WO2019138908A1 - Shaped steel rolling method, shaped steel manufacturing line, and shaped steel manufacturing method - Google Patents

Shaped steel rolling method, shaped steel manufacturing line, and shaped steel manufacturing method Download PDF

Info

Publication number
WO2019138908A1
WO2019138908A1 PCT/JP2018/048177 JP2018048177W WO2019138908A1 WO 2019138908 A1 WO2019138908 A1 WO 2019138908A1 JP 2018048177 W JP2018048177 W JP 2018048177W WO 2019138908 A1 WO2019138908 A1 WO 2019138908A1
Authority
WO
WIPO (PCT)
Prior art keywords
rolling
rolling mill
torque
mill
mills
Prior art date
Application number
PCT/JP2018/048177
Other languages
French (fr)
Japanese (ja)
Inventor
和典 関
弘之 石橋
Original Assignee
日本製鉄株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本製鉄株式会社 filed Critical 日本製鉄株式会社
Priority to EP18899047.7A priority Critical patent/EP3702058A1/en
Priority to US16/771,941 priority patent/US20200338608A1/en
Priority to AU2018400555A priority patent/AU2018400555A1/en
Priority to JP2019506208A priority patent/JP6551625B1/en
Publication of WO2019138908A1 publication Critical patent/WO2019138908A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B1/00Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations
    • B21B1/08Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling structural sections, i.e. work of special cross-section, e.g. angle steel
    • B21B1/088H- or I-sections
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B1/00Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations
    • B21B1/08Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling structural sections, i.e. work of special cross-section, e.g. angle steel
    • B21B1/12Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling structural sections, i.e. work of special cross-section, e.g. angle steel in a continuous process, i.e. without reversing stands
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B37/00Control devices or methods specially adapted for metal-rolling mills or the work produced thereby
    • B21B37/48Tension control; Compression control
    • B21B37/52Tension control; Compression control by drive motor control
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B2201/00Special rolling modes
    • B21B2201/10Endless rolling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B2265/00Forming parameters
    • B21B2265/02Tension
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B2265/00Forming parameters
    • B21B2265/02Tension
    • B21B2265/06Interstand tension
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B2275/00Mill drive parameters
    • B21B2275/10Motor power; motor current
    • B21B2275/12Roll torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B37/00Control devices or methods specially adapted for metal-rolling mills or the work produced thereby
    • B21B37/46Roll speed or drive motor control

Definitions

  • the present invention relates to, for example, a method of rolling a shaped steel for producing shaped steels such as H-shaped steel, T-shaped steel, and I-shaped steel, a production line of shaped steel, and a method of manufacturing shaped steel.
  • Patent Document 1 discloses a technique for performing tension control between stands of a continuous rolling mill. Specifically, in Patent Document 1, the relationship between the rolling torque, rolling load, front tension, and back tension of each rolling stand is linearly related, and the front tension and back tension are measured based on the measured values of the rolling torque and the rolling load. Control is performed by estimating and using the estimated value as a target value.
  • Patent Document 2 in a continuous rolling mill having two or more rolling mills, the current of the roll drive motor when the material to be rolled bites into the reference rolling mill is stored, and the next rolling is performed.
  • a technology is disclosed that performs speed control as compared to the current of a roll drive motor when a material to be rolled is caught in a machine.
  • Patent Document 3 discloses a technique of detecting only torque fluctuation due to forward tension between a plurality of stands of a tandem rolling mill, and controlling tension between the respective stands. Specifically, in Patent Document 3, the rolling torque of a state in which the material to be rolled does not bite into the downstream side stand at an arbitrary stand, and the rolling torque of the upstream side stand at that time, An arrangement for determining tension free torque is disclosed.
  • Patent Document 2 The technology described in Patent Document 2 is based on the premise that the tension between the rolling mill and the reference rolling mill can be controlled to no tension before the material to be rolled bites into the rear stage stand (the next rolling mill). If the distance between them is short, there is a possibility that it can not be applied.
  • Patent Document 3 is considered to be premised that the sum of rolling torques is constant regardless of tension, and when there is an error in the premise, an error occurs in the tension control between stands as well. There is a risk that the tension control may not be performed accurately. Further, the technology of Patent Document 3 is basically created on the premise of rolling of a wire rod or a steel plate, and an error may occur when it is applied to a shaped steel rolled by a universal rolling mill. The reasons will be briefly described below in [0011] to [0016].
  • tension control between stands of a tandem rolling mill is performed using following formula (1), (2).
  • the above equation is considered to be based on the assumption that the total rolling torque at the total stand is constant regardless of tension.
  • the rolling torque G at each stand can be derived from the relationships shown in the following equations (A1) and (A2).
  • equations (A1) and (A2) are based on the premise that the total work amount of all the stands is constant regardless of the tension state.
  • the tension changes the shape of the material to be rolled in the cross section, and the total amount of work changes.
  • tension T between each stand tension between the first and second stands is T12
  • tension between the second and third stands is denoted as T23
  • A12, A23, B12, B23 are It is an influence factor between each stand.
  • the above-described error also increases as the inter-stand tension T12 increases.
  • tension is applied (that is, T12> 0) to prevent passing defects during biting, so in the case of no tension when A12> B12
  • the second stand rolling torque G20 of the above is excessively calculated, and in the case of A12 ⁇ B12, the second stand rolling torque G20 without tension is excessively calculated.
  • FIG. 9 is a schematic explanatory view of the universal intermediate rolling of H-section steel, (a) is a front view, (b) is a plan view at two stands.
  • the rolling conditions were such that the web thickness t was 11.4 mm ⁇ 10.0 mm ⁇ 9.0 mm, and the flange thickness tf 17.2 mm ⁇ 14.8 mm ⁇ 13 mm.
  • FIG. 10 is a graph showing by numerical analysis the amount of change in torque (ton ⁇ m) of each stand when the tension (tonf) between the first stand R1 and the second stand R2 changes under such rolling conditions It is.
  • the influence coefficients A12 and B12 are the same, it is considered that the amount of change in torque of each stand is opposite in polarity and inclination is the same.
  • the inclination is different between the torque change amount of the first stand R1 and the torque change amount of the second stand R2, and it is understood that A12> B12. That is, when the tension control based on Patent Document 3 is performed under the rolling condition of such shape steel, the second stand rolling torque G20 in the absence of tension is underestimated.
  • the distance between the stands of a plurality of stands may be shortened in an effort to make the equipment compact.
  • tandem rolling if the distance between the stands is shortened, a state occurs in which the material to be rolled bites into the downstream stand before the distance between the upstream rolling stands is controlled to no tension, and the above-described tension control technology Such prior art may not be applicable.
  • the object of the present invention is the conditions under which the distance between stands is short when rolling a shaped steel using a continuous rolling mill consisting of three or more rolling mills in a tandem state. Even with a simple control system that does not use table values for each rolling condition, it is possible to control the tension between stands with high accuracy, and to achieve the stabilization of the material passing and the improvement of the product dimensional accuracy. It is an object of the present invention to provide a method, a production line of shaped steel and a method of producing shaped steel.
  • one or more rolling mills when performing tandem rolling in a rolling mill row composed of at least three or more n rolling mills, one or more rolling mills may use horizontal roll side surfaces and the like. It is a rolling method of shaped steel which performs pressure reduction with a persimmon roll peripheral surface, and about each rolling mill Ri of the rolling mill row, after a rolling material bites in the rolling mill Ri, and, Before the material to be rolled bites into the rolling mill Ri + 1 located downstream of the rolling mill Ri, the rotational speed of the rolling mill Ri is fixed, and the rolling torque Gi of the rolling mill Ri at that time is stored as Gi *.
  • the rolling torque Gn-1 of the rolling mill Rn-1 located upstream of the rolling mill Rn is rolled to the rolling mill Rn Rolling of the rolling mill Rn-1 before the material bites
  • the rolling torque Gn-2 of the rolling mill Rn-2 located upstream of the rolling mill Rn-1 is stored before the rolling mill Rn-2 before the material to be rolled bites into the rolling mill Rn-1.
  • the rolling speed of the rolling mill Rn-1 is controlled to be equal to Gn-2 * stored as the rolling torque of a rolling torque, and the rolling torque Gn ** in which the rolling torque Gn of the rolling mill Rn is stored
  • a second control step of controlling the number of revolutions of the rolling mill Rn to be equal the second control step is applied to all the rolling mills Ri, and the rolling torque G1 of the uppermost rolling mill R1 is ,
  • the rolling method of a shaped steel is provided, characterized in that the number of revolutions of each rolling mill Ri of the rolling mill row is controlled to be equal to G1 * stored as the rolling torque of the rolling mill R1 before biting. Be done.
  • i is an arbitrary integer of 1 to n
  • n is an integer of 3 or more.
  • rolling After controlling the rotation speed of all the rolling mills Ri of the row of rolling mills, rolling may be performed by fixing the rotation speed ratio of each rolling mill Ri.
  • the rolling speed of the rolling mill Rn on the most downstream side of the row of rolling mills may be increased to a desired speed while fixing the rotational speed ratio of each rolling mill Ri.
  • a rolling mill train composed of at least 3 or more n rolling mills and a rolling mill or rolling mill train of at least one or more mills are arranged in this order in tandem.
  • the downstream rolling mill or rolling mill train has an upstream rolling mill row with a sufficient distance for the rolling material to bite
  • a downstream rolling mill or rolling mill train is disposed, and the rolling mill method described above is implemented independently of the upstream rolling mill train and the downstream rolling mill or rolling mill train.
  • a production line of shaped steel is provided.
  • a method of producing a shaped steel by reducing the pressure between the side surface of the horizontal roll and the circumferential surface of the scissor roll comprising at least three or more n rolling mills.
  • a row of rolling mills for each rolling mill Ri, after the material to be milled bites into the rolling mill Ri and before the material to be milled bites into the rolling mill Ri + 1 located downstream of the rolling mill Ri
  • the rotation speed of the rolling mill Ri is fixed, the rolling torque Gi of the rolling mill Ri at that time is stored as Gi *, and after the material to be rolled bites into the rolling mill Rn on the most downstream side of the row of rolling mills
  • the rolling torque Gn-1 of the rolling mill Rn-1 located upstream of the rolling mill Rn is stored as the rolling torque of the rolling mill Rn-1 before the material to be rolled bites into the rolling mill Rn.
  • the rotation speed of the rolling mill Rn is equal to 1 *
  • a first control process to control, and a rolling torque Gn ** of the rolling mill Rn after the first control process are stored, and then, rolling of a rolling mill Rn-2 located upstream of the rolling mill Rn-1 is performed.
  • the rolling mill Rn-1 is such that the torque Gn-2 is equal to Gn-2 * stored as the rolling torque of the rolling mill Rn-2 before the material to be rolled bites into the rolling mill Rn-1.
  • the second control step is applied to all the rolling mills Ri, and the rolling torque G1 of the most upstream rolling mill R1 is before the rolling mill R2 located downstream of the rolling mill R1 is engaged with the rolling mill R1.
  • each rolling condition With a simple control system that does not use table values etc., it becomes possible to control the tension between the stands with high accuracy, and to achieve stabilization of threading and improvement of product dimensional accuracy.
  • FIG. 1 It is a schematic explanatory drawing about the manufacturing line of H section steel. It is a schematic explanatory drawing of a universal rolling mill and an edger rolling mill. It is the plane schematic of a rolling mill row which consists of three rolling mills R1-R2-R3. It is a schematic explanatory drawing regarding tension control in case distance between stands is long. It is a schematic explanatory drawing at the time of applying conventional tension control, when distance between stands is very short. It is a schematic explanatory drawing at the time of applying tension control concerning the present invention, when distance between stands is very short. FIG.
  • FIG. 10 is a schematic explanatory view showing a combination of a rolling mill row consisting of rolling mills R1 to R3 in proximity and a rolling mill at a downstream position sufficiently separated from the rolling mill row.
  • FIG. It is a schematic explanatory drawing of the universal intermediate
  • the "universal rolling mill” in this specification refers to a rolling mill that performs rolling with large stretching using a horizontal roll and a skewer roll at the time of shape steel rolling, and “edger rolling” in combination with the universal rolling mill It is intended to refer to rolling mills used for extremely light rolling, and in the present specification they are sometimes referred to as “rolling stands” or simply “stands”.
  • FIG. 1 is an explanatory view of a production line L on which the method of rolling a shaped steel according to the present embodiment is performed.
  • a heating furnace 2 rough rolling mills 4, two intermediate universal rolling mills 5, 6, and a finishing universal rolling mill 8 are arranged in order from the upstream side in a production line L.
  • an edger rolling mill 9 is provided between the two intermediate universal rolling mills 5 and 6.
  • steel materials in the production line L may be collectively referred to as “rolled material S” for the sake of description, and the shapes thereof may be illustrated using broken lines, oblique lines, and the like as appropriate in each drawing.
  • the material S to be rolled such as the slab 11 extracted from the heating furnace 2 is roughly rolled in the rough rolling mill 4.
  • the intermediate universal rolling is performed in the intermediate universal rolling mills 5 and 6.
  • the edger rolling machine 9 applies a pressure to the end portion (flanged portion 12) of the material to be rolled.
  • approximately 4 to 6 hole types are engraved on the rolls of the rough rolling mill 4 (a plurality of machines may be installed), and reverse rolling of a plurality of passes is performed via these.
  • the H-shaped rough section 13 in a dog bone shape is formed by using a rolling mill row comprising the first middle universal rolling mill 5-edger rolling machine 9-the second middle universal rolling mill 6 Thus, multiple passes of pressure are applied to shape the intermediate material 14. Then, the intermediate material 14 is finish-rolled into a product shape in a finish universal rolling mill 8 to produce an H-shaped steel product 16.
  • the rolling mill row consisting of the first intermediate universal rolling mill 5-edger rolling mill 9-the second intermediate universal rolling mill 6 is used to reduce a plurality of passes with respect to the H-shaped rough section 13
  • the flange tip end is not pressed (refer to the broken line in the figure), so as shown in FIG. 2 (b).
  • rolling is performed so as to shape and press the unreduced portion with an edger rolling mill.
  • the configuration of the first intermediate universal rolling mill 5-edger rolling mill 9-second intermediate universal rolling mill 6 as described above is an example of a continuous rolling mill row for rolling a material to be rolled in a tandem state.
  • a rolling mill row having a configuration in which a plurality of such rolling stands are continuously arranged when rolling shaped steel as the material to be rolled S, since the rigidity of the material to be rolled is large, the looper used during steel strip rolling etc. It is difficult to control the tension between rolling stands using a (tension control device).
  • tension between the stands tends to be pulled when biting. It is common to set to a certain rotation speed. That is, in order to maintain a good product size in rolling of shaped steel, it is required to suitably control the tension between the stands after the material is caught.
  • the distance between the stands of the plurality of stands may be shortened for energy saving, cost saving and downsizing of equipment.
  • the distance between stands is shortened, there is a risk that the material to be rolled may bite into the downstream stand before the distance between the upstream rolling stands is controlled to no tension.
  • the control such as pulling tension between the stands as usual may not be stable.
  • the tension between the stands is controlled with high accuracy, the material passing is stabilized and the product dimensions There is a need for a technology that can improve the accuracy.
  • the configuration of the first intermediate universal rolling mill 5-edger rolling mill 9-the second intermediate universal rolling mill 6 is described as the continuous rolling mill row (see FIG. 2), but the present invention
  • the tension control method can be applied to any rolling mill as long as a plurality of rolling mills (stands) are continuously arranged in a facility that performs tandem rolling of shaped steel. Therefore, hereinafter, a conventional tension control method and a case where the tension control method according to the present invention is applied to a rolling mill train in which three stands of R1 to R3 are continuously arranged will be described as an example.
  • the present configuration is an example, and the tension control method according to the present invention is applicable to a row of rolling mills in which at least three or more rolling mills are in a tandem rolling state.
  • FIG. 3 is a schematic plan view of the rolling mill row 30 consisting of three rolling mills R1-R2-R3.
  • the distance between stands of three rolling mills (rolling stands) of R1, R2 and R3 is a distance shorter than the length in the longitudinal direction of the material S to be rolled, and so-called tandem rolling causes rolling of the material S to be rolled It will be.
  • the tension control method according to the present invention is applied, the distance between the stands is sufficiently short compared to the rolling speed of the material to be rolled S, that is, before being caught in the downstream stand.
  • FIG. 4 is a schematic explanatory view related to tension control when the distance between stands is long, and is a schematic view showing a change in rolling torque (solid line) and a change in rotational speed (one-dot chain line) of each rolling mill R1 to R3.
  • each rolling torque of R1 to R3 is defined as G1 to G3 as a value which changes with time, and each rolling torque value at a specific time point is described as an individual value such as "G1 *".
  • the schematic about the position of the to-be-rolled material S in the situations A and B in the said schematic diagram (FIG. 4) is collectively described in FIG.
  • the tension control in the case where the distance between the stands is long will be described with reference to FIG.
  • a configuration in which the distance between the stands is extremely short indicates a configuration in which the material S to be rolled is caught in the downstream stand before the distance between the upstream rolling stands is controlled to be in a non-tension state.
  • FIG. 5 is a schematic explanatory view when the conventional tension control is applied when the distance between stands is extremely short, and shows the change in rolling torque (solid line) and the change in rotational speed (one-dot chain line) of each rolling mill R1 to R3. It is a schematic diagram. In addition, also in FIG. 5, the schematic about the position of the to-be-rolled material S in the situations A and B in the said schematic diagram (FIG. 5) is described collectively. A case where conventional tension control is applied in a configuration in which the distance between stands is extremely short will be described with reference to FIG.
  • the conventional tension control technology is used in the rolling mill train 30 including three rolling mills R1-R2-R3, when the distance between the stands is sufficiently long.
  • suitable tension control is possible by application (refer to FIG. 4)
  • the conventional tension control technology can not realize suitable tension control (refer to FIG. 5) in the configuration where the distance between stands is extremely short.
  • FIG. 6 is a schematic explanatory view when the tension control according to the present invention is applied when the distance between stands is extremely short, and shows the rolling torque change (solid line) and rotational speed change (dashed dotted line) of each rolling mill R1 to R3. It is a schematic diagram shown. In FIG. 6, a schematic view of the position of the material to be rolled S in the situations A to C in the schematic view (FIG. 6) is also shown. The case where tension control according to the present invention is applied to a configuration in which the distance between stands is extremely short will be described with reference to FIG.
  • the measurable rolling torque is stored, and a simple control system is a tension over the entire length of the rolling mill train 30 consisting of R1-R2-R3. Control can be implemented with high accuracy.
  • each rolling mill constituting a rolling mill row consisting of n rolling mills is R1, R2,... Rn, and the i-th rolling mill among them is Ri, Ri.
  • the rolling torque is defined as Gi. That is, i is an arbitrary integer of 1 to n, and n is an integer of 3 or more.
  • the rolling torque Gn ** of the rolling mill Rn after tension control stabilization in the first control step is stored.
  • the rolling torque Gn-2 of the rolling mill Rn-2 located upstream of the rolling mill Rn-1 is stored as the rolling torque of the rolling mill Rn-2 before the material to be rolled bites into the rolling mill Rn-1.
  • the rotation speed of the rolling mill Rn-1 is controlled to be equal to Gn-2 *, and the rolling torque Gn of the rolling mill Rn maintains the rolling torque Gn ** stored in the above 3).
  • the rotational speed of the rolling mill Rn is controlled (second control step).
  • the rolling torque Gn-1 ** of the rolling mill Rn-1 is stored after tension control settling.
  • the second control step is performed on each rolling mill so as to sequentially go back upstream. That is, for each rolling mill Rn-1, Rn-2, ... R1, the rolling torque Gi of the rolling mill immediately before the rolling mill becomes the rolling torque Gi * stored before the rolling mill bites into the rolling mill. So that the rolling torques Gi + 1 to Gn of the rolling mills Ri + 1 to Rn downstream of the rolling mills maintain the rolling torques Gi + 1 ** to Gn ** stored after tension settling. By controlling the rotational speed of Ri + 1 to Rn, the non-tensioned state can be realized similarly between the respective rolling mills after control.
  • the rolling torque G1 of the most upstream rolling mill R1 is equal to G1 * stored as the rolling torque of the rolling mill R1 before it bites into the rolling mill R2 located downstream of the rolling mill R1
  • the rotation speed of each rolling mill Ri of the row of rolling mills is controlled to be as follows.
  • the interlock control step is to control the rotational speed so as to maintain i + 1 to n).
  • tension control is performed so as to trace back to the upstream one by one, and finally control is performed to the most upstream rolling mill R1. It is possible to carry out tension control such that each rolling mill is in a non-tensioned state for the entire train of machines.
  • the temperature change at the time of rolling of the material to be rolled S is not particularly mentioned.
  • the temperature of the material to be rolled S changes with time when performing tandem rolling in a rolling mill row consisting of a plurality of rolling mills such as R1-R2-R3.
  • the rolling torque of each rolling mill may fluctuate with the temperature change. If the above-mentioned tension control method is applied without considering the fluctuation of the rolling torque due to the temperature change, an error associated with the fluctuation may occur.
  • the mill rigidity of the row of rolling mills is sufficiently large with respect to the temperature change.
  • the rotational speed ratio of each rolling mill in the stationary state may be fixed.
  • the non-tensioned state statically determined state
  • the rolling speed of the other rolling mill is determined so that the above-mentioned rotational speed ratio becomes the same ratio according to the rolling speed of the most downstream rolling mill, with the most downstream rolling mill downstream of rolling being the desired speed. Just do it.
  • FIG. 7 is a schematic explanatory view showing a combination of a rolling mill row 30 consisting of rolling mills (stands) R1 to R3 in close proximity and a rolling mill F1 at a downstream position sufficiently separated from the rolling mill row 30.
  • the tension control method described in the above embodiment is applied, the tension from R1 to R3 is settled, and then the material to be rolled is
  • G3 ** the rolling torque of R3 after settling
  • FIG. 8 shows a second row of rolling mills 30 including rolling mills R1 to R3 close to each other, and second rolling mills including rolling mills F1 to F3 close to each other at a downstream position sufficiently separated from the rolling mill row 30.
  • FIG. 6 is a schematic explanatory view showing a combination with a train of machines 50.
  • the tension control method described in the above embodiment is applied, and the tension from R1 to R3 is settled and F1 is rolled. Before the material S bites in, the rotational speed of R1 to R3 is fixed.
  • the timing at which the rolling torque is stored is set 0.1 seconds before the biting of the downstream stand because the rolling speed is estimated from the distance between the stands and the roll speed, and the time to bite into the downstream stand of the material to be rolled
  • the estimation timing is added to prevent the storage timing of the rolling torque from being after the downstream stand bites.
  • 0.5 seconds after start of control at the downstream stand biting time is a time required to avoid a transient state such as recovery from a drop in rotation speed (impact drop) due to biting.
  • the calculation timing of the non-tension torque Gj0 is 0.1 seconds before biting in the downstream stand because the rolling speed is estimated from the distance between the stands and the roll speed, and the time to bite in the downstream stand of the material to be rolled
  • the estimation timing is taken into consideration in order to estimate the following, so that the storage timing of the rolling torque will not be after the downstream stand bites.
  • the present invention is applicable to, for example, a method of rolling a shaped steel for producing a shaped steel such as an H-shaped steel, a T-shaped steel, or an I-shaped steel, a production line of shaped steel and a method of manufacturing shaped steel.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Control Of Metal Rolling (AREA)
  • Metal Rolling (AREA)

Abstract

According to the present invention, for each rolling machine, a rolling torque Gi before biting at a downstream stand is stored, the rotation speed at a furthest downstream stand Rn is controlled so as to satisfy Gn-1=Gn-1* after biting at the furthest downstream stand Rn, and a rolling torque Gn** of Rn after tension correction is stored. Subsequently, the rotation speed of a rolling machine Ri is controlled so as to satisfy Gi=Gi* toward the upstream side, and the rotation speed of a rolling machine Rk on the downstream side of the rolling machine Ri is controlled so as to maintain the relationship Gk=Gk** (k=1+1 to n), and the rolling torque of a furthest upstream rolling machine R1 is controlled to be equal to the stored G1*. Thus, even under the condition of small distances between stands, the tension between stands is controlled with high accuracy in a simple control system that does not use table values for each rolling condition, and stabilization of a passing material and improvement of product dimensions are achieved.

Description

形鋼の圧延方法、形鋼の製造ライン及び形鋼の製造方法Method of rolling shape steel, manufacturing line of shape steel and method of manufacturing shape steel
(関連出願の相互参照)
 本願は、2018年1月10日に日本国に出願された特願2018-001784号に基づき、優先権を主張し、その内容をここに援用する。
(Cross-reference to related applications)
Priority is claimed on Japanese Patent Application No. 2018-001784, filed January 10, 2018, the content of which is incorporated herein by reference.
 本発明は、例えばH形鋼、T形鋼、I形鋼といった形鋼を製造する形鋼の圧延方法、形鋼の製造ライン及び形鋼の製造方法に関する。 The present invention relates to, for example, a method of rolling a shaped steel for producing shaped steels such as H-shaped steel, T-shaped steel, and I-shaped steel, a production line of shaped steel, and a method of manufacturing shaped steel.
 連続圧延機を用いた圧延プロセスにおいては、各圧延機間の材料張力は、材料の厚みや幅といった寸法を決定するための重要な要素である。従って、製品寸法を良好に保つためには、圧延機間の張力を好適に制御することが求められる。このような事情に鑑み、従来、種々の圧延機(圧延スタンド、スタンドとも呼称する)間での張力制御を行う技術が創案されている。 In a rolling process using a continuous rolling mill, material tension between the rolling mills is an important factor for determining dimensions such as thickness and width of the material. Therefore, in order to keep the product size well, it is required to control the tension between the rolling mills appropriately. In view of such circumstances, a technology for performing tension control between various rolling mills (also referred to as a rolling stand and a stand) has conventionally been devised.
 例えば、特許文献1には、連続圧延機の各スタンド間において張力制御を行う技術が開示されている。具体的には、特許文献1では、各圧延スタンドの圧延トルク、圧延荷重、前方張力、後方張力の関係を線形式で関係付け、圧延トルク及び圧延荷重の測定値に基づき前方張力及び後方張力を推定し、その推定値を目標値とすることで制御を行っている。 For example, Patent Document 1 discloses a technique for performing tension control between stands of a continuous rolling mill. Specifically, in Patent Document 1, the relationship between the rolling torque, rolling load, front tension, and back tension of each rolling stand is linearly related, and the front tension and back tension are measured based on the measured values of the rolling torque and the rolling load. Control is performed by estimating and using the estimated value as a target value.
 また、例えば、特許文献2には、2つ以上の圧延機を有する連続圧延機において、被圧延材が基準圧延機に噛み込んだときのロール駆動モータの電流を記憶しておき、次の圧延機に被圧延材が噛み込まれたときのロール駆動モータの電流と比較して速度制御を行う技術が開示されている。 Further, for example, in Patent Document 2, in a continuous rolling mill having two or more rolling mills, the current of the roll drive motor when the material to be rolled bites into the reference rolling mill is stored, and the next rolling is performed. A technology is disclosed that performs speed control as compared to the current of a roll drive motor when a material to be rolled is caught in a machine.
 また、例えば、特許文献3には、タンデム圧延機の複数のスタンド間において、前方張力によるトルク変動のみを検出し、各スタンド間張力の制御を行う技術が開示されている。具体的には、特許文献3では、任意のスタンドにおいて下流側スタンドに被圧延材が噛み込んでいない状態の圧延トルクと、その時点での上流側スタンドの圧延トルクに基づき、任意の各スタンドの無張力トルクを求めるとの構成が開示されている。 Further, for example, Patent Document 3 discloses a technique of detecting only torque fluctuation due to forward tension between a plurality of stands of a tandem rolling mill, and controlling tension between the respective stands. Specifically, in Patent Document 3, the rolling torque of a state in which the material to be rolled does not bite into the downstream side stand at an arbitrary stand, and the rolling torque of the upstream side stand at that time, An arrangement for determining tension free torque is disclosed.
特開2008-183594号公報JP, 2008-183594, A 特公昭53-34586号公報Japanese Patent Publication No. 53-34586 特公昭61-3564号公報Japanese Patent Publication No. 61-3564
 複数の圧延機からなる連続圧延機において、スタンド(圧延機)間の張力制御は必須であるが、上記特許文献1に記載の技術では、スタンド間張力を線形式から推定するため、予め線形式を求める必要があり、広範な実験や数値解析による線形式の作成が求められる。 Although tension control between stands (rolling machines) is essential in a continuous rolling mill consisting of a plurality of rolling mills, in the technique described in Patent Document 1, in order to estimate the tension between the stands from a linear form, a linear system is prepared in advance. It is necessary to create a linear form by extensive experiments and numerical analysis.
 また、上記特許文献2に記載の技術は、後段スタンド(次の圧延機)に被圧延材が噛み込むまでに基準圧延機との間の張力が無張力状態に制御できることを前提としており、スタンド間距離が短くなると適用できない恐れがある。 The technology described in Patent Document 2 is based on the premise that the tension between the rolling mill and the reference rolling mill can be controlled to no tension before the material to be rolled bites into the rear stage stand (the next rolling mill). If the distance between them is short, there is a possibility that it can not be applied.
 また、上記特許文献3に記載の技術は、圧延トルクの総和が張力によらず一定であることを前提としていると考えられ、当該前提に誤差があった場合、スタンド間張力制御にも誤差が影響し、精度良く張力制御が行われない恐れがある。また、特許文献3の技術は、基本的に線材や鋼板の圧延を前提に創案されたものであり、ユニバーサル圧延機で圧延を行う形鋼に適用した場合には誤差が生じる恐れがある。以下、[0011]~[0016]にその理由について簡単に説明する。 Further, the technology described in Patent Document 3 is considered to be premised that the sum of rolling torques is constant regardless of tension, and when there is an error in the premise, an error occurs in the tension control between stands as well. There is a risk that the tension control may not be performed accurately. Further, the technology of Patent Document 3 is basically created on the premise of rolling of a wire rod or a steel plate, and an error may occur when it is applied to a shaped steel rolled by a universal rolling mill. The reasons will be briefly described below in [0011] to [0016].
 上記特許文献3では、下記式(1)、(2)を用いてタンデム圧延機のスタンド間張力制御を行っている。
Figure JPOXMLDOC01-appb-M000001
 
 上記式は、総スタンドでの圧延トルクの総和が張力によらず一定であることが前提になっていると考えられる。一例として、総スタンドが3スタンド(第1スタンド~第3スタンド)である場合を例示して考える。上記式(1)、(2)に基づくと、各スタンドでの圧延トルクGは以下の式(A1)、(A2)に示す関係が導き出される。
 
Figure JPOXMLDOC01-appb-M000002
 
 これら式(A1)、(A2)は、全スタンドの総仕事量が張力状態によらず一定であることを前提とした関係であるが、例えばH形鋼等の形鋼の圧延では、スタンド間張力によって断面内の被圧延材形状が変化し、総仕事量は変化する。具体的には、形鋼のユニバーサル圧延では水平ロール側面と竪ロール周面による圧下が存在し、当該水平ロール側面及び竪ロール周面と被圧延材との間には位置により異なる摩擦力が作用するために、スタンド間張力によって被圧延材の寸法が変化する場合は、総仕事量が変動することがある。その為、張力と圧延トルクGとの関係は、影響係数を含む以下の式(B1)~(B3)で表すのが妥当である。なお、以下では、各スタンド間での張力Tとして、第1、第2スタンド間張力をT12とし、第2、第3スタンド間張力をT23との記載で示し、A12、A23、B12、B23は各スタンド間での影響係数とする。
 
Figure JPOXMLDOC01-appb-M000003
 
 上記式(B1)~(B3)において、A12=B12、A23=B23であれば、上記式(A1)、(A2)に示す関係が成り立つが、上述したように形鋼の圧延では総仕事量が一定ではないことがあり、A12=B12、A23=B23との関係が成り立たない場合がある。
In the said patent document 3, tension control between stands of a tandem rolling mill is performed using following formula (1), (2).
Figure JPOXMLDOC01-appb-M000001

The above equation is considered to be based on the assumption that the total rolling torque at the total stand is constant regardless of tension. As an example, consider the case where the total stand is three stands (first to third stands). Based on the equations (1) and (2), the rolling torque G at each stand can be derived from the relationships shown in the following equations (A1) and (A2).

Figure JPOXMLDOC01-appb-M000002

These equations (A1) and (A2) are based on the premise that the total work amount of all the stands is constant regardless of the tension state. The tension changes the shape of the material to be rolled in the cross section, and the total amount of work changes. Specifically, in the universal rolling of shaped steel, there is a pressure reduction due to the side surface of the horizontal roll and the circumferential surface of the weir roll, and different frictional force depending on the position acts on the side surface of the horizontal roll and the circumferential surface of the weir roll and the material to be rolled In order to change the size of the material to be rolled due to the tension between the stands, the total work may vary. Therefore, it is appropriate that the relationship between tension and rolling torque G is expressed by the following equations (B1) to (B3) including the influence coefficient. In addition, below, as tension T between each stand, tension between the first and second stands is T12, tension between the second and third stands is denoted as T23, and A12, A23, B12, B23 are It is an influence factor between each stand.

Figure JPOXMLDOC01-appb-M000003

In the above equations (B1) to (B3), if A12 = B12 and A23 = B23, the relationships shown in the above equations (A1) and (A2) hold, but as described above, the total work amount in rolling of shaped steel However, the relationship between A12 = B12 and A23 = B23 may not hold.
 上記式(A1)と、式(B1)、(B2)とを比較するに際し、第3スタンドに被圧延材が噛み込む前(即ち、T23=0)について、式(B1)、(B2)を変形すると、以下の式(B4)が導出される。
 
Figure JPOXMLDOC01-appb-M000004
 
 以下に、第2スタンドの無張力時の第2スタンド圧延トルクG20を導出するための式である式(A1)と式(B4)を併記し、更に式(B4)を変形し式(B4)’とし、比較する。
 
Figure JPOXMLDOC01-appb-M000005
 
 式(A1)と式(B4)あるいは式(A1)と式(B4)’との比較から、形鋼の圧延における張力制御を、特許文献3に記載の式(1)、(2)を用いて行った場合、(B12/A12-1)(G1*-G10)=-(A12-B12)T12の誤差が含まれることになることが分かる。
When comparing the formula (A1) with the formulas (B1) and (B2), the formulas (B1) and (B2) can be obtained before the material to be rolled bites into the third stand (that is, T23 = 0). If it deform | transforms, the following formula (B4) will be derived | led-out.

Figure JPOXMLDOC01-appb-M000004

Formula (A1) and Formula (B4) which are formulas for deriving the 2nd stand rolling torque G20 at the time of no tension of a 2nd stand are written together below, and Formula (B4) is further transformed to Formula (B4) 'And compare.

Figure JPOXMLDOC01-appb-M000005

From the comparison between the formula (A1) and the formula (B4) or the formula (A1) and the formula (B4) ′, tension control in rolling of shaped steel is performed using the formulas (1) and (2) described in Patent Document 3. When it is performed, it is understood that an error of (B12 / A12-1) (G1 * -G10) =-(A12-B12) T12 is included.
 上述した誤差は、スタンド間張力T12が大きい程、当該誤差も大きくなる。一般的な圧延機列での圧延では、噛み込み時の通材不良を防止するため、張力をかけた状態(即ち、T12>0)に設定されるため、A12>B12の場合、無張力時の第2スタンド圧延トルクG20は過大に算定され、A12<B12の場合、無張力時の第2スタンド圧延トルクG20は過小に算定される。 The above-described error also increases as the inter-stand tension T12 increases. In rolling in a general row of rolling mills, tension is applied (that is, T12> 0) to prevent passing defects during biting, so in the case of no tension when A12> B12 The second stand rolling torque G20 of the above is excessively calculated, and in the case of A12 <B12, the second stand rolling torque G20 without tension is excessively calculated.
 ここで、形鋼の圧延では総仕事量が一定ではないことを示す数値解析について図9、10を参照して説明する。図9は、H形鋼のユニバーサル中間圧延の概略説明図であり、(a)は正面図、(b)は2スタンドでの平面図である。図9において、内法Bi=274mm、フランジ幅Bf=150mmのH形鋼を2スタンドのタンデムユニバーサル圧延機でもって圧延した。圧延条件は、ウェブ厚tを11.4mm→10.0mm→9.0mm、フランジ厚tfを17.2mm→14.8mm→13mm、で圧延する条件とした。 Here, numerical analysis showing that the total work amount is not constant in rolling of shaped steel will be described with reference to FIGS. FIG. 9 is a schematic explanatory view of the universal intermediate rolling of H-section steel, (a) is a front view, (b) is a plan view at two stands. In FIG. 9, an H-shaped steel having an inner diameter Bi = 274 mm and a flange width Bf = 150 mm was rolled by a two-stand tandem universal rolling mill. The rolling conditions were such that the web thickness t was 11.4 mm → 10.0 mm → 9.0 mm, and the flange thickness tf 17.2 mm → 14.8 mm → 13 mm.
 図10は、このような圧延条件下で第1スタンドR1-第2スタンドR2間の張力(tonf)が変化した際の、各スタンドのトルク変化量(ton・m)を数値解析により示したグラフである。上記影響係数A12とB12が同じである場合、各スタンドのトルク変化量は正負逆、且つ、傾きは同じとなると考えられる。しかしながら、図10に示すように、第1スタンドR1のトルク変化量と、第2スタンドR2のトルク変化量とでは、その傾きが異なっており、A12>B12となっていることが分かる。即ち、このような形鋼の圧延条件下において特許文献3に基づく張力制御を行った場合、無張力時の第2スタンド圧延トルクG20は過小に算定されるという事になる。 FIG. 10 is a graph showing by numerical analysis the amount of change in torque (ton · m) of each stand when the tension (tonf) between the first stand R1 and the second stand R2 changes under such rolling conditions It is. When the influence coefficients A12 and B12 are the same, it is considered that the amount of change in torque of each stand is opposite in polarity and inclination is the same. However, as shown in FIG. 10, the inclination is different between the torque change amount of the first stand R1 and the torque change amount of the second stand R2, and it is understood that A12> B12. That is, when the tension control based on Patent Document 3 is performed under the rolling condition of such shape steel, the second stand rolling torque G20 in the absence of tension is underestimated.
 このような数値解析の結果からも、形鋼の圧延ではスタンド間張力によって被圧延材形状が変化し、水平ロール側面と竪ロール周面による圧下が存在し、当該水平ロール側面及び竪ロール周面と被圧延材との間には位置により異なる摩擦力が作用するために総仕事量が変動していることが推定される。 Also from the results of such numerical analysis, in the rolling of shaped steel, the shape of the material to be rolled changes due to the tension between the stands, and there is a reduction due to the side surface of the horizontal roll and the circumferential surface of the weir roll. It is estimated that the total amount of work fluctuates due to the effect of different frictional forces depending on the position between the and the rolled material.
 ところで、省エネ、省コストが求められる連続圧延設備では、設備のコンパクト化を志向して複数スタンドのスタンド間距離を短くすることがある。タンデム圧延を行う場合に、スタンド間を短くした場合、上流の圧延スタンド間が無張力状態に制御される前に、下流スタンドに被圧延材が噛み込むといった状態が生じ、張力制御技術として上記のような従来技術が適用できない恐れがある。例えば、各圧延スタンドの噛み込み直後の回転数の低下(いわゆるインパクトドロップ)からの回復が0.5秒程度であり、各圧延スタンドの噛み込み速度が3m/sであるような条件においては、スタンド間距離が1.5m以下であると、下流スタンドでの被圧延材噛み込みまでに張力制御が間に合わない恐れがある。 By the way, in continuous rolling equipment where energy saving and cost saving are required, the distance between the stands of a plurality of stands may be shortened in an effort to make the equipment compact. When tandem rolling is performed, if the distance between the stands is shortened, a state occurs in which the material to be rolled bites into the downstream stand before the distance between the upstream rolling stands is controlled to no tension, and the above-described tension control technology Such prior art may not be applicable. For example, under the condition that the recovery from the decrease in rotational speed immediately after biting in each rolling stand (so-called impact drop) is about 0.5 seconds, and the biting speed in each rolling stand is 3 m / s, If the distance between stands is 1.5 m or less, there is a possibility that tension control may not be in time until the material to be rolled in the downstream stand is caught.
 そこで、上記事情に鑑み、本発明の目的は、3機以上の圧延機からなる連続圧延機をタンデム状態で用いて形鋼の圧延を行う場合に、スタンド間距離が短いような条件下であっても、圧延条件ごとのテーブル値等を使用しない単純な制御系で、スタンド間張力を高精度で制御し、通材の安定化ならびに製品寸法精度の向上を図ることが可能な形鋼の圧延方法、形鋼の製造ライン及び形鋼の製造方法を提供することにある。 Then, in view of the above-mentioned circumstances, the object of the present invention is the conditions under which the distance between stands is short when rolling a shaped steel using a continuous rolling mill consisting of three or more rolling mills in a tandem state. Even with a simple control system that does not use table values for each rolling condition, it is possible to control the tension between stands with high accuracy, and to achieve the stabilization of the material passing and the improvement of the product dimensional accuracy. It is an object of the present invention to provide a method, a production line of shaped steel and a method of producing shaped steel.
 前記の目的を達成するため、本発明によれば、少なくとも3機以上のn機の圧延機で構成される圧延機列においてタンデム圧延を行うにあたり、1機以上の圧延機でもって水平ロール側面と竪ロール周面との間での圧下を行う形鋼の圧延方法であって、前記圧延機列の各圧延機Riについて、前記圧延機Riに被圧延材が噛み込んだ後であり、且つ、前記圧延機Riの下流に位置する圧延機Ri+1に被圧延材が噛み込む前に、前記圧延機Riの回転数を固定し、その時の前記圧延機Riの圧延トルクGiをGi*として記憶し、前記圧延機列の最下流の圧延機Rnに被圧延材が噛み込んだ後、前記圧延機Rnの上流に位置する圧延機Rn-1の圧延トルクGn-1が、前記圧延機Rnに被圧延材が噛み込む前の前記圧延機Rn-1の圧延トルクとして記憶されたGn-1*と等しくなるように、前記圧延機Rnの回転数を制御する、第1制御工程と、当該第1制御工程後の前記圧延機Rnの圧延トルクGn**を記憶し、次いで、前記圧延機Rn-1の上流に位置する圧延機Rn-2の圧延トルクGn-2が、前記圧延機Rn-1に被圧延材が噛み込む前の前記圧延機Rn-2の圧延トルクとして記憶されたGn-2*と等しくなるように、前記圧延機Rn-1の回転数を制御し、且つ、前記圧延機Rnの圧延トルクGnが記憶された圧延トルクGn**と等しくなるように前記圧延機Rnの回転数を制御する、第2制御工程と、を備え、前記第2制御工程を各圧延機Ri全てに適用させ、最上流の圧延機R1の圧延トルクG1が、前記圧延機R1の下流に位置する圧延機R2に噛み込む前の前記圧延機R1の圧延トルクとして記憶されたG1*と等しくなるように前記圧延機列の各圧延機Riの回転数を制御することを特徴とする、形鋼の圧延方法が提供される。但し、iは1からnの任意の整数であり、nは3以上の整数である。 In order to achieve the above object, according to the present invention, when performing tandem rolling in a rolling mill row composed of at least three or more n rolling mills, one or more rolling mills may use horizontal roll side surfaces and the like. It is a rolling method of shaped steel which performs pressure reduction with a persimmon roll peripheral surface, and about each rolling mill Ri of the rolling mill row, after a rolling material bites in the rolling mill Ri, and, Before the material to be rolled bites into the rolling mill Ri + 1 located downstream of the rolling mill Ri, the rotational speed of the rolling mill Ri is fixed, and the rolling torque Gi of the rolling mill Ri at that time is stored as Gi *. After the material to be rolled bites into the most downstream rolling mill Rn of the row of rolling mills, the rolling torque Gn-1 of the rolling mill Rn-1 located upstream of the rolling mill Rn is rolled to the rolling mill Rn Rolling of the rolling mill Rn-1 before the material bites The first control step of controlling the rotational speed of the rolling mill Rn to be equal to Gn-1 * stored as torque, and the rolling torque Gn ** of the rolling mill Rn after the first control step The rolling torque Gn-2 of the rolling mill Rn-2 located upstream of the rolling mill Rn-1 is stored before the rolling mill Rn-2 before the material to be rolled bites into the rolling mill Rn-1. The rolling speed of the rolling mill Rn-1 is controlled to be equal to Gn-2 * stored as the rolling torque of a rolling torque, and the rolling torque Gn ** in which the rolling torque Gn of the rolling mill Rn is stored A second control step of controlling the number of revolutions of the rolling mill Rn to be equal, the second control step is applied to all the rolling mills Ri, and the rolling torque G1 of the uppermost rolling mill R1 is , A rolling mill R2 located downstream of the rolling mill R1 The rolling method of a shaped steel is provided, characterized in that the number of revolutions of each rolling mill Ri of the rolling mill row is controlled to be equal to G1 * stored as the rolling torque of the rolling mill R1 before biting. Be done. However, i is an arbitrary integer of 1 to n, and n is an integer of 3 or more.
 前記圧延機列の各圧延機のそれぞれの圧延トルクの値に替えて、各圧延機の圧延トルクを当該圧延機の圧延荷重で除した値であるトルクアーム係数(G/P)を用いて制御を行っても良い。 Control using the torque arm coefficient (G / P), which is a value obtained by dividing the rolling torque of each rolling mill by the rolling load of the rolling mill instead of the rolling torque value of each rolling mill in the row of rolling mills You may
 前記圧延機列の各圧延機Ri全ての回転数を制御した後、当該各圧延機Riの回転数比を固定して圧延を行っても良い。 After controlling the rotation speed of all the rolling mills Ri of the row of rolling mills, rolling may be performed by fixing the rotation speed ratio of each rolling mill Ri.
 前記各圧延機Riの回転数比を固定した状態で前記圧延機列の最下流の圧延機Rnの圧延速度を所望の速度に増速しても良い。 The rolling speed of the rolling mill Rn on the most downstream side of the row of rolling mills may be increased to a desired speed while fixing the rotational speed ratio of each rolling mill Ri.
 また、別の観点からの本発明によれば、少なくとも3機以上のn機の圧延機で構成される圧延機列と、少なくとも1機以上の圧延機又は圧延機列と、がこの順にタンデム配置された構成であり、1機以上の圧延機でもって水平ロール側面と竪ロール周面との間での圧下を行う形鋼の製造ラインであって、当該製造ラインでは、上流の圧延機列において被圧延材の無張力制御が行われ、当該無張力制御が完了した後に、下流の圧延機又は圧延機列に被圧延材が噛み込むための十分な距離がある状態で上流の圧延機列と下流の圧延機又は圧延機列が配置され、前記上流の圧延機列と、前記下流の圧延機又は圧延機列と、は独立して上記記載の形鋼の圧延方法が実施されることを特徴とする、形鋼の製造ラインが提供される。 Further, according to the present invention from another viewpoint, a rolling mill train composed of at least 3 or more n rolling mills and a rolling mill or rolling mill train of at least one or more mills are arranged in this order in tandem. A production line of a section steel for reducing the pressure between the side surface of the horizontal roll and the circumferential surface of the cocoon roll with one or more rolling mills, and in the production line, an upstream row of rolling mills After the tension-free control of the material to be rolled is performed and the tension-free control is completed, the downstream rolling mill or rolling mill train has an upstream rolling mill row with a sufficient distance for the rolling material to bite A downstream rolling mill or rolling mill train is disposed, and the rolling mill method described above is implemented independently of the upstream rolling mill train and the downstream rolling mill or rolling mill train. A production line of shaped steel is provided.
 また、本発明によれば、水平ロール側面と竪ロール周面との間での圧下を行い製造される形鋼の製造方法であって、少なくとも3機以上のn機の圧延機で構成される圧延機列において、各圧延機Riについて、前記圧延機Riに被圧延材が噛み込んだ後であり、且つ、前記圧延機Riの下流に位置する圧延機Ri+1に被圧延材が噛み込む前に、前記圧延機Riの回転数を固定し、その時の前記圧延機Riの圧延トルクGiをGi*として記憶し、前記圧延機列の最下流の圧延機Rnに被圧延材が噛み込んだ後、前記圧延機Rnの上流に位置する圧延機Rn-1の圧延トルクGn-1が、前記圧延機Rnに被圧延材が噛み込む前の前記圧延機Rn-1の圧延トルクとして記憶されたGn-1*と等しくなるように、前記圧延機Rnの回転数を制御する、第1制御工程と、当該第1制御工程後の前記圧延機Rnの圧延トルクGn**を記憶し、次いで、前記圧延機Rn-1の上流に位置する圧延機Rn-2の圧延トルクGn-2が、前記圧延機Rn-1に被圧延材が噛み込む前の前記圧延機Rn-2の圧延トルクとして記憶されたGn-2*と等しくなるように、前記圧延機Rn-1の回転数を制御し、且つ、前記圧延機Rnの圧延トルクGnが記憶された圧延トルクGn**と等しくなるように前記圧延機Rnの回転数を制御する、第2制御工程と、を備え、前記第2制御工程を各圧延機Ri全てに適用させ、最上流の圧延機R1の圧延トルクG1が、前記圧延機R1の下流に位置する圧延機R2に噛み込む前の前記圧延機R1の圧延トルクとして記憶されたG1*と等しくなるように前記圧延機列の各圧延機Riの回転数を制御することにより形鋼を製造することを特徴とする、形鋼の製造方法が提供される。 Further, according to the present invention, there is provided a method of producing a shaped steel by reducing the pressure between the side surface of the horizontal roll and the circumferential surface of the scissor roll, comprising at least three or more n rolling mills. In a row of rolling mills, for each rolling mill Ri, after the material to be milled bites into the rolling mill Ri and before the material to be milled bites into the rolling mill Ri + 1 located downstream of the rolling mill Ri The rotation speed of the rolling mill Ri is fixed, the rolling torque Gi of the rolling mill Ri at that time is stored as Gi *, and after the material to be rolled bites into the rolling mill Rn on the most downstream side of the row of rolling mills The rolling torque Gn-1 of the rolling mill Rn-1 located upstream of the rolling mill Rn is stored as the rolling torque of the rolling mill Rn-1 before the material to be rolled bites into the rolling mill Rn. The rotation speed of the rolling mill Rn is equal to 1 * A first control process to control, and a rolling torque Gn ** of the rolling mill Rn after the first control process are stored, and then, rolling of a rolling mill Rn-2 located upstream of the rolling mill Rn-1 is performed. The rolling mill Rn-1 is such that the torque Gn-2 is equal to Gn-2 * stored as the rolling torque of the rolling mill Rn-2 before the material to be rolled bites into the rolling mill Rn-1. A second control step of controlling the rotational speed of the rolling mill Rn so as to control the rotational speed of the rolling mill Rn so that the rolling torque Gn of the rolling mill Rn becomes equal to the stored rolling torque Gn **. The second control step is applied to all the rolling mills Ri, and the rolling torque G1 of the most upstream rolling mill R1 is before the rolling mill R2 located downstream of the rolling mill R1 is engaged with the rolling mill R1. Equal to G1 * stored as rolling torque Characterized by producing a shape steel by controlling the rotational speeds of the rolling mill Ri of sea urchin the rolling mill train, the manufacturing method of the shaped steel is provided.
 本発明によれば、3機以上の圧延機からなる連続圧延機をタンデム状態で用いて形鋼の圧延を行う場合に、スタンド間距離が短いような条件下であっても、圧延条件ごとのテーブル値等を使用しない単純な制御系で、スタンド間張力を高精度で制御し、通材の安定化ならびに製品寸法精度の向上を図ることが可能となる。 According to the present invention, when rolling a shaped steel by using a continuous rolling mill consisting of three or more rolling mills in a tandem state, even under such a condition that the distance between stands is short, each rolling condition With a simple control system that does not use table values etc., it becomes possible to control the tension between the stands with high accuracy, and to achieve stabilization of threading and improvement of product dimensional accuracy.
H形鋼の製造ラインについての概略説明図である。It is a schematic explanatory drawing about the manufacturing line of H section steel. ユニバーサル圧延機及びエッジャー圧延機の概略説明図である。It is a schematic explanatory drawing of a universal rolling mill and an edger rolling mill. 3機の圧延機R1-R2-R3からなる圧延機列の平面概略図である。It is the plane schematic of a rolling mill row which consists of three rolling mills R1-R2-R3. スタンド間距離が長い場合の張力制御に関する概略説明図である。It is a schematic explanatory drawing regarding tension control in case distance between stands is long. スタンド間距離が極めて短い場合に従来の張力制御を適用した際の概略説明図である。It is a schematic explanatory drawing at the time of applying conventional tension control, when distance between stands is very short. スタンド間距離が極めて短い場合に本発明に係る張力制御を適用した際の概略説明図である。It is a schematic explanatory drawing at the time of applying tension control concerning the present invention, when distance between stands is very short. 近接した圧延機R1~R3からなる圧延機列と、当該圧延機列から十分に離れた下流位置にある圧延機との組み合わせを示す概略説明図である。FIG. 10 is a schematic explanatory view showing a combination of a rolling mill row consisting of rolling mills R1 to R3 in proximity and a rolling mill at a downstream position sufficiently separated from the rolling mill row. 近接した圧延機R1~R3からなる圧延機列と、当該圧延機列から十分に離れた下流位置にある、互いに近接した圧延機R4~R6からなる第2の圧延機列との組み合わせを示す概略説明図である。A schematic showing a combination of a rolling mill train comprising rolling mills R1 to R3 close to each other and a second rolling mill train comprising rolling mills R4 to R6 close to each other at a downstream position sufficiently separated from the rolling mill trains FIG. H形鋼のユニバーサル中間圧延の概略説明図である。It is a schematic explanatory drawing of the universal intermediate | middle rolling of H section steel. スタンド間の張力が変化した際の、各スタンドのトルク変化量を数値解析により示したグラフである。It is the graph which showed the torque change amount of each stand when the tension between stands changes by numerical analysis.
 以下、本発明の実施の形態について図面を参照して説明する。なお、本明細書および図面において、実質的に同一の機能構成を有する構成要素については、同一の符号を付することにより重複説明を省略する。なお、本明細書では、連続圧延機を構成する圧延機として、H形鋼製品を製造する場合に用いられるユニバーサル圧延機及びエッジャー圧延機を例として図示しているが、本発明の適用範囲はこれに限られるものではない。また、本明細書における「ユニバーサル圧延機」とは、形鋼圧延時に水平ロールと竪ロールを用いて大きな延伸を伴う圧延を行う圧延機を指し、「エッジャー圧延」とはユニバーサル圧延機と併せて用いられ極めて軽圧下な圧延を行う圧延機を指すものとし、本明細書では、それら圧延機を「圧延スタンド」あるいは単に「スタンド」と呼称する場合もある。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. In the present specification and the drawings, components having substantially the same functional configuration will be assigned the same reference numerals and redundant description will be omitted. In this specification, as a rolling mill constituting a continuous rolling mill, a universal rolling mill and an edger rolling mill used when manufacturing an H-shaped steel product are illustrated as an example, but the scope of application of the present invention is It is not limited to this. Moreover, the "universal rolling mill" in this specification refers to a rolling mill that performs rolling with large stretching using a horizontal roll and a skewer roll at the time of shape steel rolling, and "edger rolling" in combination with the universal rolling mill It is intended to refer to rolling mills used for extremely light rolling, and in the present specification they are sometimes referred to as "rolling stands" or simply "stands".
 (製造ラインの概略と従来の問題点)
 図1は、本実施の形態にかかる形鋼の圧延方法が実施される製造ラインLについての説明図である。図1に示すように、製造ラインLには上流側から順に、加熱炉2、粗圧延機4、2機の中間ユニバーサル圧延機5、6、仕上ユニバーサル圧延機8が配置されている。また、2機の中間ユニバーサル圧延機5、6の間にはエッジャー圧延機9が設けられている。なお、以下では、説明のために製造ラインLにおける鋼材を、総称して「被圧延材S」と記載し、各図において適宜その形状を破線・斜線等を用いて図示する場合がある。
(Outline of production line and conventional problems)
FIG. 1 is an explanatory view of a production line L on which the method of rolling a shaped steel according to the present embodiment is performed. As shown in FIG. 1, a heating furnace 2, rough rolling mills 4, two intermediate universal rolling mills 5, 6, and a finishing universal rolling mill 8 are arranged in order from the upstream side in a production line L. Further, an edger rolling mill 9 is provided between the two intermediate universal rolling mills 5 and 6. In the following, steel materials in the production line L may be collectively referred to as “rolled material S” for the sake of description, and the shapes thereof may be illustrated using broken lines, oblique lines, and the like as appropriate in each drawing.
 図1に示すように、製造ラインLでは、加熱炉2から抽出された例えばスラブ11等の被圧延材Sが粗圧延機4において粗圧延される。次いで、中間ユニバーサル圧延機5、6において中間ユニバーサル圧延される。また、この中間ユニバーサル圧延とリバース圧延が可能な状態で、エッジャー圧延機9によって被圧延材の端部等(フランジ相当部12)に対して圧下が施される。通常の場合、粗圧延機4(複数基設置される場合もある)のロールには、合わせて4~6個程度の孔型が刻設されており、これらを経由して複数パスのリバース圧延でドッグボーン形状のH形粗形材13が造形され、該H形粗形材13を第1中間ユニバーサル圧延機5-エッジャー圧延機9-第2中間ユニバーサル圧延機6からなる圧延機列を用いて、複数パスの圧下が加えられ、中間材14が造形される。そして中間材14は、仕上ユニバーサル圧延機8において製品形状に仕上圧延され、H形鋼製品16が製造される。 As shown in FIG. 1, in the production line L, the material S to be rolled such as the slab 11 extracted from the heating furnace 2 is roughly rolled in the rough rolling mill 4. Then, the intermediate universal rolling is performed in the intermediate universal rolling mills 5 and 6. Further, in a state in which the intermediate universal rolling and the reverse rolling are possible, the edger rolling machine 9 applies a pressure to the end portion (flanged portion 12) of the material to be rolled. In a normal case, approximately 4 to 6 hole types are engraved on the rolls of the rough rolling mill 4 (a plurality of machines may be installed), and reverse rolling of a plurality of passes is performed via these. The H-shaped rough section 13 in a dog bone shape is formed by using a rolling mill row comprising the first middle universal rolling mill 5-edger rolling machine 9-the second middle universal rolling mill 6 Thus, multiple passes of pressure are applied to shape the intermediate material 14. Then, the intermediate material 14 is finish-rolled into a product shape in a finish universal rolling mill 8 to produce an H-shaped steel product 16.
 図1に示す製造ラインLにおいて、H形粗形材13に対し第1中間ユニバーサル圧延機5-エッジャー圧延機9-第2中間ユニバーサル圧延機6からなる圧延機列を用いて、複数パスの圧下を加え、中間材14を造形する場合に、各ユニバーサル圧延機では図2(a)に示すように、フランジ先端部が未圧下(図中破線部参照)となるため、図2(b)に示すように、エッジャー圧延機で当該未圧下の部分を整形・圧下するような圧延が行われる。 In the production line L shown in FIG. 1, the rolling mill row consisting of the first intermediate universal rolling mill 5-edger rolling mill 9-the second intermediate universal rolling mill 6 is used to reduce a plurality of passes with respect to the H-shaped rough section 13 When forming the intermediate material 14, as shown in FIG. 2 (a) in each universal rolling mill, the flange tip end is not pressed (refer to the broken line in the figure), so as shown in FIG. 2 (b). As shown, rolling is performed so as to shape and press the unreduced portion with an edger rolling mill.
 タンデム状態で被圧延材の圧延を行う連続圧延機列の一例として上記のような第1中間ユニバーサル圧延機5-エッジャー圧延機9-第2中間ユニバーサル圧延機6の構成が挙げられる。このような複数の圧延スタンドが連続的に配置された構成の圧延機列において、被圧延材Sとして形鋼を圧延する場合、被圧延材剛性が大きいため、鋼帯圧延時等に用いられるルーパー(張力制御装置)を使った圧延スタンド間張力制御は困難である。また、形鋼の圧延では、圧延スタンド間での被圧延材のたくれといった通材不良を予防し、安定的な通材を確保するために、噛み込み時にはスタンド間張力が引っ張り気味となるような回転数に設定することが一般的であった。即ち、形鋼の圧延において製品寸法を良好に保つためには、被圧延材噛み込み後にスタンド間の張力を好適に制御することが求められる。 The configuration of the first intermediate universal rolling mill 5-edger rolling mill 9-second intermediate universal rolling mill 6 as described above is an example of a continuous rolling mill row for rolling a material to be rolled in a tandem state. In a rolling mill row having a configuration in which a plurality of such rolling stands are continuously arranged, when rolling shaped steel as the material to be rolled S, since the rigidity of the material to be rolled is large, the looper used during steel strip rolling etc. It is difficult to control the tension between rolling stands using a (tension control device). In rolling of shaped steel, in order to prevent defects in passing of the material to be rolled between rolling stands and to ensure stable passing, tension between the stands tends to be pulled when biting. It is common to set to a certain rotation speed. That is, in order to maintain a good product size in rolling of shaped steel, it is required to suitably control the tension between the stands after the material is caught.
 加えて、連続圧延機列では、省エネ、省コストや設備のコンパクト化を志向して複数スタンドのスタンド間距離を短くすることがある。但し、形鋼のタンデム圧延を行う場合に、スタンド間を短くすると、上流の圧延スタンド間が無張力状態に制御される前に、下流スタンドに被圧延材が噛み込むといった状態が生じる恐れがあり、従前のようなスタンド間張力を引っ張り気味にするといった制御が安定的にできない恐れがある。
 このような事情に鑑み、形鋼のタンデム圧延を行う連続圧延機列において、スタンド間距離が短いような構成であってもスタンド間張力を高精度で制御し、通材の安定化ならびに製品寸法精度の向上を図ることが可能な技術が求められている。
In addition, in the continuous rolling mill row, the distance between the stands of the plurality of stands may be shortened for energy saving, cost saving and downsizing of equipment. However, when performing tandem rolling of shaped steel, if the distance between stands is shortened, there is a risk that the material to be rolled may bite into the downstream stand before the distance between the upstream rolling stands is controlled to no tension. There is a possibility that the control such as pulling tension between the stands as usual may not be stable.
In view of such circumstances, in the continuous rolling mill row for tandem rolling of shaped steel, even if the distance between stands is short, the tension between the stands is controlled with high accuracy, the material passing is stabilized and the product dimensions There is a need for a technology that can improve the accuracy.
 (張力制御方法の適用例)
 図1に示す製造ラインLでは、連続圧延機列として第1中間ユニバーサル圧延機5-エッジャー圧延機9-第2中間ユニバーサル圧延機6の構成(図2参照)を挙げたが、本発明に係る張力制御方法は、形鋼のタンデム圧延を行う設備において複数の圧延機(スタンド)が連続的に配置された構成であれば、どのような圧延機であっても適用可能である。そこで、以下では、従来の張力制御方法と、本発明に係る張力制御方法をR1~R3の3機のスタンドが連続的に配置された圧延機列に対し適用する場合を例として説明する。なお、本構成は一例であり、本発明に係る張力制御方法は少なくとも3機以上の複数の圧延機がタンデム圧延状態となるような形鋼の圧延機列について適用可能である。
(Example of application of tension control method)
In the production line L shown in FIG. 1, the configuration of the first intermediate universal rolling mill 5-edger rolling mill 9-the second intermediate universal rolling mill 6 is described as the continuous rolling mill row (see FIG. 2), but the present invention The tension control method can be applied to any rolling mill as long as a plurality of rolling mills (stands) are continuously arranged in a facility that performs tandem rolling of shaped steel. Therefore, hereinafter, a conventional tension control method and a case where the tension control method according to the present invention is applied to a rolling mill train in which three stands of R1 to R3 are continuously arranged will be described as an example. The present configuration is an example, and the tension control method according to the present invention is applicable to a row of rolling mills in which at least three or more rolling mills are in a tandem rolling state.
 図3は、3機の圧延機R1-R2-R3からなる圧延機列30の平面概略図であり、当該圧延機列30では、例えば、図中に破線矢印で示すようにリバース圧延が行われる。R1、R2、R3の3台の圧延機(圧延スタンド)のスタンド間距離はいずれも被圧延材Sの長手方向長さよりも短い距離であり、いわゆるタンデム圧延状態で被圧延材Sの圧延は行われる。また、本発明に係る張力制御方法を適用する場合には、これらのスタンド間距離が、被圧延材Sの圧延速度に比して十分短い距離、すなわち、下流スタンドに噛みこむ前に、個々のスタンド間の張力を無張力状態とすることができない場合に本発明の従来技術に対する優位性が発揮される。ただし、例えば特許文献2(特公昭53-34586号公報)が適用できるような長いスタンド間距離においても、本発明を適用することができる。 FIG. 3 is a schematic plan view of the rolling mill row 30 consisting of three rolling mills R1-R2-R3. In the rolling mill row 30, for example, reverse rolling is performed as indicated by a broken arrow in the figure. . The distance between stands of three rolling mills (rolling stands) of R1, R2 and R3 is a distance shorter than the length in the longitudinal direction of the material S to be rolled, and so-called tandem rolling causes rolling of the material S to be rolled It will be. When the tension control method according to the present invention is applied, the distance between the stands is sufficiently short compared to the rolling speed of the material to be rolled S, that is, before being caught in the downstream stand. The advantage of the present invention over the prior art is exhibited when the tension between the stands can not be made non-tensioned. However, the present invention can be applied even at a long stand-to-stand distance to which, for example, Patent Document 2 (Japanese Patent Publication No. 53-34586) can be applied.
 (従来の張力制御とその課題)
 先ず、3機の圧延機R1-R2-R3からなる圧延機列30において、スタンド間距離が十分に長い場合の張力制御について説明する。ここで、「スタンド間距離が十分に長い」構成とは、スタンド間において被圧延材Sの無張力制御が行われ、静定するのに十分な距離があることを示している。
(Conventional tension control and its problems)
First, tension control in the case where the distance between the stands is sufficiently long in the rolling mill train 30 including three rolling mills R1-R2-R3 will be described. Here, the configuration “the distance between the stands is sufficiently long” indicates that no tension control of the material to be rolled S is performed between the stands and there is a sufficient distance for settling.
 図4は、スタンド間距離が長い場合の張力制御に関する概略説明図であり、各圧延機R1~R3の圧延トルク変化(実線)及び回転数変化(一点鎖線)を示す模式図である。以下では、R1~R3の各圧延トルクを経時的に変化する値としてG1~G3と定義し、特定の時点での各圧延トルク値は「G1*」といったような個別の値で記載する。なお、図4中には、当該模式図(図4)中の状況A、Bでの被圧延材Sの位置についての概略図も併せて記載している。この図4を参照して、スタンド間距離が長い場合の張力制御について説明する。 FIG. 4 is a schematic explanatory view related to tension control when the distance between stands is long, and is a schematic view showing a change in rolling torque (solid line) and a change in rotational speed (one-dot chain line) of each rolling mill R1 to R3. In the following, each rolling torque of R1 to R3 is defined as G1 to G3 as a value which changes with time, and each rolling torque value at a specific time point is described as an individual value such as "G1 *". In addition, the schematic about the position of the to-be-rolled material S in the situations A and B in the said schematic diagram (FIG. 4) is collectively described in FIG. The tension control in the case where the distance between the stands is long will be described with reference to FIG.
1)図4に示す状況Aの前段階において、被圧延材SがR2に噛み込む直前にR1の圧延トルクG1*を記憶する。そして、状況Aにおいて被圧延材SがR2に噛み込んだ後、G1=G1*となるように、R1の回転数を制御し、R1-R2間を無張力状態(静定状態)とし、その状態でのR2の圧延トルクG2*を記憶する。
2)図4に示す状況Bにおいて、被圧延材SがR3に噛み込んだ後、R2の圧延トルクG2がG2=G2*となるように、R2の回転数を制御する。これにより、R1-R2間及びR2-R3間のいずれも無張力状態に制御される。
1) In the previous stage of the situation A shown in FIG. 4, the rolling torque G1 * of R1 is stored immediately before the material to be rolled S bites into R2. Then, in the situation A, after the material to be rolled S bites into R2, the rotational speed of R1 is controlled so that G1 = G1 *, and the R1-R2 section is brought into no tension state (static state), The rolling torque G2 * of R2 in the state is stored.
2) In the situation B shown in FIG. 4, after the material to be rolled S bites into R3, the rotational speed of R2 is controlled so that the rolling torque G2 of R2 becomes G2 = G2 *. As a result, both R1-R2 and R2-R3 are controlled to no tension.
 次に、3機の圧延機R1-R2-R3からなる圧延機列30において、スタンド間距離が極めて短い構成において従来の張力制御を適用する場合について説明する。ここで、「スタンド間距離が極めて短い構成」とは、上流の圧延スタンド間が無張力状態に制御される前に、下流スタンドに被圧延材Sが噛み込むような構成を示している。 Next, a case where the conventional tension control is applied in a configuration in which the distance between stands is extremely short in the rolling mill train 30 including three rolling mills R1-R2-R3 will be described. Here, “a configuration in which the distance between the stands is extremely short” indicates a configuration in which the material S to be rolled is caught in the downstream stand before the distance between the upstream rolling stands is controlled to be in a non-tension state.
 図5は、スタンド間距離が極めて短い場合に従来の張力制御を適用した際の概略説明図であり、各圧延機R1~R3の圧延トルク変化(実線)及び回転数変化(一点鎖線)を示す模式図である。なお、図5中にも、当該模式図(図5)中の状況A、Bでの被圧延材Sの位置についての概略図も併せて記載している。この図5を参照して、スタンド間距離が極めて短い構成において従来の張力制御を適用した場合について説明する。 FIG. 5 is a schematic explanatory view when the conventional tension control is applied when the distance between stands is extremely short, and shows the change in rolling torque (solid line) and the change in rotational speed (one-dot chain line) of each rolling mill R1 to R3. It is a schematic diagram. In addition, also in FIG. 5, the schematic about the position of the to-be-rolled material S in the situations A and B in the said schematic diagram (FIG. 5) is described collectively. A case where conventional tension control is applied in a configuration in which the distance between stands is extremely short will be described with reference to FIG.
1)図5に示す状況Aの前段階において、被圧延材SがR2に噛み込む直前にR1の圧延トルクG1*を記憶する。そして、状況Aにおいて被圧延材SがR2に噛み込んだ後、G1=G1*となるように、R1の回転数制御を行うが、当該制御が完了する前に被圧延材SがR3に噛み込まれる。この状態でR2の圧延トルクG2*を記憶したとしても、記憶されたG2*は後方張力が付与された状態の値となる。
2)図5に示す状況Bにおいて、G2=G2*、且つ、G1=G1*となるような制御を行ったとしても、上記の通り、記憶されたG2*が後方張力が付与された状態の値であるために、R2-R3間が無張力状態とならず、好適な張力制御が実現されない。
1) In the previous stage of the situation A shown in FIG. 5, the rolling torque G1 * of R1 is stored immediately before the material to be rolled S bites into R2. Then, after the material to be rolled S bites into R2 in situation A, the rotation speed control of R1 is performed so that G1 = G1 *, but the material to be rolled S bites R3 before the control is completed. Be Even if the rolling torque G2 * of R2 is stored in this state, the stored G2 * is a value in a state in which the rear tension is applied.
2) Even if control is performed such that G2 = G2 * and G1 = G1 * in the situation B shown in FIG. 5, as described above, the stored G2 * is in a state where back tension is applied. Because of the value, the tension between R2 and R3 is not in a non tension state, and a suitable tension control is not realized.
 以上、図4及び図5を参照して説明したように、3機の圧延機R1-R2-R3からなる圧延機列30において、スタンド間距離が十分に長い場合には従来の張力制御技術を適用することで好適な張力制御が可能である(図4参照)ものの、スタンド間距離が極めて短い構成では、従来の張力制御技術では好適な張力制御が実現できない(図5参照)といった課題が見受けられる。 As described above with reference to FIGS. 4 and 5, in the rolling mill train 30 including three rolling mills R1-R2-R3, when the distance between the stands is sufficiently long, the conventional tension control technology is used. Although suitable tension control is possible by application (refer to FIG. 4), there is a problem that the conventional tension control technology can not realize suitable tension control (refer to FIG. 5) in the configuration where the distance between stands is extremely short. Be
 上記課題に鑑み、本発明者らは、複数の圧延機からなる圧延機列において張力制御を行う場合に、前方張力が0の状態(下流圧延機に被圧延材Sが噛み込む前)で回転数を固定し、対象となる全ての圧延機に被圧延材Sが噛み込んだ後に、順次遡ってスタンド間張力を0とするような張力制御方法ならびにそれを用いた圧延方法を創案した。以下、本発明に係る圧延方法について説明する。 In view of the above-mentioned subject, when performing tension control in a rolling mill line which consists of a plurality of rolling mills, the present inventors rotate in the state (before the rolling material S gets caught in the downstream rolling mill) of the front tension 0. After fixing the number, after the material to be rolled S bites in all the rolling mills, a tension control method and a rolling method using it were devised, sequentially tracing back to make the inter-stand tension zero. Hereinafter, the rolling method according to the present invention will be described.
 (本発明に係る圧延方法・張力制御)
 ここでは、3機の圧延機R1-R2-R3からなる圧延機列30において、スタンド間距離が極めて短い構成において本発明に係る張力制御技術を適用する場合について説明する。なお、本発明に係る張力制御技術は、任意のn機(n=3以上の任意の整数)の圧延機で構成される圧延機列においてタンデム圧延を実施する場合に適用可能であり、説明の簡素化のため、ここでは3機の圧延機R1-R2-R3からなる圧延機列30でもって説明する。
(Rolling method and tension control according to the present invention)
Here, the case where the tension control technique according to the present invention is applied to a configuration in which the distance between stands is extremely short in the rolling mill train 30 including three rolling mills R1-R2-R3 will be described. The tension control technology according to the present invention is applicable to the case where tandem rolling is performed in a rolling mill train configured by rolling mills of any n machines (n is an integer of 3 or more), and the description thereof For the sake of simplicity, the rolling mill train 30 comprising three rolling mills R1-R2-R3 will be described here.
 図6はスタンド間距離が極めて短い場合に本発明に係る張力制御を適用した際の概略説明図であり、各圧延機R1~R3の圧延トルク変化(実線)及び回転数変化(一点鎖線)を示す模式図である。なお、図6中には、当該模式図(図6)中の状況A~Cでの被圧延材Sの位置についての概略図も併せて記載している。この図6を参照して、スタンド間距離が極めて短い構成において本発明に係る張力制御を適用した場合について説明する。 FIG. 6 is a schematic explanatory view when the tension control according to the present invention is applied when the distance between stands is extremely short, and shows the rolling torque change (solid line) and rotational speed change (dashed dotted line) of each rolling mill R1 to R3. It is a schematic diagram shown. In FIG. 6, a schematic view of the position of the material to be rolled S in the situations A to C in the schematic view (FIG. 6) is also shown. The case where tension control according to the present invention is applied to a configuration in which the distance between stands is extremely short will be described with reference to FIG.
1)図6に示す状況Aの前段階において、被圧延材SがR2に噛み込む直前にR1の圧延トルクG1*を記憶する。
2)図6に示す状況A、即ち、被圧延材SがR3に噛み込む直前で、R2の圧延トルクG2*を記憶し、この段階でR1の回転数を固定する。
3)図6に示す状況B、即ち、被圧延材SがR3に噛み込んだ後、R2の圧延トルクG2が、上記記憶したG2*と等しくなる(G2=G2*)ように、R3の回転数を制御する。制御静定後には、R2-R3間は無張力となる。この状態でのR3の圧延トルクG3**を記憶する。
4)図6に示す状況Bと状況Cの間において、G1=G1*となる(即ち、R1-R2間が無張力となる)ようにR2の回転数を制御する。R2の回転数を制御する(回転数が変化する)ことにより、R2-R3間に張力あるいは圧縮力が作用するが、その際に、G3=G3**を維持するようにR3の回転数を制御する。
5)図6に示す状況Cにおいて、R1-R2間及びR2-R3間の張力が静定した時点でのR2の圧延トルクG2**を記憶する。
6)以上の過程において記憶されたG1*、G2**、G3**は、前後方張力が0である際の圧延トルクであることから、G1=G1*、G2=G2**、G3=G3**となるように各圧延機の回転数を制御することで、圧延機列全長にわたって無張力状態を維持することができる。
1) In the previous stage of the situation A shown in FIG. 6, the rolling torque G1 * of R1 is stored immediately before the material to be rolled S bites into R2.
2) In the situation A shown in FIG. 6, that is, immediately before the material S to be rolled bites into R3, the rolling torque G2 * of R2 is stored, and the rotational speed of R1 is fixed at this stage.
3) The situation B shown in FIG. 6, that is, after the material to be rolled S bites into R3, the rotation torque R2 is equal to the stored G2 * (G2 = G2 *), so that the rotation torque R2 Control the number. After controlled settling, no tension is applied between R2 and R3. The rolling torque G3 ** of R3 in this state is stored.
4) Between the situation B and the situation C shown in FIG. 6, control the number of revolutions of R2 so that G1 = G1 * (ie, no tension between R1 and R2). By controlling the number of rotations of R2 (changing the number of rotations), tension or compressive force acts between R2 and R3, but at that time, the number of rotations of R3 is set to maintain G3 = G3 **. Control.
5) In the situation C shown in FIG. 6, the rolling torque G2 ** of R2 at the time when the tension between R1-R2 and R2-R3 is settled is stored.
6) G1 *, G2 **, and G3 ** stored in the above process are rolling torques when the front / rear tension is 0, so G1 = G1 *, G2 = G2 **, G3 = By controlling the rotation speed of each rolling mill so as to be G3 **, the tension-free state can be maintained over the entire length of the rolling mill train.
 以上、図6を参照して1)~6)で説明した張力制御方法を圧延機列30でのタンデム圧延において採用することで、各圧延スタンド間(R1-R2間及びR2-R3間)で張力制御が高精度で行われ無張力状態を維持しつつ圧延を実施することが可能となる。これにより、圧延スタンド間での被圧延材の通材性が向上し、寸法精度の悪化やスリップ、圧縮力によるたくれ等が防止される。 As described above, by adopting the tension control method described in 1) to 6) with reference to FIG. 6 in tandem rolling in a row of rolling mills 30, between the rolling stands (between R1 and R2 and between R2 and R3) Tension control can be performed with high accuracy, and rolling can be performed while maintaining a non-tension state. As a result, the passability of the material to be rolled between the rolling stands is improved, and deterioration in dimensional accuracy, slippage, and sagging due to compressive force are prevented.
 また、本実施の形態では、圧延条件ごとのテーブル値等を使用せず、測定可能な圧延トルクを記憶させ、単純な制御系でもってR1-R2-R3からなる圧延機列30の全長にわたる張力制御を高精度で実施することができる。 Further, in the present embodiment, without using table values and the like for each rolling condition, the measurable rolling torque is stored, and a simple control system is a tension over the entire length of the rolling mill train 30 consisting of R1-R2-R3. Control can be implemented with high accuracy.
 (任意の複数機からなる圧延機列への適用)
 上記図6を参照した説明では、3機の圧延機R1-R2-R3からなる圧延機列30において、本発明に係る張力制御を適用する場合について説明したが、本発明の適用範囲はこれに限られるものではない。即ち、本発明技術は、3機以上の任意の複数の圧延機からなる圧延機列に対しても適用可能である。以下、3機以上の任意のn機の圧延機からなる圧延機列でタンデム圧延を行う場合の張力制御方法について説明する。なお、以下では、説明のため、n機の圧延機からなる圧延機列を構成する各圧延機をR1、R2、・・・Rnとし、その内のi番目の圧延機をRi、当該Riの圧延トルクをGiと定義する。即ち、iは1からnの任意の整数であり、nは3以上の整数である。
(Application to an optional multi-roll mill train)
Although the case where the tension control according to the present invention is applied to the rolling mill train 30 consisting of three rolling mills R1-R2-R3 has been described above with reference to FIG. 6, the scope of application of the present invention is It is not limited. That is, the technique of the present invention is also applicable to a rolling mill train comprising three or more optional rolling mills. Hereinafter, a tension control method in the case where tandem rolling is performed in a rolling mill row consisting of three or more optional n rolling mills will be described. In the following, for the sake of explanation, each rolling mill constituting a rolling mill row consisting of n rolling mills is R1, R2,... Rn, and the i-th rolling mill among them is Ri, Ri. The rolling torque is defined as Gi. That is, i is an arbitrary integer of 1 to n, and n is an integer of 3 or more.
1)最下流の圧延機Rn以外の圧延機Riでは、被圧延材がRiに噛み込んだ後、下流の圧延機Ri+1に噛み込む直前のRiの圧延トルクGi*を記憶し、この段階でRiの回転数を固定する。
2)最下流の圧延機Rnに被圧延材が噛み込んだ後、最下流の直前の圧延機Rn-1の圧延トルクGn-1がRn噛み込み前に記憶した圧延トルクGn-1*になるように最下流の圧延機Rnの回転数を制御する(第1制御工程)。この制御により、Rn-1の張力状態は、最下流の圧延機Rnに被圧延材が噛み込む直前(前方張力=0)と等しい状態となる。
3)第1制御工程による張力制御静定後の圧延機Rnの圧延トルクGn**を記憶する。
4)圧延機Rn-1の上流に位置する圧延機Rn-2の圧延トルクGn-2が、圧延機Rn-1に被圧延材が噛み込む前の圧延機Rn-2の圧延トルクとして記憶されたGn-2*と等しくなるように、圧延機Rn-1の回転数を制御し、且つ、前記圧延機Rnの圧延トルクGnが上記3)で記憶された圧延トルクGn**を維持するように圧延機Rnの回転数を制御する(第2制御工程)。ここで、張力制御静定後に圧延機Rn-1の圧延トルクGn-1**を記憶する。
5)以降、同様の方法で、上記第2制御工程を、上流に向かって順次遡るように各圧延機に対して行う。即ち、各圧延機Rn-1、Rn-2、・・・R1について、当該圧延機の直前の圧延機の圧延トルクGiが、当該圧延機に噛み込む前に記憶した圧延トルクGi*となるように各圧延機の回転数を制御し、かつ当該圧延機の下流の圧延機Ri+1~Rnの圧延トルクGi+1~Gnが張力静定後に記憶した圧延トルクGi+1**~Gn**を維持するように、Ri+1~Rnの回転数を制御することで制御後の各圧延機間で同じように無張力状態を実現させることができる。
6)最終的には、最上流の圧延機R1の圧延トルクG1が、圧延機R1の下流に位置する圧延機R2に噛み込む前の圧延機R1の圧延トルクとして記憶されていたG1*と等しくなるように圧延機列の各圧延機Riの回転数が制御されることになる。
1) In rolling mills Ri other than the most downstream rolling mill Rn, after the material to be rolled bites into Ri, the rolling torque Gi * of Ri immediately before biting into the rolling mill Ri + 1 downstream is stored. Fix the rotation speed of.
2) After the material to be rolled bites into the most downstream rolling mill Rn, the rolling torque Gn-1 of the rolling mill Rn-1 immediately before the most downstream becomes the rolling torque Gn-1 * stored before Rn biting Thus, the rotation speed of the rolling mill Rn on the most downstream side is controlled (first control step). By this control, the tension state of Rn-1 becomes equal to the state immediately before the material to be rolled bites into the most downstream rolling mill Rn (forward tension = 0).
3) The rolling torque Gn ** of the rolling mill Rn after tension control stabilization in the first control step is stored.
4) The rolling torque Gn-2 of the rolling mill Rn-2 located upstream of the rolling mill Rn-1 is stored as the rolling torque of the rolling mill Rn-2 before the material to be rolled bites into the rolling mill Rn-1. The rotation speed of the rolling mill Rn-1 is controlled to be equal to Gn-2 *, and the rolling torque Gn of the rolling mill Rn maintains the rolling torque Gn ** stored in the above 3). The rotational speed of the rolling mill Rn is controlled (second control step). Here, the rolling torque Gn-1 ** of the rolling mill Rn-1 is stored after tension control settling.
5) Thereafter, in the same manner, the second control step is performed on each rolling mill so as to sequentially go back upstream. That is, for each rolling mill Rn-1, Rn-2, ... R1, the rolling torque Gi of the rolling mill immediately before the rolling mill becomes the rolling torque Gi * stored before the rolling mill bites into the rolling mill. So that the rolling torques Gi + 1 to Gn of the rolling mills Ri + 1 to Rn downstream of the rolling mills maintain the rolling torques Gi + 1 ** to Gn ** stored after tension settling. By controlling the rotational speed of Ri + 1 to Rn, the non-tensioned state can be realized similarly between the respective rolling mills after control.
6) Finally, the rolling torque G1 of the most upstream rolling mill R1 is equal to G1 * stored as the rolling torque of the rolling mill R1 before it bites into the rolling mill R2 located downstream of the rolling mill R1 The rotation speed of each rolling mill Ri of the row of rolling mills is controlled to be as follows.
 上述した張力制御方法における第1制御工程は、Gn-1=Gn-1*となるように圧延機Rnの回転数を制御する工程であり、Rn単独制御工程である。また、第2制御工程は、Gi=Gi*となるように、圧延機Riの回転数を制御し、かつ、圧延機Riの下流の圧延機Rkに対して、Gk=Gk**(k=i+1~n)を維持するように、回転数を制御する、連動制御工程である。この第2制御工程を、圧延機Rn-1から上流に向かって順次適用させていくことで、全ての圧延機間の張力状態を制御することができる。 The first control step in the above-described tension control method is a step of controlling the rotation speed of the rolling mill Rn so that Gn-1 = Gn-1 *, and is a single control step of Rn. In the second control step, the rotational speed of the rolling mill Ri is controlled so that Gi = Gi *, and Gk = Gk ** (k =) for the rolling mill Rk downstream of the rolling mill Ri. The interlock control step is to control the rotational speed so as to maintain i + 1 to n). By sequentially applying the second control process upstream from the rolling mill Rn-1, it is possible to control the tension state among all the rolling mills.
 このように、最下流の圧延機Rnに被圧延材が噛み込んだ後、上流に向かって順次遡るように張力制御を行い、最終的に最上流の圧延機R1まで制御を行うことで、圧延機列全体について各圧延機間が無張力状態となるような張力制御を実施することが可能となる。 As described above, after the material to be rolled is caught in the most downstream rolling mill Rn, tension control is performed so as to trace back to the upstream one by one, and finally control is performed to the most upstream rolling mill R1. It is possible to carry out tension control such that each rolling mill is in a non-tensioned state for the entire train of machines.
 以上、本発明の実施の形態の一例を説明したが、本発明は図示の形態に限定されない。当業者であれば、特許請求の範囲に記載された思想の範疇内において、各種の変更例または修正例に想到し得ることは明らかであり、それらについても当然に本発明の技術的範囲に属するものと了解される。 Although the example of the embodiment of the present invention has been described above, the present invention is not limited to the illustrated embodiment. It is obvious that those skilled in the art can conceive of various modifications or alterations within the scope of the idea described in the claims, and they are naturally within the technical scope of the present invention. It is understood that.
 上記実施の形態で説明した本発明に係る圧延方法では、被圧延材Sの圧延時の温度変化については特に言及していない。しかしながら、被圧延材Sの寸法が長手方向に長い場合に、例えばR1-R2-R3といった複数の圧延機からなる圧延機列でタンデム圧延を行う際には、被圧延材Sの温度が経時的に変化し、その温度変化に伴い各圧延機の圧延トルクが変動してしまう恐れがある。温度変化による圧延トルクの変動を考慮せずに上記張力制御方法を適用すると、当該変動に伴う誤差が生じてしまう恐れがある。 In the rolling method according to the present invention described in the above embodiment, the temperature change at the time of rolling of the material to be rolled S is not particularly mentioned. However, when the size of the material to be rolled S is long in the longitudinal direction, the temperature of the material to be rolled S changes with time when performing tandem rolling in a rolling mill row consisting of a plurality of rolling mills such as R1-R2-R3. The rolling torque of each rolling mill may fluctuate with the temperature change. If the above-mentioned tension control method is applied without considering the fluctuation of the rolling torque due to the temperature change, an error associated with the fluctuation may occur.
 このような事情に鑑み、上記実施の形態に記載の張力制御技術を適用する場合に、圧延トルク(G)の値に替えて、圧延トルク(G)を荷重(P)で除した値であるトルクアーム係数(G/P)を用いても良い。トルクアーム係数(G/P)を圧延トルクに替えて用い、本発明に係る張力制御方法を実施することで、被圧延材Sの温度変化に伴う圧延トルク変化の影響を除外し、スタンド間張力の制御を行うことができる。 In view of such circumstances, when applying the tension control technique described in the above embodiment, it is a value obtained by dividing the rolling torque (G) by the load (P) instead of the value of the rolling torque (G) A torque arm coefficient (G / P) may be used. By implementing the tension control method according to the present invention by using the torque arm coefficient (G / P) instead of the rolling torque, the influence of the rolling torque change accompanying the temperature change of the material to be rolled S is excluded, and the tension between the stands Control can be performed.
 また、上記実施の形態で説明した圧延方法により圧延機列での無張力状態(静定状態)が実現された場合において、圧延機列のミル剛性が温度変化に対して十分に大きく、圧延機列の全長の寸法変化が小さい場合には、当該静定状態での各圧延機の回転数比を固定しても良い。例えば、静定状態後に圧延速度を増速したいといった場合には、圧延機列全体の圧延速度を増速する必要がある。その際に、固定した回転数比をそのままの比率とした状態で増速を行うことで無張力状態(静定状態)を維持することができる。その際、圧延下流の最下流の圧延機を所望の速度とし、その最下流の圧延機の圧延速度に合わせて上記回転数比がそのままの比率となるように他の圧延機の圧延速度を定めれば良い。 In addition, in the case where a tension-free state (static state) in a row of rolling mills is realized by the rolling method described in the above embodiment, the mill rigidity of the row of rolling mills is sufficiently large with respect to the temperature change. When the dimensional change of the total length of the train is small, the rotational speed ratio of each rolling mill in the stationary state may be fixed. For example, when it is desired to increase the rolling speed after the stationary state, it is necessary to increase the rolling speed of the entire rolling mill row. At that time, the non-tensioned state (statically determined state) can be maintained by performing acceleration in a state in which the fixed rotational speed ratio is kept as it is. At this time, the rolling speed of the other rolling mill is determined so that the above-mentioned rotational speed ratio becomes the same ratio according to the rolling speed of the most downstream rolling mill, with the most downstream rolling mill downstream of rolling being the desired speed. Just do it.
 (本発明の変形例)
 図7は、近接した圧延機(スタンド)R1~R3からなる圧延機列30と、当該圧延機列30から十分に離れた下流位置にある圧延機F1との組み合わせを示す概略説明図である。図7に示すような構成においては、R1~R3からなる圧延機列において、上記実施の形態で説明した張力制御方法を適用し、R1~R3までの張力を静定させ、その後、被圧延材SがF1に噛み込んだ後に、R3の圧延トルクG3の値がG3=G3**(静定後のR3の圧延トルク)となるようにF1の回転数を制御すればよい。これにより、R3-F1間についても無張力状態とすることができる。
(Modification of the present invention)
FIG. 7 is a schematic explanatory view showing a combination of a rolling mill row 30 consisting of rolling mills (stands) R1 to R3 in close proximity and a rolling mill F1 at a downstream position sufficiently separated from the rolling mill row 30. In the configuration as shown in FIG. 7, in the rolling mill train consisting of R1 to R3, the tension control method described in the above embodiment is applied, the tension from R1 to R3 is settled, and then the material to be rolled is The rotational speed of F1 may be controlled so that the value of the rolling torque G3 of R3 becomes G3 = G3 ** (the rolling torque of R3 after settling) after S bites into F1. Thus, no tension can be established between R3 and F1.
 また、図8は、近接した圧延機R1~R3からなる圧延機列30と、当該圧延機列30から十分に離れた下流位置にある、互いに近接した圧延機F1~F3からなる第2の圧延機列50との組み合わせを示す概略説明図である。図8に示すような構成においては、R1~R3からなる圧延機列30において、上記実施の形態で説明した張力制御方法を適用し、R1~R3までの張力を静定させ、F1に被圧延材Sが噛み込む前にR1~R3の回転数を固定する。このようにR1~R3の回転数を固定した状態で、第2の圧延機列50においても同様に上記実施の形態で説明した張力制御方法を適用し、F1~F3の張力状態を静定させる。そして、圧延機列30と第2の圧延機列50との間の張力制御については、任意の制御方法で制御すればよく、例えば、G3=G3**(静定後のR3の圧延トルク)となるようにF1の回転数を制御しても良い。 8 shows a second row of rolling mills 30 including rolling mills R1 to R3 close to each other, and second rolling mills including rolling mills F1 to F3 close to each other at a downstream position sufficiently separated from the rolling mill row 30. FIG. 6 is a schematic explanatory view showing a combination with a train of machines 50. In the configuration as shown in FIG. 8, in the rolling mill train 30 consisting of R1 to R3, the tension control method described in the above embodiment is applied, and the tension from R1 to R3 is settled and F1 is rolled. Before the material S bites in, the rotational speed of R1 to R3 is fixed. In this manner, while the rotational speed of R1 to R3 is fixed, the tension control method described in the above embodiment is similarly applied to the second rolling mill group 50, and the tension state of F1 to F3 is stabilized. . And about tension control between rolling mill row 30 and the 2nd rolling mill row 50, it may control by arbitrary control methods, for example, G3 = G3 ** (rolling torque of R3 after settling) The rotational speed of F1 may be controlled to be
 圧延機間の距離が2.0mの4機の圧延機列(上流からR1~R4)で、トータル圧下率40%、圧延機列出側の圧延速度4.0m/sとなるタンデム圧延を実施する際に、スタンド間張力を本発明で制御する場合(実施例)と従来技術を用いて制御する場合(比較例1、2)を比較した。
 比較例1では従来技術として特許文献2(特公昭53-34586号公報)に開示された技術を用い、下流スタンドに噛みこむ0.1秒前に圧延トルクを記憶し、下流スタンド噛みこみ後0.5秒後から、圧延トルクが下流スタンド噛みこみ前に記憶した値となるように回転数を制御した。ここで、圧延トルクを記憶するタイミングを下流スタンドの噛みこみ0.1秒前としたのは、スタンド間距離とロール速度から圧延速度を推定して、被圧延材の下流スタンドへ噛みこむ時間を推定するために推定誤差を加味して、圧延トルクの記憶タイミングが下流スタンド噛みこみ後とならないようにするためである。また、制御開始を下流スタンド噛みこみ後0.5秒後としたのは、噛みこみによる回転数の低下(インパクトドロップ)からの回復等の過渡状態を避けるために必要な時間である。
 また、比較例2では従来技術として特許文献3(特公昭61-3564号公報)に開示された技術を用い、下流スタンド噛み込み0.1秒前に当該スタンドの無張力トルクGj0の演算を行い、全スタンドに被圧延材が噛み込んだ後に、スタンド間張力を0とするように制御を実施した。ここで、無張力トルクGj0の演算タイミングを下流スタンドの噛み込み0.1秒前としたのは、スタンド間距離とロール速度から圧延速度を推定して、被圧延材の下流スタンドへ噛みこむ時間を推定するために推定誤差を加味して、圧延トルクの記憶タイミングが下流スタンド噛みこみ後とならないようにするためである。
Carried out tandem rolling with a total rolling reduction of 40% and rolling speed at the rolling mill side of 4.0 m / s in four rolling mill trains (from the upstream R1 to R4) with a distance between rolling mills of 2.0 m. When doing this, the case where the tension between the stands was controlled by the present invention (Example) and the case where it was controlled using the prior art (Comparative Examples 1 and 2) was compared.
In Comparative Example 1, using the technology disclosed in Patent Document 2 (Japanese Patent Publication No. 53-34586) as the prior art, the rolling torque is stored 0.1 second before biting in the downstream stand, and after the downstream stand bites 0 After five seconds, the rotational speed was controlled so that the rolling torque had the value stored before the downstream stand bite. Here, the timing at which the rolling torque is stored is set 0.1 seconds before the biting of the downstream stand because the rolling speed is estimated from the distance between the stands and the roll speed, and the time to bite into the downstream stand of the material to be rolled In order to estimate, the estimation timing is added to prevent the storage timing of the rolling torque from being after the downstream stand bites. Also, 0.5 seconds after start of control at the downstream stand biting time is a time required to avoid a transient state such as recovery from a drop in rotation speed (impact drop) due to biting.
Further, in Comparative Example 2, using the technology disclosed in Patent Document 3 (Japanese Patent Publication No. 61-3564) as the prior art, calculation of the non-tension torque Gj0 of the stand is performed 0.1 seconds before biting in the downstream stand. After the material to be rolled bites into all the stands, control was performed so as to set the inter-stand tension to zero. Here, the calculation timing of the non-tension torque Gj0 is 0.1 seconds before biting in the downstream stand because the rolling speed is estimated from the distance between the stands and the roll speed, and the time to bite in the downstream stand of the material to be rolled The estimation timing is taken into consideration in order to estimate the following, so that the storage timing of the rolling torque will not be after the downstream stand bites.
 本発明を適用した場合(実施例)では、被圧延材にたくれの無い圧延が可能であった。一方、比較例1ではR1-R2の張力制御を実施する時間がR2の圧延トルクを記憶するまでに0.07秒しかなく、R1の圧延トルクG1をR2噛みこみ前に記憶した値に静定できなかった。さらに、R3については、圧延トルクを記憶するタイミングが噛みこみ後の過渡状態と重なり、R2-R3間の張力を制御することなくR4に噛みこんだ。その結果、R3-R4間で著しい圧縮力が生じ、被圧延材がスタンド間でたくれた。
 比較例2では、定常部はたくれ等は発生せず圧延できたものの、R2蹴出し直後にR3の圧延トルクが急減し、これに伴いR3を増速する制御指令が出た結果、R3-R4間で被圧延材にたくれが発生した。
In the case where the present invention was applied (Example), it was possible to perform rolling without any sagging on the material to be rolled. On the other hand, in Comparative Example 1, the time for performing tension control of R1-R2 takes only 0.07 seconds before storing the rolling torque of R2, and the rolling torque G1 of R1 is settled to the value stored before R2 is engaged. could not. Furthermore, for R3, the timing for storing the rolling torque overlapped with the transient state after biting, and bit R4 without controlling the tension between R2 and R3. As a result, a significant compressive force was generated between R3 and R4, and the material to be rolled was crushed between the stands.
In Comparative Example 2, although the steady part was rolled without any occurrence of rolling or the like, the rolling torque of R3 rapidly decreased immediately after the kicking of R2, and as a result, a control command to accelerate R3 was issued. Baking occurred in the material to be rolled between R4.
 本発明は、例えばH形鋼、T形鋼、I形鋼といった形鋼を製造する形鋼の圧延方法、形鋼の製造ライン及び形鋼の製造方法に適用できる。 The present invention is applicable to, for example, a method of rolling a shaped steel for producing a shaped steel such as an H-shaped steel, a T-shaped steel, or an I-shaped steel, a production line of shaped steel and a method of manufacturing shaped steel.
 2…加熱炉
 4…粗圧延機
 5…(第1)中間ユニバーサル圧延機(U1)
 6…(第2)中間ユニバーサル圧延機(U2)
 8…仕上ユニバーサル圧延機
 9…エッジャー圧延機(E)
 30…圧延機列
 50…第2の圧延機列
 S…被圧延材
 L…製造ライン
2 ... heating furnace 4 ... rough rolling machine 5 ... (first) intermediate universal rolling machine (U1)
6 (Second) intermediate universal rolling mill (U2)
8: Finishing universal rolling machine 9: Edger rolling machine (E)
30 ... rolling mill row 50 ... second rolling mill row S ... material to be rolled L ... production line

Claims (6)

  1. 少なくとも3機以上のn機の圧延機で構成される圧延機列においてタンデム圧延を行うにあたり、1機以上の圧延機でもって水平ロール側面と竪ロール周面との間での圧下を行う形鋼の圧延方法であって、
    前記圧延機列の各圧延機Riについて、前記圧延機Riに被圧延材が噛み込んだ後であり、且つ、前記圧延機Riの下流に位置する圧延機Ri+1に被圧延材が噛み込む前に、前記圧延機Riの回転数を固定し、その時の前記圧延機Riの圧延トルクGiをGi*として記憶し、
    前記圧延機列の最下流の圧延機Rnに被圧延材が噛み込んだ後、前記圧延機Rnの上流に位置する圧延機Rn-1の圧延トルクGn-1が、前記圧延機Rnに被圧延材が噛み込む前の前記圧延機Rn-1の圧延トルクとして記憶されたGn-1*と等しくなるように、前記圧延機Rnの回転数を制御する、第1制御工程と、
    当該第1制御工程後の前記圧延機Rnの圧延トルクGn**を記憶し、
    次いで、前記圧延機Rn-1の上流に位置する圧延機Rn-2の圧延トルクGn-2が、前記圧延機Rn-1に被圧延材が噛み込む前の前記圧延機Rn-2の圧延トルクとして記憶されたGn-2*と等しくなるように、前記圧延機Rn-1の回転数を制御し、且つ、前記圧延機Rnの圧延トルクGnが記憶された圧延トルクGn**と等しくなるように前記圧延機Rnの回転数を制御する、第2制御工程と、を備え、
    前記第2制御工程を各圧延機Ri全てに適用させ、最上流の圧延機R1の圧延トルクG1が、前記圧延機R1の下流に位置する圧延機R2に噛み込む前の前記圧延機R1の圧延トルクとして記憶されたG1*と等しくなるように前記圧延機列の各圧延機Riの回転数を制御することを特徴とする、形鋼の圧延方法。
     但し、iは1からnの任意の整数であり、nは3以上の整数である。
    In tandem rolling in a row of rolling mills composed of at least three or more n rolling mills, a shape steel that performs reduction between the horizontal roll side surface and the weir roll circumferential surface with one or more rolling mills Rolling method, and
    For each rolling mill Ri of the row of rolling mills, after the material to be milled bites into the rolling mill Ri and before the material to be milled bites into the rolling mill Ri + 1 located downstream of the rolling mill Ri The rotation speed of the rolling mill Ri is fixed, and the rolling torque Gi of the rolling mill Ri at that time is stored as Gi *.
    After the material to be rolled bites into the most downstream rolling mill Rn of the row of rolling mills, the rolling torque Gn-1 of the rolling mill Rn-1 located upstream of the rolling mill Rn is rolled to the rolling mill Rn Controlling the rotational speed of the rolling mill Rn so as to be equal to Gn-1 * stored as the rolling torque of the rolling mill Rn-1 before the metal bites;
    The rolling torque Gn ** of the rolling mill Rn after the first control step is stored,
    Next, the rolling torque Gn-2 of the rolling mill Rn-2 located upstream of the rolling mill Rn-1 is the rolling torque of the rolling mill Rn-2 before the material to be rolled bites into the rolling mill Rn-1. Control the rotational speed of the rolling mill Rn-1 to be equal to the stored Gn-2 *, and make the rolling torque Gn of the rolling mill Rn equal to the stored rolling torque Gn ** Control step of controlling the rotation speed of the rolling mill Rn
    The second control process is applied to all the rolling mills Ri, and the rolling torque G1 of the top-most rolling mill R1 is rolled before the rolling mill R2 located before the rolling mill R2 located downstream of the rolling mill R1. A method of rolling a shaped steel, comprising controlling the rotational speed of each rolling mill Ri of the rolling mill row to be equal to G1 * stored as a torque.
    However, i is an arbitrary integer of 1 to n, and n is an integer of 3 or more.
  2. 前記圧延機列の各圧延機のそれぞれの圧延トルクの値に替えて、各圧延機の圧延トルクを当該圧延機の圧延荷重で除した値であるトルクアーム係数(G/P)を用いて制御を行うことを特徴とする、請求項1に記載の形鋼の圧延方法。 Control using the torque arm coefficient (G / P), which is a value obtained by dividing the rolling torque of each rolling mill by the rolling load of the rolling mill instead of the rolling torque value of each rolling mill in the row of rolling mills A method of rolling a section steel according to claim 1, characterized in that:
  3. 前記圧延機列の各圧延機Ri全ての回転数を制御した後、当該各圧延機Riの回転数比を固定して圧延を行うことを特徴とする、請求項1又は2に記載の形鋼の圧延方法。 The section steel according to claim 1 or 2, characterized in that rolling is carried out by fixing the rotational speed ratio of each rolling mill Ri after controlling the rotational speed of all the rolling mills Ri of the row of rolling mills. Rolling method.
  4. 前記各圧延機Riの回転数比を固定した状態で前記圧延機列の最下流の圧延機Rnの圧延速度を所望の速度に増速することを特徴とする、請求項3に記載の形鋼の圧延方法。 The section steel according to claim 3, wherein the rolling speed of the rolling mill Rn on the most downstream side of the row of rolling mills is increased to a desired speed while fixing the rotational speed ratio of each rolling mill Ri. Rolling method.
  5. 少なくとも3機以上のn機の圧延機で構成される圧延機列と、少なくとも1機以上の圧延機又は圧延機列と、がこの順にタンデム配置された構成であり、1機以上の圧延機でもって水平ロール側面と竪ロール周面との間での圧下を行う形鋼の製造ラインであって、
    当該製造ラインでは、上流の圧延機列において被圧延材の無張力制御が行われ、当該無張力制御が完了した後に、下流の圧延機又は圧延機列に被圧延材が噛み込むための十分な距離がある状態で上流の圧延機列と下流の圧延機又は圧延機列が配置され、
    前記上流の圧延機列と、前記下流の圧延機又は圧延機列と、は独立して請求項1~4のいずれか一項に記載の形鋼の圧延方法が実施されることを特徴とする、形鋼の製造ライン。
    A rolling mill train comprising at least three or more n rolling mills and at least one or more rolling mills or rolling mill trains are arranged in tandem in this order, and one or more rolling mills It is a production line of shaped steel that performs pressure reduction between the horizontal roll side and the scissor roll peripheral surface,
    In the production line, no tension control of the material to be rolled is performed in the upstream row of rolling mills, and after the non tension control is completed, a sufficient amount of the material to be rolled can be caught in the downstream rolling mill or rolling mill row. An upstream rolling mill row and a downstream rolling mill or rolling mill row are arranged at a distance,
    The rolling mill method according to any one of claims 1 to 4 is characterized in that the upstream rolling mill train and the downstream rolling mill or rolling mill train are independently performed. , Shape steel production line.
  6. 水平ロール側面と竪ロール周面との間での圧下を行い製造される形鋼の製造方法であって、
    少なくとも3機以上のn機の圧延機で構成される圧延機列において、各圧延機Riについて、前記圧延機Riに被圧延材が噛み込んだ後であり、且つ、前記圧延機Riの下流に位置する圧延機Ri+1に被圧延材が噛み込む前に、前記圧延機Riの回転数を固定し、その時の前記圧延機Riの圧延トルクGiをGi*として記憶し、
    前記圧延機列の最下流の圧延機Rnに被圧延材が噛み込んだ後、前記圧延機Rnの上流に位置する圧延機Rn-1の圧延トルクGn-1が、前記圧延機Rnに被圧延材が噛み込む前の前記圧延機Rn-1の圧延トルクとして記憶されたGn-1*と等しくなるように、前記圧延機Rnの回転数を制御する、第1制御工程と、
    当該第1制御工程後の前記圧延機Rnの圧延トルクGn**を記憶し、
    次いで、前記圧延機Rn-1の上流に位置する圧延機Rn-2の圧延トルクGn-2が、前記圧延機Rn-1に被圧延材が噛み込む前の前記圧延機Rn-2の圧延トルクとして記憶されたGn-2*と等しくなるように、前記圧延機Rn-1の回転数を制御し、且つ、前記圧延機Rnの圧延トルクGnが記憶された圧延トルクGn**と等しくなるように前記圧延機Rnの回転数を制御する、第2制御工程と、を備え、
    前記第2制御工程を各圧延機Ri全てに適用させ、最上流の圧延機R1の圧延トルクG1が、前記圧延機R1の下流に位置する圧延機R2に噛み込む前の前記圧延機R1の圧延トルクとして記憶されたG1*と等しくなるように前記圧延機列の各圧延機Riの回転数を制御することにより形鋼を製造することを特徴とする、形鋼の製造方法。
    A method for producing a shaped steel which is produced by applying a pressure between a horizontal roll side surface and a weir roll peripheral surface,
    In a row of rolling mills composed of at least three or more n rolling mills, each rolling mill Ri is after the material to be rolled bites into the rolling mill Ri and downstream of the rolling mill Ri Before the material to be rolled bites into the positioned rolling mill Ri + 1, the rotational speed of the rolling mill Ri is fixed, and the rolling torque Gi of the rolling mill Ri at that time is stored as Gi *,
    After the material to be rolled bites into the most downstream rolling mill Rn of the row of rolling mills, the rolling torque Gn-1 of the rolling mill Rn-1 located upstream of the rolling mill Rn is rolled to the rolling mill Rn Controlling the rotational speed of the rolling mill Rn so as to be equal to Gn-1 * stored as the rolling torque of the rolling mill Rn-1 before the metal bites;
    The rolling torque Gn ** of the rolling mill Rn after the first control step is stored,
    Next, the rolling torque Gn-2 of the rolling mill Rn-2 located upstream of the rolling mill Rn-1 is the rolling torque of the rolling mill Rn-2 before the material to be rolled bites into the rolling mill Rn-1. Control the rotational speed of the rolling mill Rn-1 to be equal to the stored Gn-2 *, and make the rolling torque Gn of the rolling mill Rn equal to the stored rolling torque Gn ** Control step of controlling the rotation speed of the rolling mill Rn
    The second control process is applied to all the rolling mills Ri, and the rolling torque G1 of the top-most rolling mill R1 is rolled before the rolling mill R2 located before the rolling mill R2 located downstream of the rolling mill R1. A manufacturing method of a section steel, characterized by manufacturing a section steel by controlling the number of rotations of each rolling mill Ri of the row of rolling mills to be equal to G1 * stored as a torque.
PCT/JP2018/048177 2018-01-10 2018-12-27 Shaped steel rolling method, shaped steel manufacturing line, and shaped steel manufacturing method WO2019138908A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP18899047.7A EP3702058A1 (en) 2018-01-10 2018-12-27 Shaped steel rolling method, shaped steel manufacturing line, and shaped steel manufacturing method
US16/771,941 US20200338608A1 (en) 2018-01-10 2018-12-27 Rolling method of shaped steel, production line of shaped steel, and production method of shaped steel
AU2018400555A AU2018400555A1 (en) 2018-01-10 2018-12-27 Shaped steel rolling method, shaped steel manufacturing line, and shaped steel manufacturing method
JP2019506208A JP6551625B1 (en) 2018-01-10 2018-12-27 Method of rolling shape steel, manufacturing line of shape steel and method of manufacturing shape steel

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-001784 2018-01-10
JP2018001784 2018-01-10

Publications (1)

Publication Number Publication Date
WO2019138908A1 true WO2019138908A1 (en) 2019-07-18

Family

ID=67218604

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/048177 WO2019138908A1 (en) 2018-01-10 2018-12-27 Shaped steel rolling method, shaped steel manufacturing line, and shaped steel manufacturing method

Country Status (5)

Country Link
US (1) US20200338608A1 (en)
EP (1) EP3702058A1 (en)
JP (1) JP6551625B1 (en)
AU (1) AU2018400555A1 (en)
WO (1) WO2019138908A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5334586A (en) 1976-09-10 1978-03-31 Ishikawajima Harima Heavy Ind Method of and apparatus for detecting surface flaw
JPS613564A (en) 1984-06-15 1986-01-09 Canon Inc Picture recorder
JP2005262256A (en) * 2004-03-17 2005-09-29 Jfe Steel Kk Method and mechanism for controlling dimension of shape steel
JP2008183594A (en) 2007-01-31 2008-08-14 Jfe Steel Kk Method and device for controlling interstand tension of continuous rolling mill
JP2018001784A (en) 2016-06-27 2018-01-11 日産自動車株式会社 Strap fixing structure of upward opening door for vehicle

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19545262B4 (en) * 1995-11-25 2004-08-05 Alstom Power Conversion Gmbh Device for operating a multi-stand rolling mill
FR2853570B1 (en) * 2003-04-11 2005-07-01 Vai Clecim METHOD AND DEVICE FOR REGULATING THE THICKNESS OF A ROLLED PRODUCT
DE102006048427B3 (en) * 2006-10-12 2008-05-21 Siemens Ag Rolling mill, retrofitted rolling mill, rolling mill or rolling mill, method for driving a rolling mill and use of a first stand of a rolling mill
DE102008011275A1 (en) * 2008-02-27 2009-09-10 Siemens Aktiengesellschaft Operating procedure for a multi-stand rolling mill with strip thickness determination using the continuity equation

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5334586A (en) 1976-09-10 1978-03-31 Ishikawajima Harima Heavy Ind Method of and apparatus for detecting surface flaw
JPS613564A (en) 1984-06-15 1986-01-09 Canon Inc Picture recorder
JP2005262256A (en) * 2004-03-17 2005-09-29 Jfe Steel Kk Method and mechanism for controlling dimension of shape steel
JP2008183594A (en) 2007-01-31 2008-08-14 Jfe Steel Kk Method and device for controlling interstand tension of continuous rolling mill
JP2018001784A (en) 2016-06-27 2018-01-11 日産自動車株式会社 Strap fixing structure of upward opening door for vehicle

Also Published As

Publication number Publication date
EP3702058A1 (en) 2020-09-02
AU2018400555A1 (en) 2020-06-18
JPWO2019138908A1 (en) 2020-01-23
JP6551625B1 (en) 2019-07-31
US20200338608A1 (en) 2020-10-29

Similar Documents

Publication Publication Date Title
WO2019138908A1 (en) Shaped steel rolling method, shaped steel manufacturing line, and shaped steel manufacturing method
JP5338139B2 (en) Method for preventing meandering in hot finish rolling, and method for producing hot-rolled metal plate using the same
JP4266185B2 (en) Hot finish rolling method and hot finish rolled material
TWI486218B (en) Method of controlling operation of tandem mill and manufacturing method of hot-rolled steel sheet using the controlling method
JP2008161883A (en) Warp control method of thick steel plate
JP2009022985A (en) Shape control method in cold rolling
JP5338140B2 (en) Method for preventing meandering in hot finish rolling, and method for producing hot-rolled metal plate using the same
JP2007203303A (en) Shape control method in cold rolling
JP5440288B2 (en) Tandem finish rolling mill, its operation control method, hot-rolled steel plate manufacturing apparatus, and hot-rolled steel plate manufacturing method
JP5610704B2 (en) Control method of meandering in reverse rolling mill
JP2019123003A (en) Tension control method
JP6020348B2 (en) Metal strip rolling method and rolling apparatus
JP5755534B2 (en) Rolling method and rolled plate
WO2023119640A1 (en) Tail end squeezing prevention device
JP7343779B2 (en) Manufacturing method of asymmetric H-beam steel with different left and right flange thickness
JP3661640B2 (en) Cross roll rolling method and leveling control method
JP4724982B2 (en) Roll gap control method and apparatus for rolling roll
JP2024076828A (en) Work roll opening and closing device
JPS58184003A (en) Tandem rolling method
JPH0534092B2 (en)
JP2023033788A (en) Meandering control method of rolled material
JP2661495B2 (en) Method for controlling center-centered web rolling of H-section steel and H-section guiding apparatus therefor
JP2000015315A (en) Method for controlling position of work roll and device therefor
JP2009131869A (en) Roll shift method of finish rolling mill and method for manufacturing hot rolled metal strip in hot rolling
JP4395765B2 (en) Manufacturing method of differential thickness steel plate

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2019506208

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18899047

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018899047

Country of ref document: EP

Effective date: 20200528

ENP Entry into the national phase

Ref document number: 2018400555

Country of ref document: AU

Date of ref document: 20181227

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE