WO2019141051A1 - 视网膜数字成像系统、视网膜数字成像仪及视网膜数字成像方法 - Google Patents

视网膜数字成像系统、视网膜数字成像仪及视网膜数字成像方法 Download PDF

Info

Publication number
WO2019141051A1
WO2019141051A1 PCT/CN2018/123241 CN2018123241W WO2019141051A1 WO 2019141051 A1 WO2019141051 A1 WO 2019141051A1 CN 2018123241 W CN2018123241 W CN 2018123241W WO 2019141051 A1 WO2019141051 A1 WO 2019141051A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
module
illumination
digital imaging
imaging system
Prior art date
Application number
PCT/CN2018/123241
Other languages
English (en)
French (fr)
Inventor
王宁利
黄叶权
张劲松
任建伟
马超
陈振华
冬雪川
甄毅
刘可星
尼克
Original Assignee
深圳盛达同泽科技有限公司
北京明达同泽科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳盛达同泽科技有限公司, 北京明达同泽科技有限公司 filed Critical 深圳盛达同泽科技有限公司
Priority to US16/954,515 priority Critical patent/US20200329962A1/en
Priority to EP18900734.7A priority patent/EP3744228A4/en
Publication of WO2019141051A1 publication Critical patent/WO2019141051A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B3/00Apparatus for testing the eyes; Instruments for examining the eyes
    • A61B3/10Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions
    • A61B3/14Arrangements specially adapted for eye photography
    • A61B3/145Arrangements specially adapted for eye photography by video means
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B3/00Apparatus for testing the eyes; Instruments for examining the eyes
    • A61B3/10Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions
    • A61B3/103Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions for determining refraction, e.g. refractometers, skiascopes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B3/00Apparatus for testing the eyes; Instruments for examining the eyes
    • A61B3/10Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions
    • A61B3/12Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions for looking at the eye fundus, e.g. ophthalmoscopes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B3/00Apparatus for testing the eyes; Instruments for examining the eyes
    • A61B3/0008Apparatus for testing the eyes; Instruments for examining the eyes provided with illuminating means
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B3/00Apparatus for testing the eyes; Instruments for examining the eyes
    • A61B3/10Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions
    • A61B3/14Arrangements specially adapted for eye photography
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/117Identification of persons
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B3/00Apparatus for testing the eyes; Instruments for examining the eyes
    • A61B3/10Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions
    • A61B3/14Arrangements specially adapted for eye photography
    • A61B3/15Arrangements specially adapted for eye photography with means for aligning, spacing or blocking spurious reflection ; with means for relaxing
    • A61B3/152Arrangements specially adapted for eye photography with means for aligning, spacing or blocking spurious reflection ; with means for relaxing for aligning

Definitions

  • the present disclosure relates to the field of medical optical instruments, and in particular to a retinal digital imaging system, a retinal digital imager, and a digital imaging method of the retina.
  • Retinal imaging technology is gradually being widely used in fields such as medical and biometrics. Medically, timely detection and tracking of retinopathy can effectively diagnose and warn a variety of diseases.
  • the retina In the field of biometrics, the retina has far more biological characteristics than fingerprints, palm prints, etc., which can greatly improve the recognition accuracy; and the retina penetrates into the retina, is not easily acquired by the outside world, and has very high confidentiality.
  • Retinal imaging technology has a long history of research, but still can not meet the needs of society.
  • telemedicine systems have gradually become an indispensable part of medical diagnosis, but currently conventional retinal illumination uses halogen or white light for retinal illumination, and camera operators use light intensity knobs to control retinal illumination. Bright white light flashes through the pupil at the back of the eye, and the imaging sensor produces a color image of the retina.
  • Such a retinal imaging device cannot achieve imaging of different layers of the retina, which poses certain obstacles to medical diagnosis.
  • the present disclosure provides a retinal digital imaging system, including: a lighting module, a main optical component, and an image sensor module;
  • the illumination module includes a plurality of light emitting diodes capable of emitting light of different wavelengths, each of the light emitting diodes emitting light entering the retina through the primary optical component to form an illumination light path;
  • the retina reflects the light rays through the primary optical component to image on the image sensor module to form an imaging optical path.
  • the main optical component includes a ring mirror and an objective lens
  • the annular mirror is configured to reflect light emitted by the illumination module toward the objective lens to finally reach the retina;
  • the illumination light path passes through the objective lens to the retina; the imaging optical path passes through the objective lens to the image sensor module.
  • a central portion of the annular mirror forms a non-reflective through passage, so that the light reflected by the retina passes through the objective lens, and then passes through a channel in the middle of the annular mirror to reach the image sensor module.
  • the objective lens comprises a plurality of lenses, and the surface of each of the lenses is plated with an anti-reflection coating.
  • the objective lens comprises a basic front objective lens and an auxiliary lens which are arranged at intervals.
  • the objective lens is configured such that the field of view of the retinal digital imaging system in the retina is in the range of 55-80°.
  • the primary optical component further includes a folded optical path mirror disposed in the imaging optical path configured to fold the imaging optical path and cause the reflected light of the retina to reach the image a sensor module; the folded optical path mirror is disposed between the annular mirror and the image sensor module in the imaging optical path.
  • the illumination optical path between the annular mirror and the illumination module and the imaging optical path between the folded optical path mirror and the image sensor module are parallel to each other.
  • the main optical component further includes a lateral compensator and an axial compensator, the lateral compensator and the axial compensator are located on the imaging optical path, and the lateral compensator is disposed Between the image sensor module and the folded optical path mirror, configured to adjust tolerances and alignments on a plane perpendicular to an optical axis of the imaging optical path, the axial compensator being disposed on the image sensor module Between the folded optical path mirror and the folded optical path mirror, the axial offset is adjusted.
  • a diopter compensator is further disposed between the folded optical path mirror and the image sensor module.
  • the retinal digital imaging system further includes an imaging optical path aperture, the imaging optical path aperture is disposed in the imaging optical path, and the imaging optical path aperture is disposed on the diopter compensator and Between the image sensor modules.
  • the retinal digital imaging system further includes a field lens and an illumination light path aperture, the illumination light path aperture configured to control a far field illumination range; the field lens and the illumination light path aperture are disposed on the In the illumination light path, the illumination light path aperture is disposed between the field lens and the illumination module.
  • the lighting module further includes a light energy monitoring module and an energy value-cutting function module, and the light energy monitoring module is configured to monitor and record the energy of each of the LEDs in real time,
  • the energy value cut-off function module is configured to cut off the light source each time the energy of each of the light-emitting diodes illuminates once the safety energy warning limit is reached during normal or abnormal operation.
  • the retinal digital imaging system further includes an optotype module and a spectroscopic mirror, and the optotype module transmits light to the eye through the spectroscopic mirror to guide the viewing direction of the eye.
  • the optotype module is on the same imaging plane as the image sensor module.
  • the retinal digital imaging system further includes an optical filter module, the optical filter module providing a separate filter for the illumination optical path and the imaging optical path; the optical filter module Provided between the illumination module and the main optical component.
  • the optical filter module is provided with a plurality of pairs of filters, and can synchronously switch the illumination optical path and the filter used for the imaging optical path.
  • the retinal digital imaging system further includes an illumination optical path lateral compensator disposed between the optical filter module and the annular mirror.
  • the image sensor module is further provided with an external trigger configured to synchronize the image capturing with the illumination.
  • the present disclosure provides a retinal digital imager comprising a central control module and a retinal digital imaging system as described in any of the above aspects, the central control module controlling connection of the illumination module and the image sensor module.
  • the retina digital imager further comprises a real-time high-function embedded control software module running on a high-capacity, high-performance and high-speed computing platform.
  • a retinal digital imaging method comprising:
  • Light of different wavelengths is emitted by the plurality of light emitting diodes, wherein each of the light emitting diodes emits light and enters the retina through the main optical component to form an illumination light path;
  • the retina reflects the light rays through the primary optical component to image on the image sensor module to form an imaging optical path.
  • the retinal digital imaging system, the retinal digital imager and the retinal digital imaging method provided by the present disclosure can achieve the following technical effects:
  • the present disclosure provides a retinal digital imaging system, comprising: a lighting module, a main optical component and an image sensor module; the lighting module comprises a plurality of light emitting diodes capable of emitting light of different wavelengths, each of the light emitting diodes emitting light through the main optical component
  • the retina forms an illumination path; the retina reflects light through the primary optical component to image the image sensor module to form an imaging path.
  • the plurality of light-emitting diodes of the illumination module can emit different wavelengths of light, that is, have different spectral bands, the reflection and absorption of the retina depend on the spectrum, and different wavelengths penetrate the retinas of different depths, and the plurality of different spectra formed by the above-mentioned light-emitting diodes
  • the bands can be composed of a wide spectrum, so different layers of the retina can be imaged to provide valuable medical and diagnostic data.
  • the present disclosure provides a retinal digital imager comprising a central control module and any retinal digital imaging system as provided by the above technical solution, the central control module controlling the connection of the retinal digital imaging system.
  • the retinal digital imager can obtain all the beneficial effects of the above retinal digital imaging system, and provides a more convenient and reliable means and method for the treatment and diagnosis of ophthalmology.
  • the present disclosure provides a retinal digital imaging method capable of achieving all the benefits that the above-described retinal digital imaging system can achieve, and can image different layers of the retina to provide valuable medical and diagnostic data.
  • FIG. 1 is a schematic diagram showing the operation of a digital retinal imaging system according to Embodiment 1 of the present disclosure
  • FIG. 2 is a schematic diagram showing the operation of a digital retinal imaging system according to another embodiment of the present disclosure
  • FIG. 3 is a schematic structural diagram of a retinal digital imager according to Embodiment 2 of the present disclosure.
  • Icons 1-illumination module; 2-image sensor module; 3-primary optical component; 31-ring mirror; 32-objective lens; 33-folded optical path mirror; 34-transverse compensator; 35-axial compensator; - diopter compensator; 5-visor module; 51-split mirror; 6-optical filter module; 7-alignment mechanism; 8-front alignment module; 9-display and user interface; ; 11 - field mirror; 12 - illumination light path aperture; 13 - illumination light path lateral compensator.
  • connection In the description of the present disclosure, it should be noted that the terms “installation”, “connected”, and “connected” are to be understood broadly, and may be fixed or detachable, for example, unless otherwise explicitly defined and defined. Connected, or integrally connected; can be mechanical or electrical; can be directly connected, or indirectly connected through an intermediate medium, can be the internal communication of the two components.
  • Connected, or integrally connected can be mechanical or electrical; can be directly connected, or indirectly connected through an intermediate medium, can be the internal communication of the two components.
  • the specific meanings of the above terms in the present disclosure can be understood in the specific circumstances by those skilled in the art.
  • an embodiment of the present disclosure provides a retinal digital imaging system including a lighting module 1, a main optical component 3, and an image sensor module 2;
  • the illumination module 1 includes a plurality of light emitting diodes capable of emitting light of different wavelengths, each of the light emitting diodes is incident on the retina through the main optical component 3 to form an illumination light path; the retina reflects the light through the main optical component 3 in the image sensor The module 2 is imaged, thus forming an imaging optical path.
  • the illumination module 1 may include one or more illumination units; when there are a plurality of illumination units, the plurality of illumination units are arranged in parallel, and may emit light alone or simultaneously.
  • Each lighting unit has a plurality of light emitting diodes, and the light emitted by the plurality of light emitting diodes has mutually different wavelengths.
  • the light emitting elements used in the illumination unit may include different types of light emitting diodes, for example, may be molecular light emitting diodes, organic light emitting diodes or laser diodes, and the light emitting elements may also include laser diodes. Other laser sources.
  • the retinal digital imaging system divides the entire spectrum from blue to near infrared (wavelength 480 nm to 980 nm) into different relatively narrow spectral bands, and respectively emits one wavelength of illumination through a plurality of light emitting diodes. Since the reflex and absorption of the retina depend on the spectrum, different wavelengths penetrate different depths of the retina, so different layers of the retina can be imaged to obtain valuable medical and diagnostic data.
  • retinal images irradiated by each of the LEDs are separately collected and separately collected.
  • the illumination path scatters light from the output of the illumination module 1 through the pupil uniformly in the retina.
  • the dedicated optical path of illumination terminates in a toroidal mirror 31, by which the illumination is coaxially combined with the beam of the imaging optical path, the entire illumination path having an amplification factor of 0.2-2.0, alternatively the amplification factor can be 0.5.
  • the retinal digital imaging system can further include a field lens 11 and an illumination path aperture 12 configured to control the far field illumination range.
  • the field lens 11 and the illumination light path aperture 12 are disposed in the illumination light path.
  • the illumination light path aperture 12 is disposed between the field lens 11 and the illumination module 1.
  • the field lens 11 is disposed between the illumination optical path diaphragm 12 and the main optical component 3.
  • the illumination module 1 transmits the triggered light to the illumination optical path input end through its own optical coupling unit, and images the illumination optical path aperture 12, the illumination optical path eyepiece and the field lens 11 to the patient's eye retina through the illumination optical path aperture 12, and then in the predetermined stereoscopic shape.
  • the entire retina is illuminated within the angle (field of view). That is to say, the light emitted by the illumination module 1 is sequentially transmitted to the illumination optical path input end of the main optical component 3 through the illumination optical path aperture 12 and the field lens 11 to be imaged to the retina of the patient's eye.
  • the image sensor module 2 in this embodiment may be a Complementary Metal Oxide Semiconductor (CMOS), a Charge-Coup Device (CCD) or other format or technology, and has a relatively high speed. The ability to continuously record images.
  • CMOS Complementary Metal Oxide Semiconductor
  • CCD Charge-Coup Device
  • the image sensor module 2 in at least one embodiment of the present disclosure is further provided with an external trigger, and the external trigger can be selected as an external fast electrical signal triggering interface, which can make the image capturing and the lighting synchronous flash phase.
  • the main optical component 3 in at least one embodiment of the present disclosure may include an annular mirror 31 and an objective lens 32; the annular mirror 31 is configured to reflect the light emitted by the illumination module 1 to the retina; the illumination light path passes through the objective lens 32 to The retina; the imaging light path passes through the objective lens 32 to the image sensor module 2 for information acquisition.
  • the illumination emitted by the illumination module 1 forms an annular light that impinges on the annular mirror 31, which reflects the light through the objective lens 32 into the retina.
  • the angle of the annular mirror 31 with respect to the incident light emitted by the illumination module 1 may be 0-90°, further optionally 45°, and the annular mirror 31 is opposed to the reflected light reflected to the retina.
  • the angle can also be 0-90°, further optionally 45°.
  • annular mirror 31 may be an integral annular structure or a ring structure composed of a plurality of arc segments.
  • a non-reflective through passage is formed in the middle of the annular mirror 31 to facilitate the passage of the imaging optical path. That is, the light reflected by the retina passes through the objective lens 32 and passes through the channel in the middle of the annular mirror 31 to reach the image sensor module 2.
  • the lighting module 1 may further comprise a light energy monitoring module and an energy value-cutting function module, wherein the output light power and energy of each light-emitting diode are calibrated, and the light energy monitoring module is configured to monitor and record each light-emitting diode in real time.
  • the secondary illuminating energy, energy value cut-off function module is configured to cut off the light source once the energy of each illuminating light of each light-emitting diode reaches the safety energy warning limit during normal or abnormal operation, so as to provide absolute safety protection to the patient.
  • the lighting module 1 has a light energy monitoring and energy value cut-off function.
  • the objective lens 32 is composed of a plurality of lenses, which may include a basic front objective lens and an auxiliary lens that are sequentially spaced apart.
  • the basic front objective is the key to imaging.
  • the objective lens 32 may also include only a basic front objective lens, and does not include an auxiliary lens. That is to say, the auxiliary lens may be optional, and may be one or plural, and the auxiliary lens may be a convex lens or a concave lens.
  • the function of the auxiliary lens is to improve image performance, resolution, and minimize aberrations.
  • the objective lens 32 can be composed of two lenses, a basic front objective lens and a non-circular lens for compensating for aberrations.
  • such an objective lens 32 achieves an increase in the field of view of the retinal digital imaging system formed by the embodiment of the present disclosure in the retina, optionally increasing the existing 40° field of view to 55-80°, Further optional 63 °, which increases the scope of observation, can more comprehensively obtain information on the retina, and provide more comprehensive medical reference data.
  • all of the lens surfaces of objective lens 32 employ anti-reflective coating techniques to reduce unwanted reflections.
  • all of the lens surfaces in the retinal digital imaging system provided in at least one embodiment of the present disclosure employ the anti-reflective coating technique described above. That is to say, all of the lens surfaces of the objective lens 32 may be provided with an anti-reflection coating.
  • the primary optical assembly 3 in at least one embodiment of the present disclosure may further include a folded optical path mirror 33 disposed in the imaging optical path configured to reflect light reflected by the retina to the image sensor module 2.
  • the image sensor module 2 and the retina are not on the same line.
  • a folded optical path mirror 33 is disposed on the path of the imaging optical path, and the folded optical path mirror 33 is disposed.
  • the imaging optical path is disposed between the annular mirror 31 and the image sensor module 2, and the light reflected from the retina reaches the image sensor module 2 via the objective lens 32 and the folded optical path mirror 33. During this process, the light is folded, reducing the size of the imaging instrument.
  • the illumination optical path between the annular mirror 31 and the illumination module 1 and the imaging optical path between the folded optical path mirror 33 and the image sensor module 2 are parallel to each other, and the whole structure is more compact and the operation is also More convenient.
  • the primary optical assembly 3 further includes a lateral compensator 34 and an axial compensator 35, the lateral compensator 34 and the axial compensator 35 being located on the imaging optical path.
  • the lateral compensator 34 is configured to adjust tolerances and alignments on a plane perpendicular to the optical axis of the imaging optical path.
  • the axial compensator 35 is configured to adjust the axial offset.
  • the lateral compensator 34 is disposed between the annular mirror 31 and the folded optical path mirror 33, and is realized by a lens with a lateral position adjustable.
  • the axial compensator 35 is disposed between the folded optical path mirror 33 and the image sensor module 2, and is realized by an axially positionally adjustable lens.
  • a diopter compensator 4 is further disposed between the folded optical path mirror 33 and the image sensor module 2.
  • the diopter compensator 4 is part of an imaging system, and diopter compensation is achieved by adjusting the axial position of a lens, thereby changing the focal length of the imaging system.
  • folding optical path mirror 33, the axial compensator 35, the diopter compensator 4, and the image sensor module 2 may be sequentially disposed.
  • the above-mentioned diopter compensator 4 is dynamic or adjustable, and can realize focus control, which is realized by a quasi-telecentric lens group, so that the imaging optical path is in the range of +15 to -15 diopters, and the image size changes only by ⁇ 10%.
  • the retinal digital imaging system may further include an imaging optical path aperture, the imaging optical path aperture being disposed in the imaging optical path, and the imaging optical path aperture being disposed between the diopter compensator 4 and the image sensor module 2.
  • the retinal imaging system in at least one embodiment of the present disclosure may further include an optotype module 5 configured to guide the viewing direction of the eye.
  • the optotype module 5 is on the same imaging plane as the image sensor module 2.
  • the retinal imaging system in at least one embodiment of the present disclosure may further include a spectroscopic mirror 51 disposed between the folded optical path mirror 33 and the image sensor module 2. Light is directed through the spectroscopic mirror 51 to the optotype module 5 to deliver light to the eye to guide the viewing direction of the eye.
  • the optotype module 5 and the image sensor module 2 are separately arranged and arranged separately by the beam combiner.
  • the position of the gaze target guides the eyes in different directions, thus allowing imaging of different parts of the retina.
  • the function of the actual position of the optotype module 5 can be implemented in different ways, such as an array of light emitting diodes; based on a liquid crystal display, or a dynamic micromirror matrix. Both the liquid crystal display and the dynamic micromirror matrix have high resolution and fully programmable image generators.
  • the retinal imaging system in at least one embodiment of the present disclosure may further include an optical filter module 6 that provides separate filters for the illumination light path and the imaging light path, respectively.
  • the optical filter module 6 is provided with a plurality of pairs of filters, and can synchronously switch the filters used for the illumination path and the imaging path.
  • a filter module configured for self-fluorescence imaging and other functions will provide separate filters for the illumination and observation beams, respectively. Two filters are carried at corresponding positions on the same filter disc.
  • the filter disc is controlled to rotate by the control motor, and for the illumination path and the imaging path, when the filter disc is driven to rotate by the control motor, the filter configured to pass the illumination path and the filter configured to pass the imaging path are always Switch with the exact lock step.
  • the field lens 11 may be two, the illumination module 1, the illumination optical path aperture 12, one field lens 11, the optical filter module 6, another field lens 11, and a ring reflection.
  • the mirror 31 and the objective lens 32 are sequentially disposed, and the light emitted by the illumination module 1 sequentially passes through the illumination optical path aperture 12, a field lens 11, the optical filter module 6, the other field lens 11, the annular mirror 31 and the objective lens 32 to enter the retina to form an illumination. Light path.
  • the objective lens 32, the annular mirror 31, the lateral compensator 34, the folded optical path mirror 33, the axial compensator 35, the diopter compensator 4, the spectroscopic mirror 51, and the image sensor module 2, the retina reflects the light through the objective lens 32 in sequence.
  • the annular mirror 31, the lateral compensator 34, the folded optical path mirror 33, the axial compensator 35, the diopter compensator 4, and the spectroscopic mirror are imaged on the image sensor module 2 to form an imaging optical path.
  • the light is directed to the optotype module 5 through the spectroscopic mirror 51, thereby transmitting light to the eye to guide the viewing direction of the eye.
  • the retinal digital imaging system may include an illumination optical path lateral compensator 13, which may replace the optical filter module 6 and the annular mirror 31 in the above embodiment.
  • the field lens 11 that is, the illumination module 1 , the illumination light path aperture 12 , the field lens 11 , the optical filter module 6 , the illumination light path lateral compensator 13 , the annular mirror 31 and the objective lens 32 are sequentially disposed, and the illumination module 1 emits The light rays sequentially enter the retina through the illumination optical path aperture 12, the field lens 11, the optical filter module 6, the illumination optical path lateral compensator 13, the annular mirror 31, and the objective lens 32 to form an illumination light path.
  • the illumination path lateral compensator 13 is configured to adjust tolerances and alignments on a plane perpendicular to the optical axis of the illumination path.
  • the present disclosure provides a retinal digital imaging system including: a lighting module 1, a main optical component 3, and an image sensor module 2; the lighting module 1 includes a plurality of light emitting diodes capable of emitting light of different wavelengths, each of the light emitting diodes.
  • the emitted light enters the retina through the primary optical component 3 to form an illumination path; the retina reflects the light through the primary optical component 3 to image on the image sensor module 2 to form an imaging optical path.
  • the plurality of light-emitting diodes of the illumination module 1 can emit light of different wavelengths, that is, have different spectral bands, the reflection and absorption of the retina depend on the spectrum, and different wavelengths penetrate the retinas of different depths, and the above-mentioned light-emitting diodes form a plurality of different Spectral bands can be combined to form a broad spectrum, so different layers of the retina can be imaged to provide valuable medical and diagnostic data.
  • an embodiment of the present disclosure provides a retinal digital imager, including a central control module 10 and any retinal digital imaging system as provided in the above embodiment 1.
  • the central control module 10 controls the connection of the illumination module 1 and the image sensor module. 2.
  • the entire retinal digital imager structure also includes an alignment mechanism 7, a front alignment module 8, and a display (not shown) and a user interface 9.
  • the central control module 10 is configured to coordinate and control the operation and operation of the entire device (including the illumination module 1, the image sensor module 2, the alignment mechanism 7, the front alignment module 8 and the optotype module 5); the central control module 10 simultaneously manages All images are passed to the display and user interface 9; and all instructions entered by the operator through the display and user interface 9 are accepted and coordinated. Control management and instruction execution and coordination of the central control module 10 is accomplished through control planes and control logic.
  • the central control module 10 includes a real-time high-performance embedded control software module that runs on a high-capacity, high-performance, high-speed computing platform.
  • the central control module 10 includes a main controller and an internal memory, wherein the main controller controls the activation and deactivation of the plurality of light emitting diodes, while the main controller controls the operation of the image sensor module 2 and stores the information collected by the image sensor module 2 to Internal memory.
  • Another embodiment of the present disclosure also provides a retinal digital imaging method that can apply the retinal digital imaging system and the retinal digital imager provided by any of the above embodiments.
  • the digital imaging method of the retina includes:
  • Light of different wavelengths is emitted by the plurality of light emitting diodes, wherein each of the light emitting diodes emits light into the retina through the main optical component to form an illumination light path; wherein the plurality of light emitting diodes form the illumination module 1.
  • the retina reflects light through the primary optical component 3 to image on the image sensor module 2 to form an imaging optical path.
  • light beams having different wavelengths are emitted by the plurality of light emitting diodes, and the light rays sequentially enter the retina through the illumination light path aperture 12, the field lens 11, the optical filter module 6, the illumination light path lateral compensator 13, the annular mirror 31, and the objective lens 32.
  • the retina reflects light rays through the objective lens 32, the annular mirror 31, the lateral compensator 34, the folded optical path mirror 33, the axial compensator 35, the diopter compensator 4, and the spectroscopic mirror, and is imaged on the image sensor module 2. Forming an imaging light path.
  • the retinal digital imaging system, the retinal digital imager, and the digital retinal imaging method provided by the embodiments of the present disclosure are capable of imaging different layers of the retina to provide valuable medical and diagnostic data.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Surgery (AREA)
  • Biophysics (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Veterinary Medicine (AREA)
  • Animal Behavior & Ethology (AREA)
  • Physics & Mathematics (AREA)
  • Public Health (AREA)
  • Ophthalmology & Optometry (AREA)
  • Pathology (AREA)
  • Multimedia (AREA)
  • Eye Examination Apparatus (AREA)

Abstract

一种视网膜数字成像系统、视网膜数字成像仪及视网膜数字成像方法。该视网膜数字成像系统包括照明模块(1)、主光学组件(3)和图像传感器模块(2);照明模块(1)包括多个能够发出波长不同的光线的发光二极管,每个发光二极管发出光线经主光学组件(3)进入视网膜,形成照明光路;视网膜将光线反射经过主光学组件(3)在图像传感器模块(2)上成像,形成成像光路。发光二极管形成的多个不同的光谱波段组成较宽的光谱,可以对视网膜的不同层进行成像,从而提供有价值的医学和诊断数据。

Description

视网膜数字成像系统、视网膜数字成像仪及视网膜数字成像方法
相关公开的交叉引用
本公开要求于2018年01月22日提交中国专利局的公开号为2018100633252、名称为“视网膜数字成像系统及视网膜数字成像仪”的中国专利公开的优先权,其全部内容通过引用结合在本公开中。
技术领域
本公开涉及医用光学仪器技术领域,尤其是涉及一种视网膜数字成像系统、视网膜数字成像仪及视网膜数字成像方法。
背景技术
视网膜成像技术逐渐被广泛应用在医疗和生物识别技术等领域。医学上,对视网膜病变进行及时探测、跟踪,可以对多种疾病起到有效的诊断、预警作用。在生物识别领域,视网膜具有远多于指纹、掌纹等的生物特征,可以大大提高识别精度;而且视网膜深入视网膜,不容易被外界获取,具有非常高的保密性。
视网膜成像技术已有很长的研究历史,但仍无法满足社会的需求。例如在医学领域,随着互联网的发展,远程医疗系统已经逐步成为医疗诊断不可或缺的部分,但目前常规视网膜照明利用卤素或白光进行视网膜照明,照相机操作员使用光强度旋钮控制视网膜照明。明亮的白光通过瞳孔闪烁眼睛的后部,成像传感器产生视网膜的彩色图像。这种视网膜成像设备不能实现对视网膜的不同层进行成像,对于医疗诊断造成一定的障碍。
公开于该背景技术部分的信息仅仅旨在加深对本公开的总体背景技术的理解,而不应当被视为承认或以任何形式暗示该信息构成已为本领域技术人员所公知的现有技术。
发明内容
本公开的目的包括提供一种视网膜数字成像系统,改善现有技术中视网膜成像设备不能实现对视网膜的不同层进行成像,对于医疗诊断造成一定的障碍的技术问题。
本公开的目的包括提供一种视网膜数字成像仪,改善现有技术中视网膜成像设备不能实现对视网膜的不同层进行成像,对于医疗诊断造成一定的障碍的技术问题。
本公开的目的包括提供一种视网膜数字成像方法,改善现有技术中视网膜成像设备不能实现对视网膜的不同层进行成像,对于医疗诊断造成一定的障碍的技术问题。
针对上述目的之一,本公开提供以下技术方案:
本公开提供的一种视网膜数字成像系统,包括:照明模块、主光学组件和图像传感器模块;
所述照明模块包括多个能够发出波长不同的光线的发光二极管,每个所述发光二极管发出光线经所述主光学组件进入视网膜,形成照明光路;
所述视网膜将所述光线反射经过所述主光学组件在所述图像传感器模块上成像,形成成像光路。
作为一种进一步的技术方案,所述主光学组件包括环形反光镜和物镜;
所述环形反光镜配置为将所述照明模块发出的光线朝所述物镜方向反射最终到达所述视网膜;
所述照明光路经过所述物镜到所述视网膜;所述成像光路经过所述物镜到达所述图像传感器模块。
作为一种进一步的技术方案,所述环形反光镜的中部形成非反射直通通道,以使视网膜反射的光线经过所述物镜,再穿过所述环形反光镜中部的通道到达所述图像传感器模块。
作为一种进一步的技术方案,所述物镜包括若干个透镜,每个所述透镜的表面镀有防反射涂层。
作为一种进一步的技术方案,所述物镜包括依次间隔设置的基本前物镜及辅助透镜。
作为一种进一步的技术方案,所述物镜配置为使所述视网膜数字成像系统在视网膜形成的视场在55-80°的范围内。
作为一种进一步的技术方案,所述主光学组件还包括设置于所述成像光路路径中的折叠光路反光镜,配置为将所述成像光路折叠,并使所述视网膜反射的光线到达所述图像传感器模块;所述折叠光路反光镜于所述成像光路路径中设置于所述环形反光镜与所述图像传感器模块之间。
作为一种进一步的技术方案,所述环形反光镜与所述照明模块之间的照明光路和所述折叠光路反光镜与所述图像传感器模块之间的成像光路相互平行。
作为一种进一步的技术方案,所述主光学组件还包括横向补偿器和轴向补偿器,所述横向补偿器和所述轴向补偿器位于所述成像光路上,且所述横向补偿器设置于所述图像传感器模块与所述折叠光路反光镜之间,配置为调整垂直于所述成像光路的光轴的平面上的公差和对准,所述轴向补偿器设置于所述图像传感器模块与所述折叠光路反光镜之间,配置为调整轴向偏移。
作为一种进一步的技术方案,在所述折叠光路反光镜与所述图像传感器模块之间还设置有屈光度补偿器。
作为一种进一步的技术方案,所述视网膜数字成像系统还包括成像光路场光圈,所述成像光路场光圈设置于所述成像光路中,且所述成像光路场光圈设置于所述屈光度补偿器与所述图像传感器模块之间。
作为一种进一步的技术方案,所述视网膜数字成像系统还包括场镜和照明光路光圈,所述照明光路光圈配置为控制远场照明范围;所述场镜和所述照明光路光圈设置于所述照明光路中,且所述照明光路光圈设置于所述场镜与所述照明模块之间。
作为一种进一步的技术方案,所述照明模块还包括光能量监测模块和能量超值切断功能模块,所述光能量监测模块配置为实时监测并记录每个所述发光二极管每次发光的能量,所述能量超值切断功能模块配置为在正常或非正常运行时每个所述发光二极管每次发光的能量一旦达到安全能量预警极限时立即切断光源。
作为一种进一步的技术方案,所述视网膜数字成像系统还包括视标模块和分光反光镜,所述视标模块通过所述分光反光镜将光线传递到眼睛以引导眼睛的观察方向。
作为一种进一步的技术方案,所述视标模块与所述图像传感器模块处于相同的成像平面上。
作为一种进一步的技术方案,所述视网膜数字成像系统还包括光学滤波器模块,所述光学滤波器模块为所述照明光路和所述成像光路提供单独的滤光器;所述光学滤波器模块设置于所述照明模块和所述主光学组件之间。
作为一种进一步的技术方案,所述光学滤波器模块配有多对滤光片,并能够同步切换所述照明光路和所述成像光路所用的滤光器。
作为一种进一步的技术方案,所述视网膜数字成像系统还包括照明光路横向补偿器,所述照明光路横向补偿器设置于所述光学滤波器模块和环形反光镜之间。
作为一种进一步的技术方案,所述图像传感器模块还设置有外部触发器,配置为使图像拍摄与照明同步闪光采相。
本公开实施例还提供了以下技术方案:
本公开提供一种视网膜数字成像仪,包括中央控制模块和如上述技术方案提供的任一种所述的视网膜数字成像系统,所述中央控制模块控制连接所述照明模块和所述图像传感器模块。
作为一种进一步的技术方案,所述视网膜数字成像仪还包括实时高功能嵌入控制软件模块,所述实时高功能嵌入控制软件模块运行在高容量高性能高速度的计算平台上。
本公开实施例还提供了以下技术方案:
一种视网膜数字成像方法,其特征在于,包括:
通过多个发光二极管发出波长不同的光线,其中,每个所述发光二极管发出光线 经主光学组件进入视网膜,形成照明光路;
所述视网膜将所述光线反射经过所述主光学组件在所述图像传感器模块上成像,形成成像光路。
与现有技术相比,本公开提供的视网膜数字成像系统、视网膜数字成像仪及视网膜数字成像方法能够达到以下技术效果:
本公开提供的一种视网膜数字成像系统,包括:照明模块、主光学组件和图像传感器模块;照明模块包括多个能够发出波长不同的光线的发光二极管,每个发光二极管发出光线经主光学组件进入视网膜,形成照明光路;视网膜将光线反射经过主光学组件在图像传感器模块上成像,形成成像光路。由于照明模块的多个发光二极管能够发出不同波长的光线即具有不同的光谱波段,视网膜的反射和吸收依赖于光谱,不同的波长穿透不同深度的视网膜,上述发光二极管形成的多个不同的光谱波段可以组成较宽的光谱,因此可以对视网膜的不同层进行成像,从而提供有价值的医学和诊断数据。
本公开提供的一种视网膜数字成像仪,包括中央控制模块和如上述技术方案提供的任一种视网膜数字成像系统,中央控制模块控制连接视网膜数字成像系统。该视网膜数字成像仪能够取得上述视网膜数字成像系统所能取得的所有有益效果,对眼科的治疗与诊断提供了更为便捷、可靠的手段与方法。
本公开提供的一种视网膜数字成像方法,能够取得上述视网膜数字成像系统所能取得的所有有益效果,可以对视网膜的不同层进行成像,从而提供有价值的医学和诊断数据。
本公开的其他特征和优点将在随后的说明书中阐述,并且,部分地从说明书中变得显而易见,或者通过实施本公开而了解。本公开的目的和其他优点在说明书、权利要求书以及附图中所特别指出的结构来实现和获得。
附图说明
为了更清楚地说明本公开具体实施方式或现有技术中的技术方案,下面将对具体实施方式或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图是本公开的一些实施方式,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本公开实施例一提供的视网膜数字成像系统的工作原理图;
图2为本公开另一实施例提供的视网膜数字成像系统的工作原理图;
图3为本公开实施例二提供的视网膜数字成像仪的结构示意图。
图标:1-照明模块;2-图像传感器模块;3-主光学组件;31-环形反光镜;32-物镜;33-折叠光路反光镜;34-横向补偿器;35-轴向补偿器;4-屈光度补偿器;5-视标模块;51-分光 反光镜;6-光学滤波器模块;7-对准机构;8-前部对准模块;9-显示器及用户界面;10-中央控制模块;11-场镜;12-照明光路光圈;13-照明光路横向补偿器。
具体实施方式
下面将结合附图对本公开的技术方案进行清楚、完整地描述,显然,所描述的实施例是本公开一部分实施例,而不是全部的实施例。基于本公开中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本公开保护的范围。
在本公开的描述中,需要说明的是,术语“上”、“下”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本公开和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本公开的限制。此外,术语“第一”、“第二”、“第三”仅用于描述目的,而不能理解为指示或暗示相对重要性。
在本公开的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以具体情况理解上述术语在本公开中的具体含义。
以下结合附图对本公开的具体实施方式进行详细说明。应当理解的是,此处所描述的具体实施方式仅用于说明和解释本公开,并不用于限制本公开。
实施例一
参照图1,本公开实施例提供一种视网膜数字成像系统,包括照明模块1、主光学组件3和图像传感器模块2;
其中,照明模块1包括多个能够发出波长不同的光线的发光二极管,每个发光二极管发出光线经主光学组件3入射到视网膜,从而形成照明光路;视网膜将光线反射经过主光学组件3在图像传感器模块2上成像,至此形成成像光路。
进一步地,照明模块1可以包括一个或多个照明单元;当照明单元为多个时,多个照明单元为平行排列,可以单独发光或者同时发光。每个照明单元具有多个发光二极管,多个发光二极管发出的光具有相互不同的波长。当然,在本公开的其他实施例中,照明单元采用的发光元件可以包括不同类型的发光二极管,例如,可以是分子发光二极管、有机发光二极管或激光二极管,发光元件也可以包括激光二极管之外的其他激光源。
本公开实施例提供的视网膜数字成像系统,将从蓝色到近红外(波长480nm到980nm)的整个光谱分成不同的相对较窄的光谱波段,通过多个发光二极管分别发射一种波长的照 明,由于视网膜的反射和吸收依赖于光谱,不同的波长穿透不同深度的视网膜,因此可以对视网膜的不同层进行成像,从而得到有价值的医学和诊断数据。
需要说明的是,每个发光二极管光谱照射的视网膜图像被分别采集、分别收集。
照明光路将来自照明模块1输出的光线通过瞳孔均匀散射在视网膜。照明的专用光路终止于环形反光镜31,通过该点,照明与成像光路的光束共轴合并,整个照明光路具有0.2-2.0的放大因子,可选地,放大因子可以为0.5。
请继续参阅图1,本公开至少一种实施例中,视网膜数字成像系统还可以包括场镜11和照明光路光圈12,照明光路光圈12配置为控制远场照明范围。场镜11和照明光路光圈12设置于照明光路中。其中,照明光路光圈12设置于场镜11与照明模块1之间。场镜11设置于照明光路光圈12与主光学组件3之间。照明模块1通过自身的光学耦合单元将触发发出的光传送至主光学组件3照明光路输入端,并经照明光路光圈12,照明光路目镜及场镜11成像到患者的眼睛视网膜,然后在预定立体角(视场)内照射整个视网膜。也就是说,照明模块1触发发出的光依次经过照明光路光圈12、场镜11传送至主光学组件3照明光路输入端,从而成像至患者的眼睛视网膜。
本实施例中的图像传感器模块2可以是互补金属氧化物半导体(Complementary Metal Oxide Semiconductor,CMOS)、电荷耦合元件(Charge-coup Device,CCD)或其他格式或技术,具有以相对较高的速度进行连拍图像记录的能力。
另外,本公开至少一种实施例中的图像传感器模块2还设置有外部触发器,外部触发器可选为外部快速电信号触发接口,可以使图像拍摄与照明同步闪光采相。
进一步地,本公开至少一种实施例中的主光学组件3可以包括环形反光镜31和物镜32;环形反光镜31配置为将照明模块1发出的光线反射到视网膜;照明光路穿过物镜32到视网膜;成像光路均穿过物镜32到达图像传感器模块2进行信息采集。
由照明模块1发出的光照形成环形的光线,照射在环形反光镜31上,环形反光镜31将该光线反射经过物镜32进入视网膜。
进一步地,环形反光镜31相对于由照明模块1发出的入射光线的夹角可以为0-90°,进一步可选为45°,并且,环形反光镜31相对于反射到视网膜的反射光线的夹角也可以为0-90°,进一步可选为45°。
需要说明的是,环形反光镜31可以为一体的环形结构,也可以为多个弧段构成的环形结构。
另外,环形反光镜31中部形成非反射直通通道,方便成像光路通过。即,视网膜反射的光线经过物镜32,再穿过环形反光镜31中部的通道到达图像传感器模块2。
进一步的,照明模块1还可以包括光能量监测模块和能量超值切断功能模块,每个发 光二极管的输出光功率和能量都经过校准,光能量监测模块配置为实时监测并记录每个发光二极管每次发光的能量,能量超值切断功能模块配置为在正常或非正常运行时每个发光二极管每次发光的能量一旦达到安全能量预警极限时立即切断光源,以对患者起到绝对的安全保护作用,这样,照明模块1具有光能量监测和能量超值切断功能。
本公开至少一种实施例中,物镜32由若干个透镜组成,其中可以包括依次间隔设置的基本前物镜及辅助透镜。基本前物镜是成像的关键。本公开另一种实施例中,物镜32也可以仅包括基本前物镜,而不包括辅助透镜。也就是说,辅助透镜可有可无,并且可以为一个,也可以为多个,辅助透镜可以是凸透镜,也可以凹透镜。辅助透镜的功能是提高图像性能,分辨率,并最大限度地减少了像差。例如物镜32可由两个透镜组成,一个基本前物镜以及一个用来补偿像差的非圆形透镜。
更进一步地,这种物镜32实现了增大本公开实施例所提供的视网膜数字成像系统在视网膜形成的视场,可选地,将现有的40°视场增大到55-80°,进一步可选为63°,也就增大了观测范围,能够更为全面地得到视网膜的信息,提供更多更全面地医学参考数据。
作为一种优选的实施例,物镜32的所有镜片表面均采用防反射涂层技术,以减少不必要的反射。
需要说明的是,本公开至少一种实施例中所提供的视网膜数字成像系统中所有的透镜表面都采用上述的防反射涂层技术。也就是说,物镜32的所有镜片表面均可以设置防反射涂层。
本公开至少一种实施例中的主光学组件3还可以包括设置于成像光路路径中的折叠光路反光镜33,配置为将视网膜反射的光线反射到图像传感器模块2。
本实施例中,图像传感器模块2和视网膜不在同一直线上,为了将视网膜反射的光线顺利传入图像传感器模块2,在成像光路的路径上设置有折叠光路反光镜33,折叠光路反光镜33于成像光路路径中设置于环形反光镜31与图像传感器模块2之间,从视网膜反射的光线经物镜32、折叠光路反光镜33到达图像传感器模块2。在此过程中,光线发生折叠,减少了成像仪器的尺寸。
需要说明的是,这样的结构设计,在环形反光镜31与照明模块1之间的照明光路和折叠光路反光镜33与图像传感器模块2之间的成像光路相互平行,整个结构更加紧凑,操作也更加方便。
本公开至少一种实施例中,主光学组件3还包括横向补偿器34和轴向补偿器35,横向补偿器34和轴向补偿器35位于成像光路上。横向补偿器34配置为调整垂直于成像光路光轴的平面上的公差和对准。而轴向补偿器35,则配置为调整轴向偏移。其中,横向补偿器34设置于环形反光镜31与折叠光路反光镜33之间,由一个横向位置可调的透镜实现。轴 向补偿器35设置于折叠光路反光镜33与图像传感器模块2之间,由一个轴向位置可调的透镜实现。
进一步地,折叠光路反光镜33与图像传感器模块2之间还设置有屈光度补偿器4。该屈光度补偿器4是成像系统的一部分,屈光度补偿是由调整一片透镜的轴向位置,进而改变成像系统的焦距来实现的。
进一步地,也可以是折叠光路反光镜33、轴向补偿器35、屈光度补偿器4及图像传感器模块2依次设置。
上述的屈光度补偿器4为动态或可调节,能够实现对焦控制,具体通过准远心镜头组来实现的,使成像光路在整个+15至-15屈光度范围内,图像尺寸变化仅在±10%以内。
进一步地,视网膜数字成像系统还可以包括成像光路场光圈,该成像光路场光圈设置于成像光路中,且该成像光路场光圈设置于屈光度补偿器4与图像传感器模块2之间。
本公开至少一种实施例中的视网膜成像系统还可以包括视标模块5,配置为引导眼睛的观察方向。
视标模块5与图像传感器模块2处于相同的成像平面上。本公开至少一种实施例中的视网膜成像系统还可以包括分光反光镜51,分光反光镜51设置于折叠光路反光镜33与图像传感器模块2之间。通过分光反光镜51将光线引向视标模块5,从而将光线传递到眼睛,以引导眼睛的观察方向。
但是,视标模块5与图像传感器模块2通过光束组合器将光路分开单独安装布置。注视目标的位置引导眼睛朝不同的方向看,因此允许对视网膜的不同部分进行成像。视标模块5现实位置的功能可以用不同的方法实现,例如发光二极管阵列;基于液晶显示器,或动态微镜矩阵。液晶显示器和动态微镜矩阵二者都具有高分辨率和完全可编程的图像发生器。
本公开至少一种实施例中的视网膜成像系统还可以包括光学滤波器模块6,光学滤波器模块6为照明光路和成像光路分别提供单独的滤光器。可选地,光学滤波器模块6配有多对滤光片,并可以同步切换照明光路和成像光路所用的滤光器。
配置为自荧光成像和其他功能的滤光器模块将为照明光束和观察光束分别提供单独的滤光器。两路滤光器,被承载在同一滤光盘的相对应的位置上。
其中,滤光盘由控制电机控制转动,对于照明光路和成像光路,在滤光盘被控制电机驱动转动时,配置为照明光路穿过的滤光器和配置为成像光路穿过的滤光器总是以确切的锁定步长切换。
应当理解的是,本公开至少一种实施例中,场镜11可以为两个,照明模块1、照明光路光圈12、一个场镜11、光学滤波器模块6、另一个场镜11、环形反光镜31和物镜32依 次设置,照明模块1发出的光线依次经过照明光路光圈12、一个场镜11、光学滤波器模块6、另一个场镜11、环形反光镜31和物镜32进入视网膜,形成照明光路。另外,物镜32、环形反光镜31、横向补偿器34、折叠光路反光镜33、轴向补偿器35、屈光度补偿器4、分光反光镜51及图像传感器模块2,视网膜将光线反射依次经过物镜32、环形反光镜31、横向补偿器34、折叠光路反光镜33、轴向补偿器35、屈光度补偿器4及分光反光镜,并在图像传感器模块2上成像,形成成像光路。其中,通过分光反光镜51将光线引向视标模块5,从而将光线传递到眼睛,以引导眼睛的观察方向。
请参阅图2,应当理解的是,本公开至少一种实施例中,视网膜数字成像系统可以包括照明光路横向补偿器13,可以替换上述实施例中的光学滤波器模块6和环形反光镜31之间的场镜11,也就是说,照明模块1、照明光路光圈12、场镜11、光学滤波器模块6、照明光路横向补偿器13、环形反光镜31和物镜32依次设置,照明模块1发出的光线依次经过照明光路光圈12、场镜11、光学滤波器模块6、照明光路横向补偿器13、环形反光镜31和物镜32进入视网膜,形成照明光路。其中,照明光路横向补偿器13配置为调整垂直于照明光路光轴的平面上的公差和对准。
综上,本公开提供的一种视网膜数字成像系统,包括:照明模块1、主光学组件3和图像传感器模块2;照明模块1包括多个能够发出波长不同的光线的发光二极管,每个发光二极管发出光线经主光学组件3进入视网膜,形成照明光路;视网膜将光线反射经过主光学组件3在图像传感器模块2上成像,形成成像光路。由于照明模块1的多个发光二极管能够发出不同波长的光线即具有不同的光谱波段,视网膜的反射和吸收依赖于光谱,不同的波长穿透不同深度的视网膜,上述发光二极管形成的多个不同的光谱波段可以组成较宽的光谱,因此可以对视网膜的不同层进行成像,从而提供有价值的医学和诊断数据。
实施例二
参照图3,本公开实施例提供一种视网膜数字成像仪,包括中央控制模块10和如上述实施例一提供的任一种视网膜数字成像系统,中央控制模块10控制连接照明模块1和图像传感器模块2。
其中,关于视网膜数字成像系统的具体结构已在上文中做了详细介绍,此处不再赘述。
整个视网膜数字成像仪结构还包括对准机构7、前部对准模块8以及显示器(图未标)及用户界面9。
中央控制模块10配置为协调并控制整个装置的操作与运行(包括照明模块1、图像传感器模块2,对准机构7、前部对准模块8及视标模块5);中央控制模块10同时管理传向显示器与用户界面9的所有图像;并接受并协调执行由操作者通过显示器与用户界面9输入的所有指令。中央控制模块10的控制管理以及指令执行与协调是通过控制平面以及控制 逻辑来实现的。
该中央控制模块10包括实时高功能嵌入控制软件模块,该控制软件模块运行在高容量高性能高速度的计算平台上。
中央控制模块10包括主控器和内部存储器,其中,主控器控制多个发光二极管的启动与关闭,同时主控器控制图像传感器模块2的工作,并将图像传感器模块2采集的信息存储到内部存储器。
本公开的另一实施例还提供了一种视网膜数字成像方法,其可以应用上述任一实施例提供的视网膜数字成像系统和视网膜数字成像仪。其中,关于视网膜数字成像系统和视网膜数字成像仪的具体结构已在上文中做了详细介绍,此处不再赘述。该视网膜数字成像方法包括:
通过多个发光二极管发出波长不同的光线,其中,每个发光二极管发出光线经主光学组件进入视网膜,形成照明光路;其中,多个发光二极管形成照明模块1。
视网膜将光线反射经过主光学组件3在图像传感器模块2上成像,形成成像光路。
进一步地,通过多个发光二极管发出波长不同的光线,光线依次经过照明光路光圈12、场镜11、光学滤波器模块6、照明光路横向补偿器13、环形反光镜31和物镜32进入视网膜,形成照明光路。另外,视网膜将光线反射依次经过物镜32、环形反光镜31、横向补偿器34、折叠光路反光镜33、轴向补偿器35、屈光度补偿器4及分光反光镜,并在图像传感器模块2上成像,形成成像光路。
最后应说明的是:以上各实施例仅用以说明本公开的技术方案,而非对其限制;尽管参照前述各实施例对本公开进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本公开各实施例技术方案的范围。
工业实用性
本公开实施例提供的视网膜数字成像系统、视网膜数字成像仪及视网膜数字成像方法,能够对视网膜的不同层进行成像,从而提供有价值的医学和诊断数据。

Claims (20)

  1. 一种视网膜数字成像系统,其特征在于,包括:照明模块、主光学组件和图像传感器模块;
    所述照明模块包括多个能够发出波长不同的光线的发光二极管,每个所述发光二极管发出光线经所述主光学组件进入视网膜,形成照明光路;
    所述视网膜将所述光线反射经过所述主光学组件在所述图像传感器模块上成像,形成成像光路。
  2. 根据权利要求1所述的视网膜数字成像系统,其特征在于,所述主光学组件包括环形反光镜和物镜;
    所述环形反光镜配置为将所述照明模块发出的光线朝所述物镜方向反射最终到达所述视网膜;
    所述照明光路经过所述物镜到所述视网膜;所述成像光路经过所述物镜到达所述图像传感器模块。
  3. 根据权利要求2所述的视网膜数字成像系统,其特征在于,所述环形反光镜的中部形成非反射直通通道,以使视网膜反射的光线经过所述物镜,再穿过所述环形反光镜中部的通道到达所述图像传感器模块。
  4. 根据权利要求2或3所述的视网膜数字成像系统,其特征在于,所述物镜包括若干个透镜,每个所述透镜的表面镀有防反射涂层。
  5. 根据权利要求2-4任一项所述的视网膜数字成像系统,其特征在于,所述物镜包括依次间隔设置的基本前物镜及辅助透镜。
  6. 根据权利要求2-5任一项所述的视网膜数字成像系统,其特征在于,所述物镜配置为使所述视网膜数字成像系统在视网膜形成的视场在55-80°的范围内。
  7. 根据权利要求2-6任一项所述的视网膜数字成像系统,其特征在于,所述主光学组件还包括设置于所述成像光路路径中的折叠光路反光镜,配置为将所述成像光路折叠,并使所述视网膜反射的光线到达所述图像传感器模块;所述折叠光路反光镜于所述成像光路路径中设置于所述环形反光镜与所述图像传感器模块之间。
  8. 根据权利要求7所述的视网膜数字成像系统,其特征在于,所述环形反光镜与所述照明模块之间的照明光路和所述折叠光路反光镜与所述图像传感器模块之间的成像光路相互平行。
  9. 根据权利要求7或8所述的视网膜数字成像系统,其特征在于,所述主光学组件还包括横向补偿器和轴向补偿器,所述横向补偿器和所述轴向补偿器位于所述成像光 路上,且所述横向补偿器设置于所述图像传感器模块与所述折叠光路反光镜之间,配置为调整垂直于所述成像光路的光轴的平面上的公差和对准,所述轴向补偿器设置于所述图像传感器模块与所述折叠光路反光镜之间,配置为调整轴向偏移。
  10. 根据权利要求9所述的视网膜数字成像系统,其特征在于,在所述折叠光路反光镜与所述图像传感器模块之间还设置有屈光度补偿器。
  11. 根据权利要求10所述的视网膜数字成像系统,其特征在于,所述视网膜数字成像系统还包括成像光路场光圈,所述成像光路场光圈设置于所述成像光路中,且所述成像光路场光圈设置于所述屈光度补偿器与所述图像传感器模块之间。
  12. 根据权利要求1-11任一项所述的视网膜数字成像系统,其特征在于,所述视网膜数字成像系统还包括场镜和照明光路光圈,所述照明光路光圈配置为控制远场照明范围;所述场镜和所述照明光路光圈设置于所述主光学组件与所述照明模块之间,且所述照明光路光圈设置于所述场镜与所述照明模块之间。
  13. 根据权利要求1-12任一项所述的视网膜数字成像系统,其特征在于,所述照明模块还包括光能量监测模块和能量超值切断功能模块,所述光能量监测模块配置为实时监测并记录每个所述发光二极管每次发光的能量,所述能量超值切断功能模块配置为在正常或非正常运行时每个所述发光二极管每次发光的能量一旦达到安全能量预警极限时立即切断光源。
  14. 根据权利要求1-13任一项所述的视网膜数字成像系统,其特征在于,所述视网膜数字成像系统还包括视标模块和分光反光镜,所述视标模块通过所述分光反光镜将光线传递到眼睛以引导眼睛的观察方向。
  15. 根据权利要求1-14任一项所述的视网膜数字成像系统,其特征在于,所述视标模块与所述图像传感器模块处于相同的成像平面上。
  16. 根据权利要求1-15任一项所述的视网膜数字成像系统,其特征在于,所述视网膜数字成像系统还包括光学滤波器模块,所述光学滤波器模块为所述照明光路和所述成像光路提供单独的滤光器。
  17. 根据权利要求1-16任一项所述的视网膜数字成像系统,其特征在于,所述图像传感器模块还设置有外部触发器,配置为使图像拍摄与照明同步闪光采相。
  18. 一种视网膜数字成像仪,其特征在于,包括中央控制模块和如权利要求1-17中任一项所述的视网膜数字成像系统,所述中央控制模块控制连接所述照明模块和所述图像传感器模块。
  19. 根据权利要求18所述的视网膜数字成像仪,其特征在于,所述视网膜数字成像仪还包括实时高功能嵌入控制软件模块,所述实时高功能嵌入控制软件模块运行在 高容量高性能高速度的计算平台上。
  20. 一种视网膜数字成像方法,其特征在于,包括:
    通过多个发光二极管发出波长不同的光线,其中,每个所述发光二极管发出光线经主光学组件进入视网膜,形成照明光路;
    所述视网膜将所述光线反射经过所述主光学组件在所述图像传感器模块上成像,形成成像光路。
PCT/CN2018/123241 2018-01-22 2018-12-24 视网膜数字成像系统、视网膜数字成像仪及视网膜数字成像方法 WO2019141051A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US16/954,515 US20200329962A1 (en) 2018-01-22 2018-12-24 Retina digital imaging system, instrument and method
EP18900734.7A EP3744228A4 (en) 2018-01-22 2018-12-24 DIGITAL RETINA IMAGING SYSTEM, DIGITAL RETINA IMAGING INSTRUMENT, AND DIGITAL RETINA IMAGING METHOD

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810063325.2A CN108371540A (zh) 2018-01-22 2018-01-22 视网膜数字成像系统及视网膜数字成像仪
CN201810063325.2 2018-01-22

Publications (1)

Publication Number Publication Date
WO2019141051A1 true WO2019141051A1 (zh) 2019-07-25

Family

ID=63015604

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/123241 WO2019141051A1 (zh) 2018-01-22 2018-12-24 视网膜数字成像系统、视网膜数字成像仪及视网膜数字成像方法

Country Status (4)

Country Link
US (1) US20200329962A1 (zh)
EP (1) EP3744228A4 (zh)
CN (1) CN108371540A (zh)
WO (1) WO2019141051A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112641423A (zh) * 2020-12-21 2021-04-13 北京理工大学 一种大视场消杂光式免散瞳眼底相机

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108371540A (zh) * 2018-01-22 2018-08-07 深圳盛达同泽科技有限公司 视网膜数字成像系统及视网膜数字成像仪

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201044743Y (zh) * 2007-06-16 2008-04-09 金成鹏 人眼屈光系统成像摄影装置
US20090153797A1 (en) * 2004-08-12 2009-06-18 Medivision Medical Imaging Ltd. Integrated Retinal Imager And Method
CN201379552Y (zh) * 2009-02-27 2010-01-13 苏州六六视觉科技股份有限公司 免散瞳眼底照相装置
US20130301002A1 (en) * 2010-11-03 2013-11-14 City University Optical imaging system
CN105324649A (zh) * 2013-06-20 2016-02-10 赛莱特私人有限公司 利用对反射光的光谱波前分析的眼睛计量
CN106061367A (zh) * 2013-09-06 2016-10-26 华柏恩视觉诊断公司 眼底成像系统、装置和方法
CN107126189A (zh) * 2016-05-31 2017-09-05 瑞尔明康(杭州)医疗科技有限公司 用于视网膜成像的光学组件和视网膜成像设备
CN108324240A (zh) * 2018-01-22 2018-07-27 深圳盛达同泽科技有限公司 眼底相机
CN108371540A (zh) * 2018-01-22 2018-08-07 深圳盛达同泽科技有限公司 视网膜数字成像系统及视网膜数字成像仪

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6685317B2 (en) * 2000-06-13 2004-02-03 Massie Research Laboratories, Inc. Digital eye camera
US20040151008A1 (en) * 2003-02-03 2004-08-05 Artsyukhovich Alexander N. Variable spot size illuminators with enhanced homogeneity and parfocality
US20090303317A1 (en) * 2006-02-07 2009-12-10 Novadaq Technologies Inc. Near infrared imaging
WO2009129624A1 (en) * 2008-04-22 2009-10-29 Annidis Health Systems Corp. Retinal fundus surveillance method and apparatus
JP5349928B2 (ja) * 2008-12-02 2013-11-20 株式会社トプコン 眼の計測装置、眼の計測方法およびプログラム
CA2776223A1 (en) * 2009-09-30 2011-04-07 Lions Eye Institute Limited Imager, module for an imager, imaging system and method
TWI468147B (zh) * 2012-03-21 2015-01-11 Optomed Oy 檢查儀器
EP4008237A1 (en) * 2016-05-13 2022-06-08 Ecole Polytechnique Fédérale de Lausanne (EPFL) System, method and apparatus for retinal absorption phase and dark field imaging with oblique illumination
CN208598368U (zh) * 2018-01-22 2019-03-15 深圳盛达同泽科技有限公司 视网膜数字成像系统及视网膜数字成像仪

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090153797A1 (en) * 2004-08-12 2009-06-18 Medivision Medical Imaging Ltd. Integrated Retinal Imager And Method
CN201044743Y (zh) * 2007-06-16 2008-04-09 金成鹏 人眼屈光系统成像摄影装置
CN201379552Y (zh) * 2009-02-27 2010-01-13 苏州六六视觉科技股份有限公司 免散瞳眼底照相装置
US20130301002A1 (en) * 2010-11-03 2013-11-14 City University Optical imaging system
CN105324649A (zh) * 2013-06-20 2016-02-10 赛莱特私人有限公司 利用对反射光的光谱波前分析的眼睛计量
CN106061367A (zh) * 2013-09-06 2016-10-26 华柏恩视觉诊断公司 眼底成像系统、装置和方法
CN107126189A (zh) * 2016-05-31 2017-09-05 瑞尔明康(杭州)医疗科技有限公司 用于视网膜成像的光学组件和视网膜成像设备
CN108324240A (zh) * 2018-01-22 2018-07-27 深圳盛达同泽科技有限公司 眼底相机
CN108371540A (zh) * 2018-01-22 2018-08-07 深圳盛达同泽科技有限公司 视网膜数字成像系统及视网膜数字成像仪

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3744228A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112641423A (zh) * 2020-12-21 2021-04-13 北京理工大学 一种大视场消杂光式免散瞳眼底相机

Also Published As

Publication number Publication date
CN108371540A (zh) 2018-08-07
US20200329962A1 (en) 2020-10-22
EP3744228A1 (en) 2020-12-02
EP3744228A4 (en) 2021-10-13

Similar Documents

Publication Publication Date Title
US9668650B2 (en) Ophthalmologic apparatus
WO2019141283A1 (zh) 眼底相机
EP1694195B1 (en) Digital documenting ophthalmoscope
US9392938B2 (en) Ophthalmoscope
US20070019160A1 (en) Ring light fundus camera
US20130194548A1 (en) Portable retinal imaging device
US20110261175A1 (en) Multiple channel imaging system and method for fluorescence guided surgery
WO2014158263A1 (en) Portable retinal imaging device
WO2019141051A1 (zh) 视网膜数字成像系统、视网膜数字成像仪及视网膜数字成像方法
US11857261B2 (en) Eye-imaging system and apparatus with coordinated illuminator fibers having a skewed fiber angle
CN208598368U (zh) 视网膜数字成像系统及视网膜数字成像仪
US11974809B2 (en) Non-mydriatic, non-contact system and method for performing widefield fundus photographic imaging of the eye
US11219365B2 (en) Ophthalmologic imaging apparatus
TWI749531B (zh) 掃描裝置以及光學同調斷層掃描系統
US10591708B2 (en) Slit illumination device and microscope system with the same
US20220175247A1 (en) Ophthalmological device
KR20190073040A (ko) 통합된 가시광 광학계와 적외선 광학계를 가지는 검안기
CN208464045U (zh) 眼底相机
CN212346501U (zh) 眼底相机的杂散光消除系统
FI20206348A1 (en) Optical ophthalmic device and method for focusing retinal image
JP2022117069A (ja) 撮像装置
WO2013001422A1 (en) Method and device to obtain an ophthalmic image

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18900734

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018900734

Country of ref document: EP

Effective date: 20200824