WO2019141082A1 - 无线通信方法及无线接入设备、网络规划设备、终端设备 - Google Patents

无线通信方法及无线接入设备、网络规划设备、终端设备 Download PDF

Info

Publication number
WO2019141082A1
WO2019141082A1 PCT/CN2018/125538 CN2018125538W WO2019141082A1 WO 2019141082 A1 WO2019141082 A1 WO 2019141082A1 CN 2018125538 W CN2018125538 W CN 2018125538W WO 2019141082 A1 WO2019141082 A1 WO 2019141082A1
Authority
WO
WIPO (PCT)
Prior art keywords
uplink
slot
downlink
network
terminal device
Prior art date
Application number
PCT/CN2018/125538
Other languages
English (en)
French (fr)
Inventor
李俊
林敏�
张琼
王鑫芯
黄锦华
杨波
Original Assignee
京信通信系统(中国)有限公司
京信通信系统(广州)有限公司
京信通信技术(广州)有限公司
天津京信通信系统有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京信通信系统(中国)有限公司, 京信通信系统(广州)有限公司, 京信通信技术(广州)有限公司, 天津京信通信系统有限公司 filed Critical 京信通信系统(中国)有限公司
Publication of WO2019141082A1 publication Critical patent/WO2019141082A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/56Allocation or scheduling criteria for wireless resources based on priority criteria
    • H04W72/566Allocation or scheduling criteria for wireless resources based on priority criteria of the information or information source or recipient
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria
    • H04W72/543Allocation or scheduling criteria for wireless resources based on quality criteria based on requested quality, e.g. QoS
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0833Random access procedures, e.g. with 4-step access
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0866Non-scheduled access, e.g. ALOHA using a dedicated channel for access
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/30Resource management for broadcast services
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/56Allocation or scheduling criteria for wireless resources based on priority criteria
    • H04W72/566Allocation or scheduling criteria for wireless resources based on priority criteria of the information or information source or recipient
    • H04W72/569Allocation or scheduling criteria for wireless resources based on priority criteria of the information or information source or recipient of the traffic information

Definitions

  • the present invention relates to the field of wireless communication technologies, and in particular, to a wireless communication method, a wireless access device, a network planning device, and a terminal device.
  • WLAN Wireless Local Area Networks
  • LTE Long Term Evolution
  • WiMAX Worldwide Interoperability for Microwave Access
  • WCDMA Wideband Code Division Multiple Access
  • TD-SCDMA Time Division-Synchronous Code Division Multiple Access
  • the WLAN system is undoubtedly the best solution, which can achieve the goal of low cost, fast and flexible network, and high-speed communication.
  • LTE, WiMAX, WCDMA, and TD-SCDMA systems the frequency bands used usually require local frequency resource management agencies for authorization, and the flexibility of networking is greatly reduced, and the chips of the above-mentioned systems have higher cost and are economical and flexible.
  • wireless network communication solutions it is not dominant.
  • WLAN wireless local area network standard
  • CSMA/CA Carrier Sense Multiple Access with Collision Avoidance
  • VOIP Voice over Internet Protocol
  • video streaming and other services and long-distance communication, etc., when the channel competition environment is fierce, the problem is particularly prominent.
  • the CSMA/CA protocol for multi-user access mainly relies on each wireless access device competing with each other to acquire air interface resources for wireless communication, and there is no unified control node for control, the user QoS delay is high, and competition When the resource overhead is large and the utilization of air interface resources is low, the overall resource utilization rate is low, and the average transmission rate is much lower than the theoretical rate of air interface.
  • the present invention has been made in order to provide a wireless communication method, a wireless access device, a network planning device, and a terminal device that overcome the above problems or at least partially solve the above problems.
  • a first aspect of the present invention provides a wireless communication method, including:
  • Obtaining network planning parameters delivered by the network planning device where the network planning parameters include a slot period of the TDMA frame and a network uplink and downlink slot ratio;
  • a slot structure of the slot period where the slot structure includes a preset duration corresponding to each service type, and corresponding to each service type. The position of the duration in the slot cycle;
  • the service types include a broadcast service, an uplink data service, and a downlink data service.
  • Determining the slot structure of the slot period according to the slot period and the uplink and downlink slot ratios of the network including:
  • each service type further includes a contention access service
  • the method further includes:
  • the network planning parameter further includes a user uplink/downlink guaranteed bandwidth
  • the uplink/downlink data slot resource that satisfies the uplink/downlink guaranteed bandwidth of the user is allocated according to the uplink/downlink data volume to be sent by each terminal device and the minimum index value of the currently used MCS.
  • the method further includes:
  • the remaining uplink/downlink data slot resources are allocated according to the user priority of each terminal device, and/or the uplink/downlink data amount to be transmitted.
  • the network planning parameter further includes a user uplink/downlink guaranteed time slot
  • the method After the uplink/downlink data amount to be sent by each terminal device and the minimum index value of the currently used MCS are allocated to the corresponding terminal device by the uplink/downlink data slot resources that satisfy the uplink/downlink guaranteed bandwidth of the user, the method also includes:
  • the slot resource is allocated to the terminal device according to the user uplink/downlink guaranteed time slot corresponding to each terminal device.
  • the method further includes:
  • a preset length of heartbeat monitoring time slot resource is reserved for the low priority terminal device, and the low priority terminal device is divided by the heartbeat monitoring time slot. Time slot resources other than resources are released.
  • a second aspect of the present invention provides a wireless communication method, including:
  • the network planning parameter includes a slot period of the TDMA frame of the radio access device and a network uplink and downlink slot ratio for the wireless connection
  • the ingress device determines a slot structure of the slot period according to the slot period and the uplink and downlink slot ratios of the network, and determines the slot structure to communicate with the terminal devices.
  • the acquiring network planning parameters of the current network includes:
  • the slot period of the TDMA frame of the current radio access device and the ratio of the uplink and downlink slots of the network are configured based on the user uplink/downlink guarantee slots of all the terminal devices.
  • the method further includes:
  • the uplink and downlink time slot ratios of the network are adjusted according to the proportion of uplink and downlink services of any terminal device in the current scenario.
  • a third aspect of the present invention provides a wireless communication method, including:
  • the slot resource allocation result is allocated by the radio access device according to a slot structure of a slot period of the TDMA frame; wherein the slot structure includes a preset The duration corresponding to each service type, and the location of the duration corresponding to each service type in the slot cycle;
  • the acquiring the time slot resource allocation result of the wireless access device includes:
  • the broadcast information includes an identification number of the wireless access device, an identification number of each terminal device, and an uplink and downlink time slot resource allocation result corresponding to each terminal device.
  • a fourth aspect of the present invention provides a wireless access device, including:
  • the access side acquiring module is configured to obtain network planning parameters sent by the network planning device, where the network planning parameters include a slot period of the TDMA frame and a network uplink and downlink time slot ratio;
  • a configuration module configured to determine a time slot structure of the time slot period according to the time slot period and a network uplink and downlink time slot ratio, where the time slot structure includes a preset duration corresponding to each service type, and the a time length corresponding to each service type in the slot cycle;
  • a resource allocation module configured to allocate a corresponding time slot resource to each terminal device according to the determined time slot structure
  • the access side communication module is configured to communicate with each terminal device based on a time slot resource allocation result.
  • the service types include a broadcast service, an uplink data service, and a downlink data service.
  • the configuration module is configured to allocate a broadcast time slot corresponding to a broadcast service at an initial position of the time slot period, and allocate the broadcast time slot to the time slot period according to the uplink and downlink time slot ratio of the network.
  • the remaining time length allocates an uplink data slot and a distribution location corresponding to the uplink data service, and a downlink data slot and a distribution location corresponding to the downlink data service.
  • each service type further includes a contention access service
  • the configuration module is configured to: after the broadcast time slot corresponding to the broadcast service is allocated at the initial position of the time slot period, allocate the contention time corresponding to the contention time after the broadcast time slot is allocated according to the time slot period Random access slots and distribution locations.
  • the network planning parameter further includes a user uplink/downlink guaranteed bandwidth
  • the resource allocation module includes:
  • Obtaining a sub-module configured to acquire an uplink/downlink data quantity to be sent by each terminal device, and a minimum index value of a currently used modulation and coding policy MCS;
  • an allocation submodule configured to allocate an uplink/downlink data slot that satisfies the uplink/downward guaranteed bandwidth of the user according to the uplink/downlink data volume to be sent by each terminal device and the minimum index value of the currently used MCS. Resources.
  • the allocation sub-module is further configured to: when the amount of uplink/downlink data to be sent according to each terminal device and the minimum index value of the currently adopted MCS, the corresponding terminal device allocation meets the user uplink/downlink guarantee.
  • the uplink/downlink data slot resources of the bandwidth if there are still remaining uplink/downlink data slot resources, the remaining uplinks are based on user priorities of the terminal devices and/or uplink/downlink data amounts to be transmitted. / Downstream data slot resources are allocated.
  • the network planning parameter further includes a user uplink/downlink guaranteed time slot
  • the allocation sub-module is further configured to allocate, according to the amount of uplink/downlink data to be sent according to each terminal device, and the minimum index value of the currently used MCS, that the corresponding terminal device is allocated to meet the uplink/downward guaranteed bandwidth of the user/ After the downlink data slot resource, if there is a terminal device whose allocated uplink/downlink data slot resource does not satisfy the user uplink/downlink guaranteed bandwidth, the terminal device is allocated a time slot according to the user uplink/downlink guaranteed time slot corresponding to each terminal device. Resources.
  • a network planning device including:
  • a network planning module configured to determine network planning parameters of the current network
  • a network side communication module configured to send the network planning parameter determined by the network planning module to a corresponding wireless access device, where the network planning parameter includes a time slot period of the TDMA frame of the wireless access device, and a network uplink and downlink And determining, by the radio access device, the slot structure of the slot period according to the slot period and the uplink and downlink slot ratios of the network, and determining the slot structure and location Each terminal device communicates.
  • the network planning module is specifically configured to:
  • the slot period of the TDMA frame of the current radio access device and the ratio of the uplink and downlink slots of the network are configured based on the user uplink/downlink guarantee slots of all the terminal devices.
  • a sixth aspect of the present invention provides a terminal device, including:
  • a terminal side acquiring module configured to acquire a slot resource allocation result of the radio access device, where the slot resource allocation result is allocated by the radio access device according to a slot structure of a slot period of the TDMA frame;
  • the slot structure includes a preset duration corresponding to each service type, and a location of the duration corresponding to each service type in the slot cycle;
  • the terminal side communication module is configured to communicate with the wireless access device according to the time slot resource allocation result.
  • the wireless communication method, the wireless access device, the network planning device, and the terminal device provided by the embodiment of the present invention according to network planning parameters planned by the network planning device, the network planning parameters include a slot period of the TDMA frame and a network uplink and downlink time slot.
  • the function slot division is performed on the slot period, the slot structure of the slot period is determined, and the corresponding slot resource is allocated to each terminal device by using the centralized slot resource allocation manner based on the determined slot structure.
  • the real-time service bearer performance and quality of service QoS of the wireless network improve the utilization of air interface resources and the average throughput of the network, and realize a wireless communication network based on low cost.
  • FIG. 1 is a flowchart of a method for wireless communication according to an embodiment of the present invention
  • FIG. 2 is a schematic structural diagram of a TDMA frame proposed in an embodiment of the present invention.
  • FIG. 3 is a network topology diagram of a wireless communication system according to an embodiment of the present invention.
  • step S13 is a flowchart of subdivision of step S13 in a method for wireless communication according to an embodiment of the present invention
  • FIG. 5 is a flowchart of another wireless communication method according to an embodiment of the present invention.
  • FIG. 6 is a flowchart of subdividing step S21 in another wireless communication method according to an embodiment of the present invention.
  • FIG. 7 is a flowchart of still another method for wireless communication according to an embodiment of the present invention.
  • FIG. 8 is a schematic structural diagram of a wireless access device according to an embodiment of the present invention.
  • FIG. 9 is a schematic structural diagram of a network planning device according to an embodiment of the present invention.
  • FIG. 10 is a schematic structural diagram of a terminal device according to an embodiment of the present invention.
  • the present invention provides a wireless communication method by using TDMA (Time Division Multiple Access) technology.
  • TDMA Time Division Multiple Access
  • the embodiment of the present invention implements a TDMA function on a conventional 802.11 device to implement flexible networking in a low-cost manner. Not only can different uplink and downlink resource allocations be performed according to different scenarios, but also centralized resource scheduling can be used to improve network real-time service bearer performance, improve network QoS guarantee, increase network air interface utilization, and improve network overall throughput. the amount.
  • FIG. 1 is a flow chart schematically showing a wireless communication method of an embodiment of the present invention.
  • the wireless communication method provided in this embodiment is performed by a wireless access device.
  • the wireless communication method in the embodiment of the present invention specifically includes the following steps:
  • the network planning device performs network planning on the current network, obtains network planning parameters, and sends the network planning parameters to the wireless access device AP to obtain network planning parameters, where the network planning parameters are obtained.
  • the network planning device as a network planning device for centralized network planning, properly plans the network user capacity, the user uplink and downlink guaranteed bandwidth, and the user uplink and downlink guaranteed time slots, and is based on the network planning content and the terminal device RT in the network.
  • the network planning parameters such as the slot period of the TDMA frame and the network uplink and downlink slot ratio are used to implement network adaptation, and the obtained network planning parameters are sent to the wireless access device.
  • the ratio of the uplink and downlink time slot of the network in this step indicates the ratio of the length of time that the wireless access device AP sends the air interface data to the time that the terminal device sends the air interface data.
  • the unit granularity of the slot allocation is one OFDM symbol, that is, 4 us (400 ns GI) or 3.6 us (800 ns GI).
  • S12 Determine a slot structure of the slot period according to the slot period and the uplink and downlink slot ratios of the network, where the slot structure includes a preset duration of each service type, and the service type. The position of the corresponding duration in the slot cycle.
  • the duration of each service type and the duration of the service type corresponding to each service type in the working period are according to corresponding service types, and/or channel quality, and/or service requirements of each access terminal device. And/or priority determination of each terminal device to be accessed.
  • the service type in the embodiment of the present invention is not limited to data services such as uplink and downlink, and includes other service types such as a broadcast service and a contention access service.
  • the structure of the TDMA frame is a periodic frame structure, that is, it is cycled according to a certain frame period, and the cycle period is planned by the network planning device according to the user capacity. If the user has a large capacity, the user can support the bearer of all users by combining the uplink and downlink guaranteed bandwidth of the user and the uplink and downlink guaranteed time slots of the user to determine whether it is necessary to expand the slot period of the TDMA frame.
  • the uplink/downlink slot transition point in the slot cycle is set according to the network uplink and downlink slot ratio delivered by the network planning device. In practical applications, the ratio can be flexibly adapted to the uplink and downlink time slot ratio of the network according to the proportion of uplink and downlink services in the real-time service scenario.
  • the radio access device allocates corresponding time slot resources to each terminal device according to the determined time slot structure and according to the service requirements of each terminal device in the current network coverage, so that the terminal device according to the time is
  • the gap resource allocation result performs uplink data transmission or downlink data reception within a specified time.
  • the wireless access device dynamically allocates corresponding time slot resources to each terminal device for uplink/downlink data transmission according to actual service requirements of each user.
  • the method for dynamically allocating includes determining the priority in combination with the user priority, the amount of user cache data, the size of the user QoS delay, and the satisfaction rate of the user guarantee rate, and occupies more resources for the user with higher priority to send data preferentially.
  • the network planning parameters include the slot period of the TDMA frame and the uplink and downlink slot ratio of the network, and the functional time slot is divided into the slot period. Determining the slot structure of the slot period, and allocating corresponding slot resources to each terminal device by using the centralized slot resource allocation manner based on the determined slot structure, thereby improving real-time service bearer performance and quality of service QoS of the wireless network, Improve the utilization of air interface resources and the average network throughput, and realize a wireless communication network based on low cost.
  • the network can also flexibly configure uplink/downlink resources according to applicable scenarios to meet different service requirements of different scenarios.
  • the service types include a broadcast service, an uplink data service, and a downlink data service.
  • the determining the slot structure of the slot period according to the slot period and the uplink and downlink slot ratios of the network specifically includes:
  • the specific duration of the broadcast time slot may be determined according to the size of the bearer broadcast information and the modulation and coding manner.
  • the uplink data slot and the downlink data slot include a first specified length of the handover protection interval; the initial location of each unit slot in the uplink data slot includes a protection duration of the second specified length; The initial position of each unit time slot in the data slot duration includes a guard duration of a third specified length.
  • the first specified length may be greater than the second specified length and the third specified length.
  • the service type includes a contention access service in addition to a broadcast service, an uplink data service, and a downlink data service.
  • the method further includes: assigning a contention time corresponding to the remaining time length after the broadcast time slot is allocated according to the time slot period Random access slots and distribution locations.
  • the random access time slot corresponding to the contention access service may be allocated according to a round-trip time required for the farthest terminal device in the current network coverage to initiate an access request.
  • the slot structure of the slot period is determined according to the slot period and the uplink and downlink slot ratio of the network, and the specific implementation is as follows:
  • a broadcast time slot corresponding to a broadcast service is allocated at an initial position of the slot cycle
  • the remaining time duration after the broadcast time slot and the random access time slot are allocated to the time slot period according to the uplink and downlink time slot ratio of the network, and the uplink data time slot and the distribution position corresponding to the uplink data service are allocated, Downlink data time slot and distribution location corresponding to the downlink data service.
  • the wireless access device obtains the network planning parameters sent by the network planning device, implements a periodic cycle of the TDMA frame according to the network planning parameters, and determines the starting position of each functional time slot.
  • the slot period of the TDMA frame specifically includes a Beacon broadcast slot, a downlink data slot, an uplink and downlink handover protection interval, an uplink data slot, and a random access slot.
  • the broadcast information is transmitted in the Beacon broadcast time slot
  • the downlink data of each terminal device is transmitted in the downlink data slot
  • the backhaul data of each terminal device is received in the uplink data slot.
  • the random access time slot is reserved as a time window in which each terminal device contends to access the AP.
  • the terminal device distinguishes the broadcast time slot, the uplink/downlink data time slot, and the random access time slot in the slot period, so that the terminal device performs contention access or uplink data transmission or downlink data reception within a specified time, thereby implementing Synchronous uplink and downlink data transmission and reception between different APs, reducing cross-interference caused by unsynchronized uplink and downlink durations; reducing the switching frequency and hardware processing complexity of AP transmission and reception, and reducing the power consumption of workstations.
  • the AP allocates time slot resources in a centralized manner, effectively improves resource utilization, reduces collision collisions between contention access and normal uplink data transmission, improves the success probability of contention access, and reduces the waiting for uplink data transmission by the connected workstation.
  • the length of time reduces the transmission delay of the service and improves the quality and perception of the workstation service.
  • the wireless communication system in the embodiment of the present invention is divided into three main nodes: a network planning device, a wireless access device, and a terminal device.
  • the network planning device is used as a node for centralized network planning.
  • the number of terminal devices in the network the uplink and downlink guaranteed bandwidth of each terminal device, and the uplink and downlink guaranteed time slot resources are planned.
  • Configuration parameters such as time slot ratio and time slot period of the TDMA frame, and the relevant network planning parameters are configured to the wireless access device, and the wireless access device node serves as an access point of the entire wireless communication system, and is also a resource concentration of the entire network.
  • the control node performs function slot division on the slot period of the TDMA frame according to the network planning parameter, determines the slot structure of the slot period, and performs time slots for all terminal devices based on the slot structure of the slot period.
  • the resource allocation, the terminal device implements the function of receiving and transmitting data in the specified time slot resource according to the time slot resource allocation result.
  • the wireless communication method provided by the embodiment of the present invention implements a TDMA function on a conventional low-cost 802.11 device, and performs functional time slot division on a slot period planned by the network planning device by using the wireless access device, and determines the slot period of the slot period.
  • the time slot structure and the centralized time slot resource allocation mode can improve the real-time service bearer performance of the wireless network, improve the service quality QoS of the network, improve the utilization of the air interface resources and the average network throughput, and realize the low-cost wireless communication.
  • the network can be configured flexibly to meet the different service requirements of different scenarios.
  • the method can be applied to multiple wireless network transmission scenarios such as video surveillance and broadband access.
  • the network planning parameter further includes a user uplink/downlink guaranteed bandwidth.
  • step S13 the subdivision implementation process for allocating corresponding time slot resources according to the determined time slot structure in step S13 is as shown in FIG. 4, which specifically includes the following steps:
  • the amount of the uplink/downlink data to be sent is determined by acquiring the amount of data to be sent by each terminal device, and the current modulation mode of each terminal device is obtained by acquiring the modulation and coding mode used by each terminal device to obtain the current mode of each terminal device.
  • the time slot resource allocation result is sent to each terminal device by using the broadcast information sent to each terminal device in the broadcast time slot.
  • the radio access device notifies the terminal device of the resource allocation result by using the broadcast information, and the resource allocation result includes the uplink time slot, the downlink time slot, and the random access of the non-access terminal device.
  • the time slot is entered for the terminal device to receive downlink data or send uplink data or node access in the corresponding time slot.
  • the amount of uplink/downlink data to be sent according to each terminal device and the minimum index value of the currently used MCS are allocated to the corresponding terminal device to satisfy the uplink/downward guaranteed bandwidth of the user/
  • the downlink data slot resource if there are still remaining uplink/downlink data slot resources, the remaining uplink/downlink data is compared according to the user priority of each terminal device, and/or the uplink/downlink data amount to be sent.
  • Time slot resources are allocated. In the actual application, if there are remaining resource slots after the slot resource allocation based on the uplink and downlink guaranteed bandwidth of the user, the remaining resource slots are allocated again according to the user priority of each terminal device and the amount of data to be sent. .
  • the network planning parameter further includes a user uplink/downlink guaranteed time slot.
  • the uplink/downlink data slot resources satisfying the uplink/downlink guaranteed bandwidth of the user are allocated. If there is a terminal device whose allocated uplink/downlink data slot resource does not satisfy the user uplink/downlink guaranteed bandwidth, the slot resource is allocated to the terminal device according to the user uplink/downlink guaranteed time slot corresponding to each terminal device.
  • the terminal device for the low priority is reserved.
  • the preset length of the heartbeat monitors the time slot resource, and releases the time slot resource of the low priority terminal device except the heartbeat monitoring time slot resource.
  • the BLER when the BLER is increased according to the uplink and downlink guaranteed time slots of the user, if the BLER of some users increases, the link quality has deteriorated to a certain extent according to the guaranteed time slot allocation, and the guarantee cannot be provided.
  • Rate the time slot resource of the terminal device with low user priority is released, and only the minimum keep-alive resource (heartbeat monitoring resource) is reserved for control data transmission, and the released resource is used by the user with higher priority to lower the MCS to continue transmitting data. To ensure the guaranteed bandwidth of high priority users.
  • the embodiment of the present invention further includes a mechanism for restoring a heartbeat resource, that is, ensuring that each terminal device can retain a preset heartbeat monitoring resource to maintain heartbeat data transmission of the user, and the heartbeat resource size is based on the minimum MCS. In this case, the size of the time slot resource for controlling the smooth transmission of the data packet or the fragment can be guaranteed. In the case where the channel condition is bad, at least the resource is reserved for each terminal device.
  • the terminal device and the wireless access device perform data transmission and reception according to the allocated time slot resources, and specifically include the following implementation steps:
  • the data packet is formed from the newly transmitted data queue, and is filled into the time slot resource for transmission;
  • the terminal device and the wireless access device need to modulate the data to be sent by the wireless access device (downlink) and the terminal device node (uplink) according to the 802.11g/a/n/ac physical layer standard in the WiFi physical layer.
  • the receiving end determines that the data packet based on the WiFi physical layer is received and parses it by detecting the preamble.
  • the wireless communication method provided by the embodiment of the present invention has the following advantages and beneficial effects:
  • the embodiment of the invention adopts the TDMA technology to overcome the problem that the QoS delay of the WLAN user is high and the utilization of the air interface resource is low, and the multi-user wireless communication system is realized.
  • the uplink and downlink resources can be flexibly configured according to different scenarios, and the centralized resource scheduling mode can be used to improve the real-time service bearer performance of the network, improve the service quality guarantee of the network, increase the air interface utilization of the network, and improve the network. Overall average throughput.
  • the embodiment of the invention Compared with the wireless communication system based on WiMAX, LTE and the like, the embodiment of the invention has the advantages of low cost and flexible network deployment.
  • FIG. 5 is a flow chart schematically showing a wireless communication method of one embodiment of the present invention.
  • the wireless communication method provided in this embodiment is performed by a network planning device.
  • the wireless communication method in the embodiment of the present invention specifically includes the following steps:
  • the network planning parameter is sent to the corresponding radio access device, where the network planning parameter includes a slot period of the TDMA frame of the radio access device and a network uplink and downlink slot ratio, for the
  • the radio access device determines a slot structure of the slot period according to the slot period and the uplink and downlink slot ratios of the network, and determines the slot structure to communicate with the terminal devices.
  • the wireless communication method provided by the embodiment of the present invention sends the obtained network planning parameter of the current network to the corresponding wireless access device, so that the wireless access device can plan the network planning parameters according to the network planning device, and the network planning
  • the parameter includes a slot period of the TDMA frame and a functional slot division of the slot sequence of the network, determining a slot structure of the slot period, and passing the concentrated slot resource based on the determined slot structure.
  • the allocation mode allocates corresponding time slot resources for each terminal device, improves real-time service bearer performance and quality of service QoS of the wireless network, improves utilization of air interface resources and average network throughput, and realizes a wireless communication network based on low cost.
  • the network can also flexibly configure uplink/downlink resources according to applicable scenarios to meet different service requirements of different scenarios.
  • the acquiring network planning parameters of the current network specifically includes the following steps:
  • S213. Determine, according to the mobile range of each terminal device in the current network and the uplink/downlink guaranteed bandwidth of each terminal device, determine the user uplink/downlink guaranteed time slot of each terminal device. Specifically, the minimum MCS (Modulation and Coding Scheme) index value of the terminal device is planned according to the mobile range of each terminal device, and the latest and farthest distance from the terminal device to the AP; The uplink and downlink guaranteed bandwidth of the user and the planned MCS value are converted into the uplink and downlink guaranteed time slots of each terminal device.
  • MCS Modulation and Coding Scheme
  • the network planning device mainly completes the configuration and delivery of network planning parameters.
  • the specific implementation is as follows: According to the coverage, the number of users in the network is planned, and the bandwidth of the user is guaranteed according to the QoS characteristics of each user. Further, in combination with the mobile range of each user and the nearest longest distance to the AP, the MCS value range is evaluated, and the user uplink and downlink guaranteed time slots are planned according to the user uplink and downlink guaranteed bandwidth and the MCS index value, and finally the uplink and downlink guarantee times of all users are integrated. Gap, plan the frame period of the TDMA frame, and the network uplink and downlink time slot ratio of the entire network.
  • the network planner uses the network planning device to determine the network user capacity, the uplink guaranteed bandwidth of each terminal device, and the corresponding MCS value according to the current network environment and related requirements.
  • a reasonable configuration, in the current configuration each terminal device can meet its uplink and downlink guaranteed rate, and the number of terminal devices for normal data transmission and reception is guaranteed. Due to the ever-changing network channel environment, this configuration is a relatively conservative configuration, which can meet the bandwidth required by each terminal device under a certain number of users under the condition of slightly lower than the normal channel.
  • the following steps are further included: according to any terminal device
  • the proportion of uplink and downlink traffic in the current scenario adjusts the ratio of uplink and downlink time slots of the network.
  • the uplink and downlink time slot ratios of the network can be flexibly configured according to the proportion of uplink and downlink services in the real-time service scenario.
  • FIG. 7 is a flow chart schematically showing a wireless communication method of one embodiment of the present invention.
  • the wireless communication method provided in this embodiment is performed by the terminal device.
  • the wireless communication method in the embodiment of the present invention specifically includes the following steps:
  • S31 Obtain a slot resource allocation result of the radio access device, where the slot resource allocation result is allocated by the radio access device according to a slot structure of a slot period of the TDMA frame; wherein the slot structure includes a pre- The duration corresponding to each service type and the location of the duration corresponding to each service type in the slot cycle.
  • the terminal device obtains a slot resource allocation result of the radio access device, and performs communication with the radio access device based on the slot resource allocation result, where the slot resource allocation result is
  • the radio access device allocates according to the slot structure of the slot period of the TDMA frame, improves the real-time service bearer performance and quality of service QoS of the wireless network, improves the utilization of the air interface resource and the average network throughput, and realizes the low-cost wireless communication.
  • the internet Moreover, the network can also flexibly configure uplink and downlink resources according to applicable scenarios to meet different service requirements in different scenarios.
  • the obtaining the time slot resource allocation result of the wireless access device is specifically implemented by: receiving the broadcast information sent by the wireless access device, where the broadcast information includes the identifier of the wireless access device Number, the identification number of each terminal device, and the uplink and downlink time slot resource allocation results corresponding to each terminal device.
  • FIG. 8 is a schematic structural diagram of a wireless access device according to an embodiment of the present invention.
  • the wireless access device of the embodiment of the present invention includes an access side obtaining module 401, a configuration module 402, a resource allocation module 403, and an access side communication module 404, where:
  • the access side obtaining module 401 is configured to obtain network planning parameters sent by the network planning device, where the network planning parameters include a slot period of the TDMA frame and a network uplink and downlink time slot ratio;
  • the configuration module 402 is configured to determine a slot structure of the slot period according to the slot period and the uplink and downlink slot ratio of the network, where the slot structure includes a preset duration of each service type, and Describe the location of the duration corresponding to each service type in the slot cycle;
  • a resource allocation module 403, configured to allocate a corresponding time slot resource to each terminal device according to the determined time slot structure
  • the access side communication module 404 is configured to communicate with each terminal device based on a time slot resource allocation result.
  • each service type includes a broadcast service, an uplink data service, and a downlink data service.
  • the configuration module 402 is configured to allocate a broadcast time slot corresponding to the broadcast service at an initial position of the time slot period, and allocate the said time slot period according to the network uplink and downlink time slot ratio.
  • the remaining time length after the broadcast time slot is allocated to the uplink data time slot and the distribution position corresponding to the uplink data service, and the downlink data time slot and the distribution position corresponding to the downlink data service.
  • each service type further includes a contention access service.
  • the configuration module 402 is configured to: after the broadcast time slot corresponding to the broadcast service is allocated at the initial position of the slot cycle, allocate the contention of the remaining time after the broadcast time slot is allocated according to the time slot period.
  • the random access slot and distribution location corresponding to the incoming service is configured to: after the broadcast time slot corresponding to the broadcast service is allocated at the initial position of the slot cycle, allocate the contention of the remaining time after the broadcast time slot is allocated according to the time slot period.
  • the random access slot and distribution location corresponding to the incoming service is configured to: after the broadcast time slot corresponding to the broadcast service is allocated at the initial position of the slot cycle, allocate the contention of the remaining time after the broadcast time slot is allocated according to the time slot period.
  • the network planning parameter further includes a user uplink/downlink guaranteed bandwidth
  • the resource allocation module 403 specifically includes an obtaining submodule and an allocation submodule not shown in the figure, where:
  • the acquiring sub-module is configured to acquire an uplink/downlink data quantity to be sent by each terminal device and a minimum index value of a currently used modulation and coding policy MCS;
  • the allocation sub-module is configured to allocate an uplink/downlink that meets the uplink/downlink guaranteed bandwidth of the user according to the uplink/downlink data volume to be sent by each terminal device and the minimum index value of the currently used MCS. Data slot resource.
  • the allocation sub-module is further configured to: when the amount of uplink/downlink data to be sent according to each terminal device and the minimum index value of the currently adopted MCS, the corresponding terminal device is allocated to satisfy the uplink/downward guaranteed bandwidth of the user. After the uplink/downlink data slot resources, if there are still remaining uplink/downlink data slot resources, the remaining uplinks are/supplied according to the user priority of each terminal device and/or the amount of uplink/downlink data to be transmitted. The downlink data slot resources are allocated.
  • the network planning parameter further includes a user uplink/downlink guaranteed time slot.
  • the allocation sub-module is further configured to: when the amount of uplink/downlink data to be sent according to each terminal device and the minimum index value of the currently used MCS, the corresponding terminal device is allocated to satisfy the uplink/downward guaranteed bandwidth of the user.
  • the uplink/downlink data slot resource if there is a terminal device whose allocated uplink/downlink data slot resource does not satisfy the user uplink/downlink guaranteed bandwidth, the user uplink/downlink guaranteed time slot corresponding to each terminal device is the terminal device. Allocate time slot resources.
  • the allocation sub-module is further configured to reserve a preset length of heartbeat monitoring time slot resource for the low-priority terminal device when a terminal device with a transmission error block rate higher than a preset threshold occurs, for the low
  • the priority terminal device releases the time slot resources other than the heartbeat monitoring time slot resource.
  • FIG. 9 is a schematic structural diagram of a network planning device according to an embodiment of the present invention.
  • the network planning device of the embodiment of the present invention includes a network planning module 501 and a network side communication module 502, where:
  • the network planning module 501 is configured to determine network planning parameters of the current network.
  • the network side communication module 502 is configured to send the network planning parameter determined by the network planning module to a corresponding wireless access device, where the network planning parameter includes a slot period of the TDMA frame of the wireless access device, and a network And determining, by the radio access device, the slot structure of the slot period according to the slot period and the uplink and downlink slot ratios of the network, and determining the slot structure and Each of the terminal devices performs communication.
  • the network planning module 502 is specifically configured to: determine a network user capacity of the current network; and configure a user uplink/downlink of each terminal device according to the network user capacity and the quality of service QoS of each terminal device in the current network. Guaranteed bandwidth; according to the mobile range of each terminal device in the current network and the user uplink/downlink guaranteed bandwidth of each terminal device, respectively determine the user uplink/downlink guaranteed time slot of each terminal device; based on the user uplink/downlink guarantee time of all terminal devices
  • the slot configures the slot period of the TDMA frame of the current radio access device and the ratio of the uplink and downlink slots of the network.
  • the network side communication module 502 is further configured to: after the time slot of the TDMA frame of the wireless access device and the ratio of the uplink and downlink time slots of the network are configured in the uplink and downlink guarantee slots of the user of all the terminal devices, The uplink and downlink time slot ratios of the network are adjusted according to the proportion of uplink and downlink services of any terminal device in the current scenario.
  • FIG. 10 is a schematic block diagram showing the structure of a terminal device according to an embodiment of the present invention.
  • the terminal device of the embodiment of the present invention includes a terminal side acquiring module 601 and a terminal side communication module 602, where:
  • the terminal side acquiring module 601 is configured to obtain a slot resource allocation result of the radio access device, where the slot resource allocation result is allocated by the radio access device according to a slot structure of a slot period of the TDMA frame;
  • the time slot structure includes a preset duration corresponding to each service type, and a location of the duration corresponding to each service type in the slot cycle;
  • the terminal side communication module 602 is configured to communicate with the wireless access device according to the time slot resource allocation result.
  • the terminal side acquiring module 601 is specifically configured to receive broadcast information sent by the wireless access device, where the broadcast information includes an identifier of the wireless access device, an identification number of each terminal device, and each terminal.
  • the uplink and downlink time slot resource allocation results corresponding to the device.
  • the terminal device obtained by the embodiment of the present invention obtains a time slot resource allocation result of the wireless access device, and communicates with the wireless access device based on the time slot resource allocation result, where the time slot resource allocation result is wireless access
  • the device allocates according to the slot structure of the slot period of the TDMA frame, improves the real-time service bearer performance and quality of service QoS of the wireless network, improves the utilization of the air interface resource and the average network throughput, and implements a low-cost wireless communication network.
  • the network can also flexibly configure uplink and downlink resources according to applicable scenarios to meet different service requirements in different scenarios.
  • both the wireless access device and the terminal device include: a data link module and a WiFi physical layer module.
  • the data link module implements the entire end-to-end data transmission and reception process, and the steps include:
  • the resource allocation module 1) transmitting and receiving data according to the time slot resource allocated by the resource allocation module, including: 1. Forming data from the newly transmitted data queue in the transmission time slot (the access device is in the downlink time slot, and the terminal device is in the uplink time slot) The packet is filled into the time slot resource and sent to the physical layer. 2. According to the acknowledgement information of the data packet, it is judged whether the transmitted data is correctly received, and the data packet that is not correctly received is retransmitted and filled into the time slot resource. Sent to the physical layer;
  • WiFi physical layer module
  • the AP node (downlink) and the terminal device node (uplink) need to transmit and modulate the data, and generate a PPDU preamble to complete the encapsulation of the physical layer data packet and pass the radio frequency.
  • the mouth is sent out.
  • the receiving end determines that the data packet based on the WiFi physical layer is received and parses it by detecting the preamble.
  • multi-user wireless communication can be realized on the basis of reasonable network planning, and the efficiency, QoS satisfaction degree, rate, network construction cost and other indicators are improved compared with the previous scheme.
  • the description is relatively simple, and the relevant parts can be referred to the description of the method embodiment.
  • the wireless communication method, the wireless access device, the network planning device, and the terminal device provided by the embodiments of the present invention, the wireless communication method, the wireless access device, the network planning device, and the terminal device provided by the embodiments of the present invention are planned according to the network planning device.
  • the network planning parameters, the network planning parameters include the slot period of the TDMA frame, and the network uplink and downlink slot ratios perform functional slot division on the slot period, determine the slot structure of the slot period, and based on the determined time period
  • the slot structure allocates corresponding time slot resources to each terminal device through centralized time slot resource allocation, improves real-time service bearer performance and quality of service QoS of the wireless network, improves utilization of air interface resources, and average network throughput, and realizes low cost based on low cost.
  • Wireless communication network improves real-time service bearer performance and quality of service QoS of the wireless network.
  • the disclosed apparatus and method may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the division of the unit or unit is only a logical function division.
  • there may be another division manner for example, multiple units or components may be used. Combinations can be integrated into another system, or some features can be ignored or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be electrical or otherwise.
  • the functional units in the embodiments of the present invention may be integrated into one processing unit, or each unit may also be an independent physical module.
  • the integrated unit if implemented in the form of a software functional unit and sold or used as a standalone product, may be stored in a computer readable storage medium.
  • all or part of the technical solutions of the embodiments of the present invention may be embodied in the form of a software product stored in a storage medium, including a plurality of instructions for causing a computer device, for example, A personal computer, server, or network device, or the like, or a processor, performs all or part of the steps of the methods described in various embodiments of the present invention.
  • the foregoing storage medium includes: a Universal Serial Bus flash drive, a mobile hard disk, a read-only memory (ROM), a random access memory (RAM), a disk. Or a variety of media such as optical discs that can store program code.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明提供了一种无线通信方法及无线接入设备、网络规划设备、终端设备,该方法包括:获取网络规划设备下发的网络规划参数,所述网络规划参数包括TDMA帧的时隙周期以及网络上下行时隙配比;根据所述时隙周期和网络上下行时隙配比确定所述时隙周期的时隙结构,所述时隙结构中包含预设的各业务类型对应的时长,及所述各业务类型对应的时长在所述时隙周期中的位置;根据确定的所述时隙结构为各终端设备分配相应的时隙资源;基于时隙资源分配结果与所述各终端设备进行通信。本发明提高了网络的服务质量,提升了空口资源的利用率及网络平均吞吐量,实现了低成本的TDMA制式的无线通信网络。

Description

无线通信方法及无线接入设备、网络规划设备、终端设备 技术领域
本发明涉及无线通信技术领域,尤其涉及一种无线通信方法及无线接入设备、网络规划设备、终端设备。
背景技术
目前,世界上主要的无线通信系统制式,包括WLAN(Wireless Local Area Networks,无线局域网)系统、LTE(Long Term Evolution,长期演进)系统、WiMAX(Worldwide Interoperability for Microwave Access,全球微波互联接入)系统、WCDMA(Wideband Code Division Multiple Access,宽带码分多址)系统以及TD-SCDMA(Time Division-Synchronous Code Division Multiple Access,时分同步码分多址)系统等,基于上述各种制式的多张无线通信网络,已广泛的应用在我们生产生活的各个领域中,如手机通信,无线局域网通信,无线网络回传等方面,在日常工作与生活中给我们带来了诸多便捷,
然而无论是从成本上还是从普及度、便捷性来考虑,WLAN制式无疑是最优的一种方案,能够达到低成本,快速灵活布网,高速通信的目标。LTE、WiMAX、WCDMA以及TD-SCDMA系统,所使用的频段通常需要当地的频率资源管理机构进行授权,组网灵活程度大大降低,并且上述几种制式的芯片成本较高,在实现经济、灵活的无线网络通信方案中,并不占优势。
经过多年的发展与应用,WLAN技术已经非常成熟。WLAN芯片的价格非常低,WLAN成为目前最常用的宽带接入技术之一。IEEE 802.11无线局域网标准(WLAN)采用CSMA/CA(Carrier Sense MultipleAccess with Collision Avoidance,多址接入协议),但CSMA/CA协议在某些场景中性能表现不佳,比如实时传输性要求较高的VOIP(Voice over Internet Protocol,网络语音电话)、视频流等业务及长距离通信等,当信道竞争环境激烈时问题表现尤为突出。另外由于CSMA/CA协议针对多用户的接入主要是依靠每个无线接入设备相互竞争的方式来获取空口资源进行无线通信,并没有统一的控制节点进行控制,用户QoS时延高,而竞争时的资源开销较大,空口资源利用率偏低,造成整体的资源利用率偏低,传输平均速率较空口的理论速率下降较多。
发明内容
鉴于上述问题,提出了本发明以便提供一种克服上述问题或者至少部分地解决上述问题的无线通信方法及无线接入设备、网络规划设备、终端设备。
本发明的第一方面,提供了一种无线通信方法,包括:
获取网络规划设备下发的网络规划参数,所述网络规划参数包括TDMA帧的时隙周期以及网络上下行时隙配比;
根据所述时隙周期和网络上下行时隙配比确定所述时隙周期的时隙结构,所述时隙结构中包含预设的各业务类型对应的时长,及所述各业务类型对应的时长在所述时隙周期中的位置;
根据确定的所述时隙结构为各终端设备分配相应的时隙资源;
基于时隙资源分配结果与所述各终端设备进行通信。
可选地,所述各业务类型包括广播业务、上行数据业务、下行数据业务;
所述根据所述时隙周期和网络上下行时隙配比确定所述时隙周期的时隙结构,包括:
在所述时隙周期的初始位置分配广播业务对应的广播时隙,并根据所述网络上下行时隙配比对所述时隙周期分配所述广播时隙后的剩余时长分配上行数据业务对应的上行数据时隙和分布位置、下行数据业务对应的下行数据时隙和分布位置。
可选地,所述各业务类型还包括竞争接入业务;
在所述时隙周期的初始位置分配广播业务对应的广播时隙之后,所述方法还包括:
基于所述时隙周期分配所述广播时隙后的剩余时长分配竞争接入业务对应的随机接入时隙和分布位置。
可选地,所述网络规划参数还包括用户上/下行保证带宽;
所述根据确定的所述时隙结构为各终端设备分配相应的时隙资源,包括:
获取所述各终端设备待发送的上/下行数据量以及当前所采用的调制与编码策略MCS的最小索引值;
根据每一终端设备待发送的上/下行数据量以及当前所采用的MCS的最小索引值为相应终端设备分配满足所述用户上/下行保证带宽的上/下行数据时隙资源。
可选地,在所述根据每一终端设备待发送的上/下行数据量以及当前所采用的MCS的最小索引值为相应终端设备分配满足所述用户上/下行保证带宽的上/下行数据时隙资源之后,所述方法还包括:
若还存在剩余的上/下行数据时隙资源,则根据各终端设备的用户优先级,和/或待发送的上/下行数据量对所述剩余的上/下行数据时隙资源进行分配。
可选地,所述网络规划参数还包括用户上/下行保证时隙;
在根据每一终端设备待发送的上/下行数据量以及当前所采用的MCS的最小索引值为相应终端设备分配满足所述用户上/下行保证带宽的上/下行数据时隙资源之后,所述方法还包括:
若存在分配的上/下行数据时隙资源不满足用户上/下行保证带宽的终端设备,则根据各终端设备对应的用户上/下行保证时隙为终端设备分配时隙资源。
可选地,所述方法还包括:
当出现传输误块率高于预设阈值的终端设备时,为低优先级的终端设备保留预设长度的心跳监测时隙资源,对所述低优先级的终端设备除所述心跳监测时隙资源以外的时隙资源进行释放。
本发明的第二方面,提供了一种无线通信方法,包括:
获取当前网络的网络规划参数;
将所述网络规划参数下发到对应的无线接入设备,所述网络规划参数包括所述无线接入设备的TDMA帧的时隙周期以及网络上下行时隙配比,以供所述无线接入设备根据所述时隙周期和网络上下行时隙配比确定所述时隙周期的时隙结构,并以确定的所述时隙结构与所述各终端设备进行通信。
可选地,所述获取当前网络的网络规划参数,包括:
确定当前网络的网络用户容量;
根据所述网络用户容量和当前网络中各终端设备的服务质量QoS配置各终端设备的用户上/下行保证带宽;
根据当前网络中各终端设备的移动范围以及各终端设备的用户上/下行保证带宽,分别确定各终端设备的用户上/下行保证时隙;
基于所有终端设备的用户上/下行保证时隙配置当前无线接入设备的TDMA帧的时隙周期和网络上下行时隙配比。
可选地,在所述基于所有终端设备的用户上下行保证时隙配置无线接入设备的TDMA帧的时隙周期和网络上下行时隙配比之后,所述方法还包括:
根据任一终端设备在当前场景下的上下行业务比例调整所述网络上下行时隙配比。
本发明的第三方面,提供了一种无线通信方法,包括:
获取无线接入设备的时隙资源分配结果,所述时隙资源分配结果是无线接入设备根据TDMA帧的时隙周期的时隙结构分配的;其中,所述时隙结构中包含预设的各业务类型对应的时长,及所述各业务类型对应的时长在所述时隙周期中的位置;
根据所述时隙资源分配结果与所述无线接入设备进行通信。
可选地,所述获取无线接入设备的时隙资源分配结果,包括:
接收所述无线接入设备发送的广播信息,所述广播信息包括所述无线接入设备的标识号、各终端设备的标识号以及各终端设备对应的上、下行时隙资源分配结果。
本发明的第四方面,提供了一种无线接入设备,包括:
接入侧获取模块,用于获取网络规划设备下发的网络规划参数,所述网络规划参数包括TDMA帧的时隙周期以及网络上下行时隙配比;
配置模块,用于根据所述时隙周期和网络上下行时隙配比确定所述时隙周期的时隙结构,所述时隙结构中包含预设的各业务类型对应的时长,及所述各业务类型对应的时长在所述时隙周期中的位置;
资源分配模块,用于根据确定的所述时隙结构为各终端设备分配相应的时隙资源;
接入侧通信模块,用于基于时隙资源分配结果与所述各终端设备进行通信。
可选地,所述各业务类型包括广播业务、上行数据业务、下行数据业务;
所述配置模块,具体用于在所述时隙周期的初始位置分配广播业务对应的广播时隙, 并根据所述网络上下行时隙配比对所述时隙周期分配所述广播时隙后的剩余时长分配上行数据业务对应的上行数据时隙和分布位置、下行数据业务对应的下行数据时隙和分布位置。
可选地,所述各业务类型还包括竞争接入业务;
所述配置模块,具体用于在所述时隙周期的初始位置分配广播业务对应的广播时隙之后,基于所述时隙周期分配所述广播时隙后的剩余时长分配竞争接入业务对应的随机接入时隙和分布位置。
可选地,所述网络规划参数还包括用户上/下行保证带宽;
所述资源分配模块,包括:
获取子模块,用于获取所述各终端设备待发送的上/下行数据量以及当前所采用的调制与编码策略MCS的最小索引值;
分配子模块,用于根据每一终端设备待发送的上/下行数据量以及当前所采用的MCS的最小索引值为相应终端设备分配满足所述用户上/下行保证带宽的上/下行数据时隙资源。
可选地,所述分配子模块,还用于在根据每一终端设备待发送的上/下行数据量以及当前所采用的MCS的最小索引值为相应终端设备分配满足所述用户上/下行保证带宽的上/下行数据时隙资源之后,若还存在剩余的上/下行数据时隙资源,则根据各终端设备的用户优先级和/或待发送的上/下行数据量对所述剩余的上/下行数据时隙资源进行分配。
可选地,所述网络规划参数还包括用户上/下行保证时隙;
所述分配子模块,还用于在根据每一终端设备待发送的上/下行数据量以及当前所采用的MCS的最小索引值为相应终端设备分配满足所述用户上/下行保证带宽的上/下行数据时隙资源之后,若存在分配的上/下行数据时隙资源不满足用户上/下行保证带宽的终端设备,则根据各终端设备对应的用户上/下行保证时隙为终端设备分配时隙资源。
本发明的第五方面,提供了一种网络规划设备,包括:
网络规划模块,用于确定当前网络的网络规划参数;
网络侧通信模块,用于将网络规划模块确定的所述网络规划参数下发到对应的无线接入设备,所述网络规划参数包括所述无线接入设备的TDMA帧的时隙周期以及网络上下行时隙配比,以供所述无线接入设备根据所述时隙周期和网络上下行时隙配比确定所述时隙周期的时隙结构,并以确定的所述时隙结构与所述各终端设备进行通信。
可选地,所述网络规划模块,具体用于:
确定当前网络的网络用户容量;
根据所述网络用户容量和当前网络中各终端设备的服务质量QoS配置各终端设备的用户上/下行保证带宽;
根据当前网络中各终端设备的移动范围以及各终端设备的用户上/下行保证带宽,分别确定各终端设备的用户上/下行保证时隙;
基于所有终端设备的用户上/下行保证时隙配置当前无线接入设备的TDMA帧的时隙周期和网络上下行时隙配比。
本发明的第六方面,提供了一种终端设备,包括:
终端侧获取模块,用于获取无线接入设备的时隙资源分配结果,所述时隙资源分配结果是无线接入设备根据TDMA帧的时隙周期的时隙结构分配的;其中,所述时隙结构中包含预设的各业务类型对应的时长,及所述各业务类型对应的时长在所述时隙周期中的位置;
终端侧通信模块,用于根据所述时隙资源分配结果与所述无线接入设备进行通信。
本发明实施例提供的无线通信方法及无线接入设备、网络规划设备、终端设备,通过根据网络规划设备规划出的网络规划参数,网络规划参数包括TDMA帧的时隙周期以及网络上下行时隙配比对时隙周期进行功能时隙划分,确定时隙周期的时隙结构,并基于确定的所述时隙结构通过集中的时隙资源分配方式为各终端设备分配相应的时隙资源,提升无线网络的实时业务承载性能和服务质量QoS,提高空口资源的利用率及网络平均吞吐量,实现基于低成本的无线通信网络。
上述说明仅是本发明技术方案的概述,为了能够更清楚了解本发明的技术手段,而可依照说明书的内容予以实施,并且为了让本发明的上述和其它目的、特征和优点能够更明显易懂,以下特举本发明的具体实施方式。
附图说明
通过阅读下文优选实施方式的详细描述,各种其他的优点和益处对于本领域普通技术人员将变得清楚明了。附图仅用于示出优选实施方式的目的,而并不认为是对本发明的限制。而且在整个附图中,用相同的参考符号表示相同的部件。在附图中:
图1为本发明实施例的一种无线通信方法的流程图;
图2为本发明实施例中提出的TDMA帧的结构示意图;
图3为本发明实施例中提出的无线通信系统的网络拓扑结构图;
图4为本发明实施例的一种无线通信方法中步骤S13的细分流程图;
图5为本发明实施例的另一种无线通信方法的流程图;
图6为本发明实施例的另一种无线通信方法中步骤S21的细分流程图;
图7为本发明实施例的再一种无线通信方法的流程图;
图8为本发明实施例的一种无线接入设备的结构示意图;
图9为本发明实施例的一种网络规划设备的结构示意图;
图10为本发明实施例的一种终端设备的结构示意图。
具体实施方式
下面将参照附图更详细地描述本公开的示例性实施例。虽然附图中显示了本公开的示例性实施例,然而应当理解,可以以各种形式实现本公开而不应被这里阐述的实施例所限制。相反,提供这些实施例是为了能够更透彻地理解本公开,并且能够将本公开的范围完整的传达给本领域的技术人员。
本技术领域技术人员可以理解,除非另外定义,这里使用的所有术语(包括技术术语和科学术语),具有与本发明所属领域中的普通技术人员的一般理解相同的意义。还应该理解的是,诸如通用字典中定义的那些术语,应该被理解为具有与现有技术的上下文中的意义一致的意义,并且除非被特定定义,否则不会用理想化或过于正式的含义来解释。
为了解决现有WLAN技术中存在的用户QoS时延高、空口资源利用率偏低的问题,本发明提供一种无线通信方法,通过采用TDMA(Time Division Multiple Access,时分多址接入)技术来克服上述问题。由于WLAN芯片并不支持TDMA技术,而重新设计开发一款芯片费用极其昂贵。所以,如果能够利用的成熟的WLAN芯片支持TDMA协议,则可以大大降低开发成本,提升网络的性能。本发明实施例通过在传统的802.11设备上实现TDMA功能,以实现低成本方式下的灵活组网。不仅能够根据不同的场景进行不同的上下行资源分配,而且可通过集中的资源调度的方式,来提升网络实时业务承载性能,提高网络的QoS保证,增加网络的空口利用率,提升网络整体平均吞吐量。
图1示意性示出了本发明一个实施例的无线通信方法的流程图。本实施例提供的无线通信方法由无线接入设备执行,参照图1,本发明实施例的无线通信方法具体包括以下步骤:
S11、获取网络规划设备下发的网络规划参数,所述网络规划参数包括TDMA帧的时隙周期以及网络上下行时隙配比。
本实施例中,由网络规划设备对当前网络进行网络规划,得到网络规划参数,并将所述网络规划参数下发到无线接入设备AP,以实现网络规划参数的获取,所述网络规划参数包括但不限于TDMA帧的时隙周期以及网络上下行时隙配比。
网络规划设备,作为集中网络规划的网络规划设备,通过合理的规划网络用户容量、用户上下行保证带宽以及用户上下行保证时隙等内容,并基于上述网络规划内容和网络中终端设备RT的相关信息规划TDMA帧的时隙周期以及网络上下行时隙配比等网络规划参数,以实现网络的适配,并将得到的网络规划参数下发到无线接入设备中。
本步骤中的网络上下行时隙配比,表示无线接入设备AP发送空口数据时长与终端设备发送空口数据时长的比值。本发明实施例在进行时隙配比分配时,结合WIFI物理层标准,进行时隙分配的单位粒度为一个OFDM符号,即4us(400ns GI)或者3.6us(800ns GI)。
S12、根据所述时隙周期和网络上下行时隙配比确定所述时隙周期的时隙结构,所述时隙结构中包含预设的各业务类型对应的时长,及所述各业务类型对应的时长在所述时隙周期中的位置。
其中,所述各业务类型的时长及所述各业务类型对应的时长在所述工作周期中的位置根据对应的业务类型、和/或信道质量、和/或各待接入终端设备的业务需求、和/或各待接入终端设备的优先级确定。
本发明实施例中的业务类型不限于是上行和下行这类数据业务,还包括广播业务、竞争接入业务等其他业务类型。
本实施例中,TDMA帧的结构为周期性的帧结构,即按照一定的帧周期进行循环,其 循环周期由网络规划设备根据用户容量进行规划。若用户容量较大,结合用户上下行保证带宽以及用户上下行保证时隙判断是否需要扩大TDMA帧的时隙周期,才能实现对所有用户的承载。时隙周期中的上/下行时隙转换点根据网络规划设备下发的网络上下行时隙配比进行设置。在实际应用中,该比值可根据实时业务场景下的上下行业务比例灵活适配该网络上下行时隙配比。
S13、根据确定的所述时隙结构为各终端设备分配相应的时隙资源。
本发明实施例中,无线接入设备基于确定的所述时隙结构,并根据当前网络覆盖范围内各终端设备的业务需求,为各终端设备分配相应的时隙资源,以使终端设备根据时隙资源分配结果在指定时间内进行上行数据发送或者下行数据接收。
具体的,无线接入设备根据每个用户的实际业务需求,分别动态分配相应的时隙资源给每个终端设备进行上/下行数据传输。其动态分配的方法,包括结合用户优先级、用户缓存数据多少、用户QoS时延大小以及用户保证速率的满足程度来决定优先级,对优先级高的用户占据更多的资源优先发送数据。
S14、基于时隙资源分配结果与所述各终端设备进行通信。
本发明实施例提供的无线通信方法,通过根据网络规划设备规划出的网络规划参数,网络规划参数包括TDMA帧的时隙周期以及网络上下行时隙配比对时隙周期进行功能时隙划分,确定时隙周期的时隙结构,并基于确定的所述时隙结构通过集中的时隙资源分配方式为各终端设备分配相应的时隙资源,提升无线网络的实时业务承载性能和服务质量QoS,提高空口资源的利用率及网络平均吞吐量,实现基于低成本的无线通信网络。而且,该网络还可根据适用场景进行上/下行资源的灵活配置,以满足不同场景的不同业务需求。
在一个具体实施例中,所述各业务类型包括广播业务、上行数据业务、下行数据业务。
相应的,所述根据所述时隙周期和网络上下行时隙配比确定所述时隙周期的时隙结构,具体包括:
在所述时隙周期的初始位置分配广播业务对应的广播时隙,并根据所述网络上下行时隙配比对所述时隙周期分配所述广播时隙后的剩余时长分配上行数据业务对应的上行数据时隙和分布位置、下行数据业务对应的下行数据时隙和分布位置。
在实际应用中,具体可根据承载广播信息的大小以及调制编码方式确定所述广播时隙的具体时长。
其中,上行数据时隙和下行数据时隙之间包括有第一指定长度的切换保护间隔;在上行数据时隙中每一单位时隙的初始位置包括有第二指定长度的保护时长;在下行数据时隙时长中每一单位时隙的初始位置包括有第三指定长度的保护时长。其中,第一指定长度一般可大于第二指定长度和第三指定长度。
在一个具体是实施例中,所述各业务类型中除了广播业务、上行数据业务、下行数据业务之外还包括竞争接入业务。
相应地,在所述时隙周期的初始位置分配广播业务对应的广播时隙之后,所述方法还 包括:基于所述时隙周期分配所述广播时隙后的剩余时长分配竞争接入业务对应的随机接入时隙和分布位置。具体的,可以根据当前网络覆盖范围内最远的终端设备发起接入请求所需的往返时间分配所述竞争接入业务对应的随机接入时隙。
本实施例中,根据所述时隙周期和网络上下行时隙配比确定所述时隙周期的时隙结构,具体实现如下:
首先,在所述时隙周期的初始位置分配广播业务对应的广播时隙;
然后,基于所述时隙周期分配所述广播时隙后的剩余时长分配竞争接入业务对应的随机接入时隙和分布位置;
最后,并根据所述网络上下行时隙配比对所述时隙周期分配所述广播时隙和随机接入时隙后的剩余时长,分配上行数据业务对应的上行数据时隙和分布位置、下行数据业务对应的下行数据时隙和分布位置。
本实施例中,无线接入设备通过获取网络规划设备下发的网络规划参数,根据网络规划参数实现TDMA帧的周期循环,决定各功能时隙的起始位置。如图2所示,在一个具体示例中,TDMA帧的时隙周期具体包括Beacon广播时隙,下行数据时隙,上下行切换保护间隔、上行数据时隙、随机接入时隙。其中,在Beacon广播时隙内发送广播信息,在下行数据时隙发送各个终端设备的下行数据,在上行数据时隙接收各终端设备的回传数据。随机接入时隙,作为各终端设备竞争接入AP的时间窗进行保留。本实施例,通过在时隙周期内区分广播时隙、上/下行数据时隙和随机接入时隙,使得终端设备在指定时间内进行竞争接入或者上行数据发送或者下行数据接收,进而实现不同AP间上下行数据收发同步,减少上下行时长不同步所带来的交叉干扰;降低AP发送和接收的转换频率以及硬件处理复杂度,降低工作站的功耗。另外,本发明实施例中AP集中分配时隙资源,有效提高资源利用率,减少竞争接入和正常上行数据发送的冲突碰撞,提高竞争接入的成功概率,减少已接入工作站等待上行数据发送的时长,降低业务传输时延,提高工作站业务质量和感知。
参见图3,本发明实施例中的无线通信系统分为网络规划设备、无线接入设备及终端设备共3个主要节点。其中,网络规划设备作为集中网络规划的节点,通过根据当前的布网环境,相关需求合理的规划该网络中的终端设备数量、每个终端设备的上下行保证带宽、上下行保证时隙资源、时隙配比以及TDMA帧的时隙周期等配置参数,并将相关网络规划参数配置给无线接入设备,无线接入设备节点作为整个无线通信系统的接入点,同时也是整个网络的资源集中控制节点,根据网络规划参数对TDMA帧的时隙周期进行功能时隙划分,确定所述时隙周期的时隙结构,并基于所述时隙周期的时隙结构为所有终端设备集中进行时隙资源分配,终端设备根据时隙资源分配结果在指定的时隙资源内实现数据的接收和发送功能。
本发明实施例提供的无线通信方法,在传统的低成本802.11设备上实现TDMA功能,通过无线接入设备对网络规划设备规划出的时隙周期进行功能时隙划分,确定所述时隙周期的时隙结构,并通过集中的时隙资源分配方式,来提升无线网络的实时业务承载性能, 提高网络的服务质量QoS,提升空口资源的利用率及网络平均吞吐量,实现基于低成本的无线通信网络,且还可根据适用场景进行上下行资源的灵活配置,以满足不同场景的不同业务需求。该方法可应用于视频监控、宽带接入等多种无线网络传输场景。
在一个具体实施例中,所述网络规划参数还包括用户上/下行保证带宽。
相应的,步骤S13中的所述根据确定的所述时隙结构为各终端设备分配相应的时隙资源的细分实现流程如图4所示,具体包括以下步骤:
S131、获取所述各终端设备待发送的上/下行数据量以及当前所采用的调制与编码策略MCS的最小索引值。具体可通过获取每个终端设备上下行需要发送的数据量大小确定待发送的上/下行数据量,通过获取每个终端设备上下行当前数据发送时采用的调制编码方式,获取各终端设备当前所采用的调制与编码策略MCS的最小索引值。
S132、根据每一终端设备待发送的上/下行数据量以及当前所采用的MCS的最小索引值为相应终端设备分配满足所述用户上/下行保证带宽的上/下行数据时隙资源。
进一步地,在无线接入设备为各终端设备分配相应的时隙资源之后,通过在广播时隙向各个终端设备发送的广播信息将时隙资源分配结果下发至各个终端设备。本实施例中无线接入设备通过广播信息将资源分配结果告诉各终端设备,资源分配结果中包括各个已接入终端设备对应的上行时隙、下行时隙,以及未接入终端设备的随机接入时隙,以供终端设备在对应时隙接收下行数据或发送上行数据或节点接入。
在一个具体实施例中,在所述根据每一终端设备待发送的上/下行数据量以及当前所采用的MCS的最小索引值为相应终端设备分配满足所述用户上/下行保证带宽的上/下行数据时隙资源之后,若还存在剩余的上/下行数据时隙资源,则根据各终端设备的用户优先级,和/或待发送的上/下行数据量对所述剩余的上/下行数据时隙资源进行分配。实际应用中,若基于用户上下行保证带宽进行时隙资源分配后,仍有剩余资源时隙,则根据每个终端设备的用户优先级和需要发送的数据量多少再次对剩余资源时隙进行分配。
在一个具体实施例中,所述网络规划参数还包括用户上/下行保证时隙。
相应的,在根据每一终端设备待发送的上/下行数据量以及当前所采用的MCS的最小索引值为相应终端设备分配满足所述用户上/下行保证带宽的上/下行数据时隙资源之后,若存在分配的上/下行数据时隙资源不满足用户上/下行保证带宽的终端设备,则根据各终端设备对应的用户上/下行保证时隙为终端设备分配时隙资源。
进一步地,在根据各终端设备对应的用户上下行保证时隙为终端设备分配时隙资之后,当出现传输误块率BLER高于预设阈值的终端设备时,为低优先级的终端设备保留预设长度的心跳监测时隙资源,对所述低优先级的终端设备除所述心跳监测时隙资源以外的时隙资源进行释放。
具体的,在按照用户上下行保证时隙进行时隙资源分配时,若出现某些用户的BLER升高,则说明按照保证时隙进行分配时,链路质量已经恶化到一定程度,无法提供保证速率,则释放低用户优先级的终端设备的时隙资源,仅留出最小保活资源(心跳监测资源) 供控制数据发送,将释放出来的资源供优先级高的用户降低MCS继续发送数据,以保证高优先用户的保证带宽。
本发明实施例中还包括一种心跳资源预留的机制,即保证每个终端设备能够保留预设长度的心跳监测资源,以保持用户的心跳数据传输,该心跳资源大小,是根据在最低MCS情况下,能保证一个控制数据包或者分片顺利传输的时隙资源大小,在出现信道条件恶劣的情况下,至少会给每个终端设备预留该资源。
在实际应用中,终端设备和无线接入设备根据分配的时隙资源,进行数据的发送和接收具体包括以下实现步骤:
1、在发送时隙(无线接入设备在下行时隙,终端设备在上行时隙)从新传数据队列中组成数据包,填入到时隙资源中进行发送;
2、根据数据包的确认信息,判断所发送数据是否正确接收,并对未正确接收的数据包进行重传,填入到时隙资源中发送。
此外,终端设备和无线接入设备在WiFi物理层,还需要按照802.11g/a/n/ac物理层标准,对无线接入设备(下行)和终端设备节点(上行)需要发送的数据进行调制编码,以及生成PPDU前导码,完成物理层数据包的封装并通过射频口发送出去。接收端通过检测到前导码,判断收到基于WiFi物理层的数据包,并对其进行解析。
与现有技术相比,本发明实施例提供的无线通信方法具备如下优点和有益效果:
本发明实施例采用TDMA技术,克服WLAN用户QoS时延高、空口资源利用率偏低的问题,实现了多用户的无线通信系统。
本发明实施例可根据不同的场景进行上下行资源的灵活配置,而且可通过集中的资源调度方式,来提升网络实时业务承载性能,提高网络的服务质量保证,增加网络的空口利用率,提升网络整体平均吞吐量。
本发明实施例相对基于WiMAX,LTE等制式的无线通信系统,具有成本低,布网灵活的优势。
图5示意性示出了本发明一个实施例的无线通信方法的流程图。本实施例提供的无线通信方法由网络规划设备执行,参照图5,本发明实施例的无线通信方法具体包括以下步骤:
S21、获取当前网络的网络规划参数。
S22、将所述网络规划参数下发到对应的无线接入设备,所述网络规划参数包括所述无线接入设备的TDMA帧的时隙周期以及网络上下行时隙配比,以供所述无线接入设备根据所述时隙周期和网络上下行时隙配比确定所述时隙周期的时隙结构,并以确定的所述时隙结构与所述各终端设备进行通信。
本发明实施例提供的无线通信方法,通过将获取到的当前网络的网络规划参数下发到对应的无线接入设备,以供无线接入设备根据网络规划设备规划出的网络规划参数,网络规划参数包括TDMA帧的时隙周期以及网络上下行时隙配比对时隙周期进行功能时隙划分,确定时隙周期的时隙结构,并基于确定的所述时隙结构通过集中的时隙资源分配方式为各 终端设备分配相应的时隙资源,提升无线网络的实时业务承载性能和服务质量QoS,提高空口资源的利用率及网络平均吞吐量,实现基于低成本的无线通信网络。而且,该网络还可根据适用场景进行上/下行资源的灵活配置,以满足不同场景的不同业务需求。
本实施例中,所述获取当前网络的网络规划参数,如图6所示,具体包括以下步骤:
S211、确定当前网络的网络用户容量。
S212、根据所述网络用户容量和当前网络中各终端设备的服务质量QoS配置各终端设备的用户上/下行保证带宽。
S213、根据当前网络中各终端设备的移动范围以及各终端设备的用户上/下行保证带宽,分别确定各终端设备的用户上/下行保证时隙。具体包括:根据每个终端设备的移动范围、终端设备到AP的最近、最远距离,规划该终端设备的最低MCS(Modulation and Coding Scheme,调制与编码策略)索引值;根据每个终端设备的用户上下行保证带宽,以及规划的MCS值,折算每个终端设备的用户上下行保证时隙。
S214、基于所有终端设备的用户上/下行保证时隙配置当前无线接入设备的TDMA帧的时隙周期和网络上下行时隙配比。
网络规划设备主要完成网络规划参数的配置以及下发,具体实现如下:根据覆盖范围,对网络中用户数容量进行规划,并根据每个用户的QoS特性,进行用户上下行保证带宽的规划,并进一步结合每个用户的移动范围和到AP的最近最远距离,评估MCS值范围,并根据用户上下行保证带宽和MCS索引值规划用户上下行保证时隙,最后综合所有用户的上下行保证时隙,规划TDMA帧的帧周期,以及整个网络的网络上下行时隙配比。
本发明实施例中,网络规划人员通过网络规划设备,根据当前的布网环境、相关需求而制定的网络用户数容量、每个终端设备上下行保证带宽及对应的MCS取值,其目的是提供一套合理的配置,在当前配置下,每个终端设备能满足其上下行保证速率,正常数据收发的终端设备数量得到保证。由于网络信道环境千变万化,故该套配置是一套比较保守的配置,能在略低于正常信道的条件下,能够满足一定用户数下每个终端设备的需要保证的带宽。
进一步地,在所述基于所有终端设备的用户上下行保证时隙配置无线接入设备的TDMA帧的时隙周期和网络上下行时隙配比之后,还包括以下步骤:根据任一终端设备在当前场景下的上下行业务比例调整所述网络上下行时隙配比。本实施例中,网络上下行时隙配比可根据实时业务场景下的上下行业务比例进行灵活配置。
图7示意性示出了本发明一个实施例的无线通信方法的流程图。本实施例提供的无线通信方法由终端设备执行,参照图7,本发明实施例的无线通信方法具体包括以下步骤:
S31、获取无线接入设备的时隙资源分配结果,所述时隙资源分配结果是无线接入设备根据TDMA帧的时隙周期的时隙结构分配的;其中,所述时隙结构中包含预设的各业务类型对应的时长,及所述各业务类型对应的时长在所述时隙周期中的位置。
S32、根据所述时隙资源分配结果与所述无线接入设备进行通信。
本发明实施例提供的无线通信方法,终端设备通过获取无线接入设备的时隙资源分配结果,并基于时隙资源分配结果与所述无线接入设备进行通信,其中,时隙资源分配结果是无线接入设备根据TDMA帧的时隙周期的时隙结构分配的,提升无线网络的实时业务承载性能和服务质量QoS,提高空口资源的利用率及网络平均吞吐量,实现基于低成本的无线通信网络。而且,该网络还可根据适用场景进行上下行资源的灵活配置,以满足不同场景的不同业务需求。
本实施例中,所述获取无线接入设备的时隙资源分配结果,具体通过以下步骤实现:接收所述无线接入设备发送的广播信息,所述广播信息包括所述无线接入设备的标识号、各终端设备的标识号以及各终端设备对应的上、下行时隙资源分配结果。
对于方法实施例,为了简单描述,故将其都表述为一系列的动作组合,但是本领域技术人员应该知悉,本发明实施例并不受所描述的动作顺序的限制,因为依据本发明实施例,某些步骤可以采用其他顺序或者同时进行。其次,本领域技术人员也应该知悉,说明书中所描述的实施例均属于优选实施例,所涉及的动作并不一定是本发明实施例所必须的。
图8示意性示出了本发明一个实施例的一种无线接入设备的结构示意图。参照图8,本发明实施例的无线接入设备包括接入侧获取模块401、配置模块402、资源分配模块403以及接入侧通信模块404,其中:
接入侧获取模块401,用于获取网络规划设备下发的网络规划参数,所述网络规划参数包括TDMA帧的时隙周期以及网络上下行时隙配比;
配置模块402,用于根据所述时隙周期和网络上下行时隙配比确定所述时隙周期的时隙结构,所述时隙结构中包含预设的各业务类型对应的时长,及所述各业务类型对应的时长在所述时隙周期中的位置;
资源分配模块403,用于根据确定的所述时隙结构为各终端设备分配相应的时隙资源;
接入侧通信模块404,用于基于时隙资源分配结果与所述各终端设备进行通信。
在本发明实施例中,所述各业务类型包括广播业务、上行数据业务、下行数据业务。
相应地,所述配置模块402,具体用于在所述时隙周期的初始位置分配广播业务对应的广播时隙,并根据所述网络上下行时隙配比对所述时隙周期分配所述广播时隙后的剩余时长分配上行数据业务对应的上行数据时隙和分布位置、下行数据业务对应的下行数据时隙和分布位置。
在本发明实施例中,所述各业务类型还包括竞争接入业务。
相应地,所述配置模块402,具体用于在所述时隙周期的初始位置分配广播业务对应的广播时隙之后,基于所述时隙周期分配所述广播时隙后的剩余时长分配竞争接入业务对应的随机接入时隙和分布位置。
在本发明实施例中,所述网络规划参数还包括用户上/下行保证带宽;
相应地,所述资源分配模块403,具体包括附图中未示出的获取子模块和分配子模块,其中:
所述的获取子模块,用于获取所述各终端设备待发送的上/下行数据量以及当前所采用的调制与编码策略MCS的最小索引值;
所述的分配子模块,用于根据每一终端设备待发送的上/下行数据量以及当前所采用的MCS的最小索引值为相应终端设备分配满足所述用户上/下行保证带宽的上/下行数据时隙资源。
进一步地,所述分配子模块,还用于在根据每一终端设备待发送的上/下行数据量以及当前所采用的MCS的最小索引值为相应终端设备分配满足所述用户上/下行保证带宽的上/下行数据时隙资源之后,若还存在剩余的上/下行数据时隙资源,则根据各终端设备的用户优先级和/或待发送的上/下行数据量对所述剩余的上/下行数据时隙资源进行分配。
进一步地,所述网络规划参数还包括用户上/下行保证时隙。
相应的,所述分配子模块,还用于在根据每一终端设备待发送的上/下行数据量以及当前所采用的MCS的最小索引值为相应终端设备分配满足所述用户上/下行保证带宽的上/下行数据时隙资源之后,若存在分配的上/下行数据时隙资源不满足用户上/下行保证带宽的终端设备,则根据各终端设备对应的用户上/下行保证时隙为终端设备分配时隙资源。
进一步地,所述分配子模块,还用于当出现传输误块率高于预设阈值的终端设备时,为低优先级的终端设备保留预设长度的心跳监测时隙资源,对所述低优先级的终端设备除所述心跳监测时隙资源以外的时隙资源进行释放。
图9示意性示出了本发明一个实施例的一种网络规划设备的结构示意图。参照图9,本发明实施例的网络规划设备包括网络规划模块501以及网络侧通信模块502,其中:
网络规划模块501,用于确定当前网络的网络规划参数;
网络侧通信模块502,用于将网络规划模块确定的所述网络规划参数下发到对应的无线接入设备,所述网络规划参数包括所述无线接入设备的TDMA帧的时隙周期以及网络上下行时隙配比,以供所述无线接入设备根据所述时隙周期和网络上下行时隙配比确定所述时隙周期的时隙结构,并以确定的所述时隙结构与所述各终端设备进行通信。
本实施例中,所述网络规划模块502,具体用于:确定当前网络的网络用户容量;根据所述网络用户容量和当前网络中各终端设备的服务质量QoS配置各终端设备的用户上/下行保证带宽;根据当前网络中各终端设备的移动范围以及各终端设备的用户上/下行保证带宽,分别确定各终端设备的用户上/下行保证时隙;基于所有终端设备的用户上/下行保证时隙配置当前无线接入设备的TDMA帧的时隙周期和网络上下行时隙配比。
进一步地,所述网络侧通信模块502,还用于在所述基于所有终端设备的用户上下行保证时隙配置无线接入设备的TDMA帧的时隙周期和网络上下行时隙配比之后,根据任一终端设备在当前场景下的上下行业务比例调整所述网络上下行时隙配比。
图10示意性示出了本发明一个实施例的一种终端设备的结构示意图。参照图10,本发明实施例的终端设备包括终端侧获取模块601以及终端侧通信模块602,其中:
终端侧获取模块601,用于获取无线接入设备的时隙资源分配结果,所述时隙资源分配 结果是无线接入设备根据TDMA帧的时隙周期的时隙结构分配的;其中,所述时隙结构中包含预设的各业务类型对应的时长,及所述各业务类型对应的时长在所述时隙周期中的位置;
终端侧通信模块602,用于根据所述时隙资源分配结果与所述无线接入设备进行通信。
进一步地,所述终端侧获取模块601,具体用于接收所述无线接入设备发送的广播信息,所述广播信息包括所述无线接入设备的标识号、各终端设备的标识号以及各终端设备对应的上、下行时隙资源分配结果。
本发明实施例提供的终端设备,通过获取无线接入设备的时隙资源分配结果,并基于时隙资源分配结果与所述无线接入设备进行通信,其中,时隙资源分配结果是无线接入设备根据TDMA帧的时隙周期的时隙结构分配的,提升无线网络的实时业务承载性能和服务质量QoS,提高空口资源的利用率及网络平均吞吐量,实现基于低成本的无线通信网络。而且,该网络还可根据适用场景进行上下行资源的灵活配置,以满足不同场景的不同业务需求。
此外,无线接入设备和终端设备均包括有:数据链路模块和WiFi物理层模块。
其中,数据链路模块实现整个端到端数据的收发过程,步骤包括:
1)根据资源分配模块所分配的时隙资源,进行数据的发送和接收,包括1、在发送时隙(接入设备在下行时隙,终端设备在上行时隙)从新传数据队列中组成数据包,填入到时隙资源中进行发送到物理层,2、根据数据包的确认信息,判断所发送数据是否正确接收,并对未正确接收的数据包进行重传,填入到时隙资源中发送到物理层;
2)接收到数据包后,放入接收缓存,经过重排序后将其发送到上层
其中,WiFi物理层模块
按照802.11g/a/n/ac物理层标准,对AP节点(下行)和终端设备节点(上行)需要发送的数据进行调制编码,以及生成PPDU前导码,完成物理层数据包的封装并通过射频口发送出去。接收端通过检测到前导码,判断收到基于WiFi物理层的数据包,并对其进行解析。
综上所述,按照上述办法,可在经过合理网络规划的基础上,实现多用户的无线通信,其效率、QoS满意程度、速率、建网成本等指标,都较前续方案有提升。
对于设备实施例而言,由于其与方法实施例基本相似,所以描述的比较简单,相关之处参见方法实施例的部分说明即可。
以上所描述的系统实施例仅仅是示意性的,其中所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部模块来实现本实施例方案的目的。本领域普通技术人员在不付出创造性的劳动的情况下,即可以理解并实施。
本发明实施例提供的无线通信方法及无线接入设备、网络规划设备、终端设备,本发 明实施例提供的无线通信方法及无线接入设备、网络规划设备、终端设备,通过根据网络规划设备规划出的网络规划参数,网络规划参数包括TDMA帧的时隙周期以及网络上下行时隙配比对时隙周期进行功能时隙划分,确定时隙周期的时隙结构,并基于确定的所述时隙结构通过集中的时隙资源分配方式为各终端设备分配相应的时隙资源,提升无线网络的实时业务承载性能和服务质量QoS,提高空口资源的利用率及网络平均吞吐量,实现基于低成本的无线通信网络。
在本发明实施例中,应该理解到,所揭露的设备和方法,可以通过其它的方式实现。例如,以上所描述的设备实施例仅仅是示意性的,例如,所述单元或单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,设备或单元的间接耦合或通信连接,可以是电性或其它的形式。
在本发明实施例中的各功能单元可以集成在一个处理单元中,或者各个单元也可以均是独立的物理模块。所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本发明实施例的技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备,例如可以是个人计算机,服务器,或者网络设备等,或处理器(processor)执行本发明各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:通用串行总线闪存盘(Universal Serial Bus flash drive)、移动硬盘、只读存储器(read-only memory,ROM)、随机存取存储器(random access memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
本领域的技术人员能够理解,尽管在此的一些实施例包括其它实施例中所包括的某些特征而不是其它特征,但是不同实施例的特征的组合意味着处于本发明的范围之内并且形成不同的实施例。例如,在下面的权利要求书中,所要求保护的实施例的任意之一都可以以任意的组合方式来使用。
最后应说明的是:以上实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的精神和范围。

Claims (21)

  1. 一种无线通信方法,其特征在于,包括:
    获取网络规划设备下发的网络规划参数,所述网络规划参数包括TDMA帧的时隙周期以及网络上下行时隙配比;
    根据所述时隙周期和网络上下行时隙配比确定所述时隙周期的时隙结构,所述时隙结构中包含预设的各业务类型对应的时长,及所述各业务类型对应的时长在所述时隙周期中的位置;
    根据确定的所述时隙结构为各终端设备分配相应的时隙资源;
    基于时隙资源分配结果与所述各终端设备进行通信。
  2. 根据权利要求1所述的方法,其特征在于,所述各业务类型包括广播业务、上行数据业务、下行数据业务;
    所述根据所述时隙周期和网络上下行时隙配比确定所述时隙周期的时隙结构,包括:
    在所述时隙周期的初始位置分配广播业务对应的广播时隙,并根据所述网络上下行时隙配比对所述时隙周期分配所述广播时隙后的剩余时长分配上行数据业务对应的上行数据时隙和分布位置、下行数据业务对应的下行数据时隙和分布位置。
  3. 根据权利要求2所述的方法,其特征在于,所述各业务类型还包括竞争接入业务;
    在所述时隙周期的初始位置分配广播业务对应的广播时隙之后,所述方法还包括:
    基于所述时隙周期分配所述广播时隙后的剩余时长分配竞争接入业务对应的随机接入时隙和分布位置。
  4. 根据权利要求2所述的方法,其特征在于,所述网络规划参数还包括用户上/下行保证带宽;
    所述根据确定的所述时隙结构为各终端设备分配相应的时隙资源,包括:
    获取所述各终端设备待发送的上/下行数据量以及当前所采用的调制与编码策略MCS的最小索引值;
    根据每一终端设备待发送的上/下行数据量以及当前所采用的MCS的最小索引值为相应终端设备分配满足所述用户上/下行保证带宽的上/下行数据时隙资源。
  5. 根据权利要求4所述的方法,其特征在于,在所述根据每一终端设备待发送的上/下行数据量以及当前所采用的MCS的最小索引值为相应终端设备分配满足所述用户上/下行保证带宽的上/下行数据时隙资源之后,所述方法还包括:
    若还存在剩余的上/下行数据时隙资源,则根据各终端设备的用户优先级,和/或待发送的上/下行数据量对所述剩余的上/下行数据时隙资源进行分配。
  6. 根据权利要求5所述的方法,其特征在于,所述网络规划参数还包括用户上/下行保证时隙;
    在根据每一终端设备待发送的上/下行数据量以及当前所采用的MCS的最小索引值为相应终端设备分配满足所述用户上/下行保证带宽的上/下行数据时隙资源之后,所述方法还 包括:
    若存在分配的上/下行数据时隙资源不满足用户上/下行保证带宽的终端设备,则根据各终端设备对应的用户上/下行保证时隙为终端设备分配时隙资源。
  7. 根据权利要求6所述的方法,其特征在于,所述方法还包括:
    当出现传输误块率高于预设阈值的终端设备时,为低优先级的终端设备保留预设长度的心跳监测时隙资源,对所述低优先级的终端设备除所述心跳监测时隙资源以外的时隙资源进行释放。
  8. 一种无线通信方法,其特征在于,包括:
    获取当前网络的网络规划参数;
    将所述网络规划参数下发到对应的无线接入设备,所述网络规划参数包括所述无线接入设备的TDMA帧的时隙周期以及网络上下行时隙配比,以供所述无线接入设备根据所述时隙周期和网络上下行时隙配比确定所述时隙周期的时隙结构,并以确定的所述时隙结构与所述各终端设备进行通信。
  9. 根据权利要求8所述的方法,其特征在于,所述获取当前网络的网络规划参数,包括:
    确定当前网络的网络用户容量;
    根据所述网络用户容量和当前网络中各终端设备的服务质量QoS配置各终端设备的用户上/下行保证带宽;
    根据当前网络中各终端设备的移动范围以及各终端设备的用户上/下行保证带宽,分别确定各终端设备的用户上/下行保证时隙;
    基于所有终端设备的用户上/下行保证时隙配置当前无线接入设备的TDMA帧的时隙周期和网络上下行时隙配比。
  10. 根据权利要求9所述的方法,其特征在于,在所述基于所有终端设备的用户上下行保证时隙配置无线接入设备的TDMA帧的时隙周期和网络上下行时隙配比之后,所述方法还包括:
    根据任一终端设备在当前场景下的上下行业务比例调整所述网络上下行时隙配比。
  11. 一种无线通信方法,其特征在于,包括:
    获取无线接入设备的时隙资源分配结果,所述时隙资源分配结果是无线接入设备根据TDMA帧的时隙周期的时隙结构分配的;其中,所述时隙结构中包含预设的各业务类型对应的时长,及所述各业务类型对应的时长在所述时隙周期中的位置;
    根据所述时隙资源分配结果与所述无线接入设备进行通信。
  12. 根据权利要求11所述的方法,其特征在于,所述获取无线接入设备的时隙资源分配结果,包括:
    接收所述无线接入设备发送的广播信息,所述广播信息包括所述无线接入设备的标识号、各终端设备的标识号以及各终端设备对应的上、下行时隙资源分配结果。
  13. 一种无线接入设备,其特征在于,包括:
    接入侧获取模块,用于获取网络规划设备下发的网络规划参数,所述网络规划参数包括TDMA帧的时隙周期以及网络上下行时隙配比;
    配置模块,用于根据所述时隙周期和网络上下行时隙配比确定所述时隙周期的时隙结构,所述时隙结构中包含预设的各业务类型对应的时长,及所述各业务类型对应的时长在所述时隙周期中的位置;
    资源分配模块,用于根据确定的所述时隙结构为各终端设备分配相应的时隙资源;
    接入侧通信模块,用于基于时隙资源分配结果与所述各终端设备进行通信。
  14. 根据权利要求13所述的无线接入设备,其特征在于,所述各业务类型包括广播业务、上行数据业务、下行数据业务;
    所述配置模块,具体用于在所述时隙周期的初始位置分配广播业务对应的广播时隙,并根据所述网络上下行时隙配比对所述时隙周期分配所述广播时隙后的剩余时长分配上行数据业务对应的上行数据时隙和分布位置、下行数据业务对应的下行数据时隙和分布位置。
  15. 根据权利要求14所述的无线接入设备,其特征在于,所述各业务类型还包括竞争接入业务;
    所述配置模块,具体用于在所述时隙周期的初始位置分配广播业务对应的广播时隙之后,基于所述时隙周期分配所述广播时隙后的剩余时长分配竞争接入业务对应的随机接入时隙和分布位置。
  16. 根据权利要求14所述的无线接入设备,其特征在于,所述网络规划参数还包括用户上/下行保证带宽;
    所述资源分配模块,包括:
    获取子模块,用于获取所述各终端设备待发送的上/下行数据量以及当前所采用的调制与编码策略MCS的最小索引值;
    分配子模块,用于根据每一终端设备待发送的上/下行数据量以及当前所采用的MCS的最小索引值为相应终端设备分配满足所述用户上/下行保证带宽的上/下行数据时隙资源。
  17. 根据权利要求16所述的无线接入设备,其特征在于,所述分配子模块,还用于在根据每一终端设备待发送的上/下行数据量以及当前所采用的MCS的最小索引值为相应终端设备分配满足所述用户上/下行保证带宽的上/下行数据时隙资源之后,若还存在剩余的上/下行数据时隙资源,则根据各终端设备的用户优先级和/或待发送的上/下行数据量对所述剩余的上/下行数据时隙资源进行分配。
  18. 根据权利要求17所述的无线接入设备,其特征在于,所述网络规划参数还包括用户上/下行保证时隙;
    所述分配子模块,还用于在根据每一终端设备待发送的上/下行数据量以及当前所采用的MCS的最小索引值为相应终端设备分配满足所述用户上/下行保证带宽的上/下行数据时隙资源之后,若存在分配的上/下行数据时隙资源不满足用户上/下行保证带宽的终端设备, 则根据各终端设备对应的用户上/下行保证时隙为终端设备分配时隙资源。
  19. 一种网络规划设备,其特征在于,包括:
    网络规划模块,用于确定当前网络的网络规划参数;
    网络侧通信模块,用于将网络规划模块确定的所述网络规划参数下发到对应的无线接入设备,所述网络规划参数包括所述无线接入设备的TDMA帧的时隙周期以及网络上下行时隙配比,以供所述无线接入设备根据所述时隙周期和网络上下行时隙配比确定所述时隙周期的时隙结构,并以确定的所述时隙结构与所述各终端设备进行通信。
  20. 根据权利要求19所述的网络规划设备,其特征在于,所述网络规划模块,具体用于:
    确定当前网络的网络用户容量;
    根据所述网络用户容量和当前网络中各终端设备的服务质量QoS配置各终端设备的用户上/下行保证带宽;
    根据当前网络中各终端设备的移动范围以及各终端设备的用户上/下行保证带宽,分别确定各终端设备的用户上/下行保证时隙;
    基于所有终端设备的用户上/下行保证时隙配置当前无线接入设备的TDMA帧的时隙周期和网络上下行时隙配比。
  21. 一种终端设备,其特征在于,包括:
    终端侧获取模块,用于获取无线接入设备的时隙资源分配结果,所述时隙资源分配结果是无线接入设备根据TDMA帧的时隙周期的时隙结构分配的;其中,所述时隙结构中包含预设的各业务类型对应的时长,及所述各业务类型对应的时长在所述时隙周期中的位置;
    终端侧通信模块,用于根据所述时隙资源分配结果与所述无线接入设备进行通信。
PCT/CN2018/125538 2018-01-19 2018-12-29 无线通信方法及无线接入设备、网络规划设备、终端设备 WO2019141082A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810054277.0 2018-01-19
CN201810054277.0A CN108419297B (zh) 2018-01-19 2018-01-19 无线通信方法及无线接入设备、网络规划设备、终端设备

Publications (1)

Publication Number Publication Date
WO2019141082A1 true WO2019141082A1 (zh) 2019-07-25

Family

ID=63125864

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/125538 WO2019141082A1 (zh) 2018-01-19 2018-12-29 无线通信方法及无线接入设备、网络规划设备、终端设备

Country Status (2)

Country Link
CN (1) CN108419297B (zh)
WO (1) WO2019141082A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114679404A (zh) * 2022-03-22 2022-06-28 北京邮电大学 一种上行VoLTE用户数量检测方法、装置及设备
CN114884572A (zh) * 2021-02-05 2022-08-09 中国科学技术大学 一种基于室内可见光组网系统的无线帧结构

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108419297B (zh) * 2018-01-19 2020-11-27 京信通信系统(中国)有限公司 无线通信方法及无线接入设备、网络规划设备、终端设备
US20220030574A1 (en) * 2018-09-19 2022-01-27 Lenovo (Beijing) Limited Time domain resource allocation
AU2018443808A1 (en) 2018-09-25 2021-05-13 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Wireless communication method and terminal device
CN109769251B (zh) * 2018-12-20 2022-12-30 西北工业大学 一种基于链路距离感知的资源分配方法
CN111565378B (zh) * 2019-02-14 2024-04-19 深圳长城开发科技股份有限公司 LoRa通信方法以及LoRa通信系统
CN110099054B (zh) * 2019-04-29 2021-08-31 深圳市吉祥腾达科技有限公司 一种基于网桥高效的tdma自组网方法
CN112399547B (zh) * 2019-08-14 2022-07-05 深圳长城开发科技股份有限公司 提高LoRa下行实时性的方法、LoRa网关、LoRa终端以及存储介质
CN110401983B (zh) * 2019-08-19 2021-11-02 吉林大学 一种时隙调度方法及簇头节点设备
CN111405676B (zh) * 2020-03-18 2022-02-15 江苏创通电子股份有限公司 一种数据传输处理方法、设备及存储介质
CN111432499B (zh) * 2020-03-24 2024-03-15 江苏创通电子股份有限公司 一种数据传输处理方法、设备及存储介质
CN111970030B (zh) * 2020-07-22 2021-06-29 珠海中慧微电子有限公司 一种宽带载波通信网络的信号发送方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1316172A (zh) * 1998-06-30 2001-10-03 艾利森电话股份有限公司 具有非对称上行链路与下行链路业务的电信系统中的信道分配
CN1511389A (zh) * 2001-05-25 2004-07-07 Ħ��������˾ 蜂窝通信系统中的时隙分配
US20060126575A1 (en) * 2000-07-27 2006-06-15 Interdigital Technology Corporation Adaptive uplink/downlink timeslot assignment in a hybrid wireless time division multiple access/code division multiple access communication system
CN101394220A (zh) * 2008-10-22 2009-03-25 北京航空航天大学 一种针对mf-tdma系统的时隙均匀分配方法
CN107046494A (zh) * 2016-11-15 2017-08-15 贵州电网有限责任公司电力科学研究院 一种基于电力线通信用电信息采集系统中时隙的划分方法
CN108419297A (zh) * 2018-01-19 2018-08-17 京信通信系统(中国)有限公司 无线通信方法及无线接入设备、网络规划设备、终端设备

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100999094B1 (ko) * 2003-06-27 2010-12-07 삼성전자주식회사 시분할 방식의 무선랜 통신방법 및 시스템
CN102761966A (zh) * 2011-03-25 2012-10-31 北京新岸线无线技术有限公司 一种调度方法、无线通信系统与设备
US8797938B2 (en) * 2011-06-13 2014-08-05 Electronics And Telecommunications Research Institute Multicasting system and method for vehicular communication network
KR101785672B1 (ko) * 2013-11-06 2017-10-16 엘지전자 주식회사 무선 통신 시스템에서 nan 단말의 신호 송수신 방법 및 장치
US10278127B2 (en) * 2014-08-07 2019-04-30 Lg Electronics Inc. Power save mode-based operating method and apparatus in wireless LAN
US10327203B2 (en) * 2015-04-29 2019-06-18 Lg Electronics Inc. UL MU Transmission method of STA operating in power save mode, and device for performing method
CN106455107B (zh) * 2016-11-04 2019-06-11 武汉大学 一种抢占式Wi-Fi TDMA接入控制方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1316172A (zh) * 1998-06-30 2001-10-03 艾利森电话股份有限公司 具有非对称上行链路与下行链路业务的电信系统中的信道分配
US20060126575A1 (en) * 2000-07-27 2006-06-15 Interdigital Technology Corporation Adaptive uplink/downlink timeslot assignment in a hybrid wireless time division multiple access/code division multiple access communication system
CN1511389A (zh) * 2001-05-25 2004-07-07 Ħ��������˾ 蜂窝通信系统中的时隙分配
CN101394220A (zh) * 2008-10-22 2009-03-25 北京航空航天大学 一种针对mf-tdma系统的时隙均匀分配方法
CN107046494A (zh) * 2016-11-15 2017-08-15 贵州电网有限责任公司电力科学研究院 一种基于电力线通信用电信息采集系统中时隙的划分方法
CN108419297A (zh) * 2018-01-19 2018-08-17 京信通信系统(中国)有限公司 无线通信方法及无线接入设备、网络规划设备、终端设备

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114884572A (zh) * 2021-02-05 2022-08-09 中国科学技术大学 一种基于室内可见光组网系统的无线帧结构
CN114884572B (zh) * 2021-02-05 2024-02-13 中国科学技术大学 一种基于室内可见光组网系统的无线帧结构
CN114679404A (zh) * 2022-03-22 2022-06-28 北京邮电大学 一种上行VoLTE用户数量检测方法、装置及设备
CN114679404B (zh) * 2022-03-22 2024-05-14 北京邮电大学 一种上行VoLTE用户数量检测方法、装置及设备

Also Published As

Publication number Publication date
CN108419297A (zh) 2018-08-17
CN108419297B (zh) 2020-11-27

Similar Documents

Publication Publication Date Title
WO2019141082A1 (zh) 无线通信方法及无线接入设备、网络规划设备、终端设备
TWI483575B (zh) 存取無線通信媒介之控制方法及系統
EP4013179A1 (en) Wireless communication method using enhanced distributed channel access, and wireless communication terminal using same
WO2015096719A1 (zh) 一种d2d资源分配方法、数据传输方法及装置
WO2019157945A1 (zh) 一种用于上行授权的方法及装置
WO2020038250A1 (zh) 一种通信方法及相关设备
US20160164655A1 (en) Method and device for frame acknowledgment
US20080259853A1 (en) Radio Lan System, and Base Station and Terminal Station Thereof
WO2012079517A1 (zh) 一种资源调度的方法、装置和基站
JP5022477B2 (ja) トラフィックフローを区別する方法及び装置
WO2012107004A1 (zh) 一种基于服务质量的调度方法、设备及系统
Cicconetti et al. FEBA: A bandwidth allocation algorithm for service differentiation in IEEE 802.16 mesh networks
WO2017020235A1 (zh) 控制调度报文的方法和装置
Afrin et al. Performance analysis of an enhanced delay sensitive LTE uplink scheduler for M2M traffic
WO2015103834A1 (zh) 一种实现vlc动态接入的方法、装置和系统
Park et al. Latency impact for massive real-time applications on multi link operation
KR101109507B1 (ko) 1x 에볼루션 데이터 전용(1XEV-DO) 통신 네트워크에서 QUICKCONFIG 메시지 구성 방법 및 추가 호 셋업 레이턴스의 유발없이 1XEV-DO 네트워크에서 호 및 핸드오프 실패율을 감소시키는 방법
Zhang et al. Energy-efficient frame aggregation scheme in IoT over fiber-wireless networks
Alshaer et al. SDN-enabled Li-Fi/Wi-Fi wireless medium access technologies integration framework
CN110622550B (zh) 保证无线通信系统中服务质量的方法和装置
EP1652342B1 (en) Method, access point and program product for providing bandwidth and airtime fairness in wireless networks
Ni et al. QoS support for IEEE 802.11 Wireless LAN
WO2008012789A1 (en) Method for reduced latency wireless communication having reduced latency and increased range and handoff performance between different transmitting stations
KR101040290B1 (ko) 우선순위 기반의 매체접속방식의 무선 네트워크 시스템, 무선 네트워크 통신 방법
Wall et al. An adaptive ARQ enhancement to support multimedia traffic using 802.11 wireless LANs

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18900887

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 25/11/2020)

122 Ep: pct application non-entry in european phase

Ref document number: 18900887

Country of ref document: EP

Kind code of ref document: A1