WO2019139094A1 - Master batch containing copper, resin composition containing super-fine copper particles, and methods for producing same - Google Patents

Master batch containing copper, resin composition containing super-fine copper particles, and methods for producing same Download PDF

Info

Publication number
WO2019139094A1
WO2019139094A1 PCT/JP2019/000568 JP2019000568W WO2019139094A1 WO 2019139094 A1 WO2019139094 A1 WO 2019139094A1 JP 2019000568 W JP2019000568 W JP 2019000568W WO 2019139094 A1 WO2019139094 A1 WO 2019139094A1
Authority
WO
WIPO (PCT)
Prior art keywords
copper
resin
thermoplastic resin
resin composition
masterbatch
Prior art date
Application number
PCT/JP2019/000568
Other languages
French (fr)
Japanese (ja)
Inventor
泰啓 小坂
大橋 和彰
章子 小金井
大輔 生田目
洋司 下村
Original Assignee
東洋製罐グループホールディングス株式会社
東罐マテリアル・テクノロジー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2018002607A external-priority patent/JP7021956B2/en
Priority claimed from JP2018002606A external-priority patent/JP7141216B2/en
Application filed by 東洋製罐グループホールディングス株式会社, 東罐マテリアル・テクノロジー株式会社 filed Critical 東洋製罐グループホールディングス株式会社
Publication of WO2019139094A1 publication Critical patent/WO2019139094A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/20Compounding polymers with additives, e.g. colouring
    • C08J3/22Compounding polymers with additives, e.g. colouring using masterbatch techniques
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/08Metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/09Carboxylic acids; Metal salts thereof; Anhydrides thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L77/00Compositions of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Compositions of derivatives of such polymers

Definitions

  • the present invention relates to a copper-containing masterbatch, a copper ultrafine particle-containing resin composition, and a method for producing them. More specifically, a masterbatch containing a monovalent copper compound capable of forming copper ultrafine particles in a thermoplastic resin, a method for producing the same, a resin composition having antibacterial performance derived from metallic copper ultrafine particles, and metallic copper
  • the present invention relates to a method for producing a copper ultrafine particle-containing resin composition capable of efficiently generating ultrafine particles in a thermoplastic resin.
  • metal ultrafine particles have excellent antibacterial and adsorption properties, it is desirable that they be contained in a resin or the like to be used after being formed into a shape such as a sheet or fiber, but metal ultrafine particles have surface lubricity. There is a problem that the resin is decomposed and the moldability is significantly impaired. Furthermore, a dispersion was required from the point of handleability, and it was not sufficiently satisfactory for incorporation into a resin. In order to solve such a problem, the present inventors reduce the direct contact between the metal surface and the resin by causing the organic acid component to exist on the metal ultrafine particle surface, and effectively suppress the decomposition of the resin. We have proposed an adsorptive metal ultrafine particle which can reduce the decrease in molecular weight of the resin and the like and does not inhibit the formability (Patent Document 1).
  • the metal ultrafine particles as described above are contained in the resin, it is common to previously prepare a masterbatch containing the metal ultrafine particles in a high concentration and to mix this in the resin, thereby making the metal ultrafine particles It is possible to improve the dispersibility in the resin and to facilitate the processing of the molded article.
  • the metal ultrafine particles exhibit adsorption performance, antibacterial performance, etc. even when contained in the master batch, there is a possibility that the adsorption performance etc. of the molded product formed by blending the master batch with the resin may be deteriorated. There is.
  • Patent Document 2 a masterbatch formed by blending an organic acid metal salt such as silver, copper, gold or the like into a polyolefin resin.
  • a master batch containing an organic acid metal salt if it is an organic acid metal salt such as fatty acid silver, a polyolefin resin in which silver ultrafine particles are easily dispersed by blending the master batch with polyolefin and heating and kneading it Although the composition could be obtained, it was not possible to industrially form a resin molded product containing copper ultrafine particles industrially by using a masterbatch formed by blending an organic acid copper such as fatty acid copper with a polyolefin.
  • an object of the present invention is to provide a masterbatch capable of uniformly dispersing copper ultrafine particles in a thermoplastic resin, a resin composition containing copper ultrafine particles, and a method for producing them when mixed with thermoplastic resin and heated and kneaded. To provide.
  • a masterbatch comprising a monovalent copper compound in a thermoplastic resin, which is characterized by being used for forming metallic copper ultrafine particles.
  • the thermoplastic resin is a polyamide resin or a polyester resin
  • the monovalent copper compound is fatty acid copper
  • the monovalent copper compound is contained in an amount of 0.1 to 5% by weight, Is preferred.
  • thermoplastic resin is a polyamide resin or a polyester resin
  • the heating loss curve (TG) obtained by raising the temperature at which the thermoplastic resin and the divalent copper compound are mixed at a temperature rising rate of 10 ° C./min using a thermal analysis apparatus at a temperature higher than the melting point of the thermoplastic resin In the curve) that the copper compound is at a temperature below which a 5% weight loss occurs, Is preferred.
  • thermoplastic resin having an oxygen permeability coefficient of 2 ⁇ 10 ⁇ 3 cc ⁇ m / m 2 ⁇ day ⁇ atm or less contains metallic copper ultrafine particles having an average particle size of 100 nm or less and an organic acid
  • a resin composition characterized in that In the resin composition of the present invention, 1.
  • the thermoplastic resin is a polyamide resin or a polyester resin, 2.
  • the metal copper ultrafine particles are contained in an amount of 0.001 to 1% by weight, 3.
  • the organic acid is a fatty acid, and is contained in an amount of less than 1 mole with respect to 1 mole of metallic copper; Is preferred.
  • a method of producing the above resin composition which comprises blending the masterbatch of the present invention with the thermoplastic resin and kneading the same. Ru.
  • the monovalent copper compound is fatty acid copper.
  • the monovalent copper compound contained in the masterbatch of the present invention does not itself exhibit adsorption performance etc., there is no decline in performance even when stored in the masterbatch state, and control of expression of adsorption performance etc. is controlled It is possible to Furthermore, in the method for producing a masterbatch of the present invention, a masterbatch containing a monovalent copper compound can be efficiently produced using a commercially available divalent copper compound.
  • the metal copper ultrafine particles and the organic acid are contained, the metal copper ultrafine particles are uniformly dispersed in the thermoplastic resin without aggregation.
  • a thermoplastic resin excellent in oxygen barrier properties is used as a matrix, it is possible to stably exhibit performance such as antibacterial performance without the copper ultrafine particles being oxidized by the transmitted oxygen.
  • discoloration is also suppressed in the molded article made of the resin composition of the present invention.
  • the metallic copper ultrafine particles are firmly fixed in the thermoplastic resin, they can exhibit performance such as antibacterial performance over a long period without falling off from the molded product.
  • thermoplastic resin by using the master batch of the present invention, metallic copper ultrafine particles can be generated in the thermoplastic resin and uniformly dispersed without causing deterioration of the thermoplastic resin.
  • a resin composition containing copper ultrafine particles can be efficiently produced.
  • the monovalent copper compound contained in the masterbatch is preferably obtained by reducing a divalent copper compound in a thermoplastic resin. This makes it possible to uniformly disperse a high concentration of monovalent copper compound in the thermoplastic resin without aggregation.
  • monohydric copper compounds, such as a cuprous oxide directly in a thermoplastic resin, and to make it a masterbatch, monovalent copper compounds, such as a cuprous oxide, are easily oxidized and inferior to handleability. Since it is difficult to uniformly disperse in a thermoplastic resin, it is industrially preferable that it is a masterbatch formed by reducing and dispersing the above-mentioned divalent copper compound in a thermoplastic resin.
  • divalent copper compounds examples include myristic acid, stearic acid, oleic acid, palmitic acid, n-decanoic acid, paratoic acid, succinic acid, malonic acid, tartaric acid, malic acid, glutaric acid, adipic acid, acetic acid, etc.
  • examples include copper salts of organic acids such as aliphatic carboxylic acids, aromatic carboxylic acids such as phthalic acid, maleic acid, isophthalic acid, terephthalic acid, benzoic acid and naphthenic acid, and alicyclic carboxylic acids such as cyclohexanedicarboxylic acid it can.
  • copper salts of higher fatty acids having 3 to 30 carbon atoms are particularly preferable.
  • the organic acid component itself can exhibit adsorption performance to further improve the adsorption performance.
  • the divalent copper compound to be used is not particularly limited, but the average particle diameter is in the range of 1 to 100 ⁇ m, particularly 20 to 50 ⁇ m, to a molded product made of the resin composition obtained by blending the masterbatch. It can be suitably used because it can easily form copper ultrafine particles to which good antibacterial performance and adsorption performance can be imparted.
  • thermoplastic resin containing a monovalent copper compound it is a thermoplastic resin which can be melt-formed or spun at a temperature at which a divalent copper compound is reduced to a monovalent copper compound.
  • thermoplastic resins can be used without limitation.
  • polyester resins such as polyethylene terephthalate, polybutylene terephthalate and polyethylene naphthalate
  • polyamide resins such as nylon 6, nylon 6, 6, nylon 6, 10, nylon 11, nylon 12, nylon 13, polyamide resin containing xylylene group And polycarbonate resins.
  • thermoplastic resins have functional groups that can be effectively used for reduction of divalent copper compounds to monovalent copper compounds, such as amide groups, carbonyl groups, hydroxyl groups, etc., and it is effective to use monovalent copper compounds efficiently. It is possible to generate in a masterbatch.
  • the temperature at which the monovalent copper compound is reduced is different depending on the type of copper compound and can not be generally defined, but the copper salt of the above-mentioned higher fatty acid which can be suitably used industrially is in the range of 250 to 300 ° C.
  • polyamide resins and polyester resins can be suitably used as the thermoplastic resin for the copper salts of higher fatty acids.
  • polyamide resin examples include polyamide resins such as nylon 6, nylon 6, 6, nylon 6/6, 6 copolymer, nylon 6, 10, nylon 11, nylon 12, nylon 13, and xylylene group-containing polyamide. And those having a glass transition point (Tg) of 40 to 60 ° C. and a melting point (Tm) of 220 to 250 ° C. can be suitably used.
  • xylylene group-containing polyamide examples include polymetaxylylene adipamide, polymethaxylylene sebacamide, polymethaxylylene beramide, polyparaxylylene pimeramide, polymethaxylylene aceramide and the like.
  • aliphatic diamines such as hexamethylene diamine, alicyclic diamines such as piperaz
  • polyester resins such as polyethylene terephthalate, polybutylene terephthalate and polyethylene naphthalate, or blends of these polyester resins with polycarbonate and arylate resin can be used.
  • a polyethylene terephthalate having a glass transition temperature (Tg) of 50 to 80 ° C. and a melting point (Tm) of 240 to 270 ° C., with the majority (generally 80 mol% or more) of ester repeating units being ethylene terephthalate units PET) -based polyester can be suitably used.
  • a copolyester having an ethylene terephthalate unit content in the above range can also be suitably used.
  • dibasic acids other than terephthalic acid aromatic dicarboxylic acids such as isophthalic acid, phthalic acid and naphthalene dicarboxylic acid; alicyclic dicarboxylic acids such as cyclohexane dicarboxylic acid; succinic acid, adipic acid, sebacine And aliphatic dicarboxylic acids such as dodecanedioic acid; and combinations of one or more such as, for example, propylene glycol, 1,4-butanediol, diethylene glycol, and the like as diol components other than ethylene glycol
  • the intrinsic viscosity of the polyester resin is preferably in the range of 0.5 to 1 dL / g, although the range of the intrinsic viscosity required varies depending on the form of the molded product made of the resin composition, the molding method and the like.
  • the masterbatch of the present invention preferably contains, but is not limited to, the above-mentioned monovalent copper compound in an amount of 0.1 to 5% by weight, particularly 0.5 to 4% by weight. If the amount is less than the above range, there is a possibility that sufficient performance such as the antibacterial performance and the adsorption performance possessed by the copper ultrafine particles can not be sufficiently imparted to the molded product formed by blending the master batch, If the amount is more than the above range, aggregation of the monovalent copper compound may occur, and the economy is also inferior.
  • the absorbance measured with a spectrophotometer has a peak in the range of 400 to 500 nm, and copper stearate as a divalent copper compound In addition, the masterbatch appears yellowish brown and a peak appears at 500 nm.
  • the masterbatch of the present invention is compounded in an amount of 0.1 to 20 parts by weight, particularly 1 to 10 parts by weight of a divalent copper compound per 100 parts by weight of a thermoplastic resin, and this is at a temperature above the melting point of the thermoplastic resin It can be prepared by heating and mixing at a temperature at which a divalent copper compound is reduced to a monovalent copper compound.
  • the monovalent copper compound reduced from the divalent copper compound is further reduced by overheating to become metallic copper, so the temperature at which the monovalent copper compound is not reduced, ie, the temperature at which the monovalent copper compound starts to be reduced Less heating is required, and in the present invention, the temperature at which the monovalent copper compound begins to reduce is defined as the temperature at which the divalent copper compound used produces a 5% weight loss. Therefore, in the present invention, it is desirable that the heating temperature of the thermoplastic resin and the divalent copper compound be equal to or higher than the melting point of the thermoplastic resin and lower than the temperature at which the divalent copper compound used causes a weight loss of 5%.
  • the temperature which produces a 5% weight loss of the divalent copper compound is measured when the mass of the divalent copper compound used is measured, and the temperature is raised at a temperature rising rate of 10 ° C./minute under an inert atmosphere using a thermal analyzer.
  • TG curve heat loss curve
  • the heating time is preferably 30 to 600 seconds, particularly 300 seconds. In fact, since it is affected by shear heat generation due to the screw other than the set temperature of the extruder, or residence time, etc., processing conditions such as residence time, heating time, screw rotation speed etc. are adjusted, and monovalent copper compounds are efficiently obtained. It is important to generate.
  • thermoplastic resin and the divalent copper compound is not limited to this, but for example, a single screw extruder or a multi-screw after being uniformly mixed beforehand by a mixer such as a tumbler blender, a Henschel mixer or a super mixer.
  • a mixer such as a tumbler blender, a Henschel mixer or a super mixer.
  • examples thereof include a method of melt-kneading and granulation with an extruder, a method of melt-kneading with a kneader and a Banbury mixer, and then granulation using an extruder.
  • the masterbatch is known various compounding agents known per se, for example, fillers, plasticizers, leveling agents, thickeners, viscosity reducing agents, stabilizers, antioxidants, UV absorbers, etc., depending on its use. It may be formulated according to the formulation of
  • the metal copper ultrafine particle-containing resin composition of the present invention has a oxygen permeability coefficient of not more than 100 nm, particularly in the range of 10 to 50 nm, in a thermoplastic resin having an oxygen permeability coefficient of 2 ⁇ 10 ⁇ 3 cc ⁇ m / m 2 ⁇ day ⁇ atm or less. It is characterized in that it comprises ultrafine particles of metallic copper having an average particle size and an organic acid.
  • the copper ultrafine particles present in the resin composition of the present invention have a high heating temperature required for the formation of the copper ultrafine particles as described later. It consists of metallic copper from which the acid has been eliminated.
  • thermoplastic resin having an oxygen barrier property with an oxygen permeability coefficient equal to or less than the above value as a matrix containing copper ultrafine particles, oxidation of ultrafine particles consisting of metallic copper by transmitted oxygen from the outside Is prevented.
  • the presence of the organic acid desorbed from the organic acid copper in the resin composition can effectively prevent the aggregation of the metal copper ultrafine particles which are easily aggregated, and the copper ultrafine particles are uniformly contained in the thermoplastic resin. It can be set as the resin composition disperse
  • the metallic copper ultrafine particles be contained in the resin composition in an amount of 0.001 to 1% by weight, particularly 0.01 to 0.5% by weight.
  • the resin composition can not sufficiently exhibit the antibacterial performance etc. as compared with the above range, and on the other hand, the metallic copper than the above range.
  • the amount of the ultrafine particles is large, not only aggregation of the metal copper fine particles is easily generated as compared with the case of the above range, but also it is economically disadvantageous.
  • the thermoplastic resin to be a matrix of the resin composition of the present invention is a thermoplastic resin having an oxygen barrier property having an oxygen permeability coefficient of 2 ⁇ 10 ⁇ 3 cc ⁇ m / m 2 ⁇ day ⁇ atm or less, which will be described later.
  • the thermoplastic resin does not thermally deteriorate at a heating temperature capable of reducing the monovalent organic acid copper to metal copper ultrafine particles.
  • a thermoplastic resin although it is not limited to this, polyester resin, polyamide resin, polycarbonate resin etc. can be used conveniently.
  • polyester resin and a polyamide resin what was enumerated as what can be used suitably for a masterbatch can be used conveniently.
  • metal copper ultrafine particles having an average particle diameter of 100 nm or less, particularly 10 to 50 nm, are prepared by mixing a masterbatch containing copper of monovalent organic acid described later into the thermoplastic resin; Through the heat treatment, nanoparticulated / nanodispersed ultrafine copper particles are produced in the thermoplastic resin while being reduced to metallic copper.
  • the resin composition of the present invention contains an organic acid derived from an organic acid copper which is a starting material of the metallic copper ultrafine particles. By containing this organic acid, it becomes possible to effectively prevent the aggregation of the metal copper ultrafine particles which tends to aggregate.
  • Organic acids include aliphatic carboxylic acids such as myristic acid, stearic acid, oleic acid, palmitic acid, n-decanoic acid, paratoic acid, succinic acid, malonic acid, tartaric acid, malic acid, glutaric acid, adipic acid, acetic acid, etc.
  • the organic acid used is a higher fatty acid having 3 to 30 carbon atoms as a fatty acid represented by myristic acid, stearic acid, palmitic acid and the like.
  • the organic acid is desirably contained in the thermoplastic resin in an amount of less than 1 mole, particularly 0.5 to 0.02 mole, relative to 1 mole of metallic copper.
  • the monovalent organic acid copper is reduced, and one mole of organic acid is generated per mole of metallic copper.
  • the resin composition according to the present invention may contain various compounding agents known per se, such as fillers, plasticizers, leveling agents, thickeners, and the like, in addition to the metal copper ultrafine particles and the organic acid mentioned above, according to their use.
  • a viscosity improver, a stabilizer, an antioxidant, an ultraviolet absorber, etc. can also be mix
  • the resin composition of the present invention may be produced by blending separately formed metallic copper ultrafine particles with the above-described thermoplastic resin, but the metallic copper ultrafine particles are easily oxidized and easily agglomerated, Because of poor handleability, this method can not be prepared with high productivity. Therefore, in the present invention, a masterbatch containing monovalent organic acid copper is compounded with the above-mentioned thermoplastic resin, and these are kneaded at a predetermined temperature, thereby simultaneously metal copper ultrafine particles and an organic acid in the thermoplastic resin. It is preferable to produce a resin composition in which metallic copper ultrafine particles are uniformly dispersed while being produced.
  • the masterbatch of the present invention described above can be suitably used for the production of the resin composition of the present invention.
  • the resin composition of the present invention is such that metallic copper ultrafine particles having an average particle diameter of 100 nm or less, particularly 10 to 50 nm, are contained in the thermoplastic resin in an amount of 0.001 to 1% by weight. It is desirable to prepare by mixing and mixing the above-mentioned masterbatch in an amount of 1 to 10 parts by weight with respect to 100 parts by weight of the above-mentioned thermoplastic resin.
  • the heating temperature is a temperature at which the monovalent organic acid copper in the master batch is reduced to metallic copper, and is a temperature which is not lower than the melting point of the thermoplastic resin to be used and does not cause thermal degradation.
  • thermoplastic resin and the organic acid copper so that the monovalent organic acid copper is reduced in the range of the molding processing temperature of the thermoplastic resin.
  • the metal copper ultrafine particles are uniformly dispersed, and a resin composition containing an organic acid in an amount of less than 1 mol with respect to 1 mol of metal copper is prepared. it can. That is, by heating in the above temperature range, the monovalent copper compound is reduced to metallic copper, and the organic acid component that has modified the surface of the copper ultrafine particles is eliminated, and the presence of this organic acid component results in copper ultrafine particles.
  • the heating and kneading time is not particularly limited as long as the desired composition is formed, but it is preferably 120 seconds or more, particularly 200 to 600 seconds, and 300 to 600 seconds.
  • melt kneading is carried out for a predetermined time at 250 to 280 ° C.
  • the absorbance measured with a spectrophotometer has a peak in the range of 550 to 600 nm, and copper stearate is used as a divalent copper compound.
  • the molded product exhibits a red color of metallic copper and a peak appears at 580 nm.
  • 6-nylon Ube Industries, Ltd. product 1013B
  • Example 1 A master batch was prepared in the same manner as in Example 1 except that the type, blending amount and molding temperature of the resin were changed as shown in Table 1.
  • PE J5019 is polyethylene manufactured by Ube Maruzen Polyethylene Corporation
  • PP WMG03 is polypropylene manufactured by Japan Polypropylene Corporation.
  • Example 1 (Confirmation of absorption spectrum)
  • Comparative Examples 1 and 2 were hot-pressed at the temperatures described in Table 1 respectively and used as a flat molded product using an ultraviolet-visible spectrophotometer (manufactured by JASCO Corporation).
  • the absorption spectrum was measured. The measurement results are shown in FIG.
  • an olefin resin was used as in the comparative example, absorption was observed at around 670 nm, but in Example 1, a peak derived from a monovalent compound was observed at around 500 nm.
  • the masterbatch of the present invention can efficiently disperse copper ultrafine particles uniformly in a molded article.
  • the resin composition of the present invention obtained from the masterbatch of the present invention is a resin composition in which copper ultrafine particles having excellent antibacterial performance, adsorption performance and the like are uniformly dispersed, and may be molded into various forms. Since it can, it can utilize suitably for packaging materials, such as a container, a film, a sheet, a nonwoven fabric, textiles, etc.

Abstract

The present invention relates to: a master batch that, if blended into a thermoplastic resin and heated/mixed, enables super-fine copper particles to be uniformly dispersed in the thermoplastic resin; and methods for producing the same. The present invention also relates to: a resin composition in which a thermoplastic resin serving as a matrix does not deteriorate, and which is obtained by the uniform dispersion of super-fine metallic copper particles; and a method for producing the same.

Description

銅含有マスターバッチ及び銅超微粒子含有樹脂組成物並びにそれらの製造方法Copper-containing masterbatch, copper ultrafine particle-containing resin composition, and method for producing them
 本発明は、銅含有マスターバッチ及び銅超微粒子含有樹脂組成物並びにそれらの製造方法に関する。より詳細には、熱可塑性樹脂中に銅超微粒子を形成可能な一価銅化合物を含有するマスターバッチ及びその製造方法、並びに金属銅超微粒子に由来する抗菌性能を備えた樹脂組成物及び金属銅超微粒子を効率よく熱可塑性樹脂中で生成可能な銅超微粒子含有樹脂組成物の製造方法に関する。 The present invention relates to a copper-containing masterbatch, a copper ultrafine particle-containing resin composition, and a method for producing them. More specifically, a masterbatch containing a monovalent copper compound capable of forming copper ultrafine particles in a thermoplastic resin, a method for producing the same, a resin composition having antibacterial performance derived from metallic copper ultrafine particles, and metallic copper The present invention relates to a method for producing a copper ultrafine particle-containing resin composition capable of efficiently generating ultrafine particles in a thermoplastic resin.
 金属超微粒子は、優れた抗菌性能や吸着性能を有することから、樹脂等に含有させてシートや繊維等の形状に成形して使用することが望まれているが、金属超微粒子は表面滑性が高いことから、樹脂が分解されてしまい、成形性が著しく阻害されてしまうという問題がある。更に、ハンドリング性の点から分散液が必要であり、樹脂に配合するには十分満足するものではなかった。
 このような問題を解決するために、本発明者等は、金属超微粒子表面に有機酸成分を存在させることにより、金属表面と樹脂との直接接触を低減させ、樹脂の分解を有効に抑制して、樹脂の分子量の低下等を低減することができ、成形性を阻害することがない、吸着性金属超微粒子を提案した(特許文献1)。
Since metal ultrafine particles have excellent antibacterial and adsorption properties, it is desirable that they be contained in a resin or the like to be used after being formed into a shape such as a sheet or fiber, but metal ultrafine particles have surface lubricity. There is a problem that the resin is decomposed and the moldability is significantly impaired. Furthermore, a dispersion was required from the point of handleability, and it was not sufficiently satisfactory for incorporation into a resin.
In order to solve such a problem, the present inventors reduce the direct contact between the metal surface and the resin by causing the organic acid component to exist on the metal ultrafine particle surface, and effectively suppress the decomposition of the resin. We have proposed an adsorptive metal ultrafine particle which can reduce the decrease in molecular weight of the resin and the like and does not inhibit the formability (Patent Document 1).
 上記のような金属超微粒子を樹脂中に含有させる際に、金属超微粒子を高濃度で含有するマスターバッチを予め作成し、これを樹脂に配合することが一般的であり、これにより金属超微粒子の樹脂中での分散性を向上し、成形品の加工を容易にすることが可能になる。しかしながら、金属超微粒子はマスターバッチに含有された状態でも吸着性能及び抗菌性能等を発揮してしまうことから、マスターバッチを樹脂に配合して成形した成形物の吸着性能等が低下してしまうおそれがある。
 このような問題を解決するために、本発明者等は、ポリオレフィン樹脂中に銀、銅、金等の有機酸金属塩を配合して成るマスターバッチを提案した(特許文献2)。このマスターバッチを樹脂に配合し、有機酸金属塩が熱分解可能な温度で加熱混練することにより、金属超微粒子が樹脂中で均一分散して成る樹脂成形体を形成可能になる。
When the metal ultrafine particles as described above are contained in the resin, it is common to previously prepare a masterbatch containing the metal ultrafine particles in a high concentration and to mix this in the resin, thereby making the metal ultrafine particles It is possible to improve the dispersibility in the resin and to facilitate the processing of the molded article. However, since the metal ultrafine particles exhibit adsorption performance, antibacterial performance, etc. even when contained in the master batch, there is a possibility that the adsorption performance etc. of the molded product formed by blending the master batch with the resin may be deteriorated. There is.
In order to solve such a problem, the present inventors proposed a masterbatch formed by blending an organic acid metal salt such as silver, copper, gold or the like into a polyolefin resin (Patent Document 2). By blending this masterbatch into a resin and heating and kneading it at a temperature at which the organic acid metal salt can be thermally decomposed, it becomes possible to form a resin molded product in which metal ultrafine particles are uniformly dispersed in the resin.
特許第4448551号公報Patent No. 4448551 特許第4948556号公報Patent No. 4948556
 しかしながら、有機酸金属塩を含有するマスターバッチにおいては、脂肪酸銀等の有機酸金属塩であれば、マスターバッチをポリオレフィンに配合して加熱混練することにより容易に、銀超微粒子が分散したポリオレフィン樹脂組成物を得ることができたが、脂肪酸銅等の有機酸銅をポリオレフィンに配合して成るマスターバッチでは、工業的に銅超微粒子を含有する樹脂成形体を成形することができなかった。すなわち、300℃付近で、ポリオレフィン中で脂肪酸銅を加熱混練した場合には、樹脂の劣化が激しく、著しく成形性が低下して、金属銅を得られたとしても工業的に樹脂成形品を成形することができない。
 その一方、融点がポリオレフィンに比して高いポリアミド樹脂に脂肪酸銅を配合して、樹脂の劣化を生じない温度で長時間混練することにより金属銅へ還元できたとしても、凝集してしまい、樹脂中で銅超微粒子を成形することはできない。
However, in a master batch containing an organic acid metal salt, if it is an organic acid metal salt such as fatty acid silver, a polyolefin resin in which silver ultrafine particles are easily dispersed by blending the master batch with polyolefin and heating and kneading it Although the composition could be obtained, it was not possible to industrially form a resin molded product containing copper ultrafine particles industrially by using a masterbatch formed by blending an organic acid copper such as fatty acid copper with a polyolefin. That is, when fatty acid copper is heat-kneaded in polyolefin at around 300 ° C., the resin is extremely deteriorated and the formability is significantly reduced, and even if metallic copper is obtained, the resin molded article is industrially molded Can not do it.
On the other hand, even if it can be reduced to metallic copper by blending fatty acid copper with polyamide resin whose melting point is higher than that of polyolefin and kneading it for a long time at a temperature that does not cause deterioration of the resin, aggregation occurs. It is not possible to form copper ultrafine particles in it.
 従って本発明の目的は、熱可塑性樹脂に配合して、加熱混練した場合に、熱可塑性樹脂中に銅超微粒子を均一に分散可能なマスターバッチ及び銅超微粒子含有樹脂組成物並びにそれらの製造方法を提供することである。 Therefore, an object of the present invention is to provide a masterbatch capable of uniformly dispersing copper ultrafine particles in a thermoplastic resin, a resin composition containing copper ultrafine particles, and a method for producing them when mixed with thermoplastic resin and heated and kneaded. To provide.
 本発明によれば、熱可塑性樹脂中に1価銅化合物を含有して成る、金属銅超微粒子形成に用いることを特徴とするマスターバッチが提供される。
 本発明のマスターバッチにおいては、
1.前記熱可塑性樹脂が、ポリアミド樹脂又はポリエステル樹脂であること、
2.前記1価銅化合物が、脂肪酸銅であること、
3.前記1価銅化合物が、0.1~5重量%の量で含有されていること、
が好適である。
According to the present invention, there is provided a masterbatch comprising a monovalent copper compound in a thermoplastic resin, which is characterized by being used for forming metallic copper ultrafine particles.
In the masterbatch of the present invention,
1. The thermoplastic resin is a polyamide resin or a polyester resin,
2. The monovalent copper compound is fatty acid copper,
3. The monovalent copper compound is contained in an amount of 0.1 to 5% by weight,
Is preferred.
 本発明によれば、上記マスターバッチの製造方法であって、熱可塑性樹脂と2価銅化合物を、該2価銅化合物が1価銅化合物に還元される温度で混練することを特徴とするマスターバッチの製造方法が提供される。
 本発明のマスターバッチの製造方法においては、
1.前記熱可塑性樹脂が、ポリアミド樹脂又はポリエステル樹脂であること、
2.前記熱可塑性樹脂と2価銅化合物の混練温度が、熱可塑性樹脂の融点以上、且つ熱分析装置を用いて毎分10℃の昇温速度で昇温させることにより得られた加熱減量曲線(TG曲線)において、銅化合物に5%の重量減少が生じる温度未満の温度であること、
が好適である。
According to the present invention, there is provided a method of producing a masterbatch as described above, comprising kneading a thermoplastic resin and a divalent copper compound at a temperature at which the divalent copper compound is reduced to a monovalent copper compound. A method of manufacturing a batch is provided.
In the method of producing a masterbatch of the present invention,
1. The thermoplastic resin is a polyamide resin or a polyester resin,
2. The heating loss curve (TG) obtained by raising the temperature at which the thermoplastic resin and the divalent copper compound are mixed at a temperature rising rate of 10 ° C./min using a thermal analysis apparatus at a temperature higher than the melting point of the thermoplastic resin In the curve) that the copper compound is at a temperature below which a 5% weight loss occurs,
Is preferred.
 本発明によれば、酸素透過係数が2×10-3cc・m/m・day・atm以下の熱可塑性樹脂中に、平均粒径100nm以下の金属銅超微粒子及び有機酸を含有して成ることを特徴とする樹脂組成物が提供される。
 本発明の樹脂組成物においては、
1.前記熱可塑性樹脂が、ポリアミド樹脂又はポリエステル樹脂であること、
2.前記金属銅超微粒子が、0.001~1重量%の量で含有されていること、
3.前記有機酸が脂肪酸であり、金属銅1モルに対して1モル未満の量で含有されていること、
が好適である。
According to the present invention, a thermoplastic resin having an oxygen permeability coefficient of 2 × 10 −3 cc · m / m 2 · day · atm or less contains metallic copper ultrafine particles having an average particle size of 100 nm or less and an organic acid There is provided a resin composition characterized in that
In the resin composition of the present invention,
1. The thermoplastic resin is a polyamide resin or a polyester resin,
2. The metal copper ultrafine particles are contained in an amount of 0.001 to 1% by weight,
3. The organic acid is a fatty acid, and is contained in an amount of less than 1 mole with respect to 1 mole of metallic copper;
Is preferred.
 本発明によれば、上記樹脂組成物の製造方法であって、前記熱可塑性樹脂に、本発明のマスターバッチを配合し、これらを混練することを特徴とする樹脂組成物の製造方法が提供される。
 本発明のマスターバッチの製造方法においては、前記一価銅化合物が脂肪酸銅であることが好適である。
According to the present invention, there is provided a method of producing the above resin composition, which comprises blending the masterbatch of the present invention with the thermoplastic resin and kneading the same. Ru.
In the method for producing a masterbatch of the present invention, it is preferable that the monovalent copper compound is fatty acid copper.
 本発明者等は、2価の銅化合物から直接、金属銅の超微粒子を形成することは難しいが、熱可塑性樹脂中に銅超微粒子を形成可能なマスターバッチにおいては、熱可塑性樹脂中に1価銅化合物を含有するマスターバッチとすることにより、樹脂の熱劣化などを生じることなく1価銅化合物が還元され、効率よく熱可塑性樹脂中に銅超微粒子を形成できることを見出した。
 本発明のマスターバッチにおいては、樹脂に配合して加熱条件下で成形加工することにより成形物中に銅超微粒子が生成されると共に均一に分散され、吸着性能や抗菌性能が発揮される。
 また本発明のマスターバッチ中に含有される1価銅化合物は、それ自体は吸着性能等を発現しないため、マスターバッチの状態で保存しても性能の低下がなく、吸着性能等の発現を制御することが可能となる。
 更に本発明のマスターバッチの製造方法においては、工業的に入手容易な2価銅化合物を用いて、1価銅化合物を含有するマスターバッチを効率よく製造することができる。
Although it is difficult for the present inventors to form ultrafine particles of metallic copper directly from a divalent copper compound, in masterbatches capable of forming ultrafine copper particles in a thermoplastic resin, it is preferable to By making it a masterbatch containing a valence copper compound, it has been found that a monovalent copper compound can be reduced without causing thermal deterioration of a resin, and copper ultrafine particles can be efficiently formed in a thermoplastic resin.
In the masterbatch of the present invention, by mixing with a resin and molding processing under heating conditions, copper ultrafine particles are generated in the molded product and dispersed uniformly, and the adsorption performance and the antibacterial performance are exhibited.
Further, since the monovalent copper compound contained in the masterbatch of the present invention does not itself exhibit adsorption performance etc., there is no decline in performance even when stored in the masterbatch state, and control of expression of adsorption performance etc. is controlled It is possible to
Furthermore, in the method for producing a masterbatch of the present invention, a masterbatch containing a monovalent copper compound can be efficiently produced using a commercially available divalent copper compound.
 本発明の樹脂組成物においては、金属銅超微粒子と共に有機酸を含有していることから、金属銅超微粒子が凝集することなく均一に熱可塑性樹脂中に分散されている。しかも酸素バリア性に優れた熱可塑性樹脂をマトリックスとして用いていることから、透過酸素により銅超微粒子が酸化することなく安定して抗菌性能等の性能を発揮することが可能になる。また銅超微粒子の酸化が有効に防止されていることから、本発明の樹脂組成物から成る成形品においては変色も抑制されている。更に金属銅超微粒子は熱可塑性樹脂中にしっかりと固定されていることから、成形品から脱落することもなく、長期にわたって抗菌性能等の性能を発現できる。
 また本発明の樹脂組成物の製造方法においては、本発明のマスターバッチを用いることにより、熱可塑性樹脂の劣化を生じることなく、金属銅超微粒子を熱可塑性樹脂中で生成すると共に均一に分散可能であり、効率よく銅超微粒子を含有する樹脂組成物を製造することができる。
In the resin composition of the present invention, since the metal copper ultrafine particles and the organic acid are contained, the metal copper ultrafine particles are uniformly dispersed in the thermoplastic resin without aggregation. In addition, since a thermoplastic resin excellent in oxygen barrier properties is used as a matrix, it is possible to stably exhibit performance such as antibacterial performance without the copper ultrafine particles being oxidized by the transmitted oxygen. In addition, since oxidation of the copper ultrafine particles is effectively prevented, discoloration is also suppressed in the molded article made of the resin composition of the present invention. Furthermore, since the metallic copper ultrafine particles are firmly fixed in the thermoplastic resin, they can exhibit performance such as antibacterial performance over a long period without falling off from the molded product.
Further, in the method for producing a resin composition of the present invention, by using the master batch of the present invention, metallic copper ultrafine particles can be generated in the thermoplastic resin and uniformly dispersed without causing deterioration of the thermoplastic resin. Thus, a resin composition containing copper ultrafine particles can be efficiently produced.
ステアリン酸銅の加熱減量曲線である。It is a heat loss curve of copper stearate. 実施例1、比較例1,2における紫外-可視分光光度計の吸収スペクトルを示す。The absorption spectrum of the ultraviolet-visible spectrophotometer in Example 1 and Comparative Examples 1 and 2 is shown. 実施例2で作製したナイロン繊維中に形成された銅超微粒子のTEM写真である。6 is a TEM photograph of ultrafine copper particles formed in the nylon fiber produced in Example 2. FIG.
(マスターバッチ)
 本発明のマスターバッチにおいて、マスターバッチ中に含有される1価銅化合物は、熱可塑性樹脂中で2価銅化合物を還元することにより得られるものであることが好適である。これにより、高濃度の1価銅化合物を熱可塑性樹脂中で凝集することなく均一に分散させることが可能になる。尚、亜酸化銅等の1価銅化合物を熱可塑性樹脂中に直接配合してマスターバッチとすることも可能であるが、亜酸化銅等の1価銅化合物は酸化されやすく取扱い性に劣ると共に、熱可塑樹脂中で均一に分散させることが難しいことから、上述した2価銅化合物を熱可塑性樹脂中で還元して分散させて成るマスターバッチであることが工業的にも好適である。
(Master Badge)
In the masterbatch of the present invention, the monovalent copper compound contained in the masterbatch is preferably obtained by reducing a divalent copper compound in a thermoplastic resin. This makes it possible to uniformly disperse a high concentration of monovalent copper compound in the thermoplastic resin without aggregation. In addition, although it is also possible to mix | blend monovalent | monohydric copper compounds, such as a cuprous oxide, directly in a thermoplastic resin, and to make it a masterbatch, monovalent copper compounds, such as a cuprous oxide, are easily oxidized and inferior to handleability. Since it is difficult to uniformly disperse in a thermoplastic resin, it is industrially preferable that it is a masterbatch formed by reducing and dispersing the above-mentioned divalent copper compound in a thermoplastic resin.
 このような2価銅化合物としては、ミリスチン酸,ステアリン酸,オレイン酸,パルミチン酸,n-デカン酸,パラトイル酸,コハク酸,マロン酸,酒石酸,リンゴ酸,グルタル酸,アジピン酸、酢酸等の脂肪族カルボン酸、フタル酸,マレイン酸,イソフタル酸,テレフタル酸,安息香酸、ナフテン酸等の芳香族カルボン酸、シクロヘキサンジカルボン酸等の脂環式カルボン酸等の有機酸の銅塩を挙げることができる。
 本発明においては、特にミリスチン酸、ステアリン酸、パルミチン酸等に代表される、炭素数3~30である高級脂肪酸の銅塩であることが特に好ましい。また、炭素数の多いものを使用することにより、有機酸成分自体も吸着性能を発揮して吸着性能をより向上することが可能となる。
 用いる2価銅化合物は特に限定を受けないが、平均粒径は、1~100μm、特に20~50μmの範囲にあるものが、マスターバッチを配合して得られた樹脂組成物から成る成形物に、良好な抗菌性能や吸着性能を付与可能な銅超微粒子を容易に形成できることから好適に使用可能である。
Examples of such divalent copper compounds include myristic acid, stearic acid, oleic acid, palmitic acid, n-decanoic acid, paratoic acid, succinic acid, malonic acid, tartaric acid, malic acid, glutaric acid, adipic acid, acetic acid, etc. Examples include copper salts of organic acids such as aliphatic carboxylic acids, aromatic carboxylic acids such as phthalic acid, maleic acid, isophthalic acid, terephthalic acid, benzoic acid and naphthenic acid, and alicyclic carboxylic acids such as cyclohexanedicarboxylic acid it can.
In the present invention, copper salts of higher fatty acids having 3 to 30 carbon atoms, such as myristic acid, stearic acid and palmitic acid, are particularly preferable. In addition, by using one having a large number of carbon atoms, the organic acid component itself can exhibit adsorption performance to further improve the adsorption performance.
The divalent copper compound to be used is not particularly limited, but the average particle diameter is in the range of 1 to 100 μm, particularly 20 to 50 μm, to a molded product made of the resin composition obtained by blending the masterbatch. It can be suitably used because it can easily form copper ultrafine particles to which good antibacterial performance and adsorption performance can be imparted.
 本発明のマスターバッチにおいて、1価銅化合物を含有する熱可塑性樹脂としては、2価銅化合物が1価銅化合物に還元される温度での溶融成形や紡糸等が可能な熱可塑性樹脂であれば従来公知の熱可塑性樹脂を制限なく使用できる。
 好適には、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタエート等のポリエステル樹脂、ナイロン6、ナイロン6,6、ナイロン6,10、ナイロン11、ナイロン12、ナイロン13、キシリレン基含有ポリアミド樹脂等のポリアミド樹脂、ポリカーボネート樹脂等を例示することができる。これらの熱可塑性樹脂は、アミド基、カルボニル基、水酸基等の、2価銅化合物の1価銅化合物への還元に有効に使用可能な官能基を有しており、効率よく1価銅化合物をマスターバッチ中に生成することが可能である。
 1価銅化合物が還元される温度は、銅化合物の種類によって異なり一概に規定できないが、工業的に好適に使用可能な上記高級脂肪酸の銅塩では250~300℃の範囲にあることから、上記高級脂肪酸の銅塩には、熱可塑性樹脂としては特にポリアミド樹脂、ポリエステル樹脂を好適に用いることができる。
In the masterbatch of the present invention, as a thermoplastic resin containing a monovalent copper compound, it is a thermoplastic resin which can be melt-formed or spun at a temperature at which a divalent copper compound is reduced to a monovalent copper compound. Conventionally known thermoplastic resins can be used without limitation.
Preferably, polyester resins such as polyethylene terephthalate, polybutylene terephthalate and polyethylene naphthalate, and polyamide resins such as nylon 6, nylon 6, 6, nylon 6, 10, nylon 11, nylon 12, nylon 13, polyamide resin containing xylylene group And polycarbonate resins. These thermoplastic resins have functional groups that can be effectively used for reduction of divalent copper compounds to monovalent copper compounds, such as amide groups, carbonyl groups, hydroxyl groups, etc., and it is effective to use monovalent copper compounds efficiently. It is possible to generate in a masterbatch.
The temperature at which the monovalent copper compound is reduced is different depending on the type of copper compound and can not be generally defined, but the copper salt of the above-mentioned higher fatty acid which can be suitably used industrially is in the range of 250 to 300 ° C. In particular, polyamide resins and polyester resins can be suitably used as the thermoplastic resin for the copper salts of higher fatty acids.
 ポリアミド樹脂としては、ナイロン6、ナイロン6,6、ナイロン6/6,6共重合体、ナイロン6,10、ナイロン11、ナイロン12、ナイロン13、キシリレン基含有ポリアミド等のポリアミド樹脂を挙げることができ、ガラス転移点(Tg)が40~60℃であり、且つ融点(Tm)が220~250℃の範囲にあるものが好適に使用できる。
 上記キシリレン基含有ポリアミドとしては、具体的には、ポリメタキシリレンアジパミド、ポリメタキシリレンセバカミド、ポリメタキシリレンスベラミド、ポリパラキシリレンピメラミド、ポリメタキシリレンアゼラミド等の単独重合体、及びメタキシリレン/パラキシリレンアジパミド共重合体、メタキシリレン/パラキシリレンピメラミド共重合体、メタキシリレン/パラキシリレンセバカミド共重合体、メタキシリレン/パラキシリレンアゼラミド共重合体等の共重合体、或いはこれらの単独重合体または共重合体の成分とヘキサメチレンジアミンの如き脂肪族ジアミン、ピペラジンの如き脂環式ジアミン、パラ-ビス(2アミノエチル)ベンゼンの如き芳香族ジアミン、テレフタル酸の如き芳香族ジカルボン酸、ε-カプロラクタムの如きラクタム、7-アミノヘプタン酸の如きω-アミノカルボン酸、パラ-アミノメチル安息香酸の如き芳香族アミノカルボン酸等を共重合した共重合体が挙げられる。
Examples of the polyamide resin include polyamide resins such as nylon 6, nylon 6, 6, nylon 6/6, 6 copolymer, nylon 6, 10, nylon 11, nylon 12, nylon 13, and xylylene group-containing polyamide. And those having a glass transition point (Tg) of 40 to 60 ° C. and a melting point (Tm) of 220 to 250 ° C. can be suitably used.
Specific examples of the xylylene group-containing polyamide include polymetaxylylene adipamide, polymethaxylylene sebacamide, polymethaxylylene beramide, polyparaxylylene pimeramide, polymethaxylylene aceramide and the like. Polymer, and metaxylylene / paraxylylene adipamide copolymer, metaxylylene / paraxylylene pimeramide copolymer, metaxylylene / paraxylylene sebacamide copolymer, metaxylylene / paraxylylene azeramide copolymer Or copolymers thereof, aliphatic diamines such as hexamethylene diamine, alicyclic diamines such as piperazine, and aromatic diamines such as para-bis (2-aminoethyl) benzene , Aromatic dicarboxylic acids such as terephthalic acid, ε-caprolactone Such lactams, 7-amino such ω- amino acids heptanoic acid, para - copolymers thereof obtained by copolymerizing such aromatic amino acids of the amino methyl benzoate.
 ポリエステル樹脂としては、例えばポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレート等のポリエステル樹脂や、或いはこれらのポリエステル樹脂とポリカーボネートやアリレート樹脂等のブレンド物を用いることができる。
 特にエステル反復単位の大部分(一般に80モル%以上、)がエチレンテレフタレート単位であり、ガラス転移点(Tg)が50~80℃であり、且つ融点(Tm)が240~270℃のポリエチレンテレフタレート(PET)系ポリエステルを好適に使用できる。PET系ポリエステルとしては、ホモポリエチレンテレフタレートが最適であるが、エチレンテレフタレート単位の含有量が上記範囲内にある共重合ポリエステルも好適に使用することができる。かかる共重合ポリエステルにおいて、テレフタル酸以外の二塩基酸としては、イソフタル酸、フタル酸、ナフタレンジカルボン酸等の芳香族ジカルボン酸;シクロヘキサンジカルボン酸等の脂環族ジカルボン酸;コハク酸、アジピン酸、セバチン酸、ドデカンジオン酸等の脂肪族ジカルボン酸;等の1種又は2種以上の組み合わせを例示することができ、エチレングリコール以外のジオール成分としては、プロピレングリコール、1,4-ブタンジオール、ジエチレングリコール、1,6-ヘキシレングリコール、シクロヘキサンジメタノール、ビスフェノールAのエチレンオキサイド付加物等の1種又は2種以上が挙げられる。
 ポリエステル樹脂の固有粘度は、樹脂組成物から成る成形体の形態や成形方法等によって、要求される固有粘度の範囲は異なるが、0.5~1dL/gの範囲にあることが望ましい。
As the polyester resin, for example, polyester resins such as polyethylene terephthalate, polybutylene terephthalate and polyethylene naphthalate, or blends of these polyester resins with polycarbonate and arylate resin can be used.
In particular, a polyethylene terephthalate having a glass transition temperature (Tg) of 50 to 80 ° C. and a melting point (Tm) of 240 to 270 ° C., with the majority (generally 80 mol% or more) of ester repeating units being ethylene terephthalate units PET) -based polyester can be suitably used. Although a homopolyethylene terephthalate is most suitable as the PET-based polyester, a copolyester having an ethylene terephthalate unit content in the above range can also be suitably used. In such a copolyester, as dibasic acids other than terephthalic acid, aromatic dicarboxylic acids such as isophthalic acid, phthalic acid and naphthalene dicarboxylic acid; alicyclic dicarboxylic acids such as cyclohexane dicarboxylic acid; succinic acid, adipic acid, sebacine And aliphatic dicarboxylic acids such as dodecanedioic acid; and combinations of one or more such as, for example, propylene glycol, 1,4-butanediol, diethylene glycol, and the like as diol components other than ethylene glycol One or two or more species of 1,6-hexylene glycol, cyclohexane dimethanol, ethylene oxide adduct of bisphenol A and the like can be mentioned.
The intrinsic viscosity of the polyester resin is preferably in the range of 0.5 to 1 dL / g, although the range of the intrinsic viscosity required varies depending on the form of the molded product made of the resin composition, the molding method and the like.
 本発明のマスターバッチは、これに限定されるものではないが、上述した1価銅化合物を0.1~5重量%、特に0.5~4重量%の量で含有することが好ましい。上記範囲よりも少ない場合には、マスターバッチを配合して成形された成形品に銅超微粒子が有する抗菌性能や吸着性能等の優れた性能を充分に付与することができないおそれがあり、その一方上記範囲よりも多い場合には1価銅化合物の凝集が生じるおそれがあると共に、経済性にも劣る。
 本発明のマスターバッチは、1価銅化合物が熱可塑性樹脂中で分散されていることから、分光光度計で測定した吸光度が400~500nmの範囲にピークがあり、2価銅化合物としてステアリン酸銅を用いた場合には、マスターバッチは黄褐色を呈すると共に、500nmにピークが発現している。
The masterbatch of the present invention preferably contains, but is not limited to, the above-mentioned monovalent copper compound in an amount of 0.1 to 5% by weight, particularly 0.5 to 4% by weight. If the amount is less than the above range, there is a possibility that sufficient performance such as the antibacterial performance and the adsorption performance possessed by the copper ultrafine particles can not be sufficiently imparted to the molded product formed by blending the master batch, If the amount is more than the above range, aggregation of the monovalent copper compound may occur, and the economy is also inferior.
In the masterbatch of the present invention, since the monovalent copper compound is dispersed in the thermoplastic resin, the absorbance measured with a spectrophotometer has a peak in the range of 400 to 500 nm, and copper stearate as a divalent copper compound In addition, the masterbatch appears yellowish brown and a peak appears at 500 nm.
(マスターバッチの製造方法)
 本発明のマスターバッチは、熱可塑性樹脂100重量部当たり2価銅化合物を0.1~20重量部、特に1~10重量部の量で配合し、これを熱可塑性樹脂の融点以上の温度且つ2価銅化合物が1価銅化合物に還元される温度で加熱混合することにより、調製することができる。
 尚、2価銅化合物から還元された1価銅化合物は、過加熱により更に還元されて金属銅になってしまうため、1価銅化合物が還元されない温度、すなわち1価銅化合物が還元し始める温度未満で加熱することが必要であり、本発明においては、1価銅化合物が還元し始める温度を、用いる2価銅化合物が5%の重量減少を生じる温度と定義する。
 このため本発明においては、前記熱可塑性樹脂と2価銅化合物の加熱温度を、熱可塑性樹脂の融点以上、且つ用いる2価銅化合物が5%の重量減少を生じる温度未満とすることが望ましい。
 2価銅化合物の5%重量減少を生じる温度は、用いる2価銅化合物の質量を測定し、熱分析装置を用いて不活性雰囲気下で毎分10℃の昇温速度で昇温した際の重量変化を測定することにより得られた加熱減量曲線(TG曲線)において、5%の重量減少が生じる温度未満の温度とすることが望ましい。すなわち5%の重量減少が生じる温度では、2価銅化合物から生成した1価銅化合物の金属銅への熱分解が開始されている。尚、図1は、後述する実施例で用いたステアリン酸銅のTG曲線であり、図中、矢印Aで表す部分が2価銅化合物の5%重量減少が生じる温度であり、ステアリン酸銅の場合は、約267℃である。
 また加熱時間は、30~600秒、特に300秒加熱することが望ましい。実際には押出機の設定温度以外にスクリューによる剪断発熱、或いは滞留時間等による影響を受けるため、滞留時間、加熱時間、スクリュー回転数等の加工条件を調整して、1価銅化合物を効率よく生成することが重要である。
(Manufacturing method of master batch)
The masterbatch of the present invention is compounded in an amount of 0.1 to 20 parts by weight, particularly 1 to 10 parts by weight of a divalent copper compound per 100 parts by weight of a thermoplastic resin, and this is at a temperature above the melting point of the thermoplastic resin It can be prepared by heating and mixing at a temperature at which a divalent copper compound is reduced to a monovalent copper compound.
The monovalent copper compound reduced from the divalent copper compound is further reduced by overheating to become metallic copper, so the temperature at which the monovalent copper compound is not reduced, ie, the temperature at which the monovalent copper compound starts to be reduced Less heating is required, and in the present invention, the temperature at which the monovalent copper compound begins to reduce is defined as the temperature at which the divalent copper compound used produces a 5% weight loss.
Therefore, in the present invention, it is desirable that the heating temperature of the thermoplastic resin and the divalent copper compound be equal to or higher than the melting point of the thermoplastic resin and lower than the temperature at which the divalent copper compound used causes a weight loss of 5%.
The temperature which produces a 5% weight loss of the divalent copper compound is measured when the mass of the divalent copper compound used is measured, and the temperature is raised at a temperature rising rate of 10 ° C./minute under an inert atmosphere using a thermal analyzer. In the heat loss curve (TG curve) obtained by measuring the weight change, it is desirable to set a temperature below the temperature at which a 5% weight loss occurs. That is, at a temperature at which a weight loss of 5% occurs, thermal decomposition of a monovalent copper compound generated from a divalent copper compound to metallic copper is initiated. FIG. 1 is a TG curve of copper stearate used in Examples described later, in which the portion indicated by arrow A is the temperature at which a 5% weight loss of the divalent copper compound occurs, and In the case, it is about 267 ° C.
The heating time is preferably 30 to 600 seconds, particularly 300 seconds. In fact, since it is affected by shear heat generation due to the screw other than the set temperature of the extruder, or residence time, etc., processing conditions such as residence time, heating time, screw rotation speed etc. are adjusted, and monovalent copper compounds are efficiently obtained. It is important to generate.
 熱可塑性樹脂と2価銅化合物の混合は、これに限定されるものではないが、例えばタンブラーブレンダー、ヘンシェルミキサー又はスーパーミキサーのような混合機で予め均一に混合後、単軸押出機や多軸押出機で溶融混練造粒する方法や、ニーダーやバンバリーミキサー等で溶融混練した後に押出機を用いて造粒する方法等が挙げられる。
 マスターバッチは、その用途に応じて、それ自体公知の各種配合剤、例えば、充填剤、可塑剤、レベリング剤、増粘剤、減粘剤、安定剤、酸化防止剤、紫外線吸収剤等を公知の処方に従って配合してもよい。
The mixing of the thermoplastic resin and the divalent copper compound is not limited to this, but for example, a single screw extruder or a multi-screw after being uniformly mixed beforehand by a mixer such as a tumbler blender, a Henschel mixer or a super mixer. Examples thereof include a method of melt-kneading and granulation with an extruder, a method of melt-kneading with a kneader and a Banbury mixer, and then granulation using an extruder.
The masterbatch is known various compounding agents known per se, for example, fillers, plasticizers, leveling agents, thickeners, viscosity reducing agents, stabilizers, antioxidants, UV absorbers, etc., depending on its use. It may be formulated according to the formulation of
(樹脂組成物)
 本発明の金属銅超微粒子含有樹脂組成物は、酸素透過係数が2×10-3cc・m/m・day・atm以下の熱可塑性樹脂中に、100nm以下、特に10~50nmの範囲の平均粒径を有する金属銅の超微粒子及び有機酸を含有して成ることを特徴とする。
 本発明の樹脂組成物中に存在する銅超微粒子は、後述するように銅超微粒子の生成に要する加熱温度が高いことから、樹脂組成物の調製の際に出発物質である有機酸銅から有機酸が脱離した金属銅から成る。このため、前述した先行技術のように、有機酸により表面が修飾された金属超微粒子と異なり、酸化されやすく、酸化により銅超微粒子が本来有する抗菌性能等の性能が低下するおそれがあるが、本発明においては、銅超微粒子を含有するマトリックスとして、酸素透過係数が上記値以下の酸素バリア性を有する熱可塑性樹脂を使用することにより、外部からの透過酸素による金属銅から成る超微粒子の酸化が防止されている。また樹脂組成物中に、有機酸銅から脱離した有機酸が存在することによって、凝集しやすい金属銅超微粒子の凝集を有効に防止することができ、熱可塑性樹脂中に銅超微粒子が均一に分散した樹脂組成物とすることができる。
(Resin composition)
The metal copper ultrafine particle-containing resin composition of the present invention has a oxygen permeability coefficient of not more than 100 nm, particularly in the range of 10 to 50 nm, in a thermoplastic resin having an oxygen permeability coefficient of 2 × 10 −3 cc · m / m 2 · day · atm or less. It is characterized in that it comprises ultrafine particles of metallic copper having an average particle size and an organic acid.
The copper ultrafine particles present in the resin composition of the present invention have a high heating temperature required for the formation of the copper ultrafine particles as described later. It consists of metallic copper from which the acid has been eliminated. For this reason, unlike the metal ultrafine particles whose surface is modified with an organic acid as in the prior art described above, they are easily oxidized, and there is a risk that the performance such as the antibacterial performance originally possessed by the copper ultrafine particles may deteriorate due to oxidation. In the present invention, by using a thermoplastic resin having an oxygen barrier property with an oxygen permeability coefficient equal to or less than the above value as a matrix containing copper ultrafine particles, oxidation of ultrafine particles consisting of metallic copper by transmitted oxygen from the outside Is prevented. In addition, the presence of the organic acid desorbed from the organic acid copper in the resin composition can effectively prevent the aggregation of the metal copper ultrafine particles which are easily aggregated, and the copper ultrafine particles are uniformly contained in the thermoplastic resin. It can be set as the resin composition disperse | distributed to this.
 本発明の樹脂組成物においては、金属銅超微粒子は樹脂組成物中に0.001~1重量%、特に0.01~0.5重量%の量で含有されていることが好適である。上記範囲よりも金属銅超微粒子の量が少ない場合には、上記範囲にある場合に比して樹脂組成物が抗菌性能等を充分に発揮することができず、その一方上記範囲よりも金属銅超微粒子の量が多い場合には、上記範囲にある場合に比して金属銅微粒子の凝集が生じやすいだけでなく、経済的に不利である。 In the resin composition of the present invention, it is preferable that the metallic copper ultrafine particles be contained in the resin composition in an amount of 0.001 to 1% by weight, particularly 0.01 to 0.5% by weight. When the amount of the metallic copper ultrafine particles is smaller than the above range, the resin composition can not sufficiently exhibit the antibacterial performance etc. as compared with the above range, and on the other hand, the metallic copper than the above range When the amount of the ultrafine particles is large, not only aggregation of the metal copper fine particles is easily generated as compared with the case of the above range, but also it is economically disadvantageous.
 本発明の樹脂組成物のマトリックスとなる熱可塑性樹脂は、酸素透過係数が2×10-3cc・m/m・day・atm以下である酸素バリア性を有する熱可塑性樹脂であるが、後述するように、1価有機酸銅を金属銅超微粒子に還元可能な加熱温度で熱劣化しない熱可塑性樹脂であることが望ましい。
 このような熱可塑性樹脂としては、これに限定されないが、ポリエステル樹脂、ポリアミド樹脂、ポリカーボネート樹脂等を好適に使用できる。
 ポリエステル樹脂、ポリアミド樹脂としては、マスターバッチに好適に使用できるものとして列挙したものを好適に使用できる。
The thermoplastic resin to be a matrix of the resin composition of the present invention is a thermoplastic resin having an oxygen barrier property having an oxygen permeability coefficient of 2 × 10 −3 cc · m / m 2 · day · atm or less, which will be described later. Preferably, the thermoplastic resin does not thermally deteriorate at a heating temperature capable of reducing the monovalent organic acid copper to metal copper ultrafine particles.
As such a thermoplastic resin, although it is not limited to this, polyester resin, polyamide resin, polycarbonate resin etc. can be used conveniently.
As a polyester resin and a polyamide resin, what was enumerated as what can be used suitably for a masterbatch can be used conveniently.
 本発明の樹脂組成物において、平均粒径100nm以下、特に10~50nmの範囲にある金属銅超微粒子は、後述する1価有機酸銅を含有するマスターバッチを、上記熱可塑性樹脂に配合し、熱処理を経ることによって、金属銅に還元されると共に、ナノ粒子化・ナノ分散された銅超微粒子が熱可塑性樹脂中で生成される。 In the resin composition of the present invention, metal copper ultrafine particles having an average particle diameter of 100 nm or less, particularly 10 to 50 nm, are prepared by mixing a masterbatch containing copper of monovalent organic acid described later into the thermoplastic resin; Through the heat treatment, nanoparticulated / nanodispersed ultrafine copper particles are produced in the thermoplastic resin while being reduced to metallic copper.
 本発明の樹脂組成物は、金属銅超微粒子の出発物質である有機酸銅に由来する有機酸を含有している。この有機酸を含有することにより、凝集しやすい金属銅超微粒子の凝集を有効に防止することが可能になる。
 有機酸は、ミリスチン酸,ステアリン酸,オレイン酸,パルミチン酸,n-デカン酸,パラトイル酸,コハク酸,マロン酸,酒石酸,リンゴ酸,グルタル酸,アジピン酸、酢酸等の脂肪族カルボン酸、フタル酸,マレイン酸,イソフタル酸,テレフタル酸,安息香酸、ナフテン酸等の芳香族カルボン酸、シクロヘキサンジカルボン酸等の脂環式カルボン酸等を挙げることができる。
 本発明においては、用いる有機酸が、ミリスチン酸、ステアリン酸、パルミチン酸等に代表される脂肪酸が炭素数3~30である高級脂肪酸であることが特に好ましい。
 有機酸は、金属銅1モルに対して1モル未満の量、特に0.5~0.02モルの量で熱可塑性樹脂中に含有されていることが望ましい。後述するように、1価有機酸銅を含有するマスターバッチを熱可塑性樹脂中で加熱混合することによって、1価有機酸銅が還元され、金属銅1モルに対して有機酸は1モル生成するが、上記範囲の量の有機酸が熱可塑性樹脂中に残るように過加熱しないことが望ましい。
The resin composition of the present invention contains an organic acid derived from an organic acid copper which is a starting material of the metallic copper ultrafine particles. By containing this organic acid, it becomes possible to effectively prevent the aggregation of the metal copper ultrafine particles which tends to aggregate.
Organic acids include aliphatic carboxylic acids such as myristic acid, stearic acid, oleic acid, palmitic acid, n-decanoic acid, paratoic acid, succinic acid, malonic acid, tartaric acid, malic acid, glutaric acid, adipic acid, acetic acid, etc. Examples thereof include aromatic carboxylic acids such as acid, maleic acid, isophthalic acid, terephthalic acid, benzoic acid and naphthenic acid, and alicyclic carboxylic acids such as cyclohexanedicarboxylic acid.
In the present invention, it is particularly preferable that the organic acid used is a higher fatty acid having 3 to 30 carbon atoms as a fatty acid represented by myristic acid, stearic acid, palmitic acid and the like.
The organic acid is desirably contained in the thermoplastic resin in an amount of less than 1 mole, particularly 0.5 to 0.02 mole, relative to 1 mole of metallic copper. As described later, by heating and mixing a master batch containing monovalent organic acid copper in a thermoplastic resin, the monovalent organic acid copper is reduced, and one mole of organic acid is generated per mole of metallic copper. However, it is desirable not to overheat so that the amount of organic acid in the above range remains in the thermoplastic resin.
 本発明の樹脂組成物は、上述した金属銅超微粒子及び有機酸の他、その用途に応じて、それ自体公知の各種配合剤、例えば、充填剤、可塑剤、レベリング剤、増粘剤、減粘剤、安定剤、酸化防止剤、紫外線吸収剤等を公知の処方に従って配合することもできる。 The resin composition according to the present invention may contain various compounding agents known per se, such as fillers, plasticizers, leveling agents, thickeners, and the like, in addition to the metal copper ultrafine particles and the organic acid mentioned above, according to their use. A viscosity improver, a stabilizer, an antioxidant, an ultraviolet absorber, etc. can also be mix | blended according to a well-known prescription.
(樹脂組成物の製造方法)
 本発明の樹脂組成物は、上述した熱可塑性樹脂に、別途形成された金属銅超微粒子を配合することによって製造してもよいが、金属銅超微粒子は酸化されやすく、凝集しやすいことから、取扱い性に劣るため、この方法では生産性よく調製することができない。
 従って本発明においては、上述した熱可塑性樹脂に一価有機酸銅を含有するマスターバッチを配合し、これらを所定温度で混練することにより、熱可塑性樹脂中に金属銅超微粒子と有機酸を同時に生成すると共に、金属銅超微粒子が均一に分散した樹脂組成物を製造することが好適である。
(Method for producing resin composition)
The resin composition of the present invention may be produced by blending separately formed metallic copper ultrafine particles with the above-described thermoplastic resin, but the metallic copper ultrafine particles are easily oxidized and easily agglomerated, Because of poor handleability, this method can not be prepared with high productivity.
Therefore, in the present invention, a masterbatch containing monovalent organic acid copper is compounded with the above-mentioned thermoplastic resin, and these are kneaded at a predetermined temperature, thereby simultaneously metal copper ultrafine particles and an organic acid in the thermoplastic resin. It is preferable to produce a resin composition in which metallic copper ultrafine particles are uniformly dispersed while being produced.
 本発明の樹脂組成物の製造には、前述した本発明のマスターバッチを好適に用いることができる。 The masterbatch of the present invention described above can be suitably used for the production of the resin composition of the present invention.
 本発明の樹脂組成物は、前述したとおり、熱可塑性樹脂中に平均粒径が100nnm以下、特に10~50nmの金属銅超微粒子が0.001~1重量%の量で含有されるように、上述した熱可塑性樹脂100重量部に対して上記マスターバッチを1~10重量部の量で配合し、加熱混合することにより調製することが望ましい。
 加熱温度は、マスターバッチ中の1価有機酸銅が金属銅に還元される温度であると共に、使用する熱可塑性樹脂の融点以上且つ熱劣化が生じない範囲の温度である。具体的には熱可塑性樹脂の成形加工温度の範囲で1価有機酸銅が還元されるように、熱可塑性樹脂及び有機酸銅を選択することが重要である。
 この範囲の温度で樹脂組成物を加熱混練することにより、金属銅超微粒子が均一分散され、有機酸を金属銅1モルに対して1モル未満の量で含有する樹脂組成物を調製することができる。すなわち、上記温度範囲で加熱することにより、1価銅化合物が金属銅に還元されると共に、銅超微粒子表面を修飾していた有機酸成分が脱離し、この有機酸成分の存在により銅超微粒子の凝集が防止されて、熱可塑性樹脂中に金属銅超微粒子が均一に分散された樹脂組成物となる。この溶融状態にある樹脂組成物を用い、所望の成形品形状に成形することが可能になる。
 加熱混練時間は、所望の組成物が成形されれば特に制限はないが、120秒以上、特に、200~600秒、300~600秒が好ましい。
 例えば、熱可塑性樹脂としてポリアミド樹脂を使用し、ポリアミド樹脂中に1価脂肪酸銅が含有されたマスターバッチを配合する場合には、250~280℃で所定の間、溶融混練して成形加工することにより、銅超微粒子が均一分散した成形品が得られる。
As described above, the resin composition of the present invention is such that metallic copper ultrafine particles having an average particle diameter of 100 nm or less, particularly 10 to 50 nm, are contained in the thermoplastic resin in an amount of 0.001 to 1% by weight. It is desirable to prepare by mixing and mixing the above-mentioned masterbatch in an amount of 1 to 10 parts by weight with respect to 100 parts by weight of the above-mentioned thermoplastic resin.
The heating temperature is a temperature at which the monovalent organic acid copper in the master batch is reduced to metallic copper, and is a temperature which is not lower than the melting point of the thermoplastic resin to be used and does not cause thermal degradation. Specifically, it is important to select the thermoplastic resin and the organic acid copper so that the monovalent organic acid copper is reduced in the range of the molding processing temperature of the thermoplastic resin.
By heat-kneading the resin composition at a temperature in this range, the metal copper ultrafine particles are uniformly dispersed, and a resin composition containing an organic acid in an amount of less than 1 mol with respect to 1 mol of metal copper is prepared. it can. That is, by heating in the above temperature range, the monovalent copper compound is reduced to metallic copper, and the organic acid component that has modified the surface of the copper ultrafine particles is eliminated, and the presence of this organic acid component results in copper ultrafine particles. Cohesion of the metal copper is prevented, and a metallic copper ultrafine particle is uniformly dispersed in the thermoplastic resin to form a resin composition. It becomes possible to shape | mold in a desired molded article shape using the resin composition in this molten state.
The heating and kneading time is not particularly limited as long as the desired composition is formed, but it is preferably 120 seconds or more, particularly 200 to 600 seconds, and 300 to 600 seconds.
For example, in the case of using a polyamide resin as a thermoplastic resin and blending a master batch containing monovalent fatty acid copper in the polyamide resin, melt kneading is carried out for a predetermined time at 250 to 280 ° C. Thus, a molded article in which the copper ultrafine particles are uniformly dispersed can be obtained.
 前記成形品中には、1~100μmの範囲の平均粒径を有する銅超微粒子が生成されると共に均一分散され、優れた吸着性能及び抗菌性能を発揮することが可能になる。 In the molded article, copper ultrafine particles having an average particle diameter in the range of 1 to 100 μm are produced and uniformly dispersed, which makes it possible to exhibit excellent adsorption performance and antibacterial performance.
 前記成形品は、銅超微粒子が熱可塑性樹脂中で均一に分散されていることから、分光光度計で測定した吸光度が550~600nmの範囲にピークがあり、2価銅化合物としてステアリン酸銅を用いた場合には、成形品は金属銅の赤色を呈すると共に、580nmにピークが発現している。 In the molded product, since the copper ultrafine particles are uniformly dispersed in the thermoplastic resin, the absorbance measured with a spectrophotometer has a peak in the range of 550 to 600 nm, and copper stearate is used as a divalent copper compound. When used, the molded product exhibits a red color of metallic copper and a peak appears at 580 nm.
(実施例1)
 6-ナイロン(宇部興産(株)製 1013B)にステアリン酸銅を重量で4%配合し、押出成形機の設定温度250℃、Q(吐出量)/N(スクリュー回転数)=4/100=0.04の成形条件で2軸押出機((株)テクノベル製)を用いて、押し出してマスターバッチを作製した。
Example 1
Copper stearate is blended 4% by weight with 6-nylon (Ube Industries, Ltd. product 1013B), and the setting temperature of the extrusion molding machine is 250 ° C., Q (discharge amount) / N (screw rotation number) = 4/100 = Using a twin-screw extruder (manufactured by Technobel Co., Ltd.) under a molding condition of 0.04, extrusion was performed to prepare a master batch.
(比較例1~2)
 樹脂の種類・配合量・成形温度を表1のように変更した以外は実施例1と同様にしてマスターバッチを作成した。
 尚、表1中、「PE J5019」は宇部丸善ポリエチレン(株)製ポリエチレン、「PP WMG03」は日本ポリプロ(株)製ポリプロピレンである。
(Comparative Examples 1 and 2)
A master batch was prepared in the same manner as in Example 1 except that the type, blending amount and molding temperature of the resin were changed as shown in Table 1.
In Table 1, “PE J5019” is polyethylene manufactured by Ube Maruzen Polyethylene Corporation, and “PP WMG03” is polypropylene manufactured by Japan Polypropylene Corporation.
(吸収スペクトルの確認)
 実施例1、比較例1,2で作製したマスターバッチをそれぞれ表1に記載した温度でホットプレスして平らな成形体として、紫外-可視分光光度計(日本分光(株)製)を用いて吸収スペクトルを測定した。測定結果を図2に示す。比較例の様にオレフィン樹脂を用いた場合670nm付近に吸収が見られたが、実施例1では500nm付近に1価の化合物由来のピークが見られた。
(Confirmation of absorption spectrum)
The masterbatches prepared in Example 1 and Comparative Examples 1 and 2 were hot-pressed at the temperatures described in Table 1 respectively and used as a flat molded product using an ultraviolet-visible spectrophotometer (manufactured by JASCO Corporation). The absorption spectrum was measured. The measurement results are shown in FIG. When an olefin resin was used as in the comparative example, absorption was observed at around 670 nm, but in Example 1, a peak derived from a monovalent compound was observed at around 500 nm.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
(実施例2)
 前記6-ナイロンに表2のようにステアリン酸銅を2wt%配合し、押出成形機設定温度250℃、Q(吐出量)/N(スクリュー回転数)=4/100=0.04の成形条件で2軸押出機((株)テクノベル製)を用いて、押し出してマスターバッチを作製した。次いで、前記6-ナイロン中にステアリン酸銅の含有量が0.05wt%になるように前記マスターバッチを配合し、2次成形温度260℃で2軸押出機にて混連し、ノズル径600μmから押出し、エアーエジェクターにて延伸させてナイロン繊維を作製した。
(Example 2)
As shown in Table 2, 2 wt% of copper stearate is compounded to the 6-nylon, and the molding conditions of an extruder set temperature 250 ° C., Q (discharge amount) / N (screw rotation speed) = 4/100 = 0.04 Was extruded using a twin-screw extruder (manufactured by Technobel Co., Ltd.) to prepare a master batch. Next, the masterbatch is compounded so that the content of copper stearate in the 6-nylon is 0.05 wt%, and mixed in a twin-screw extruder at a secondary molding temperature of 260 ° C., and the nozzle diameter is 600 μm. The resultant was extruded from the above and stretched by an air ejector to produce nylon fibers.
(比較例3)
 樹脂の種類・配合量・成形温度を表2のように変更した以外は実施例2と同様にして繊維を作製した。
(Comparative example 3)
Fibers were produced in the same manner as in Example 2 except that the type, blending amount and molding temperature of the resin were changed as shown in Table 2.
(粒子の確認)
 表2の様に作製した繊維中の粒子を透過型電子顕微鏡(TEM)にて観察したところ、実施例2のナイロン繊維中には約80nmの粒子を確認した(図3)。一方、比較例3のポリエチレン繊維中には粒子を確認できなかった。
(Confirmation of particles)
When the particles in the fiber produced as shown in Table 2 were observed by a transmission electron microscope (TEM), particles of about 80 nm were confirmed in the nylon fiber of Example 2 (FIG. 3). On the other hand, no particles could be confirmed in the polyethylene fiber of Comparative Example 3.
(抗菌性能)
 また、実施例2及び比較例3で作製した繊維の黄色ぶどう球菌に対する抗菌活性値をJIS L1902に準じて確認したところ、実施例2のナイロン繊維では、抗菌活性値が2以上で効果を確認できたが、比較例3のポリエチレン繊維では抗菌活性を確認できなかった(表2)。
(Antibacterial performance)
In addition, when the antibacterial activity value of the fibers prepared in Example 2 and Comparative Example 3 against Staphylococcus aureus was confirmed according to JIS L1902, in the nylon fiber of Example 2, the antibacterial activity value can be confirmed when the value is 2 or more. However, in the polyethylene fiber of Comparative Example 3, no antibacterial activity could be confirmed (Table 2).
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 本発明のマスターバッチは、成形品に効率よく銅超微粒子を均一分散することができる。そして本発明のマスターバッチから得られる本発明の樹脂組成物は、優れた抗菌性能や吸着性能等を有する銅超微粒子が均一に分散された樹脂組成物であり、種々の形態に成形することができることから、容器、フィルム、シート等の包装材料や、不織布、繊維製品等に好適に利用できる。 The masterbatch of the present invention can efficiently disperse copper ultrafine particles uniformly in a molded article. The resin composition of the present invention obtained from the masterbatch of the present invention is a resin composition in which copper ultrafine particles having excellent antibacterial performance, adsorption performance and the like are uniformly dispersed, and may be molded into various forms. Since it can, it can utilize suitably for packaging materials, such as a container, a film, a sheet, a nonwoven fabric, textiles, etc.

Claims (13)

  1.  熱可塑性樹脂中に1価銅化合物を含有して成る、金属銅超微粒子形成に用いることを特徴とするマスターバッチ。 A masterbatch comprising a monovalent copper compound in a thermoplastic resin, which is used for forming metallic copper ultrafine particles.
  2.  前記熱可塑性樹脂が、ポリアミド樹脂又はポリエステル樹脂である請求項1記載のマスターバッチ。 The masterbatch according to claim 1, wherein the thermoplastic resin is a polyamide resin or a polyester resin.
  3.  前記1価銅化合物が、脂肪酸銅である請求項1又は2記載のマスターバッチ。 The masterbatch according to claim 1 or 2, wherein the monovalent copper compound is fatty acid copper.
  4.  前記1価銅化合物が、0.1~5重量%の量で含有されている請求項1~3の何れかに記載のマスターバッチ。 The masterbatch according to any one of claims 1 to 3, wherein the monovalent copper compound is contained in an amount of 0.1 to 5% by weight.
  5.  請求項1~4の何れかに記載のマスターバッチの製造方法であって、熱可塑性樹脂と2価銅化合物を、該2価銅化合物が1価銅化合物に還元される温度で混練することを特徴とするマスターバッチの製造方法。 The method for producing a masterbatch according to any one of claims 1 to 4, wherein the thermoplastic resin and the divalent copper compound are kneaded at a temperature at which the divalent copper compound is reduced to a monovalent copper compound. A method of producing a master batch characterized by
  6.  前記熱可塑性樹脂が、ポリアミド樹脂又はポリエステル樹脂である請求項5記載のマスターバッチの製造方法。 The method for producing a masterbatch according to claim 5, wherein the thermoplastic resin is a polyamide resin or a polyester resin.
  7.  前記熱可塑性樹脂と2価銅化合物の混練温度が、熱可塑性樹脂の融点以上、熱分析装置を用いて毎分10℃の昇温速度で昇温させることにより得られた加熱減量曲線(TG曲線)において、銅化合物に5%の重量減少が生じる温度未満の温度である請求項5又は6記載のマスターバッチの製造方法。 Heat loss curve (TG curve) obtained by raising the temperature at which the thermoplastic resin and divalent copper compound are mixed at a temperature rising rate of 10.degree. C./min using a thermal analyzer at a temperature higher than the melting point of the thermoplastic resin. The method for producing a masterbatch according to claim 5 or 6, wherein the copper compound is at a temperature below which a weight loss of 5% occurs.
  8.  酸素透過係数が2×10-3cc・m/m・day・atm以下の熱可塑性樹脂中に、平均粒径100nm以下の金属銅超微粒子及び有機酸を含有して成ることを特徴とする樹脂組成物。 A thermoplastic resin having an oxygen permeability coefficient of 2 × 10 −3 cc · m / m 2 · day · atm or less is characterized by containing metal copper ultrafine particles having an average particle size of 100 nm or less and an organic acid. Resin composition.
  9.  前記熱可塑性樹脂が、ポリアミド樹脂又はポリエステル樹脂である請求項8記載の樹脂組成物。 The resin composition according to claim 8, wherein the thermoplastic resin is a polyamide resin or a polyester resin.
  10.  前記金属銅超微粒子が、0.001~1重量%の量で含有されている請求項8又は9記載の樹脂組成物。 The resin composition according to claim 8 or 9, wherein the metallic copper ultrafine particles are contained in an amount of 0.001 to 1% by weight.
  11.  前記有機酸が脂肪酸であり、金属銅1モルに対して1モル未満の量で含有されている請求項8~10の何れかに記載の樹脂組成物。 The resin composition according to any one of claims 8 to 10, wherein the organic acid is a fatty acid and is contained in an amount of less than 1 mole with respect to 1 mole of metallic copper.
  12.  酸素透過係数が2×10-3cc・m/m・day・atm以下の熱可塑性樹脂中に平均粒径100nm以下の金属銅超微粒子及び有機酸を含有して成る樹脂組成物の製造方法であって、請求項1のマスターバッチを配合し、これらを混練することを特徴とする樹脂組成物の製造方法。 A method for producing a resin composition comprising metallic copper ultrafine particles having an average particle diameter of 100 nm or less and an organic acid in a thermoplastic resin having an oxygen permeability coefficient of 2 × 10 -3 cc · m / m 2 · day · atm or less A method for producing a resin composition comprising blending the masterbatch of claim 1 and kneading the mixture.
  13.  前記一価銅化合物が、脂肪酸銅である請求項12記載の樹脂組成物の製造方法。 The method for producing a resin composition according to claim 12, wherein the monovalent copper compound is fatty acid copper.
PCT/JP2019/000568 2018-01-11 2019-01-10 Master batch containing copper, resin composition containing super-fine copper particles, and methods for producing same WO2019139094A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2018002607A JP7021956B2 (en) 2018-01-11 2018-01-11 Copper ultrafine particle-containing resin composition and its manufacturing method
JP2018-002607 2018-01-11
JP2018-002606 2018-01-11
JP2018002606A JP7141216B2 (en) 2018-01-11 2018-01-11 Copper-containing masterbatch and method for producing the same

Publications (1)

Publication Number Publication Date
WO2019139094A1 true WO2019139094A1 (en) 2019-07-18

Family

ID=67219607

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/000568 WO2019139094A1 (en) 2018-01-11 2019-01-10 Master batch containing copper, resin composition containing super-fine copper particles, and methods for producing same

Country Status (1)

Country Link
WO (1) WO2019139094A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022539922A (en) * 2020-06-01 2022-09-14 戴壟科技股▲フン▼有限公司 Manufacturing method of copper antibacterial plastic masterbatch

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10183207A (en) * 1996-12-19 1998-07-14 Tomoe Seisakusho:Kk Ultrafine grain and production thereof
WO2006080319A1 (en) * 2005-01-25 2006-08-03 Kaneka Corporation Ultrafine metal particle-containing resin composition and method for producing such composition
WO2008069034A1 (en) * 2006-12-08 2008-06-12 Toyo Seikan Kaisha, Ltd. Microprotein-inactivating ultrafine metal particle
WO2009107719A1 (en) * 2008-02-29 2009-09-03 東洋製罐株式会社 Master batch, process for production thereof, and process for production of molded articles
US20150218390A1 (en) * 2012-08-24 2015-08-06 Universidad De Chile Polymeric materials with antifouling, biocidal, antiviral and antimicrobial properties; elaboration method and its uses

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10183207A (en) * 1996-12-19 1998-07-14 Tomoe Seisakusho:Kk Ultrafine grain and production thereof
WO2006080319A1 (en) * 2005-01-25 2006-08-03 Kaneka Corporation Ultrafine metal particle-containing resin composition and method for producing such composition
WO2008069034A1 (en) * 2006-12-08 2008-06-12 Toyo Seikan Kaisha, Ltd. Microprotein-inactivating ultrafine metal particle
WO2009107719A1 (en) * 2008-02-29 2009-09-03 東洋製罐株式会社 Master batch, process for production thereof, and process for production of molded articles
US20150218390A1 (en) * 2012-08-24 2015-08-06 Universidad De Chile Polymeric materials with antifouling, biocidal, antiviral and antimicrobial properties; elaboration method and its uses

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022539922A (en) * 2020-06-01 2022-09-14 戴壟科技股▲フン▼有限公司 Manufacturing method of copper antibacterial plastic masterbatch

Similar Documents

Publication Publication Date Title
TW201410773A (en) Olefin-maleic anhydride copolymer compositions and uses thereof
CN101870823A (en) Completely biodegradable material filling master batch and preparation method thereof
CN113336979A (en) Antibacterial masterbatch containing high-dispersity inorganic antibacterial agent and preparation method thereof
EP2248844B1 (en) Master batch, process for production thereof, and process for production of molded articles
US8921452B2 (en) Resin composition containing ultrafine silver particles
JP4252570B2 (en) Pellet manufacturing method
WO2017099168A1 (en) Polylactic acid resin composition and polylactic acid resin molded article
WO2019139094A1 (en) Master batch containing copper, resin composition containing super-fine copper particles, and methods for producing same
JP2022063289A (en) Ultrafine copper particle-containing fiber or nonwoven fabric, and production method thereof
CN107936495A (en) A kind of uvioresistant high water resistant PBAT films and preparation method thereof
JP7141216B2 (en) Copper-containing masterbatch and method for producing the same
JP3948192B2 (en) Polyester resin composition, bottle, film and tray
EP3353233B1 (en) Polymeric materials
JP5656541B2 (en) Silver-containing resin composition and method for producing the same
JP4811982B2 (en) Method for producing a polylactic acid film having a satin appearance
JPWO2010098309A1 (en) Silver nanoparticle-containing composition, silver nanoparticle-containing masterbatch and molded product thereof
JP4185368B2 (en) Antibacterial polyester resin composition
EP3418321B1 (en) Process for the preparation of a granulated plasticiser formulation, containing a long-chain branched alcohol and polypropylene, formulation thus obtained and process for the plasticisation of polylactic acid using the referred formulation
JP2016216573A (en) Resin composition, resin molding obtained by molding the same, and method for producing the resin composition
JP5656540B2 (en) Silver-containing resin composition and method for producing the same
JP2022047351A (en) Filler granule
JP7022248B1 (en) Masterbatch, resin composition, and resin molded article
JP6530256B2 (en) Polyacetal resin composition, molded article and digital device parts
CN108329560A (en) A kind of biodegradable polyethylene packaging film composition and preparation method thereof
JP2006036818A (en) Polylactic acid resin composition, molding obtained from the same and method for producing the molding

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19738661

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19738661

Country of ref document: EP

Kind code of ref document: A1