WO2019139022A1 - Cooling device and battery system - Google Patents

Cooling device and battery system Download PDF

Info

Publication number
WO2019139022A1
WO2019139022A1 PCT/JP2019/000300 JP2019000300W WO2019139022A1 WO 2019139022 A1 WO2019139022 A1 WO 2019139022A1 JP 2019000300 W JP2019000300 W JP 2019000300W WO 2019139022 A1 WO2019139022 A1 WO 2019139022A1
Authority
WO
WIPO (PCT)
Prior art keywords
coolant
opening
refrigerant
wall
partition plate
Prior art date
Application number
PCT/JP2019/000300
Other languages
French (fr)
Japanese (ja)
Inventor
勝志 谷口
祐紀 牧田
圭俊 野田
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to CN201980003810.3A priority Critical patent/CN111033881B/en
Priority to JP2019564709A priority patent/JP7138299B2/en
Publication of WO2019139022A1 publication Critical patent/WO2019139022A1/en
Priority to JP2022132422A priority patent/JP7336713B2/en
Priority to JP2023127036A priority patent/JP2023155255A/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/249Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders specially adapted for aircraft or vehicles, e.g. cars or trains
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/613Cooling or keeping cold
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/617Types of temperature control for achieving uniformity or desired distribution of temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/62Heating or cooling; Temperature control specially adapted for specific applications
    • H01M10/625Vehicles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/63Control systems
    • H01M10/633Control systems characterised by algorithms, flow charts, software details or the like
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/63Control systems
    • H01M10/637Control systems characterised by the use of reversible temperature-sensitive devices, e.g. NTC, PTC or bimetal devices; characterised by control of the internal current flowing through the cells, e.g. by switching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/655Solid structures for heat exchange or heat conduction
    • H01M10/6551Surfaces specially adapted for heat dissipation or radiation, e.g. fins or coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/655Solid structures for heat exchange or heat conduction
    • H01M10/6556Solid parts with flow channel passages or pipes for heat exchange
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/656Means for temperature control structurally associated with the cells characterised by the type of heat-exchange fluid
    • H01M10/6567Liquids
    • H01M10/6568Liquids characterised by flow circuits, e.g. loops, located externally to the cells or cell casings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/66Heat-exchange relationships between the cells and other systems, e.g. central heating systems or fuel cells
    • H01M10/663Heat-exchange relationships between the cells and other systems, e.g. central heating systems or fuel cells the system being an air-conditioner or an engine
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/204Racks, modules or packs for multiple batteries or multiple cells
    • H01M50/207Racks, modules or packs for multiple batteries or multiple cells characterised by their shape
    • H01M50/209Racks, modules or packs for multiple batteries or multiple cells characterised by their shape adapted for prismatic or rectangular cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/233Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by physical properties of casings or racks, e.g. dimensions
    • H01M50/24Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by physical properties of casings or racks, e.g. dimensions adapted for protecting batteries from their environment, e.g. from corrosion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K11/00Arrangement in connection with cooling of propulsion units
    • B60K11/02Arrangement in connection with cooling of propulsion units with liquid cooling
    • B60K11/04Arrangement or mounting of radiators, radiator shutters, or radiator blinds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/40Electric propulsion with power supplied within the vehicle using propulsion power supplied by capacitors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L55/00Arrangements for supplying energy stored within a vehicle to a power network, i.e. vehicle-to-grid [V2G] arrangements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/14Plug-in electric vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/40Application of hydrogen technology to transportation, e.g. using fuel cells

Definitions

  • the present disclosure relates to cooling technology, and more particularly to a cooling device and a battery system for cooling a battery.
  • a battery module (on-vehicle battery) for supplying electric power to a motor as a driving source is mounted.
  • a battery module for supplying electric power to a motor as a driving source.
  • cooling by the heat of vaporization of the refrigerant is performed.
  • the temperature is low in the vicinity of the refrigerant passage, and uneven cooling occurs due to the inflow side of the cooling passage becoming cooler than the discharge side, and the temperature varies depending on the position in the battery module.
  • a heat exchanger for flowing the refrigerant is attached to the cooling liquid (see, for example, Patent Document 1).
  • This indication is made in view of such a situation, and the object is to provide the art which controls the variation in the temperature in a different position in the cooling device which cools a car-mounted battery.
  • a cooling device includes a cooling fluid tank having a first inner wall and a second inner wall facing each other, and a first inner wall and a second inner wall inside the cooling fluid tank.
  • the interior of the coolant tank by extending along the plurality of refrigerant pipes flowing the refrigerant and flowing the refrigerant, and from the first inner wall inside the coolant tank to the position where the second inner wall has not reached.
  • a partition plate for partitioning the Inside the coolant tank the coolant flows through the flow path partitioned by the partition plate.
  • the cooling device for cooling the on-vehicle battery it is possible to suppress temperature variations at different positions.
  • FIG. 3 (a) to 3 (c) are diagrams showing the structure of the cooling device of FIG.
  • FIGS. 4 (a)-(b) are diagrams showing the structure of a cooling device to be compared with the cooling device of FIG. 3 (a).
  • FIG. 6 (a)-(b) are diagrams showing still another structure of the cooling device of FIG.
  • FIG. 6 (a)-(b) are diagrams showing still another structure of the cooling device of FIG.
  • FIG. 6 (a)-(b) are diagrams showing still another structure of the cooling device of FIG.
  • FIG. 6 (a)-(b) are diagrams showing still another structure of the cooling device of FIG.
  • FIG. 6 (a)-(b) are diagrams showing still another structure of the cooling device of FIG.
  • FIG. 6 (a)-(b) are diagrams showing still another structure of the cooling device of FIG.
  • FIG. 6 (a)-(b) are diagrams showing still another structure of the cooling device of FIG.
  • An embodiment relates to a cooling device for cooling a battery module mounted in a vehicle.
  • the battery module is installed on one side of the cooling device, and a plurality of refrigerant pipes branched from the main pipe are arranged along the one surface inside the cooling device.
  • the refrigerant from the main pipe flows through each refrigerant pipe, but since the refrigerant flow rate in each refrigerant pipe varies, the temperature varies between the refrigerant pipes. Due to the variation in temperature among the refrigerant tubes, the temperature varies depending on the position in the battery module. It is effective to attach a plurality of refrigerant pipes to the cooling fluid in order to suppress temperature variations among the refrigerant pipes.
  • the cooling fluid in order to improve the cooling efficiency, it is preferable to also flow the cooling fluid.
  • the heat absorbed from the refrigerant pipe also flows due to the flow of the coolant, the variation in temperature among the refrigerant pipes is not suppressed depending on the direction of the flow of the coolant. Therefore, it is required to flow the coolant in such a direction as to suppress the temperature variation between the refrigerant pipes.
  • the coolant flows in a direction perpendicular to the refrigerant pipe, and the temperature variation between the refrigerant pipes is suppressed by the coolant, and the direction in which the coolant flows is changed by the U-turn. Suppress.
  • parallel and vertical include not only perfect parallel and vertical but also cases where they are deviated from parallel and vertical within the range of error.
  • approximately means that they are the same within the approximate range.
  • the same reference numerals are given to the same components, and redundant description will be omitted.
  • a part of component is suitably abbreviate
  • FIG. 1 is a perspective view showing the structure of a battery system 100.
  • an orthogonal coordinate system consisting of x-axis, y-axis and z-axis is defined.
  • the x axis and the y axis are orthogonal to each other in the bottom of the battery system 100.
  • the z-axis is perpendicular to the x-axis and the y-axis and extends in the height direction of the battery system 100.
  • the positive direction of each of the x-axis, y-axis and z-axis is defined in the direction of the arrow in FIG. 1, and the negative direction is defined in the direction opposite to the arrow.
  • FIG. 1 is a perspective view including the front side of the battery system 100.
  • FIG. 1 is a perspective view including the front side of the battery system 100.
  • the battery module 10 has a box shape.
  • the cooling device 20 is a device for cooling the battery module 10. Since the length in the height direction of the cooling device 20 is shorter than the length in the front-rear direction and the left-right direction, the cooling device 20 has a low-profile plate shape.
  • the cooling device 20 may be referred to as a cooling plate.
  • the battery module 10 is installed on the upper surface of the cooling device 20. Therefore, the upper surface of the cooling device 20 and the lower surface of the battery module 10 are in contact with each other.
  • a first coolant pipe 22a collectively referred to as a coolant pipe 22
  • a second coolant pipe 22b a first refrigerant pipe 24a collectively referred to as a refrigerant pipe 24, and a second refrigerant
  • the pipe 24b is disposed.
  • the first refrigerant pipe 24a, the first cooling liquid pipe 22a, the second cooling liquid pipe 22b, and the second refrigerant pipe 24b are arranged from the left to the right of the front surface of the cooling device 20. That is, the two refrigerant pipes 24 are disposed to sandwich the two coolant pipes 22.
  • the coolant flows in from the first coolant pipe 22a, and the coolant flows out from the second coolant pipe 22b.
  • the refrigerant flows in from the first refrigerant pipe 24a, and the refrigerant flows out from the second refrigerant pipe 24b.
  • An example of the refrigerant is HFC (Hydro Fluoro Carbon).
  • the white arrows indicate the flow of the coolant, and the black arrows indicate the flow of the refrigerant.
  • FIG. 2 is an exploded perspective view showing the structure of the cooling device 20.
  • the cooling device 20 includes a coolant tank 30, a first refrigerant header 40a collectively referred to as a refrigerant header 40, a second refrigerant header 40b, and first to fourth refrigerant pipes 42a to 42d collectively referred to as a refrigerant pipe 42 and an inner fin. 44, including the top plate 50.
  • the coolant tank 30 also includes first to fourth inner walls 32a to 32d collectively referred to as an inner wall 32, a bottom 34, a partition plate 36, and first to fourth openings 38a to 38d collectively referred to as an opening 38.
  • the number of refrigerant pipes 42 is “4”, it is not limited thereto.
  • the coolant tank 30 has a bowl-like shape that is open at the upper side and is hollow at the center.
  • the inner side surface of the coolant tank 30 is formed by the first inner wall 32 a to the fourth inner wall 32 d. These have rectangular shapes whose height direction is shorter than the other direction, the first inner wall 32a and the second inner wall 32b face each other, and the third inner wall 32c and the fourth inner wall 32d face each other.
  • the first inner wall 32a is disposed on the front side
  • the second inner wall 32b is disposed on the rear side.
  • a bottom surface 34 is disposed at the bottom of the recess of the coolant tank 30 so as to be surrounded by the first inner wall 32 a to the fourth inner wall 32 d.
  • the bottom surface 34 has a rectangular shape longer in the left-right direction than in the front-rear direction.
  • a partition plate 36 is provided upright on the bottom surface 34.
  • the partition plate 36 extends from the central portion in the left-right direction of the first inner wall 32a toward the rear side to a position where it has not reached the second inner wall 32b.
  • On the upper side of the partition plate 36 four semicircular recessed grooves are provided.
  • another partition plate (not shown) is provided on the lower surface of the top plate 50 so as to face the partition plate 36.
  • the refrigerant pipe 42 (from the first refrigerant pipe 42 a to the fourth refrigerant pipe 42 d) is sandwiched between the groove part of the partition plate 36 and the groove part (not shown) of another partition plate.
  • a flow path for the coolant is formed between the second inner wall 32 b and the partition plate 36.
  • the inside of the coolant tank 30 is partitioned by such a partition plate 36.
  • the third opening 38c, the first opening 38a, the second opening 38b, and the fourth opening 38d are arranged in order from left to right so as to penetrate the first inner wall 32a.
  • the third opening 38 c and the first opening 38 a are disposed on the left side of the partition plate 36
  • the second opening 38 b and the fourth opening 38 d are disposed on the right side of the partition plate 36.
  • the first opening 38a is connected to a cylindrical first coolant pipe 22a
  • the second opening 38b is connected to a cylindrical second coolant pipe 22b.
  • the front end of the first coolant pipe 22a is open and leads to the first opening 38a.
  • the front end of the second coolant pipe 22b is open and leads to the second opening 38b.
  • the first refrigerant header 40a has a cylindrical shape and is connected to the first refrigerant pipe 24a at the front end
  • the second refrigerant header 40b also has a cylindrical shape and is connected to the second refrigerant pipe 24b at the front end.
  • the front end of the first refrigerant pipe 24a is open and connected to the internal space of the first refrigerant header 40a.
  • the front end of the second refrigerant pipe 24b is open and leads to the internal space of the second refrigerant header 40b.
  • Four refrigerant pipes 42 extending in the left-right direction along the first inner wall 32a and the second inner wall 32b are connected to the first refrigerant header 40a and the second refrigerant header 40b.
  • first refrigerant pipe 42a, the second refrigerant pipe 42b, the third refrigerant pipe 42c, and the fourth refrigerant pipe 42d are arranged in order from the front side to the rear side.
  • Each refrigerant pipe 42 has a cylindrical shape, and the left end is connected to the internal space of the first refrigerant header 40a, and the right end is connected to the internal space of the second refrigerant header 40b.
  • a bellows-shaped inner fin 44 is disposed in a portion surrounded by the first refrigerant header 40a, the first refrigerant pipe 42a, the second refrigerant header 40b, and the fourth refrigerant pipe 42d. In FIG. 2, the inner fins 44 hide the second refrigerant pipe 42 b and the third refrigerant pipe 42 c.
  • the refrigerant pipe 24 and the refrigerant header 40 to the inner fins 44 combined as described above correspond to a heat exchanger for the refrigerant, and the heat exchanger is stored inside the coolant tank 30.
  • the partition plate 36 is disposed to cross the plurality of refrigerant pipes 42 (the first refrigerant pipe 42a to the fourth refrigerant pipe 42d).
  • the first refrigerant pipe 24a penetrates the third opening 38c from the inside of the cooling liquid tank 30 to the outside and protrudes to the front side of the cooling liquid tank 30, and the second refrigerant pipe 24b cools the fourth opening 38d. It penetrates from the inside of the liquid tank 30 to the outside and protrudes to the front side of the cooling liquid tank 30.
  • the top plate 50 is attached to the upper side of the coolant tank 30, so that the opening of the coolant tank 30 is closed.
  • the lower surface of the top plate 50 is provided with another partition plate (not shown), and the other partition plate faces the partition plate 36.
  • FIGS. 3 (a)-(c) will be used to explain the flow of refrigerant and coolant in such a structure.
  • 3 (a)-(c) show the structure of the cooling device 20.
  • FIG. 3A is a plan view of the cooling device 20 from the upper side with the top plate 50 removed while leaving another partition plate of the top plate 50
  • FIG. 3B is a plan view of the cooling device 20.
  • FIG. 3 (c) is a cross-sectional view taken along the line AA 'of FIG. 3 (a).
  • the front side is transparent.
  • the first refrigerant header 40a is connected to the rear side of the first refrigerant pipe 24a, and the left ends of the first refrigerant pipe 42a to the fourth refrigerant pipe 42d are connected to the first refrigerant header 40a.
  • the right ends of the first refrigerant pipe 42a to the fourth refrigerant pipe 42d are connected to the second refrigerant header 40b, and the second refrigerant pipe 24b is connected to the front side of the second refrigerant header 40b.
  • the refrigerant flows in from the first refrigerant pipe 24a and flows to the first refrigerant header 40a.
  • the refrigerant is branched and flows from the first refrigerant pipe 42a to the fourth refrigerant pipe 42d in the first refrigerant header 40a.
  • the refrigerant having flowed from the first refrigerant pipe 42a to the fourth refrigerant pipe 42d merges in the second refrigerant header 40b.
  • the refrigerant flows from the second refrigerant header 40b to the second refrigerant pipe 24b and flows out of the second refrigerant pipe 24b.
  • the refrigerant pipe 42 causes the refrigerant to flow in the cooling liquid tank 30.
  • the inside of the coolant tank 30 is partitioned by the partition plate 36 into a space on the first opening 38 a side and a space on the second opening 38 b side.
  • the partition plate 36 provided in the coolant tank 30 is referred to as a lower partition plate 36a1
  • another partition plate provided in the top plate 50 is an upper partition plate. Shown as 36a2.
  • the lower partition plate 36a1 and the upper partition plate 36a2 are collectively referred to as a partition plate 36 (or a first partition plate 36a). In addition, these spaces are connected on the rear side. Therefore, in the inside of the coolant tank 30, the flow path partitioned by the partition plate 36 is formed.
  • the flow path goes from the first opening 38a to the rear side, then to the right side, and then to the front side to reach the second opening 38b.
  • the second opening 38 b is provided on the first inner wall 32 a on the opposite side of the flow path to the first opening 38 a.
  • the coolant flows into the coolant tank 30 from the first coolant pipe 22a, flows through the aforementioned flow path, and flows out of the coolant tank 30 from the second coolant pipe 24b.
  • FIGS. 4 (a) and 4 (b) show the structure of the cooling device 120 to which the cooling device 20 is to be compared.
  • FIGS. 4 (a)-(b) are all top views, and are similar to FIG. 3 (a).
  • FIG. 4A shows the case where only the refrigerant flows without flowing the cooling fluid.
  • the cooling device 120 includes a first refrigerant pipe 124a collectively referred to as a refrigerant pipe 124, a second refrigerant pipe 124b, and a first inner wall 132a collectively referred to as an inner wall 132, a second inner wall 132b, a third inner wall 132c, and a fourth inner wall 132d.
  • the refrigerant pipe 124, the inner wall 132, the refrigerant header 140, and the refrigerant pipe 142 have the same structure as the refrigerant pipe 24, the inner wall 32, the refrigerant header 40, and the refrigerant pipe 42 in FIG. Therefore, the refrigerant also flows as described above.
  • the temperature of the first refrigerant pipe 142a becomes the lowest
  • the temperature of the second refrigerant pipe 142b and the temperature of the third refrigerant pipe 142c increase
  • the temperature of the fourth refrigerant pipe 142d becomes the highest. That is, due to the occurrence of the imbalance between the liquid state and the gas state of the refrigerant, the temperature varies among the refrigerant pipes 142, and the cooling is not uniform.
  • FIG. 4B includes, in addition to the structure of FIG. 4A, a coolant tank 130, a first coolant pipe 122a collectively referred to as a coolant pipe 122, and a second coolant pipe 122b.
  • the refrigerant flows as in FIG. 4A, and the cooling fluid flows from the right to the left. That is, both the refrigerant and the coolant flow in the left and right direction.
  • the amount of heat exchanged between the refrigerant pipes 142 is not large, the variation in temperature between the refrigerant pipes 142 does not become small.
  • the coolant flows in the direction in which the plurality of refrigerant pipes 42 are arranged. This corresponds to the flow of the coolant in the front-rear direction in which the temperature variation between the refrigerant pipes 42 occurs. Such flow of the coolant actively reduces the variation in temperature among the refrigerant pipes 42. Further, since the coolant flows through the flow path which is returned from the rear side to the front side by the partition plate 36, the temperature variation in the refrigerant pipe 42, that is, the temperature dispersion in the direction in which the refrigerant pipe 42 extends is also alleviated .
  • FIG. 5 shows another structure of the cooling device 20.
  • the cooling device 20 does not include the partition plate 36 as compared with FIG. 3A, and the first coolant pipe 22a and the first opening 38a are provided in the second inner wall 32b. That is, the first opening 38 a and the second opening 38 b are provided on the opposed inner wall 32.
  • the coolant flowing from the first coolant pipe 22a flows from the rear side to the front side and flows out from the second coolant pipe 22b. Therefore, the coolant flows in the direction in which the plurality of refrigerant pipes 42 are arranged, and the variation in temperature between the refrigerant pipes 42 is positively mitigated.
  • the partition plate 36 since the partition plate 36 is not disposed, the structure is simplified.
  • FIG. 6 (a)-(b) show still another structure of the cooling device 20.
  • FIG. These are structures in the case where a plurality of partition plates 36 are included, and are shown similarly to FIG. 3 (a).
  • the second partition plate 36b is included in the structure of FIG. 3A.
  • the first partition plate 36a corresponds to the partition plate 36 of FIG. 3 (a).
  • the second partition plate 36b is configured of a lower partition plate and an upper partition plate.
  • the first partition plate 36 a and the second partition plate 36 b are collectively referred to as a partition plate 36.
  • the second partition plate 36b extends forward from the second inner wall 32b to a position where the first inner wall 32a has not reached.
  • first partition plate 36 a and the second partition plate 36 b cross the plurality of refrigerant pipes 42.
  • the second partition plate 36b is disposed on the right side of the first partition plate 36a.
  • first coolant pipe 22a and the first opening 38a are provided in the first inner wall 32a
  • second coolant pipe 22b and the second opening 38b are provided in the second inner wall 32b.
  • the interior of the coolant tank 30 is a space on the side of the first opening 38a and a space not including any of the first opening 38a and the second opening 38b. , And the space on the side of the second opening 38b. Adjacent spaces are connected on the rear side or the front side. Therefore, in the inside of the coolant tank 30, the flow path partitioned by the partition plate 36 is formed. The flow path goes from the first opening 38a to the rear side, then to the right side, then to the front side, further to the right side, and then to the second side by going to the second side.
  • the second opening 38 b is provided on the second inner wall 32 b on the opposite side of the flow path to the first opening 38 a.
  • the coolant flows into the coolant tank 30 from the first coolant pipe 22a, flows through the above-mentioned flow path, and flows out of the coolant tank 30 from the second coolant pipe 22b.
  • the third partition plate 36c is included in the structure of FIG. 6 (a).
  • the first partition plate 36 a, the second partition plate 36 b, and the third partition plate 36 c are collectively referred to as a partition plate 36.
  • the third partition plate 36c has the same structure as that of the first partition plate 36a, and is disposed in line with the first partition plate 36a so as to sandwich the second partition plate 36b inside the coolant tank 30.
  • the third partition plate 36c is disposed on the right side of the second partition plate 36b.
  • the first partition plate 36 a, the second partition plate 36 b, and the third partition plate 36 c cross the plurality of refrigerant pipes 42.
  • the first coolant pipe 22a and the first opening 38a are provided in the first inner wall 32a
  • the second coolant pipe 22b and the second opening 38b are also provided in the first inner wall 32a.
  • the interior of the coolant tank 30 is either the space on the first opening 38a side, the first opening 38a or the second opening 38b. It is divided into two spaces which do not include the space, the space on the side of the second opening 38b. Adjacent spaces are connected on the rear side or the front side. Therefore, in the inside of the coolant tank 30, the flow path partitioned by the partition plate 36 is formed. The flow path proceeds to the rear side from the first opening 38 a and then to the right side and then to the front side. Furthermore, the flow path goes to the right side, goes to the rear side, goes to the right side, and then goes to the front side to reach the second opening 38 b.
  • the second opening 38 b is provided on the first inner wall 32 a on the opposite side of the flow path to the first opening 38 a.
  • the coolant flows into the coolant tank 30 from the first coolant pipe 22a, flows through the above-mentioned flow path, and flows out of the coolant tank 30 from the second coolant pipe 22b.
  • FIGS. 6 (a)-(b) by increasing the number of partition plates 36, the flow velocity of the coolant is increased, and the heat exchange efficiency is increased.
  • FIG. 7 is a block diagram showing the configuration of battery system 100.
  • the battery system 100 includes a cooling device 20, a compressor 60, a condenser 62, an expansion valve 64, an HVAC (Heating, Ventilation, and Air Conditioning) 66, an expansion valve 68, a WP (Water Pomp) 70, and an HTR (HeaTeR) 72.
  • the battery module 10 of FIG. 1 is omitted.
  • the compressor 60, the condenser 62, the expansion valve 64, the HVAC 66, and the expansion valve 68 in FIG. 7 are included in the refrigerant circuit, and the WP 70 and the HTR 72 are included in the cooling liquid circuit.
  • the refrigerant circuit supplies a refrigerant to the cooling device 20, and the heat of vaporization of the refrigerant cools the cooling device 20.
  • the compressor 60 pressurizes the vaporized refrigerant
  • the condenser 62 cools and liquefies the refrigerant pressurized by the compressor 60
  • the expansion valve 64 is connected to the condenser 62.
  • the compressor 60 is driven by the engine or motor of the vehicle to pressurize the vaporized refrigerant.
  • the condenser 62 cools and liquefies the vaporized refrigerant.
  • the condenser 62 In the hybrid car, the condenser 62 is disposed in front of a radiator that cools the engine coolant.
  • the condenser 62 is also cooled by a fan that cools the radiator.
  • the cooling device 20 is connected at the discharge side to the compressor 60, and the compressor 60 sucks and pressurizes the vaporized refrigerant discharged from the cooling device 20.
  • the pressurized refrigerant is cooled by the condenser 62 and liquefied.
  • the liquefied refrigerant is supplied to the cooling device 20 via the expansion valve 64.
  • the expansion valve 64 cools the cooling fluid with the temperature of the cooling device 20 as a set temperature.
  • the expansion valve 64 is a control valve capable of controlling the flow rate of the refrigerant, or a capillary tube or the like consisting of thin tubes having a fixed flow rate which can not control the flow rate of the refrigerant.
  • the refrigerant that has passed through the expansion valve 64 is adiabatically expanded and vaporized inside the cooling device 20 to cool the coolant with the heat of vaporization.
  • a cooling HVAC 66 is connected to the refrigerant circuit via the expansion valve 68.
  • the HVAC 66 includes an evaporator.
  • the HTR 72 heats the coolant if the engine is not warm enough. In this state, the engine that has been started and warmed sufficiently warms the internal coolant.
  • the WP 70 circulates the coolant.
  • the coolant that has been quickly warmed inside the engine circulates through the cooling device 20.
  • FIG. 8 is a top view showing another structure of the battery system 100.
  • the battery system 100 includes a first battery module 10 a and a second battery module 10 b collectively referred to as a battery module 10.
  • Each battery module 10 has a rectangular upper surface longer in the left-right direction than in the front-rear direction, and is arranged in the front-rear direction.
  • the first battery module 10a is disposed on the front side
  • the second battery module 10b is disposed on the rear side.
  • first temperature sensor 12a may be attached to the lower surface of the first battery module 10a
  • second temperature sensor 12b may be attached to the lower surface of the second battery module 10b.
  • the first temperature sensor 12a and the second temperature sensor 12b are collectively referred to as a temperature sensor 12 and measure temperature. That is, the temperature sensor 12 measures the temperature of the lower surface of the battery module 10.
  • the temperature sensor 12 may be attached to another position of the battery module 10.
  • FIG. 9 is a block diagram showing the structure of battery system 100.
  • the control device 80 includes an acquisition unit 82 and an adjustment unit 84.
  • the acquisition unit 82 is connected to the first temperature sensor 12 a and the second temperature sensor 12 b of FIG. 8, and acquires the temperatures measured in each of them. That is, the temperature sensor 12 acquires the temperature of the first battery module 10a and the temperature of the second battery module 10b.
  • These battery modules 10 are batteries to be cooled by the cooling device 20.
  • the acquisition unit 82 acquires the degree of temperature variation of the first battery module 10a and the second battery module 10b by calculating the difference between the two temperatures.
  • the acquisition unit 82 outputs the degree of variation to the adjustment unit 84.
  • the adjustment unit 84 receives the degree of temperature variation from the acquisition unit 82.
  • the adjustment unit 84 adjusts the flow rate of the coolant to be supplied to the coolant tank 30 based on the degree of variation. Specifically, the adjustment unit 84 determines to increase the flow rate as the degree of variation is larger.
  • the circulation valve 74 is connected to the coolant circuit. The circulation valve 74 changes the flow rate of the coolant according to the determination in the adjustment unit 84.
  • this configuration can be realized with the CPU, memory, or other LSI of any computer, and with software, it can be realized by a program loaded into the memory, etc.
  • These functional blocks can be realized in various forms only by hardware and by a combination of hardware and software.
  • the partition plate extending from the first inner wall to the position not reached to the second inner wall across the refrigerant pipe divides the interior of the coolant tank, so that the coolant pipe is traversed inside the coolant tank Flow path can be formed.
  • the coolant flows in the flow path in the direction crossing the coolant pipe inside the coolant tank, it is possible to suppress the temperature variation at different positions.
  • the partition plate crosses the plurality of refrigerant pipes, it is possible to form a flow path in the direction crossing the plurality of refrigerant pipes.
  • the coolant flows in the flow path in the direction crossing the plurality of refrigerant pipes inside the cooling liquid tank, it is possible to suppress the temperature variation among the refrigerant pipes.
  • the second partition plate extends from the second inner wall facing the first inner wall to the position not reaching the first inner wall across the refrigerant pipe, the flow direction of the coolant can be changed. Further, since the first partition plate and the second partition plate cross the plurality of refrigerant pipes, it is possible to suppress variations in the temperatures of the plurality of refrigerant pipes. In addition, since the third partition plate is provided, the coolant can be made to meander. In addition, since the first partition plate, the second partition plate, and the third partition plate cross the plurality of refrigerant pipes, it is possible to suppress the temperature variation of the plurality of refrigerant pipes.
  • the inflow and the outflow of the coolant can be performed from the same direction.
  • the first opening is provided in the first inner wall and the second opening is provided in the second inner wall, the inflow and the outflow of the coolant can be performed from different directions.
  • the flow rate of the coolant is adjusted based on the degree of the temperature variation of the battery, the temperature variation can be suppressed even if the temperature variation is large. Further, since the battery module and the cooling device are provided, it is possible to suppress temperature variations at different positions in the battery module.
  • a cooling device includes a coolant tank having a first inner wall and a second inner wall opposite to each other, extends along the first inner wall and the second inner wall inside the coolant tank, and flows the refrigerant.
  • a plurality of refrigerant pipes, and a partition plate which divides the interior of the coolant tank by extending from the first inner wall inside the coolant tank to the position where the second inner wall has not reached, across the plurality of coolant pipes. Inside the coolant tank, the coolant flows through the flow path partitioned by the partition plate.
  • the partition plate extending from the first inner wall to the position not reaching the second inner wall across the plurality of refrigerant pipes partitions the inside of the coolant tank, and the inside of the coolant tank is partitioned by the partition plate Since the coolant flows through the flow path, temperature variations at different positions can be suppressed.
  • Another partition plate for partitioning the inside of the coolant tank by extending across the plurality of refrigerant pipes from the second inner wall inside the coolant tank to a position where the first inner wall is not reached.
  • another partition plate extends from the second inner wall across the plurality of refrigerant pipes to the position where the first inner wall is not reached, the flow direction of the coolant can be changed.
  • the first opening provided in the first inner wall and the second opening provided on the opposite side of the flow passage from the first opening in the first inner wall may further be provided.
  • the coolant may flow into the coolant tank from one of the first opening and the second opening, and the coolant may flow out of the coolant tank from the other of the first opening and the second opening.
  • the first opening and the second opening are provided in the first inner wall, the inflow and the outflow of the coolant can be performed from the same direction.
  • the display device may further include a first opening provided in the first inner wall and a second opening provided on the opposite side of the flow passage from the first opening in the second inner wall.
  • the coolant may flow into the coolant tank from one of the first opening and the second opening, and the coolant may flow out of the coolant tank from the other of the first opening and the second opening.
  • the first opening is provided in the first inner wall and the second opening is provided in the second inner wall, the inflow and the outflow of the coolant can be performed from different directions.
  • the coolant flows into the coolant tank from the first opening, and the coolant flows out of the coolant reservoir from the second opening, and the estimation unit If it is estimated that the second temperature is lower, the coolant may flow into the coolant tank from the second opening, and the coolant may flow out of the coolant tank from the first opening. In this case, since the coolant is allowed to flow in from the lower temperature side, the cooling efficiency can be improved.
  • the flow rate of the coolant is adjusted based on the degree of the temperature variation of the battery, the temperature variation can be suppressed even if the temperature variation is large.
  • a battery and a cooling device for cooling the battery may be provided.
  • the battery and the cooling device are provided, temperature variations at different positions in the battery can be suppressed.
  • the coolant is allowed to flow into the coolant tank 30 through the first opening 38a, and the coolant is allowed to flow out of the coolant tank 30 through the second opening 38b.
  • the flow direction of the coolant may be changed.
  • the estimation unit (not shown) in the control device 80 of FIG. 9 stores in advance information on how the refrigerant is biased, that is, how the cooling device 20 is biased.
  • the estimation unit estimates the lower one of the first temperature in the vicinity of the first opening 38a and the second temperature in the vicinity of the second opening 38b based on the bias.
  • the refrigerant in the liquid state is large in the part that is downward due to the deviation
  • the refrigerant in the gaseous state is large in the part that is upward due to the deviation. Therefore, the temperature is lowered in the former and the temperature is increased in the latter.
  • the estimation unit estimates that the first temperature is lower than the second temperature, and the second opening 38b becomes lower than the first opening 38a. If so, it is estimated that the second temperature is lower than the first temperature.
  • the estimation unit estimates the lower one of the first temperature in the vicinity of the first opening 38a and the second temperature in the vicinity of the second opening 38b by sensing the direction of the refrigerant or the temperature of the battery module 10 It is also good.
  • the coolant circuit when it is estimated that the first temperature is lower in the estimation unit, the coolant flows into the coolant tank 30 from the first opening 38a, and out of the coolant tank 30 from the second opening 38b. The coolant is flowed so that the coolant can drain.
  • the coolant circuit when it is estimated that the second temperature is lower in the estimation unit, the coolant flows into the coolant tank 30 through the second opening 38b, and the coolant tank 30 through the first opening 38a. The coolant is flowed so that the coolant can flow out.
  • a known technique may be used to change the flow direction of the coolant, so the description is omitted here. According to this modification, since the coolant flows from the lower temperature to the higher temperature, the cooling efficiency can be improved.
  • the cooling device for cooling the on-vehicle battery it is possible to suppress temperature variations at different positions.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Automation & Control Theory (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Secondary Cells (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Cooling, Air Intake And Gas Exhaust, And Fuel Tank Arrangements In Propulsion Units (AREA)
  • Arrangement Or Mounting Of Propulsion Units For Vehicles (AREA)
  • Battery Mounting, Suspending (AREA)

Abstract

A cooling liquid tank 30 has a first inner wall 32a and a second inner wall 32b that are opposed to each other. First to fourth refrigerant pipes 42a-42d extend along the first inner wall 32a and the second inner wall 32b inside the cooling liquid tank 30, and cause a refrigerant to flow therethrough. A partition plate 36 crosses the first to fourth refrigerant pipes 42a-42d from the first inner wall 32a inside the cooling liquid tank 30, extends to a position not reaching the second inner wall 32b, and thus partitions the inside of the cooling liquid tank 30. A cooling liquid flows through a flow path partitioned by the partition plate 36 inside the cooling liquid tank 30.

Description

冷却装置および電池システムCooling device and battery system
 本開示は、冷却技術に関し、特に電池を冷却する冷却装置および電池システムに関する。 The present disclosure relates to cooling technology, and more particularly to a cooling device and a battery system for cooling a battery.
 ハイブリッド車や電気自動車には、駆動源であるモータに電力を供給する電池モジュール(車載電池)が搭載される。電池モジュールの温度上昇を抑制するために、例えば、冷媒の気化熱による冷却がなされる。しかしながら、冷媒通路の近傍で温度が低く、かつ冷却通路の流入側が排出側よりも低温になることによる冷却むらが発生して、電池モジュール内の位置によって温度が異なる。冷却むらを抑制するために、冷媒を流す熱交換器が冷却液につけられる(例えば、特許文献1参照)。 In a hybrid vehicle or an electric vehicle, a battery module (on-vehicle battery) for supplying electric power to a motor as a driving source is mounted. In order to suppress the temperature rise of the battery module, for example, cooling by the heat of vaporization of the refrigerant is performed. However, the temperature is low in the vicinity of the refrigerant passage, and uneven cooling occurs due to the inflow side of the cooling passage becoming cooler than the discharge side, and the temperature varies depending on the position in the battery module. In order to suppress uneven cooling, a heat exchanger for flowing the refrigerant is attached to the cooling liquid (see, for example, Patent Document 1).
特開2010-50000号公報JP, 2010-50000, A
 車載電池を冷却する際において、冷却液が流される場合、流す方向によっては、異なった位置における冷媒の温度のばらつきが抑制されない。そのため、異なった位置における冷媒の温度のばらつきを抑制する方向に冷却液を流すことが必要とされる。 When cooling a vehicle-mounted battery, when a coolant flows, the dispersion | variation in the temperature of the refrigerant | coolant in a different position is not suppressed by the flowing direction. Therefore, it is necessary to flow the coolant in a direction to suppress the variation in temperature of the refrigerant at different positions.
 本開示はこうした状況に鑑みてなされたものであり、その目的は、車載電池を冷却する冷却装置において、異なった位置における温度のばらつきを抑制する技術を提供することにある。 This indication is made in view of such a situation, and the object is to provide the art which controls the variation in the temperature in a different position in the cooling device which cools a car-mounted battery.
 上記課題を解決するために、本開示のある態様の冷却装置は、互いに対向した第1内壁と第2内壁とを有する冷却液槽と、冷却液槽の内部において第1内壁と第2内壁に沿って延び、かつ冷媒を流す複数の冷媒管と、冷却液槽の内部における第1内壁から複数の冷媒管を横切って、第2内壁に未到達の位置まで延びることによって、冷却液槽の内部を仕切る仕切り板とを備える。冷却液槽の内部では、仕切り板によって仕切られた流路を冷却液が流れる。 In order to solve the above problems, a cooling device according to an aspect of the present disclosure includes a cooling fluid tank having a first inner wall and a second inner wall facing each other, and a first inner wall and a second inner wall inside the cooling fluid tank. The interior of the coolant tank by extending along the plurality of refrigerant pipes flowing the refrigerant and flowing the refrigerant, and from the first inner wall inside the coolant tank to the position where the second inner wall has not reached. And a partition plate for partitioning the Inside the coolant tank, the coolant flows through the flow path partitioned by the partition plate.
 本開示によれば、車載電池を冷却する冷却装置において、異なった位置における温度のばらつきを抑制できる。 According to the present disclosure, in the cooling device for cooling the on-vehicle battery, it is possible to suppress temperature variations at different positions.
実施例に係る電池システムの構造を示す斜視図である。It is a perspective view which shows the structure of the battery system which concerns on an Example. 図1の冷却装置の構造を示す分解斜視図である。It is a disassembled perspective view which shows the structure of the cooling device of FIG. 図3(a)-(c)は、図1の冷却装置の構造を示す図である。3 (a) to 3 (c) are diagrams showing the structure of the cooling device of FIG. 図4(a)-(b)は、図3(a)の冷却装置の比較対象となる冷却装置の構造を示す図である。FIGS. 4 (a)-(b) are diagrams showing the structure of a cooling device to be compared with the cooling device of FIG. 3 (a). 図1の冷却装置の別の構造を示す図である。It is a figure which shows another structure of the cooling device of FIG. 図6(a)-(b)は、図1の冷却装置のさらに別の構造を示す図である。6 (a)-(b) are diagrams showing still another structure of the cooling device of FIG. 図1の電池システムの構成を示すブロック図である。It is a block diagram which shows the structure of the battery system of FIG. 図1の電池システムの別の構造を示す図である。It is a figure which shows another structure of the battery system of FIG. 図8の電池システムの構成を示すブロック図である。It is a block diagram which shows the structure of the battery system of FIG.
 本開示の実施例を具体的に説明する前に、概要を説明する。実施例は、車両に搭載されている電池モジュールを冷却するための冷却装置に関する。冷却装置の一面側に電池モジュールが設置されるとともに、冷却装置の内部には一面に沿って、主配管から分岐した複数の冷媒管が並べられる。各冷媒管には主配管からの冷媒が流されるが、各冷媒管における冷媒流量がばらつくので、冷媒管間において温度がばらつく。冷媒管間における温度のばらつきによって、電池モジュール内の位置によって温度が異なる。冷媒管間における温度のばらつきを抑制するために、複数の冷媒管を冷却液につけることが有効である。一方、冷却効率を向上するために冷却液も流される方が好ましい。しかしながら、冷却液が流れることによって冷媒管から吸収した熱も流れるので、冷却液の流れる方向によっては、冷媒管間における温度のばらつきが抑制されない。そのため、冷媒管間における温度のばらつきを抑制するような方向に冷却液を流すことが求められる。 Before specifically describing the embodiments of the present disclosure, an outline will be described. An embodiment relates to a cooling device for cooling a battery module mounted in a vehicle. The battery module is installed on one side of the cooling device, and a plurality of refrigerant pipes branched from the main pipe are arranged along the one surface inside the cooling device. The refrigerant from the main pipe flows through each refrigerant pipe, but since the refrigerant flow rate in each refrigerant pipe varies, the temperature varies between the refrigerant pipes. Due to the variation in temperature among the refrigerant tubes, the temperature varies depending on the position in the battery module. It is effective to attach a plurality of refrigerant pipes to the cooling fluid in order to suppress temperature variations among the refrigerant pipes. On the other hand, in order to improve the cooling efficiency, it is preferable to also flow the cooling fluid. However, since the heat absorbed from the refrigerant pipe also flows due to the flow of the coolant, the variation in temperature among the refrigerant pipes is not suppressed depending on the direction of the flow of the coolant. Therefore, it is required to flow the coolant in such a direction as to suppress the temperature variation between the refrigerant pipes.
 本実施例では、冷媒管と直交するように冷却液を流し、冷却液により冷媒管間の温度ばらつきを抑制するとともに、Uターンにより冷却液を流す向きが変えられることによって冷媒管内の温度のばらつきを抑制する。なお、以下の説明において、「平行」、「垂直」は、完全な平行、垂直だけではなく、誤差の範囲で平行、垂直からずれている場合も含むものとする。また、「略」は、おおよその範囲で同一であるという意味である。さらに、以下の実施例では、同一の構成要素に同一の符号を付し、重複する説明を省略する。また、各図面では、説明の便宜のため、構成要素の一部を適宜省略する。 In the present embodiment, the coolant flows in a direction perpendicular to the refrigerant pipe, and the temperature variation between the refrigerant pipes is suppressed by the coolant, and the direction in which the coolant flows is changed by the U-turn. Suppress. In the following description, "parallel" and "vertical" include not only perfect parallel and vertical but also cases where they are deviated from parallel and vertical within the range of error. In addition, “approximately” means that they are the same within the approximate range. Furthermore, in the following embodiments, the same reference numerals are given to the same components, and redundant description will be omitted. Moreover, in each drawing, a part of component is suitably abbreviate | omitted for the facilities of description.
 図1は、電池システム100の構造を示す斜視図である。図1に示すように、x軸、y軸、z軸からなる直交座標系が規定される。x軸、y軸は、電池システム100の底面内において互いに直交する。z軸は、x軸およびy軸に垂直であり、電池システム100の高さ方向に延びる。また、x軸、y軸、z軸のそれぞれの正の方向は、図1における矢印の方向に規定され、負の方向は、矢印と逆向きの方向に規定される。ここで、x軸の正方向側が「前側」と呼ばれ、x軸の負方向側が「後側」と呼ばれ、y軸の正方向側が「右側」と呼ばれ、y軸の負方向側が「左側」と呼ばれ、z軸の正方向側が「上側」と呼ばれ、z軸の負方向側が「下側」と呼ばれることもある。そのため、図1は、電池システム100の前側を含む斜視図である。 FIG. 1 is a perspective view showing the structure of a battery system 100. As shown in FIG. As shown in FIG. 1, an orthogonal coordinate system consisting of x-axis, y-axis and z-axis is defined. The x axis and the y axis are orthogonal to each other in the bottom of the battery system 100. The z-axis is perpendicular to the x-axis and the y-axis and extends in the height direction of the battery system 100. Also, the positive direction of each of the x-axis, y-axis and z-axis is defined in the direction of the arrow in FIG. 1, and the negative direction is defined in the direction opposite to the arrow. Here, the positive direction side of the x axis is called "front side", the negative direction side of the x axis is called "rear side", the positive direction side of the y axis is called "right side", and the negative direction side of the y axis is " The positive side of the z-axis is sometimes referred to as the "upper side" and the negative side of the z-axis is sometimes referred to as the "lower side". Therefore, FIG. 1 is a perspective view including the front side of the battery system 100. FIG.
 電池モジュール10は、箱形形状を有する。冷却装置20は電池モジュール10を冷却するための装置である。冷却装置20の高さ方向の長さは、前後方向および左右方向の長さよりも短いので、冷却装置20は高さの低い板形形状を有する。冷却装置20は冷却プレートと呼ばれることもある。冷却装置20の上側の面には電池モジュール10が設置される。そのため、冷却装置20の上側の面と電池モジュール10の下側の面とが接触する。 The battery module 10 has a box shape. The cooling device 20 is a device for cooling the battery module 10. Since the length in the height direction of the cooling device 20 is shorter than the length in the front-rear direction and the left-right direction, the cooling device 20 has a low-profile plate shape. The cooling device 20 may be referred to as a cooling plate. The battery module 10 is installed on the upper surface of the cooling device 20. Therefore, the upper surface of the cooling device 20 and the lower surface of the battery module 10 are in contact with each other.
 また、冷却装置20の前側の面には、冷却液パイプ22と総称される第1冷却液パイプ22a、第2冷却液パイプ22b、冷媒パイプ24と総称される第1冷媒パイプ24a、第2冷媒パイプ24bとが配置される。具体的には、冷却装置20の前側の面の左側から右側に向かって、第1冷媒パイプ24a、第1冷却液パイプ22a、第2冷却液パイプ22b、第2冷媒パイプ24bが並べられる。つまり、2つの冷媒パイプ24は、2つの冷却液パイプ22を挟むように配置される。ここでは、第1冷却液パイプ22aから冷却液が流入され、第2冷却液パイプ22bから冷却液が流出される。また、第1冷媒パイプ24aから冷媒が流入され、第2冷媒パイプ24bから冷媒が流出される。冷媒の一例は、HFC(Hydro Fluoro Carbon)である。なお、白色の矢印が冷却液の流れを示し、黒色の矢印が冷媒の流れを示す。 Further, on the front side surface of the cooling device 20, a first coolant pipe 22a collectively referred to as a coolant pipe 22, a second coolant pipe 22b, a first refrigerant pipe 24a collectively referred to as a refrigerant pipe 24, and a second refrigerant The pipe 24b is disposed. Specifically, the first refrigerant pipe 24a, the first cooling liquid pipe 22a, the second cooling liquid pipe 22b, and the second refrigerant pipe 24b are arranged from the left to the right of the front surface of the cooling device 20. That is, the two refrigerant pipes 24 are disposed to sandwich the two coolant pipes 22. Here, the coolant flows in from the first coolant pipe 22a, and the coolant flows out from the second coolant pipe 22b. Further, the refrigerant flows in from the first refrigerant pipe 24a, and the refrigerant flows out from the second refrigerant pipe 24b. An example of the refrigerant is HFC (Hydro Fluoro Carbon). The white arrows indicate the flow of the coolant, and the black arrows indicate the flow of the refrigerant.
 図2は、冷却装置20の構造を示す分解斜視図である。冷却装置20は、冷却液槽30、冷媒ヘッダ40と総称される第1冷媒ヘッダ40a、第2冷媒ヘッダ40b、冷媒管42と総称される第1冷媒管42aから第4冷媒管42d、インナーフィン44、天板50を含む。また、冷却液槽30は、内壁32と総称される第1内壁32aから第4内壁32d、底面34、仕切り板36、開口38と総称される第1開口38aから第4開口38dを含む。ここで、冷媒管42の数は「4」とされているが、それに限定されない。 FIG. 2 is an exploded perspective view showing the structure of the cooling device 20. As shown in FIG. The cooling device 20 includes a coolant tank 30, a first refrigerant header 40a collectively referred to as a refrigerant header 40, a second refrigerant header 40b, and first to fourth refrigerant pipes 42a to 42d collectively referred to as a refrigerant pipe 42 and an inner fin. 44, including the top plate 50. The coolant tank 30 also includes first to fourth inner walls 32a to 32d collectively referred to as an inner wall 32, a bottom 34, a partition plate 36, and first to fourth openings 38a to 38d collectively referred to as an opening 38. Here, although the number of refrigerant pipes 42 is “4”, it is not limited thereto.
 冷却液槽30は、上側が開口して中央部が窪んだ桶形形状を有する。冷却液槽30の内部の側面は、第1内壁32aから第4内壁32dによって形成される。これらは、高さ方向がそれ以外の方向よりも短い矩形状を有し、第1内壁32aと第2内壁32bが互いに対向し、第3内壁32cと第4内壁32dが互いに対向する。また、第1内壁32aが前側に配置され、第2内壁32bが後側に配置される。第1内壁32aから第4内壁32dに囲まれるように、冷却液槽30の窪みの底には底面34が配置される。ここで、底面34は、前後方向よりも左右方向に長い矩形状を有する。 The coolant tank 30 has a bowl-like shape that is open at the upper side and is hollow at the center. The inner side surface of the coolant tank 30 is formed by the first inner wall 32 a to the fourth inner wall 32 d. These have rectangular shapes whose height direction is shorter than the other direction, the first inner wall 32a and the second inner wall 32b face each other, and the third inner wall 32c and the fourth inner wall 32d face each other. In addition, the first inner wall 32a is disposed on the front side, and the second inner wall 32b is disposed on the rear side. A bottom surface 34 is disposed at the bottom of the recess of the coolant tank 30 so as to be surrounded by the first inner wall 32 a to the fourth inner wall 32 d. Here, the bottom surface 34 has a rectangular shape longer in the left-right direction than in the front-rear direction.
 底面34には仕切り板36が立設される。仕切り板36は、第1内壁32aの左右方向の中央部分から後側に向かって第2内壁32bに未到達の位置まで延びる。仕切り板36の上側には半円状に窪んだ溝部が4つ設けられる。また、仕切り板36に対向するように別の仕切り板(図示せず)が天板50の下側の面に設けられる。仕切り板36の溝部と別の仕切り板の溝部(図示せず)には、冷媒管42(第1冷媒管42aから第4冷媒管42d)が挟み込まれる。このような構造によって、第2内壁32bと仕切り板36との間に冷却液の流路が形成される。このような仕切り板36によって、冷却液槽30の内部が仕切られる。第1内壁32aを貫通するように、左側から右側に向かって、第3開口38c、第1開口38a、第2開口38b、第4開口38dが順に並べられる。特に、第3開口38c、第1開口38aは仕切り板36の左側に配置され、第2開口38b、第4開口38dは仕切り板36の右側に配置される。また、第1開口38aは円筒形状の第1冷却液パイプ22aに接続され、第2開口38bは円筒形状の第2冷却液パイプ22bに接続される。ここで、第1冷却液パイプ22aの前側端は開口しており、第1開口38aにつながる。また、第2冷却液パイプ22bの前側端は開口しており、第2開口38bにつながる。 A partition plate 36 is provided upright on the bottom surface 34. The partition plate 36 extends from the central portion in the left-right direction of the first inner wall 32a toward the rear side to a position where it has not reached the second inner wall 32b. On the upper side of the partition plate 36, four semicircular recessed grooves are provided. Further, another partition plate (not shown) is provided on the lower surface of the top plate 50 so as to face the partition plate 36. The refrigerant pipe 42 (from the first refrigerant pipe 42 a to the fourth refrigerant pipe 42 d) is sandwiched between the groove part of the partition plate 36 and the groove part (not shown) of another partition plate. With such a structure, a flow path for the coolant is formed between the second inner wall 32 b and the partition plate 36. The inside of the coolant tank 30 is partitioned by such a partition plate 36. The third opening 38c, the first opening 38a, the second opening 38b, and the fourth opening 38d are arranged in order from left to right so as to penetrate the first inner wall 32a. In particular, the third opening 38 c and the first opening 38 a are disposed on the left side of the partition plate 36, and the second opening 38 b and the fourth opening 38 d are disposed on the right side of the partition plate 36. The first opening 38a is connected to a cylindrical first coolant pipe 22a, and the second opening 38b is connected to a cylindrical second coolant pipe 22b. Here, the front end of the first coolant pipe 22a is open and leads to the first opening 38a. Further, the front end of the second coolant pipe 22b is open and leads to the second opening 38b.
 第1冷媒ヘッダ40aは円筒形状を有し、前側端において第1冷媒パイプ24aに接続され、第2冷媒ヘッダ40bも円筒形状を有し、前側端において第2冷媒パイプ24bに接続される。また、第1冷媒パイプ24aの前側端は開口しており、第1冷媒ヘッダ40aの内部空間につながる。さらに、第2冷媒パイプ24bの前側端は開口しており、第2冷媒ヘッダ40bの内部空間につながる。第1冷媒ヘッダ40aと第2冷媒ヘッダ40bには、第1内壁32aと第2内壁32bに沿って左右方向に延びる4つの冷媒管42が接続される。ここでは、前側から後側に向かって、第1冷媒管42a、第2冷媒管42b、第3冷媒管42c、第4冷媒管42dが並べられる。各冷媒管42は円筒形状を有し、左側端が第1冷媒ヘッダ40aの内部空間につながるとともに、右側端が第2冷媒ヘッダ40bの内部空間につながる。さらに、第1冷媒ヘッダ40a、第1冷媒管42a、第2冷媒ヘッダ40b、第4冷媒管42dによって囲まれた部分には、蛇腹形状のインナーフィン44が配置される。図2では、インナーフィン44によって第2冷媒管42bと第3冷媒管42cが隠れる。 The first refrigerant header 40a has a cylindrical shape and is connected to the first refrigerant pipe 24a at the front end, and the second refrigerant header 40b also has a cylindrical shape and is connected to the second refrigerant pipe 24b at the front end. Further, the front end of the first refrigerant pipe 24a is open and connected to the internal space of the first refrigerant header 40a. Furthermore, the front end of the second refrigerant pipe 24b is open and leads to the internal space of the second refrigerant header 40b. Four refrigerant pipes 42 extending in the left-right direction along the first inner wall 32a and the second inner wall 32b are connected to the first refrigerant header 40a and the second refrigerant header 40b. Here, the first refrigerant pipe 42a, the second refrigerant pipe 42b, the third refrigerant pipe 42c, and the fourth refrigerant pipe 42d are arranged in order from the front side to the rear side. Each refrigerant pipe 42 has a cylindrical shape, and the left end is connected to the internal space of the first refrigerant header 40a, and the right end is connected to the internal space of the second refrigerant header 40b. Further, a bellows-shaped inner fin 44 is disposed in a portion surrounded by the first refrigerant header 40a, the first refrigerant pipe 42a, the second refrigerant header 40b, and the fourth refrigerant pipe 42d. In FIG. 2, the inner fins 44 hide the second refrigerant pipe 42 b and the third refrigerant pipe 42 c.
 このように組み合わされた、冷媒パイプ24、冷媒ヘッダ40からインナーフィン44は冷媒用の熱交換器に相当し、熱交換器は冷却液槽30の内部に格納される。その結果、仕切り板36は、複数の冷媒管42(第1冷媒管42aから第4冷媒管42d)を横切るように配置される。ここで、第1冷媒パイプ24aは、第3開口38cを冷却液槽30の内から外へ貫通して、冷却液槽30の前側に突出し、第2冷媒パイプ24bは、第4開口38dを冷却液槽30の内から外へ貫通して、冷却液槽30の前側に突出する。さらに、冷却液槽30の上側には天板50が取り付けられることによって、冷却液槽30の開口が塞がれる。前述のごとく、天板50の下側の面には、別の仕切り板(図示せず)が設けられており、別の仕切り板は仕切り板36に対向する。 The refrigerant pipe 24 and the refrigerant header 40 to the inner fins 44 combined as described above correspond to a heat exchanger for the refrigerant, and the heat exchanger is stored inside the coolant tank 30. As a result, the partition plate 36 is disposed to cross the plurality of refrigerant pipes 42 (the first refrigerant pipe 42a to the fourth refrigerant pipe 42d). Here, the first refrigerant pipe 24a penetrates the third opening 38c from the inside of the cooling liquid tank 30 to the outside and protrudes to the front side of the cooling liquid tank 30, and the second refrigerant pipe 24b cools the fourth opening 38d. It penetrates from the inside of the liquid tank 30 to the outside and protrudes to the front side of the cooling liquid tank 30. Furthermore, the top plate 50 is attached to the upper side of the coolant tank 30, so that the opening of the coolant tank 30 is closed. As described above, the lower surface of the top plate 50 is provided with another partition plate (not shown), and the other partition plate faces the partition plate 36.
 このような構造における冷媒、冷却液の流れを説明するために、図3(a)-(c)を使用する。図3(a)-(c)は、冷却装置20の構造を示す。図3(a)は、天板50の別の仕切り板を残した状態で天板50を取り外した冷却装置20を上側から見た平面図であり、図3(b)は、冷却装置20を前側から見た側方図であり、図3(c)は、図3(a)のA-A’線における断面図を示す。図3(b)では、前側の側面を透明にしている。前述のごとく、第1冷媒パイプ24aの後側に第1冷媒ヘッダ40aが接続され、第1冷媒ヘッダ40aには、第1冷媒管42aから第4冷媒管42dの左側端が接続される。また、第1冷媒管42aから第4冷媒管42dの右側端は第2冷媒ヘッダ40bに接続され、第2冷媒ヘッダ40bの前側には第2冷媒パイプ24bが接続される。これらの内部空間は連結されている。 FIGS. 3 (a)-(c) will be used to explain the flow of refrigerant and coolant in such a structure. 3 (a)-(c) show the structure of the cooling device 20. FIG. FIG. 3A is a plan view of the cooling device 20 from the upper side with the top plate 50 removed while leaving another partition plate of the top plate 50, and FIG. 3B is a plan view of the cooling device 20. FIG. 3 (c) is a cross-sectional view taken along the line AA 'of FIG. 3 (a). In FIG. 3 (b), the front side is transparent. As described above, the first refrigerant header 40a is connected to the rear side of the first refrigerant pipe 24a, and the left ends of the first refrigerant pipe 42a to the fourth refrigerant pipe 42d are connected to the first refrigerant header 40a. The right ends of the first refrigerant pipe 42a to the fourth refrigerant pipe 42d are connected to the second refrigerant header 40b, and the second refrigerant pipe 24b is connected to the front side of the second refrigerant header 40b. These internal spaces are connected.
 冷媒は第1冷媒パイプ24aから流入され、第1冷媒ヘッダ40aに流れる。第1冷媒ヘッダ40aにおいて第1冷媒管42aから第4冷媒管42dに冷媒は分岐されて流れる。第1冷媒管42aから第4冷媒管42dを流れた冷媒は第2冷媒ヘッダ40bにおいて合流する。冷媒は第2冷媒ヘッダ40bから第2冷媒パイプ24bに流れ、第2冷媒パイプ24bから流出する。このように、冷媒管42は、冷却液槽30の内部において冷媒を流す。 The refrigerant flows in from the first refrigerant pipe 24a and flows to the first refrigerant header 40a. The refrigerant is branched and flows from the first refrigerant pipe 42a to the fourth refrigerant pipe 42d in the first refrigerant header 40a. The refrigerant having flowed from the first refrigerant pipe 42a to the fourth refrigerant pipe 42d merges in the second refrigerant header 40b. The refrigerant flows from the second refrigerant header 40b to the second refrigerant pipe 24b and flows out of the second refrigerant pipe 24b. Thus, the refrigerant pipe 42 causes the refrigerant to flow in the cooling liquid tank 30.
 冷却液槽30の内部は、仕切り板36によって第1開口38a側の空間と第2開口38b側の空間に仕切られる。なお、図3(b)、図3(c)においては、冷却液槽30に設けられた仕切り板36を下部仕切り板36a1と示し、天板50に設けられた別の仕切り板を上部仕切り板36a2と示す。下部仕切り板36a1、上部仕切り板36a2は、仕切り板36(あるいは第1仕切り板36a)と総称される。なお、これらの空間は、後側においてつながる。そのため、冷却液槽30の内部では、仕切り板36によって仕切られた流路が形成される。流路は、第1開口38aから後側に進んでから、右側に進んだ後、前側に進むことによって第2開口38bに至る。第2開口38bは、第1内壁32aにおいて、第1開口38aとは流路の反対側に設けられている。冷却液は第1冷却液パイプ22aから冷却液槽30内に流入され、前述の流路を流れて、第2冷媒パイプ24bから冷却液槽30外に流出される。 The inside of the coolant tank 30 is partitioned by the partition plate 36 into a space on the first opening 38 a side and a space on the second opening 38 b side. 3B and 3C, the partition plate 36 provided in the coolant tank 30 is referred to as a lower partition plate 36a1, and another partition plate provided in the top plate 50 is an upper partition plate. Shown as 36a2. The lower partition plate 36a1 and the upper partition plate 36a2 are collectively referred to as a partition plate 36 (or a first partition plate 36a). In addition, these spaces are connected on the rear side. Therefore, in the inside of the coolant tank 30, the flow path partitioned by the partition plate 36 is formed. The flow path goes from the first opening 38a to the rear side, then to the right side, and then to the front side to reach the second opening 38b. The second opening 38 b is provided on the first inner wall 32 a on the opposite side of the flow path to the first opening 38 a. The coolant flows into the coolant tank 30 from the first coolant pipe 22a, flows through the aforementioned flow path, and flows out of the coolant tank 30 from the second coolant pipe 24b.
 このような冷媒、冷却液の流れによる温度のばらつきを説明する前に、図4(a)-(b)を使用しながら比較対象となる冷却装置120における温度のばらつきを説明する。図4(a)-(b)は、冷却装置20の比較対象となる冷却装置120の構造を示す。図4(a)-(b)は、いずれも上面図であり、図3(a)と同様に示される。図4(a)は、冷却液を流さずに冷媒のみを流す場合を示す。冷却装置120は、冷媒パイプ124と総称される第1冷媒パイプ124a、第2冷媒パイプ124b、内壁132と総称される第1内壁132a、第2内壁132b、第3内壁132c、第4内壁132d、冷媒ヘッダ140と総称される第1冷媒ヘッダ140a、第2冷媒ヘッダ140b、冷媒管142と総称される第1冷媒管142a、第2冷媒管142b、第3冷媒管142c、第4冷媒管142dを含む。ここで、冷媒パイプ124、内壁132、冷媒ヘッダ140、冷媒管142は、図3(a)の冷媒パイプ24、内壁32、冷媒ヘッダ40、冷媒管42と同一の構造を有する。そのため、冷媒も前述のごとく流れる。 Before explaining the temperature variation due to the flow of the refrigerant and the coolant, the temperature variation in the cooling device 120 to be compared will be described using FIGS. 4 (a) and 4 (b). 4 (a)-(b) show the structure of the cooling device 120 to which the cooling device 20 is to be compared. FIGS. 4 (a)-(b) are all top views, and are similar to FIG. 3 (a). FIG. 4A shows the case where only the refrigerant flows without flowing the cooling fluid. The cooling device 120 includes a first refrigerant pipe 124a collectively referred to as a refrigerant pipe 124, a second refrigerant pipe 124b, and a first inner wall 132a collectively referred to as an inner wall 132, a second inner wall 132b, a third inner wall 132c, and a fourth inner wall 132d. The first refrigerant header 140a, the second refrigerant header 140b, and the first refrigerant pipe 142a, the second refrigerant pipe 142b, the third refrigerant pipe 142c, and the fourth refrigerant pipe 142d. Including. Here, the refrigerant pipe 124, the inner wall 132, the refrigerant header 140, and the refrigerant pipe 142 have the same structure as the refrigerant pipe 24, the inner wall 32, the refrigerant header 40, and the refrigerant pipe 42 in FIG. Therefore, the refrigerant also flows as described above.
 冷媒ヘッダ140から4つの冷媒管142に分岐する部分において、冷媒の液体状態と気体状態の偏りが発生する。第1冷媒パイプ124aから遠い方の第4冷媒管142dにおけるポイントP1では、冷媒流速が比較的速い場合に液体状態の冷媒が多くなる可能性がある。一方、第1冷媒パイプ124aに近い方の第1冷媒管142aにおけるポイントP2では、気体状態の冷媒が多くなる。ここで、液体状態の冷媒が多い場合は、気体状態の冷媒が多い場合よりも低温になる。そのため、第1冷媒管142aが最も低温になり、第2冷媒管142b、第3冷媒管142cと温度が高くなっていき、第4冷媒管142dが最も高温になる。つまり、冷媒の液体状態と気体状態の偏りが発生することによって、冷媒管142間で温度がばらつき、冷却が均一になされない。 In the portion branched from the refrigerant header 140 to the four refrigerant pipes 142, deviation of liquid state and gas state of the refrigerant occurs. At the point P1 in the fourth refrigerant pipe 142d which is far from the first refrigerant pipe 124a, there is a possibility that the amount of refrigerant in the liquid state increases when the flow velocity of the refrigerant is relatively fast. On the other hand, at the point P2 in the first refrigerant pipe 142a closer to the first refrigerant pipe 124a, the refrigerant in the gaseous state increases. Here, when the amount of refrigerant in the liquid state is large, the temperature is lower than when the amount of refrigerant in the gas state is large. Therefore, the temperature of the first refrigerant pipe 142a becomes the lowest, the temperature of the second refrigerant pipe 142b and the temperature of the third refrigerant pipe 142c increase, and the temperature of the fourth refrigerant pipe 142d becomes the highest. That is, due to the occurrence of the imbalance between the liquid state and the gas state of the refrigerant, the temperature varies among the refrigerant pipes 142, and the cooling is not uniform.
 図4(b)は、図4(a)の構造に加えて、冷却液槽130、冷却液パイプ122と総称される第1冷却液パイプ122a、第2冷却液パイプ122bを含む。図4(b)では、図4(a)と同様に冷媒が流されるとともに、右側から左側に向かって冷却液が流される。つまり、冷媒も冷却液も左右方向に流される。その結果、冷媒管142間において交換される熱量は大きくないので、冷媒管142間の温度のばらつきは小さくならない。 FIG. 4B includes, in addition to the structure of FIG. 4A, a coolant tank 130, a first coolant pipe 122a collectively referred to as a coolant pipe 122, and a second coolant pipe 122b. In FIG. 4B, the refrigerant flows as in FIG. 4A, and the cooling fluid flows from the right to the left. That is, both the refrigerant and the coolant flow in the left and right direction. As a result, since the amount of heat exchanged between the refrigerant pipes 142 is not large, the variation in temperature between the refrigerant pipes 142 does not become small.
 これらと比較して、冷却装置20では、図3(a)に示されるように、複数の冷媒管42が並ぶ方向に冷却液が流される。これは、冷媒管42間の温度のばらつきが発生する前後方向に冷却液が流されることに相当する。このような冷却液の流れによって、冷媒管42間の温度のばらつきが積極的に緩和される。また、仕切り板36によって後側に向かってから前側に戻ってくる流路を冷却液が流れるので、冷媒管42内の温度のばらつき、つまり冷媒管42が延びる方向における温度のばらつきも緩和される。 In comparison with these, in the cooling device 20, as shown in FIG. 3A, the coolant flows in the direction in which the plurality of refrigerant pipes 42 are arranged. This corresponds to the flow of the coolant in the front-rear direction in which the temperature variation between the refrigerant pipes 42 occurs. Such flow of the coolant actively reduces the variation in temperature among the refrigerant pipes 42. Further, since the coolant flows through the flow path which is returned from the rear side to the front side by the partition plate 36, the temperature variation in the refrigerant pipe 42, that is, the temperature dispersion in the direction in which the refrigerant pipe 42 extends is also alleviated .
 図5は、冷却装置20の別の構造を示す。これは、図3(a)と同様に示される。冷却装置20は、図3(a)と比較して仕切り板36が含まれず、第1冷却液パイプ22aおよび第1開口38aが第2内壁32bに設けられる。つまり、第1開口38aと第2開口38bとが対向した内壁32に設けられる。このような構造において、第1冷却液パイプ22aから流入された冷却液は後側から前側に向かって流れ、第2冷却液パイプ22bから流出される。そのため、複数の冷媒管42が並ぶ方向に冷却液が流され、冷媒管42間の温度のばらつきが積極的に緩和される。また、仕切り板36が配置されないので、構造が簡易になる。 FIG. 5 shows another structure of the cooling device 20. As shown in FIG. This is shown as in FIG. 3 (a). The cooling device 20 does not include the partition plate 36 as compared with FIG. 3A, and the first coolant pipe 22a and the first opening 38a are provided in the second inner wall 32b. That is, the first opening 38 a and the second opening 38 b are provided on the opposed inner wall 32. In such a structure, the coolant flowing from the first coolant pipe 22a flows from the rear side to the front side and flows out from the second coolant pipe 22b. Therefore, the coolant flows in the direction in which the plurality of refrigerant pipes 42 are arranged, and the variation in temperature between the refrigerant pipes 42 is positively mitigated. In addition, since the partition plate 36 is not disposed, the structure is simplified.
 図6(a)-(b)は、冷却装置20のさらに別の構造を示す。これらは、複数の仕切り板36が含まれる場合の構造であり、図3(a)と同様に示される。図6(a)は、図3(a)の構造に第2仕切り板36bが含まれる。また、第1仕切り板36aは図3(a)の仕切り板36に相当する。第2仕切り板36bは、第1仕切り板36aと同様、下部仕切り板と上部仕切り板とで構成される。ここで、第1仕切り板36a、第2仕切り板36bは仕切り板36と総称される。第2仕切り板36bは、第2内壁32bから前側に向かって第1内壁32aに未到達の位置まで延びる。そのため、第1仕切り板36aおよび第2仕切り板36bは、複数の冷媒管42を横切る。また、第2仕切り板36bは第1仕切り板36aの右側に配置される。また、第1冷却液パイプ22aおよび第1開口38aが第1内壁32aに設けられ、第2冷却液パイプ22bおよび第2開口38bが第2内壁32bに設けられる。 6 (a)-(b) show still another structure of the cooling device 20. FIG. These are structures in the case where a plurality of partition plates 36 are included, and are shown similarly to FIG. 3 (a). In FIG. 6A, the second partition plate 36b is included in the structure of FIG. 3A. The first partition plate 36a corresponds to the partition plate 36 of FIG. 3 (a). Similar to the first partition plate 36a, the second partition plate 36b is configured of a lower partition plate and an upper partition plate. Here, the first partition plate 36 a and the second partition plate 36 b are collectively referred to as a partition plate 36. The second partition plate 36b extends forward from the second inner wall 32b to a position where the first inner wall 32a has not reached. Therefore, the first partition plate 36 a and the second partition plate 36 b cross the plurality of refrigerant pipes 42. In addition, the second partition plate 36b is disposed on the right side of the first partition plate 36a. Further, the first coolant pipe 22a and the first opening 38a are provided in the first inner wall 32a, and the second coolant pipe 22b and the second opening 38b are provided in the second inner wall 32b.
 このような第1仕切り板36a、第2仕切り板36bによって、冷却液槽30の内部は、第1開口38a側の空間と、第1開口38aと第2開口38bのいずれもが含まれない空間、第2開口38b側の空間に仕切られる。なお、隣接した空間は、後側あるいは前側においてつながる。そのため、冷却液槽30の内部では、仕切り板36によって仕切られた流路が形成される。流路は、第1開口38aから後側に進んでから、右側に進んだ後、前側に進み、さらに右側に進んでから、後側に進むことによって第2開口38bに至る。第2開口38bは、第2内壁32bにおいて、第1開口38aとは流路の反対側に設けられているといえる。冷却液は第1冷却液パイプ22aから冷却液槽30内に流入され、前述の流路を流れて、第2冷却液パイプ22bから冷却液槽30外に流出される。 With the first partition plate 36a and the second partition plate 36b, the interior of the coolant tank 30 is a space on the side of the first opening 38a and a space not including any of the first opening 38a and the second opening 38b. , And the space on the side of the second opening 38b. Adjacent spaces are connected on the rear side or the front side. Therefore, in the inside of the coolant tank 30, the flow path partitioned by the partition plate 36 is formed. The flow path goes from the first opening 38a to the rear side, then to the right side, then to the front side, further to the right side, and then to the second side by going to the second side. It can be said that the second opening 38 b is provided on the second inner wall 32 b on the opposite side of the flow path to the first opening 38 a. The coolant flows into the coolant tank 30 from the first coolant pipe 22a, flows through the above-mentioned flow path, and flows out of the coolant tank 30 from the second coolant pipe 22b.
 図6(b)は、図6(a)の構造に第3仕切り板36cが含まれる。第1仕切り板36a、第2仕切り板36b、第3仕切り板36cは仕切り板36と総称される。第3仕切り板36cは、第1仕切り板36aと同様の構造を有し、冷却液槽30の内部において、第2仕切り板36bを挟むように、第1仕切り板36aと並んで配置される。このように第3仕切り板36cは第2仕切り板36bの右側に配置される。第1仕切り板36a、第2仕切り板36b、第3仕切り板36cは、複数の冷媒管42を横切る。また、第1冷却液パイプ22aおよび第1開口38aが第1内壁32aに設けられ、第2冷却液パイプ22bおよび第2開口38bも第1内壁32aに設けられる。 In FIG. 6 (b), the third partition plate 36c is included in the structure of FIG. 6 (a). The first partition plate 36 a, the second partition plate 36 b, and the third partition plate 36 c are collectively referred to as a partition plate 36. The third partition plate 36c has the same structure as that of the first partition plate 36a, and is disposed in line with the first partition plate 36a so as to sandwich the second partition plate 36b inside the coolant tank 30. Thus, the third partition plate 36c is disposed on the right side of the second partition plate 36b. The first partition plate 36 a, the second partition plate 36 b, and the third partition plate 36 c cross the plurality of refrigerant pipes 42. Further, the first coolant pipe 22a and the first opening 38a are provided in the first inner wall 32a, and the second coolant pipe 22b and the second opening 38b are also provided in the first inner wall 32a.
 このような第1仕切り板36a、第2仕切り板36b、第3仕切り板36cによって、冷却液槽30の内部は、第1開口38a側の空間と、第1開口38aと第2開口38bのいずれもが含まれない2つの空間、第2開口38b側の空間に仕切られる。なお、隣接した空間は、後側あるいは前側においてつながる。そのため、冷却液槽30の内部では、仕切り板36によって仕切られた流路が形成される。流路は、第1開口38aから後側に進んでから、右側に進んだ後、前側に進む。さらに流路は、右側に進んでから、後側に進んだ後、右側に進んでから、前側に進むことによって第2開口38bに至る。第2開口38bは、第1内壁32aにおいて、第1開口38aとは流路の反対側に設けられているといえる。冷却液は第1冷却液パイプ22aから冷却液槽30内に流入され、前述の流路を流れて、第2冷却液パイプ22bから冷却液槽30外に流出される。図6(a)-(b)では、仕切り板36の数が増やされることによって、冷却液の流速が上げられ、熱交換効率が上げられる。 With the first partition plate 36a, the second partition plate 36b, and the third partition plate 36c, the interior of the coolant tank 30 is either the space on the first opening 38a side, the first opening 38a or the second opening 38b. It is divided into two spaces which do not include the space, the space on the side of the second opening 38b. Adjacent spaces are connected on the rear side or the front side. Therefore, in the inside of the coolant tank 30, the flow path partitioned by the partition plate 36 is formed. The flow path proceeds to the rear side from the first opening 38 a and then to the right side and then to the front side. Furthermore, the flow path goes to the right side, goes to the rear side, goes to the right side, and then goes to the front side to reach the second opening 38 b. It can be said that the second opening 38 b is provided on the first inner wall 32 a on the opposite side of the flow path to the first opening 38 a. The coolant flows into the coolant tank 30 from the first coolant pipe 22a, flows through the above-mentioned flow path, and flows out of the coolant tank 30 from the second coolant pipe 22b. In FIGS. 6 (a)-(b), by increasing the number of partition plates 36, the flow velocity of the coolant is increased, and the heat exchange efficiency is increased.
 図7は、電池システム100の構成を示すブロック図である。電池システム100は、冷却装置20、コンプレッサ60、コンデンサ62、膨張弁64、HVAC(Heating, Ventilation, and Air Conditioning)66、膨張弁68、WP(Water Pomp)70、HTR(HeaTeR)72を含む。なお、図1の電池モジュール10は省略される。図7におけるコンプレッサ60、コンデンサ62、膨張弁64、HVAC66、膨張弁68が冷媒回路に含まれ、WP70、HTR72が冷却液回路に含まれる。 FIG. 7 is a block diagram showing the configuration of battery system 100. Referring to FIG. The battery system 100 includes a cooling device 20, a compressor 60, a condenser 62, an expansion valve 64, an HVAC (Heating, Ventilation, and Air Conditioning) 66, an expansion valve 68, a WP (Water Pomp) 70, and an HTR (HeaTeR) 72. The battery module 10 of FIG. 1 is omitted. The compressor 60, the condenser 62, the expansion valve 64, the HVAC 66, and the expansion valve 68 in FIG. 7 are included in the refrigerant circuit, and the WP 70 and the HTR 72 are included in the cooling liquid circuit.
 冷媒回路は冷却装置20に冷媒を供給し、この冷媒の気化熱で冷却装置20を冷却する。冷媒回路において、コンプレッサ60は、気化された冷媒を加圧し、コンデンサ62は、コンプレッサ60で加圧された冷媒を冷却して液化させ、膨張弁64は、コンデンサ62に連結する。コンプレッサ60は、車両のエンジンやモータで駆動されて気化された冷媒を加圧する。コンデンサ62は、気化された冷媒を冷却して液化させる。コンデンサ62は、ハイブリッドカーにおいては、エンジンの冷却液を冷却するラジエータの前方に配設される。ラジエータを冷却するファンでコンデンサ62も冷却される。 The refrigerant circuit supplies a refrigerant to the cooling device 20, and the heat of vaporization of the refrigerant cools the cooling device 20. In the refrigerant circuit, the compressor 60 pressurizes the vaporized refrigerant, the condenser 62 cools and liquefies the refrigerant pressurized by the compressor 60, and the expansion valve 64 is connected to the condenser 62. The compressor 60 is driven by the engine or motor of the vehicle to pressurize the vaporized refrigerant. The condenser 62 cools and liquefies the vaporized refrigerant. In the hybrid car, the condenser 62 is disposed in front of a radiator that cools the engine coolant. The condenser 62 is also cooled by a fan that cools the radiator.
 冷却装置20は、排出側をコンプレッサ60に連結し、コンプレッサ60は、冷却装置20から排出される気化した冷媒を吸入して加圧する。加圧された冷媒は、コンデンサ62で冷却されて液化される。液化された冷媒は、膨張弁64を介して冷却装置20に供給される。膨張弁64は、冷却装置20の温度を設定温度として、冷却液を冷却する。膨張弁64は、冷媒の流量を制御できる調整弁、あるいは冷媒の流量を制御できない流量固定の細管からなるキャピラリーチューブ等である。膨張弁64を通過した冷媒は、断熱膨張して冷却装置20の内部で気化されて、気化熱で冷却液を冷却する。さらに、冷媒回路には、膨張弁68を介して、冷房用のHVAC66が接続される。HVAC66にはエバポレータが含まれる。 The cooling device 20 is connected at the discharge side to the compressor 60, and the compressor 60 sucks and pressurizes the vaporized refrigerant discharged from the cooling device 20. The pressurized refrigerant is cooled by the condenser 62 and liquefied. The liquefied refrigerant is supplied to the cooling device 20 via the expansion valve 64. The expansion valve 64 cools the cooling fluid with the temperature of the cooling device 20 as a set temperature. The expansion valve 64 is a control valve capable of controlling the flow rate of the refrigerant, or a capillary tube or the like consisting of thin tubes having a fixed flow rate which can not control the flow rate of the refrigerant. The refrigerant that has passed through the expansion valve 64 is adiabatically expanded and vaporized inside the cooling device 20 to cool the coolant with the heat of vaporization. Further, a cooling HVAC 66 is connected to the refrigerant circuit via the expansion valve 68. The HVAC 66 includes an evaporator.
 冷却液回路におけるここで、HTR72は、エンジンが十分に温まっていない場合に冷却液を加熱する。この状態で始動して十分に温められたエンジンは、内部の冷却液を加温する。WP70は、冷却液を循環させる。エンジン内部で速やかに加温された冷却液は冷却装置20を循環する。 Here, in the coolant circuit, the HTR 72 heats the coolant if the engine is not warm enough. In this state, the engine that has been started and warmed sufficiently warms the internal coolant. The WP 70 circulates the coolant. The coolant that has been quickly warmed inside the engine circulates through the cooling device 20.
 これまでは、冷却装置20の一面側に1つの電池モジュール10が設置されている。以下では、冷却装置20の一面側に複数、例えば2つの電池モジュール10が設置される場合の構造を説明する。図8は、電池システム100の別の構造を示す上面図である。電池システム100は、電池モジュール10と総称される第1電池モジュール10a、第2電池モジュール10bを含む。各電池モジュール10は、前後方向よりも左右方向に長い矩形状の上側の面を有し、前後方向に並べられる。ここで、第1電池モジュール10aが前側に配置され、第2電池モジュール10bが後側に配置される。 So far, one battery module 10 is installed on one side of the cooling device 20. Below, the structure in case two or more battery modules 10 are installed in one surface side of the cooling device 20 is demonstrated. FIG. 8 is a top view showing another structure of the battery system 100. As shown in FIG. The battery system 100 includes a first battery module 10 a and a second battery module 10 b collectively referred to as a battery module 10. Each battery module 10 has a rectangular upper surface longer in the left-right direction than in the front-rear direction, and is arranged in the front-rear direction. Here, the first battery module 10a is disposed on the front side, and the second battery module 10b is disposed on the rear side.
 さらに、第1電池モジュール10aの下側の面には第1温度センサ12aが取り付けられ、第2電池モジュール10bの下側の面には第2温度センサ12bが取り付けられてもよい。第1温度センサ12a、第2温度センサ12bは温度センサ12と総称され、温度を測定する。つまり、温度センサ12は、電池モジュール10における下側の面の温度を測定する。なお、温度センサ12は、電池モジュール10の別の位置に取り付けられてもよい。 Furthermore, the first temperature sensor 12a may be attached to the lower surface of the first battery module 10a, and the second temperature sensor 12b may be attached to the lower surface of the second battery module 10b. The first temperature sensor 12a and the second temperature sensor 12b are collectively referred to as a temperature sensor 12 and measure temperature. That is, the temperature sensor 12 measures the temperature of the lower surface of the battery module 10. The temperature sensor 12 may be attached to another position of the battery module 10.
 図9は、電池システム100の構造を示すブロック図である。電池システム100では、図7の構成に、循環弁74、制御装置80が追加される。制御装置80は、取得部82、調節部84を含む。取得部82は、図8の第1温度センサ12a、第2温度センサ12bに接続され、それぞれにおいて測定された温度を取得する。つまり、温度センサ12は、第1電池モジュール10aの温度、第2電池モジュール10bの温度を取得する。これらの電池モジュール10は、冷却装置20が冷却すべき電池である。取得部82は、2つの温度の差を計算することによって、第1電池モジュール10aと第2電池モジュール10bの温度のばらつきの程度を取得する。取得部82は、ばらつきの程度を調節部84に出力する。 FIG. 9 is a block diagram showing the structure of battery system 100. Referring to FIG. In the battery system 100, the circulation valve 74 and the control device 80 are added to the configuration of FIG. The control device 80 includes an acquisition unit 82 and an adjustment unit 84. The acquisition unit 82 is connected to the first temperature sensor 12 a and the second temperature sensor 12 b of FIG. 8, and acquires the temperatures measured in each of them. That is, the temperature sensor 12 acquires the temperature of the first battery module 10a and the temperature of the second battery module 10b. These battery modules 10 are batteries to be cooled by the cooling device 20. The acquisition unit 82 acquires the degree of temperature variation of the first battery module 10a and the second battery module 10b by calculating the difference between the two temperatures. The acquisition unit 82 outputs the degree of variation to the adjustment unit 84.
 調節部84は、取得部82から温度のばらつきの程度を受けつける。調節部84は、ばらつきの程度をもとに、冷却液槽30に流す冷却液の流量を調節する。具体的に説明すると、調節部84は、ばらつきの程度が大きいほど流量を大きくするように決定する。循環弁74は冷却液回路に接続される。循環弁74は、調節部84における決定にしたがって、冷却液の流量を変化させる。 The adjustment unit 84 receives the degree of temperature variation from the acquisition unit 82. The adjustment unit 84 adjusts the flow rate of the coolant to be supplied to the coolant tank 30 based on the degree of variation. Specifically, the adjustment unit 84 determines to increase the flow rate as the degree of variation is larger. The circulation valve 74 is connected to the coolant circuit. The circulation valve 74 changes the flow rate of the coolant according to the determination in the adjustment unit 84.
 この構成は、ハードウエア的には、任意のコンピュータのCPU、メモリ、その他のLSIで実現でき、ソフトウエア的にはメモリにロードされたプログラムなどによって実現されるが、ここではそれらの連携によって実現される機能ブロックを描いている。したがって、これらの機能ブロックがハードウエアのみ、ハードウエアとソフトウエアの組合せによっていろいろな形で実現できることは、当業者には理解されるところである。 In terms of hardware, this configuration can be realized with the CPU, memory, or other LSI of any computer, and with software, it can be realized by a program loaded into the memory, etc. Are drawing functional blocks. Therefore, it is understood by those skilled in the art that these functional blocks can be realized in various forms only by hardware and by a combination of hardware and software.
 本実施例によれば、第1内壁から冷媒管を横切って、第2内壁に未到達の位置まで延びる仕切り板が冷却液槽の内部を仕切るので、冷却液槽の内部に冷媒管を横切る方向の流路を形成できる。また、冷却液槽の内部では、冷媒管を横切る方向の流路を冷却液が流れるので、異なった位置における温度のばらつきを抑制できる。また、仕切り板が複数の冷媒管を横切るので、複数の冷媒管を横切る方向の流路を形成できる。また、冷却液槽の内部では、複数の冷媒管を横切る方向の流路を冷却液が流れるので、冷媒管間の温度のばらつきを抑制できる。 According to the present embodiment, the partition plate extending from the first inner wall to the position not reached to the second inner wall across the refrigerant pipe divides the interior of the coolant tank, so that the coolant pipe is traversed inside the coolant tank Flow path can be formed. In addition, since the coolant flows in the flow path in the direction crossing the coolant pipe inside the coolant tank, it is possible to suppress the temperature variation at different positions. Further, since the partition plate crosses the plurality of refrigerant pipes, it is possible to form a flow path in the direction crossing the plurality of refrigerant pipes. In addition, since the coolant flows in the flow path in the direction crossing the plurality of refrigerant pipes inside the cooling liquid tank, it is possible to suppress the temperature variation among the refrigerant pipes.
 また、第1内壁に対向する第2内壁から冷媒管を横切って、第1内壁に未到達の位置まで第2仕切り板が延びるので、冷却液の流れる方向を変えることができる。また、第1仕切り板および第2仕切り板が複数の冷媒管を横切るので、複数の冷媒管の温度のばらつきを抑制できる。また、第3仕切り板が備えられるので、冷却液を蛇行させることができる。また、第1仕切り板、第2仕切り板、第3仕切り板が複数の冷媒管を横切るので、複数の冷媒管の温度のばらつきを抑制できる。 Further, since the second partition plate extends from the second inner wall facing the first inner wall to the position not reaching the first inner wall across the refrigerant pipe, the flow direction of the coolant can be changed. Further, since the first partition plate and the second partition plate cross the plurality of refrigerant pipes, it is possible to suppress variations in the temperatures of the plurality of refrigerant pipes. In addition, since the third partition plate is provided, the coolant can be made to meander. In addition, since the first partition plate, the second partition plate, and the third partition plate cross the plurality of refrigerant pipes, it is possible to suppress the temperature variation of the plurality of refrigerant pipes.
 また、第1内壁に第1開口と第2開口とが設けられるので、冷却液の流入と流出とを同一方向からできる。また、第1内壁に第1開口が設けられ、第2内壁に第2開口が設けられるので、冷却液の流入と流出とを別の方向からできる。また、電池の温度のばらつきの程度をもとに冷却液の流量を調節するので、温度のばらつきが大きくても温度のばらつきを抑制できる。また、電池モジュールと冷却装置とを備えるので、電池モジュール内の異なった位置における温度のばらつきを抑制できる。 In addition, since the first opening and the second opening are provided in the first inner wall, the inflow and the outflow of the coolant can be performed from the same direction. In addition, since the first opening is provided in the first inner wall and the second opening is provided in the second inner wall, the inflow and the outflow of the coolant can be performed from different directions. In addition, since the flow rate of the coolant is adjusted based on the degree of the temperature variation of the battery, the temperature variation can be suppressed even if the temperature variation is large. Further, since the battery module and the cooling device are provided, it is possible to suppress temperature variations at different positions in the battery module.
 本開示の一態様の概要は、次の通りである。本開示のある態様の冷却装置は、互いに対向した第1内壁と第2内壁とを有する冷却液槽と、冷却液槽の内部において第1内壁と第2内壁に沿って延び、かつ冷媒を流す複数の冷媒管と、冷却液槽の内部における第1内壁から複数の冷媒管を横切って、第2内壁に未到達の位置まで延びることによって、冷却液槽の内部を仕切る仕切り板とを備える。冷却液槽の内部では、仕切り板によって仕切られた流路を冷却液が流れる。 The outline of one aspect of the present disclosure is as follows. A cooling device according to an aspect of the present disclosure includes a coolant tank having a first inner wall and a second inner wall opposite to each other, extends along the first inner wall and the second inner wall inside the coolant tank, and flows the refrigerant. A plurality of refrigerant pipes, and a partition plate which divides the interior of the coolant tank by extending from the first inner wall inside the coolant tank to the position where the second inner wall has not reached, across the plurality of coolant pipes. Inside the coolant tank, the coolant flows through the flow path partitioned by the partition plate.
 この態様によると、第1内壁から複数の冷媒管を横切って、第2内壁に未到達の位置まで延びる仕切り板が冷却液槽の内部を仕切り、冷却液槽の内部では、仕切り板によって仕切られた流路を冷却液が流れるので、異なった位置における温度のばらつきを抑制できる。 According to this aspect, the partition plate extending from the first inner wall to the position not reaching the second inner wall across the plurality of refrigerant pipes partitions the inside of the coolant tank, and the inside of the coolant tank is partitioned by the partition plate Since the coolant flows through the flow path, temperature variations at different positions can be suppressed.
 冷却液槽の内部における第2内壁から複数の冷媒管を横切って、第1内壁に未到達の位置まで延びることによって、冷却液槽の内部を仕切る別の仕切り板をさらに備えてもよい。この場合、第2内壁から複数の冷媒管を横切って、第1内壁に未到達の位置まで別の仕切り板が延びるので、冷却液の流れる方向を変えることができる。 There may be further provided another partition plate for partitioning the inside of the coolant tank by extending across the plurality of refrigerant pipes from the second inner wall inside the coolant tank to a position where the first inner wall is not reached. In this case, since another partition plate extends from the second inner wall across the plurality of refrigerant pipes to the position where the first inner wall is not reached, the flow direction of the coolant can be changed.
 第1内壁に設けられた第1開口と、第1内壁において、第1開口とは流路の反対側に設けられた第2開口とをさらに備えてもよい。第1開口と第2開口の一方から冷却液槽内に冷却液が流入され、第1開口と第2開口の他方から冷却液槽外に冷却液が流出されてもよい。この場合、第1内壁に第1開口と第2開口とが設けられるので、冷却液の流入と流出とを同一方向からできる。 The first opening provided in the first inner wall and the second opening provided on the opposite side of the flow passage from the first opening in the first inner wall may further be provided. The coolant may flow into the coolant tank from one of the first opening and the second opening, and the coolant may flow out of the coolant tank from the other of the first opening and the second opening. In this case, since the first opening and the second opening are provided in the first inner wall, the inflow and the outflow of the coolant can be performed from the same direction.
 第1内壁に設けられた第1開口と、第2内壁において、第1開口とは流路の反対側に設けられた第2開口とをさらに備えてもよい。第1開口と第2開口の一方から冷却液槽内に冷却液が流入され、第1開口と第2開口の他方から冷却液槽外に冷却液が流出されてもよい。この場合、第1内壁に第1開口が設けられ、第2内壁に第2開口が設けられるので、冷却液の流入と流出とを別の方向からできる。 The display device may further include a first opening provided in the first inner wall and a second opening provided on the opposite side of the flow passage from the first opening in the second inner wall. The coolant may flow into the coolant tank from one of the first opening and the second opening, and the coolant may flow out of the coolant tank from the other of the first opening and the second opening. In this case, since the first opening is provided in the first inner wall and the second opening is provided in the second inner wall, the inflow and the outflow of the coolant can be performed from different directions.
 第1開口の近傍における第1温度と第2開口の近傍における第2温度のうちの低い方を推定する推定部をさらに備えてもよい。推定部において第1温度の方が低いと推定された場合、第1開口から冷却液槽内に冷却液が流入されて、第2開口から冷却液槽外に冷却液が流出され、推定部において第2温度の方が低いと推定された場合、第2開口から冷却液槽内に冷却液が流入されて、第1開口から冷却液槽外に冷却液が流出されてもよい。この場合、温度が低い方から冷却液を流入させるので、冷却効率を向上できる。 It may further comprise an estimation unit that estimates the lower of the first temperature near the first opening and the second temperature near the second opening. When it is estimated that the first temperature is lower in the estimation unit, the coolant flows into the coolant tank from the first opening, and the coolant flows out of the coolant reservoir from the second opening, and the estimation unit If it is estimated that the second temperature is lower, the coolant may flow into the coolant tank from the second opening, and the coolant may flow out of the coolant tank from the first opening. In this case, since the coolant is allowed to flow in from the lower temperature side, the cooling efficiency can be improved.
 冷却装置が冷却すべき電池の温度のばらつきの程度を取得する取得部と、取得部において取得したばらつきの程度をもとに、冷却液槽に流す冷却液の流量を調節する調節部とをさらに備えてもよい。この場合、電池の温度のばらつきの程度をもとに冷却液の流量を調節するので、温度のばらつきが大きくても温度のばらつきを抑制できる。 An acquisition unit for acquiring the degree of variation of the temperature of the battery to be cooled by the cooling device, and a control unit for adjusting the flow rate of the coolant to be supplied to the coolant tank based on the degree of the dispersion acquired in the acquisition unit You may have. In this case, since the flow rate of the coolant is adjusted based on the degree of the temperature variation of the battery, the temperature variation can be suppressed even if the temperature variation is large.
 電池と、電池を冷却する冷却装置と、を備えてもよい。この場合、電池と冷却装置とを備えるので、電池内の異なった位置における温度のばらつきを抑制できる。 A battery and a cooling device for cooling the battery may be provided. In this case, since the battery and the cooling device are provided, temperature variations at different positions in the battery can be suppressed.
 以上、本開示を実施例をもとに説明した。この実施例は例示であり、それらの各構成要素あるいは各処理プロセスの組合せにいろいろな変形例が可能なこと、またそうした変形例も本開示の範囲にあることは当業者に理解されるところである。 The present disclosure has been described above based on the examples. It is understood by those skilled in the art that this embodiment is an exemplification, and that various modifications can be made to their respective components or combinations of processing processes, and such modifications are also within the scope of the present disclosure. .
 本実施例において、第1開口38aから冷却液を冷却液槽30内に流入させ、第2開口38bから冷却液を冷却液槽30外に流出させている。しかしながらこれに限らず例えば、冷却液を流す方向が変更されてもよい。図9の制御装置80における推定部(図示せず)は、冷媒の偏り方、つまり、冷却装置20の偏り方に関する情報を予め記憶する。推定部は、偏り方をもとに、第1開口38aの近傍における第1温度と第2開口38bの近傍における第2温度のうちの低い方を推定する。例えば、偏りによって下になっている部分には、液体状態の冷媒が多くなり、偏りによって上になっている部分には、気体状態の冷媒が多くなる。そのため、前者において温度が低くなり、後者において温度が高くなる。推定部は、第1開口38aが第2開口38bよりも下になっていれば、第1温度が第2温度よりも低いと推定し、第2開口38bが第1開口38aよりも下になっていれば、第2温度が第1温度よりも低いと推定する。推定部は、冷媒の偏り方または電池モジュール10の温度をセンシングすることによって、第1開口38aの近傍における第1温度と第2開口38bの近傍における第2温度のうちの低い方を推定してもよい。 In the present embodiment, the coolant is allowed to flow into the coolant tank 30 through the first opening 38a, and the coolant is allowed to flow out of the coolant tank 30 through the second opening 38b. However, not limited to this, for example, the flow direction of the coolant may be changed. The estimation unit (not shown) in the control device 80 of FIG. 9 stores in advance information on how the refrigerant is biased, that is, how the cooling device 20 is biased. The estimation unit estimates the lower one of the first temperature in the vicinity of the first opening 38a and the second temperature in the vicinity of the second opening 38b based on the bias. For example, the refrigerant in the liquid state is large in the part that is downward due to the deviation, and the refrigerant in the gaseous state is large in the part that is upward due to the deviation. Therefore, the temperature is lowered in the former and the temperature is increased in the latter. If the first opening 38a is lower than the second opening 38b, the estimation unit estimates that the first temperature is lower than the second temperature, and the second opening 38b becomes lower than the first opening 38a. If so, it is estimated that the second temperature is lower than the first temperature. The estimation unit estimates the lower one of the first temperature in the vicinity of the first opening 38a and the second temperature in the vicinity of the second opening 38b by sensing the direction of the refrigerant or the temperature of the battery module 10 It is also good.
 冷却液回路では、推定部において第1温度の方が低いと推定された場合、第1開口38aから冷却液槽30内に冷却液が流入されて、第2開口38bから冷却液槽30外に冷却液が流出されるように、冷却液が流される。一方、冷却液回路では、推定部において第2温度の方が低いと推定された場合、第2開口38bから冷却液槽30内に冷却液が流入されて、第1開口38aから冷却液槽30外に冷却液が流出されるように、冷却液が流される。冷却液の流れの方向を変えるために公知の技術が使用されればよいので、ここでは説明を省略する。本変形例によれば、温度の低い方から高い方に冷却液が流れるので、冷却効率を向上できる。 In the coolant circuit, when it is estimated that the first temperature is lower in the estimation unit, the coolant flows into the coolant tank 30 from the first opening 38a, and out of the coolant tank 30 from the second opening 38b. The coolant is flowed so that the coolant can drain. On the other hand, in the coolant circuit, when it is estimated that the second temperature is lower in the estimation unit, the coolant flows into the coolant tank 30 through the second opening 38b, and the coolant tank 30 through the first opening 38a. The coolant is flowed so that the coolant can flow out. A known technique may be used to change the flow direction of the coolant, so the description is omitted here. According to this modification, since the coolant flows from the lower temperature to the higher temperature, the cooling efficiency can be improved.
 10 電池モジュール、 12 温度センサ、 20 冷却装置、 22 冷却液パイプ、 24 冷媒パイプ、 30 冷却液槽、 32 内壁、 34 底面、 36 仕切り板、 38 開口、 40 冷媒ヘッダ、 42 冷媒管、 44 インナーフィン、 50 天板、 100 電池システム。 DESCRIPTION OF SYMBOLS 10 battery module, 12 temperature sensor, 20 cooling device, 22 coolant pipe, 24 refrigerant pipe, 30 coolant tank, 32 inner wall, 34 bottom face, 36 partition plate, 38 opening, 40 refrigerant header, 42 refrigerant pipe, 44 inner fin , 50 top board, 100 battery system.
 本開示によれば、車載電池を冷却する冷却装置において、異なった位置における温度のばらつきを抑制できる。 According to the present disclosure, in the cooling device for cooling the on-vehicle battery, it is possible to suppress temperature variations at different positions.

Claims (7)

  1.  互いに対向した第1内壁と第2内壁とを有する冷却液槽と、
     前記冷却液槽の内部において前記第1内壁と前記第2内壁に沿って延び、かつ冷媒を流す複数の冷媒管と、
     前記冷却液槽の内部における前記第1内壁から前記複数の冷媒管を横切って、前記第2内壁に未到達の位置まで延びることによって、前記冷却液槽の内部を仕切る仕切り板とを備え、
     前記冷却液槽の内部では、前記仕切り板によって仕切られた流路を冷却液が流れることを特徴とする冷却装置。
    A coolant tank having a first inner wall and a second inner wall facing each other;
    A plurality of refrigerant pipes which extend along the first inner wall and the second inner wall inside the coolant tank and flow the refrigerant;
    A partition plate for partitioning the inside of the coolant tank by extending from the first inner wall inside the coolant tank to the position where the second inner wall has not reached, across the plurality of refrigerant pipes;
    A cooling device characterized in that a coolant flows through a flow path partitioned by the partition plate inside the coolant tank.
  2.  前記冷却液槽の内部における前記第2内壁から前記複数の冷媒管を横切って、前記第1内壁に未到達の位置まで延びることによって、前記冷却液槽の内部を仕切る別の仕切り板をさらに備えることを特徴とする請求項1に記載の冷却装置。 It further comprises another partition plate for partitioning the inside of the coolant tank by extending from the second inner wall inside the coolant tank to the position where the first inner wall is not reached across the plurality of refrigerant pipes. The cooling device according to claim 1, characterized in that:
  3.  前記第1内壁に設けられた第1開口と、
     前記第1内壁において、前記第1開口とは流路の反対側に設けられた第2開口とをさらに備え、
     前記第1開口と前記第2開口の一方から前記冷却液槽内に冷却液が流入され、前記第1開口と前記第2開口の他方から前記冷却液槽外に冷却液が流出されることを特徴とする請求項1に記載の冷却装置。
    A first opening provided in the first inner wall;
    The first inner wall further includes a second opening provided on the opposite side of the flow passage from the first opening,
    The cooling fluid is introduced into the cooling fluid tank from one of the first opening and the second opening, and the cooling fluid flows out of the cooling fluid tank from the other of the first opening and the second opening. The cooling device according to claim 1, characterized in that:
  4.  前記第1内壁に設けられた第1開口と、
     前記第2内壁において、前記第1開口とは流路の反対側に設けられた第2開口とをさらに備え、
     前記第1開口と前記第2開口の一方から前記冷却液槽内に冷却液が流入され、前記第1開口と前記第2開口の他方から前記冷却液槽外に冷却液が流出されることを特徴とする請求項2に記載の冷却装置。
    A first opening provided in the first inner wall;
    The second inner wall further includes a second opening provided on the opposite side of the flow passage from the first opening,
    The cooling fluid is introduced into the cooling fluid tank from one of the first opening and the second opening, and the cooling fluid flows out of the cooling fluid tank from the other of the first opening and the second opening. The cooling device according to claim 2, characterized in that:
  5.  前記第1開口の近傍における第1温度と前記第2開口の近傍における第2温度のうちの低い方を推定する推定部をさらに備え、
     前記推定部において第1温度の方が低いと推定された場合、前記第1開口から前記冷却液槽内に冷却液が流入されて、前記第2開口から前記冷却液槽外に冷却液が流出され、前記推定部において第2温度の方が低いと推定された場合、前記第2開口から前記冷却液槽内に冷却液が流入されて、前記第1開口から前記冷却液槽外に冷却液が流出されることを特徴とする請求項3または4に記載の冷却装置。
    It further comprises an estimation unit for estimating the lower of the first temperature in the vicinity of the first opening and the second temperature in the vicinity of the second opening,
    When it is estimated in the estimation unit that the first temperature is lower, the coolant flows into the coolant tank from the first opening, and the coolant flows out of the coolant tank from the second opening. If the second temperature is estimated to be lower in the estimation unit, the coolant flows from the second opening into the coolant tank, and the coolant from the first opening to the outside of the coolant tank The cooling device according to claim 3 or 4, wherein the
  6.  前記冷却装置が冷却すべき電池の温度のばらつきの程度を取得する取得部と、
     前記取得部において取得したばらつきの程度をもとに、前記冷却液槽に流す冷却液の流量を調節する調節部とをさらに備える請求項1から5のいずれかに記載の冷却装置。
    An acquisition unit for acquiring the degree of variation in temperature of the battery to be cooled by the cooling device;
    The cooling device according to any one of claims 1 to 5, further comprising: a control unit configured to control a flow rate of the coolant flowed to the coolant tank based on the degree of the variation acquired in the acquisition unit.
  7.  電池と、
     前記電池を冷却する請求項1から6のいずれかに記載の冷却装置と、
     を備えることを特徴とする電池システム。
    Battery,
    The cooling device according to any one of claims 1 to 6, wherein the battery is cooled;
    A battery system comprising:
PCT/JP2019/000300 2018-01-15 2019-01-09 Cooling device and battery system WO2019139022A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201980003810.3A CN111033881B (en) 2018-01-15 2019-01-09 Cooling device and battery system
JP2019564709A JP7138299B2 (en) 2018-01-15 2019-01-09 Cooling devices and battery systems for battery modules
JP2022132422A JP7336713B2 (en) 2018-01-15 2022-08-23 Cooling devices and battery systems for battery modules
JP2023127036A JP2023155255A (en) 2018-01-15 2023-08-03 vehicle

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-004529 2018-01-15
JP2018004529 2018-01-15

Publications (1)

Publication Number Publication Date
WO2019139022A1 true WO2019139022A1 (en) 2019-07-18

Family

ID=67219045

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/000300 WO2019139022A1 (en) 2018-01-15 2019-01-09 Cooling device and battery system

Country Status (3)

Country Link
JP (3) JP7138299B2 (en)
CN (1) CN111033881B (en)
WO (1) WO2019139022A1 (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2019155810A1 (en) * 2018-02-06 2020-12-10 パナソニックIpマネジメント株式会社 Cooling device and battery temperature control system
WO2021192569A1 (en) * 2020-03-27 2021-09-30 パナソニックIpマネジメント株式会社 Vehicle, heat exchanger plate and battery pack
JP2021158006A (en) * 2020-03-27 2021-10-07 パナソニックIpマネジメント株式会社 Vehicle and heat exchange plate
JP2021160566A (en) * 2020-03-31 2021-10-11 パナソニックIpマネジメント株式会社 Vehicle and temperature adjusting system
JP2021160565A (en) * 2020-03-31 2021-10-11 パナソニックIpマネジメント株式会社 Vehicle and temperature adjusting system
JP2021160567A (en) * 2020-03-31 2021-10-11 パナソニックIpマネジメント株式会社 Vehicle and temperature adjusting system
JP2021163638A (en) * 2020-03-31 2021-10-11 パナソニックIpマネジメント株式会社 Vehicle, heat exchange plate, and battery pack
JP2022055246A (en) * 2020-09-28 2022-04-07 パナソニックIpマネジメント株式会社 Vehicle, and battery pack
JP2022055245A (en) * 2020-09-28 2022-04-07 パナソニックIpマネジメント株式会社 Vehicle, and battery pack
JP2022055244A (en) * 2020-09-28 2022-04-07 パナソニックIpマネジメント株式会社 Vehicle, and battery pack
JP2022061770A (en) * 2020-10-07 2022-04-19 パナソニックIpマネジメント株式会社 Vehicle and battery pack
WO2022176350A1 (en) * 2021-02-19 2022-08-25 パナソニックIpマネジメント株式会社 Vehicle and heat exchange plate
JP7485626B2 (en) 2021-03-10 2024-05-16 パナソニックオートモーティブシステムズ株式会社 Vehicle and heat exchange plate
JP7507538B2 (en) 2020-10-07 2024-06-28 パナソニックオートモーティブシステムズ株式会社 Vehicle and battery pack

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009081387A (en) * 2007-09-27 2009-04-16 Dainippon Screen Mfg Co Ltd Substrate cooling device
JP2010050000A (en) * 2008-08-22 2010-03-04 Sanyo Electric Co Ltd Power source device for vehicle
WO2013116355A1 (en) * 2012-01-31 2013-08-08 Johnson Controls Technology Company Method for cooling a lithium-ion battery pack
JP2014216298A (en) * 2013-04-30 2014-11-17 日立オートモティブシステムズ株式会社 Battery module

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002352867A (en) * 2001-05-28 2002-12-06 Honda Motor Co Ltd Battery temperature controller for electric vehicle
JP2002352866A (en) * 2001-05-28 2002-12-06 Honda Motor Co Ltd Battery cooling system for electric vehicle
JP2011146320A (en) * 2010-01-18 2011-07-28 Kawasaki Heavy Ind Ltd Cooling system of secondary battery
WO2013171885A1 (en) * 2012-05-17 2013-11-21 日立ビークルエナジー株式会社 Battery module
JP5920175B2 (en) * 2012-11-13 2016-05-18 株式会社デンソー Heat exchanger
JP5523542B1 (en) * 2012-12-07 2014-06-18 三菱電機株式会社 Cooling system
CN103196310B (en) * 2013-04-02 2015-02-25 虞寿仁 Liquid-cooling heat exchanger with miniature mini-channel metal round tubes
JP6316096B2 (en) * 2014-05-28 2018-04-25 昭和電工株式会社 Liquid cooling system
CN105371687B (en) * 2015-10-27 2017-07-11 珠海格力电器股份有限公司 Heat-exchanging component, heat exchanger and refrigeration system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009081387A (en) * 2007-09-27 2009-04-16 Dainippon Screen Mfg Co Ltd Substrate cooling device
JP2010050000A (en) * 2008-08-22 2010-03-04 Sanyo Electric Co Ltd Power source device for vehicle
WO2013116355A1 (en) * 2012-01-31 2013-08-08 Johnson Controls Technology Company Method for cooling a lithium-ion battery pack
JP2014216298A (en) * 2013-04-30 2014-11-17 日立オートモティブシステムズ株式会社 Battery module

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2019155810A1 (en) * 2018-02-06 2020-12-10 パナソニックIpマネジメント株式会社 Cooling device and battery temperature control system
JP7022935B2 (en) 2020-03-27 2022-02-21 パナソニックIpマネジメント株式会社 Vehicle and heat exchange plate
WO2021192569A1 (en) * 2020-03-27 2021-09-30 パナソニックIpマネジメント株式会社 Vehicle, heat exchanger plate and battery pack
JP2021158006A (en) * 2020-03-27 2021-10-07 パナソニックIpマネジメント株式会社 Vehicle and heat exchange plate
JP7365620B2 (en) 2020-03-31 2023-10-20 パナソニックIpマネジメント株式会社 Vehicle and temperature control system
JP7065332B2 (en) 2020-03-31 2022-05-12 パナソニックIpマネジメント株式会社 Vehicle and temperature control system
JP2021163638A (en) * 2020-03-31 2021-10-11 パナソニックIpマネジメント株式会社 Vehicle, heat exchange plate, and battery pack
JP2021160565A (en) * 2020-03-31 2021-10-11 パナソニックIpマネジメント株式会社 Vehicle and temperature adjusting system
JP2021160566A (en) * 2020-03-31 2021-10-11 パナソニックIpマネジメント株式会社 Vehicle and temperature adjusting system
JP2021160567A (en) * 2020-03-31 2021-10-11 パナソニックIpマネジメント株式会社 Vehicle and temperature adjusting system
JP7065331B2 (en) 2020-03-31 2022-05-12 パナソニックIpマネジメント株式会社 Vehicle and temperature control system
JP2022055245A (en) * 2020-09-28 2022-04-07 パナソニックIpマネジメント株式会社 Vehicle, and battery pack
JP2022055244A (en) * 2020-09-28 2022-04-07 パナソニックIpマネジメント株式会社 Vehicle, and battery pack
JP2022055246A (en) * 2020-09-28 2022-04-07 パナソニックIpマネジメント株式会社 Vehicle, and battery pack
JP7426610B2 (en) 2020-09-28 2024-02-02 パナソニックIpマネジメント株式会社 Vehicle and battery pack
JP7426609B2 (en) 2020-09-28 2024-02-02 パナソニックIpマネジメント株式会社 Vehicle and battery pack
JP7478922B2 (en) 2020-09-28 2024-05-08 パナソニックオートモーティブシステムズ株式会社 Vehicle and battery pack
JP2022061770A (en) * 2020-10-07 2022-04-19 パナソニックIpマネジメント株式会社 Vehicle and battery pack
JP7507538B2 (en) 2020-10-07 2024-06-28 パナソニックオートモーティブシステムズ株式会社 Vehicle and battery pack
WO2022176350A1 (en) * 2021-02-19 2022-08-25 パナソニックIpマネジメント株式会社 Vehicle and heat exchange plate
JP7513546B2 (en) 2021-02-19 2024-07-09 パナソニックオートモーティブシステムズ株式会社 Vehicle and heat exchange plate
JP7485626B2 (en) 2021-03-10 2024-05-16 パナソニックオートモーティブシステムズ株式会社 Vehicle and heat exchange plate
JP7513550B2 (en) 2021-03-10 2024-07-09 パナソニックオートモーティブシステムズ株式会社 Vehicle and heat exchange plate

Also Published As

Publication number Publication date
JP7336713B2 (en) 2023-09-01
JPWO2019139022A1 (en) 2020-11-19
JP7138299B2 (en) 2022-09-16
JP2022162023A (en) 2022-10-21
CN111033881B (en) 2023-12-29
CN111033881A (en) 2020-04-17
JP2023155255A (en) 2023-10-20

Similar Documents

Publication Publication Date Title
WO2019139022A1 (en) Cooling device and battery system
JP5626194B2 (en) Heat exchange system
CN102486348B (en) For the condenser of vehicle
WO2019155810A1 (en) Cooling device and battery temperature control system
US20200088471A1 (en) Thermosyphon
JP6088708B2 (en) Connection module, heat exchanger, and corresponding heat exchange assembly
JP2001059420A (en) Heat exchanger
JP2019052837A (en) Apparatus temperature adjustment device
KR20120058952A (en) Front end module for a motor vehicle
JP5539741B2 (en) Heat exchanger with heat storage function
JP4175918B2 (en) Multi-type heat exchanger for vehicles
JP7446561B2 (en) vehicle radiator
JP4039141B2 (en) Heat exchanger
US10661635B2 (en) Vehicle air-conditioning unit
JP7331335B2 (en) assembly
KR20080022324A (en) A heat exchanger having double row
JP3945062B2 (en) Mounting structure of condenser with integrated receiver
KR101855850B1 (en) Integrated heat exchanger
JP2020149818A (en) Cooler of battery module
JP2020167131A (en) Vehicle and cell temperature control device
KR102644177B1 (en) Integrated heat exchanger
WO2017164098A1 (en) Evaporator for vehicular air conditioning device
US11981185B2 (en) Refrigerant module of integrated thermal management system for vehicle
KR102676040B1 (en) Heat exchanger and air conditioner for vehicle having the same
JP2018179367A (en) Heat exchanger and vehicular air conditioner

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19738274

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019564709

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19738274

Country of ref document: EP

Kind code of ref document: A1