JP4427469B2 - Blast furnace pulverized coal injection burner and pulverized coal injection method using the same - Google Patents

Blast furnace pulverized coal injection burner and pulverized coal injection method using the same Download PDF

Info

Publication number
JP4427469B2
JP4427469B2 JP2005059129A JP2005059129A JP4427469B2 JP 4427469 B2 JP4427469 B2 JP 4427469B2 JP 2005059129 A JP2005059129 A JP 2005059129A JP 2005059129 A JP2005059129 A JP 2005059129A JP 4427469 B2 JP4427469 B2 JP 4427469B2
Authority
JP
Japan
Prior art keywords
pulverized coal
blast furnace
burner
pipe
sectional area
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005059129A
Other languages
Japanese (ja)
Other versions
JP2006241526A (en
Inventor
誠 磯部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2005059129A priority Critical patent/JP4427469B2/en
Publication of JP2006241526A publication Critical patent/JP2006241526A/en
Application granted granted Critical
Publication of JP4427469B2 publication Critical patent/JP4427469B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、高炉内に微粉炭を吹込む微粉炭吹込み用バーナー及びこれを用いた微粉炭吹込み方法に関する。 The present invention relates to a pulverized coal blowing burner for blowing pulverized coal into a blast furnace and a pulverized coal blowing method using the burner.

従来、高炉の主要燃料としては、石炭を乾留して製造されるコークスが使用されているが、コークスは価格が高いため、コークスの代替として微粉炭を羽口から吹込んでいる。高炉への微粉炭の吹込みは、一般的に、羽口の内側(上流側)に配設した微粉炭吹込み用バーナーを使用して行っている。
この微粉炭吹込み用バーナーとしては、外管の内側に内管を配置した二重管構造となったものが使用されており、内管から微粉炭及び搬送ガスを噴出させると共に、外管から酸素又は酸素富化空気を噴出させることによって、高炉内への微粉炭の吹込みを行っている。なお、このとき、バーナーの先端から噴出した微粉炭は、バーナー先端部において、羽口から供給される高温送風ガスと接し、その熱により昇温されて燃焼する。
Conventionally, coke produced by dry distillation of coal has been used as the main fuel for blast furnaces. However, because coke is expensive, pulverized coal is blown from the tuyere as an alternative to coke. The pulverized coal is generally blown into the blast furnace using a pulverized coal blowing burner disposed inside (upstream) the tuyere.
As the burner for injecting pulverized coal, a burner having a double tube structure in which an inner tube is arranged inside the outer tube is used, and pulverized coal and carrier gas are ejected from the inner tube, and from the outer tube By blowing out oxygen or oxygen-enriched air, pulverized coal is blown into the blast furnace. At this time, the pulverized coal ejected from the tip of the burner comes into contact with the high-temperature blast gas supplied from the tuyere at the tip of the burner, and is heated by the heat to burn.

上記した微粉炭吹込み用バーナーを使用することにより、高炉内へ微粉炭を吹込むことができるが、微粉炭の燃焼効率を更に向上させるため、種々の微粉炭吹込み用バーナーが提案されている。
例えば、特許文献1には、中心部に配置される微粉炭の噴出口を、複数個の酸素ガスの噴出口によって取り囲み、これら各酸素ガスの噴出口の少なくとも先端部の軸線が、微粉炭吹込みバーナーの前方で、微粉炭の噴出口の軸線と交差するように構成した微粉炭吹込みバーナーが開示されている。
また、特許文献2には、微粉炭吹込みバーナーの微粉炭の噴出口部断面の導水口径を、その開口断面と同じ断面積を有する円の直径よりも10%以上小さくして、微粉炭の吹込み速度を上昇させる微粉炭吹込みバーナーが開示されている。
いずれの微粉炭吹込み用バーナーも、酸素又は酸素富化空気と微粉炭との接触面積の拡大を図って、微粉炭の燃焼性を高めようとするものであるため、微粉炭の燃焼温度が最も高い位置、いわゆる燃焼焦点位置が炉壁側に位置している。
By using the pulverized coal blowing burner described above, pulverized coal can be blown into the blast furnace, but in order to further improve the combustion efficiency of pulverized coal, various pulverized coal blowing burners have been proposed. Yes.
For example, in Patent Document 1, a pulverized coal outlet disposed in the center is surrounded by a plurality of oxygen gas outlets, and an axis of at least the tip of each of the oxygen gas outlets is provided with a pulverized coal outlet. A pulverized coal blowing burner configured to intersect the axis of the pulverized coal jet outlet in front of the burner is disclosed.
Further, in Patent Document 2, the diameter of the water inlet of the pulverized coal injection port of the pulverized coal blowing burner is made 10% or more smaller than the diameter of a circle having the same cross-sectional area as the opening cross section, and A pulverized coal blowing burner that increases the blowing speed is disclosed.
Any pulverized coal injecting burner is intended to increase the contact area between oxygen or oxygen-enriched air and pulverized coal to increase the flammability of the pulverized coal. The highest position, the so-called combustion focal position, is located on the furnace wall side.

特開平1−92304号公報(第1図)JP-A-1-92304 (FIG. 1) 特開平10−237514号公報(図1)JP-A-10-237514 (FIG. 1)

しかしながら、高炉操業を安定に行うためには、微粉炭の燃焼焦点位置を高炉の炉芯側へ移動させることが有効であるため、前記従来の微粉炭吹込み用バーナーには、未だ解決すべき以下のような問題があった。
特許文献1に開示された微粉炭吹込み用バーナーは、微粉炭に比べて酸素の吐出速度が遅く、その結果着火位置が羽口近傍に接近してしまい、羽口自体の温度上昇を招き、微粉炭の燃焼効率が低下するという問題があった。ここで、酸素の吐出速度を上昇させ、微粉炭の着火位置を炉芯側へ移動させることも考えられるが、このとき、噴出口付近で酸素の偏流が生じてしまい、微粉炭の燃焼焦点位置が変動する問題があった。
また、特許文献2に開示された微粉炭吹込み用バーナーにおいては、口径を小さくして微粉炭吹込み速度を上昇させているため、微粉炭の燃焼焦点位置を炉芯側へ移動させることが可能である。しかし、口径が小さ過ぎるため、微粉炭吹込み用バーナーの長時間の使用によって、微粉炭が導水口付近で詰まる現象が発生し、微粉炭の燃焼焦点位置が変動する問題があった。
However, in order to stably operate the blast furnace, it is effective to move the combustion focal position of the pulverized coal to the core side of the blast furnace, so the conventional pulverized coal blowing burner should still be solved. There were the following problems.
The pulverized coal injecting burner disclosed in Patent Document 1 has a slower oxygen discharge rate than pulverized coal, and as a result, the ignition position approaches the tuyere, causing the tuyere itself to rise in temperature, There was a problem that the combustion efficiency of pulverized coal decreased. Here, it is conceivable to increase the oxygen discharge rate and move the pulverized coal ignition position to the furnace core side, but at this time, oxygen drift occurs near the jet outlet, and the pulverized coal combustion focal position There was a problem that fluctuated.
Moreover, in the pulverized coal injection burner disclosed in Patent Document 2, since the caliber coal injection speed is increased by reducing the diameter, the combustion focal position of the pulverized coal can be moved to the furnace core side. Is possible. However, since the diameter is too small, there is a problem that the pulverized coal is clogged in the vicinity of the water inlet by using the pulverized coal blowing burner for a long time, and the combustion focal position of the pulverized coal fluctuates.

本発明はかかる事情に鑑みてなされたもので、微粉炭の燃焼焦点位置を高炉の炉芯側へ移動させると共に、この燃焼焦点位置の変動を抑制し、安定した高炉操業を可能にする高炉微粉炭吹込み用バーナー及びこれを用いた微粉炭吹込み方法を提供することを目的とする。 The present invention has been made in view of such circumstances, and while moving the combustion focal position of pulverized coal to the core side of the blast furnace, the fluctuation of the combustion focal position is suppressed, and stable blast furnace operation enabling stable blast furnace operation. An object of the present invention is to provide a burner for charcoal injection and a pulverized coal injection method using the burner.

前記目的に沿う第1の発明に係る高炉微粉炭吹込み用バーナーは、高炉内に微粉炭の燃焼用ガスを噴出する外管と、該外管の内側であって該外管と軸心を同一にして配置され、前記高炉内に前記微粉炭を噴出する内管とで構成される二重管構造となったバーナー本体を有する高炉の微粉炭吹込み用バーナーにおいて、
前記バーナー本体の先側には、該バーナー本体の噴出方向に向かってテーパー状に縮幅する絞り部と、該絞り部の先側に該絞り部に連通する直胴部とが順次設けられ、しかも該直胴部の長さが、該直胴部の前記内管の最大内幅の8倍以上20倍以下である。
ここで、内管と外管の断面形状は、共に円形となっていることが好ましいが、例えば、楕円形又は矩形(正方形又は長方形)としてもよい。なお、内管の断面形状は、外管の形状を同心で縮小した形状(略相似)とすることが好ましいが、異なる形状にしてもよい。
また、バーナー本体に形成される絞り部は、外管の形状によって決定されるため、この場合、内管も外管と実質的に同じ形状とすることが好ましいが、内管を外管と異なる形状とし、内管のみをその全体に渡って直管にすることもできる。
A burner for blowing blast furnace pulverized coal according to the first invention that meets the above-mentioned object comprises an outer pipe for injecting a combustion gas of pulverized coal into a blast furnace, an inner side of the outer pipe, and an axis of the outer pipe. In the blast furnace pulverized coal injecting burner having a burner body that is arranged in the same manner and has a double tube structure composed of an inner pipe for injecting the pulverized coal into the blast furnace,
On the front side of the burner body, a throttle part that is tapered in the direction of ejection of the burner body, and a straight body part that communicates with the throttle part on the front side of the throttle part are sequentially provided, Moreover, the length of the straight body portion is not less than 8 times and not more than 20 times the maximum inner width of the inner tube of the straight body portion.
Here, the cross-sectional shapes of the inner tube and the outer tube are both preferably circular, but may be, for example, elliptical or rectangular (square or rectangular). The cross-sectional shape of the inner tube is preferably a shape (substantially similar) obtained by concentrically reducing the shape of the outer tube, but may be a different shape.
Further, since the throttle portion formed in the burner body is determined by the shape of the outer tube, in this case, it is preferable that the inner tube has substantially the same shape as the outer tube, but the inner tube is different from the outer tube. It is also possible to have a shape and make only the inner pipe a straight pipe over the whole.

第1の発明に係る高炉微粉炭吹込み用バーナーにおいて、前記バーナー本体の基側の前記内管の内側断面積S1は、前記直胴部の前記内管の内側断面積S2の2倍以上9倍以下であることが好ましい。 In the blast furnace pulverized coal blowing burner according to the first invention, the inner cross-sectional area S1 of the inner tube on the base side of the burner body is not less than twice the inner cross-sectional area S2 of the inner tube of the straight body portion. It is preferable that it is less than 2 times.

そして、第1の発明に係る高炉微粉炭吹込み用バーナーにおいて、前記直胴部の前記内管の内側断面積S2は、該直胴部の前記外管の内側断面積S3の0.1倍以上0.55倍以下であることが好ましい。 In the blast furnace pulverized coal blowing burner according to the first invention, the inner cross-sectional area S2 of the inner tube of the straight body portion is 0.1 times the inner cross-sectional area S3 of the outer tube of the straight body portion. It is preferably 0.55 times or less.

前記目的に沿う第2の発明に係る高炉微粉炭吹込み用バーナーを用いた微粉炭吹込み方法は、第1の発明に係る高炉微粉炭吹込み用バーナーを使用して、前記高炉内に前記微粉炭を吹込む方法であって、前記燃焼用ガスを前記外管から前記高炉内へ噴出する吐出速度V1は、前記微粉炭を前記内管から前記高炉内へ噴出する吐出速度V2の0.8倍以上1.2倍以下である。 The pulverized coal blowing method using the blast furnace pulverized coal blowing burner according to the second invention according to the second object uses the blast furnace pulverized coal blowing burner according to the first invention, and A discharge speed V1 for injecting pulverized coal from the outer pipe into the blast furnace is a discharge speed V2 for discharging the pulverized coal from the inner pipe into the blast furnace. It is 8 times or more and 1.2 times or less.

請求項1〜3記載の高炉微粉炭吹込み用バーナーは、バーナー本体の先側に、バーナー本体の噴出方向に向かってテーパー状に縮幅する絞り部を有するので、バーナー本体に供給される燃焼用ガス及び微粉炭を、バーナー本体内で滞留させることなく、各流速を上昇させながら直胴部へ供給できる。そして、絞り部には、長さが規定された直胴部が連通されているので、絞り部で加速された燃焼用ガス及び微粉炭の流れを直胴部で整流した後、高炉内へ噴出することが可能になる。
これにより、微粉炭の燃焼焦点位置を高炉の炉芯側へ移動させるために、燃焼用ガスの吐出速度を上昇させても、その流れに偏流を生じさせないようにすることができ、しかも微粉炭自体も、例えばバーナー本体内での付着による詰まりを生じさせないように高炉内へ安定に吐出できる。従って、微粉炭の燃焼焦点位置を高炉の炉芯側へ移動させると共に、燃焼焦点位置の変動を抑制し、安定した高炉操業が可能になる。
The blast furnace pulverized coal blowing burner according to any one of claims 1 to 3 has a constricted portion tapered in a taper direction toward the ejection direction of the burner body on the front side of the burner body, so that the combustion supplied to the burner body The working gas and pulverized coal can be supplied to the straight body portion while increasing the respective flow rates without staying in the burner body. The throttle section communicates with the straight body section of which the length is regulated, so that the flow of combustion gas and pulverized coal accelerated by the throttle section is rectified in the straight body section and then injected into the blast furnace. It becomes possible to do.
As a result, in order to move the combustion focal position of the pulverized coal to the core side of the blast furnace, even if the discharge speed of the combustion gas is increased, it is possible to prevent the flow of drift, and the pulverized coal. As such, it can be stably discharged into the blast furnace so as not to cause clogging due to adhesion in the burner body, for example. Therefore, the combustion focal position of the pulverized coal is moved to the core side of the blast furnace, and the fluctuation of the combustion focal position is suppressed, thereby enabling stable blast furnace operation.

請求項4記載の高炉微粉炭吹込み用バーナーを用いた微粉炭吹込み方法は、燃焼用ガスを噴出する吐出速度V1と、微粉炭を噴出する吐出速度V2との関係を規定するので、吐出速度V1、V2を上昇させて、微粉炭の燃焼焦点位置を高炉の炉芯側へ移動させる場合においても、燃焼焦点位置の変動を抑制し、安定した高炉操業が可能になる。 The pulverized coal injection method using the blast furnace pulverized coal injection burner according to claim 4 defines the relationship between the discharge speed V1 for injecting combustion gas and the discharge speed V2 for injecting pulverized coal. Even when the speeds V1 and V2 are increased and the combustion focal position of the pulverized coal is moved to the core side of the blast furnace, fluctuations in the combustion focal position are suppressed, and stable blast furnace operation becomes possible.

続いて、添付した図面を参照しつつ、本発明を具体化した実施の形態につき説明し、本発明の理解に供する。
ここで、図1(A)〜(C)はそれぞれ本発明の一実施の形態に係る高炉微粉炭吹込み用バーナーの側断面図、同高炉微粉炭吹込み用バーナーの基側部の正断面図、同高炉微粉炭吹込み用バーナーの直胴部の正断面図、図2(A)、(B)はそれぞれ同高炉微粉炭吹込み用バーナーを使用する高炉の側断面図、羽口近傍の説明図、図3は高炉微粉炭吹込み用バーナーの直胴部長さと内管内径比との関係を示すグラフ、図4は高炉微粉炭吹込み用バーナーの基側部の内管の内側断面積と直胴部の内管の内側断面積との関係を示すグラフ、図5は高炉微粉炭吹込み用バーナーの直胴部の内管の内側断面積と外管の内側断面積との関係を示すグラフ、図6は高炉微粉炭吹込み用バーナーを用いた微粉炭吹込み方法の微粉炭の吐出速度と燃焼用ガスの吐出速度との関係を示すグラフである。
Next, embodiments of the present invention will be described with reference to the accompanying drawings for understanding of the present invention.
Here, FIGS. 1A to 1C are side sectional views of a blast furnace pulverized coal blowing burner according to an embodiment of the present invention, respectively, and a front sectional view of a base side portion of the blast furnace pulverized coal blowing burner. Figure, Front sectional view of the straight body part of the blast furnace pulverized coal blowing burner, FIGS. 2 (A) and 2 (B) are side sectional views of the blast furnace using the blast furnace pulverized coal blowing burner, and the vicinity of the tuyere FIG. 3 is a graph showing the relationship between the straight body length of the blast furnace pulverized coal blowing burner and the inner pipe inner diameter ratio, and FIG. 4 is an inner section of the inner pipe at the base side of the blast furnace pulverized coal blowing burner. FIG. 5 is a graph showing the relationship between the area and the inner cross-sectional area of the inner pipe of the straight body part, and FIG. 5 shows the relationship between the inner cross-sectional area of the inner pipe and the inner cross-sectional area of the outer pipe of the blast furnace pulverized coal blowing burner. FIG. 6 is a graph showing the discharge speed of pulverized coal and the combustion gas of the pulverized coal injection method using a blast furnace pulverized coal injection burner. Is a graph showing the relationship between output speed.

図1(A)〜(C)、図2(A)、(B)に示すように、本発明の一実施の形態に係る高炉微粉炭吹込み用バーナー(以下、単にバーナーともいう)10は、高炉内11に微粉炭の燃焼用ガスを噴出する外管12と、外管12の内側であって外管12と軸心13を同一にして配置され、高炉内11に微粉炭を噴出する内管14とで構成される二重管構造となったバーナー本体15を有するものであり、バーナー本体15の先側には、バーナー本体15の噴出方向に向かってテーパー状に縮幅する絞り部16と、この絞り部16の更に先側にあって絞り部16に連通する直胴部17とが順次設けられている。以下、詳しく説明する。 As shown in FIGS. 1 (A) to (C), FIGS. 2 (A) and 2 (B), a blast furnace pulverized coal blowing burner (hereinafter also simply referred to as a burner) 10 according to an embodiment of the present invention is as follows. The outer tube 12 for injecting pulverized coal combustion gas into the blast furnace 11 and the inner tube 12 and the shaft center 13 are arranged inside the outer tube 12 so that the pulverized coal is injected into the blast furnace 11. It has a burner body 15 having a double-pipe structure composed of an inner tube 14, and a constricted portion that is reduced in a taper shape toward the ejection direction of the burner body 15 on the front side of the burner body 15. 16 and a straight body portion 17 that is further forward of the throttle portion 16 and communicates with the throttle portion 16 is sequentially provided. This will be described in detail below.

図2(A)、(B)に示すように、高炉18の下部炉壁19には、高炉18の周方向に複数の羽口20が設けられている。各羽口20の上流側にはブローパイプ21が接続され、このブローパイプ21の中を、例えば1300℃程度に加熱された熱風が流れ、羽口20から高炉内11へこの熱風が流れ込む構成になっている。
また、羽口20に接続されたブローパイプ21には、バーナー10が貫通して設けられており、このバーナー10を介して、燃焼用ガス及び微粉炭がブローパイプ21内に吹き込まれた後、羽口20から高炉内11へ吹き込まれる構成になっている。
As shown in FIGS. 2A and 2B, the lower furnace wall 19 of the blast furnace 18 is provided with a plurality of tuyere 20 in the circumferential direction of the blast furnace 18. A blow pipe 21 is connected to the upstream side of each tuyere 20, and hot air heated to, for example, about 1300 ° C. flows through the blow pipe 21, and this hot air flows from the tuyere 20 into the blast furnace 11. It has become.
The blow pipe 21 connected to the tuyere 20 is provided with a burner 10 therethrough, and after the combustion gas and pulverized coal are blown into the blow pipe 21 through the burner 10, The structure is blown from the tuyere 20 into the blast furnace 11.

羽口20の前方(下流側)には、熱風による噴流22が形成され、更に高炉内11に充填されたコークスが旋回しながら燃焼する領域、即ちレースウェイ23が形成される。
従って、微粉炭の吹込み状況下にあっては、微粉炭がバーナー10からブローパイプ21へ吹込まれた後、羽口20から高炉内11に吹込まれ、主として噴流22の内部で燃焼される。
A jet 22 of hot air is formed in front of the tuyere 20 (downstream side), and a region in which coke filled in the blast furnace 11 burns while turning, that is, a raceway 23 is formed.
Therefore, under the condition of blowing pulverized coal, after the pulverized coal is blown from the burner 10 to the blow pipe 21, it is blown from the tuyere 20 into the blast furnace 11 and is burned mainly inside the jet 22.

図1(A)〜(C)、図2(B)に示すように、ブローパイプ21に取付けられたバーナー10のバーナー本体15は、その全長Lが、例えば、2000mm以上2500mm以下程度のものであり、耐熱性及び耐食性を備えたステンレスで構成されている。なお、外管12と内管14の厚みは、それぞれ、例えば、2mm以上5mm以下程度である。
バーナー本体15を構成する外管12は、その基部が燃焼用ガス供給口(図示しない)に着脱自在に接続される外管基側部24と、この外管基側部24に、上流側から下流側(バーナー本体15の基側から先側)へかけて順次連接される外管絞り部25及び外管直胴部26を有している。外管基側部24の内径は、例えば、20mm以上80mm以下程度となっており、この内径よりも外管直胴部26の内径の方が小さくなっている。
As shown in FIGS. 1 (A) to 1 (C) and FIG. 2 (B), the burner body 15 of the burner 10 attached to the blow pipe 21 has an overall length L of, for example, about 2000 mm to 2500 mm. Yes, it is made of stainless steel with heat resistance and corrosion resistance. The thicknesses of the outer tube 12 and the inner tube 14 are, for example, about 2 mm or more and 5 mm or less.
The outer tube 12 constituting the burner body 15 has an outer tube base side portion 24 whose base portion is detachably connected to a combustion gas supply port (not shown), and the outer tube base side portion 24 from the upstream side. It has an outer tube restricting portion 25 and an outer tube straight body portion 26 that are sequentially connected downstream (from the base side to the front side of the burner body 15). The inner diameter of the outer tube base side portion 24 is, for example, about 20 mm or more and 80 mm or less, and the inner diameter of the outer tube straight body portion 26 is smaller than this inner diameter.

外管基側部24と外管直胴部26とを接続する外管絞り部25は、バーナー本体15の噴出方向に向かってテーパー状に縮径(縮幅)している。この外管絞り部25(テーパー部)の軸心方向の長さL2は、外管基側部24と外管直胴部26の内径(最大内幅)をそれぞれD4とD3とした場合、(D4−D3)≦L2≦(D4+D3)/2を満足することが好ましい。これは、外管絞り部の長さL2が(D4−D3)未満の場合、絞り部の絞りが急激に大きくなり、圧力損失が大きくなり過ぎてしまい、一方、(D4+D3)/2を超える場合、やはり絞り部自体が長過ぎて圧力損失が大きくなり過ぎてしまうからである。なお、外管絞り部25の内面と軸心13とがなす角θは、例えば、1度以上10度以下程度となっている。
この外管絞り部25の下流側端部に連接する外管直胴部26は、実質的に直管(真直ぐな管)で構成されており、その下流側端部が燃焼用ガスの噴出口27を形成している。なお、直管には、外管直胴部26の内面と軸心13とのなす角が、バーナー本体15の噴出方向に向かって0度を超え5度以内の範囲で縮径した形状も含んでいる。
The outer tube restricting portion 25 connecting the outer tube base side portion 24 and the outer tube straight body portion 26 is reduced in diameter (reduced width) in a taper shape toward the ejection direction of the burner body 15. The length L2 in the axial direction of the outer tube restricting portion 25 (tapered portion) is as follows when the inner diameters (maximum inner widths) of the outer tube base side portion 24 and the outer tube straight body portion 26 are D4 and D3, respectively. It is preferable that D4−D3) ≦ L2 ≦ (D4 + D3) / 2 is satisfied. This is because when the length L2 of the outer tube restrictor is less than (D4−D3), the restrictor of the restrictor becomes abruptly large and the pressure loss becomes too large. On the other hand, it exceeds (D4 + D3) / 2. This is because the throttle portion itself is too long and the pressure loss becomes too large. The angle θ formed by the inner surface of the outer tube restricting portion 25 and the axis 13 is, for example, about 1 degree to 10 degrees.
The outer tube straight body portion 26 connected to the downstream end portion of the outer tube restricting portion 25 is substantially constituted by a straight tube (straight tube), and the downstream end portion thereof is an ejection port for combustion gas. 27 is formed. The straight pipe includes a shape in which the angle formed between the inner surface of the outer pipe straight body portion 26 and the shaft center 13 is reduced in the range of more than 0 degrees and within 5 degrees toward the ejection direction of the burner body 15. It is out.

外管12の内側には、外管12の形状をバーナー本体15の軸心13に対して縮径した形状(略相似)となった内管14が配置されている。この内管14は、その基部が微粉炭供給口(図示しない)に着脱自在に接続される内管基側部28と、この内管基側部28に、上流側から下流側(バーナー本体15の基側から先側)へかけて順次連接される内管絞り部29及び内管直胴部30を有している。
内管14は、外管12と同一の軸心13を有しているため、外管12の内面と内管14の外面との間に、バーナー本体15の上流側から下流側にかけて、略同一間隔の隙間31が形成されている。従って、供給された燃焼用ガスは、この隙間31を通って噴出口27から吹き出される。
Inside the outer tube 12, an inner tube 14 having a shape (substantially similar) in which the shape of the outer tube 12 is reduced in diameter relative to the axis 13 of the burner body 15 is disposed. The inner pipe 14 has an inner pipe base side portion 28 whose base portion is detachably connected to a pulverized coal supply port (not shown), and the inner pipe base side portion 28 from the upstream side to the downstream side (burner body 15 The inner tube restricting portion 29 and the inner tube straight body portion 30 are sequentially connected from the base side to the front side.
Since the inner tube 14 has the same axis 13 as the outer tube 12, it is substantially the same from the upstream side to the downstream side of the burner body 15 between the inner surface of the outer tube 12 and the outer surface of the inner tube 14. Spacing gaps 31 are formed. Therefore, the supplied combustion gas is blown out from the jet outlet 27 through the gap 31.

以上のように、外管12及び内管14は、バーナー本体15の軸心方向の略同一位置に、外管基側部24と内管基側部28、外管絞り部25と内管絞り部29、及び外管直胴部26と内管直胴部30がそれぞれ配置されている。従って、外管基側部24と内管基側部28、外管絞り部25と内管絞り部29、及び外管直胴部26と内管直胴部30が、バーナー本体15の基側部32、絞り部16、及び直胴部17をそれぞれ構成する。
以下、バーナー本体15の形状について、更に詳しく説明する。なお、バーナー本体の形状を特定するに際し、高炉内の燃焼焦点位置(燃焼ピーク位置ともいう)の測定は、熱電対を装着したゾンデを羽口から装入して行っている。
As described above, the outer tube 12 and the inner tube 14 are disposed at substantially the same position in the axial direction of the burner body 15 at the outer tube base side portion 24 and the inner tube base side portion 28, and the outer tube throttle portion 25 and the inner tube throttle. The part 29, the outer pipe straight body part 26, and the inner pipe straight body part 30 are arranged, respectively. Accordingly, the outer pipe base side 24 and the inner pipe base side part 28, the outer pipe throttle part 25 and the inner pipe throttle part 29, and the outer pipe straight body part 26 and the inner pipe straight body part 30 are the base side of the burner body 15. The part 32, the throttle part 16, and the straight body part 17 are configured.
Hereinafter, the shape of the burner body 15 will be described in more detail. When the shape of the burner body is specified, the combustion focal position (also referred to as the combustion peak position) in the blast furnace is measured by inserting a sonde equipped with a thermocouple from the tuyere.

バーナー本体15の直胴部17の長さL1は、この直胴部17に位置する内管14の内径(最大内幅)D1の8倍以上20倍以下としている。
図3に示すように、微粉炭の燃焼焦点位置は、直胴部の長さが、内管の内径の8倍以上20倍以下(適正範囲)の場合に、高炉の炉芯側へ深く入ることが判る。ここで、直胴部の長さが、内管の内径の8倍より小さい場合は、絞り部が噴出口に近くなり過ぎ、絞り部の圧力損失の変化の影響を受けて、噴出口付近の流れを乱すと考えられる。一方、直胴部の長さが、内管の内径の20倍より大きい場合には、直胴部の長さが長くなり過ぎて、圧力損失が大きくなり過ぎ、微粉炭及び燃焼用ガスの吐出流速が小さくなって、燃焼焦点位置が噴出口に近くなると考えられる。
以上のことから、直胴部17の長さL1の下限値を、内管14の内径D1の8倍、好ましくは10倍、更に好ましくは12倍とし、一方上限値を、内管14の内径D1の20倍、好ましくは18倍、更に好ましくは16倍とする。
The length L1 of the straight body portion 17 of the burner body 15 is set to be not less than 8 times and not more than 20 times the inner diameter (maximum inner width) D1 of the inner tube 14 located in the straight body portion 17.
As shown in FIG. 3, the combustion focal position of pulverized coal enters deeply into the core side of the blast furnace when the length of the straight body portion is 8 to 20 times (appropriate range) the inner diameter of the inner tube. I understand that. Here, when the length of the straight body portion is smaller than eight times the inner diameter of the inner tube, the throttle portion is too close to the jet port, and is affected by the change in the pressure loss of the throttle portion, and near the jet port. It is thought to disturb the flow. On the other hand, when the length of the straight body portion is larger than 20 times the inner diameter of the inner tube, the length of the straight body portion becomes too long, the pressure loss becomes too large, and pulverized coal and combustion gas are discharged. It is considered that the flow velocity becomes smaller and the combustion focal point position becomes closer to the ejection port.
From the above, the lower limit value of the length L1 of the straight body portion 17 is set to 8 times, preferably 10 times, more preferably 12 times the inner diameter D1 of the inner tube 14, while the upper limit value is set to the inner diameter of the inner tube 14. D1 is 20 times, preferably 18 times, and more preferably 16 times.

また、バーナー本体15の基側部32に位置する内管14の内側断面積S1は、直胴部17に位置する内管14の内側断面積S2の2倍以上9倍以下としている(図1(B)、(C)参照)。この内管14の内側断面積S1と内側断面積S2との比を、以下断面積変化率という。
図4に示すように、内管の断面積変化率は、内管の内側断面積S1が内側断面積S2の2倍以上9倍以下(適正範囲)の場合に、微粉炭の燃焼焦点位置が高炉の炉芯側へ深く入ることが判る。ここで、内管の内側断面積S1が内側断面積S2の2倍より小さい場合は、微粉炭の搬送ガスを絞りきれず、微粉炭の吐出流速を十分に大きくできない。一方、内管の内側断面積S1が内側断面積S2の9倍より大きい場合には、微粉炭の搬送ガスを絞り過ぎて圧力損失が大きくなり過ぎ、微粉炭の吐出流速が小さくなって微粉炭の燃焼焦点位置が噴出口に近くなり過ぎると考えられる。
以上のことから、内管14の内側断面積S1の下限値を、内側断面積S2の2倍、好ましくは2.5倍、更に好ましくは3倍とし、一方上限値を、内側断面積S2の9倍、好ましくは8倍、更に好ましくは7倍とする。
Further, the inner cross-sectional area S1 of the inner tube 14 positioned at the base side portion 32 of the burner body 15 is set to be 2 to 9 times the inner cross-sectional area S2 of the inner tube 14 positioned at the straight body portion 17 (FIG. 1). (See (B) and (C)). The ratio of the inner cross-sectional area S1 and the inner cross-sectional area S2 of the inner pipe 14 is hereinafter referred to as a cross-sectional area change rate.
As shown in FIG. 4, the rate of change in the cross-sectional area of the inner pipe is such that the combustion focal position of the pulverized coal is when the inner cross-sectional area S1 of the inner pipe is 2 to 9 times (appropriate range) of the inner cross-sectional area S2. It can be seen that it goes deep into the core of the blast furnace. Here, when the inner cross-sectional area S1 of the inner pipe is smaller than twice the inner cross-sectional area S2, the carrier gas of the pulverized coal cannot be squeezed, and the discharge flow rate of the pulverized coal cannot be sufficiently increased. On the other hand, when the inner sectional area S1 of the inner pipe is larger than nine times the inner sectional area S2, the carrier gas of the pulverized coal is excessively squeezed, the pressure loss becomes too large, the discharge flow rate of the pulverized coal becomes smaller, and the pulverized coal. It is considered that the combustion focal point position of this is too close to the jet outlet.
From the above, the lower limit value of the inner cross-sectional area S1 of the inner tube 14 is set to twice the inner cross-sectional area S2, preferably 2.5 times, more preferably three times, while the upper limit is set to the inner cross-sectional area S2. 9 times, preferably 8 times, more preferably 7 times.

そして、直胴部17に位置する内管14の内側断面積S2は、直胴部17に位置する外管12の内側断面積S3の0.1倍以上0.55倍以下としている(図1(C)参照)。この内管14の内側断面積S2と外管12の内側断面積S3との比を、以下、断面積比という。
図5に示すように、断面積比は、内管の内側断面積S2が外管の内側断面積S3の0.1倍以上0.55倍以下(適正範囲)の場合に、微粉炭の燃焼焦点位置が高炉の炉芯側へ深く入ることが判る。ここで、内管の内側断面積S2が外管の内側断面積S3の0.1倍より小さい場合は、外管からの燃焼用ガスの吐出流速が十分に大きくならない。一方、内管の内側断面積S2が外管の内側断面積S3の0.55倍より大きい場合には、外管を絞り過ぎて圧力損失が大きくなり過ぎ、微粉炭の吐出流速が小さくなって、燃焼焦点位置が噴出口に近くなり過ぎると考えられる。
以上のことから、内管14の内側断面積S2の下限値を、外管12の内側断面積S3の0.1倍、好ましくは0.15倍、更に好ましくは0.2倍とし、一方上限値を、外管12の内側断面積S3の0.55倍、好ましくは0.45倍、更に好ましくは0.35倍とする。
The inner cross-sectional area S2 of the inner tube 14 positioned in the straight body portion 17 is 0.1 to 0.55 times the inner cross-sectional area S3 of the outer tube 12 positioned in the straight body portion 17 (FIG. 1). (See (C)). The ratio of the inner sectional area S2 of the inner tube 14 and the inner sectional area S3 of the outer tube 12 is hereinafter referred to as a sectional area ratio.
As shown in FIG. 5, the pulverized coal combustion is performed when the inner sectional area S2 of the inner pipe is 0.1 to 0.55 times (appropriate range) of the inner sectional area S3 of the outer pipe. It can be seen that the focal position goes deep into the core side of the blast furnace. Here, when the inner cross-sectional area S2 of the inner tube is smaller than 0.1 times the inner cross-sectional area S3 of the outer tube, the discharge flow rate of the combustion gas from the outer tube is not sufficiently increased. On the other hand, when the inner cross-sectional area S2 of the inner pipe is larger than 0.55 times the inner cross-sectional area S3 of the outer pipe, the outer pipe is squeezed too much, the pressure loss becomes too large, and the discharge flow rate of pulverized coal becomes small. It is considered that the combustion focus position is too close to the jet outlet.
From the above, the lower limit value of the inner sectional area S2 of the inner tube 14 is set to 0.1 times, preferably 0.15 times, more preferably 0.2 times the inner sectional area S3 of the outer tube 12, while the upper limit value. The value is 0.55 times, preferably 0.45 times, more preferably 0.35 times the inner cross-sectional area S3 of the outer tube 12.

前記したように、バーナー10の形状を、外管12及び内管14の断面積をそれぞれ使用して説明したが、外管12及び内管14の断面形状が円形である場合には、前記した関係に基づき、特に、以下のように規定することもできる。
この場合、バーナー本体15の基側部32に位置する内管14の内径D2は、直胴部17に位置する内管14の内径D1の1.5倍以上3.0倍以下である。
また、直胴部17に位置する内管14の内径D1は、直胴部17に位置する外管12の内径D3の0.3倍以上0.74倍以下である。
As described above, the shape of the burner 10 has been described using the cross-sectional areas of the outer tube 12 and the inner tube 14, respectively. However, when the cross-sectional shapes of the outer tube 12 and the inner tube 14 are circular, as described above. Based on the relationship, in particular, it can be specified as follows.
In this case, the inner diameter D <b> 2 of the inner tube 14 positioned on the proximal side portion 32 of the burner body 15 is 1.5 times or more and 3.0 times or less than the inner diameter D <b> 1 of the inner tube 14 positioned on the straight body portion 17.
The inner diameter D1 of the inner tube 14 located in the straight body portion 17 is not less than 0.3 times and not more than 0.74 times the inner diameter D3 of the outer tube 12 located in the straight body portion 17.

次に、前記した本発明の一実施の形態に係る高炉微粉炭吹込み用バーナー10を使用して、高炉内11に微粉炭を吹込む方法について説明する。
まず、図2(B)に示すように、ブローパイプ21に設置したバーナー10の燃焼用ガスの噴出口27から燃焼用ガスを噴出させると共に、内管14の下流側端部に形成される微粉炭の噴出口33から微粉炭を噴出させる。なお、燃焼用ガスとしては、酸素又は酸素富化空気が使用され、微粉炭の燃焼のためだけでなく、バーナー本体15自体の温度上昇を抑制する機能も有する。また、微粉炭は、微粉炭の搬送に使用される空気と共に、微粉炭の噴出口33から噴出される。
Next, a method of blowing pulverized coal into the blast furnace 11 using the blast furnace pulverized coal blowing burner 10 according to one embodiment of the present invention will be described.
First, as shown in FIG. 2 (B), the combustion gas is ejected from the combustion gas ejection port 27 of the burner 10 installed in the blow pipe 21 and the fine powder formed at the downstream end of the inner pipe 14. Pulverized coal is ejected from the charcoal outlet 33. Note that oxygen or oxygen-enriched air is used as the combustion gas, and has a function of suppressing the temperature rise of the burner body 15 itself as well as for burning pulverized coal. The pulverized coal is ejected from the pulverized coal ejection port 33 together with the air used for conveying the pulverized coal.

ここで、微粉炭を内管14から高炉内11へ噴出する吐出速度V2は、例えば、30m/秒以上100m/秒以下であり、燃焼用ガスを外管12から高炉内11へ噴出する吐出速度V1は、微粉炭の吐出速度V2の0.8倍以上1.2倍以下である。
図6に示すように、吐出速度比は、燃焼用ガスの吐出速度V1を、微粉炭の吐出速度V2の0.8倍以上1.2倍以下とする場合に、微粉炭の燃焼焦点位置が高炉の炉芯側へ深く入ることが判る。ここで、燃焼用ガスの吐出速度V1が、微粉炭の吐出速度V2の0.8倍未満の場合は、外管からの燃焼用ガスの吐出流速が十分に大きくならない。一方、燃焼用ガスの吐出速度V1が、微粉炭の吐出速度V2の1.2倍を超えた場合には、内管からの微粉炭の吐出流速が十分に大きくならない。
以上のことから、燃焼用ガスの吐出速度V1の下限値を、微粉炭の吐出速度V2の0.8倍、好ましくは0.85倍、更に好ましくは0.9倍とし、一方上限値を、微粉炭の吐出速度V2の1.2倍、好ましくは1.15倍、更に好ましくは1.1倍とする。
Here, the discharge speed V2 at which pulverized coal is jetted from the inner pipe 14 into the blast furnace 11 is, for example, 30 m / sec or more and 100 m / sec or less, and the discharge speed at which the combustion gas is jetted from the outer pipe 12 into the blast furnace 11. V1 is not less than 0.8 times and not more than 1.2 times the discharge speed V2 of pulverized coal.
As shown in FIG. 6, the discharge speed ratio is such that the combustion focal position of the pulverized coal is when the discharge speed V1 of the combustion gas is 0.8 to 1.2 times the discharge speed V2 of the pulverized coal. It can be seen that it goes deep into the core of the blast furnace. Here, when the discharge speed V1 of the combustion gas is less than 0.8 times the discharge speed V2 of the pulverized coal, the discharge flow speed of the combustion gas from the outer tube is not sufficiently increased. On the other hand, when the discharge speed V1 of the combustion gas exceeds 1.2 times the discharge speed V2 of the pulverized coal, the discharge speed of the pulverized coal from the inner pipe is not sufficiently increased.
From the above, the lower limit value of the combustion gas discharge speed V1 is 0.8 times, preferably 0.85 times, more preferably 0.9 times the pulverized coal discharge speed V2, while the upper limit value is The discharge speed V2 of pulverized coal is 1.2 times, preferably 1.15 times, and more preferably 1.1 times.

従来、微粉炭の燃焼焦点位置を高炉の炉芯側へ移動させるためには、燃焼用ガスの吐出速度を上昇させることが必要であり、このために、送風ポンプの能力を上げること、燃焼用ガスを噴出する外管の有効断面積(内管と外管の差分)を小さくすることが有効であると考えられていた。
しかしながら、有効断面積を小さくした場合、圧力損失が大きくなって大容量の送風ポンプが必要になると共に、高炉羽口が数十個あることから、全羽口に大容量の送風ポンプを設置する必要があり、設備費が著しく向上するため経済的でない。
Conventionally, in order to move the combustion focal position of pulverized coal to the core side of the blast furnace, it is necessary to increase the discharge speed of the combustion gas. It has been considered effective to reduce the effective cross-sectional area (difference between the inner tube and the outer tube) of the outer tube from which gas is ejected.
However, when the effective cross-sectional area is reduced, the pressure loss increases and a large-capacity blower pump is required, and since there are dozens of blast furnace tuyere, large-capacity blower pumps are installed at all tuyere. It is necessary and it is not economical because the equipment cost is remarkably improved.

一方、単にバーナー先端部の口径を絞る等の形状を変えれば、流速を上げることも可能であるが、逆に先端部での圧力損失の急激な変化により、吐出流に乱れが生じてしまい、その偏流が生じ易く、かえって燃焼焦点位置が変動し易くなる。
そこで、大容量の送風ポンプを使用しなくとも、バーナー先端部での燃焼用ガスの吐出流速を安定的に上昇させると共に、内管から高炉内への微粉炭の吹込みも、内管での詰まりを生じることなく安定的に供給できるバーナー構造の検討を行った。その結果、前記実施の形態のバーナーのように、バーナー先端ではなく、バーナー途中の適正位置に絞り部を設けることにより、燃焼用ガスと共に微粉炭も高炉内へ安定的に供給でき、かつ燃焼焦点位置も炉芯側へ移動させることが可能になった。
On the other hand, if the shape such as simply reducing the diameter of the burner tip is changed, the flow rate can be increased, but conversely, the discharge flow is disturbed due to a sudden change in pressure loss at the tip, The drift tends to occur, and the combustion focus position tends to fluctuate.
Therefore, without using a large-capacity blower pump, the combustion gas discharge flow rate at the tip of the burner is stably increased, and pulverized coal is also blown from the inner pipe into the blast furnace. A burner structure that can supply stably without clogging was investigated. As a result, unlike the burner of the above-described embodiment, by providing the throttle part at an appropriate position in the middle of the burner instead of the tip of the burner, pulverized coal can be stably supplied into the blast furnace together with the combustion gas, and the combustion focus The position can also be moved to the furnace core side.

次に、本発明の作用効果を確認するために行った実施例について説明する。
前記した高炉微粉炭吹込み用バーナーを取付ける高炉としては、内容積が5000m3 であり、その周囲に40本の羽口が設けられ、この各羽口にそれぞれバーナーを設置したものを使用した。この高炉の操業条件は、銑鉄の生産量が12300トン/日、ブローパイプからの熱風の送風量が8000Nm3 /m、熱風の送風温度が1200℃、還元材比(銑鉄1トンあたりの還元材量)が480kg/トン、微粉炭比(銑鉄1トンあたりの微粉炭量)が150kg/トン、送風圧力が420kPaである。
Next, examples carried out for confirming the effects of the present invention will be described.
As the blast furnace to which the blast furnace for injecting blast furnace pulverized coal described above was used, an inner volume of 5000 m 3 , 40 tuyere were provided around the blast furnace, and a burner was installed at each tuyere. The operating conditions of this blast furnace are as follows: pig iron production volume of 12300 tons / day, hot air blowing rate from blow pipe is 8000 Nm 3 / m, hot air blowing temperature is 1200 ° C., reducing material ratio (reducing material per ton of pig iron Amount) is 480 kg / ton, the pulverized coal ratio (the amount of pulverized coal per ton of pig iron) is 150 kg / ton, and the blowing pressure is 420 kPa.

また、前記実施の形態の条件、即ち直胴部の長さ(L1/D1)の条件を満足するバーナーを実施例1〜6とした。なお、実施例1、3〜6は、更に内管の断面積変化率(S1/S2)の適正条件を満足し、実施例1、2、5、6は、更に内管と外管の断面積比(S2/S3)の適正条件を満足している。一方、直胴部の長さ(L1/D1)が適正範囲から外れたバーナーを、それぞれ比較例1〜3(長さが適正範囲外)とした。また、実施例1〜4、及び比較例1〜3は、微粉炭の吹込み条件(V1/V2)が適正範囲となっており、実施例5、6はこの適正範囲から外れている。
以上の条件の下、高炉を操業し炉況を確認した。この結果を表1に示す。
In addition, Examples 1 to 6 are burners that satisfy the conditions of the above-described embodiment, that is, the conditions of the length (L1 / D1) of the straight body portion. Examples 1, 3 to 6 further satisfy the appropriate condition of the change rate of the cross-sectional area (S1 / S2) of the inner tube, and Examples 1, 2, 5, and 6 further cut off the inner tube and the outer tube. The appropriate condition of the area ratio (S2 / S3) is satisfied. On the other hand, the burners in which the length (L1 / D1) of the straight body part deviated from the appropriate range were set as Comparative Examples 1 to 3 (the length was outside the appropriate range), respectively. In Examples 1 to 4 and Comparative Examples 1 to 3, the pulverized coal blowing conditions (V1 / V2) are in an appropriate range, and Examples 5 and 6 are out of this appropriate range.
Under the above conditions, the blast furnace was operated and the furnace condition was confirmed. The results are shown in Table 1.

Figure 0004427469
Figure 0004427469

表1において、炉況が安定とは、高炉内の装入物の降下状況がスムーズに行われ、その結果高炉操業が安定であることを意味し、一方炉況が不安定とは、高炉内の装入物の降下状況が不安定になり、その結果高炉操業が不安定になり易いことを意味する。
表1から明らかなように、実施例1〜6のバーナーを使用した場合、スリップ(突発的に装入物が大きく降下する現象)がほとんど無く(多くても2回)、炉況を安定にできることを確認できた。一方、比較例1〜3のバーナーを使用した場合、スリップが多く発生し(少なくても5回)、炉況が不安定になった。
また、実施例5、6と比較例1〜3から明らかなように、直胴部の長さ(L1/D1)を適正にしなければ、微粉炭の吹込み条件を適正にしても、炉況が不安定になることを確認できた。
このように、本発明に係る高炉微粉炭吹込み用バーナー及びこれを用いた微粉炭吹込み方法を使用することにより、微粉炭の燃焼焦点位置を高炉の炉芯側へ移動させると共に、この燃焼焦点位置の変動を抑制し、安定した高炉操業ができることを確認できた。
In Table 1, “stable furnace condition” means that the descending state of the charge in the blast furnace is smoothly performed, and as a result, the operation of the blast furnace is stable, while the unstable furnace condition means that the furnace condition is unstable. This means that the descending state of the charge of the blast furnace becomes unstable, and as a result, the operation of the blast furnace tends to become unstable.
As can be seen from Table 1, when the burners of Examples 1 to 6 were used, there was almost no slip (a phenomenon in which the charge suddenly dropped significantly) (at most twice), and the furnace condition was stabilized. I was able to confirm that I could do it. On the other hand, when the burners of Comparative Examples 1 to 3 were used, many slips occurred (at least 5 times), and the furnace conditions became unstable.
As is clear from Examples 5 and 6 and Comparative Examples 1 to 3, if the length (L1 / D1) of the straight body portion is not appropriate, the furnace condition is maintained even if the pulverized coal blowing conditions are appropriate. Was confirmed to be unstable.
Thus, by using the blast furnace pulverized coal injection burner and the pulverized coal injection method using the blast furnace according to the present invention, the combustion focal position of the pulverized coal is moved to the core side of the blast furnace, and this combustion is performed. It was confirmed that stable blast furnace operation was possible by suppressing fluctuations in the focal position.

以上、本発明を、実施の形態を参照して説明してきたが、本発明は何ら上記した実施の形態に記載の構成に限定されるものではなく、特許請求の範囲に記載されている事項の範囲内で考えられるその他の実施の形態や変形例も含むものである。例えば、前記したそれぞれの実施の形態や変形例の一部又は全部を組合せて本発明の高炉微粉炭吹込み用バーナーを用いた微粉炭吹込み方法を構成する場合も本発明の権利範囲に含まれる。 As described above, the present invention has been described with reference to the embodiment. However, the present invention is not limited to the configuration described in the above embodiment, and the matters described in the scope of claims. Other embodiments and modifications conceivable within the scope are also included. For example, a case where the pulverized coal injection method using the blast furnace pulverized coal injection burner of the present invention is configured by combining some or all of the above-described embodiments and modifications is also included in the scope of the present invention. It is.

(A)〜(C)はそれぞれ本発明の一実施の形態に係る高炉微粉炭吹込み用バーナーの側断面図、同高炉微粉炭吹込み用バーナーの基側部の正断面図、同高炉微粉炭吹込み用バーナーの直胴部の正断面図である。(A)-(C) is a sectional side view of a blast furnace pulverized coal blowing burner according to an embodiment of the present invention, a front sectional view of a base side portion of the blast furnace pulverized coal blowing burner, and the blast furnace pulverized powder, respectively. It is a front sectional view of the straight body part of the burner for charcoal blowing. (A)、(B)はそれぞれ同高炉微粉炭吹込み用バーナーを使用する高炉の側断面図、羽口近傍の説明図である。(A), (B) is the sectional side view of a blast furnace which uses the burner for blast furnace pulverized coal injection, respectively, and explanatory drawing of a tuyere vicinity. 高炉微粉炭吹込み用バーナーの直胴部長さと内管内径比との関係を示すグラフである。It is a graph which shows the relationship between the straight body part length of an blast furnace pulverized coal injection burner, and an inner pipe internal diameter ratio. 高炉微粉炭吹込み用バーナーの基側部の内管の内側断面積と直胴部の内管の内側断面積との関係を示すグラフである。It is a graph which shows the relationship between the inner side cross-sectional area of the inner pipe of the base side part of the burner for blast furnace pulverized coal injection, and the inner side cross-sectional area of the inner pipe of a straight body part. 高炉微粉炭吹込み用バーナーの直胴部の内管の内側断面積と外管の内側断面積との関係を示すグラフである。It is a graph which shows the relationship between the inner side cross-sectional area of the inner tube | pipe of the straight body part of the burner for blast furnace pulverized coal injection, and the inner side cross-sectional area of an outer tube | pipe. 高炉微粉炭吹込み用バーナーを用いた微粉炭吹込み方法の微粉炭の吐出速度と燃焼用ガスの吐出速度との関係を示すグラフである。It is a graph which shows the relationship between the discharge speed of the pulverized coal of the pulverized coal injection method using the blast furnace pulverized coal injection burner, and the discharge speed of the combustion gas.

符号の説明Explanation of symbols

10:高炉微粉炭吹込み用バーナー、11:高炉内、12:外管、13:軸心、14:内管、15:バーナー本体、16:絞り部、17:直胴部、18:高炉、19:下部炉壁、20:羽口、21:ブローパイプ、22:噴流、23:レースウェイ、24:外管基側部、25:外管絞り部、26:外管直胴部、27:噴出口、28:内管基側部、29:内管絞り部、30:内管直胴部、31:隙間、32:基側部、33:噴出口 10: Burner for blast furnace pulverized coal injection, 11: Inside of blast furnace, 12: Outer pipe, 13: Axle, 14: Inner pipe, 15: Burner body, 16: Throttle part, 17: Straight body part, 18: Blast furnace, 19: Lower furnace wall, 20: tuyere, 21: blow pipe, 22: jet, 23: raceway, 24: outer tube base side, 25: outer tube throttle, 26: outer tube straight body, 27: Spout, 28: Inner tube base, 29: Inner tube constriction, 30: Inner tube straight barrel, 31: Clearance, 32: Base side, 33: Jet

Claims (4)

高炉内に微粉炭の燃焼用ガスを噴出する外管と、該外管の内側であって該外管と軸心を同一にして配置され、前記高炉内に前記微粉炭を噴出する内管とで構成される二重管構造となったバーナー本体を有する高炉の微粉炭吹込み用バーナーにおいて、
前記バーナー本体の先側には、該バーナー本体の噴出方向に向かってテーパー状に縮幅する絞り部と、該絞り部の先側に該絞り部に連通する直胴部とが順次設けられ、しかも該直胴部の長さが、該直胴部の前記内管の最大内幅の8倍以上20倍以下であることを特徴とする高炉微粉炭吹込み用バーナー。
An outer pipe for injecting pulverized coal combustion gas into the blast furnace; an inner pipe inside the outer pipe and arranged with the same axis as the outer pipe; and an inner pipe for injecting the pulverized coal into the blast furnace In a blast furnace pulverized coal injection burner having a burner body that has a double-pipe structure composed of
On the front side of the burner body, a throttle part that is tapered in the direction of ejection of the burner body, and a straight body part that communicates with the throttle part on the front side of the throttle part are sequentially provided, And the length of this straight body part is 8 times or more and 20 times or less of the maximum inner width of the said inner pipe of this straight body part, The burner for blast furnace pulverized coal injection | spreading characterized by the above-mentioned.
請求項1記載の高炉微粉炭吹込み用バーナーにおいて、前記バーナー本体の基側の前記内管の内側断面積S1は、前記直胴部の前記内管の内側断面積S2の2倍以上9倍以下であることを特徴とする高炉微粉炭吹込み用バーナー。 The blast furnace pulverized coal injecting burner according to claim 1, wherein the inner cross-sectional area S1 of the inner tube on the base side of the burner body is not less than two times and nine times the inner cross-sectional area S2 of the inner tube of the straight body portion. A blast furnace pulverized coal injection burner characterized by: 請求項1及び2のいずれか1項に記載の高炉微粉炭吹込み用バーナーにおいて、前記直胴部の前記内管の内側断面積S2は、該直胴部の前記外管の内側断面積S3の0.1倍以上0.55倍以下であることを特徴とする高炉微粉炭吹込み用バーナー。 The blast furnace pulverized coal blowing burner according to any one of claims 1 and 2, wherein the inner cross-sectional area S2 of the inner tube of the straight body portion is an inner cross-sectional area S3 of the outer tube of the straight body portion. The burner for blast furnace pulverized coal injection is characterized by being 0.1 times to 0.55 times as large as. 請求項1〜3のいずれか1項に記載の高炉微粉炭吹込み用バーナーを使用して、前記高炉内に前記微粉炭を吹込む方法であって、前記燃焼用ガスを前記外管から前記高炉内へ噴出する吐出速度V1は、前記微粉炭を前記内管から前記高炉内へ噴出する吐出速度V2の0.8倍以上1.2倍以下であることを特徴とする高炉微粉炭吹込み用バーナーを用いた微粉炭吹込み方法。 A method for injecting the pulverized coal into the blast furnace using the blast furnace pulverized coal injecting burner according to any one of claims 1 to 3, wherein the combustion gas is supplied from the outer pipe. Blast furnace pulverized coal injection characterized in that the discharge speed V1 for jetting into the blast furnace is 0.8 to 1.2 times the discharge speed V2 for jetting the pulverized coal from the inner pipe into the blast furnace. Pulverized coal injection method using an industrial burner.
JP2005059129A 2005-03-03 2005-03-03 Blast furnace pulverized coal injection burner and pulverized coal injection method using the same Active JP4427469B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005059129A JP4427469B2 (en) 2005-03-03 2005-03-03 Blast furnace pulverized coal injection burner and pulverized coal injection method using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005059129A JP4427469B2 (en) 2005-03-03 2005-03-03 Blast furnace pulverized coal injection burner and pulverized coal injection method using the same

Publications (2)

Publication Number Publication Date
JP2006241526A JP2006241526A (en) 2006-09-14
JP4427469B2 true JP4427469B2 (en) 2010-03-10

Family

ID=37048218

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005059129A Active JP4427469B2 (en) 2005-03-03 2005-03-03 Blast furnace pulverized coal injection burner and pulverized coal injection method using the same

Country Status (1)

Country Link
JP (1) JP4427469B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI580790B (en) * 2013-04-26 2017-05-01 China Steel Corp Blast furnace blast system
CN104456549A (en) * 2014-11-12 2015-03-25 宁夏嘉翔自控技术有限公司 Nozzle of pulverized coal burner of magnesium metal reduction furnace

Also Published As

Publication number Publication date
JP2006241526A (en) 2006-09-14

Similar Documents

Publication Publication Date Title
US8080200B2 (en) Pulverized coal injection lance
CN101929802B (en) Side-blown spray gun
JP5551633B2 (en) Method and apparatus for burning liquid fuel
US6319458B1 (en) Pulverized coal injecting apparatus
US20070205543A1 (en) Oxidant-swirled fossil fuel injector for a shaft furnace
TWI732074B (en) Burner, method for operating burner, and method for melting and refining cold iron source
JP4341131B2 (en) Pulverized coal blowing burner
MX2014004260A (en) Solid fuel burner.
JP4427469B2 (en) Blast furnace pulverized coal injection burner and pulverized coal injection method using the same
JP4506337B2 (en) Pulverized coal blowing burner for metallurgical furnace and method for blowing pulverized coal into metallurgical furnace
JP4760985B2 (en) Blast furnace operation method
CN110073145B (en) Fluid burner with flame stability
CN107850299A (en) Intake assembly and the method for operating it
CN202792006U (en) Head assembly of high-thrust and double-rotational-flow coal dust burner
US6579088B2 (en) Stabilized-flame aerogas/oxygas burner and quarl block fitted with such a burner
JP4998001B2 (en) Pulverized coal burner
JP4747662B2 (en) Lance for blowing gas reducing material, blast furnace and blast furnace operating method
KR20030005779A (en) A pulverized solid fuel injecting apparatus
CN104482538A (en) Burner for radiant tube
CN217503673U (en) Seven-channel combustor nozzle and combustor
US10429072B2 (en) Regenerative burner for non-symmetrical combustion
CN204254619U (en) Radiant tube burner
JP4060165B2 (en) Burner for liquid fuel
JP4127032B2 (en) Blast furnace pulverized coal injection burner and pulverized coal injection method into blast furnace
JP2023059003A (en) Gas atomization burner

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070904

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091113

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091201

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091214

R151 Written notification of patent or utility model registration

Ref document number: 4427469

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121218

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121218

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131218

Year of fee payment: 4

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131218

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350