WO2019139078A1 - Raw material supply device, flash furnace, and operation method of flash furnace - Google Patents

Raw material supply device, flash furnace, and operation method of flash furnace Download PDF

Info

Publication number
WO2019139078A1
WO2019139078A1 PCT/JP2019/000522 JP2019000522W WO2019139078A1 WO 2019139078 A1 WO2019139078 A1 WO 2019139078A1 JP 2019000522 W JP2019000522 W JP 2019000522W WO 2019139078 A1 WO2019139078 A1 WO 2019139078A1
Authority
WO
WIPO (PCT)
Prior art keywords
raw material
flow path
reaction
gas
melting furnace
Prior art date
Application number
PCT/JP2019/000522
Other languages
French (fr)
Japanese (ja)
Inventor
本村竜也
佐野浩行
Original Assignee
パンパシフィック・カッパー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パンパシフィック・カッパー株式会社 filed Critical パンパシフィック・カッパー株式会社
Priority to CN201980006728.6A priority Critical patent/CN111512108B/en
Priority to JP2019564736A priority patent/JPWO2019139078A1/en
Publication of WO2019139078A1 publication Critical patent/WO2019139078A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B5/00General methods of reducing to metals
    • C22B5/02Dry methods smelting of sulfides or formation of mattes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D3/00Charging; Discharging; Manipulation of charge
    • F27D3/18Charging particulate material using a fluid carrier

Definitions

  • the present invention relates to a raw material supply apparatus, a self-smelting furnace, and a method of operating a self-smelting furnace.
  • the flash smelting furnace is a smelting furnace used for smelting smelting of nonferrous metals such as copper and nickel, and mat processing smelting, and a shaft is provided on the setter of the reflection furnace type, and the raw material and the reaction are reacted It is a furnace that uses the oxidation heat of the raw material by blowing in the gas to be used, and performs oxidation and melting instantaneously.
  • an apparatus for supplying raw materials and reaction gases into the furnace plays an important role in determining the performance of the flash smelting furnace.
  • the performance of the raw material supply apparatus influences the reaction efficiency and the reaction progress degree of the raw material in the reaction shaft, and as a result, affects the processing capacity and metal recovery of the flash smelting furnace. It is desirable that the reaction in the reaction shaft in the flash smelting furnace proceed promptly and uniformly with the same degree of progress of the reaction. For this reason, it is desirable that the raw material and the reaction gas be uniformly mixed.
  • Patent Document 1 In order to improve the mixing of the raw material and the reaction gas, it is known to swirl the main air supplied from the raw material supply device into the reaction shaft (Patent Document 1). Further, it is known that an oxygen injection pipe is provided inside a tubular concentrate chute so as to surround a fuel burner, and a guide vane is provided at the opening to supply a swirl flow (Patent Document 2).
  • Patent Document 1 and Patent Document 2 do not actively generate a swirling flow in the region immediately below such a raw material supply device, and there is room for improvement.
  • the present invention has been made in view of the above problems, and an object thereof is to actively promote the mixing of the raw material and the reaction gas supplied into the self-melting furnace to make the reaction uniform.
  • the raw material supply apparatus is a raw material supply apparatus that supplies a raw material into a self-melting furnace and at least a reaction gas that contributes to the reaction of the raw material into the self-melting furnace.
  • the movable vane may change its posture in accordance with the gas flow rate per unit time passing through the gas flow path.
  • the movable vane may be set to have a larger angle with respect to the direction along the axial direction of the gas flow passage as the gas flow rate per unit time passing through the gas flow passage increases.
  • the movable vane may change its posture in accordance with the state of the raw material supplied into the flash smelting furnace through the raw material flow path.
  • the gas flow passage may include an outer flow passage and an inner flow passage, and the movable vane may be disposed at least in one of the outer flow passage and the inner flow passage.
  • another raw material supply apparatus is a raw material supply apparatus that supplies a raw material into the self-melting furnace and at least supplies a reaction gas that contributes to the reaction of the raw material into the self-melting furnace. It is provided on the outer side of the lance, is connected to the raw material flow path for supplying the raw material into the self-smelting furnace, and downstream of the funnel-like air chamber, and is provided on the outer side of the raw material flow path by a cylindrical portion.
  • the vane may be a movable vane.
  • the self-melting furnace of the present invention includes the raw material supply device of the present invention.
  • the method of operating a flash smelting furnace is a method of operating a flash smelting furnace which supplies a raw material into the self-melting furnace and at least supplies a reaction gas contributing to the reaction of the raw material into the self-melting furnace. And supplying the raw material into the flash smelting furnace through a raw material flow path provided outside the lance, and supplying the reaction gas to the self-smelting furnace through a gas flow path provided outside the raw material flow path And supplying the reaction gas to the flash smelting furnace, adjusting the attitude of the movable vanes disposed so as to protrude into the gas flow path.
  • the raw material supply apparatus and the self-melting furnace according to the present invention are supplied into the self-melting furnace by adjusting the attitude of the movable vanes so as to form an appropriate swirling flow according to the physical properties of the raw material and the flow rate of the reaction gas.
  • By actively promoting the mixing of the raw material and the reaction gas it is possible to make the reaction uniform.
  • FIG. 1 is a view schematically showing the configuration of a flash smelting furnace for copper smelting according to the embodiment.
  • FIG. 2 is the figure which expanded a part of raw material supply apparatus of 1st Embodiment.
  • FIG. 3 is a cross-sectional view of the funnel-shaped portion and the tubular portion.
  • FIG. 4 is an explanatory view showing an angle with respect to a direction along the axial direction of the gas passage of the movable vane.
  • FIG. 5 is an explanatory view showing a drive portion of the movable vane.
  • FIG. 6 (A-1) and 6 (A-2) are explanatory views schematically showing a state in which the angle with respect to the direction along the axial direction of the gas passage of the movable vane is 0 °
  • FIG. 1-1 is a perspective view
  • FIG. 6 (A- 2) is a view from above of the raw material supply device.
  • 6 (B-1) and 6 (B-2) are explanatory views schematically showing a state in which the angle with respect to the direction along the axial direction of the gas flow path of the movable vane is 45 °
  • FIG. 1-1 is a perspective view
  • FIG. 6 (B- 2) is a view from above the raw material supply device.
  • FIG. 6 (C-1) and 6 (C-2) are explanatory views schematically showing a state in which the angle with respect to the direction along the axial direction of the gas flow path of the movable vane is 60 °
  • FIG. 1-1 is a perspective view
  • FIG. 6 (C- 2) is a view from above of the raw material supply device.
  • FIG. 7 (A) is an explanatory view schematically showing the swirling flow and the reaction frame in a state in which the reaction gas is small
  • FIG. 7 (B) is a view of the swirling flow and the reaction frame in a state in which the reaction gas is large It is explanatory drawing which shows typically.
  • FIG. 7 (A) is an explanatory view schematically showing the swirling flow and the reaction frame in a state in which the reaction gas is small
  • FIG. 7 (B) is a view of the swirling flow and the reaction frame in a state in which the reaction gas is large It is explanatory drawing which shows typically.
  • FIG. 7 (A) is an ex
  • FIG. 8A is an explanatory view showing a state in which the variable vanes are provided in the inner flow passage in the second embodiment
  • FIG. 8B is a state in which the variable vanes are provided in the outer flow passage in the second embodiment
  • FIG. 9 is an explanatory view showing a drive portion of a variable vane provided in the inner flow passage.
  • FIG. 1 is a figure which shows roughly the structure of the self-melting furnace 100 for copper smelting which concerns on embodiment.
  • the self-melting furnace 100 includes a raw material supply device 1 and a furnace body 2.
  • the raw material supply apparatus 1 is also called a concentrate burner, and is a raw material concentrate (copper concentrate (such as CuFeS 2 )), a reaction main blast gas, a reaction auxiliary gas, and a dispersing gas (also contributes to the reaction ) Is supplied into the furnace body 2.
  • the furnace body 2 includes a reaction shaft 3, a setter 4, and an uptake 5 in which concentrate and reaction gas are mixed.
  • the reaction main blowing gas and the reaction auxiliary gas are oxygen-enriched air, and the dispersing gas is air or oxygen-enriched air.
  • the reaction gas and the dispersing gas disperse and concentrate the concentrate at the same time and separate into a mat and a slag at the bottom of the reaction shaft 3.
  • the sulfur concentration in the copper concentrate is 20 mass% to 40 mass%.
  • “high S concentration” is in the range of 34 mass% to 40 mass%
  • “low S concentration” is in the range from 20 mass% to 25 mass%.
  • FIG. 2 is an enlarged view of a part of the raw material supply apparatus 1 and an explanatory view showing the charging unit 10 for charging the raw material, the reaction gas, and the dispersing gas to the reaction shaft 3 side.
  • the input unit 10 of the raw material supply apparatus 1 includes a lance 16 in which a first passage 11 through which a dispersing gas passes and a fourth passage 14 through which a reaction auxiliary gas as a part of a reaction gas passes It is formed.
  • the fourth passage 14 is provided at the central portion of the lance 16, and the first passage 11 is provided around the fourth passage 14.
  • the input unit 10 is provided with a second passage 12 as a material flow channel provided on the outside of the lance 16, more specifically, on the outer periphery of the lance 16.
  • the input unit 10 is further provided on the outer side of the second passage 12, more specifically on the outer periphery of the second passage 12, and includes a third passage 13 through which the main reaction gas for reaction as a part of the reaction gas passes. ing.
  • the third passage 13 corresponds to a gas passage.
  • the third passage 13 is provided on the outer side of the second flow passage 12 by a cylindrical portion 17 b continuously provided on the downstream side of the funnel-shaped portion 17 a whose inside is an air chamber 171.
  • the third passage 13 communicates with an air chamber 171 provided thereabove.
  • the second passage 12 and the third passage 13 are separated by the cylindrical partition wall 21.
  • the first passage 11 supplies the dispersing gas into the reaction shaft 3.
  • the second passage 12 feeds the concentrate into the reaction shaft 3.
  • the third passage 13 supplies the reaction main blowing gas from the air chamber 17 into the reaction shaft 3.
  • the fourth passage 14 supplies the reaction auxiliary gas into the reaction shaft 3.
  • a hollow conical truncated cone-shaped dispersion cone 15 is formed at the tip (lower end) of the lance 16.
  • a plurality of supply holes 152 for discharging the gas for dispersion, which has passed through the first passage 11, into the reaction shaft 3 are formed in the side lower portion 151 of the dispersion cone 15.
  • the supply holes 152 are provided such that the gas discharge direction is the normal direction of the bottom circle of the dispersion cone 15.
  • the raw material supply device 1 includes a movable vane 22 disposed so as to protrude into the third passage 13.
  • the movable vanes 22 are installed on the inner circumferential wall surface 17 b 1 of the cylindrical portion 17 b.
  • the variable vane 22 can change the angle ⁇ with respect to the direction along the direction of the axis AX of the third passage 13, via the shaft member 23 on the inner circumferential wall surface 17 b 1 of the cylindrical portion 17 b. It is attached.
  • the shaft member 23 provided with the movable vanes 22 at one end side penetrates the cylindrical portion 17 b, and a gear 24 c is provided at the other end side.
  • the gear 24 c is included in the drive portion 24 of the movable vane 22.
  • the drive unit 24 includes a motor 24 a and a gear 24 b mounted on the motor shaft.
  • the gear 24 b rotates the shaft member 23 by meshing with the gear 24 c to change the attitude of the movable vane 22.
  • the movable vanes 22 of the present embodiment have a curved shape. Therefore, the angle ⁇ is an angle formed by the tangent on the convex side surface 22 a and the line segment parallel to the axis AX and passing through the shaft member 23.
  • the length L of the cylindrical portion 17b in the present embodiment is approximately 650 mm, and the inner diameter is approximately 690 mm.
  • the length of the movable vane 22 is set to about 100 mm or less in consideration of changing the posture so as not to contact the curved inner peripheral wall surface 17b1 of the cylindrical portion 17b having such dimensions.
  • the width W of the movable vane 22 is set to be approximately 50% or more and less than 90% of the distance between the inner circumferential wall surface 17b1 of the cylindrical portion 17b and the partition wall 21.
  • the reason why the distance between the inner peripheral wall surface 17b1 and the partition wall 21 is less than about 90% is because the movable vane 22 is not in contact with the inner peripheral wall surface 17b1 or the partition wall 21 when changing the posture of the movable vane 22. It is.
  • a plurality of movable vanes 22 are provided. Although ten are provided in this embodiment, the number is not limited to this and can be changed suitably.
  • the movable vanes 22 are attached to the inner peripheral wall surface 17b1 of the cylindrical portion 17b, but it is considered that the operation may be affected by the casting attachment during operation if the movable vane 22 is too close to the lower end edge 17b2 of the cylindrical portion 17b. . Therefore, it is installed at a certain distance from the lower end edge 17b2. On the other hand, it is conceivable that the swirling flow of the reaction gas disappears if it is too far from the lower end edge 17b2. Therefore, it is desirable that the movable vane 22 be installed so that the shaft member 23 is positioned at a position of 100 mm or more and less than 300 mm from the lower end edge 17b2 of the cylindrical portion 17b having a length of about 650 mm.
  • the plurality of movable vanes 22 of the present embodiment are provided such that the distances from the lower end edge 17b2 of the cylindrical portion 17b are the same, the plurality of movable vanes 22 are changed by changing the distance from the lower end edge 17b2. May be installed.
  • the movable vanes 22 may be installed in multiple stages so that the distance from the lower end edge 17b2 is different.
  • the movable vanes 22 change the posture in accordance with the gas flow rate per unit time passing through the third passage 13. More specifically, the movable vane 22 is set to have a larger angle with respect to the direction along the axis AX of the third passage 13 as the gas flow rate per unit time passing through the third passage 13 increases.
  • the raw material is supplied into the self-melting furnace 100 through the second passage 12 provided outside the lance 16 and provided outside the second passage 12.
  • a step of supplying a reaction gas to the self-smelting furnace 100 through the third passage 13 is included.
  • the reaction gas is supplied to the self-melting furnace 100, there is a step of adjusting the attitude of the movable vanes 22 disposed so as to protrude into the third passage 13.
  • FIGS. 6A-1 and 6A-2 a state where the angle ⁇ with respect to the direction along the direction of the axis AX of the third passage 13 of the movable vane 22 is adjusted to 0 ° is shown. .
  • This is an operation mode in which the gas flow rate per unit time passing through the third passage 13 is relatively small. For example, low load operation or low S concentration raw material is used.
  • the gas flow rate per unit time passing through the third passage 13 is changed according to the operating conditions, but when the gas flow rate per unit time is small, the raw material and the reaction can be used without swirling the reaction gas. A mixed state of gas can be realized.
  • the angle ⁇ with respect to the direction along the axis AX direction of the third passage 13 of the movable vane 22 is set to 0 °.
  • FIGS. 6 (B-1) and 6 (B-2) a state in which the angle ⁇ with respect to the direction along the direction of the axis AX of the third passage 13 of the movable vane 22 is adjusted to 45 ° is shown. .
  • This is an operation mode in a state where the gas flow rate per unit time passing through the third passage 13 is larger than the state shown in FIGS. 6 (A-1) and 6 (A-2).
  • high load operation or high S concentration raw material is used.
  • a swirling component is imparted to the reaction gas passing through the third passage 13.
  • FIGS. 6C-1 and 6C-2 a state in which the angle ⁇ with respect to the direction along the direction of the axis AX of the third passage 13 of the movable vane 22 is adjusted to 60 ° is shown. .
  • This is an operation mode in a state where the gas flow rate per unit time passing through the third passage 13 is larger than the state shown in FIG. 6 (B-1) and FIG. 6 (B-2). For example, it is a case where it is a case where it is a further high load operation, or uses a further high S concentration raw material.
  • a larger swirl component is imparted to the reaction gas passing through the third passage 13.
  • the mixing of the raw material and the reaction gas in the reaction shaft 3 is promoted.
  • the swirl component is applied to the reaction gas, the swirl flow f1 of the reaction gas and the reaction frame f2 further spread so as to approach the wall portion of the reaction shaft 3.
  • the residence time of the raw material in the reaction shaft 3 is further lengthened, and a state in which the reaction is easily completed in the reaction shaft 3 is easily formed.
  • the shape of the facing surface 22b of the movable vane 22 with the inner peripheral wall surface 17b1 is the same as the inner peripheral wall surface 17b1 when the angle ⁇ with respect to the direction along the axis AX direction of the third passage 13 of the movable vane 22 is 60 °. It has a curved shape that allows close contact. Thereby, when the angle ⁇ with respect to the direction along the axis AX direction of the third passage 13 of the movable vane 22 is 60 °, the facing surface 22b is in close contact with the inner peripheral wall surface 17b1, and the movable vane 22 and the inner peripheral wall surface 17b1 The gap between and disappears. As a result, it is possible to more effectively impart the swirling component to the reaction gas. When it is desired to increase the angle ⁇ and to efficiently impart a swirl component to the reaction gas, it is effective to bring the opposing surface 22b into close contact with the inner peripheral wall surface 17b1 when setting the angle ⁇ large.
  • the angle ⁇ is set larger.
  • the reaction frame f2 may approach the wall of the reaction shaft 3 too much and damage the wall of the reaction shaft 3. Therefore, it is desirable to set a predetermined upper limit value for the angle ⁇ . Also, during operation, if the reaction frame f2 is too wide, it is possible to reduce the angle ⁇ and take measures to weaken the turning component.
  • the mixing of the raw material and the reaction gas supplied into the self-melting furnace 100 can be actively promoted to make the reaction uniform.
  • excessive heat load on the reaction shaft wall surface can be suppressed.
  • the amount of reaction gas changes with changes in the raw material conditions and the operating conditions, so the angle of the movable vanes 22 is maintained in order to maintain an appropriate reaction state for each condition. Adjust ⁇ . Further, as a response to the difference in reactivity due to the raw material composition and particle size, in the operation with a large ratio of difficultly reactive raw materials, the spread of the swirling flow is made large by adjusting the movable vane 22 to a larger angle side. Do. As a result, the residence time of the raw material in the reaction shaft 3 can be extended, and conditions in which the reaction is easily completed can be formed in the shaft.
  • the movable vanes 22 can be changed in posture according to the state of the raw material supplied to the flash smelting furnace 100 through the second passage 12. In addition, it is possible to adjust to an appropriate turning pattern so that an excessive heat load is not applied to the wall of the reaction shaft 3.
  • the angle ⁇ of the movable vane 22 is adjusted to the 0 degree side.
  • the heat load on the wall can be reduced.
  • the shape of the movable vane 22 in this embodiment is a curved shape, it may be a smooth shape.
  • the movable vane 22 is used in this embodiment, it may replace with the movable vane 22 and may employ
  • the cylindrical dividing wall 25 is installed in the third passage 13, and the third passage 13 is divided into the outer flow passage 13a and the inner flow passage 13b.
  • the movable vane 26 is installed in inner peripheral wall surface 25as of the dividing wall 25.
  • the movable vanes 26 are common to the movable vanes 22 and thus the detailed description thereof is omitted.
  • the movable vanes 26 are attached to the inner circumferential wall surface 25 a of the dividing wall 25 via the shaft member 27.
  • the shaft member 27 provided with the movable vane 26 on one end side passes through the dividing wall 25 and the cylindrical portion 17b, and a gear 28c is provided on the other end side.
  • the gear 28 c is included in the drive portion 28 of the movable vane 26.
  • the drive unit 28 includes a motor 28 a and a gear 28 b attached to the motor shaft.
  • the gear 28 b rotates with the shaft member 27 by meshing with the gear 28 c to change the attitude of the movable vane 26.
  • a driving method via a chain or the like may be employed other than the driving by the illustrated gear.
  • the movable vane when it is a form provided with the outer side flow path 13a and the inner side flow path 13b, the movable vane should just be installed in at least one of the outer side flow path 13a and the inner side flow path 13b.
  • the movable vanes 22 may be installed in the inner peripheral wall surface 17b1 of the cylindrical portion 17b as shown in FIG. 9 (B). The installation of the movable vanes 22 is the same as in the first embodiment, and thus the detailed description thereof is omitted.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Furnace Charging Or Discharging (AREA)

Abstract

This raw material supply device supplies a raw material into a flash furnace, and at least supplies into the flash furnace a reaction gas that contributes to the reaction of the raw material, and is provided with: a raw material flow path which is provided outside of a lance and which supplies the raw material into the flash furnace; a gas flow path which is provided outside of the raw material flow path and which supplies the reaction gas into the flash furnace; and a movable vane which is arranged protruding into the gas flow path.

Description

原料供給装置、自溶炉及び自溶炉の操業方法Raw material supply apparatus, flash furnace and operation method of flash furnace
 本発明は、原料供給装置、自溶炉及び自溶炉の操業方法に関する。 The present invention relates to a raw material supply apparatus, a self-smelting furnace, and a method of operating a self-smelting furnace.
 自溶炉とは、銅、ニッケル等の非鉄金属の製錬、及び、マット処理製錬に用いられる製錬炉であり、反射炉型のセットラの上にシャフトを設け、その頂部から原料と反応に供するガスを吹き込むことで原料の酸化熱を利用し、瞬時に酸化溶融を行う炉である。自溶炉において、原料と反応用ガスを炉内へ供給する装置は、自溶炉の性能を決定付ける重要な役割を担っている。この原料供給装置の性能が反応シャフト内での原料の反応効率、反応進行度を左右し、その結果、自溶炉の処理能力及びメタル採収率に影響を及ぼす。自溶炉における反応シャフト内での反応は、速やか、かつ、全ての原料が均一に同じ反応進行度で進行することが望ましい。このため、原料と反応用ガスとは、均一に混合されることが望ましい。 The flash smelting furnace is a smelting furnace used for smelting smelting of nonferrous metals such as copper and nickel, and mat processing smelting, and a shaft is provided on the setter of the reflection furnace type, and the raw material and the reaction are reacted It is a furnace that uses the oxidation heat of the raw material by blowing in the gas to be used, and performs oxidation and melting instantaneously. In the flash smelting furnace, an apparatus for supplying raw materials and reaction gases into the furnace plays an important role in determining the performance of the flash smelting furnace. The performance of the raw material supply apparatus influences the reaction efficiency and the reaction progress degree of the raw material in the reaction shaft, and as a result, affects the processing capacity and metal recovery of the flash smelting furnace. It is desirable that the reaction in the reaction shaft in the flash smelting furnace proceed promptly and uniformly with the same degree of progress of the reaction. For this reason, it is desirable that the raw material and the reaction gas be uniformly mixed.
 このような原料と反応用ガスとの混合を改善するため、原料供給装置から反応シャフト内へ供給される主送風を旋回させるものが知られている(特許文献1)。また、管状の精鉱シュートの内側に燃料バーナーを取り囲んで酸素吹込管を設け、その開口部に案内羽根を設けて旋回流を供給することが知られている(特許文献2)。 In order to improve the mixing of the raw material and the reaction gas, it is known to swirl the main air supplied from the raw material supply device into the reaction shaft (Patent Document 1). Further, it is known that an oxygen injection pipe is provided inside a tubular concentrate chute so as to surround a fuel burner, and a guide vane is provided at the opening to supply a swirl flow (Patent Document 2).
特表2010-538162号公報Japanese Patent Publication No. 2010-538162 特開昭60-248832号公報Japanese Patent Application Laid-Open No. 60-248832
 ところで、原料供給装置の直下の領域は、主送風によって、温度が低く、精鉱反応が進みにくい領域となっている。特許文献1や特許文献2は、このような原料供給装置の直下の領域に積極的に旋回流を発生させるものとはなっておらず、改良の余地があった。 By the way, the area immediately below the raw material supply device is a low temperature due to the main air flow, and is an area where the concentrate reaction is difficult to proceed. Patent Document 1 and Patent Document 2 do not actively generate a swirling flow in the region immediately below such a raw material supply device, and there is room for improvement.
 本発明は上記の課題に鑑みてなされたものであり、自溶炉内に供給された原料と反応用ガスの混合を積極的に促進し、反応を均一化することを目的としている。 The present invention has been made in view of the above problems, and an object thereof is to actively promote the mixing of the raw material and the reaction gas supplied into the self-melting furnace to make the reaction uniform.
 本発明の原料供給装置は、自溶炉内に原料を供給するとともに、少なくとも前記自溶炉内に前記原料の反応に寄与する反応用ガスを供給する原料供給装置であって、ランスの外側に設けられ、前記原料を前記自溶炉内に供給する原料流路と、前記原料流路の外側に設けられ、前記反応用ガスを前記自溶炉内に供給するガス流路と、前記ガス流路内に突出させて配置された可動ベーンと、を備える。 The raw material supply apparatus according to the present invention is a raw material supply apparatus that supplies a raw material into a self-melting furnace and at least a reaction gas that contributes to the reaction of the raw material into the self-melting furnace. A raw material flow path for supplying the raw material into the flash smelting furnace; a gas flow path provided outside the raw material flow path for supplying the reaction gas into the flash smelting furnace; And a movable vane disposed to project into the passage.
 この場合において、前記可動ベーンは、前記ガス流路を通過する単位時間当たりのガス流量に応じて姿勢を変化させるようにしてもよい。また、前記可動ベーンは、前記ガス流路を通過する単位時間当たりのガス流量が多くなるほど、前記ガス流路の軸線方向に沿う方向に対する角度が大きく設定されるようにしてもよい。さらに、前記可動ベーンは、前記原料流路を通じて前記自溶炉内へ供給される原料の状態に応じて姿勢を変化させるようにしてもよい。 In this case, the movable vane may change its posture in accordance with the gas flow rate per unit time passing through the gas flow path. The movable vane may be set to have a larger angle with respect to the direction along the axial direction of the gas flow passage as the gas flow rate per unit time passing through the gas flow passage increases. Furthermore, the movable vane may change its posture in accordance with the state of the raw material supplied into the flash smelting furnace through the raw material flow path.
 前記ガス流路は、外側流路と、内側流路とを備え、前記可動ベーンは、少なくとも、前記外側流路と前記内側流路の一方に配置された構成とすることもできる。 The gas flow passage may include an outer flow passage and an inner flow passage, and the movable vane may be disposed at least in one of the outer flow passage and the inner flow passage.
 さらに、本発明の他の原料供給装置は、自溶炉内に原料を供給するとともに、少なくとも前記自溶炉内に前記原料の反応に寄与する反応用ガスを供給する原料供給装置であって、ランスの外側に設けられ、前記原料を前記自溶炉内に供給する原料流路と、漏斗状のエアチャンバーの下流側に連設され筒状部によって前記原料流路の外側に設けられ、前記反応用ガスを前記自溶炉内に供給するガス流路と、前記ガス流路内に突出させて配置されたベーンと、を備える。この場合において、前記ベーンは、可動ベーンとしてもよい。 Furthermore, another raw material supply apparatus according to the present invention is a raw material supply apparatus that supplies a raw material into the self-melting furnace and at least supplies a reaction gas that contributes to the reaction of the raw material into the self-melting furnace. It is provided on the outer side of the lance, is connected to the raw material flow path for supplying the raw material into the self-smelting furnace, and downstream of the funnel-like air chamber, and is provided on the outer side of the raw material flow path by a cylindrical portion. A gas flow path for supplying a reaction gas into the flash smelting furnace, and a vane disposed so as to protrude into the gas flow path. In this case, the vane may be a movable vane.
 本発明の自溶炉は、本発明の原料供給装置を備えている。 The self-melting furnace of the present invention includes the raw material supply device of the present invention.
 本明細書の自溶炉の操業方法は、自溶炉内に原料を供給するとともに、少なくとも前記自溶炉内に前記原料の反応に寄与する反応用ガスを供給する自溶炉の操業方法であって、ランスの外側に設けられた原料流路を通じて前記自溶炉内に前記原料を供給しつつ、前記原料流路の外側に設けられたガス流路を通じて前記反応用ガスを前記自溶炉に供給する工程を有し、前記反応用ガスを前記自溶炉に供給するときに、前記ガス流路に突出させて配置された可動ベーンの姿勢を調整する。 The method of operating a flash smelting furnace according to the present specification is a method of operating a flash smelting furnace which supplies a raw material into the self-melting furnace and at least supplies a reaction gas contributing to the reaction of the raw material into the self-melting furnace. And supplying the raw material into the flash smelting furnace through a raw material flow path provided outside the lance, and supplying the reaction gas to the self-smelting furnace through a gas flow path provided outside the raw material flow path And supplying the reaction gas to the flash smelting furnace, adjusting the attitude of the movable vanes disposed so as to protrude into the gas flow path.
 本発明の原料供給装置及び自溶炉は、原料の物性、反応用ガスの流量に応じて、適切な旋回流を形成するように可動ベーンの姿勢を調整することで、自溶炉内に供給された原料と反応用ガスの混合を積極的に促進し、反応を均一化することができる。 The raw material supply apparatus and the self-melting furnace according to the present invention are supplied into the self-melting furnace by adjusting the attitude of the movable vanes so as to form an appropriate swirling flow according to the physical properties of the raw material and the flow rate of the reaction gas. By actively promoting the mixing of the raw material and the reaction gas, it is possible to make the reaction uniform.
図1は実施形態に係る銅製錬用の自溶炉の構成を概略的に示す図である。FIG. 1 is a view schematically showing the configuration of a flash smelting furnace for copper smelting according to the embodiment. 図2は第1実施形態の原料供給装置の一部を拡大した図である。FIG. 2: is the figure which expanded a part of raw material supply apparatus of 1st Embodiment. 図3は漏斗状部及び筒状部の断面図である。FIG. 3 is a cross-sectional view of the funnel-shaped portion and the tubular portion. 図4は可動ベーンのガス流路の軸線方向に沿う方向に対する角度を示す説明図である。FIG. 4 is an explanatory view showing an angle with respect to a direction along the axial direction of the gas passage of the movable vane. 図5は可動ベーンの駆動部を示す説明図である。FIG. 5 is an explanatory view showing a drive portion of the movable vane. 図6(A-1)及び図6(A-2)は可動ベーンのガス流路の軸線方向に沿う方向に対する角度を0°とした状態を模式的に示す説明図であり、図6(A-1)は斜視図、図6(A-2)は原料供給装置の上方から観た図である。図6(B-1)及び図6(B-2)は可動ベーンのガス流路の軸線方向に沿う方向に対する角度を45°とした状態を模式的に示す説明図であり、図6(B-1)は斜視図、図6(B-2)は原料供給装置の上方から観た図である。図6(C-1)及び図6(C-2)は可動ベーンのガス流路の軸線方向に沿う方向に対する角度を60°とした状態を模式的に示す説明図であり、図6(C-1)は斜視図、図6(C-2)は原料供給装置の上方から観た図である。6 (A-1) and 6 (A-2) are explanatory views schematically showing a state in which the angle with respect to the direction along the axial direction of the gas passage of the movable vane is 0 °, and FIG. 1-1 is a perspective view, and FIG. 6 (A- 2) is a view from above of the raw material supply device. 6 (B-1) and 6 (B-2) are explanatory views schematically showing a state in which the angle with respect to the direction along the axial direction of the gas flow path of the movable vane is 45 °, and FIG. 1-1 is a perspective view, and FIG. 6 (B- 2) is a view from above the raw material supply device. 6 (C-1) and 6 (C-2) are explanatory views schematically showing a state in which the angle with respect to the direction along the axial direction of the gas flow path of the movable vane is 60 °, and FIG. 1-1 is a perspective view, and FIG. 6 (C- 2) is a view from above of the raw material supply device. 図7(A)は反応用ガスが少ない状態における旋回流及び反応フレームの様子を模式的に示す説明図であり、図7(B)は反応用ガスが多い状態における旋回流及び反応フレームの様子を模式的に示す説明図である。FIG. 7 (A) is an explanatory view schematically showing the swirling flow and the reaction frame in a state in which the reaction gas is small, and FIG. 7 (B) is a view of the swirling flow and the reaction frame in a state in which the reaction gas is large It is explanatory drawing which shows typically. 図8(A)は第2実施形態において内側流路に可変ベーンを設けた状態を示す説明図であり、図8(B)は第2実施形態において外側流路に可変ベーンを設けた状態を示す説明図である。FIG. 8A is an explanatory view showing a state in which the variable vanes are provided in the inner flow passage in the second embodiment, and FIG. 8B is a state in which the variable vanes are provided in the outer flow passage in the second embodiment. FIG. 図9は内側流路に設けられた可変ベーンの駆動部を示す説明図である。FIG. 9 is an explanatory view showing a drive portion of a variable vane provided in the inner flow passage.
 以下、実施形態に係る自溶炉について、図1~図9に基づいて、詳細に説明する。図1は、実施形態に係る銅製錬用の自溶炉100の構成を概略的に示す図である。 Hereinafter, the flash smelting furnace according to the embodiment will be described in detail based on FIGS. 1 to 9. FIG. 1: is a figure which shows roughly the structure of the self-melting furnace 100 for copper smelting which concerns on embodiment.
(第1実施形態)
 図1に示すように、自溶炉100は、原料供給装置1と、炉体2と、を備える。原料供給装置1は、精鉱バーナーとも呼ばれ、原料である精鉱(銅精鉱(CuFeS2など))、反応用主送風ガス、反応用補助ガス、及び分散用ガス(反応にも寄与する)を炉体2内に供給する。炉体2は、精鉱と反応用ガスとが混合する反応シャフト3、セットラ4、アップテイク5を備える。なお、反応用主送風ガス及び反応用補助ガスは、酸素富化空気であり、分散用ガスは、空気または酸素富化空気である。これらの反応用ガス、および分散用ガスは、精鉱を分散し、同時に酸化させ、反応シャフト3の底部でマット及びスラグに分離する。なお、銅精鉱中の硫黄濃度は、20mass%~40mass%である。本明細書において、S濃度が高いとは、34mass%~40mass%の範囲であり、S濃度が低いとは、20mass%~25mass%の範囲である。
First Embodiment
As shown in FIG. 1, the self-melting furnace 100 includes a raw material supply device 1 and a furnace body 2. The raw material supply apparatus 1 is also called a concentrate burner, and is a raw material concentrate (copper concentrate (such as CuFeS 2 )), a reaction main blast gas, a reaction auxiliary gas, and a dispersing gas (also contributes to the reaction ) Is supplied into the furnace body 2. The furnace body 2 includes a reaction shaft 3, a setter 4, and an uptake 5 in which concentrate and reaction gas are mixed. The reaction main blowing gas and the reaction auxiliary gas are oxygen-enriched air, and the dispersing gas is air or oxygen-enriched air. The reaction gas and the dispersing gas disperse and concentrate the concentrate at the same time and separate into a mat and a slag at the bottom of the reaction shaft 3. The sulfur concentration in the copper concentrate is 20 mass% to 40 mass%. In the present specification, “high S concentration” is in the range of 34 mass% to 40 mass%, and “low S concentration” is in the range from 20 mass% to 25 mass%.
 図2は、原料供給装置1の一部を拡大した図であって、原料、反応用ガス、分散用ガスを反応シャフト3側へ投入する投入部10を示した説明図である。 FIG. 2 is an enlarged view of a part of the raw material supply apparatus 1 and an explanatory view showing the charging unit 10 for charging the raw material, the reaction gas, and the dispersing gas to the reaction shaft 3 side.
 原料供給装置1の投入部10は、ランス16を備え、ランス16内には分散用ガスの通る第1通路11、反応用ガスの一部としての反応用補助ガスが通過する第4通路14が形成されている。第4通路14は、ランス16の中心部分に設けられており、第1通路11は、第4通路14の周囲に設けられている。また、投入部10は、ランス16の外側、より具体的にランス16の外周に設けられた原料流路としての第2通路12を備えている。投入部10は、さらに、第2通路12の外側、より具体的に第2通路12の外周に設けられ、反応用ガスの一部としての反応用主送風ガスが通過する第3通路13と備えている。第3通路13は、ガス流路に相当する。第3通路13は、内側をエアチャンバー171とした漏斗状部17aの下流側に連設された筒状部17bによって第2流路12の外側に設けられている。第3通路13は、その上方に設けられたエアチャンバー171と通じている。第2通路12と、第3通路13は、円筒状の仕切り壁21により、仕切られた状態となっている。 The input unit 10 of the raw material supply apparatus 1 includes a lance 16 in which a first passage 11 through which a dispersing gas passes and a fourth passage 14 through which a reaction auxiliary gas as a part of a reaction gas passes It is formed. The fourth passage 14 is provided at the central portion of the lance 16, and the first passage 11 is provided around the fourth passage 14. Further, the input unit 10 is provided with a second passage 12 as a material flow channel provided on the outside of the lance 16, more specifically, on the outer periphery of the lance 16. The input unit 10 is further provided on the outer side of the second passage 12, more specifically on the outer periphery of the second passage 12, and includes a third passage 13 through which the main reaction gas for reaction as a part of the reaction gas passes. ing. The third passage 13 corresponds to a gas passage. The third passage 13 is provided on the outer side of the second flow passage 12 by a cylindrical portion 17 b continuously provided on the downstream side of the funnel-shaped portion 17 a whose inside is an air chamber 171. The third passage 13 communicates with an air chamber 171 provided thereabove. The second passage 12 and the third passage 13 are separated by the cylindrical partition wall 21.
 第1通路11は、分散用ガスを反応シャフト3内へ供給する。第2通路12は、精鉱を反応シャフト3内へ供給する。第3通路13は、反応用主送風ガスをエアチャンバー17から反応シャフト3内へ供給する。また、第4通路14は、反応用補助ガスを反応シャフト3内へ供給する。 The first passage 11 supplies the dispersing gas into the reaction shaft 3. The second passage 12 feeds the concentrate into the reaction shaft 3. The third passage 13 supplies the reaction main blowing gas from the air chamber 17 into the reaction shaft 3. Further, the fourth passage 14 supplies the reaction auxiliary gas into the reaction shaft 3.
 ランス16の先端部(下端部)には、中空円錐台状の分散コーン15が形成されている。分散コーン15の側面下部151には第1通路11を通過した分散用ガスを反応シャフト3内へ吐出する複数の供給孔152が形成されている。供給孔152は、ガスの吐出方向が分散コーン15の底面円の法線方向となるように設けられている。 A hollow conical truncated cone-shaped dispersion cone 15 is formed at the tip (lower end) of the lance 16. A plurality of supply holes 152 for discharging the gas for dispersion, which has passed through the first passage 11, into the reaction shaft 3 are formed in the side lower portion 151 of the dispersion cone 15. The supply holes 152 are provided such that the gas discharge direction is the normal direction of the bottom circle of the dispersion cone 15.
 原料供給装置1は、第3通路13内に突出させて配置された可動ベーン22を備える。図3を参照すると、可動ベーン22は、筒状部17bの内周壁面17b1に設置されている。図4を参照すると、可変ベーン22は、第3通路13の軸線AX方向に沿う方向に対する角度θを変化させることができるように、軸部材23を介して筒状部17bの内周壁面17b1に取り付けられている。図5を参照すると、一端側に可動ベーン22が設けられた軸部材23は、筒状部17bを貫通しており、他端側に歯車24cが設けられている。この歯車24cは、可動ベーン22の駆動部24に含まれる。駆動部24は、モータ24aと、モータ軸に装着された歯車24bを備える。歯車24bは、歯車24cと噛み合うことで、軸部材23を回転させ、可動ベーン22の姿勢を変化させる。なお、本実施形態の可動ベーン22は、湾曲形状を有する。そのため、角度θは、凸側面22aにおける接線と軸線AXと平行であり、軸部材23を通過する線分とがなす角となる。 The raw material supply device 1 includes a movable vane 22 disposed so as to protrude into the third passage 13. Referring to FIG. 3, the movable vanes 22 are installed on the inner circumferential wall surface 17 b 1 of the cylindrical portion 17 b. Referring to FIG. 4, the variable vane 22 can change the angle θ with respect to the direction along the direction of the axis AX of the third passage 13, via the shaft member 23 on the inner circumferential wall surface 17 b 1 of the cylindrical portion 17 b. It is attached. Referring to FIG. 5, the shaft member 23 provided with the movable vanes 22 at one end side penetrates the cylindrical portion 17 b, and a gear 24 c is provided at the other end side. The gear 24 c is included in the drive portion 24 of the movable vane 22. The drive unit 24 includes a motor 24 a and a gear 24 b mounted on the motor shaft. The gear 24 b rotates the shaft member 23 by meshing with the gear 24 c to change the attitude of the movable vane 22. The movable vanes 22 of the present embodiment have a curved shape. Therefore, the angle θ is an angle formed by the tangent on the convex side surface 22 a and the line segment parallel to the axis AX and passing through the shaft member 23.
 ここで、可動ベーン22の寸法の一例について説明する。本実施形態における筒状部17bの長さLは、概ね650mm程度であり、その内径は概ね690mmである。可動ベーン22は、このような寸法の筒状部17bの湾曲した内周壁面17b1に接触しないように姿勢を変化させることを考慮して、その長さは、概ね100mm以下に設定されている。また、可動ベーン22の幅Wは、筒状部17bの内周壁面17b1と仕切り壁21との間隔の概ね50%以上90%未満となるように設定されている。内周壁面17b1と仕切り壁21との間隔の概ね50%以上とするのは、第3通路13を通過する反応用ガスに適切に旋回成分を付与するためである。一方、内周壁面17b1と仕切り壁21との間隔の概ね90%未満とするのは、可動ベーン22の姿勢を変化させるときに、可動ベーン22を内周壁面17b1や仕切り壁21に接触させないためである。 Here, an example of the dimension of the movable vane 22 will be described. The length L of the cylindrical portion 17b in the present embodiment is approximately 650 mm, and the inner diameter is approximately 690 mm. The length of the movable vane 22 is set to about 100 mm or less in consideration of changing the posture so as not to contact the curved inner peripheral wall surface 17b1 of the cylindrical portion 17b having such dimensions. Further, the width W of the movable vane 22 is set to be approximately 50% or more and less than 90% of the distance between the inner circumferential wall surface 17b1 of the cylindrical portion 17b and the partition wall 21. The reason why the distance is approximately 50% or more of the distance between the inner circumferential wall surface 17b1 and the partition wall 21 is to appropriately impart a swirling component to the reaction gas passing through the third passage 13. On the other hand, the reason why the distance between the inner peripheral wall surface 17b1 and the partition wall 21 is less than about 90% is because the movable vane 22 is not in contact with the inner peripheral wall surface 17b1 or the partition wall 21 when changing the posture of the movable vane 22. It is.
 可動ベーン22は、複数設けられている。本実施形態では、10個設けられているが、その数は、これに限定されるものではなく、適宜変更することができる。 A plurality of movable vanes 22 are provided. Although ten are provided in this embodiment, the number is not limited to this and can be changed suitably.
 可動ベーン22は、筒状部17bの内周壁面17b1に装着されているが、筒状部17bの下端縁17b2に近すぎると操業中の鋳付き付着にその動作に影響が生じることが考えられる。そのため、下端縁17b2からある程度の距離離れた位置に設置されている。その一方で、下端縁17b2から離れすぎると、反応用ガスの旋回流が消失することが考えられる。そこで、可動ベーン22は、概ね650mm程度の長さの筒状部17bに対し、その下端縁17b2から100mm以上300mm未満の位置に軸部材23が位置するように設置することが望ましい。 The movable vanes 22 are attached to the inner peripheral wall surface 17b1 of the cylindrical portion 17b, but it is considered that the operation may be affected by the casting attachment during operation if the movable vane 22 is too close to the lower end edge 17b2 of the cylindrical portion 17b. . Therefore, it is installed at a certain distance from the lower end edge 17b2. On the other hand, it is conceivable that the swirling flow of the reaction gas disappears if it is too far from the lower end edge 17b2. Therefore, it is desirable that the movable vane 22 be installed so that the shaft member 23 is positioned at a position of 100 mm or more and less than 300 mm from the lower end edge 17b2 of the cylindrical portion 17b having a length of about 650 mm.
 なお、本実施形態の複数の可動ベーン22は、筒状部17bの下端縁17b2からの距離が同一となるように設けられているが、下端縁17b2からの距離を変えて複数の可動ベーン22を設置するようにしてもよい。例えば、下端縁17b2からの距離が異なるように可動ベーン22を複数段設置するようにしてもよい。 Although the plurality of movable vanes 22 of the present embodiment are provided such that the distances from the lower end edge 17b2 of the cylindrical portion 17b are the same, the plurality of movable vanes 22 are changed by changing the distance from the lower end edge 17b2. May be installed. For example, the movable vanes 22 may be installed in multiple stages so that the distance from the lower end edge 17b2 is different.
 次に、図6及び図7を参照しつつ、可動ベーン22の動作について説明する。可動ベーン22は、第3通路13を通過する単位時間当たりのガス流量に応じて姿勢を変化させる。より具体的に、可動ベーン22は、第3通路13を通過する単位時間当たりのガス流量が多くなるほど、第3通路13の軸線AX方向に沿う方向に対する角度が大きく設定される。 Next, the operation of the movable vane 22 will be described with reference to FIGS. 6 and 7. The movable vanes 22 change the posture in accordance with the gas flow rate per unit time passing through the third passage 13. More specifically, the movable vane 22 is set to have a larger angle with respect to the direction along the axis AX of the third passage 13 as the gas flow rate per unit time passing through the third passage 13 increases.
 すなわち、本実施形態の自溶炉100の操業方法は、ランス16の外側に設けられた第2通路12を通じて自溶炉100内に原料を供給しつつ、第2通路12の外側に設けられた第3通路13を通じて反応用ガスを自溶炉100に供給する工程を有する。また、反応用ガスを自溶炉100に供給するときに、第3通路13に突出させて配置された可動ベーン22の姿勢を調整する工程を有する。 That is, according to the operation method of the self-melting furnace 100 of the present embodiment, the raw material is supplied into the self-melting furnace 100 through the second passage 12 provided outside the lance 16 and provided outside the second passage 12. A step of supplying a reaction gas to the self-smelting furnace 100 through the third passage 13 is included. In addition, when the reaction gas is supplied to the self-melting furnace 100, there is a step of adjusting the attitude of the movable vanes 22 disposed so as to protrude into the third passage 13.
 図6(A-1)及び図6(A-2)を参照すると、可動ベーン22の第3通路13の軸線AX方向に沿う方向に対する角度θが0°に調整された状態が示されている。これは、第3通路13を通過する単位時間当たりのガス流量が比較的少ない状態における操業形態である。例えば、低負荷操業であったり、低S濃度原料を用いたりする場合である。第3通路13を通過する単位時間当たりのガス流量は、操業条件に応じて変更されるが、単位時間当たりのガス流量が少ない場合には、反応用ガスを旋回させることなく、原料と反応用ガスの混合状態を実現することができる。このような場合には、可動ベーン22の第3通路13の軸線AX方向に沿う方向に対する角度θを0°とする。反応用ガスに旋回成分が付与されないと、図10(A)に示すように反応用ガスの旋回流f1、反応フレームf2が広がることがない。 Referring to FIGS. 6A-1 and 6A-2, a state where the angle θ with respect to the direction along the direction of the axis AX of the third passage 13 of the movable vane 22 is adjusted to 0 ° is shown. . This is an operation mode in which the gas flow rate per unit time passing through the third passage 13 is relatively small. For example, low load operation or low S concentration raw material is used. The gas flow rate per unit time passing through the third passage 13 is changed according to the operating conditions, but when the gas flow rate per unit time is small, the raw material and the reaction can be used without swirling the reaction gas. A mixed state of gas can be realized. In such a case, the angle θ with respect to the direction along the axis AX direction of the third passage 13 of the movable vane 22 is set to 0 °. When the swirl component is not applied to the reaction gas, the swirl flow f1 of the reaction gas and the reaction frame f2 do not spread as shown in FIG. 10A.
 図6(B-1)及び図6(B-2)を参照すると、可動ベーン22の第3通路13の軸線AX方向に沿う方向に対する角度θが45°に調整された状態が示されている。これは、第3通路13を通過する単位時間当たりのガス流量が図6(A-1)及び図6(A-2)に示す状態よりも多い状態における操業形態である。例えば、高負荷操業であったり、高S濃度原料を用いたりする場合である。可動ベーン22の第3通路13の軸線AX方向に沿う方向に対する角度θが大きくなることで、第3通路13を通過する反応用ガスに旋回成分が付与される。これにより、反応シャフト3内における原料と反応用ガスとの混合が促進される。反応用ガスに旋回成分が付与されると、図10(B)に示すように反応用ガスの旋回流f1、反応フレームf2が反応シャフト3の壁部に近づくように広がる。これにより、反応シャフト3内での原料滞留時間が長くなり、反応シャフト3内で反応が完結し易い状態が形成されやすくなる。 Referring to FIGS. 6 (B-1) and 6 (B-2), a state in which the angle θ with respect to the direction along the direction of the axis AX of the third passage 13 of the movable vane 22 is adjusted to 45 ° is shown. . This is an operation mode in a state where the gas flow rate per unit time passing through the third passage 13 is larger than the state shown in FIGS. 6 (A-1) and 6 (A-2). For example, high load operation or high S concentration raw material is used. As the angle θ of the movable vane 22 with respect to the direction along the direction of the axis AX of the third passage 13 increases, a swirling component is imparted to the reaction gas passing through the third passage 13. Thereby, the mixing of the raw material and the reaction gas in the reaction shaft 3 is promoted. When the swirl component is added to the reaction gas, the swirl flow f1 of the reaction gas and the reaction frame f2 spread so as to approach the wall portion of the reaction shaft 3 as shown in FIG. 10 (B). As a result, the residence time of the raw material in the reaction shaft 3 becomes long, and a state in which the reaction is easily completed in the reaction shaft 3 is easily formed.
 図6(C-1)及び図6(C-2)を参照すると、可動ベーン22の第3通路13の軸線AX方向に沿う方向に対する角度θが60°に調整された状態が示されている。これは、第3通路13を通過する単位時間当たりのガス流量が図6(B-1)及び図6(B-2)に示す状態よりも多い状態における操業形態である。例えば、さらなる高負荷操業であったり、さらなる高S濃度原料を用いたりする場合である。可動ベーン22の第3通路13の軸線AX方向に沿う方向に対する角度θが大きくなることで、第3通路13を通過する反応用ガスにさらに大きな旋回成分が付与される。これにより、反応シャフト3内における原料と反応用ガスとの混合が促進される。反応用ガスに旋回成分が付与されると、反応用ガスの旋回流f1、反応フレームf2がさらに反応シャフト3の壁部に近づくように広がる。これにより、反応シャフト3内での原料滞留時間がさらに長くなり、反応シャフト3内で反応が完結し易い状態が形成されやすくなる。 Referring to FIGS. 6C-1 and 6C-2, a state in which the angle θ with respect to the direction along the direction of the axis AX of the third passage 13 of the movable vane 22 is adjusted to 60 ° is shown. . This is an operation mode in a state where the gas flow rate per unit time passing through the third passage 13 is larger than the state shown in FIG. 6 (B-1) and FIG. 6 (B-2). For example, it is a case where it is a further high load operation, or uses a further high S concentration raw material. As the angle θ with respect to the direction along the direction of the axis AX of the third passage 13 of the movable vane 22 increases, a larger swirl component is imparted to the reaction gas passing through the third passage 13. Thereby, the mixing of the raw material and the reaction gas in the reaction shaft 3 is promoted. When the swirl component is applied to the reaction gas, the swirl flow f1 of the reaction gas and the reaction frame f2 further spread so as to approach the wall portion of the reaction shaft 3. As a result, the residence time of the raw material in the reaction shaft 3 is further lengthened, and a state in which the reaction is easily completed in the reaction shaft 3 is easily formed.
 なお、可動ベーン22の内周壁面17b1との対向面22bの形状は、可動ベーン22の第3通路13の軸線AX方向に沿う方向に対する角度θが60°となったときに内周壁面17b1と密着することができる湾曲形状となっている。これにより、可動ベーン22の第3通路13の軸線AX方向に沿う方向に対する角度θが60°となったときに、対向面22bが内周壁面17b1に密着し、可動ベーン22と内周壁面17b1との間の隙間が消滅する。この結果、より効果的に反応用ガスに旋回成分を付与することができる。角度θを大きくしたいときは、反応用ガスに効率よく旋回成分を付与したいときであるため、角度θを大きく設定するときに対向面22bを内周壁面17b1に密着させることは効果的である。 The shape of the facing surface 22b of the movable vane 22 with the inner peripheral wall surface 17b1 is the same as the inner peripheral wall surface 17b1 when the angle θ with respect to the direction along the axis AX direction of the third passage 13 of the movable vane 22 is 60 °. It has a curved shape that allows close contact. Thereby, when the angle θ with respect to the direction along the axis AX direction of the third passage 13 of the movable vane 22 is 60 °, the facing surface 22b is in close contact with the inner peripheral wall surface 17b1, and the movable vane 22 and the inner peripheral wall surface 17b1 The gap between and disappears. As a result, it is possible to more effectively impart the swirling component to the reaction gas. When it is desired to increase the angle θ and to efficiently impart a swirl component to the reaction gas, it is effective to bring the opposing surface 22b into close contact with the inner peripheral wall surface 17b1 when setting the angle θ large.
 本実施形態では、第3通路13を通過する単位時間当たりのガス流量が多くなるほど、角度θを大きく設定する。ただし、角度θを大きく設定し過ぎると、反応フレームf2が反応シャフト3の壁部に近づき過ぎ、反応シャフト3の壁部を損傷する可能性がある。そこで、角度θには、所定の上限値を設けておくことが望ましい。また、操業時において、反応フレームf2が広がり過ぎることがあれば、角度θを小さくし、旋回成分を弱める措置を取ることもできる。 In the present embodiment, as the gas flow rate per unit time passing through the third passage 13 increases, the angle θ is set larger. However, if the angle θ is set too large, the reaction frame f2 may approach the wall of the reaction shaft 3 too much and damage the wall of the reaction shaft 3. Therefore, it is desirable to set a predetermined upper limit value for the angle θ. Also, during operation, if the reaction frame f2 is too wide, it is possible to reduce the angle θ and take measures to weaken the turning component.
 本実施形態の原料供給装置1によれば、自溶炉100内に供給された原料と反応用ガスの混合を積極的に促進し、反応を均一化することができる。また、反応シャフト壁面への過剰な熱負荷を抑制することができる。 According to the raw material supply apparatus 1 of the present embodiment, the mixing of the raw material and the reaction gas supplied into the self-melting furnace 100 can be actively promoted to make the reaction uniform. In addition, excessive heat load on the reaction shaft wall surface can be suppressed.
 本実施形態の原料供給装置1によれば、原料条件、操業条件の変更に伴い、反応用ガスの量が変化するため、条件ごとに、適正な反応状態を維持するために可動ベーン22の角度θを調整する。また、原料組成、粒度に起因する反応性の差異への対応として、難反応性原料比率が多い操業では、可動ベーン22の角度θを大きくする側へ調整することで、旋回流の広がりを大きくする。これにより、反応シャフト3内での原料滞留時間を長くし、シャフト内で反応が完結しやすい条件を形成することができる。すなわち、可動ベーン22は、第2通路12を通じて自溶炉100へ供給される原料の状態に応じて姿勢を変化させる態様とすることができる。また、反応シャフト3の壁部へ過度の熱負荷が加わらないように、適切な旋回パターンへの調整することができる。 According to the raw material supply apparatus 1 of the present embodiment, the amount of reaction gas changes with changes in the raw material conditions and the operating conditions, so the angle of the movable vanes 22 is maintained in order to maintain an appropriate reaction state for each condition. Adjust θ. Further, as a response to the difference in reactivity due to the raw material composition and particle size, in the operation with a large ratio of difficultly reactive raw materials, the spread of the swirling flow is made large by adjusting the movable vane 22 to a larger angle side. Do. As a result, the residence time of the raw material in the reaction shaft 3 can be extended, and conditions in which the reaction is easily completed can be formed in the shaft. That is, the movable vanes 22 can be changed in posture according to the state of the raw material supplied to the flash smelting furnace 100 through the second passage 12. In addition, it is possible to adjust to an appropriate turning pattern so that an excessive heat load is not applied to the wall of the reaction shaft 3.
 例えば、反応シャフト3の壁部への熱負荷が高すぎたり、局所的に高い箇所が存在したりする場合は、可動ベーン22の角度θを0度側へ調整することで、反応シャフト3の壁部への熱負荷を低減することができる。 For example, if the heat load on the wall of the reaction shaft 3 is too high, or if there is a high point locally, the angle θ of the movable vane 22 is adjusted to the 0 degree side. The heat load on the wall can be reduced.
 なお、本実施形態における可動ベーン22の形状は、湾曲形状であるが、平滑形状であってもよい。また、本実施形態では、可動ベーン22を用いているが、可動ベーン22に代えて、その姿勢を変化させることがない固定ベーンを採用してもよい。 In addition, although the shape of the movable vane 22 in this embodiment is a curved shape, it may be a smooth shape. Moreover, although the movable vane 22 is used in this embodiment, it may replace with the movable vane 22 and may employ | adopt the fixed vane which does not change the attitude | position.
(第2実施形態)
 つぎに、図8、図9を参照して第2実施形態について説明する。第2実施形態では、第3通路13内に円筒状の分割壁25が設置されており、第3通路13が外側流路13aと内側流路13bとに分割されている。そして、図8(A)に示すように、分割壁25の内周壁面25asに可動ベーン26が設置されている。可動ベーン26は、可動ベーン22と共通であるため、その詳細な説明は省略する。
Second Embodiment
Next, a second embodiment will be described with reference to FIGS. 8 and 9. In the second embodiment, the cylindrical dividing wall 25 is installed in the third passage 13, and the third passage 13 is divided into the outer flow passage 13a and the inner flow passage 13b. And as shown to FIG. 8 (A), the movable vane 26 is installed in inner peripheral wall surface 25as of the dividing wall 25. As shown in FIG. The movable vanes 26 are common to the movable vanes 22 and thus the detailed description thereof is omitted.
 図9を参照すると、可動ベーン26は、軸部材27を介して分割壁25の内周壁面25aに取り付けられている。一端側に可動ベーン26が設けられた軸部材27は、分割壁25及び筒状部17bを貫通しており、他端側に歯車28cが設けられている。この歯車28cは、可動ベーン26の駆動部28に含まれる。駆動部28は、モータ28aと、モータ軸に装着された歯車28bを備える。歯車28bは、歯車28cと噛み合うことで、軸部材27を回転させ、可動ベーン26の姿勢を変化させる。図示した歯車による駆動以外に、チェーン等を介した駆動方法を採用することもできる。 Referring to FIG. 9, the movable vanes 26 are attached to the inner circumferential wall surface 25 a of the dividing wall 25 via the shaft member 27. The shaft member 27 provided with the movable vane 26 on one end side passes through the dividing wall 25 and the cylindrical portion 17b, and a gear 28c is provided on the other end side. The gear 28 c is included in the drive portion 28 of the movable vane 26. The drive unit 28 includes a motor 28 a and a gear 28 b attached to the motor shaft. The gear 28 b rotates with the shaft member 27 by meshing with the gear 28 c to change the attitude of the movable vane 26. A driving method via a chain or the like may be employed other than the driving by the illustrated gear.
 なお、外側流路13aと内側流路13bを備える形態である場合、可動ベーンは、外側流路13aと内側流路13bの少なくとも一方に設置されていればよい。外側流路13aに可動ベーン22を設置する場合は、図9(B)に示すように筒状部17bの内周壁面17b1に可動ベーン22を設置すればよい。可動ベーン22の設置は、第1実施形態の場合と共通であるため、その詳細な説明は省略する。 In addition, when it is a form provided with the outer side flow path 13a and the inner side flow path 13b, the movable vane should just be installed in at least one of the outer side flow path 13a and the inner side flow path 13b. In the case where the movable vanes 22 are installed in the outer flow passage 13a, the movable vanes 22 may be installed in the inner peripheral wall surface 17b1 of the cylindrical portion 17b as shown in FIG. 9 (B). The installation of the movable vanes 22 is the same as in the first embodiment, and thus the detailed description thereof is omitted.
 このような第2実施形態であっても、第1実施形態と同様に、自溶炉100内に供給された原料と反応用ガスの混合を積極的に促進し、反応を均一化することができる。 Even in such a second embodiment, similarly to the first embodiment, the mixing of the raw material and reaction gas supplied into the self-melting furnace 100 is actively promoted to make the reaction uniform. it can.
 上述した実施形態は本発明の好適な実施の例である。但し、これに限定されるものではなく、本発明の要旨を逸脱しない範囲内において種々変形実施可能である。 The embodiments described above are examples of preferred implementations of the invention. However, the present invention is not limited to this, and various modifications can be made without departing from the scope of the present invention.
 1 原料供給装置
 2 炉体
 3 反応シャフト
 10 投入部
 11 第1通路
 12 第2通路
 13 第3通路
 14 第4通路
 14a 下端部
 16 ランス
 17a 漏斗状部
 17b 筒状部
 17b1 内周壁面
 22、26 可動ベーン
 25 分割壁
 25a 内周壁面
 100 自溶炉
DESCRIPTION OF SYMBOLS 1 Raw material supply apparatus 2 Furnace body 3 Reaction shaft 10 Input part 11 1st passage 12 2nd passage 13 3rd passage 14 4th passage 14a Lower end part 16 Lance 17a Funnel-like part 17b Tubular part 17b1 Inner peripheral wall surface 22, 26 Movable Vane 25 divided wall 25a inner peripheral wall surface 100 self-melting furnace

Claims (9)

  1.  自溶炉内に原料を供給するとともに、少なくとも前記自溶炉内に前記原料の反応に寄与する反応用ガスを供給する原料供給装置であって、
     ランスの外側に設けられ、前記原料を前記自溶炉内に供給する原料流路と、
     前記原料流路の外側に設けられ、前記反応用ガスを前記自溶炉内に供給するガス流路と、
     前記ガス流路内に突出させて配置された可動ベーンと、
    を備えた原料供給装置。
    A raw material supply apparatus for supplying a raw material into a self-melting furnace and at least supplying a reaction gas that contributes to the reaction of the raw material into the self-melting furnace,
    A raw material flow path provided outside the lance and supplying the raw material into the flash smelting furnace;
    A gas flow path provided outside the raw material flow path, for supplying the reaction gas into the self-melting furnace;
    Movable vanes arranged to project into the gas flow path,
    Raw material supply device equipped with
  2.  前記可動ベーンは、前記ガス流路を通過する単位時間当たりのガス流量に応じて姿勢を変化させる請求項1に記載の原料供給装置。 The raw material supply device according to claim 1, wherein the movable vane changes an attitude according to a gas flow rate per unit time passing through the gas flow path.
  3.  前記可動ベーンは、前記ガス流路を通過する単位時間当たりのガス流量が多くなるほど、前記ガス流路の軸線方向に沿う方向に対する角度が大きく設定される請求項1又は2に記載の原料供給装置。 The raw material supply apparatus according to claim 1 or 2, wherein the movable vane is set to have a larger angle with respect to the direction along the axial direction of the gas flow passage as the gas flow rate per unit time passing through the gas flow passage increases. .
  4.  前記可動ベーンは、前記原料流路を通じて前記自溶炉内へ供給される原料の状態に応じて姿勢を変化させる請求項1乃至3のいずれか一項に記載の原料供給装置。 The raw material supply apparatus according to any one of claims 1 to 3, wherein the movable vane changes the posture in accordance with the state of the raw material supplied into the flash smelting furnace through the raw material flow path.
  5.  前記ガス流路は、外側流路と、内側流路とを備え、前記可動ベーンは、少なくとも、前記外側流路と前記内側流路の一方に配置された請求項1乃至4のいずれか一項に記載の原料供給装置。 The gas flow path includes an outer flow path and an inner flow path, and the movable vane is at least disposed in one of the outer flow path and the inner flow path. The raw material supply apparatus as described in.
  6.  自溶炉内に原料を供給するとともに、少なくとも前記自溶炉内に前記原料の反応に寄与する反応用ガスを供給する原料供給装置であって、
     ランスの外側に設けられ、前記原料を前記自溶炉内に供給する原料流路と、
     漏斗状のエアチャンバーの下流側に連設され筒状部によって前記原料流路の外側に設けられ、前記反応用ガスを前記自溶炉内に供給するガス流路と、
     前記ガス流路内に突出させて配置されたベーンと、
    を備えた原料供給装置。
    A raw material supply apparatus for supplying a raw material into a self-melting furnace and at least supplying a reaction gas that contributes to the reaction of the raw material into the self-melting furnace,
    A raw material flow path provided outside the lance and supplying the raw material into the flash smelting furnace;
    A gas passage provided continuously on the downstream side of a funnel-shaped air chamber and provided outside the raw material passage by a cylindrical portion, and supplying the reaction gas into the self-melting furnace;
    A vane disposed so as to protrude into the gas flow path,
    Raw material supply device equipped with
  7.  前記ベーンは、可動ベーンである請求項6に記載の原料供給装置。 The said vane is a movable vane, The raw material supply apparatus of Claim 6.
  8.  請求項1~7のいずれか一項に記載の原料供給装置を備える自溶炉。 A self-melting furnace provided with the raw material supply apparatus according to any one of claims 1 to 7.
  9.  自溶炉内に原料を供給するとともに、少なくとも前記自溶炉内に前記原料の反応に寄与する反応用ガスを供給する自溶炉の操業方法であって、
     ランスの外側に設けられた原料流路を通じて前記自溶炉内に前記原料を供給しつつ、前記原料流路の外側に設けられたガス流路を通じて前記反応用ガスを前記自溶炉に供給する工程を有し、
     前記反応用ガスを前記自溶炉に供給するときに、前記ガス流路に突出させて配置された可動ベーンの姿勢を調整する自溶炉の操業方法。
    A method of operating a flash melting furnace, comprising: supplying a raw material into the flash smelting furnace and supplying at least a reaction gas contributing to the reaction of the raw material into the flash smelting furnace,
    The reaction gas is supplied to the self-melting furnace through the gas flow path provided outside the raw material flow path while the raw material is supplied into the self-melting furnace through the raw material flow path provided outside the lance. Have a process,
    A method of operating a flash melting furnace, wherein the attitude of a movable vane arranged to be protruded from the gas flow path is adjusted when the reaction gas is supplied to the flash melting furnace.
PCT/JP2019/000522 2018-01-12 2019-01-10 Raw material supply device, flash furnace, and operation method of flash furnace WO2019139078A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201980006728.6A CN111512108B (en) 2018-01-12 2019-01-10 Raw material supply device, flash smelting furnace and operation method of flash smelting furnace
JP2019564736A JPWO2019139078A1 (en) 2018-01-12 2019-01-10 Raw material supply equipment, flash smelting furnace and operation method of flash smelting furnace

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-003859 2018-01-12
JP2018003859 2018-01-12

Publications (1)

Publication Number Publication Date
WO2019139078A1 true WO2019139078A1 (en) 2019-07-18

Family

ID=67218686

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/000522 WO2019139078A1 (en) 2018-01-12 2019-01-10 Raw material supply device, flash furnace, and operation method of flash furnace

Country Status (3)

Country Link
JP (1) JPWO2019139078A1 (en)
CN (1) CN111512108B (en)
WO (1) WO2019139078A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013540251A (en) * 2010-06-29 2013-10-31 オウトテック オサケイティオ ユルキネン Flotation furnace and concentrate burner
US20150061201A1 (en) * 2012-04-05 2015-03-05 Hatch Ltd. Fluidic control burner for pulverous feed
CN105154686A (en) * 2015-10-05 2015-12-16 杨伟燕 Suspension smelting method and suspension smelting nozzle

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3746700B2 (en) * 2001-10-22 2006-02-15 日鉱金属株式会社 Control method of concentrate burner
CN203571785U (en) * 2013-09-18 2014-04-30 江苏焱鑫科技股份有限公司 Cyclone with variable resistance drop

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013540251A (en) * 2010-06-29 2013-10-31 オウトテック オサケイティオ ユルキネン Flotation furnace and concentrate burner
US20150061201A1 (en) * 2012-04-05 2015-03-05 Hatch Ltd. Fluidic control burner for pulverous feed
CN105154686A (en) * 2015-10-05 2015-12-16 杨伟燕 Suspension smelting method and suspension smelting nozzle

Also Published As

Publication number Publication date
CN111512108A (en) 2020-08-07
JPWO2019139078A1 (en) 2021-01-14
CN111512108B (en) 2022-04-19

Similar Documents

Publication Publication Date Title
US7258831B2 (en) Injector-burner for metal melting furnaces
JP5208898B2 (en) Operation method and raw material supply device of flash smelting furnace
CA2795002C (en) Ultrasonic nozzle for use in metallurgical installations and method for dimensioning an ultrasonic nozzle
CA2794247C (en) Device for injecting gas into a metallurgical vessel
EP2812633A2 (en) Rapid energy release burners and methods for using the same
US8017068B2 (en) Inducing swirl in a gas flow
WO2019139078A1 (en) Raw material supply device, flash furnace, and operation method of flash furnace
KR101267736B1 (en) pulverized coal injection lance for blast furnace and method for operating blast furnace using it
CN103851640A (en) Method and equipment for treating process gas
JP6918985B2 (en) Raw material supply equipment, flash smelting furnace and operation method of flash smelting furnace
CN104567431A (en) Cyclone concentrate spray nozzle
US20120067983A1 (en) Use of an altitude-compensating nozzle
JP6037452B2 (en) Rotary kiln, rotary kiln burner, and rotary kiln operating method
WO2021106884A1 (en) Concentrate burner, flash furnace, and method for introducing reaction gas
CN108351101B (en) Burner and fine solid feedway for burner
EP1942200A2 (en) Apparatus for injecting gas into a vessel
CN105793648B (en) Circumferential atomizer burner
JP6800796B2 (en) Raw material supply equipment, flash smelting furnace, nozzle members
GB1569813A (en) Nozzle assembly
JP4427469B2 (en) Blast furnace pulverized coal injection burner and pulverized coal injection method using the same
JPH1038216A (en) Pulverized coal burner
JP5387619B2 (en) Nozzle and method for refining molten metal under reduced pressure
JP6216595B2 (en) Raw material supply device, flash smelting furnace and method of operating flash smelting furnace
EP2649207A1 (en) Method for feeding hot gas to a shaft furnace
JP2018040561A (en) Operation method of flash furnace

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19738584

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019564736

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19738584

Country of ref document: EP

Kind code of ref document: A1