中确定第一传输通道,包括:
    所述控制设备根据所述至少一个报文流中每个报文流的传输性能和所述至少一条传输通道中传输通道的传输性能,并且,根据所述至少一条报文流中每个报文流的报文发送频率和所述至少一条传输通道中传输通道当前所支持的报文发送频率,从所述至少一条传输通道中确定所述第一传输通道。
  8. 根据权利要求1至7中任一项所述的方法,其特征在于,所述第一网络设备为以下任一种设备:接入网设备;或,用户面功能网元;或,应用服务器。
  9. 一种传输信息的方法,其特征在于,所述方法包括:
    第一网络设备从控制设备接收第一标识信息,所述第一标识信息用于标识配置于所述第一网络设备和第二网络设备之间的至少一条传输通道中的第一传输通道,所述第一传输通道用于传输属于至少一个报文流的报文,所述第一传输通道当前所支持的报文发送频率大于或等于所述至少一个报文流的报文发送频率的总和,所述第一传输通道的传输性能满足至少一个报文流的传输性能;
    所述第一网络设备确定第一报文所属的报文流属于所述至少一个报文流;
    所述第一网络设备按照所述第一传输通道的报文发送频率,使用所述第一传输通道发送基于所述第一报文生成的第二报文。
  10. 根据权利要求9所述的方法,其特征在于,所述方法还包括:
    所述第一网络设备从所述控制设备接收第一指示信息,所述第一指示信息用于指示所述至少一个报文流;以及,
    所述第一网络设备确定第一报文所属的报文流属于所述至少一个报文流,包括:
    所述第一网络设备根据所述第一指示信息与所述第一报文的字段,确定所述第一报文所属的报文流属于所述至少一个报文流,其中,所述第一报文的字段用于指示所述至少一个报文流。
  11. 根据权利要求9或10所述的方法,其特征在于,所述第一网络设备为以下任一种设备:接入网设备;或,用户面功能网元;或,应用服务器。
  12. 一种传输信息的方法,其特征在于,所述方法包括:
    第三网络设备从控制设备接收标识信息和报文流频率信息,所述标识信息用于标识配置于第一网络设备和第二网络设备之间的至少一条传输通道中的第一传输通道,所述第一传输通道用于传输属于至少一个报文流的报文,所述报文流频率信息用于指示所述至少一个报文流中每个报文流的报文发送频率,或,所述报文流频率信息用于指示所述至少一个报文流的报文发送频率的总和;
    所述第三网络设备根据所述标识信息,确定第一传输通道频率信息,所述第一传输通 道频率信息用于指示所述第一传输通道当前所支持的报文发送频率;
    所述第三网络设备根据所述第一传输通道频率信息和所述报文流频率信息,生成更新的第一传输通道频率信息。
  13. 根据权利要求12所述的方法,其特征在于,所述第三网络设备根据所述第一传输通道频率信息和所述报文流频率信息,生成更新的第一传输通道频率信息,包括:
    当所述报文流频率信息用于指示所述至少一个报文流中每个报文流的报文发送频率时,所述第三网络设备从所述第一传输通道当前所支持的报文发送频率中减去所述每个报文流的报文发送频率,以生成所述更新的第一传输通道频率信息;或,
    当所述报文流频率信息用于指示所述至少一个报文流中每个报文流的报文发送频率时,所述第三网络设备从所述第一传输通道当前所支持的报文发送频率中加上所述每个报文流对应的报文发送频率,以生成所述更新的第一传输通道频率信息;或,
    当所述报文流频率信息用于指示所述至少一个报文流的报文发送频率的总和时,所述第三网络设备从所述第一传输通道当前所支持的报文发送频率中减去所述至少一个报文流的报文发送频率的总和,以生成所述更新的第一传输通道频率信息;或,
    当所述报文流频率信息用于指示所述至少一个报文流的报文发送频率的总和时,所述第三网络设备从所述第一传输通道当前所支持的报文发送频率中加上所述至少一个报文流的报文发送频率的总和,以生成所述更新的第一传输通道频率信息。
  14. 一种传输信息的方法,其特征在于,所述方法包括:
    终端设备从控制设备接收第一报文流频率信息,所述第一报文流频率信息用于指示至少一个报文流中每个报文流的报文发送频率;
    所述终端设备根据报文所属的报文流,从所述第一报文流频率信息中确定所述报文所属的报文流的报文发送频率,所述报文流属于所述至少一个报文流;
    所述终端设备按照所述报文所属的报文流的报文发送频率发送所述报文。
  15. 一种传输信息的装置,其特征在于,所述装置包括:
    处理单元,用于从配置于第一网络设备和第二网络设备之间的至少一条传输通道中确定第一传输通道,所述第一传输通道用于传输属于至少一个报文流的报文,所述第一传输通道当前所支持的报文发送频率大于或等于所述至少一个报文流的报文发送频率的总和,所述第一传输通道的传输性能满足所述至少一个报文流的传输性能;
    发送单元,向所述第一网络设备发送第一标识信息,所述第一标识信息用于标识所述第一传输通道。
  16. 根据权利要求15所述的装置,其特征在于,所述发送单元还用于:
    向所述第一网络设备发送第一指示信息,所述第一指示信息用于指示所述至少一个报文流。
  17. 根据权利要求15或16所述的装置,其特征在于,所述发送单元还用于:
    向终端设备发送第一报文流频率信息,所述第一报文流频率信息用于指示所述至少一个报文流中每个报文流的报文发送频率。
  18. 根据权利要求15至17中任一项所述的装置,其特征在于,所述发送单元还用于:
    向第三网络设备发送第二标识信息和第二报文流频率信息,所述第二标识信息和所述第二报文流频率信息用于更新第一传输通道频率信息,所述第一传输通道频率信息用于指 示所述第一传输通道当前所支持的报文发送频率,
    其中,所述第二标识信息用于标识所述第一传输通道,所述第二报文流频率信息用于指示所述至少一个报文流中每个报文流的报文发送频率,或,所述第二报文流频率信息用于指示所述至少一个报文流的报文发送频率的总和。
  19. 根据权利要求15至17中任一项所述的装置,其特征在于,所述处理单元还用于:
    根据第一传输通道确定第一传输通道频率信息,所述第一传输通道频率信息用于指示所述第一传输通道当前所支持的报文发送频率;
    获取第二报文流频率信息,所述第二报文流频率信息用于指示所述至少一个报文流中每个报文流的报文发送频率,或,所述第二报文流频率信息用于指示所述至少一个报文流的报文发送频率的总和;
    根据所述第一传输通道频率信息和所述第二报文流频率信息,生成更新的第一传输通道频率信息。
  20. 根据权利要求19所述的装置,其特征在于,所述处理单元具体用于:
    当所述第二报文流频率信息用于指示所述至少一个报文流中每个报文流的报文发送频率时,所述控制设备从所述第一传输通道当前所支持的报文发送频率中减去所述每个报文流的报文发送频率,以生成所述更新的第一传输通道频率信息;或,
    当所述第二报文流频率信息用于指示所述至少一个报文流中每个报文流的报文发送频率时,所述控制设备从所述第一传输通道当前所支持的报文发送频率中加上所述每个报文流对应的报文发送频率,以生成所述更新的第一传输通道频率信息;或,
    当所述第二报文流频率信息用于指示所述至少一个报文流的报文发送频率的总和时,所述控制设备从所述第一传输通道当前所支持的报文发送频率中减去所述至少一个报文流的报文发送频率的总和,以生成所述更新的第一传输通道频率信息;或,
    当所述第二报文流频率信息用于指示所述至少一个报文流的报文发送频率的总和时,所述控制设备从所述第一传输通道当前所支持的报文发送频率中加上所述至少一个报文流的报文发送频率的总和,以生成所述更新的第一传输通道频率信息。
  21. 根据权利要求17至20中任一项所述的装置,其特征在于,所述处理单元具体用于:
    根据所述至少一个报文流中每个报文流的传输性能和所述至少一条传输通道中传输通道的传输性能,并且,根据所述至少一个报文流中每个报文流的报文发送频率和所述至少一条传输通道中传输通道当前所支持的报文发送频率,从所述至少一条传输通道中确定所述第一传输通道。
  22. 根据权利要求17至21中任一项所述的装置,其特征在于,所述第一网络设备为以下任一种设备:接入网设备;或,用户面功能网元;或,应用服务器。
  23. 一种传输信息的装置,其特征在于,所述装置包括:
    接收单元,用于从控制设备接收第一标识信息,所述第一标识信息用于标识配置于第一网络设备和第二网络设备之间的至少一条传输通道中的第一传输通道,所述第一传输通道用于传输属于至少一个报文流的报文发送频率的总和,所述第一传输通道的传输性能满足所述至少一个报文流的传输性能;
    处理单元,用于确定第一报文所属的报文流属于所述至少一个报文流;
    发送单元,用于按照所述第一传输通道的报文发送频率,使用所述第一传输通道发送基于所述第一报文生成的第二报文。
  24. 根据权利要求23所述的装置,其特征在于,
    所述接收单元还用于:从所述控制设备接收第一指示信息,所述第一指示信息用于指示至少一个报文流;以及
    所述处理单元具体用于:根据所述第一指示信息和所述第一报文的字段,确定所述第一报文所属的报文流属于所述至少一个报文流,其中,所述第一报文的字段用于至少所述至少一个报文流。
  25. 根据权利要求23或24所述的装置,其特征在于,所述第一网络设备为以下任一种设备:接入网设备;或,用户面功能网元;或,应用服务器。
  26. 一种传输信息的装置,其特征在于,所述装置包括:
    接收单元,用于从控制设备接收标识信息和报文流频率信息,所述标识信息用于标识配置于第一网络设备和第二网络设备之间的至少一条传输通道中的第一传输通道,所述第一传输通道用于传输属于至少一个报文流的报文,所述报文流频率信息用于指示所述至少一个报文流中每个报文流的报文发送频率,或,所述报文流频率信息用于指示所述至少一个报文流的报文发送频率的总和;
    处理单元,用于根据所述标识信息,确定第一传输通道频率信息,所述第一传输通道频率信息用于指示所述第一传输通道当前所支持的报文发送频率;
    所述处理单元还用于,根据所述第一传输通道频率信息和报文流频率信息,生成更新的第一传输通道频率信息。
  27. 根据权利要求26所述的装置,其特征在于,所述处理单元具体用于:
    当所述报文流频率信息用于指示所述至少一个报文流中每个报文流的报文发送频率时,从所述第一传输通道当前所支持的报文发送频率中减去所述每个报文流的报文发送频率,以生成所述更新的第一传输通道频率信息;或,
    当所述报文流频率信息用于指示所述至少一个报文流中每个报文流的报文发送频率时,从所述第一传输通道当前所支持的报文发送频率中加上所述每个报文流对应的报文发送频率,以生成所述更新的第一传输通道频率信息;或,
    当所述报文流频率信息用于指示所述至少一个报文流的报文发送频率的总和时,从所述第一传输通道当前所支持的报文发送频率中减去所述至少一个报文流的报文发送频率的总和,以生成所述更新的第一传输通道频率信息;或,
    当所述报文流频率信息用于指示所述至少一个报文流的报文发送频率的总和时,从所述第一传输通道当前所支持的报文发送频率中加上所述至少一个报文流的报文发送频率的总和,以生成所述更新的第一传输通道频率信息。
  28. 一种传输信息的装置,其特征在于,所述装置包括:
    接收单元,用于从控制设备接收第一报文流频率信息,所述第一报文流频率信息用于指示至少一个报文流中每个报文流的报文发送频率;
    处理单元,用于根据报文所属的报文流,从所述第一报文流频率信息中确定所述报文所属的报文流的报文发送频率,所述报文流属于所述至少一个报文流;
    发送单元,用于按照所述报文所属的报文流的报文发送频率发送所述报文。
  29. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质存储有计算机程序,当所述计算机程序在计算机上运行时,使得所述计算机执行如权利要求1至14中任意一项所述的方法。
PCT/CN2019/070051 2018-01-22 2019-01-02 一种传输信息的方法和装置 WO2019141088A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP19741076.4A EP3720072A4 (en) 2018-01-22 2019-01-02 METHOD AND DEVICE FOR TRANSFERRING INFORMATION
US16/934,789 US11483735B2 (en) 2018-01-22 2020-07-21 Information transmission method and apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810060201.9A CN110071877B (zh) 2018-01-22 2018-01-22 一种传输信息的方法和装置
CN201810060201.9 2018-01-22

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/934,789 Continuation US11483735B2 (en) 2018-01-22 2020-07-21 Information transmission method and apparatus

Publications (1)

Publication Number Publication Date
WO2019141088A1 true WO2019141088A1 (zh) 2019-07-25

Family

ID=67301685

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/070051 WO2019141088A1 (zh) 2018-01-22 2019-01-02 一种传输信息的方法和装置

Country Status (4)

Country Link
US (1) US11483735B2 (zh)
EP (1) EP3720072A4 (zh)
CN (1) CN110071877B (zh)
WO (1) WO2019141088A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11528635B2 (en) * 2021-01-12 2022-12-13 Verizon Patent And Licensing Inc. Method and system for radio resource management and network slicing

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7474642B1 (en) * 2004-09-15 2009-01-06 Nortel Networks Limited Signaling reliability in using high-speed shared packet data channel
CN101986746A (zh) * 2010-07-29 2011-03-16 北京星网锐捷网络技术有限公司 无线局域网的测试方法、系统及设备
CN103686211A (zh) * 2012-08-30 2014-03-26 光宝电子(广州)有限公司 频道选择方法、频道选择器及网络连接装置
CN104041109A (zh) * 2012-12-18 2014-09-10 华为技术有限公司 控制流量的方法、终端网关、终端设备和系统

Family Cites Families (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5434860A (en) * 1994-04-20 1995-07-18 Apple Computer, Inc. Flow control for real-time data streams
US6044396A (en) * 1995-12-14 2000-03-28 Time Warner Cable, A Division Of Time Warner Entertainment Company, L.P. Method and apparatus for utilizing the available bit rate in a constrained variable bit rate channel
EP0800294B1 (en) * 1996-03-20 2004-08-04 Alcatel Method to control data flow rate, queuing network node and packet switching network
US6259733B1 (en) * 1998-06-16 2001-07-10 General Instrument Corporation Pre-processing of bit rate allocation in a multi-channel video encoder
US7593433B1 (en) * 1999-03-02 2009-09-22 Cisco Technology, Inc. System and method for multiple channel statistical re-multiplexing
US7023829B1 (en) * 2000-06-01 2006-04-04 Paradyne Corporation Systems and methods for providing communication between an ATM layer device and multiple multi-channel physical layer devices
US7167650B2 (en) * 2000-06-26 2007-01-23 Jds Uniphase Inc. Method and apparatus for demultiplexing high bit rate optical signals on dense wavelength grid
US20020129159A1 (en) * 2001-03-09 2002-09-12 Michael Luby Multi-output packet server with independent streams
WO2002096021A2 (en) * 2001-05-18 2002-11-28 Bytemobile, Inc. Quality of service management for multiple connections within a network communication system
EP2453696B1 (en) * 2001-11-26 2017-04-26 Intellectual Ventures I LLC Mac Layer Inverse Multiplexing in a Third Generation Ran
US7453805B2 (en) * 2003-03-21 2008-11-18 Panasonic Corporation Method and communication system for signaling information for optimizing rate control schemes in wireless networks
US7668125B2 (en) * 2003-09-09 2010-02-23 Qualcomm Incorporated Incremental redundancy transmission for multiple parallel channels in a MIMO communication system
US7844992B2 (en) * 2003-09-10 2010-11-30 Thomson Licensing Video on demand server system and method
CN101273646A (zh) * 2005-09-22 2008-09-24 夏普株式会社 通信终端装置、通信控制装置、通信系统以及通信方法
US7706386B2 (en) * 2005-10-26 2010-04-27 Cisco Technology, Inc. Fast 2-key scheduler
US8000242B2 (en) * 2006-07-06 2011-08-16 Alcatel Lucent Reducing packet loss for a packet data service during congestion in a transport network
US8019287B2 (en) 2006-08-07 2011-09-13 Motorola Mobility, Inc. On demand antenna feedback
US7885189B2 (en) * 2006-09-20 2011-02-08 Rgb Networks, Inc. Methods and apparatus for rate estimation and predictive rate control
EP2080377A2 (en) * 2006-10-31 2009-07-22 THOMSON Licensing Method and apparatus for transrating bit streams
JP4867806B2 (ja) * 2007-06-15 2012-02-01 株式会社日立製作所 通信システム、サーバ、制御装置および通信装置
US8468571B2 (en) * 2007-12-21 2013-06-18 General Instrument Corporation Enabling trick plays during VBR playback of a CBR transmitted media file
US8468572B2 (en) * 2008-03-26 2013-06-18 Cisco Technology, Inc. Distributing digital video content to multiple end-user devices
KR20090114806A (ko) * 2008-04-30 2009-11-04 충남대학교산학협력단 채널본딩형 무선랜 시스템에서의 트래픽 동적분배방법 및장치
US9032503B2 (en) * 2008-05-20 2015-05-12 Shakeel Mustafa Diversity string based pattern matching
US7792131B1 (en) * 2009-03-10 2010-09-07 Cisco Technologies, Inc. Queue sharing with fair rate guarantee
CN101621850B (zh) * 2009-08-14 2012-04-25 杭州华三通信技术有限公司 一种报文发送方法和一种客户端设备
CN101808044B (zh) * 2010-03-19 2013-10-16 中兴通讯股份有限公司 一种流控制传输协议多归属选路的方法及装置
US9374404B2 (en) * 2010-08-26 2016-06-21 Vasona Networks Inc. Streaming media flows management
WO2012121635A1 (en) * 2011-03-10 2012-09-13 Telefonaktiebolaget L M Ericsson (Publ) Hybrid congestion control
CN103024507B (zh) * 2011-09-26 2016-02-03 华为终端有限公司 在家庭网络中实现画中画的方法、装置和系统
US10412424B2 (en) * 2011-10-19 2019-09-10 Harmonic, Inc. Multi-channel variable bit-rate video compression
US8731572B2 (en) * 2011-11-02 2014-05-20 Broadcom Corporation Localized dynamic channel time allocation
KR101978771B1 (ko) * 2013-01-31 2019-05-15 삼성전자주식회사 무선 통신 시스템에서 스트림 별 채널 이득 피드백을 통한 다중 스트림 mu-cqi 추정 방법 및 장치
CN107135164A (zh) * 2017-06-27 2017-09-05 中国联合网络通信集团有限公司 拥塞控制方法及装置
WO2019061195A1 (en) * 2017-09-28 2019-04-04 Zte Corporation METHOD AND APPARATUS FOR AGGREGATING CARRIERS IN LATERAL LINK COMMUNICATION

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7474642B1 (en) * 2004-09-15 2009-01-06 Nortel Networks Limited Signaling reliability in using high-speed shared packet data channel
CN101986746A (zh) * 2010-07-29 2011-03-16 北京星网锐捷网络技术有限公司 无线局域网的测试方法、系统及设备
CN103686211A (zh) * 2012-08-30 2014-03-26 光宝电子(广州)有限公司 频道选择方法、频道选择器及网络连接装置
CN104041109A (zh) * 2012-12-18 2014-09-10 华为技术有限公司 控制流量的方法、终端网关、终端设备和系统

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3720072A4

Also Published As

Publication number Publication date
US11483735B2 (en) 2022-10-25
EP3720072A4 (en) 2020-12-16
US20200351703A1 (en) 2020-11-05
CN110071877A (zh) 2019-07-30
EP3720072A1 (en) 2020-10-07
CN110071877B (zh) 2021-01-29

Similar Documents

Publication Publication Date Title
KR102065429B1 (ko) 무선 통신 시스템에서 반영식 서비스 품질(QoS)를 수행하기 위한 방법 및 이를 위한 장치
KR102389683B1 (ko) 통신 방법 및 통신 장치
US20240098844A1 (en) Communication method and related product
CN107079015B (zh) 用于移动环境下的基于流的寻址的系统及方法
US11811670B2 (en) Packet delay parameter obtaining method, system, and apparatus
EP3603168B1 (en) Method for transmitting lossless data packet based on quality of service (qos) framework in wireless communication system and a device therefor
US20150078167A1 (en) Systems and Methods for Providing LTE-Based Backhaul
WO2019062783A1 (zh) 业务传输方法和装置
TW202306401A (zh) 通信方法和裝置
WO2019141273A1 (zh) 用于确定性传输的通信方法和相关装置
EP4088434A1 (en) Tsc-5g qos mapping with consideration of assistance traffic information and pcc rules for tsc traffic mapping and 5g qos flows binding
WO2019196788A1 (zh) 通信方法和通信装置
WO2019101054A1 (zh) 聚合速率控制方法、设备以及系统
US20220408317A1 (en) Handover method and communication apparatus
WO2022006828A1 (zh) 无线通信方法和设备
WO2019141088A1 (zh) 一种传输信息的方法和装置
WO2020147001A1 (zh) 激活资源的方法和设备
WO2021227798A1 (zh) 一种通信方法及装置
CN113645572A (zh) 一种通信方法、装置及存储介质
WO2021190513A1 (zh) 一种数据传输方法、装置及系统
WO2023165292A1 (zh) 一种通信方法及装置
WO2023108564A1 (zh) 无线通信方法、终端设备以及网络设备
WO2024103315A1 (zh) 无线通信方法、网元和装置
WO2024055692A1 (zh) 通信方法、通信装置和通信系统
WO2020103086A1 (zh) 无线通信方法、网络节点和终端设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19741076

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019741076

Country of ref document: EP

Effective date: 20200703

NENP Non-entry into the national phase

Ref country code: DE