WO2019138630A1 - 基地局装置、端末装置及び方法 - Google Patents

基地局装置、端末装置及び方法 Download PDF

Info

Publication number
WO2019138630A1
WO2019138630A1 PCT/JP2018/038415 JP2018038415W WO2019138630A1 WO 2019138630 A1 WO2019138630 A1 WO 2019138630A1 JP 2018038415 W JP2018038415 W JP 2018038415W WO 2019138630 A1 WO2019138630 A1 WO 2019138630A1
Authority
WO
WIPO (PCT)
Prior art keywords
base station
station apparatus
resource
guarantee resource
guarantee
Prior art date
Application number
PCT/JP2018/038415
Other languages
English (en)
French (fr)
Inventor
直紀 草島
博允 内山
大輝 松田
懿夫 唐
Original Assignee
ソニー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニー株式会社 filed Critical ソニー株式会社
Priority to US16/959,742 priority Critical patent/US11357016B2/en
Priority to EP18899502.1A priority patent/EP3739926A4/en
Publication of WO2019138630A1 publication Critical patent/WO2019138630A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/14Spectrum sharing arrangements between different networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria
    • H04W72/542Allocation or scheduling criteria for wireless resources based on quality criteria using measured or perceived quality
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/0268Traffic management, e.g. flow control or congestion control using specific QoS parameters for wireless networks, e.g. QoS class identifier [QCI] or guaranteed bit rate [GBR]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/16Central resource management; Negotiation of resources or communication parameters, e.g. negotiating bandwidth or QoS [Quality of Service]
    • H04W28/18Negotiating wireless communication parameters
    • H04W28/22Negotiating communication rate
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W92/00Interfaces specially adapted for wireless communication networks
    • H04W92/16Interfaces between hierarchically similar devices
    • H04W92/20Interfaces between hierarchically similar devices between access points

Definitions

  • the present disclosure relates to a base station apparatus, a terminal apparatus and a method.
  • LTE Long Term Evolution
  • LTE-A Long Term Evolution
  • LTE-A Pro LTE-Advanced Pro
  • NR New Radio
  • NRAT New Radio Access Technology
  • 5G New Radio Access
  • EUTRA Evolved Universal Terrestrial Radio Access
  • FEUTRA Frether EUTRA
  • the base station apparatus In LTE, the base station apparatus (base station) is eNodeB (evolved NodeB), in NR the base station apparatus (base station) is gNodeB, in LTE and NR the terminal apparatus (mobile station, mobile station apparatus, terminal) is UE (User Equipment) Also called.
  • LTE and NR are cellular communication systems in which a plurality of areas covered by a base station apparatus are arranged in a cell. A single base station apparatus may manage multiple cells.
  • NR is a next-generation radio access scheme for LTE, and is a radio access technology (RAT) different from LTE.
  • RAT radio access technology
  • NR is an access technology that can handle various use cases including Enhanced mobile broadband (eMBB), Massive machine type communications (mMTC), and Ultra reliable and low latency communications (URLLC).
  • eMBB Enhanced mobile broadband
  • mMTC Massive machine type communications
  • URLLC Ultra reliable and low latency communications
  • NRs will be considered for the technical framework corresponding to usage scenarios, requirements, and deployment scenarios in those use cases.
  • the unlicensed band and the license shared band the operation of a wireless access method based on cellular communication is being considered.
  • coexistence with other nodes and radio systems is considered important, and for radio access methods such as LTE and NR, LBT (Listen Before Talk) that performs channel sensing before transmission
  • radio access methods such as LTE and NR, LBT (Listen Before Talk) that performs channel sensing before transmission
  • LBT Listen Before Talk
  • the details of the NR based radio access scheme in the unlicensed band are disclosed in Non-Patent Document 1.
  • the unlicensed bands are, for example, the 2.4 GHz band, the 5 GHz band, and the 6 GHz band.
  • the license common band is, for example, 3.5 GHz band or 37 GHz band.
  • LBT Listen before talk
  • the operator is a communication carrier that has a communication network that performs mobile communication and provides mobile communication services.
  • the transmitting apparatus performs carrier sense before transmission, confirms that the channel is idle, and transmits after obtaining channel access right. From the viewpoint of channel fairness, the transmitting apparatus often secures a channel when data to be transmitted is generated, and releases the channel when transmission for a predetermined period is completed.
  • a scheme is provided in which a plurality of base station apparatuses operated by different operators can share radio resources while coordinating.
  • a base station apparatus comprising: a control unit that transmits first setting information of a first guarantee resource that the base station apparatus can preferentially use among radio resources that can be shared with two operators. Ru.
  • a control unit that communicates with the base station apparatus and reports measurement results of signals from other base station apparatuses operated by the second operator.
  • a method executed by a base station apparatus in another base station apparatus operated by a second operator different from the first operator operating the base station apparatus. Transmitting a first setting information of a first guarantee resource that the base station apparatus can preferentially use among radio resources that can be shared between a first operator and the second operator A method is provided.
  • a scheme is provided in which a plurality of base station apparatuses operated by different operators can share a radio resource while coordinating.
  • the above-mentioned effects are not necessarily limited, and, along with or in place of the above-mentioned effects, any of the effects shown in the present specification, or other effects that can be grasped from the present specification May be played.
  • FIG. 1 is a diagram showing an example of the overall configuration of a system according to an embodiment of the present disclosure. It is a figure which shows an example of the frame structure of the self-contained transmission in this embodiment. It is a block diagram which shows an example of a structure of the base station apparatus which concerns on this embodiment. It is a block diagram showing an example of composition of a terminal unit concerning this embodiment. It is a figure for demonstrating release of the guarantee resource which concerns on this embodiment. It is a figure for demonstrating the setting of the guarantee resource which concerns on this embodiment. It is a sequence diagram explaining an example of a flow of setting processing of a static guarantee resource performed in a system concerning this embodiment.
  • FIG. 1 is a diagram illustrating an example of an entire configuration of a system 1 according to an embodiment of the present disclosure.
  • the system 1 includes base station devices 100 (100A and 100B), terminal devices 200 (200A and 200B), a core network (Core Network) 20, and a PDN (Packet Data Network) 30.
  • base station devices 100 100A and 100B
  • terminal devices 200 200A and 200B
  • core network Core Network
  • PDN Packet Data Network
  • the base station apparatus 100 operates the cell 11 (11A or 11B), and provides a wireless service to one or more terminal apparatuses located inside the cell 11.
  • the base station device 100A provides a wireless service to the terminal device 200A
  • the base station device 100B provides a wireless service to the terminal device 200B.
  • the cell 11 may be operated according to any wireless communication scheme such as, for example, LTE or NR (New Radio).
  • the base station device 100 is connected to the core network 20.
  • the core network 20 is connected to the PDN 30.
  • the core network 20 may include a mobility management entity (MME), a serving gateway (S-GW), a PDN gateway (P-GW), a policy and charging rule function (PCRF), and a home subscriber server (HSS).
  • MME mobility management entity
  • S-GW serving gateway
  • P-GW PDN gateway
  • PCRF policy and charging rule function
  • HSS home subscriber server
  • the MME is a control node that handles control plane signals, and manages the movement state of the terminal device.
  • the S-GW is a control node that handles user plane signals, and is a gateway device that switches the transfer path of user data.
  • the P-GW is a control node that handles user plane signals, and is a gateway device serving as a connection point between the core network 20 and the PDN 30.
  • the PCRF is a control node that performs control on policies such as QoS (Quality of Service) for a bearer and charging.
  • the HSS is a control node that handles subscriber data and performs service control
  • the terminal device 200 wirelessly communicates with the base station device 100 based on control by the base station device 100.
  • the terminal device 200 may be a so-called user equipment (UE).
  • UE user equipment
  • the terminal device 200 transmits an uplink signal to the base station device 100 and receives a downlink signal from the base station device 100.
  • the base station devices 100A and 100B are operated by different operators.
  • the base station device 100A is operated by the operator A
  • the base station device 100B is operated by the operator B. Then, the base station devices 100A and 100B share wireless resources that can be shared by the operators who operate them, and provide wireless communication services.
  • a guarantee resource is set for the base station apparatus 100.
  • the guarantee resource is a radio resource (time resource and frequency resource) which can be preferentially used by the base station apparatus 100 among radio resources which can be shared among different operators.
  • a plurality of base station apparatuses 100 operated by different operators share setting information on guaranteed resources.
  • Each base station apparatus 100 imposes restrictions on its own use of the guarantee resource set in the other base station apparatus 100 operated by the other operator based on the shared setting information. That is, the guarantee resource set in the base station apparatus 100 of a certain operator is less likely to be used by the base station apparatus 100 of another operator. Such cooperation improves the acquisition rate of the channel access right in the guarantee resource set in itself of the base station apparatus 100.
  • FIG. 2 shows an example (A to C) of the frame configuration of the self-contained transmission in the present embodiment.
  • one transmission / reception is configured in the order of the downlink transmission continuous from the head, the GP, and the continuous downlink transmission.
  • Consecutive downlink transmissions include at least one downlink control information and DMRS.
  • the downlink control information indicates the reception of the downlink physical channel included in the continuous downlink transmission or the transmission of the uplink physical channel included in the continuous uplink transmission.
  • the terminal device 200 When the downlink control information instructs to receive the downlink physical channel, the terminal device 200 attempts to receive the downlink physical channel based on the downlink control information. Then, the terminal device 200 transmits the reception success or failure (decoding success or failure) of the downlink physical channel by the uplink control channel included in the uplink transmission assigned after the GP. On the other hand, when the downlink control information instructs transmission of the uplink physical channel, the uplink physical channel transmitted based on the downlink control information is included in uplink transmission and transmission is performed. As described above, by flexibly switching between uplink data transmission and downlink data transmission according to the downlink control information, it is possible to immediately cope with the increase or decrease in the uplink to downlink traffic ratio. Also, downlink low delay communication can be realized by notifying downlink reception success or failure by the immediately following uplink transmission.
  • the unit slot time is the smallest unit of time defining downlink transmission, GP or uplink transmission.
  • the unit slot time is reserved for either downlink transmission, GP or uplink transmission.
  • the unit slot time does not include both downlink transmission and uplink transmission.
  • the unit slot time may be the minimum transmission time of the channel associated with the DMRS included in the unit slot time.
  • One unit slot time is defined by, for example, an NR sampling interval (T s ) or an integer multiple of the symbol length.
  • the unit frame time may be the minimum time specified in scheduling.
  • the unit frame time may be the smallest unit in which the transport block is transmitted.
  • the unit slot time may be the maximum transmission time of the channel associated with the DMRS included in the unit slot time.
  • the unit frame time may be a unit time at which the terminal apparatus 200 determines uplink transmission power.
  • the unit frame time may be referred to as a subframe.
  • One unit frame time is defined by, for example, an NR sampling interval (T s ), a symbol length, or an integral multiple of a unit slot time.
  • the transmission / reception time is one transmission / reception time. Between one transmission and reception and the other transmission and reception is occupied by a time (gap) in which no physical channel and physical signal are transmitted.
  • the terminal device 200 may not average the CSI measurement between different transmissions and receptions.
  • the transmission and reception time may be referred to as TTI.
  • One transmission / reception time is defined by, for example, an NR sampling interval (T s ), a symbol length, a unit slot time, or an integral multiple of a unit frame time.
  • a channel access (Listen before Talk) procedure is performed to access an unlicensed channel for transmission at a base station apparatus or a terminal apparatus.
  • channel access procedure one or more times of channel sensing is performed. Based on the sensing result, it is determined whether the channel is idle (idle, unoccupied, available, enable) or busy (busy, occupied, unavailable, disable) (vacancy determination). In channel sensing, channel power at a predetermined latency is sensed.
  • the first latency (slot), the second latency, and the third latency (deferred period), the fourth latency may be mentioned.
  • a slot is a unit of latency of a base station apparatus and a terminal apparatus in a channel access procedure.
  • the slot is defined, for example, at 9 microseconds.
  • the second latency is defined, for example, at 16 microseconds.
  • the defer period is comprised of a second latency and a plurality of consecutive slots following the second latency.
  • the number of consecutive slots following the second latency is determined based on the priority class used to satisfy the QoS.
  • the fourth latency consists of the second latency followed by one slot.
  • the base station apparatus or terminal apparatus senses a predetermined channel during a predetermined slot.
  • the predetermined slot is considered idle if the power detected by the base station or terminal for at least 4 microseconds within the predetermined slot period is less than a predetermined power detection threshold. . On the other hand, if the power is greater than a predetermined power detection threshold, then the predetermined slot is considered to be busy.
  • the channel access procedure includes a first channel access procedure and a second channel access procedure.
  • the first channel access procedure is performed using a plurality of slots and a postponement period.
  • the second channel access procedure is performed using one fourth latency.
  • Parameters for channel access are determined based on priority classes.
  • Parameters related to channel access include, for example, a minimum collision window, a maximum collision window, a maximum channel occupancy time, values that the collision window can take, and the like.
  • the priority class is defined by the value of a QoS class identifier (QCI) that handles quality of service (QoS).
  • QCI QoS class identifier
  • Table 1 shows a correspondence table of priority class and parameters related to channel access
  • Table 2 shows an example of mapping of priority class and QCI.
  • step (3) Add a slot period and wait. Also, in that additional slot, the channel is sensed. If the additional slot is idle, proceed to step (4), otherwise proceed to step (5).
  • step (2) If the counter N is 0, stop this procedure. If not, proceed to step (2).
  • step (6) If the channel is sensed to be idle in all of the slots included in the additional deferral period, then proceed to step (4) otherwise proceed to step (5).
  • transmission may not be performed on that channel. In this case, transmission may then be performed without performing the above procedure if the channel was idle in all of the slots and deferrals immediately before transmission. On the other hand, if the channel is not idle in any of its slots and its deferrals, after all of the slots in the additional deferrals have been sensed as idle in all of the slots, then Proceed to step).
  • transmission may occur immediately after the channel is considered idle as a result of sensing at least a fourth latency. On the other hand, if the channel is considered not to be idle as a result of at least the sensing of the fourth latency, no transmission takes place.
  • ⁇ Collision window adaptation procedure The collision window CW (contention window) used in the first channel access procedure is determined based on the collision window adaptation procedure.
  • the value of the collision window CW is held for each priority class. Also, the collision window CW takes a value between the minimum collision window and the maximum collision window. The minimum collision window and the maximum collision window are determined based on the priority class.
  • Adjustment of the value of the collision window CW is performed before the step (1) of the first channel access procedure. If the percentage of NACKs is higher than the threshold at least in the HARQ response corresponding to the reference subframe in the collision window adaptation procedure or the shared channel of the reference HARQ process, the value of the collision window CW is increased, otherwise the collision window CW Set the value to the minimum collision window.
  • the base station apparatus accesses the channel based on the first channel access procedure and performs the downlink transmission.
  • the base station apparatus accesses that channel based on the second channel access procedure and performs the downlink transmission.
  • the duration of the downlink transmission is preferably smaller than 1 millisecond.
  • the terminal device when instructed to perform the first channel access procedure with the uplink grant for scheduling the PUSCH, the terminal device performs the first channel access procedure before uplink transmission including the PUSCH. .
  • the terminal device when instructed to perform the second channel access procedure in the uplink grant for scheduling the PUSCH, performs the second channel access procedure before uplink transmission including the PUSCH.
  • the terminal device performs a second channel access procedure prior to the uplink transmission.
  • the terminal apparatus performs uplink transmission of the uplink transmission regardless of the procedure type indicated by the uplink grant. Perform a second channel access procedure before.
  • the terminal apparatus When uplink transmission continues after the end of downlink transmission from the base station across the fourth waiting time, the terminal apparatus performs a second channel access procedure before the uplink transmission.
  • the channel access procedure in an unlicensed channel using NR includes non-beamformed channel sensing and beamformed channel sensing.
  • Non-beamformed channel sensing is channel sensing by reception whose directivity is not controlled, or channel sensing without directional information.
  • Channel sensing without directional information is, for example, channel sensing in which measurement results are averaged in all directions.
  • the transmitting station may not recognize the directivity (angle, direction) used in channel sensing.
  • Beamformed channel sensing is channel sensing by directivity controlled reception or channel sensing with directional information. That is, it is channel sensing in which the reception beam is directed in a predetermined direction.
  • a transmitting station having the function of performing beamformed channel sensing can perform one or more channel sensings using different directivity.
  • Beamformed channel sensing narrows the area detected by sensing. This allows the transmitting station to reduce the frequency of detection of non-interfering communication links and mitigate exposure problems.
  • FIG. 3 is a block diagram showing an example of the configuration of the base station apparatus 100 according to the present embodiment.
  • the base station apparatus 100 includes an antenna unit 110, a wireless communication unit 120, a network communication unit 130, a storage unit 140, and a control unit 150.
  • Antenna unit 110 The antenna unit 110 radiates the signal output from the wireless communication unit 120 into space as a radio wave. In addition, the antenna unit 110 converts a radio wave in space into a signal, and outputs the signal to the wireless communication unit 120.
  • the wireless communication unit 120 transmits and receives signals. For example, the wireless communication unit 120 transmits a downlink signal to the terminal apparatus and receives an uplink signal from the terminal apparatus.
  • the network communication unit 130 transmits and receives information.
  • the network communication unit 130 transmits information to other nodes and receives information from other nodes.
  • the other nodes include other base stations and core network nodes.
  • Storage unit 140 The storage unit 140 temporarily or permanently stores programs for various operations of the base station apparatus 100 and various data.
  • Control unit 150 controls the overall operation of the base station apparatus 100 to provide various functions of the base station apparatus 100.
  • Control unit 150 includes setting unit 151 and communication processing unit 153.
  • the setting unit 151 has a function of setting regarding communication with the terminal device 200. For example, the setting unit 151 sets a guarantee resource that the base station apparatus 100 itself can use preferentially. The setting unit 151 also performs negotiation for setting of a guarantee resource with another base station apparatus 100 operated by an operator different from the operator who operates the base station apparatus 100. Similarly, the setting unit 151 performs negotiation with the other base station apparatus 100 for setting of a guarantee resource that can be preferentially used by the other base station apparatus 100.
  • the communication processing unit 153 has a function of performing communication processing with the terminal device 200. For example, the communication processing unit 153 performs communication with the terminal device 200 by preferentially using the guarantee resource set by the setting unit 151. Further, the communication processing unit 153 restricts the use of the guarantee resource set in the other base station apparatus 100, and enables the other base station apparatus 100 to preferentially use the guarantee resource.
  • Control unit 150 may further include other components in addition to these components. That is, the control unit 150 can also perform operations other than the operations of these components.
  • FIG. 4 is a block diagram showing an example of the configuration of the terminal device 200 according to the present embodiment.
  • the terminal device 200 includes an antenna unit 210, a wireless communication unit 220, a storage unit 230, and a control unit 240.
  • Antenna unit 210 The antenna unit 210 radiates the signal output from the wireless communication unit 220 into space as a radio wave. Also, the antenna unit 210 converts radio waves in space into signals, and outputs the signals to the wireless communication unit 220.
  • the wireless communication unit 220 transmits and receives signals. For example, the wireless communication unit 220 receives a downlink signal from a base station and transmits an uplink signal to the base station.
  • Storage unit 230 The storage unit 230 temporarily or permanently stores programs for the operation of the terminal device 200 and various data.
  • Control unit 240 controls the entire operation of the terminal device 200 to provide various functions of the terminal device 200.
  • the control unit 240 includes a measurement report unit 241 and a communication processing unit 243.
  • the measurement report unit 241 has a function of performing measurement report processing.
  • the measurement report unit 241 measures a measurement signal (for example, a measurement signal such as a DS (Discovery Signal) or a CSI-RS (Channel State Information Reference Signal)) transmitted from the base station apparatus 100.
  • a measurement signal for example, a measurement signal such as a DS (Discovery Signal) or a CSI-RS (Channel State Information Reference Signal) transmitted from the base station apparatus 100.
  • the measurement report unit 241 transmits not only from the base station apparatus 100 to which the terminal apparatus 200 is connected, but also from other base station apparatuses 100 operated by an operator different from the operator who operates the base station apparatus 100. Measure the measured signal.
  • the measurement report unit 241 transmits a measurement report including information indicating the measurement result to the base station apparatus 100.
  • RRM radio resource management
  • RSRP reference signal received power
  • RSRQ reference signal received quality
  • RSSI received signal strength indicator
  • the communication processing unit 243 has a function of performing communication processing with the base station apparatus 100.
  • the communication processing unit 243 performs communication with the base station apparatus 100 using the guarantee resource set by the base station apparatus 100.
  • Control part 240 may further contain other components other than these components. That is, the control unit 240 can also perform operations other than the operations of these components.
  • the base station apparatus 100 in which the guarantee resource is set is referred to as a first base station apparatus 100.
  • the base station apparatus 100 that performs processing enabling the first base station apparatus 100 to preferentially use the guarantee resource set in the first base station apparatus 100 is referred to as the second base station apparatus 100.
  • the second base station apparatus 100 is operated by an operator different from the operator who operates the first base station apparatus 100.
  • An operator operating the first base station apparatus 100 is also referred to as a first operator
  • an operator operating the second base station apparatus 100 is also referred to as a second operator.
  • the base station apparatus 100 can function as both the first base station apparatus 100 and the second base station apparatus 100.
  • the guarantee resource corresponds to the first guarantee resource which is a guarantee resource set for itself
  • the setting information corresponds to the first setting information.
  • the guarantee resource corresponds to a second guarantee resource which is a guarantee resource set for the other base station apparatus 100 operated by another operator.
  • the setting information corresponds to second setting information.
  • the first base station apparatus 100 (for example, the setting unit 151) can share the first operator and the second operator with the second base station apparatus 100.
  • the first base station apparatus 100 transmits the setting information of the guarantee resource which can be used preferentially.
  • the number of second base station apparatuses 100 to which setting information is to be transmitted may be one or plural.
  • the second operator may be one or more than one.
  • the second base station apparatus 100 performs processing enabling the first base station apparatus 100 to preferentially use the guarantee resource. .
  • the first base station apparatus 100 can preferentially use the guarantee resource.
  • the setting information of the guarantee resource can also be understood as information that requests the first base station apparatus 100 to allow the preferential use of the guarantee resource.
  • utilization of the guarantee resource may be used for transmission and reception of an uplink signal, and may be used for transmission and reception of a downlink signal.
  • the second base station apparatus 100 (for example, the setting unit 151) can use the first base station apparatus 100 preferentially among the radio resources that can be shared between the first operator and the second operator.
  • the setting information of the guarantee resource is received from the first base station apparatus 100.
  • the second base station apparatus 100 (for example, the communication processing unit 153) performs processing to enable the first base station apparatus 100 to preferentially use the guarantee resource.
  • the second base station apparatus 100 restricts the use of guaranteed resources that the first base station apparatus 100 can preferentially use.
  • the second base station apparatus 100 can cause the first base station apparatus 100 to preferentially use the guarantee resource by restricting the use of the guarantee resource based on the received setting information.
  • the first base station apparatus 100 and the second base station apparatus 100 sharing setting information have overlapping or adjacent coverage.
  • the setting of the guarantee resource of the first base station apparatus 100 is effective within the coverage of the first base station apparatus 100. Therefore, the first base station apparatus 100 can ensure the guarantee resource of the first base station apparatus 100 more than the second base station apparatus 100 whose coverage overlaps with or is adjacent to the first base station apparatus 100. It can be used preferentially.
  • the second base station apparatus 100 releases the guarantee resource. Specifically, when the radio resource in use and the guarantee resource overlap, the second base station apparatus 100 stops using the radio resource in the overlapping part.
  • FIG. 5 is a diagram for explaining the release of the guarantee resource according to the present embodiment.
  • the upper part of FIG. 5 illustrates the release of the guarantee resource by the second base station apparatus 100.
  • the lower part of FIG. 5 illustrates the use of the guarantee resource by the first base station apparatus 100.
  • the wireless resource from frequency t to time t 1 to t 3 is a non-guaranteed resource, and the wireless resource from frequency t to time t 3 to t 5 is a guaranteed resource that can be preferentially used by the first base station apparatus 100.
  • the channel occupancy time of the frequency f of the second base station apparatus 100 is from time t 2 to t 4 .
  • the channel reservation time is a period during which the access right to the channel (ie, frequency f) reserved by the channel access based on LBT is valid.
  • the second base station apparatus 100 uses the frequency f securing the access right.
  • the second base station apparatus 100 stops the use of frequency f at time t 3. That is, the second base station apparatus 100 At time t 3, by stopping the transmission of the signal with frequency f, to open the frequency f.
  • the second base station apparatus 100 may not use the guarantee resource.
  • the second base station apparatus 100 from the time t 3 at time t 5, it does not transmit the signal using a frequency f, to open the frequency f. This makes it possible to ensure secure use of the first guaranteed resource by the first base station apparatus 100.
  • the second base station apparatus 100 may use the guarantee resource after performing carrier sense.
  • the second base station apparatus 100 temporarily opening the stop frequency f the use of frequency f at time t 3. After that, the second base station apparatus 100 performs carrier sensing on the frequency f again, secures the access right, and uses the frequency f.
  • the second base station apparatus 100 uses the guarantee resource. This makes it possible to prevent the decrease in frequency utilization efficiency when the first base station apparatus 100 does not use the guarantee resource while securing the preferential use of the guarantee resource by the first base station apparatus 100. .
  • the first base station apparatus 100 (for example, the communication processing unit 153) preferentially uses the guarantee resource.
  • the preferential use of the guarantee resource means, for example, not performing the above-mentioned use restriction. That is, even when the radio resource in use and the guarantee resource overlap, the first base station apparatus 100 may continue to use the radio resource in the overlapping part. Also, the first base station apparatus 100 may use the guarantee resource without performing the carriage sense.
  • the use of the guarantee resource by the first base station apparatus 100 will be described with reference to FIG. 5 again. As shown in the lower part of FIG. 5, times t 3 to t 5 are guarantee resources. Therefore, the first base station apparatus 100 starts to use the security resources from time t 3. In the example shown in the lower part of FIG. 5, the first base station apparatus 100, at time t 5 that is the end time of the protection resources and opens the radio resources. The first base station apparatus 100 may continuously use the same frequency even after the end of the guarantee resource.
  • the first base station apparatus 100 transmits, for example, high priority signals / information in the guarantee resource.
  • high priority signals / information for example, synchronization signals, random access channels, paging, system information, reference signals and control information (ACK / NACK etc.), and data for which low delay is required can be mentioned.
  • the first base station apparatus 100 may set the security resource by itself and may generate setting information. Thereby, the first base station apparatus 100 can adaptively set the guarantee resource according to the interference between the operators, the priority of the data to be transmitted / received, and the like.
  • the setting of the guarantee resource will be described with reference to FIG.
  • FIG. 6 is a diagram for explaining setting of a guarantee resource according to the present embodiment. As shown in FIG. 6, the first base station apparatus 100 has a frequency f and a radio resource from time t 1 to t 2 , a frequency f and a radio resource from time t 3 to t 4 , and a frequency f and time t A radio resource from 5 to 6 is set as a guarantee resource.
  • the first base station apparatus 100 can preferentially use those radio resources set as the guarantee resource.
  • the radio resource from frequency f and time t 2 to t 3 and the radio resource from frequency f and time t 4 to t 5 are non-guaranteed resources.
  • non-guaranteed resources are radio resources not set as guaranteed resources.
  • the first base station apparatus 100 and the second base station apparatus 100 utilize these non-guaranteed resources by performing channel access based on LBT.
  • the first base station apparatus 100 may set the guarantee resource so as to satisfy a predetermined condition.
  • a predetermined condition for example, it is mentioned that the ratio of the guarantee resource is less than a predetermined threshold value in the entire radio resources. This prevents the radio resource from being monopolized by a specific operator.
  • the predetermined threshold is set, for example, as 10%.
  • the predetermined threshold may be determined according to the total number of operators operating the first base station apparatus 100 and the second base station apparatus 100. In that case, the predetermined threshold is set, for example, as 10 / (total number of operators)%.
  • the setting of the guarantee resource and the generation of the setting information may be performed by a control entity possessed by the operator.
  • control entity is included, for example, in the core network 20.
  • the guarantee resource may be configured in the terminal device 200 for uplink transmission such as PRACH, SRS, PUCCH, or PUSCH.
  • Security resources are set by system information (MIB or SIB) or RRC signaling.
  • the terminal device 200 can transmit uplink channels / signals preferentially on the guarantee resource.
  • the physical channel or physical signal transmitted from the terminal device 200 using the guarantee resource is, for example, PRACH, SRS for beam management, PUCCH including HARQ-ACK, SPS (Semi-Persistent Scheduling), or grant-free PUSCH (DCI). (PUSCH) not scheduled by PRACH, SRS for beam management, PUCCH including HARQ-ACK, SPS (Semi-Persistent Scheduling), or grant-free PUSCH (DCI). (PUSCH) not scheduled by PRACH, SRS for beam management, PUCCH including HARQ-ACK, SPS (Semi-Persistent Scheduling), or grant-free PUSCH (DCI). (PUSCH) not scheduled by
  • a cycle and an offset are mentioned as an example of setting of a time resource of guarantee resource.
  • An example of the setting of the time resource of the guarantee resource is a set of slots represented by a bit map. Each bit in the bitmap corresponds to a slot (or slot group, subframe). Bit 0/1 represents guaranteed resources / non-guaranteed resources.
  • An example of the setting of the frequency resource of the guarantee resource is a set of resource blocks represented by a bit map. Each bit of the bitmap corresponds to a resource block (or resource block group). Bit 0/1 represents guaranteed resources / non-guaranteed resources.
  • designation of a physical channel and physical signal permitted to be transmitted by the set guarantee resource can be mentioned. For example, it is specified that PUCCHs including HARQ in the guarantee resource are permitted to transmit, but PUCCHs not including HARQ are not permitted to transmit. This enables flexible control according to the communication environment.
  • the guarantee resource is preferably set to a primary cell (PCell) or a primary secondary cell (PSCell) to which high priority signaling / information is transmitted. In other words, it is preferable that the guarantee resource is not set to the secondary cell.
  • the band in which the guarantee resource can be set may be limited so that the same band is set commonly to the operators.
  • the terminal device 200 may acquire shared information of different operators.
  • the terminal device 200 may obtain shared information of different operators, may be obtained via the connecting base station device 100, or may be a physical channel and / or physical for sharing between operators transmitted from the base station device 100 of different operators. It may be obtained from a signal.
  • the terminal device 200 can perform communication while avoiding security resources of different operators.
  • negotiation for setting of guarantee resource may be performed between operators.
  • the first base station apparatus 100 for example, the setting unit 151
  • the second base station apparatus 100 for example, the setting unit 151
  • negotiation may be performed between control entities that each operator has.
  • the second base station apparatus 100 may transmit, to the first base station apparatus 100, information indicating a radio resource requesting not to set as a guarantee resource.
  • the radio resource which requires not to set as a guarantee resource is a radio resource which is not preferable to be set as a guarantee resource for the second base station apparatus 100.
  • Such radio resources include, for example, radio resources for high priority signals / information.
  • the signal / information with high priority for example, synchronization signal, random access channel, paging, system information, reference signal and control information (ACK / NACK etc.), and data for which low delay is required can be mentioned.
  • the second base station apparatus 100 may transmit, to the first base station apparatus 100, information indicating a radio resource that allows setting as a guarantee resource.
  • a radio resource that allows setting as a guarantee resource is a radio resource that may be set as a guarantee resource for the second base station apparatus 100.
  • radio resources radio resources other than radio resources which do not require setting as the above-mentioned guarantee resources may be mentioned.
  • the guarantee resource can be efficiently set.
  • the second base station apparatus 100 may determine whether to grant or deny the usage restriction of the guarantee resource imposed on itself, and may transmit the determination result to the first base station apparatus 100.
  • the second base station apparatus 100 performs this determination based on the setting information of the guarantee resource received from the first base station apparatus 100.
  • the second base station apparatus 100 accepts the usage restriction, the second base station apparatus 100 restricts the use of the guarantee resource.
  • the second base station device 100 denies the usage restriction, the second base station device 100 does not restrict the usage of the guarantee resource.
  • the second base station apparatus 100 may transmit, to the first base station apparatus 100, information requesting a change of guaranteed resources.
  • the request for changing the guarantee resource may be a request for moving the guarantee resource to another radio resource, or may be a request for canceling the setting of the guarantee resource, or release the guarantee resource. It may be a request for
  • the second base station apparatus 100 can request the change of the guarantee resource when the radio resource which is not preferably set as the above-mentioned guarantee resource is set as the guarantee resource.
  • the first base station apparatus 100 changes, cancels or releases the guarantee resource based on the request.
  • the first base station apparatus 100 guarantees based on a response from the second base station apparatus 100 indicating whether or not the first base station apparatus 100 consents to preferentially use the guarantee resource. Control transmission and reception of signals in resources. In other words, the first base station apparatus 100 controls transmission and reception of the signal in the guarantee resource based on the response from the second base station apparatus 100 indicating whether or not the usage restriction of the guarantee resource is accepted. For example, the first base station apparatus 100 preferentially uses the guarantee resource when a response for accepting the use restriction of the guarantee resource is obtained. On the other hand, the first base station apparatus 100 does not preferentially use the guarantee resource if a response to deny the use restriction of the guarantee resource is obtained.
  • the first base station device 100 When there are a plurality of second base station devices 100, the first base station device 100 performs preferential use of the guarantee resource when even one response is obtained to deny the use restriction of the guarantee resource. Absent. This can prevent interference between operators.
  • the rejection response may include information indicating the reason for rejection. For example, as information included in the rejection response, rejection information due to excessive guarantee resource request, rejection information indicating that the required guarantee resource overlaps with other guarantee resources, and the like can be mentioned.
  • a plurality of operators sharing the radio resource can avoid setting the guarantee resource by another operator for the radio resource which should not be set as the guarantee resource.
  • the first base station apparatus 100 (for example, the setting unit 151) and the second base station apparatus 100 (for example, the setting unit 151) share various information (that is, Send and receive).
  • the information shared between the first base station apparatus 100 and the second base station apparatus 100 is hereinafter also referred to as shared information. If there is a change in the shared information, it will be shared again each time.
  • the first base station apparatus 100 transmits setting information of the security resource set in the first base station apparatus 100 to the second base station apparatus 100.
  • the setting information of the guarantee resource includes at least one of the information exemplified below.
  • the setting information of the guarantee resource includes information indicating the radio resource set as the guarantee resource.
  • Such information includes information indicating the frequency and time of the radio resource set as the guarantee resource.
  • the setting information of the guarantee resource includes information indicating a place where the setting of the guarantee resource is valid.
  • Such information may include position information (latitude and longitude, and altitude) of the first base station apparatus 100, a coverage range of the first base station apparatus 100, and the like.
  • the setting information of the guarantee resource may include information indicating the priority of the signal / information transmitted / received using the guarantee resource.
  • Such information may be information indicating a signal transmitted / received using a guarantee resource.
  • the setting information of the guarantee resource may include information indicating the type of guarantee resource described later.
  • the first base station apparatus 100 and the second base station apparatus 100 transmit and receive information for the above-described negotiation.
  • the information for negotiation includes at least one of the information exemplified below.
  • the information for negotiation includes the information for negotiation before setting of the security resource described above.
  • the information for negotiation includes information indicating a radio resource requiring no setting as a guarantee resource or information indicating a radio resource permitting setting as a guarantee resource.
  • the information for negotiation includes information for negotiation after setting of the guarantee resource described above.
  • the information for negotiation includes information requesting change of guarantee resource, and information indicating whether or not the request for change of guarantee resource is accepted.
  • the information for negotiation includes information indicating acceptance / rejection of the use restriction of the guarantee resource.
  • Sharing Means There are various possible means for sharing the above-mentioned shared information.
  • the shared information may be wirelessly transmitted and received using physical channels or physical signals for sharing between operators.
  • the first base station apparatus 100 (for example, the setting unit 151) may include setting information in a wireless signal and transmit the wireless signal to the second base station apparatus 100.
  • a physical channel for sharing between operators is PDSCH.
  • a physical channel for sharing between operators is PBCH. It is desirable that the sharing physical channel between operators be scrambled by an ID identifying the operator.
  • the physical signal for sharing between operators includes, for example, a discovery signal (Discovery Signal) for notifying at least an ID (operator ID) for identifying the operator.
  • the shared information is preferably transmitted and received, for example, in system information (MIB (Master Information Block) or SIB (System Information Block)), but may be transmitted and received on the PDCCH.
  • the configuration information is preferably transmitted periodically.
  • the shared information may be transmitted including not only the information of the transmission source base station apparatus 100 but also the information of another base station apparatus 100.
  • shared information may be relayed and transmitted by another base station apparatus 100.
  • the base station device 100A transmits the shared information of the base station device 100B together with or instead of the shared information of itself.
  • the base station apparatus 100C for which it is difficult to directly receive shared information from the base station apparatus 100B, can acquire shared information of the base station apparatus 100B via the base station apparatus 100A. This enables more flexible cell design.
  • the shared information may be sent and received using a backhaul line. That is, the first base station apparatus 100 may transmit the first shared information to the second base station apparatus 100 using a backhaul channel.
  • the shared information is transmitted and received using a backhaul circuit (for example, an X2 interface or an Xn interface).
  • the backhaul line may be wired or wireless.
  • information Prior to sharing shared information, information may be shared for connecting the first base station apparatus 100 and the second base station apparatus 100 via a backhaul line.
  • the information for connecting the first base station apparatus 100 and the second base station apparatus 100 via the backhaul line includes, for example, identification information of an operator and identification information of the base station apparatus 100.
  • the first base station apparatus 100 and the second base station apparatus 100 establish the connection of the X2 interface and the Xn interface based on the information.
  • Information for connecting the first base station apparatus 100 and the second base station apparatus 100 via the backhaul line may be transmitted using PDSCH.
  • information for connecting the first base station apparatus 100 and the second base station apparatus 100 via the backhaul line may be transmitted using a backhaul physical channel.
  • the security resource may be set in advance.
  • the guarantee resource may be set statically.
  • the first base station apparatus 100 predicts a radio resource necessary for transmission / reception of a signal / information with high priority, and sets a guarantee resource in advance.
  • the first base station apparatus 100 repeatedly sets radio resources periodically, that is, at predetermined time intervals.
  • the first base station apparatus 100 transmits, to the second base station apparatus 100, the setting information of the set guarantee resource.
  • the first base station apparatus 100 may periodically transmit the setting information, or may not transmit the setting information to the second base station apparatus 100 that has transmitted the setting information once.
  • the first base station apparatus 100 transmits and receives high priority signals / information using the set guarantee resource.
  • the first base station apparatus 100 and the second base station apparatus 100 may perform the above-mentioned negotiation before and after setting the guarantee resource.
  • the guarantee resource is set statically, it is desirable that the negotiation prior to the setting of the guarantee resource be conducted.
  • FIG. 7 is a sequence diagram for explaining an example of the process of setting a static guarantee resource performed in the system 1 according to the present embodiment.
  • Base sequences 100A, 100B and 100C are involved in this sequence.
  • the base station device 100A is the first base station device 100
  • the base station devices 100B and 100C are the second base station device 100. Operators operating each of the base station apparatuses 100A, 100B and 100C are assumed to be different.
  • the base station devices 100A, 100B and 100C mutually negotiate the setting of the guarantee resource (step S102). For example, the base station devices 100B and 100C transmit, to the base station device 100A, information indicating a radio resource for requesting not to set as a guarantee resource and information indicating a radio resource for permitting setting as a guarantee resource.
  • the base station device 100A sets the guarantee resource (step S104). For example, the base station apparatus 100A avoids the radio resource requested not to be set as the guarantee resource in step S102, and has high priority in the range of the radio resource permitted to be set as the guarantee resource.
  • the base station device 100A transmits the setting information of the set guarantee resource to the base station devices 100B and 100C (step S106). After that, the base station apparatus 100A transmits / receives a signal / information with high priority to / from the terminal apparatus 200 in the coverage, using the set guarantee resource.
  • the base station device 100A resets the guarantee resource (step S108). For example, when the base station device 100A negotiates again with the base station device 100B or 100C, the base station device 100A resets the guarantee resource. In that case, the base station apparatus 100A resets the guarantee resource in the same manner as step S104 (step S108). Next, the base station device 100A transmits the reset setting information of the guarantee resource to the base station devices 100B and 100C (step S110). After that, the base station apparatus 100A transmits and receives signals / information with high priority to / from the terminal apparatus 200 in the coverage, using the reset guarantee resource.
  • the guarantee resource may be set when a signal / information (or packet) to be transmitted / received using the guarantee resource occurs.
  • the guarantee resource may be set dynamically.
  • the first base station apparatus 100 sets a guarantee resource when a high priority signal / information occurs due to a high priority signal / information arriving to the first base station apparatus 100 or the like. Do.
  • the first base station apparatus 100 transmits, to the second base station apparatus 100, the setting information of the set guarantee resource.
  • the first base station apparatus 100 and the second base station apparatus 100 may perform the above-mentioned negotiation before and after setting the guarantee resource.
  • guarantee resources are set dynamically, it is desirable that negotiations after setting guarantee resources be conducted.
  • a guarantee resource of one instance (a chunk of time resources) may be set, or a guarantee resource of a plurality of instances may be set.
  • the first base station apparatus 100 may set one future guarantee resource or may set a plurality of future guarantee resources using the second setting format.
  • FIG. 8 is a sequence diagram for explaining an example of the flow of dynamic guarantee resource setting processing executed in the system 1 according to the present embodiment.
  • Base sequences 100A, 100B and 100C are involved in this sequence.
  • the base station device 100A is the first base station device 100
  • the base station devices 100B and 100C are the second base station device 100. Operators operating each of the base station apparatuses 100A, 100B and 100C are assumed to be different.
  • a guarantee resource with a priority for transmitting / receiving the packet is set (step S204). Thereafter, the base station devices 100A, 100B, and 100C perform negotiations after setting of the guarantee resource.
  • the base station device 100A transmits the setting information of the set guarantee resource to the base station devices 100B and 100C (step S206).
  • the base station devices 100B and 100C determine whether or not to accept the setting of the guarantee resource (step S208). That is, the base station devices 100B and 100C determine whether to grant the usage restriction imposed on each of the security resources set by the base station device 100A. Then, the base station devices 100B and 100C transmit, to the base station device 100A, a response indicating the determination result as to whether or not the guarantee resource setting is accepted (step S210).
  • the base station apparatus 100A transmits / receives a signal / information with high priority using the set guarantee resource, when a response indicating acceptance of the guarantee resource setting is obtained from both of the base station apparatuses 100B and 100C. .
  • the base station device 100A receives a response from the at least one of the base station device 100B or 100C to refuse the setting of the guarantee resource, the base station device 100A does not preferentially use the guarantee resource.
  • the guarantee resource may be set again when the first base station apparatus 100 fails to use the guarantee resource.
  • the failure here includes a negotiation failure in the negotiation after setting of the guarantee resource described above (that is, when a response indicating refusal to set the guarantee resource is obtained).
  • Another example of failure is when interference from another radio access technology (RAT) such as Wi-Fi (registered trademark) makes it difficult to use a set guarantee resource.
  • the guarantee resource may be reset according to the degree of congestion of the channel.
  • the congestion degree of the channel can be measured by the base station apparatus 100 or the terminal apparatus 200.
  • the guarantee resource may be reset periodically (periodically).
  • the reset period may be preset in the base station apparatus 100, may be determined by negotiation between the base station apparatuses 100, or may be uniquely determined by a predetermined base station apparatus 100.
  • the cycle may be determined according to the change in communication environment such as the degree of congestion of the channel or the movement of the base station apparatus 100.
  • the first to fourth setting formats described above may be combined as appropriate.
  • the first base station apparatus 100 dynamically sets the guarantee resource at the timing when the signal / information with high priority is generated. Furthermore, the first base station apparatus 100 may reset the guarantee resource when the use of the guarantee resource fails.
  • the position, period, and / or ratio of the guarantee resource may be changed.
  • the case where a predetermined change in environment occurs includes, for example, the case where a new base station apparatus 100 is discovered. As a result, it becomes easy to adjust the resource allocation amount each time for the base station apparatus 100 installed in the middle of operation, and fairness is secured.
  • Types of security resources There may be multiple types of security resources.
  • the setting information of the guarantee resource includes information indicating the type of the guarantee resource.
  • a plurality of types of guarantee resources can be set according to the use form of the guarantee resource.
  • the type of security resource may correspond to the signal to be transmitted and received.
  • the guarantee resource may have a first type and a second type in which signals transmitted and received using the guarantee resource are different.
  • the first base station apparatus 100 transmits and receives control signals / control information using the first type of guarantee resource.
  • the control signal / control information to be transmitted / received is a signal / information belonging to the control signal / control information among the signals / information with high priority.
  • Such signals / information may include signals necessary for connection, such as synchronization signals, random access channels, paging, system information and reference signals.
  • the first base station apparatus 100 transmits and receives data signal / data information using the second type of guarantee resource.
  • the data signal to be transmitted / received is a signal / information belonging to a data signal among signals / information having high priority.
  • Such signals / information may include data signals that require low delay.
  • the type of guarantee resource may correspond to the access procedure to the guarantee resource permitted for the second base station apparatus 100.
  • the guaranteed resources may have third and fourth types in which access procedures (ie, channel access procedures) to the guaranteed resources permitted to the second base station apparatus 100 are different.
  • the second base station apparatus 100 releases the third type of guarantee resource and does not use it thereafter. In other words, the second base station apparatus 100 does not have a means for using the third type of guarantee resource.
  • the second base station apparatus 100 releases the fourth type of guarantee resource, and then uses it after performing carrier sense.
  • the use of the appropriate guarantee resource of the first base station apparatus 100 and the second base station apparatus 100 can be performed. To be realized.
  • the first base station apparatus 100 determines the measurement result of the signal from the second base station apparatus 100 in the terminal apparatus 200 that communicates with the first base station apparatus 100. Based on the security resources may be set. Specifically, the terminal device 200 (for example, the measurement report unit 241) measures a signal (for example, a measurement signal such as a DS (Discovery Signal) or a CSI-RS (Channel State Information Reference Signal)) for each operator. For example, the terminal device 200 that communicates (ie, connects) with the first base station device 100 measures a signal from the second base station device 100.
  • a signal for example, a measurement signal such as a DS (Discovery Signal) or a CSI-RS (Channel State Information Reference Signal)
  • RRM Radio Resource Management
  • RSRP Reference Signal Received Power
  • RSRQ Reference Signal Received Quality
  • RSSI Receiveived Signal Strength Indicator
  • CSI measurement CSI measurement
  • the measurement signal includes identification information (for example, an operator ID) for identifying the second base station apparatus 100 of the transmission source, and the terminal device 200 identifies the signal for each operator based on the identification information.
  • the terminal device 200 reports the measurement result to the first base station device 100 to which the terminal device 200 is connected.
  • the first base station apparatus 100 sets a guarantee resource based on the received measurement report. Thereby, the first base station apparatus 100 can set the guarantee resource according to the interference from the second base station apparatus 100 at the position of the terminal apparatus 200.
  • FIG. 9 is a sequence diagram for explaining an example of the process of setting a guarantee resource based on a measurement report performed in the system 1 according to the present embodiment.
  • the base station apparatuses 100A, 100B and 100C and the terminal apparatus 200 are involved in this sequence.
  • the base station device 100A is the first base station device 100
  • the base station devices 100B and 100C are the second base station device 100. Operators operating each of the base station apparatuses 100A, 100B and 100C are assumed to be different. Further, it is assumed that the terminal device 200 is connected to the base station device 100A.
  • the base station apparatus 100A and the terminal apparatus 200 are already connected and perform communication (step S302).
  • the base station devices 100B and 100C transmit measurement signals (step S304).
  • the terminal device 200 performs measurement based on these measurement signals (step S306).
  • the terminal device 200 identifies the base station devices 100B and 100C that are transmission sources of the measurement signal based on the operator ID included in the measurement signal, and performs measurement on each of the base station devices 100B and 100C.
  • the terminal device 200 transmits a measurement report including the measurement result to the base station device 100A (step S308).
  • the base station device 100A sets a guarantee resource based on the received measurement report (step S310).
  • the first base station apparatus 100 and the second base station apparatus 100 may perform frame synchronization and / or time synchronization.
  • the first base station apparatus 100 and the second base station apparatus 100 can transmit and receive signals with the terminal apparatus 200 at the same timing. Therefore, the first base station apparatus 100 and the second base station apparatus 100 can perform highly coordinated cooperation between different operators. Examples of advanced collaboration include inter-cell interference coordination (ICIC) and coordinated multi-point transmission and reception (CoMP).
  • IOC inter-cell interference coordination
  • CoMP coordinated multi-point transmission and reception
  • first base station apparatus 100 and the second base station apparatus 100 can cooperate to perform LBT.
  • the first base station apparatus 100 and the second base station apparatus 100 can transmit and receive signals at the same timing by adjusting the end timing of the LBT to be the same. This improves spatial resources and improves cell throughput per unit density.
  • shared information information other than information on guaranteed resources may be shared. That is, information other than the information related to the guarantee resource may be shared between different operators. An example of such information is described below.
  • Type of terminal device 200 type of QoS of packet and / or amount of traffic
  • type of QoS of packet and / or amount of traffic may be shared among different operators.
  • the traffic volume for each use case of eMBB / URLLC / mMTC may be shared.
  • traffic volume per QCI may be shared.
  • QCI is an index representing each QoS parameter of bandwidth guarantee / not bandwidth guarantee (GBR / non-GBR), priority, and estimated delay time.
  • QCI is added to each packet.
  • QCI is defined for the service assumed.
  • the base station apparatus 100 performs scheduling based on the QoS parameter associated with this QCI.
  • An example of the QCI-QoS parameter correspondence table is shown in Table 3.
  • Processing Capacity of Base Station Apparatus 100 The processing capacity of the base station apparatus 100 may be shared among different operators.
  • capability information of the base station apparatus 100 can be shared among different operators.
  • Examples of the capability information of the base station apparatus 100 include interference canceller capability, information on a base station antenna, the number of antennas, and information indicating a beam width and directivity.
  • the communication environment around the base station apparatus 100 may be shared among different operators.
  • measurement reports received from the terminal device 200 connected to the base station device 100 may be shared among different operators.
  • the base station apparatus 100 can also collect measurement reports by terminal apparatuses 200 of different operators. Therefore, the base station apparatus 100 can schedule radio resources more efficiently.
  • location information of the base station apparatus 100 may also be shared. Thus, base station apparatus 100 can more accurately recognize the surrounding communication environment.
  • Time stamp Information on time for performing time synchronization (time stamp) may be shared among different operators.
  • the information indicating the time stamp may be information indicating an absolute time, or may be information indicating a reference time.
  • Parameters for LBT may be shared among different operators.
  • the parameters related to LBT include, for example, maximum transmission power of base station apparatus 100, maximum antenna gain, maximum beamforming gain, collision window, and random backoff counter value.
  • a part of RRC setting set to the base station apparatus 100 may be shared between different operators.
  • part of RRC configuration set in the base station apparatus 100 is shared among different operators.
  • a cell ID Physical Cell ID
  • a resource set to a physical channel / signal, and the like can be mentioned. This facilitates cell design and radio resource management for different operators.
  • RRC settings RACH resources, RACH index, etc.
  • handover cell connection switching between base stations of different operators.
  • V2X Vehicle to Vehicle communication
  • V2I Road to Vehicle Communication
  • V2N Vehicle to Network
  • ITS band frequency band of 5.85 to 5.925 GHz
  • a given car-type terminal sets security resources and notifies surrounding car-type terminals of security resources to reduce interference with emergency (safety) messages such as emergency stop signals, steering assist signals, and autopilot signals. be able to.
  • the base station apparatus 100 may be realized as an eNB (evolved Node B) of any type, such as a macro eNB or a small eNB.
  • the small eNB may be an eNB that covers a cell smaller than a macro cell, such as a pico eNB, a micro eNB, or a home (femto) eNB.
  • the base station apparatus 100 may be realized as another type of base station such as a Node B or a BTS (Base Transceiver Station).
  • the base station apparatus 100 may include a main body (also referred to as a base station apparatus) that controls wireless communication, and one or more RRHs (Remote Radio Heads) disposed at a location different from the main body.
  • RRHs Remote Radio Heads
  • various types of terminals described later may operate as the base station apparatus 100 by temporarily or semipermanently executing the base station function.
  • the terminal device 200 may be a smartphone, a tablet PC (Personal Computer), a notebook PC, a portable game terminal, a mobile terminal such as a mobile / dongle type mobile router or a digital camera, or an on-vehicle terminal such as a car navigation device. May be realized as The terminal device 200 may be realized as a terminal (also referred to as a machine type communication (MTC) terminal) that performs M2M (Machine To Machine) communication. Furthermore, the terminal device 200 may be a wireless communication module (for example, an integrated circuit module configured with one die) mounted on these terminals.
  • MTC machine type communication
  • M2M Machine To Machine
  • FIG. 10 is a block diagram illustrating a first example of a schematic configuration of an eNB to which the technology of the present disclosure may be applied.
  • the eNB 800 has one or more antennas 810 and a base station apparatus 820. Each antenna 810 and the base station apparatus 820 may be connected to each other via an RF cable.
  • Each of the antennas 810 has a single or a plurality of antenna elements (for example, a plurality of antenna elements constituting a MIMO antenna), and is used for transmission and reception of radio signals by the base station apparatus 820.
  • the eNB 800 may have a plurality of antennas 810 as shown in FIG. 10, and the plurality of antennas 810 may correspond to, for example, a plurality of frequency bands used by the eNB 800.
  • FIG. 10 shows an example in which the eNB 800 has a plurality of antennas 810, the eNB 800 may have a single antenna 810.
  • the base station apparatus 820 includes a controller 821, a memory 822, a network interface 823 and a wireless communication interface 825.
  • the controller 821 may be, for example, a CPU or a DSP, and operates various functions of the upper layer of the base station device 820. For example, the controller 821 generates a data packet from data in the signal processed by the wireless communication interface 825, and transfers the generated packet through the network interface 823. The controller 821 may generate a bundled packet by bundling data from a plurality of baseband processors and transfer the generated bundled packet. Also, the controller 821 is a logic that executes control such as radio resource management (Radio Resource Control), radio bearer control (Radio Bearer Control), mobility management (Mobility Management), admission control (Admission Control), scheduling (Scheduling), etc. Function may be provided.
  • Radio Resource Control Radio Resource Control
  • Radio Bearer Control Radio Bearer Control
  • Mobility Management Mobility Management
  • Admission control Admission Control
  • scheduling scheduling
  • the control may be performed in cooperation with neighboring eNBs or core network nodes.
  • the memory 822 includes a RAM and a ROM, and stores programs executed by the controller 821 and various control data (eg, terminal list, transmission power data, scheduling data, etc.).
  • the network interface 823 is a communication interface for connecting the base station device 820 to the core network 824.
  • the controller 821 may communicate with core network nodes or other eNBs via the network interface 823.
  • the eNB 800 and the core network node or another eNB may be connected to each other by a logical interface (for example, an S1 interface or an X2 interface).
  • the network interface 823 may be a wired communication interface or a wireless communication interface for a wireless backhaul.
  • the network interface 823 may use a higher frequency band for wireless communication than the frequency band used by the wireless communication interface 825.
  • the wireless communication interface 825 supports any cellular communication scheme such as LTE (Long Term Evolution) or LTE-Advanced, and provides a wireless connection to a terminal located in the cell of the eNB 800 via the antenna 810.
  • the wireless communication interface 825 may typically include a baseband (BB) processor 826 and RF circuitry 827 and the like.
  • the BB processor 826 may perform, for example, coding / decoding, modulation / demodulation, multiplexing / demultiplexing, etc., and each layer (eg, L1, medium access control (MAC), radio link control (RLC), and PDCP). Perform various signal processing (Packet Data Convergence Protocol).
  • the BB processor 826 may have some or all of the logical functions described above instead of the controller 821.
  • the BB processor 826 may be a memory that stores a communication control program, a processor that executes the program, and a module including related circuits, and the function of the BB processor 826 can be changed by updating the program. Good.
  • the module may be a card or a blade inserted into a slot of the base station apparatus 820, or may be a chip mounted on the card or the blade.
  • the RF circuit 827 may include a mixer, a filter, an amplifier, and the like, and transmits and receives a wireless signal through the antenna 810.
  • the wireless communication interface 825 may include a plurality of BB processors 826 as illustrated in FIG. 10, and the plurality of BB processors 826 may correspond to, for example, a plurality of frequency bands used by the eNB 800.
  • the wireless communication interface 825 may include a plurality of RF circuits 827 as illustrated in FIG. 10, and the plurality of RF circuits 827 may correspond to, for example, a plurality of antenna elements.
  • FIG. 10 shows an example in which the wireless communication interface 825 includes a plurality of BB processors 826 and a plurality of RF circuits 827, the wireless communication interface 825 includes a single BB processor 826 or a single RF circuit 827. May be.
  • the eNB 800 illustrated in FIG. 10 one or more components (the setting unit 151 and / or the communication processing unit 153) included in the control unit 150 described with reference to FIG. 3 are implemented in the wireless communication interface 825 It is also good. Alternatively, at least a part of these components may be implemented in the controller 821. As one example, the eNB 800 may be equipped with a module including a part (for example, the BB processor 826) or all of the wireless communication interface 825 and / or the controller 821 and one or more components may be implemented in the module. Good. In this case, the module stores a program for causing the processor to function as the one or more components (in other words, a program for causing the processor to execute the operation of the one or more components).
  • the module stores a program for causing the processor to function as the one or more components (in other words, a program for causing the processor to execute the operation of the one or more components).
  • a program for causing a processor to function as the one or more components may be installed in the eNB 800, and the wireless communication interface 825 (for example, the BB processor 826) and / or the controller 821 may execute the program.
  • the eNB 800, the base station apparatus 820 or the module may be provided as an apparatus including the one or more components, and a program for causing a processor to function as the one or more components is provided. May be Moreover, the readable recording medium which recorded the said program may be provided.
  • the wireless communication unit 120 described with reference to FIG. 3 may be implemented in the wireless communication interface 825 (for example, the RF circuit 827).
  • the antenna unit 110 may be mounted on the antenna 810.
  • the network communication unit 130 may be implemented in the controller 821 and / or the network interface 823.
  • the storage unit 140 may be implemented in the memory 822.
  • FIG. 11 is a block diagram illustrating a second example of a schematic configuration of an eNB to which the technology of the present disclosure may be applied.
  • the eNB 830 includes one or more antennas 840, a base station device 850, and an RRH 860. Each antenna 840 and RRH 860 may be connected to each other via an RF cable. Also, the base station device 850 and the RRH 860 may be connected to each other by a high speed line such as an optical fiber cable.
  • Each of the antennas 840 has a single or a plurality of antenna elements (for example, a plurality of antenna elements constituting a MIMO antenna), and is used for transmission and reception of radio signals by the RRH 860.
  • the eNB 830 may have a plurality of antennas 840 as shown in FIG. 11, and the plurality of antennas 840 may correspond to, for example, a plurality of frequency bands used by the eNB 830. Note that although FIG. 11 illustrates an example in which the eNB 830 has a plurality of antennas 840, the eNB 830 may have a single antenna 840.
  • the base station device 850 includes a controller 851, a memory 852, a network interface 853, a wireless communication interface 855, and a connection interface 857.
  • the controller 851, the memory 852 and the network interface 853 are similar to the controller 821, the memory 822 and the network interface 823 described with reference to FIG.
  • the wireless communication interface 855 supports any cellular communication scheme such as LTE or LTE-Advanced, and provides a wireless connection to terminals located in a sector corresponding to the RRH 860 via the RRH 860 and the antenna 840.
  • the wireless communication interface 855 may typically include a BB processor 856 or the like.
  • the BB processor 856 is similar to the BB processor 826 described with reference to FIG. 10 except that it is connected to the RF circuit 864 of the RRH 860 via the connection interface 857.
  • the wireless communication interface 855 includes a plurality of BB processors 856 as shown in FIG. 11, and the plurality of BB processors 856 may correspond to, for example, a plurality of frequency bands used by the eNB 830.
  • FIG. 11 shows an example in which the wireless communication interface 855 includes a plurality of BB processors 856, the wireless communication interface 855 may include a single BB processor 856.
  • connection interface 857 is an interface for connecting the base station device 850 (wireless communication interface 855) to the RRH 860.
  • the connection interface 857 may be a communication module for communication on the high-speed line that connects the base station device 850 (wireless communication interface 855) and the RRH 860.
  • the RRH 860 also includes a connection interface 861 and a wireless communication interface 863.
  • connection interface 861 is an interface for connecting the RRH 860 (wireless communication interface 863) to the base station device 850.
  • the connection interface 861 may be a communication module for communication on the high speed line.
  • the wireless communication interface 863 transmits and receives a wireless signal via the antenna 840.
  • the wireless communication interface 863 may typically include an RF circuit 864 and the like.
  • the RF circuit 864 may include a mixer, a filter, an amplifier, and the like, and transmits and receives wireless signals via the antenna 840.
  • the wireless communication interface 863 may include a plurality of RF circuits 864 as illustrated in FIG. 11, and the plurality of RF circuits 864 may correspond to, for example, a plurality of antenna elements.
  • FIG. 11 shows an example in which the wireless communication interface 863 includes a plurality of RF circuits 864, the wireless communication interface 863 may include a single RF circuit 864.
  • one or more components (setting unit 151 and / or communication processing unit 153) included in control unit 150 described with reference to FIG. 3 are wireless communication interface 855 and / or wireless It may be implemented in the communication interface 863. Alternatively, at least a part of these components may be implemented in the controller 851. As one example, the eNB 830 mounts a module including a part (for example, the BB processor 856) or all of the wireless communication interface 855 and / or the controller 851, and one or more components may be implemented in the module Good. In this case, the module stores a program for causing the processor to function as the one or more components (in other words, a program for causing the processor to execute the operation of the one or more components).
  • a program for causing a processor to function as the one or more components may be installed in the eNB 830, and the wireless communication interface 855 (for example, the BB processor 856) and / or the controller 851 may execute the program.
  • the eNB 830, the base station device 850, or the module may be provided as an apparatus including the one or more components, and a program for causing a processor to function as the one or more components is provided. May be Moreover, the readable recording medium which recorded the said program may be provided.
  • the wireless communication unit 120 described with reference to FIG. 3 may be implemented in the wireless communication interface 863 (for example, the RF circuit 864).
  • the antenna unit 110 may be mounted on the antenna 840.
  • the network communication unit 130 may be implemented in the controller 851 and / or the network interface 853.
  • the storage unit 140 may be implemented in the memory 852.
  • FIG. 12 is a block diagram showing an example of a schematic configuration of a smartphone 900 to which the technology according to the present disclosure can be applied.
  • the smartphone 900 includes a processor 901, a memory 902, a storage 903, an external connection interface 904, a camera 906, a sensor 907, a microphone 908, an input device 909, a display device 910, a speaker 911, a wireless communication interface 912, one or more antenna switches 915 , One or more antennas 916, a bus 917, a battery 918 and an auxiliary controller 919.
  • the processor 901 may be, for example, a CPU or a SoC (System on Chip), and controls functions of an application layer and other layers of the smartphone 900.
  • the memory 902 includes a RAM and a ROM, and stores programs and data to be executed by the processor 901.
  • the storage 903 may include a storage medium such as a semiconductor memory or a hard disk.
  • the external connection interface 904 is an interface for connecting an external device such as a memory card or a USB (Universal Serial Bus) device to the smartphone 900.
  • the camera 906 includes an imaging element such as, for example, a charge coupled device (CCD) or a complementary metal oxide semiconductor (CMOS), and generates a captured image.
  • the sensor 907 may include, for example, a sensor group such as a positioning sensor, a gyro sensor, a geomagnetic sensor, and an acceleration sensor.
  • the microphone 908 converts audio input to the smartphone 900 into an audio signal.
  • the input device 909 includes, for example, a touch sensor that detects a touch on the screen of the display device 910, a keypad, a keyboard, a button, a switch, or the like, and receives an operation or information input from the user.
  • the display device 910 has a screen such as a liquid crystal display (LCD) or an organic light emitting diode (OLED) display, and displays an output image of the smartphone 900.
  • the speaker 911 converts an audio signal output from the smartphone 900 into an audio.
  • the wireless communication interface 912 supports any cellular communication scheme such as LTE or LTE-Advanced to perform wireless communication.
  • the wireless communication interface 912 may typically include a BB processor 913, an RF circuit 914, and the like.
  • the BB processor 913 may perform, for example, encoding / decoding, modulation / demodulation, multiplexing / demultiplexing, etc., and perform various signal processing for wireless communication.
  • the RF circuit 914 may include a mixer, a filter, an amplifier, and the like, and transmits and receives a wireless signal through the antenna 916.
  • the wireless communication interface 912 may be a one-chip module in which the BB processor 913 and the RF circuit 914 are integrated.
  • the wireless communication interface 912 may include a plurality of BB processors 913 and a plurality of RF circuits 914 as shown in FIG. Although FIG. 12 shows an example in which the wireless communication interface 912 includes a plurality of BB processors 913 and a plurality of RF circuits 914, the wireless communication interface 912 includes a single BB processor 913 or a single RF circuit 914. May be.
  • the wireless communication interface 912 may support other types of wireless communication systems, such as a near field communication system, a near field communication system, or a wireless local area network (LAN) system.
  • a BB processor 913 and an RF circuit 914 for each wireless communication scheme may be included.
  • Each of the antenna switches 915 switches the connection destination of the antenna 916 among a plurality of circuits (for example, circuits for different wireless communication systems) included in the wireless communication interface 912.
  • Each of the antennas 916 has a single or a plurality of antenna elements (for example, a plurality of antenna elements constituting a MIMO antenna), and is used for transmission and reception of a wireless signal by the wireless communication interface 912.
  • the smartphone 900 may have a plurality of antennas 916 as shown in FIG. Although FIG. 12 shows an example in which the smartphone 900 has a plurality of antennas 916, the smartphone 900 may have a single antenna 916.
  • the smartphone 900 may include an antenna 916 for each wireless communication scheme.
  • the antenna switch 915 may be omitted from the configuration of the smartphone 900.
  • the bus 917 connects the processor 901, the memory 902, the storage 903, the external connection interface 904, the camera 906, the sensor 907, the microphone 908, the input device 909, the display device 910, the speaker 911, the wireless communication interface 912 and the auxiliary controller 919 to one another.
  • the battery 918 supplies power to each block of the smartphone 900 shown in FIG. 12 through a feed line partially shown by a broken line in the figure.
  • the auxiliary controller 919 operates minimum necessary functions of the smartphone 900, for example, in the sleep mode.
  • the smartphone 900 illustrated in FIG. 12 one or more components (the measurement report unit 241 and / or the communication processing unit 243) included in the control unit 240 described with reference to FIG. It may be done. Alternatively, at least part of these components may be implemented in the processor 901 or the auxiliary controller 919.
  • the smartphone 900 incorporates a module including a part (for example, the BB processor 913) or all of the wireless communication interface 912, the processor 901, and / or the auxiliary controller 919, and the one or more components in the module May be implemented.
  • the module stores a program for causing the processor to function as the one or more components (in other words, a program for causing the processor to execute the operation of the one or more components).
  • a program for causing a processor to function as the one or more components is installed in the smartphone 900, and the wireless communication interface 912 (for example, the BB processor 913), the processor 901, and / or the auxiliary controller 919 You may run the program.
  • the smartphone 900 or the module may be provided as a device including the one or more components, and a program for causing a processor to function as the one or more components may be provided.
  • the readable recording medium which recorded the said program may be provided.
  • the wireless communication unit 220 described with reference to FIG. 4 may be implemented in the wireless communication interface 912 (for example, the RF circuit 914).
  • the antenna unit 210 may be implemented in the antenna 916.
  • the storage unit 230 may be implemented in the memory 902.
  • FIG. 13 is a block diagram showing an example of a schematic configuration of a car navigation device 920 to which the technology according to the present disclosure can be applied.
  • the car navigation device 920 includes a processor 921, a memory 922, a GPS (Global Positioning System) module 924, a sensor 925, a data interface 926, a content player 927, a storage medium interface 928, an input device 929, a display device 930, a speaker 931, wireless communication.
  • An interface 933, one or more antenna switches 936, one or more antennas 937 and a battery 938 are provided.
  • the processor 921 may be, for example, a CPU or an SoC, and controls the navigation function and other functions of the car navigation device 920.
  • the memory 922 includes a RAM and a ROM, and stores programs and data to be executed by the processor 921.
  • the GPS module 924 uses GPS signals received from GPS satellites to measure the location (eg, latitude, longitude and altitude) of the car navigation device 920.
  • the sensor 925 may include, for example, a sensor group such as a gyro sensor, a geomagnetic sensor, and an air pressure sensor.
  • the data interface 926 is connected to the in-vehicle network 941 via, for example, a terminal (not shown), and acquires data generated on the vehicle side, such as vehicle speed data.
  • Content player 927 plays content stored on a storage medium (eg, CD or DVD) inserted into storage medium interface 928.
  • the input device 929 includes, for example, a touch sensor, a button, or a switch that detects a touch on the screen of the display device 930, and receives an operation or an information input from a user.
  • the display device 930 has a screen such as an LCD or an OLED display, and displays an image of the navigation function or the content to be reproduced.
  • the speaker 931 outputs the sound of the navigation function or the content to be reproduced.
  • the wireless communication interface 933 supports any cellular communication scheme such as LTE or LTE-Advanced, and performs wireless communication.
  • the wireless communication interface 933 may typically include a BB processor 934, an RF circuit 935, and the like.
  • BB processor 934 may perform, for example, encoding / decoding, modulation / demodulation, multiplexing / demultiplexing, etc., and perform various signal processing for wireless communications.
  • the RF circuit 935 may include a mixer, a filter, an amplifier, and the like, and transmits and receives a wireless signal through the antenna 937.
  • the wireless communication interface 933 may be a one-chip module in which the BB processor 934 and the RF circuit 935 are integrated.
  • the wireless communication interface 933 may include a plurality of BB processors 934 and a plurality of RF circuits 935 as shown in FIG. Although FIG. 13 shows an example in which the wireless communication interface 933 includes a plurality of BB processors 934 and a plurality of RF circuits 935, the wireless communication interface 933 includes a single BB processor 934 or a single RF circuit 935. May be.
  • the wireless communication interface 933 may support other types of wireless communication systems such as a short distance wireless communication system, a close proximity wireless communication system, or a wireless LAN system, in which case A BB processor 934 and an RF circuit 935 for each communication scheme may be included.
  • Each of the antenna switches 936 switches the connection destination of the antenna 937 among a plurality of circuits (for example, circuits for different wireless communication systems) included in the wireless communication interface 933.
  • Each of the antennas 937 has a single or a plurality of antenna elements (for example, a plurality of antenna elements constituting a MIMO antenna), and is used for transmission and reception of a wireless signal by the wireless communication interface 933.
  • the car navigation device 920 may have a plurality of antennas 937 as shown in FIG. Although FIG. 13 shows an example in which the car navigation device 920 has a plurality of antennas 937, the car navigation device 920 may have a single antenna 937.
  • the car navigation device 920 may include an antenna 937 for each wireless communication scheme.
  • the antenna switch 936 may be omitted from the configuration of the car navigation device 920.
  • the battery 938 supplies power to each block of the car navigation device 920 shown in FIG. 13 via a feed line partially shown by a broken line in the figure.
  • the battery 938 also stores power supplied from the vehicle side.
  • the car navigation device 920 incorporates a module including a part (for example, the BB processor 934) or all of the wireless communication interface 933 and / or the processor 921 in which one or more components are implemented. May be In this case, the module stores a program for causing the processor to function as the one or more components (in other words, a program for causing the processor to execute the operation of the one or more components). You may run the program.
  • a program for causing the processor to function as the one or more components is installed in the car navigation device 920, and the wireless communication interface 933 (for example, the BB processor 934) and / or the processor 921 executes the program.
  • the car navigation device 920 or the module may be provided as a device including the one or more components, and a program for causing a processor to function as the one or more components may be provided. Good.
  • the readable recording medium which recorded the said program may be provided.
  • the wireless communication unit 220 described with reference to FIG. Z may be implemented in the wireless communication interface 933 (for example, the RF circuit 935).
  • the antenna unit 210 may be mounted on the antenna 937.
  • the storage unit 230 may be implemented in the memory 922.
  • the technology according to the present disclosure may be realized as an on-board system (or vehicle) 940 including one or more blocks of the car navigation device 920 described above, an on-board network 941, and a vehicle-side module 942.
  • the vehicle-side module 942 generates vehicle-side data such as a vehicle speed, an engine speed, or failure information, and outputs the generated data to the in-vehicle network 941.
  • the base station apparatus 100 can share the radios that can be shared among these operators with another base station apparatus 100 operated by an operator different from the operator who operates the base station apparatus 100.
  • the base station apparatus 100 transmits setting information of guaranteed resources which can be preferentially used.
  • the other base station apparatus 100 restricts the use of the guarantee resource.
  • the base station apparatus 100 can preferentially use the guarantee resource. In this way, a plurality of base station apparatuses operated by different operators can share radio resources while cooperating.
  • a base station device The radio resource that can be shared between the first operator and the second operator to another base station device operated by a second operator different from the first operator who operates the base station device Among them, a control unit that transmits the first setting information of the first guarantee resource that can be used preferentially by the base station apparatus,
  • a base station apparatus comprising: (2) The base according to (1), wherein the first setting information includes at least one of a time and a frequency of the first guarantee resource, and information indicating a place where the setting of the first guarantee resource is valid. Station equipment.
  • the first setting information includes information indicating the type of the first guarantee resource, corresponding to a signal transmitted and received using the first guarantee resource.
  • Base station device. (4)
  • the first setting information includes information indicating a type of the first guarantee resource corresponding to an access procedure to the first guarantee resource permitted to the other base station apparatus.
  • the base station apparatus according to any one of (3) to (3).
  • the control unit includes the first setting information in a radio signal and transmits the radio signal to the other base station apparatus.
  • the control unit sets the first guarantee resource and generates the first setting information.
  • the control unit is configured to, based on a response from the other base station apparatus, indicating whether or not the base station apparatus consents to preferentially use the first guarantee resource.
  • the base station apparatus according to any one of (1) to (7), which controls transmission and reception of a signal in a resource.
  • the control unit receives, from the other base station apparatus, second setting information of a second guaranteed resource that can be preferentially used by the other base station apparatus among the radio resources, and receives the second setting information.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

【課題】互いに異なるオペレータにより運用される複数の基地局装置が協調しながら無線リソースを共用することが可能な仕組みを提供する。 【解決手段】基地局装置であって、前記基地局装置を運用するオペレータとは異なるオペレータにより運用される他の基地局装置に、前記基地局装置を運用するオペレータと前記他の基地局装置を運用するオペレータとの間で共用可能な無線リソースのうち前記基地局装置が優先的に利用可能な第1の保障リソースの第1の設定情報を送信する制御部、を備える基地局装置。

Description

基地局装置、端末装置及び方法
 本開示は、基地局装置、端末装置及び方法に関する。
 セルラー移動通信の無線アクセス方式及び無線ネットワーク(以下、「Long Term Evolution(LTE)」、「LTE-Advanced(LTE-A)」、「LTE-Advanced Pro(LTE-A Pro)」、「New Radio(NR)」、「New Radio Access Technology(NRAT)」、「5G」「Evolved Universal Terrestrial Radio Access(EUTRA)」、または「Further EUTRA(FEUTRA)」とも称する。)が、第三世代パートナーシッププロジェクト(3rd Generation Partnership Project: 3GPP)において検討されている。なお、以下の説明において、LTEは、LTE-A、LTE-A Pro、及びEUTRAを含み、NRは、NRAT、及びFEUTRAを含む。LTEでは基地局装置(基地局)はeNodeB(evolved NodeB)、NRでは基地局装置(基地局)はgNodeB、LTE及びNRでは端末装置(移動局、移動局装置、端末)はUE(User Equipment)とも称する。LTE及びNRは、基地局装置がカバーするエリアをセル状に複数配置するセルラー通信システムである。単一の基地局装置は複数のセルを管理してもよい。
 NRは、LTEに対する次世代の無線アクセス方式であり、LTEとは異なるRAT(Radio Access Technology)である。NRは、eMBB(Enhanced mobile broadband)、mMTC(Massive machine type communications)及びURLLC(Ultra reliable and low latency communications)を含む様々なユースケースに対応できるアクセス技術である。NRは、それらのユースケースにおける利用シナリオ、要求条件、及び配置シナリオなどに対応する技術フレームワークを目指して検討される。
 免許不要帯域(unlicensed band)及びライセンス共用帯域(license shared band)において、セルラー通信を基とした無線アクセス方式の運用が検討されている。そのような免許不要帯域において他のノードや無線システムとの共存が重要とされており、LTE及びNRなどの無線アクセス方式に対して、送信する前にチャネルのセンシングを行うLBT(Listen Before Talk)や断続的送信(discontinuous transmission)などの機能が要求されている。アンライセンスバンドにおけるNRを基にした無線アクセス方式の詳細は、非特許文献1に開示されている。なお、アンライセンスバンドは、例えば、2.4GHz帯、5GHz帯、及び6GHz帯である。ライセンス共用バンドは、例えば、3.5GHz帯や37GHz帯である。
 一般的に、アンライセンスバンド及びライセンス共用バンド等の、異なるオペレータが共用するスペクトラムにおいては、送信機会の公平性を保つために、LBT(Listen before talk)と呼ばれるコンセプトに従って送信が行われる。オペレータとは、移動体通信を行う回線網を有し、移動体通信サービスを提供する通信事業者である。LBTによれば、送信装置は、送信前にキャリアセンスを行い、チャネルがアイドルであることを確認し、チャネルアクセス権を獲得した上で送信を行う。チャネル公平性の観点から、送信装置は、送信対象のデータが発生したときにチャネルを確保し、一定期間の送信が終わったらチャネルを開放する場合が多い。
RP-172021, "Study on NR-based Access to Unlicensed Spectrum," 3GPP TSG RAN Meeting #77, Sapporo, Japan, September 11 - 14, 2017.
 互いに異なるオペレータにより運用される複数の基地局装置が、それぞれ独立に動作して無線リソース(周波数リソース及び時間リソース)を共用する場合、上述したLBTの枠組みでは適切に周波数を共用することが困難になり得る。
 そこで、互いに異なるオペレータにより運用される複数の基地局装置が協調しながら無線リソースを共用することが可能な仕組みを提供する。
 本開示によれば、基地局装置であって、前記基地局装置を運用する第1のオペレータとは異なる第2のオペレータにより運用される他の基地局装置に、前記第1のオペレータと前記第2のオペレータとの間で共用可能な無線リソースのうち前記基地局装置が優先的に利用可能な第1の保障リソースの第1の設定情報を送信する制御部、を備える基地局装置が提供される。
 また、本開示によれば、第1のオペレータと前記第1のオペレータとは異なる第2のオペレータとの間で共用可能な無線リソースを用いて、前記第1のオペレータにより運用される基地局装置と通信し、前記第2のオペレータにより運用される他の基地局装置からの信号の測定結果を前記基地局装置に報告する制御部、を備える端末装置が提供される。
 また、本開示によれば、基地局装置により実行される方法であって、前記基地局装置を運用する第1のオペレータとは異なる第2のオペレータにより運用される他の基地局装置に、前記第1のオペレータと前記第2のオペレータとの間で共用可能な無線リソースのうち前記基地局装置が優先的に利用可能な第1の保障リソースの第1の設定情報を送信すること、を含む方法が提供される。
 以上説明したように本開示によれば、互いに異なるオペレータにより運用される複数の基地局装置が協調しながら無線リソースを共用することが可能な仕組みが提供される。なお、上記の効果は必ずしも限定的なものではなく、上記の効果とともに、または上記の効果に代えて、本明細書に示されたいずれかの効果、または本明細書から把握され得る他の効果が奏されてもよい。
本開示の一実施形態に係るシステムの全体構成の一例を示す図である。 本実施形態における自己完結型送信のフレーム構成の一例を示す図である。 本実施形態に係る基地局装置の構成の一例を示すブロック図である。 本実施形態に係る端末装置の構成の一例を示すブロック図である。 本実施形態に係る保障リソースの開放を説明するための図である。 本実施形態に係る保障リソースの設定を説明するための図である。 本実施形態に係るシステムにおいて実行される静的な保障リソースの設定処理の流れの一例を説明するシーケンス図である。 本実施形態に係るシステムにおいて実行される動的な保障リソースの設定処理の流れの一例を説明するシーケンス図である。 本実施形態に係るシステムにおいて実行される測定報告に基づく保障リソースの設定処理の流れの一例を説明するシーケンス図である。 eNBの概略的な構成の第1の例を示すブロック図である。 eNBの概略的な構成の第2の例を示すブロック図である。 スマートフォンの概略的な構成の一例を示すブロック図である。 カーナビゲーション装置の概略的な構成の一例を示すブロック図である。
 以下に添付図面を参照しながら、本開示の好適な実施の形態について詳細に説明する。なお、本明細書及び図面において、実質的に同一の機能構成を有する構成要素については、同一の符号を付することにより重複説明を省略する。
 なお、説明は以下の順序で行うものとする。
  1.はじめに
  2.構成例
  3.技術的特徴
  4.応用例
  5.まとめ
 <<1.はじめに>>
 <1.1.システム構成例>
 図1は、本開示の一実施形態に係るシステム1の全体構成の一例を示す図である。図1に示したように、システム1は、基地局装置100(100A及び100B)、端末装置200(200A及び200B)、コアネットワーク(Core Network)20、及びPDN(Packet Data Network)30を含む。
 基地局装置100は、セル11(11A又は11B)を運用し、セル11の内部に位置する1つ以上の端末装置へ無線サービスを提供する。例えば、基地局装置100Aは、端末装置200Aに無線サービスを提供し、基地局装置100Bは端末装置200Bに無線サービスを提供する。セル11は、例えばLTE又はNR(New Radio)等の任意の無線通信方式に従って運用され得る。基地局装置100は、コアネットワーク20に接続される。コアネットワーク20は、PDN30に接続される。
 コアネットワーク20は、MME(Mobility Management Entity)、S-GW(Serving gateway)、P-GW(PDN gateway)、PCRF(Policy and Charging Rule Function)及びHSS(Home Subscriber Server)を含み得る。若しくは、コアネットワーク20は、これらと同様の機能を有するNRのエンティティを含み得る。MMEは、制御プレーンの信号を取り扱う制御ノードであり、端末装置の移動状態を管理する。S-GWは、ユーザプレーンの信号を取り扱う制御ノードであり、ユーザデータの転送経路を切り替えるゲートウェイ装置である。P-GWは、ユーザプレーンの信号を取り扱う制御ノードであり、コアネットワーク20とPDN30との接続点となるゲートウェイ装置である。PCRFは、ベアラに対するQoS(Quality of Service)等のポリシー及び課金に関する制御を行う制御ノードである。HSSは、加入者データを取り扱い、サービス制御を行う制御ノードである。
 端末装置200は、基地局装置100による制御に基づいて基地局装置100と無線通信する。端末装置200は、いわゆるユーザ端末(User Equipment:UE)であってもよい。例えば、端末装置200は、基地局装置100にアップリンク信号を送信して、基地局装置100からダウンリンク信号を受信する。
 とりわけ、本実施形態では、基地局装置100A及び100Bは、それぞれ異なるオペレータにより運用される。例えば、基地局装置100AはオペレータAにより運用され、基地局装置100BはオペレータBにより運用される。そして、基地局装置100A及び100Bは、各々を運用するオペレータ間で共用可能な無線リソースを共用して、無線通信サービスを提供する。
 <1.2.技術的課題>
 上述したように、互いに異なるオペレータにより運用される複数の基地局装置が、それぞれ独立に動作して周波数を共用する場合、上述したLBTの枠組みでは適切に周波数を共用することが困難になり得る。
 具体的には、互いに異なるオペレータにより運用される複数の基地局装置が、それぞれ独立に動作して周波数を共用する場合、LBTが完了するまで無線リソースの利用が保障されない。そのため、チャネル(即ち、無線リソース)が混雑した環境下では、LBTが完了してチャネルが確保されるまでに時間がかかる。従って、QoS(Quality Of Service)が満たされない、とりわけ遅延要求が満たされない可能性がある。
 QoS(とりわけ、遅延要求)を満たすための対策として、事前にダミー情報を送信してチャネルを確保しておくことが挙げられる。このような対策が採用される場合、事前にチャネルが確保されるので、送信機会が確保されて、QoSが満たされる。しかしながら、ダミー情報を送信することは、周波数の利用効率を低下させるため、避けるべきである。
 <1.3.提案手法の概要>
 そこで、本開示では、上述した技術的課題に鑑み、互いに異なるオペレータにより運用される複数の基地局装置100が協調しながら周波数リソースを共用することが可能な仕組みを提案する。
 本実施形態では、基地局装置100に対し保障リソースが設定される。保障リソースとは、異なるオペレータ間で共用可能な無線リソースのうち、基地局装置100が優先的に利用可能な無線リソース(時間リソースおよび周波数リソース)である。そして、互いに異なるオペレータにより運用される複数の基地局装置100は、保障リソースに関する設定情報を共有する。各々の基地局装置100は、共有された設定情報に基づいて、他のオペレータにより運用される他の基地局装置100に設定された保障リソースの、自身での利用に制限を課す。即ち、あるオペレータの基地局装置100に設定された保障リソースは、他のオペレータの基地局装置100から利用されにくくなる。このような協調により、基地局装置100の、自身に設定された保障リソースにおけるチャネルアクセス権の取得率が向上する。
 <1.4.関連技術>
 以下では、提案手法に関連する技術を説明する。
  <本実施形態におけるNRのフレーム構成>
 NRでは、物理チャネル及び/または物理信号を自己完結型送信(self-contained transmission)によって送信することができる。図2に、本実施形態における自己完結型送信のフレーム構成の一例(A~C)を示す。自己完結型送信では、1つの送受信は、先頭から連続する下りリンク送信、GP、及び連続する下りリンク送信の順番で構成される。連続する下りリンク送信には、少なくとも1つの下りリンク制御情報及びDMRSが含まれる。その下りリンク制御情報は、その連続する下りリンク送信に含まれる下りリンク物理チャネルの受信、またはその連続する上りリンク送信に含まれる上りリンク物理チャネルの送信を指示する。その下りリンク制御情報が下りリンク物理チャネルの受信を指示した場合、端末装置200は、その下りリンク制御情報に基づいてその下りリンク物理チャネルの受信を試みる。そして、端末装置200は、その下りリンク物理チャネルの受信成否(デコード成否)を、GP後に割り当てられる上りリンク送信に含まれる上りリンク制御チャネルによって送信する。一方で、その下りリンク制御情報が上りリンク物理チャネルの送信を指示した場合、その下りリンク制御情報に基づいて送信される上りリンク物理チャネルを上りリンク送信に含めて送信を行う。このように、下りリンク制御情報によって、上りリンクデータの送信と下りリンクデータの送信を柔軟に切り替えることで、上りリンクと下りリンクのトラヒック比率の増減に即座に対応することができる。また、下りリンクの受信成否を直後の上りリンク送信で通知することで、下りリンクの低遅延通信を実現することができる。
 単位スロット時間は、下りリンク送信、GP、または上りリンク送信を定義する最小の時間単位である。単位スロット時間は、下りリンク送信、GP、または上りリンク送信のいずれかのために予約される。単位スロット時間の中に、下りリンク送信と上りリンク送信の両方は含まれない。単位スロット時間は、その単位スロット時間に含まれるDMRSと関連付けられるチャネルの最小送信時間としてもよい。1つの単位スロット時間は、例えば、NRのサンプリング間隔(Ts)またはシンボル長の整数倍で定義される。
 単位フレーム時間は、スケジューリングで指定される最小時間であってもよい。単位フレーム時間は、トランスポートブロックが送信される最小単位であってもよい。単位スロット時間は、その単位スロット時間に含まれるDMRSと関連付けられるチャネルの最大送信時間としてもよい。単位フレーム時間は、端末装置200において上りリンク送信電力を決定する単位時間であってもよい。単位フレーム時間は、サブフレームと称されてもよい。単位フレーム時間には、下りリンク送信のみ、上りリンク送信のみ、上りリンク送信と下りリンク送信の組み合わせの3種類のタイプが存在する。1つの単位フレーム時間は、例えば、NRのサンプリング間隔(Ts)、シンボル長、または単位スロット時間の整数倍で定義される。
 送受信時間は、1つの送受信の時間である。1つの送受信と他の送受信との間は、どの物理チャネル及び物理信号も送信されない時間(ギャップ)で占められる。端末装置200は、異なる送受信間でCSI測定を平均しなくてもよい。送受信時間は、TTIと称されてもよい。1つの送受信時間は、例えば、NRのサンプリング間隔(Ts)、シンボル長、単位スロット時間、または単位フレーム時間の整数倍で定義される。
  <アンライセンスチャネルのチャネルアクセスプロシージャ>
 チャネルアクセス(Channel access, Listen before Talk)プロシージャは、基地局装置または端末装置で送信を行うアンライセンスチャネルにアクセスするために行われる。
 チャネルアクセスプロシージャでは、1回または複数回のチャネルのセンシング(sensing)が行われる。そのセンシングの結果に基づいてそのチャネルがアイドル(idle、unoccupied、available、enable)か、またはビジー(busy、occupied、unavailable、disable)かの判定(空き判定)が行われる。チャネルのセンシングでは、所定の待ち時間におけるチャネルの電力がセンス(sense)される。
 チャネルアクセスプロシージャの待ち時間の一例として、第一の待ち時間(スロット)、第二の待ち時間、及び、第三の待ち時間(延期期間)、第四の待ち時間、が挙げられる。
 スロット(slot)は、チャネルアクセスプロシージャにおける、基地局装置及び端末装置の待ち時間の単位である。スロットは、例えば、9マイクロ秒で定義される。
 第二の待ち時間には、1個のスロットが先頭に挿入されている。第二の待ち時間は、例えば、16マイクロ秒で定義される。
 延期期間(defer period)は、第二の待ち時間とその第二の待ち時間に続く複数個の連続したスロットで構成される。その第二の待ち時間に続く複数個の連続したスロットの個数は、QoSを満たすために用いられる優先クラス(priority class、チャネルアクセス優先クラス)に基づいて決定される。
 第四の待ち時間は、第二の待ち時間とその後に続く1つのスロットによって構成される。
 基地局装置または端末装置は、所定のスロットの期間に所定のチャネルをセンス(sense)する。その基地局装置または端末装置がその所定のスロット期間内の少なくとも4マイクロ秒に対して検出した電力が所定の電力検出閾値よりも小さい場合、その所定のスロットはアイドル(idle)であるとみなされる。一方で、その電力が所定の電力検出閾値よりも大きい場合、その所定のスロットはビジー(busy)であるとみなされる。
 チャネルアクセスプロシージャには、第一のチャネルアクセスプロシージャと第二のチャネルアクセスプロシージャがある。第一のチャネルアクセスプロシージャは、第一のチャネルアクセスプロシージャは、複数個のスロット及び延期期間を用いて行われる。第二のチャネルアクセスプロシージャは、1つの第四の待ち時間を用いて行われる。
 チャネルアクセスに関するパラメータは、優先クラスに基づいて決定される。チャネルアクセスに関するパラメータは、例えば、最小衝突窓、最大衝突窓、最大チャネル専有時間、衝突窓が取り得る値、などが挙げられる。優先クラスは、QoS(Quality of Service)を処理するQCI(QoS class identifier)の値によって定められる。優先クラスとチャネルアクセスに関するパラメータの対応表を表1に、優先クラスとQCIのマッピングの一例を表2に示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
  <第一のチャネルアクセスプロシージャの詳細>
 第一のチャネルアクセスプロシージャにおいて、以下に記した手順が行われる。
 (0)延期期間においてチャネルのセンシングが行われる。延期期間内のスロットにおいてチャネルがアイドルであった場合、(1)のステップに進み、そうでなければ、(6)のステップに進む。
 (1)カウンタの初期値を取得する。そのカウンタの初期値が取り得る値は、0から衝突窓CWまでの間の整数である。そのカウンタの初期値は、一様分布に従ってランダムに決定される。カウンタNにカウンタの初期値がセットされ、(2)のステップに進む。
 (2)カウンタNが0よりも大きく、かつ、そのカウンタNの減算を行うことが選択された場合、カウンタNから1が減算される。その後、(3)のステップに進む。
 (3)スロットの期間を追加して待機される。また、その追加のスロットにおいて、チャネルがセンスされる。その追加のスロットがアイドルであった場合は、(4)のステップに進み、そうでなければ、(5)のステップに進む。
 (4)カウンタNが0であった場合、このプロシージャを停止する。そうでなければ、(2)のステップに進む。
 (5)延期期間を追加して待機される。また、その追加の延期期間に含まれるいずれか1つのスロットでビジーと検出されるまで、または、その追加の延期期間に含まれる全てのスロットがアイドルであると検出できるまで、チャネルはセンスされる。その後、(6)のステップに進む。
 (6)チャネルがその追加の延期期間に含まれるスロットの全てでアイドルであるとセンスされた場合、(4)のステップに進み、そうでなければ、(5)のステップに進む。
 上記のプロシージャにおける(4)のステップの停止後、そのチャネルにおいて、PDSCHやPUSCHなどデータを含む送信が行われる。
 なお、上記のプロシージャにおける(4)のステップの停止後、そのチャネルにおいて、送信が行われなくてもよい。この場合、その後、送信直前にスロット及び延期期間の全てにおいて、チャネルがアイドルであった場合に、上記のプロシージャを行わずに送信が行われてもよい。一方で、そのスロット及びその延期期間のいずれかにおいて、チャネルがアイドルでなかった場合に、追加の延期期間内のスロットの全てでチャネルがアイドルであるとセンシングされた後、上記のプロシージャの(1)のステップに進む。
  <第二のチャネルアクセスプロシージャの詳細>
 第二のチャネルアクセスプロシージャにおいて、少なくとも第四の待ち時間のセンシングの結果、チャネルがアイドルであるとみなされた直後、送信は行われてもよい。一方で、少なくとも第四の待ち時間のセンシングの結果、チャネルがアイドルでないとみなされた場合は、送信は行われない。
  <衝突窓適応プロシージャ>
 第一のチャネルアクセスプロシージャで用いられる衝突窓CW(contention window)は、衝突窓適応プロシージャに基づいて決定される。
 衝突窓CWの値は、優先クラスごとに保持される。また、衝突窓CWは、最小衝突窓と最大衝突窓の間の値を取る。その最小衝突窓及びその最大衝突窓は、優先クラスに基づいて決定される。
 衝突窓CWの値の調整は、第一のチャネルアクセスプロシージャの(1)のステップの前に行われる。少なくとも衝突窓適応プロシージャにおける参照サブフレームまたは参照HARQプロセスの共用チャネルに対応するHARQ応答でNACKの割合が閾値よりも高い場合、衝突窓CWの値を増加させ、そうでなければ、衝突窓CWの値を最小衝突窓に設定する。
 衝突窓CWの値の増加は、例えば、CW=2・(CW+1)-1の式に基づいて行われる。
  <下りリンクにおけるチャネルアクセスプロシージャの詳細>
 アンライセンスチャネルにおいて、PDSCH、PDCCH、及び/または、EPDCCHを含んだ下りリンク送信を行う場合、基地局装置は第一のチャネルアクセスプロシージャに基づいて、そのチャネルにアクセスし、その下りリンク送信を行う。
 一方で、アンライセンスチャネルにおいて、DRSを含むがPDSCHを含まない下りリンク送信を行う場合、基地局装置は第二のチャネルアクセスプロシージャに基づいて、そのチャネルにアクセスし、その下りリンク送信を行う。なお、その下りリンク送信の期間は、1ミリ秒よりも小さいことが好ましい。
  <上りリンクにおけるチャネルアクセスプロシージャの詳細>
 アンライセンスチャネルにおいて、PUSCHをスケジュールする上りリンクグラントで第一のチャネルアクセスプロシージャを行うことを指示された場合、端末装置はそのPUSCHを含んだ上りリンク送信の前に第一のチャネルアクセスプロシージャを行う。
 また、PUSCHをスケジュールする上りリンクグラントで第二のチャネルアクセスプロシージャを行うことを指示された場合、端末装置はそのPUSCHを含んだ上りリンク送信の前に第二のチャネルアクセスプロシージャを行う。
 また、PUSCHは含まないがSRSは含む上りリンク送信に対しては、端末装置はその上りリンク送信の前に第二のチャネルアクセスプロシージャを行う。
 また、上りリンクグラントで指示された上りリンク送信の末尾が上りリンク期間(UL duration)内であった場合、その上りリンクグラントで指示されたプロシージャタイプにかかわらず、端末装置はその上りリンク送信の前に第二のチャネルアクセスプロシージャを行う。
 また、基地局からの下りリンク送信終了後に第四の待ち時間を挟んで上りリンク送信が続く場合、端末装置はその上りリンク送信の前に第二のチャネルアクセスプロシージャを行う。
  <本実施形態におけるNRのチャネルアクセスプロシージャ>
 NRを用いたアンライセンスチャネルでのチャネルアクセスプロシージャでは、ビームフォームされていないチャネルセンシングとビームフォームされたチャネルセンシングが行われる。
 ビームフォームされていないチャネルセンシングは、指向性が制御されない受信によるチャネルセンシング、または、方向の情報を持たないチャネルセンシングである。方向の情報を持たないチャネルセンシングとは、例えば、全方位で測定結果を平均化されたチャネルセンシングである。送信局は、チャネルセンシングで用いられた指向性(角度、方向)を認知しなくてもよい。
 ビームフォームされたチャネルセンシングは、指向性が制御された受信によるチャネルセンシング、または、方向の情報を持つチャネルセンシングである。すなわち、受信ビームが所定の方向に向けられたチャネルセンシングである。ビームフォームされたチャネルセンシングを行う機能を有する送信局は、異なる指向性を用いた1回以上のチャネルセンシングを行うことができる。
 ビームフォームされたチャネルセンシングを行うことで、センシングによって検出されるエリアが狭められる。これにより、送信局は、干渉を与えない通信リンクの検出の頻度を減らし、さらし端末問題を軽減することができる。
 <<2.構成例>>
 <2.1.基地局装置の構成例>
 図3は、本実施形態に係る基地局装置100の構成の一例を示すブロック図である。図3を参照すると、基地局装置100は、アンテナ部110、無線通信部120、ネットワーク通信部130、記憶部140及び制御部150を備える。
 (1)アンテナ部110
 アンテナ部110は、無線通信部120により出力される信号を電波として空間に放射する。また、アンテナ部110は、空間の電波を信号に変換し、当該信号を無線通信部120へ出力する。
 (2)無線通信部120
 無線通信部120は、信号を送受信する。例えば、無線通信部120は、端末装置へのダウンリンク信号を送信し、端末装置からのアップリンク信号を受信する。
 (3)ネットワーク通信部130
 ネットワーク通信部130は、情報を送受信する。例えば、ネットワーク通信部130は、他のノードへの情報を送信し、他のノードからの情報を受信する。例えば、上記他のノードは、他の基地局及びコアネットワークノードを含む。
 (4)記憶部140
 記憶部140は、基地局装置100の動作のためのプログラム及び様々なデータを一時的に又は恒久的に記憶する。
 (5)制御部150
 制御部150は、基地局装置100全体の動作を制御して、基地局装置100の様々な機能を提供する。制御部150は、設定部151及び通信処理部153を含む。
 設定部151は、端末装置200との通信に関する設定を行う機能を有する。例えば、設定部151は、基地局装置100自身が優先的に利用可能な保障リソースの設定を行う。また、設定部151は、保障リソースの設定のための交渉を、基地局装置100を運用するオペレータとは異なるオペレータにより運用される他の基地局装置100との間で行う。同様に、設定部151は、当該他の基地局装置100が優先的に利用可能な保障リソースの設定のための交渉を、当該他の基地局装置100との間で行う。
 通信処理部153は、端末装置200との通信処理を行う機能を有する。例えば、通信処理部153は、設定部151により設定された保障リソースを優先的に利用して端末装置200との通信を行う。また、通信処理部153は、他の基地局装置100に設定された保障リソースの利用を制限して、他の基地局装置100が優先的に当該保障リソースを利用することを可能にする。
 制御部150は、これらの構成要素以外の他の構成要素をさらに含み得る。即ち、制御部150は、これらの構成要素の動作以外の動作も行い得る。
 <2.2.端末装置の構成例>
 図4は、本実施形態に係る端末装置200の構成の一例を示すブロック図である。図4を参照すると、端末装置200は、アンテナ部210、無線通信部220、記憶部230及び制御部240を備える。
 (1)アンテナ部210
 アンテナ部210は、無線通信部220により出力される信号を電波として空間に放射する。また、アンテナ部210は、空間の電波を信号に変換し、当該信号を無線通信部220へ出力する。
 (2)無線通信部220
 無線通信部220は、信号を送受信する。例えば、無線通信部220は、基地局からのダウンリンク信号を受信し、基地局へのアップリンク信号を送信する。
 (3)記憶部230
 記憶部230は、端末装置200の動作のためのプログラム及び様々なデータを一時的に又は恒久的に記憶する。
 (4)制御部240
 制御部240は、端末装置200全体の動作を制御して、端末装置200の様々な機能を提供する。制御部240は、測定報告部241及び通信処理部243を含む。
 測定報告部241は、測定報告処理を行う機能を有する。測定報告部241は、基地局装置100から送信された測定用信号(例えば、DS(Discovery Signal)又はCSI-RS(Channel State Information Reference Signal)等の測定用信号)を測定する。本実施形態では、測定報告部241は、端末装置200が接続する基地局装置100のみならず、当該基地局装置100を運用するオペレータとは異なるオペレータにより運用される他の基地局装置100から送信された測定用信号の測定を行う。測定報告部241が行う測定としては、RRM(Radio Resource Management)測定(RSRP(Reference Signal Received Power)、RSRQ(Reference Signal Received Quality)又は、RSSI(Received signal strength Indicator)等の測定)又はCSI測定が挙げられる。測定報告部241は、測定結果を示す情報を含む測定報告を基地局装置100に送信する。
 通信処理部243は、基地局装置100との通信処理を行う機能を有する。例えば、通信処理部243は、基地局装置100により設定された保障リソースを用いて基地局装置100との通信を行う。
 制御部240は、これらの構成要素以外の他の構成要素をさらに含み得る。即ち、制御部240は、これらの構成要素の動作以外の動作も行い得る。
 <<3.技術的特徴>>
 以下では、保障リソースが設定される基地局装置100を、第1の基地局装置100と称する。また、第1の基地局装置100に設定された保障リソースを第1の基地局装置100が優先的に利用することを可能にする処理を行う基地局装置100を、第2の基地局装置100とも称する。第2の基地局装置100は、第1の基地局装置100を運用するオペレータとは異なるオペレータにより運用される。第1の基地局装置100を運用するオペレータは第1のオペレータとも称され、第2の基地局装置100を運用するオペレータは第2のオペレータとも称される。
 基地局装置100は、第1の基地局装置100としても第2の基地局装置100としても機能し得る。基地局装置100が第1の基地局装置100として機能する場合、保障リソースは、自身に設定される保障リソースである第1の保障リソースに相当し、設定情報は第1の設定情報に相当する。基地局装置100が第2の基地局装置100として機能する場合、保障リソースは、他のオペレータにより運用される他の基地局装置100に設定される保障リソースである第2の保障リソースに相当し、設定情報は第2の設定情報に相当する。
 以下、本実施形態の技術的特徴について詳しく説明する。
 (1)保障リソースの設定情報の共有
 第1の基地局装置100(例えば、設定部151)は、第2の基地局装置100に、第1のオペレータと第2のオペレータとの間で共用可能な無線リソースのうち、第1の基地局装置100が優先的に利用可能な保障リソースの設定情報を送信する。設定情報の送信先である第2の基地局装置100は、ひとつであってもよいし、複数であってもよい。また、第2のオペレータは、ひとつであってもよいし、複数であってもよい。設定情報が第2の基地局装置100に送信されることにより、第2の基地局装置100は、保障リソースを第1の基地局装置100が優先的に利用することを可能にする処理を行う。これに伴い、第1の基地局装置100は、保障リソースを優先的に利用することが可能となる。保障リソースの設定情報は、第1の基地局装置100による保障リソースの優先的な利用を許容するよう要求する情報である、とも捉えることができる。なお、保障リソースの利用は、アップリンク信号の送受信のために用いられてもよいし、ダウンリンク信号の送受信のための用いられてもよい。
 第2の基地局装置100(例えば、設定部151)は、第1のオペレータと第2のオペレータとの間で共用可能な無線リソースのうち第1の基地局装置100が優先的に利用可能な保障リソースの設定情報を第1の基地局装置100から受信する。そして、第2の基地局装置100(例えば、通信処理部153)は、受信した設定情報に基づいて、保障リソースを第1の基地局装置100が優先的に利用することを可能にする処理を行う。具体的には、第2の基地局装置100は、第1の基地局装置100が優先的に利用可能な保障リソースの利用を制限する。第2の基地局装置100は、受信した設定情報に基づいて保障リソースの利用を制限することで、第1の基地局装置100に保障リソースを優先的に利用させることができる。
 設定情報を共有する第1の基地局装置100及び第2の基地局装置100は、カバレッジが重複する又は隣接する関係にある。換言すると、第1の基地局装置100の保障リソースの設定は、第1の基地局装置100のカバレッジの範囲内で有効である。そのため、第1の基地局装置100は、第1の基地局装置100の保障リソースを、第1の基地局装置100とカバレッジが重複する又は隣接する関係にある第2の基地局装置100よりも優先的に利用可能である。
 (2)保障リソースにおける動作
 ・第2の基地局装置100における保障リソースの利用制限
 以下では、第2の基地局装置100(例えば、通信処理部153)による保障リソースの利用制限について詳しく説明する。
 第2の基地局装置100は、保障リソースを開放する。詳しくは、第2の基地局装置100は、利用中の無線リソースと保障リソースとが重複する場合、重複部分における無線リソースの利用を停止する。この点について、図5を参照して説明する。図5は、本実施形態に係る保障リソースの開放を説明するための図である。図5の上段は、第2の基地局装置100による保障リソースの開放が図示されている。図5の下段は、第1の基地局装置100による保障リソースの利用が図示されている。周波数f且つ時刻t~tまでの無線リソースは非保障リソースであり、周波数f且つ時刻t~tまでの無線リソースは第1の基地局装置100が優先的に利用可能な保障リソースであるものとする。また、時刻t~tまでは、第2の基地局装置100の周波数fのチャネル確保時間(channel occupancy time)であるものとする。チャネル確保時間とは、LBTに基づくチャネルアクセスにより確保したチャネル(即ち、周波数f)へのアクセス権が有効な期間である。図5の上段に示すように、第2の基地局装置100は、時刻t~tまでは、非保障リソース且つチャネル確保時間内であるので、アクセス権を確保した周波数fを用いて信号を送信する。一方で、時刻t以降は保障リソースとなるので、第2の基地局装置100は、時刻tにおいて周波数fの利用を停止する。即ち、第2の基地局装置100は、時刻tにおいて、周波数fを用いた信号の送信を停止して、周波数fを開放する。
 第2の基地局装置100は、保障リソースを利用しなくてもよい。図5の上段に示した例では、第2の基地局装置100は、時刻tから時刻tの間、周波数fを利用した信号の送信を行わず、周波数fを開放する。これにより、第1の基地局装置100による優先的な保障リソースの利用を確実に担保することができる。
 第2の基地局装置100は、保障リソースを、キャリアセンスを行った上で利用してもよい。図5の上段に示した例では、第2の基地局装置100は、時刻tにおいて一旦周波数fの利用を停止し周波数fを開放する。その後、第2の基地局装置100は、改めて周波数fのキャリアセンスを行い、アクセス権を確保した上で周波数fを利用する。換言すると、第2の基地局装置100は、保障リソースを第1の基地局装置100が利用していない場合に、保障リソースを利用する。これにより、第1の基地局装置100による優先的な保障リソースの利用を担保しつつも、第1の基地局装置100が保障リソースを利用しない場合の周波数利用効率の低下を防止することができる。
 ・第1の基地局装置100における保障リソースの利用
 第1の基地局装置100(例えば、通信処理部153)は、保障リソースを優先的に利用する。
 保障リソースを優先的に利用することは、例えば、上述した利用制限を行わないことを指す。即ち、第1の基地局装置100は、利用中の無線リソースと保障リソースとが重複する場合でも、重複部分における無線リソースの利用を継続してもよい。また、第1の基地局装置100は、キャンリアセンスを行わずに保障リソースを利用してもよい。第1の基地局装置100による保障リソースの利用について、図5を再度参照して説明する。図5の下段に示すように、時刻t~tは保障リソースである。そのため、第1の基地局装置100は、時刻tから保障リソースの利用を開始する。図5の下段に示した例では、第1の基地局装置100は、保障リソースの終了時刻である時刻tにおいて、無線リソースを開放している。第1の基地局装置100は、保障リソースの終了後も、継続的に同一周波数を利用してもよい。
 第1の基地局装置100は、保障リソースにおいて、例えば優先度が高い信号/情報を送信する。優先度の高い信号/情報としては、例えば、同期信号、ランダムアクセスチャネル、ページング、システム情報、参照信号及び制御情報(ACK/NACK等)、及び低遅延が要求されるデータ等が挙げられる。
 (3)保障リソースの設定
 第1の基地局装置100(例えば、設定部151)は、自身で保障リソースを設定し、設定情報を生成してもよい。これにより、第1の基地局装置100は、オペレータ間の干渉、及び送受信すべきデータの優先度等に応じて、適応的に保障リソースを設定することができる。保障リソースの設定について、図6を参照して説明する。図6は、本実施形態に係る保障リソースの設定を説明するための図である。図6に示すように、第1の基地局装置100は、周波数f且つ時刻t~tまでの無線リソース、周波数f且つ時刻t~tまでの無線リソース、及び周波数f且つ時刻t~tまでの無線リソースを、保障リソースとして設定する。第1の基地局装置100は、保障リソースとして設定したこれらの無線リソースを、優先的に利用することが可能となる。一方で、周波数f且つ時刻t~tまでの無線リソース、及び周波数f且つ時刻t~tまでの無線リソースは、非保障リソースとなる。なお、非保障リソースとは、保障リソースとして設定されていない無線リソースである。第1の基地局装置100及び第2の基地局装置100は、これらの非保障リソースを、LBTに基づくチャネルアクセスを行って利用する。
 第1の基地局装置100は、所定の条件を満たすように保障リソースを設定してもよい。所定の条件としては、例えば、無線リソース全体のうち、保障リソースの割合が所定の閾値未満であることが挙げられる。これにより、特定のオペレータに無線リソースが独占されることが防止される。上記所定の閾値は、例えば10%として設定される。上記所定の閾値は、第1の基地局装置100及び第2の基地局装置100を運用するオペレータの総数に応じて定められてもよい。その場合、上記所定の閾値は、例えば10/(オペレータ総数)%として設定される。
 なお、保障リソースの設定及び設定情報の生成は、オペレータが有する制御エンティティにより行われてもよい。かかる制御エンティティは、例えばコアネットワーク20内に含まれる。
 保障リソースは、PRACH、SRS、PUCCH、またはPUSCHなどの上りリンク送信のために、端末装置200に設定されてもよい。保障リソースは、システム情報(MIBまたはSIB)若しくはRRCシグナリングによって設定される。端末装置200は、保障リソースにおいて、優先的に上りリンクチャネル/信号を送信することができる。
 保障リソースを用いて端末装置200から送信される物理チャネルまたは物理信号は、例えば、PRACH、ビーム管理のためのSRS、HARQ-ACKを含むPUCCH、SPS(Semi-Persistent Scheduling)またはグラントフリーPUSCH(DCIによってスケジューリングされないPUSCH)、などが挙げられる。
 保障リソースの時間リソースの設定の一例として、周期およびオフセットが挙げられる。
 保障リソースの時間リソースの設定の一例として、ビットマップで表されるスロットのセットが挙げられる。ビットマップの各ビットは、それぞれスロット(または、スロットグループ、サブフレーム)に対応する。ビットの0/1は、保障リソース/非保障リソースを表す。
 保障リソースの周波数リソースの設定の一例として、ビットマップで表されるリソースブロックのセットが挙げられる。ビットマップの各ビットは、それぞれリソースブロック(または、リソースブロックグループ)に対応する。ビットの0/1は、保障リソース/非保障リソースを表す。
 保障リソースの設定の一例として、その設定される保障リソースで送信が許可される物理チャネルおよび物理信号の指定、が挙げられる。例えば、保障リソースにおいてHARQを含むPUCCHは送信許可されるが、HARQを含まないPUCCHは送信許可されない、といった指定がなされる。これにより、通信環境に応じて柔軟に制御することができる。
 保障リソースは、優先度が高い信号/情報が送信されるプライマリセル(PCell)又はプライマリセカンダリセル(PSCell)に設定されることが好ましい。換言すると、保障リソースは、セカンダリセルに設定されないことが好ましい。
 また、保障リソースが設定可能な帯域は、オペレータ共通に同一の帯域で設定されるように、限定されてもよい。
 更に、端末装置200は、異なるオペレータの共有情報を取得してもよい。端末装置200は、異なるオペレータの共有情報、接続する基地局装置100を経由して取得してもよいし、異なるオペレータの基地局装置100から送信されるオペレータ間の共有用物理チャネルおよび/または物理信号から取得してもよい。これにより、端末装置200は異なるオペレータの保障リソースを避けて、通信を行うことができる。
 (4)保障リソースの設定のための交渉
 オペレータ間で、保障リソースの設定のための交渉が行われてもよい。例えば、第1の基地局装置100(例えば、設定部151)及び第2の基地局装置100(例えば、設定部151)は、保障リソースの設定のための交渉を行ってもよい。他にも、各オペレータが有する制御エンティティ間で交渉が行われてもよい。
 ・保障リソースの設定前の交渉
 例えば、第2の基地局装置100は、第1の基地局装置100に対して、保障リソースとして設定しないことを要求する無線リソースを示す情報を送信してもよい。保障リソースとして設定しないことを要求する無線リソースとは、第2の基地局装置100にとって、保障リソースとして設定されることが好ましくない無線リソースである。そのような無線リソースとしては、例えば、優先度が高い信号/情報のための無線リソースが挙げられる。優先度が高い信号/情報としては、例えば、同期信号、ランダムアクセスチャネル、ページング、システム情報、参照信号及び制御情報(ACK/NACK等)、及び低遅延が要求されるデータ等が挙げられる。
 例えば、第2の基地局装置100は、第1の基地局装置100に対して、保障リソースとして設定することを許容する無線リソースを示す情報を送信してもよい。保障リソースとして設定することを許容する無線リソースとは、第2の基地局装置100にとって、保障リソースとして設定されてもよい無線リソースである。そのような無線リソースとしては、上述した保障リソースとして設定することを要求しない無線リソース以外の無線リソースが挙げられる。
 このような保障リソースの設定前の交渉により、後述する設定後の交渉が不要となるので、効率的に保障リソースを設定することが可能となる。
 ・保障リソースの設定後の交渉
 第2の基地局装置100は、第1の基地局装置100に設定された保障リソースを第1の基地局装置100が優先的に利用することを承諾するか否かを示す応答を第1の基地局装置100に送信してもよい。換言すると、第2の基地局装置100は、自身に課せられる保障リソースの利用制限を承諾するか拒否するか判定し、判定結果を第1の基地局装置100に送信してもよい。第2の基地局装置100は、第1の基地局装置100から受信した保障リソースの設定情報に基づいて、かかる判定を行う。第2の基地局装置100は、利用制限を承諾した場合、保障リソースの利用を制限する。一方で、第2の基地局装置100は、利用制限を拒否した場合、保障リソースの利用を制限しない。
 第2の基地局装置100は、第1の基地局装置100に対して、保障リソースの変更を要求する情報を送信してもよい。保障リソースの変更の要求は、保障リソースを他の無線リソースに移動させることの要求であってもよいし、保障リソースの設定をキャンセルすることの要求であってもよいし、保障リソースを開放することの要求であってもよい。第2の基地局装置100は、上述した保障リソースとして設定されることが好ましくない無線リソースが保障リソースとして設定された場合に、保障リソースの変更を要求することができる。第1の基地局装置100は、かかる要求に基づいて、保障リソースを変更、キャンセル又は開放する。
 第1の基地局装置100は、第2の基地局装置100からの、保障リソースを第1の基地局装置100が優先的に利用することを承諾するか否かを示す応答に基づいて、保障リソースにおける信号の送受信を制御する。換言すると、第1の基地局装置100は、第2の基地局装置100からの、保障リソースの利用制限を承諾するか否かを示す応答に基づいて、保障リソースにおける信号の送受信を制御する。例えば、第1の基地局装置100は、保障リソースの利用制限を承諾する応答が得られた場合、保障リソースを優先的に利用する。一方で、第1の基地局装置100は、保障リソースの利用制限を拒否する応答が得られた場合、保障リソースの優先的な利用を行わない。第2の基地局装置100が複数存在する場合、第1の基地局装置100は、ひとつでも保障リソースの利用制限を拒否する応答が得られた場合には、保障リソースの優先的な利用を行わない。これにより、オペレータ間の干渉を防止することができる。拒否する応答には、拒否の理由を示す情報が含まれてもよい。例えば、拒否する応答に含まれる情報としては、過度の保障リソース要求による拒否情報、要求される保障リソースが他の保障リソースと重なっていることを示す拒否情報、などが挙げられる。
 このような保障リソースの設定後の交渉により、無線リソースを共有する複数のオペレータは、保障リソースとして設定すべきでない無線リソースに、他のオペレータにより保障リソースが設定されることを回避することができる。
 なお、保障リソースの設定前の交渉と保障リソースの設定後の交渉とは、少なくともいずれかが実施されることが望ましい。もちろん、双方が実施されてもよい。
 (5)オペレータ間で共有される情報
 第1の基地局装置100(例えば、設定部151)と第2の基地局装置100(例えば、設定部151)とは、多様な情報を共有(即ち、送受信)する。第1の基地局装置100と第2の基地局装置100との間で共有される情報を、以下では共有情報とも称する。共有情報に変更がある場合には、その都度再共有される。
 ・保障リソースの設定情報
 第1の基地局装置100は、第1の基地局装置100に設定された保障リソースの設定情報を第2の基地局装置100に送信する。保障リソースの設定情報は、以下に例示する情報の少なくともいずれかを含む。
 例えば、保障リソースの設定情報は、保障リソースとして設定された無線リソースを示す情報を含む。かかる情報は、保障リソースとして設定された無線リソースの周波数及び時間を示す情報を含む。
 例えば、保障リソースの設定情報は、保障リソースの設定が有効な場所を示す情報を含む。かかる情報は、第1の基地局装置100の位置情報(緯度及び経度、並びに高度)、及び第1の基地局装置100のカバレッジ範囲等を含み得る。
 例えば、保障リソースの設定情報は、保障リソースを用いて送受信される信号/情報の優先度を示す情報を含み得る。かかる情報は、保障リソースを用いて送受信される信号を示す情報であってもよい。
 例えば、保障リソースの設定情報は、後述する保障リソースの種類を示す情報を含み得る。
 ・交渉のための情報
 第1の基地局装置100と第2の基地局装置100とは、上述した交渉のための情報を送受信する。交渉のための情報は、以下に例示する情報のうち少なくともいずれかを含む。
 例えば、交渉のための情報は、上述した保障リソースの設定前の交渉のための情報を含む。具体的には、交渉のための情報は、保障リソースとして設定しないことを要求する無線リソースを示す情報、又は保障リソースとして設定することを許容する無線リソースを示す情報を含む。
 例えば、交渉のための情報は、上述した保障リソースの設定後の交渉のための情報を含む。具体的には、交渉のための情報は、保障リソースの変更を要求する情報、並びに保障リソースの変更の要求を承諾するか否かを示す情報を含む。また、交渉のための情報は、保障リソースの利用制限の承諾/拒否を示す情報を含む。
 (6)共有手段
 上述した共有情報の共有手段は多様に考えられる。
 共有情報は、オペレータ間の共有用の物理チャネルまたは物理信号を用いて無線で送受信されてもよい。例えば、第1の基地局装置100(例えば、設定部151)は、設定情報を無線信号に含めて第2の基地局装置100に送信してもよい。オペレータ間の共有用物理チャネルの1つの例は、PDSCHである。オペレータ間の共有用物理チャネルの1つの例は、PBCHである。オペレータ間の共有用物理チャネルは、オペレータを識別するIDによってスクランブルされることが望ましい。オペレータ間の共有用の物理信号は、例えば、少なくともオペレータを識別するためのID(オペレータID)を通知するための発見信号(Discovery Signal)が挙げられる。共有情報は、例えば、システム情報(MIB(Master Information Block)又はSIB(System Information Block))に含まれて送受信されることが望ましいが、PDCCHで送受信されてもよい。設定情報は、周期的に送信されることが好ましい。
 なお、共有情報は、送信元の基地局装置100の情報のみならず、他の基地局装置100の情報も含めて送信されてもよい。換言すると、共有情報は、他の基地局装置100によってリレーされて送信されてもよい。具体的には、基地局装置100Aは、自身の共有情報と共に、又は代えて、基地局装置100Bの共有情報を送信する。基地局装置100Bから共有情報を直接受信することが困難な基地局装置100Cは、基地局装置100A経由で基地局装置100Bの共有情報を取得することができる。これにより、より柔軟なセル設計が可能になる。
 共有情報は、バックホール回線を用いて送受信されてもよい。即ち、第1の基地局装置100は、バックホール回線を用いて第2の基地局装置100に第1の共有情報を送信してもよい。共有情報は、バックホール回線(例えば、X2インタフェース又はXnインタフェース等)を用いて送受信される。バックホール回線は、有線であってもよいし、無線であってもよい。共有情報の共有に先立って、第1の基地局装置100と第2の基地局装置100とがバックホール回線を経由して接続するための情報が共有されてもよい。第1の基地局装置100と第2の基地局装置100とがバックホール回線を経由して接続するための情報は、例えば、オペレータの識別情報及び基地局装置100の識別情報を含む。第1の基地局装置100及び第2の基地局装置100は、かかる情報に基づいて、X2インタフェース及びXnインタフェースの接続を確立する。第1の基地局装置100と第2の基地局装置100とがバックホール回線を経由して接続するための情報は、PDSCHを用いて送信され得る。又は、第1の基地局装置100と第2の基地局装置100とがバックホール回線を経由して接続するための情報は、バックホール用物理チャネルを用いて送信され得る。
 (7)保障リソースの設定フォーマット
 ・第1の設定フォーマット
 保障リソースは、予め設定されてもよい。換言すると、保障リソースは静的に設定されてもよい。例えば、第1の基地局装置100は、優先度が高い信号/情報の送受信に必要な無線リソースを予測し、保障リソースを予め設定する。典型的には、第1の基地局装置100は、無線リソースを周期的に、即ち所定の時間間隔をあけて繰り返し設定する。第1の基地局装置100は、設定した保障リソースの設定情報を第2の基地局装置100に送信する。第1の基地局装置100は、周期的に設定情報を送信してもよいし、一度設定情報を送信した第2の基地局装置100に対しては設定情報の送信を省略してもよい。第1の基地局装置100は、設定した保障リソースを用いて、優先度が高い信号/情報を送受信する。
 第1の基地局装置100と第2の基地局装置100とは、保障リソースを設定する前後で、上述した交渉を行ってもよい。保障リソースが静的に設定される場合には、保障リソースの設定前の交渉が実施されることが望ましい。
 以下、図7を参照して、第1の設定フォーマットにおける保障リソースの設定処理の流れの一例を説明する。図7は、本実施形態に係るシステム1において実行される静的な保障リソースの設定処理の流れの一例を説明するシーケンス図である。本シーケンスには、基地局装置100A、100B及び100Cが関与する。基地局装置100Aは、第1の基地局装置100であり、基地局装置100B及び100Cは、第2の基地局装置100である。基地局装置100A、100B及び100Cの各々を運用するオペレータは異なるものとする。
 図7に示すように、基地局装置100A、100B及び100Cは、互いに保障リソースの設定前の交渉を行う(ステップS102)。例えば、基地局装置100B及び100Cは、保障リソースとして設定しないことを要求する無線リソースを示す情報、及び保障リソースとして設定することを許容する無線リソースを示す情報を、基地局装置100Aに送信する。次いで、基地局装置100Aは、保障リソースの設定を行う(ステップS104)。例えば、基地局装置100Aは、ステップS102において保障リソースとして設定しないことを要求された無線リソースを避け、保障リソースとして設定することを許容された無線リソースの範囲内で、優先度が高い信号/情報のための保障リソースを設定する。次に、基地局装置100Aは、設定した保障リソースの設定情報を基地局装置100B及び100Cに送信する(ステップS106)。その後、基地局装置100Aは、設定した保障リソースを用いて、優先度が高い信号/情報をカバレッジ内の端末装置200と送受信する。
 その後、基地局装置100Aは、保障リソースの再設定を行う(ステップS108)。例えば、基地局装置100Aは、基地局装置100B又は100Cと再度交渉した場合に、保障リソースの再設定を行う。その場合、基地局装置100Aは、上記ステップS104と同様にして保障リソースを再設定する(ステップS108)。次いで、基地局装置100Aは、再設定した保障リソースの設定情報を基地局装置100B及び100Cに送信する(ステップS110)。その後、基地局装置100Aは、再設定した保障リソースを用いて、優先度が高い信号/情報をカバレッジ内の端末装置200と送受信する。
 ・第2の設定フォーマット
 保障リソースは、保障リソースを用いた送受信を行うべき信号/情報(又はパケット)が発生した場合に、設定されてもよい。換言すると、保障リソースは動的に設定されてもよい。例えば、第1の基地局装置100は、優先度が高い信号/情報が第1の基地局装置100に到来する等して、優先度が高い信号/情報が発生した場合に、保障リソースを設定する。第1の基地局装置100は、設定した保障リソースの設定情報を第2の基地局装置100に送信する。
 第1の基地局装置100と第2の基地局装置100とは、保障リソースを設定する前後で、上述した交渉を行ってもよい。保障リソースが動的に設定される場合には、保障リソースの設定後の交渉が実施されることが望ましい。
 第2の設定フォーマットによって、1インスタンス(時間リソースの塊)の保障リソースが設定されてもよいし、複数のインスタンスの保障リソースが設定されてもよい。換言すると、第1の基地局装置100は、第2の設定フォーマットを用いて、将来の1つの保障リソースを設定してもよいし、将来の複数の保障リソースを設定してもよい。
 以下、図8を参照して、第2の設定フォーマットにおける保障リソースの設定処理の流れの一例を説明する。図8は、本実施形態に係るシステム1において実行される動的な保障リソースの設定処理の流れの一例を説明するシーケンス図である。本シーケンスには、基地局装置100A、100B及び100Cが関与する。基地局装置100Aは、第1の基地局装置100であり、基地局装置100B及び100Cは、第2の基地局装置100である。基地局装置100A、100B及び100Cの各々を運用するオペレータは異なるものとする。
 図8に示すように、基地局装置100Aにおいて、優先度が高いパケットが発生すると(ステップS202)、優先度がパケットを送受信するための保障リソースを設定する(ステップS204)。その後、基地局装置100A、100B及び100Cは、保障リソースの設定後の交渉を行う。
 詳しくは、基地局装置100Aは、設定した保障リソースの設定情報を基地局装置100B及び100Cに送信する(ステップS206)。基地局装置100B及び100Cは、保障リソースの設定の承諾可否を判断する(ステップS208)。即ち、基地局装置100B及び100Cは、基地局装置100Aが設定した保障リソースにおいて、各々に課せられる利用制限を承諾するか否かを判断する。そして、基地局装置100B及び100Cは、保障リソース設定の承諾可否の判断結果を示す応答を基地局装置100Aに送信する(ステップS210)。基地局装置100Aは、基地局装置100B及び100Cの双方から、保障リソース設定を承諾する旨の応答が得られた場合には、設定した保障リソースを用いて優先度が高い信号/情報を送受信する。一方で、基地局装置100Aは、基地局装置100B又は100Cの少なくともいずれかから、保障リソース設定を拒否する旨の応答が得られた場合には、保障リソースの優先的な利用を行わない。
 ・第3の設定フォーマット
 保障リソースは、第1の基地局装置100が保障リソースの利用に失敗した場合に、再度設定されてもよい。ここでの失敗とは、上述した保障リソースの設定後の交渉における交渉失敗(即ち、保障リソース設定を拒否する旨の応答が得られた場合)が挙げられる。他にも、失敗とは、Wi-Fi(登録商標)など他のRAT(Radio Access Technology)からの干渉等によって設定済みの保障リソースの利用が困難になった場合が挙げられる。換言すると、チャネルの混雑度に応じて、保障リソースは再設定されてもよい。チャネルの混雑度は、基地局装置100又は端末装置200によって測定されることができる。
 ・第4の設定フォーマット
 保障リソースは、定期的(周期的)に再設定されてもよい。再設定の周期は、基地局装置100に予め設定されてもよいし、基地局装置100間の交渉によって決定されてもよいし、所定の基地局装置100が一意に決定してもよい。更に、チャネルの混雑度又は基地局装置100の移動具合など通信環境の変化に応じて、周期が定まってもよい。
 ・第5の設定フォーマット
 上述した第1~第4の設定フォーマットは、適宜組み合わされてもよい。例えば、第1の基地局装置100は、静的に保障リソースを設定しつつ、優先度が高い信号/情報が発生したタイミングで動的に保障リソースを設定する。さらに、第1の基地局装置100は、保障リソースの利用に失敗した場合に保障リソースを再設定してもよい。
 なお、再設定時に所定の環境の変化が発生した場合に、保障リソースの位置、周期、および/または割合が変更されてもよい。所定の環境の変化が発生した場合とは、例えば、新たな基地局装置100が発見された場合が挙げられる。これにより、運用途中で設置される基地局装置100に対して、リソースの割り当て量を都度調整することが容易になり、公平性が担保される。
 (8)保障リソースの種類
 保障リソースには、複数の種類があってもよい。保障リソースの設定情報は、保障リソースの種類を示す情報を含む。保障リソースは、保障リソースの利用形態に応じて複数の種類が設定され得る。第1の基地局装置100(例えば、通信処理部153)及び第2の基地局装置100(例えば、通信処理部153)は、保障リソースの種類に応じて保障リソースの利用を制御する。
 保障リソースの種類は、送受信される信号に対応していてもよい。例えば、保障リソースには、保障リソースを利用して送受信される信号が異なる第1の種類と第2の種類とがあってもよい。第1の基地局装置100は、第1の種類の保障リソースを利用して制御信号/制御情報を送受信する。ここで、送受信される制御信号/制御情報とは、優先度が高い信号/情報のうち、制御信号/制御情報に属する信号/情報である。そのような信号/情報としては、同期信号、ランダムアクセスチャネル、ページング、システム情報及び参照信号等の、接続に必要不可欠な信号が挙げられる。一方で、第1の基地局装置100は、第2の種類の保障リソースを利用してデータ信号/データ情報を送受信する。ここで、送受信されるデータ信号とは、優先度が高い信号/情報のうち、データ信号に属する信号/情報である。そのような信号/情報としては、低遅延が要求されるデータ信号が挙げられる。
 保障リソースの種類は、第2の基地局装置100に許容される保障リソースへのアクセス手順に対応していてもよい。例えば、保障リソースには、第2の基地局装置100に許容される保障リソースへのアクセス手順(即ち、チャネルアクセス手順)が異なる第3の種類と第4の種類とがあってもよい。第2の基地局装置100は、第3の種類の保障リソースを開放し、その後も利用しない。換言すると、第2の基地局装置100は、第3の種類の保障リソースの利用手段を持たない。一方で、第2の基地局装置100は、第4の種類の保障リソースを開放し、その後キャリアセンスを行った上で利用する。
 以上説明したような、保障リソースの利用形態に応じて複数の種類が保障リソースに設定されることにより、第1の基地局装置100及び第2の基地局装置100の適切な保障リソースの利用が実現される。
 (9)測定報告
 第1の基地局装置100(例えば、設定部151)は、第1の基地局装置100と通信する端末装置200における、第2の基地局装置100からの信号の測定結果に基づいて、保障リソースを設定してもよい。詳しくは、端末装置200(例えば、測定報告部241)は、オペレータごとに信号(例えば、DS(Discovery Signal)又はCSI-RS(Channel State Information Reference Signal)等の測定用信号)を測定する。例えば、第1の基地局装置100と通信(即ち、接続)する端末装置200は、第2の基地局装置100からの信号を測定する。端末装置200が行う測定としては、RRM(Radio Resource Management)測定(RSRP(Reference Signal Received Power)、RSRQ(Reference Signal Received Quality)又は、RSSI(Received Signal Strength Indicator)等の測定)又はCSI測定が挙げられる。測定用信号には、送信元の第2の基地局装置100を識別するための識別情報(例えば、オペレータID)が含まれ、端末装置200は、かかる識別情報に基づいてオペレータごとの信号を識別する。そして、端末装置200は、自身が接続する第1の基地局装置100に測定結果を報告する。そして、第1の基地局装置100は、受信した測定報告に基づいて、保障リソースを設定する。これにより、第1の基地局装置100は、端末装置200の位置における第2の基地局装置100からの干渉に応じて、保障リソースを設定することができる。
 以下、図9を参照して、端末装置200による測定報告に基づく保障リソースの設定処理の流れの一例を説明する。図9は、本実施形態に係るシステム1において実行される測定報告に基づく保障リソースの設定処理の流れの一例を説明するシーケンス図である。本シーケンスには、基地局装置100A、100B及び100C並びに端末装置200が関与する。基地局装置100Aは、第1の基地局装置100であり、基地局装置100B及び100Cは、第2の基地局装置100である。基地局装置100A、100B及び100Cの各々を運用するオペレータは異なるものとする。また、端末装置200は、基地局装置100Aと接続しているものとする。
 図9に示すように、基地局装置100A及び端末装置200は、すでに接続しており、通信を行っている(ステップS302)。基地局装置100B及び100Cは、測定用信号を送信する(ステップS304)。端末装置200は、これらの測定用信号に基づいて測定を行う(ステップS306)。その際、端末装置200は、測定用信号に含まれるオペレータIDに基づいて、測定用信号の送信元の基地局装置100B及び100Cを識別し、基地局装置100B及び100Cの各々について測定を行う。そして、端末装置200は、測定結果を含む測定報告を基地局装置100Aに送信する(ステップS308)。基地局装置100Aは、受信した測定報告に基づいて、保障リソースを設定する(ステップS310)。
 (10)フレーム同期/時刻同期
 第1の基地局装置100及び第2の基地局装置100は、フレーム同期及び/又は時刻同期を行ってもよい。
 これにより、第1の基地局装置100及び第2の基地局装置100は、同じタイミングで端末装置200と信号を送受信することが可能となる。よって、第1の基地局装置100及び第2の基地局装置100は、即ち異なるオペレータ間で、高度な協調連携を実施することが可能となる。高度な協調連携としては、例えば、ICIC(inter-cell interference coordination)及びCoMP(Coordinated Multi-point transmission and reception)など)が挙げられる。
 さらに、第1の基地局装置100及び第2の基地局装置100は、協調してLBTを実施することが可能となる。例えば、第1の基地局装置100及び第2の基地局装置100は、LBTの終了タイミングが同一となるよう調節することで、同じタイミングで信号の送受信を行うことができる。これにより、空間リソースが改善し、単位密度あたりのセルスループットが向上する。
 (11)共有情報の他の例
 共有情報として、保障リソースに関する情報以外の情報が共有されてもよい。即ち、異なるオペレータ間で、保障リソースに関する情報以外の情報が共有されてもよい。かかる情報の一例を、以下に説明する。
 ・端末装置200の種類、パケットのQoSの種類及び/又はトラフィック量
 端末装置200の種類、パケットのQoSの種類及び/又はトラフィック量が、異なるオペレータ間で共有されてもよい。
 例えば、eMBB/URLLC/mMTCの各々のユースケースごとのトラフィック量が共有されてもよい。また、QCIごとのトラフィック量が共有されてもよい。QCIは、帯域保証する/しない(GBR/non-GBR)、優先順位、及び想定遅延時間のそれぞれのQoSパラメータを表すインデックスである。QCIは、パケットごとに付加される。QCIは、想定されるサービスに対して定義される。基地局装置100は、このQCIに紐付けられるQoSパラメータに基づいて、スケジューリングを行う。QCIとQoSパラメータとの対応表の一例を、表3に示す。
Figure JPOXMLDOC01-appb-T000003
 ・基地局装置100の処理能力
 基地局装置100の処理能力が、異なるオペレータ間で共有されてもよい。
 例えば、基地局装置100のケイパビリティ情報が、異なるオペレータ間で共有され得る。基地局装置100のケイパビリティ情報としては、例えば、干渉キャンセラ能力、基地局アンテナに関する情報、アンテナ本数、並びにビーム幅及び指向性を示す情報が挙げられる。
 ・基地局装置100周辺の通信環境
 基地局装置100周辺の通信環境が、異なるオペレータ間で共有されてもよい。
 例えば、基地局装置100に接続する端末装置200から受信した測定報告が、異なるオペレータ間で共有されてもよい。これにより、基地局装置100は、異なるオペレータの端末装置200による測定報告も収集することができる。従って、基地局装置100は、より効率的に無線リソースをスケジューリングすることが可能となる。更に、基地局装置100の位置情報も共有されてもよい。これにより基地局装置100はより正確に周囲の通信環境を認識することができる。
 ・時刻同期を行うための時間(タイムスタンプ)に関する情報
 時刻同期を行うための時間(タイムスタンプ)に関する情報が、異なるオペレータ間で共有されてもよい。
 異なるオペレータ間で時刻同期が行われる場合に、タイムスタンプに関する情報が共有される。タイムスタンプを示す情報は、絶対時刻を示す情報であってもよいし、基準時刻を示す情報であってもよい。
 ・LBTに関するパラメータ
 LBTに関するパラメータが、異なるオペレータ間で共有されてもよい。
 LBTに関するパラメータとしては、例えば、基地局装置100の最大送信電力、最大アンテナゲイン、最大ビームフォーミングゲイン、衝突窓、及びランダムバックオフカウンタ値等が挙げられる。これらのLBTに関するパラメータが異なるオペレータ間で共有されることにより、異なる空間において同一の周波数帯域を利用するファクタである空間再利用(周波数再利用)率を向上させ、単位面積あたりの周波数利用効率を向上させることができる。
 ・基地局装置100のRRC設定情報
 基地局装置100に設定されるRRC設定の一部が、異なるオペレータ間で共有されてもよい。
 例えば、基地局装置100に設定されるRRC設定の一部が、異なるオペレータ間で共有される。RRC設定の一部は、例えば、基地局装置100のセルID(Physical Cell ID)、物理チャネル/信号に設定されるリソース、などが挙げられる。これにより、異なるオペレータのセル設計および無線リソース管理が容易になる。更に、RACHに関するRRC設定(RACHリソース、RACHインデックスなど)も共有されてよい。これにより、異なるオペレータの基地局間のハンドオーバー(セル接続切り替え)が容易になる。
 なお、保障リソースに係る動作は、車通信(Vehicle to everything communication:V2X)にも適用可能である。V2Xは、車車間通信(Vehicle to vehicle communication:V2V)、路車間通信(Vehicle to Infrastructure:V2I)、および、車-ネットワーク間通信(Vehicle to Network
communication:V2N)を含む。上記の基地局装置100の動作を車型端末として置き換えることで、ITSバンド(5.85~5.925 GHzの周波数帯)においても同様の効果を得ることができる。所定の車型端末が保障リソースを設定し、周囲の車型端末に対して保障リソースを通知することで、緊急停止信号や、操縦アシスト信号、自動操縦信号などの緊急(セーフティ)メッセージの混信を低減することができる。
 <<4.応用例>>
 本開示に係る技術は、様々な製品へ応用可能である。例えば、基地局装置100は、マクロeNB又はスモールeNBなどのいずれかの種類のeNB(evolved Node B)として実現されてもよい。スモールeNBは、ピコeNB、マイクロeNB又はホーム(フェムト)eNBなどの、マクロセルよりも小さいセルをカバーするeNBであってよい。その代わりに、基地局装置100は、NodeB又はBTS(Base Transceiver Station)などの他の種類の基地局として実現されてもよい。基地局装置100は、無線通信を制御する本体(基地局装置ともいう)と、本体とは別の場所に配置される1つ以上のRRH(Remote Radio Head)とを含んでもよい。また、後述する様々な種類の端末が一時的に又は半永続的に基地局機能を実行することにより、基地局装置100として動作してもよい。
 また、例えば、端末装置200は、スマートフォン、タブレットPC(Personal Computer)、ノートPC、携帯型ゲーム端末、携帯型/ドングル型のモバイルルータ若しくはデジタルカメラなどのモバイル端末、又はカーナビゲーション装置などの車載端末として実現されてもよい。また、端末装置200は、M2M(Machine To Machine)通信を行う端末(MTC(Machine Type Communication)端末ともいう)として実現されてもよい。さらに、端末装置200は、これら端末に搭載される無線通信モジュール(例えば、1つのダイで構成される集積回路モジュール)であってもよい。
 <4.1.基地局装置に関する応用例>
   (第1の応用例)
 図10は、本開示に係る技術が適用され得るeNBの概略的な構成の第1の例を示すブロック図である。eNB800は、1つ以上のアンテナ810、及び基地局装置820を有する。各アンテナ810及び基地局装置820は、RFケーブルを介して互いに接続され得る。
 アンテナ810の各々は、単一の又は複数のアンテナ素子(例えば、MIMOアンテナを構成する複数のアンテナ素子)を有し、基地局装置820による無線信号の送受信のために使用される。eNB800は、図10に示したように複数のアンテナ810を有し、複数のアンテナ810は、例えばeNB800が使用する複数の周波数帯域にそれぞれ対応してもよい。なお、図10にはeNB800が複数のアンテナ810を有する例を示したが、eNB800は単一のアンテナ810を有してもよい。
 基地局装置820は、コントローラ821、メモリ822、ネットワークインタフェース823及び無線通信インタフェース825を備える。
 コントローラ821は、例えばCPU又はDSPであってよく、基地局装置820の上位レイヤの様々な機能を動作させる。例えば、コントローラ821は、無線通信インタフェース825により処理された信号内のデータからデータパケットを生成し、生成したパケットをネットワークインタフェース823を介して転送する。コントローラ821は、複数のベースバンドプロセッサからのデータをバンドリングすることによりバンドルドパケットを生成し、生成したバンドルドパケットを転送してもよい。また、コントローラ821は、無線リソース管理(Radio Resource Control)、無線ベアラ制御(Radio Bearer Control)、移動性管理(Mobility Management)、流入制御(Admission Control)又はスケジューリング(Scheduling)などの制御を実行する論理的な機能を有してもよい。また、当該制御は、周辺のeNB又はコアネットワークノードと連携して実行されてもよい。メモリ822は、RAM及びROMを含み、コントローラ821により実行されるプログラム、及び様々な制御データ(例えば、端末リスト、送信電力データ及びスケジューリングデータなど)を記憶する。
 ネットワークインタフェース823は、基地局装置820をコアネットワーク824に接続するための通信インタフェースである。コントローラ821は、ネットワークインタフェース823を介して、コアネットワークノード又は他のeNBと通信してもよい。その場合に、eNB800と、コアネットワークノード又は他のeNBとは、論理的なインタフェース(例えば、S1インタフェース又はX2インタフェース)により互いに接続されてもよい。ネットワークインタフェース823は、有線通信インタフェースであってもよく、又は無線バックホールのための無線通信インタフェースであってもよい。ネットワークインタフェース823が無線通信インタフェースである場合、ネットワークインタフェース823は、無線通信インタフェース825により使用される周波数帯域よりもより高い周波数帯域を無線通信に使用してもよい。
 無線通信インタフェース825は、LTE(Long Term Evolution)又はLTE-Advancedなどのいずれかのセルラー通信方式をサポートし、アンテナ810を介して、eNB800のセル内に位置する端末に無線接続を提供する。無線通信インタフェース825は、典型的には、ベースバンド(BB)プロセッサ826及びRF回路827などを含み得る。BBプロセッサ826は、例えば、符号化/復号、変調/復調及び多重化/逆多重化などを行なってよく、各レイヤ(例えば、L1、MAC(Medium Access Control)、RLC(Radio Link Control)及びPDCP(Packet Data Convergence Protocol))の様々な信号処理を実行する。BBプロセッサ826は、コントローラ821の代わりに、上述した論理的な機能の一部又は全部を有してもよい。BBプロセッサ826は、通信制御プログラムを記憶するメモリ、当該プログラムを実行するプロセッサ及び関連する回路を含むモジュールであってもよく、BBプロセッサ826の機能は、上記プログラムのアップデートにより変更可能であってもよい。また、上記モジュールは、基地局装置820のスロットに挿入されるカード若しくはブレードであってもよく、又は上記カード若しくは上記ブレードに搭載されるチップであってもよい。一方、RF回路827は、ミキサ、フィルタ及びアンプなどを含んでもよく、アンテナ810を介して無線信号を送受信する。
 無線通信インタフェース825は、図10に示したように複数のBBプロセッサ826を含み、複数のBBプロセッサ826は、例えばeNB800が使用する複数の周波数帯域にそれぞれ対応してもよい。また、無線通信インタフェース825は、図10に示したように複数のRF回路827を含み、複数のRF回路827は、例えば複数のアンテナ素子にそれぞれ対応してもよい。なお、図10には無線通信インタフェース825が複数のBBプロセッサ826及び複数のRF回路827を含む例を示したが、無線通信インタフェース825は単一のBBプロセッサ826又は単一のRF回路827を含んでもよい。
 図10に示したeNB800において、図3を参照して説明した制御部150に含まれる1つ以上の構成要素(設定部151及び/又は通信処理部153)は、無線通信インタフェース825において実装されてもよい。あるいは、これらの構成要素の少なくとも一部は、コントローラ821において実装されてもよい。一例として、eNB800は、無線通信インタフェース825の一部(例えば、BBプロセッサ826)若しくは全部、及び/又はコントローラ821を含むモジュールを搭載し、当該モジュールにおいて上記1つ以上の構成要素が実装されてもよい。この場合に、上記モジュールは、プロセッサを上記1つ以上の構成要素として機能させるためのプログラム(換言すると、プロセッサに上記1つ以上の構成要素の動作を実行させるためのプログラム)を記憶し、当該プログラムを実行してもよい。別の例として、プロセッサを上記1つ以上の構成要素として機能させるためのプログラムがeNB800にインストールされ、無線通信インタフェース825(例えば、BBプロセッサ826)及び/又はコントローラ821が当該プログラムを実行してもよい。以上のように、上記1つ以上の構成要素を備える装置としてeNB800、基地局装置820又は上記モジュールが提供されてもよく、プロセッサを上記1つ以上の構成要素として機能させるためのプログラムが提供されてもよい。また、上記プログラムを記録した読み取り可能な記録媒体が提供されてもよい。
 また、図10に示したeNB800において、図3を参照して説明した無線通信部120は、無線通信インタフェース825(例えば、RF回路827)において実装されてもよい。また、アンテナ部110は、アンテナ810において実装されてもよい。また、ネットワーク通信部130は、コントローラ821及び/又はネットワークインタフェース823において実装されてもよい。また、記憶部140は、メモリ822において実装されてもよい。
   (第2の応用例)
 図11は、本開示に係る技術が適用され得るeNBの概略的な構成の第2の例を示すブロック図である。eNB830は、1つ以上のアンテナ840、基地局装置850、及びRRH860を有する。各アンテナ840及びRRH860は、RFケーブルを介して互いに接続され得る。また、基地局装置850及びRRH860は、光ファイバケーブルなどの高速回線で互いに接続され得る。
 アンテナ840の各々は、単一の又は複数のアンテナ素子(例えば、MIMOアンテナを構成する複数のアンテナ素子)を有し、RRH860による無線信号の送受信のために使用される。eNB830は、図11に示したように複数のアンテナ840を有し、複数のアンテナ840は、例えばeNB830が使用する複数の周波数帯域にそれぞれ対応してもよい。なお、図11にはeNB830が複数のアンテナ840を有する例を示したが、eNB830は単一のアンテナ840を有してもよい。
 基地局装置850は、コントローラ851、メモリ852、ネットワークインタフェース853、無線通信インタフェース855及び接続インタフェース857を備える。コントローラ851、メモリ852及びネットワークインタフェース853は、図10を参照して説明したコントローラ821、メモリ822及びネットワークインタフェース823と同様のものである。
 無線通信インタフェース855は、LTE又はLTE-Advancedなどのいずれかのセルラー通信方式をサポートし、RRH860及びアンテナ840を介して、RRH860に対応するセクタ内に位置する端末に無線接続を提供する。無線通信インタフェース855は、典型的には、BBプロセッサ856などを含み得る。BBプロセッサ856は、接続インタフェース857を介してRRH860のRF回路864と接続されることを除き、図10を参照して説明したBBプロセッサ826と同様のものである。無線通信インタフェース855は、図11に示したように複数のBBプロセッサ856を含み、複数のBBプロセッサ856は、例えばeNB830が使用する複数の周波数帯域にそれぞれ対応してもよい。なお、図11には無線通信インタフェース855が複数のBBプロセッサ856を含む例を示したが、無線通信インタフェース855は単一のBBプロセッサ856を含んでもよい。
 接続インタフェース857は、基地局装置850(無線通信インタフェース855)をRRH860と接続するためのインタフェースである。接続インタフェース857は、基地局装置850(無線通信インタフェース855)とRRH860とを接続する上記高速回線での通信のための通信モジュールであってもよい。
 また、RRH860は、接続インタフェース861及び無線通信インタフェース863を備える。
 接続インタフェース861は、RRH860(無線通信インタフェース863)を基地局装置850と接続するためのインタフェースである。接続インタフェース861は、上記高速回線での通信のための通信モジュールであってもよい。
 無線通信インタフェース863は、アンテナ840を介して無線信号を送受信する。無線通信インタフェース863は、典型的には、RF回路864などを含み得る。RF回路864は、ミキサ、フィルタ及びアンプなどを含んでもよく、アンテナ840を介して無線信号を送受信する。無線通信インタフェース863は、図11に示したように複数のRF回路864を含み、複数のRF回路864は、例えば複数のアンテナ素子にそれぞれ対応してもよい。なお、図11には無線通信インタフェース863が複数のRF回路864を含む例を示したが、無線通信インタフェース863は単一のRF回路864を含んでもよい。
 図11に示したeNB830において、図3を参照して説明した制御部150に含まれる1つ以上の構成要素(設定部151及び/又は通信処理部153)は、無線通信インタフェース855及び/又は無線通信インタフェース863において実装されてもよい。あるいは、これらの構成要素の少なくとも一部は、コントローラ851において実装されてもよい。一例として、eNB830は、無線通信インタフェース855の一部(例えば、BBプロセッサ856)若しくは全部、及び/又はコントローラ851を含むモジュールを搭載し、当該モジュールにおいて上記1つ以上の構成要素が実装されてもよい。この場合に、上記モジュールは、プロセッサを上記1つ以上の構成要素として機能させるためのプログラム(換言すると、プロセッサに上記1つ以上の構成要素の動作を実行させるためのプログラム)を記憶し、当該プログラムを実行してもよい。別の例として、プロセッサを上記1つ以上の構成要素として機能させるためのプログラムがeNB830にインストールされ、無線通信インタフェース855(例えば、BBプロセッサ856)及び/又はコントローラ851が当該プログラムを実行してもよい。以上のように、上記1つ以上の構成要素を備える装置としてeNB830、基地局装置850又は上記モジュールが提供されてもよく、プロセッサを上記1つ以上の構成要素として機能させるためのプログラムが提供されてもよい。また、上記プログラムを記録した読み取り可能な記録媒体が提供されてもよい。
 また、図11に示したeNB830において、例えば、図3を参照して説明した無線通信部120は、無線通信インタフェース863(例えば、RF回路864)において実装されてもよい。また、アンテナ部110は、アンテナ840において実装されてもよい。また、ネットワーク通信部130は、コントローラ851及び/又はネットワークインタフェース853において実装されてもよい。また、記憶部140は、メモリ852において実装されてもよい。
 <4.2.端末装置に関する応用例>
   (第1の応用例)
 図12は、本開示に係る技術が適用され得るスマートフォン900の概略的な構成の一例を示すブロック図である。スマートフォン900は、プロセッサ901、メモリ902、ストレージ903、外部接続インタフェース904、カメラ906、センサ907、マイクロフォン908、入力デバイス909、表示デバイス910、スピーカ911、無線通信インタフェース912、1つ以上のアンテナスイッチ915、1つ以上のアンテナ916、バス917、バッテリー918及び補助コントローラ919を備える。
 プロセッサ901は、例えばCPU又はSoC(System on Chip)であってよく、スマートフォン900のアプリケーションレイヤ及びその他のレイヤの機能を制御する。メモリ902は、RAM及びROMを含み、プロセッサ901により実行されるプログラム及びデータを記憶する。ストレージ903は、半導体メモリ又はハードディスクなどの記憶媒体を含み得る。外部接続インタフェース904は、メモリーカード又はUSB(Universal Serial Bus)デバイスなどの外付けデバイスをスマートフォン900へ接続するためのインタフェースである。
 カメラ906は、例えば、CCD(Charge Coupled Device)又はCMOS(Complementary Metal Oxide Semiconductor)などの撮像素子を有し、撮像画像を生成する。センサ907は、例えば、測位センサ、ジャイロセンサ、地磁気センサ及び加速度センサなどのセンサ群を含み得る。マイクロフォン908は、スマートフォン900へ入力される音声を音声信号へ変換する。入力デバイス909は、例えば、表示デバイス910の画面上へのタッチを検出するタッチセンサ、キーパッド、キーボード、ボタン又はスイッチなどを含み、ユーザからの操作又は情報入力を受け付ける。表示デバイス910は、液晶ディスプレイ(LCD)又は有機発光ダイオード(OLED)ディスプレイなどの画面を有し、スマートフォン900の出力画像を表示する。スピーカ911は、スマートフォン900から出力される音声信号を音声に変換する。
 無線通信インタフェース912は、LTE又はLTE-Advancedなどのいずれかのセルラー通信方式をサポートし、無線通信を実行する。無線通信インタフェース912は、典型的には、BBプロセッサ913及びRF回路914などを含み得る。BBプロセッサ913は、例えば、符号化/復号、変調/復調及び多重化/逆多重化などを行なってよく、無線通信のための様々な信号処理を実行する。一方、RF回路914は、ミキサ、フィルタ及びアンプなどを含んでもよく、アンテナ916を介して無線信号を送受信する。無線通信インタフェース912は、BBプロセッサ913及びRF回路914を集積したワンチップのモジュールであってもよい。無線通信インタフェース912は、図12に示したように複数のBBプロセッサ913及び複数のRF回路914を含んでもよい。なお、図12には無線通信インタフェース912が複数のBBプロセッサ913及び複数のRF回路914を含む例を示したが、無線通信インタフェース912は単一のBBプロセッサ913又は単一のRF回路914を含んでもよい。
 さらに、無線通信インタフェース912は、セルラー通信方式に加えて、近距離無線通信方式、近接無線通信方式又は無線LAN(Local Area Network)方式などの他の種類の無線通信方式をサポートしてもよく、その場合に、無線通信方式ごとのBBプロセッサ913及びRF回路914を含んでもよい。
 アンテナスイッチ915の各々は、無線通信インタフェース912に含まれる複数の回路(例えば、異なる無線通信方式のための回路)の間でアンテナ916の接続先を切り替える。
 アンテナ916の各々は、単一の又は複数のアンテナ素子(例えば、MIMOアンテナを構成する複数のアンテナ素子)を有し、無線通信インタフェース912による無線信号の送受信のために使用される。スマートフォン900は、図12に示したように複数のアンテナ916を有してもよい。なお、図12にはスマートフォン900が複数のアンテナ916を有する例を示したが、スマートフォン900は単一のアンテナ916を有してもよい。
 さらに、スマートフォン900は、無線通信方式ごとにアンテナ916を備えてもよい。その場合に、アンテナスイッチ915は、スマートフォン900の構成から省略されてもよい。
 バス917は、プロセッサ901、メモリ902、ストレージ903、外部接続インタフェース904、カメラ906、センサ907、マイクロフォン908、入力デバイス909、表示デバイス910、スピーカ911、無線通信インタフェース912及び補助コントローラ919を互いに接続する。バッテリー918は、図中に破線で部分的に示した給電ラインを介して、図12に示したスマートフォン900の各ブロックへ電力を供給する。補助コントローラ919は、例えば、スリープモードにおいて、スマートフォン900の必要最低限の機能を動作させる。
 図12に示したスマートフォン900において、図4を参照して説明した制御部240に含まれる1つ以上の構成要素(測定報告部241及び/又は通信処理部243)は、無線通信インタフェース912において実装されてもよい。あるいは、これらの構成要素の少なくとも一部は、プロセッサ901又は補助コントローラ919において実装されてもよい。一例として、スマートフォン900は、無線通信インタフェース912の一部(例えば、BBプロセッサ913)若しくは全部、プロセッサ901、及び/又は補助コントローラ919を含むモジュールを搭載し、当該モジュールにおいて上記1つ以上の構成要素が実装されてもよい。この場合に、上記モジュールは、プロセッサを上記1つ以上の構成要素として機能させるためのプログラム(換言すると、プロセッサに上記1つ以上の構成要素の動作を実行させるためのプログラム)を記憶し、当該プログラムを実行してもよい。別の例として、プロセッサを上記1つ以上の構成要素として機能させるためのプログラムがスマートフォン900にインストールされ、無線通信インタフェース912(例えば、BBプロセッサ913)、プロセッサ901、及び/又は補助コントローラ919が当該プログラムを実行してもよい。以上のように、上記1つ以上の構成要素を備える装置としてスマートフォン900又は上記モジュールが提供されてもよく、プロセッサを上記1つ以上の構成要素として機能させるためのプログラムが提供されてもよい。また、上記プログラムを記録した読み取り可能な記録媒体が提供されてもよい。
 また、図12に示したスマートフォン900において、例えば、図4を参照して説明した無線通信部220は、無線通信インタフェース912(例えば、RF回路914)において実装されてもよい。また、アンテナ部210は、アンテナ916において実装されてもよい。また、記憶部230は、メモリ902において実装されてもよい。
   (第2の応用例)
 図13は、本開示に係る技術が適用され得るカーナビゲーション装置920の概略的な構成の一例を示すブロック図である。カーナビゲーション装置920は、プロセッサ921、メモリ922、GPS(Global Positioning System)モジュール924、センサ925、データインタフェース926、コンテンツプレーヤ927、記憶媒体インタフェース928、入力デバイス929、表示デバイス930、スピーカ931、無線通信インタフェース933、1つ以上のアンテナスイッチ936、1つ以上のアンテナ937及びバッテリー938を備える。
 プロセッサ921は、例えばCPU又はSoCであってよく、カーナビゲーション装置920のナビゲーション機能及びその他の機能を制御する。メモリ922は、RAM及びROMを含み、プロセッサ921により実行されるプログラム及びデータを記憶する。
 GPSモジュール924は、GPS衛星から受信されるGPS信号を用いて、カーナビゲーション装置920の位置(例えば、緯度、経度及び高度)を測定する。センサ925は、例えば、ジャイロセンサ、地磁気センサ及び気圧センサなどのセンサ群を含み得る。データインタフェース926は、例えば、図示しない端子を介して車載ネットワーク941に接続され、車速データなどの車両側で生成されるデータを取得する。
 コンテンツプレーヤ927は、記憶媒体インタフェース928に挿入される記憶媒体(例えば、CD又はDVD)に記憶されているコンテンツを再生する。入力デバイス929は、例えば、表示デバイス930の画面上へのタッチを検出するタッチセンサ、ボタン又はスイッチなどを含み、ユーザからの操作又は情報入力を受け付ける。表示デバイス930は、LCD又はOLEDディスプレイなどの画面を有し、ナビゲーション機能又は再生されるコンテンツの画像を表示する。スピーカ931は、ナビゲーション機能又は再生されるコンテンツの音声を出力する。
 無線通信インタフェース933は、LTE又はLTE-Advancedなどのいずれかのセルラー通信方式をサポートし、無線通信を実行する。無線通信インタフェース933は、典型的には、BBプロセッサ934及びRF回路935などを含み得る。BBプロセッサ934は、例えば、符号化/復号、変調/復調及び多重化/逆多重化などを行なってよく、無線通信のための様々な信号処理を実行する。一方、RF回路935は、ミキサ、フィルタ及びアンプなどを含んでもよく、アンテナ937を介して無線信号を送受信する。無線通信インタフェース933は、BBプロセッサ934及びRF回路935を集積したワンチップのモジュールであってもよい。無線通信インタフェース933は、図13に示したように複数のBBプロセッサ934及び複数のRF回路935を含んでもよい。なお、図13には無線通信インタフェース933が複数のBBプロセッサ934及び複数のRF回路935を含む例を示したが、無線通信インタフェース933は単一のBBプロセッサ934又は単一のRF回路935を含んでもよい。
 さらに、無線通信インタフェース933は、セルラー通信方式に加えて、近距離無線通信方式、近接無線通信方式又は無線LAN方式などの他の種類の無線通信方式をサポートしてもよく、その場合に、無線通信方式ごとのBBプロセッサ934及びRF回路935を含んでもよい。
 アンテナスイッチ936の各々は、無線通信インタフェース933に含まれる複数の回路(例えば、異なる無線通信方式のための回路)の間でアンテナ937の接続先を切り替える。
 アンテナ937の各々は、単一の又は複数のアンテナ素子(例えば、MIMOアンテナを構成する複数のアンテナ素子)を有し、無線通信インタフェース933による無線信号の送受信のために使用される。カーナビゲーション装置920は、図13に示したように複数のアンテナ937を有してもよい。なお、図13にはカーナビゲーション装置920が複数のアンテナ937を有する例を示したが、カーナビゲーション装置920は単一のアンテナ937を有してもよい。
 さらに、カーナビゲーション装置920は、無線通信方式ごとにアンテナ937を備えてもよい。その場合に、アンテナスイッチ936は、カーナビゲーション装置920の構成から省略されてもよい。
 バッテリー938は、図中に破線で部分的に示した給電ラインを介して、図13に示したカーナビゲーション装置920の各ブロックへ電力を供給する。また、バッテリー938は、車両側から給電される電力を蓄積する。
 図13に示したカーナビゲーション装置920において、図4を参照して説明した制御部240に含まれる1つ以上の構成要素(測定報告部241及び/又は通信処理部243)は、無線通信インタフェース933において実装されてもよい。あるいは、これらの構成要素の少なくとも一部は、プロセッサ921において実装されてもよい。一例として、カーナビゲーション装置920は、無線通信インタフェース933の一部(例えば、BBプロセッサ934)若しくは全部及び/又はプロセッサ921を含むモジュールを搭載し、当該モジュールにおいて上記1つ以上の構成要素が実装されてもよい。この場合に、上記モジュールは、プロセッサを上記1つ以上の構成要素として機能させるためのプログラム(換言すると、プロセッサに上記1つ以上の構成要素の動作を実行させるためのプログラム)を記憶し、当該プログラムを実行してもよい。別の例として、プロセッサを上記1つ以上の構成要素として機能させるためのプログラムがカーナビゲーション装置920にインストールされ、無線通信インタフェース933(例えば、BBプロセッサ934)及び/又はプロセッサ921が当該プログラムを実行してもよい。以上のように、上記1つ以上の構成要素を備える装置としてカーナビゲーション装置920又は上記モジュールが提供されてもよく、プロセッサを上記1つ以上の構成要素として機能させるためのプログラムが提供されてもよい。また、上記プログラムを記録した読み取り可能な記録媒体が提供されてもよい。
 また、図13に示したカーナビゲーション装置920において、例えば、図Zを参照して説明した無線通信部220は、無線通信インタフェース933(例えば、RF回路935)において実装されてもよい。また、アンテナ部210は、アンテナ937において実装されてもよい。また、記憶部230は、メモリ922において実装されてもよい。
 また、本開示に係る技術は、上述したカーナビゲーション装置920の1つ以上のブロックと、車載ネットワーク941と、車両側モジュール942とを含む車載システム(又は車両)940として実現されてもよい。車両側モジュール942は、車速、エンジン回転数又は故障情報などの車両側データを生成し、生成したデータを車載ネットワーク941へ出力する。
 <<5.まとめ>>
 以上、図1~図13を参照して、本開示の一実施形態について詳細に説明した。上記説明したように、本実施形態に係る基地局装置100は、基地局装置100を運用するオペレータとは異なるオペレータにより運用される他の基地局装置100に、これらのオペレータ間で共用可能な無線リソースのうち基地局装置100が優先的に利用可能な保障リソースの設定情報を送信する。設定情報が他の基地局装置100に送信されることにより、他の基地局装置100は、保障リソースの利用を制限する。これに伴い、基地局装置100は、保障リソースを優先的に利用することができる。このようにして、互いに異なるオペレータにより運用される複数の基地局装置が協調しながら無線リソースを共用することが可能となる。
 以上、添付図面を参照しながら本開示の好適な実施形態について詳細に説明したが、本開示の技術的範囲はかかる例に限定されない。本開示の技術分野における通常の知識を有する者であれば、請求の範囲に記載された技術的思想の範疇内において、各種の変更例または修正例に想到し得ることは明らかであり、これらについても、当然に本開示の技術的範囲に属するものと了解される。
 また、本明細書においてフローチャート及びシーケンス図を用いて説明した処理は、必ずしも図示された順序で実行されなくてもよい。いくつかの処理ステップは、並列的に実行されてもよい。また、追加的な処理ステップが採用されてもよく、一部の処理ステップが省略されてもよい。
 また、本明細書に記載された効果は、あくまで説明的または例示的なものであって限定的ではない。つまり、本開示に係る技術は、上記の効果とともに、または上記の効果に代えて、本明細書の記載から当業者には明らかな他の効果を奏しうる。
 なお、以下のような構成も本開示の技術的範囲に属する。
(1)
 基地局装置であって、
 前記基地局装置を運用する第1のオペレータとは異なる第2のオペレータにより運用される他の基地局装置に、前記第1のオペレータと前記第2のオペレータとの間で共用可能な無線リソースのうち前記基地局装置が優先的に利用可能な第1の保障リソースの第1の設定情報を送信する制御部、
を備える基地局装置。
(2)
 前記第1の設定情報は、前記第1の保障リソースの時間、周波数、又は前記第1の保障リソースの設定が有効な場所を示す情報の少なくともいずれかを含む、前記(1)に記載の基地局装置。
(3)
 前記第1の設定情報は、前記第1の保障リソースを用いて送受信される信号に対応する、前記第1の保障リソースの種類を示す情報を含む、前記(1)又は(2)に記載の基地局装置。
(4)
 前記第1の設定情報は、前記他の基地局装置に許容される前記第1の保障リソースへのアクセス手順に対応する、前記第1の保障リソースの種類を示す情報を含む、前記(1)~(3)のいずれか一項に記載の基地局装置。
(5)
 前記制御部は、前記第1の設定情報を無線信号に含めて前記他の基地局装置に送信する、前記(1)~(4)のいずれか一項に記載の基地局装置。
(6)
 前記制御部は、前記第1の保障リソースを設定し、前記第1の設定情報を生成する、前記(1)~(5)のいずれか一項に記載の基地局装置。
(7)
 前記制御部は、前記基地局装置と通信する端末装置における、前記他の基地局装置からの信号の測定結果に基づいて、前記第1の保障リソースを設定する、前記(6)に記載の基地局装置。
(8)
 前記制御部は、前記他の基地局装置からの、前記第1の保障リソースを前記基地局装置が優先的に利用することを承諾するか否かを示す応答に基づいて、前記第1の保障リソースにおける信号の送受信を制御する、前記(1)~(7)のいずれか一項に記載の基地局装置。
(9)
 前記第1の保障リソースは、予め設定される、前記(1)~(8)のいずれか一項に記載の基地局装置。
(10)
 前記第1の保障リソースは、前記第1の保障リソースを用いた送受信を行うべき信号が発生した場合に、設定される、前記(1)~(9)のいずれか一項に記載の基地局装置。
(11)
 前記第1の保障リソースは、前記基地局装置が前記第1の保障リソースの利用に失敗した場合に、再度設定される、前記(1)~(10)のいずれか一項に記載の基地局装置。
(12)
 前記制御部は、前記無線リソースのうち前記他の基地局装置が優先的に利用可能な第2の保障リソースの第2の設定情報を前記他の基地局装置から受信し、受信した前記第2の設定情報に基づいて、前記第2の保障リソースの利用を制限する、前記(1)~(11)のいずれか一項に記載の基地局装置。
(13)
 前記制御部は、利用中の前記無線リソースと前記第2の保障リソースとが重複する場合、重複部分における前記無線リソースの利用を停止する、前記(12)に記載の基地局装置。
(14)
 前記制御部は、前記第2の保障リソースを利用しない、前記(13)に記載の基地局装置。
(15)
 前記制御部は、前記第2の保障リソースを、キャリアセンスを行った上で利用する、前記(13)に記載の基地局装置。
(16)
 前記制御部は、前記第2の保障リソースの設定のための交渉を前記他の基地局装置と行う、前記(12)~(15)のいずれか一項に記載の基地局装置。
(17)
 前記制御部は、前記第2の保障リソースとして設定しないことを要求する又は前記第2の保障リソースとして設定することを許容する前記無線リソースを示す情報を前記他の基地局装置に送信する、前記(16)に記載の基地局装置。
(18)
 前記制御部は、前記第2の保障リソースの変更を要求する情報を前記他の基地局装置に送信する、前記(16)又は(17)に記載の基地局装置。
(19)
 第1のオペレータと前記第1のオペレータとは異なる第2のオペレータとの間で共用可能な無線リソースを用いて、前記第1のオペレータにより運用される基地局装置と通信し、前記第2のオペレータにより運用される他の基地局装置からの信号の測定結果を前記基地局装置に報告する制御部、
を備える端末装置。
(20)
 基地局装置により実行される方法であって、
 前記基地局装置を運用する第1のオペレータとは異なる第2のオペレータにより運用される他の基地局装置に、前記第1のオペレータと前記第2のオペレータとの間で共用可能な無線リソースのうち前記基地局装置が優先的に利用可能な第1の保障リソースの第1の設定情報を送信すること、
を含む方法。
 1   システム
 11  セル
 20  コアネットワーク
 30  PDN
 100  基地局装置
 102  部品
 110  アンテナ部
 120  無線通信部
 130  ネットワーク通信部
 140  記憶部
 150  制御部
 151  設定部
 153  通信処理部
 200  端末装置
 210  アンテナ部
 220  無線通信部
 230  記憶部
 240  制御部
 241  測定報告部
 243  通信処理部

Claims (20)

  1.  基地局装置であって、
     前記基地局装置を運用する第1のオペレータとは異なる第2のオペレータにより運用される他の基地局装置に、前記第1のオペレータと前記第2のオペレータとの間で共用可能な無線リソースのうち前記基地局装置が優先的に利用可能な第1の保障リソースの第1の設定情報を送信する制御部、
    を備える基地局装置。
  2.  前記第1の設定情報は、前記第1の保障リソースの時間、周波数、又は前記第1の保障リソースの設定が有効な場所を示す情報の少なくともいずれかを含む、請求項1に記載の基地局装置。
  3.  前記第1の設定情報は、前記第1の保障リソースを用いて送受信される信号に対応する、前記第1の保障リソースの種類を示す情報を含む、請求項1に記載の基地局装置。
  4.  前記第1の設定情報は、前記他の基地局装置に許容される前記第1の保障リソースへのアクセス手順に対応する、前記第1の保障リソースの種類を示す情報を含む、請求項1に記載の基地局装置。
  5.  前記制御部は、前記第1の設定情報を無線信号に含めて前記他の基地局装置に送信する、請求項1に記載の基地局装置。
  6.  前記制御部は、前記第1の保障リソースを設定し、前記第1の設定情報を生成する、請求項1に記載の基地局装置。
  7.  前記制御部は、前記基地局装置と通信する端末装置における、前記他の基地局装置からの信号の測定結果に基づいて、前記第1の保障リソースを設定する、請求項6に記載の基地局装置。
  8.  前記制御部は、前記他の基地局装置からの、前記第1の保障リソースを前記基地局装置が優先的に利用することを承諾するか否かを示す応答に基づいて、前記第1の保障リソースにおける信号の送受信を制御する、請求項1に記載の基地局装置。
  9.  前記第1の保障リソースは、予め設定される、請求項1に記載の基地局装置。
  10.  前記第1の保障リソースは、前記第1の保障リソースを用いた送受信を行うべき信号が発生した場合に、設定される、請求項1に記載の基地局装置。
  11.  前記第1の保障リソースは、前記基地局装置が前記第1の保障リソースの利用に失敗した場合に、再度設定される、請求項1に記載の基地局装置。
  12.  前記制御部は、前記無線リソースのうち前記他の基地局装置が優先的に利用可能な第2の保障リソースの第2の設定情報を前記他の基地局装置から受信し、受信した前記第2の設定情報に基づいて、前記第2の保障リソースの利用を制限する、請求項1に記載の基地局装置。
  13.  前記制御部は、利用中の前記無線リソースと前記第2の保障リソースとが重複する場合、重複部分における前記無線リソースの利用を停止する、請求項12に記載の基地局装置。
  14.  前記制御部は、前記第2の保障リソースを利用しない、請求項13に記載の基地局装置。
  15.  前記制御部は、前記第2の保障リソースを、キャリアセンスを行った上で利用する、請求項13に記載の基地局装置。
  16.  前記制御部は、前記第2の保障リソースの設定のための交渉を前記他の基地局装置と行う、請求項12に記載の基地局装置。
  17.  前記制御部は、前記第2の保障リソースとして設定しないことを要求する又は前記第2の保障リソースとして設定することを許容する前記無線リソースを示す情報を前記他の基地局装置に送信する、請求項16に記載の基地局装置。
  18.  前記制御部は、前記第2の保障リソースの変更を要求する情報を前記他の基地局装置に送信する、請求項16に記載の基地局装置。
  19.  第1のオペレータと前記第1のオペレータとは異なる第2のオペレータとの間で共用可能な無線リソースを用いて、前記第1のオペレータにより運用される基地局装置と通信し、前記第2のオペレータにより運用される他の基地局装置からの信号の測定結果を前記基地局装置に報告する制御部、
    を備える端末装置。
  20.  基地局装置により実行される方法であって、
     前記基地局装置を運用する第1のオペレータとは異なる第2のオペレータにより運用される他の基地局装置に、前記第1のオペレータと前記第2のオペレータとの間で共用可能な無線リソースのうち前記基地局装置が優先的に利用可能な第1の保障リソースの第1の設定情報を送信すること、
    を含む方法。
PCT/JP2018/038415 2018-01-11 2018-10-16 基地局装置、端末装置及び方法 WO2019138630A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US16/959,742 US11357016B2 (en) 2018-01-11 2018-10-16 Base station device, terminal device, and method
EP18899502.1A EP3739926A4 (en) 2018-01-11 2018-10-16 BASE STATION DEVICE, TERMINAL DEVICE, AND PROCESS

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-002387 2018-01-11
JP2018002387 2018-01-11

Publications (1)

Publication Number Publication Date
WO2019138630A1 true WO2019138630A1 (ja) 2019-07-18

Family

ID=67218258

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/038415 WO2019138630A1 (ja) 2018-01-11 2018-10-16 基地局装置、端末装置及び方法

Country Status (3)

Country Link
US (1) US11357016B2 (ja)
EP (1) EP3739926A4 (ja)
WO (1) WO2019138630A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021107609A1 (en) 2019-11-29 2021-06-03 Samsung Electronics Co., Ltd. Method and apparatus for sharing frequency resource dynamically in wireless communication system
JP7413471B1 (ja) 2022-09-09 2024-01-15 株式会社東芝 自律分散システムおよび情報交換方法

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111819884B (zh) * 2018-04-04 2022-05-31 华为技术有限公司 一种通信方法及装置
US11751257B2 (en) * 2019-03-01 2023-09-05 Qualcomm Incorporated Technology neutral coexistence and high priority traffic in unlicensed frequency bands
JP7311991B2 (ja) * 2019-03-26 2023-07-20 キヤノン株式会社 通信装置、通信装置の制御方法、プログラム
JP7340941B2 (ja) 2019-03-26 2023-09-08 キヤノン株式会社 通信装置、制御方法、及びプログラム
US11799567B2 (en) * 2020-12-16 2023-10-24 Qualcomm Incorporated Beam-specific RSSI and CO for NR-U

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010206820A (ja) * 2003-08-06 2010-09-16 Panasonic Corp 通信システムの親局及び親局が実施する方法
WO2016121672A1 (ja) * 2015-01-30 2016-08-04 京セラ株式会社 ユーザ端末及び基地局
WO2017130494A1 (ja) * 2016-01-27 2017-08-03 ソニー株式会社 通信制御装置、通信制御方法、プログラム及び無線通信装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103763708B (zh) 2014-01-23 2017-07-14 上海无线通信研究中心 一种网络频谱共享方法
US9544898B2 (en) 2014-07-10 2017-01-10 Alcatel Lucent Coordinating base station downlink transmissions in unlicensed frequency bands
JP2017501632A (ja) * 2014-09-29 2017-01-12 日本電気株式会社 非ライセンス帯域におけるシグナリング送信のための方法及びデバイス
JP6610854B2 (ja) 2014-12-25 2019-11-27 ダイハツ工業株式会社 排気管

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010206820A (ja) * 2003-08-06 2010-09-16 Panasonic Corp 通信システムの親局及び親局が実施する方法
WO2016121672A1 (ja) * 2015-01-30 2016-08-04 京セラ株式会社 ユーザ端末及び基地局
WO2017130494A1 (ja) * 2016-01-27 2017-08-03 ソニー株式会社 通信制御装置、通信制御方法、プログラム及び無線通信装置

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"Study on NR-based Access to Unlicensed Spectrum", 3GPP TSG RAN MEETING # 77, 11 September 2017 (2017-09-11)
See also references of EP3739926A4

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021107609A1 (en) 2019-11-29 2021-06-03 Samsung Electronics Co., Ltd. Method and apparatus for sharing frequency resource dynamically in wireless communication system
CN114762426A (zh) * 2019-11-29 2022-07-15 三星电子株式会社 用于在无线通信系统中动态共享频率资源的方法和设备
EP4042796A4 (en) * 2019-11-29 2022-12-14 Samsung Electronics Co., Ltd. METHOD AND APPARATUS FOR DYNAMIC SHARING OF A FREQUENCY RESOURCE IN A WIRELESS COMMUNICATION SYSTEM
US11659403B2 (en) 2019-11-29 2023-05-23 Samsung Electronics Co., Ltd Method and apparatus for sharing frequency resource dynamically in wireless communication system
JP7413471B1 (ja) 2022-09-09 2024-01-15 株式会社東芝 自律分散システムおよび情報交換方法

Also Published As

Publication number Publication date
EP3739926A4 (en) 2021-01-06
EP3739926A1 (en) 2020-11-18
US11357016B2 (en) 2022-06-07
US20200374892A1 (en) 2020-11-26

Similar Documents

Publication Publication Date Title
WO2019138658A1 (ja) 端末装置、基地局装置及び方法
WO2019138630A1 (ja) 基地局装置、端末装置及び方法
EP3324566B1 (en) Electronic equipment in wireless communication system
CN110959303B (zh) 通信设备和通信方法
JP7019949B2 (ja) リレー通信装置、基地局、方法及び記録媒体
KR102564327B1 (ko) 통신 장치 및 단말 장치
US20230262771A1 (en) Electronic device for wireless communication system, method and storage medium
JP2021168498A (ja) 無線通信装置、基地局装置及び通信方法
KR101828876B1 (ko) 무선 통신 방법, 무선 통신 시스템, 무선 기지국 및 무선 단말기
CN112956273B (zh) 基站、终端设备、方法和记录介质
TWI830778B (zh) 通訊裝置、通訊方法、及非暫時性電腦可讀取之儲存裝置
WO2020031926A1 (ja) 無線通信装置、無線通信方法及びコンピュータプログラム
WO2016175254A1 (ja) 無線通信システム及び無線通信方法
US20220094466A1 (en) Communication device, control device, and communication system
EP3860206A1 (en) Communication device
WO2019138753A1 (ja) 基地局、端末装置、方法及び記録媒体
WO2024034227A1 (ja) 通信装置、及び、通信方法
CN118524461A (zh) 侧行链路通信方法和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18899502

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018899502

Country of ref document: EP

Effective date: 20200811

NENP Non-entry into the national phase

Ref country code: JP