WO2019138562A1 - Radio communication device - Google Patents

Radio communication device Download PDF

Info

Publication number
WO2019138562A1
WO2019138562A1 PCT/JP2018/000730 JP2018000730W WO2019138562A1 WO 2019138562 A1 WO2019138562 A1 WO 2019138562A1 JP 2018000730 W JP2018000730 W JP 2018000730W WO 2019138562 A1 WO2019138562 A1 WO 2019138562A1
Authority
WO
WIPO (PCT)
Prior art keywords
dmrs
symbols
mapped
mapping
resource allocation
Prior art date
Application number
PCT/JP2018/000730
Other languages
French (fr)
Japanese (ja)
Inventor
英之 諸我
聡 永田
佑一 柿島
Original Assignee
株式会社Nttドコモ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Nttドコモ filed Critical 株式会社Nttドコモ
Priority to JP2019564255A priority Critical patent/JPWO2019138562A1/en
Priority to PCT/JP2018/000730 priority patent/WO2019138562A1/en
Publication of WO2019138562A1 publication Critical patent/WO2019138562A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation

Definitions

  • the present invention relates to a wireless communication device.
  • LTE Long Term Evolution
  • UMTS Universal Mobile Telecommunications System
  • Non-Patent Document 1 the successor system of LTE is also considered for the purpose of the further broadbandization and speeding-up from LTE.
  • successor systems of LTE for example, LTE-A (LTE-Advanced), FRA (Future Radio Access), 5G (5th generation mobile communication system), 5G + (5G plus), New-RAT (Radio Access Technology), etc. There is something called.
  • a demodulation reference signal for demodulating a data signal is defined, and the specification of mapping of demodulation reference signals to resources is in progress (Refer nonpatent literature 2).
  • the demodulation reference signal may be denoted as “DMRS” (Demodulation Reference Signal), “DM-RS”, or “demodulation RS”.
  • additional DMRS is performed when DMRS (front-loaded DMRS, first demodulation reference signal) is mapped to the first symbol of the resource allocation unit of the radio resource.
  • DMRS front-loaded DMRS, first demodulation reference signal
  • the mapping position of the (reference signal) is partially defined.
  • One aspect of the present invention is to define the mapping of an additional DMRS when the DMRS is mapped to the leading symbol of a resource allocation unit of a radio resource.
  • a wireless communication apparatus includes a transmitter configured to transmit a downlink radio signal in which a first demodulation reference signal is mapped to a leading symbol of a resource allocation unit, the number of symbols of the resource allocation unit, and the resource allocation unit And a controller configured to control a mapping position of the second demodulation reference signal in the resource allocation unit based on the number of second demodulation reference signals to be mapped in If the number of symbols of the resource allocation unit is 8 or more and the number of the second demodulation reference signals is 1 or more, one of the second symbols within 3 symbols from the last symbol of the resource allocation unit Map the demodulation reference signal for.
  • a new configuration is provided that defines the mapping of the additional DMRS when the DMRS is mapped to the leading symbol of the resource allocation unit of the radio resource.
  • mapping position of DMRS in UL It is a figure explaining the mapping position of DMRS in UL. It is a figure showing an example of the mapping position of DMRS in UL-DMRS-add-pos "2" of mapping type B. It is a figure explaining the mapping position of D-DMRS in UL. It is a figure explaining an example of frequency hopping of DMRS of UL. It is a figure explaining the mapping position of DMRS in UL. It is a figure which shows an example of the hardware constitutions of the wireless base station 10 which concerns on one embodiment of this invention, and the user terminal 20.
  • the wireless communication system includes the wireless base station 10 shown in FIG. 1 and the user terminal 20 shown in FIG.
  • the radio base station 10 is also called, for example, an eNB (eNodeB) or a gNB (gNodeB).
  • the user terminal 20 is also called, for example, a UE (User Equipment).
  • the user terminal 20 is wirelessly connected (wireless access) to the wireless base station 10.
  • the radio base station 10 transmits a downlink (DL: Downlink) control signal to the user terminal 20 using a downlink control channel (for example, PDCCH: Physical Downlink Control Channel).
  • the radio base station 10 transmits a DL data signal and DMRS to the user terminal 20 using a downlink data channel (for example, downlink shared channel: PDSCH: Physical Downlink Shared Channel).
  • DL Downlink
  • PDSCH Physical Downlink Shared Channel
  • the user terminal 20 performs uplink with the radio base station 10 using an uplink control channel (for example, PUCCH: Physical Uplink Control Channel) or an uplink data channel (for example, uplink shared channel: PUSCH: Physical Uplink Shared Channel). Transmit a link (UL: Uplink) control signal.
  • the user terminal 20 transmits a UL data signal and a DMRS to the radio base station 10 using an uplink data channel (for example, uplink shared channel: PUSCH: Physical Uplink Shared Channel).
  • mapping type A and mapping type B are set in the mapping of DMRS. Then, in the wireless communication system in the present embodiment, in each of the two mapping types, some positions of DMRS are defined, and one of them is set.
  • the downlink channel and uplink channel which the wireless base station 10 and the user terminal 20 transmit and receive are not limited to said PDCCH, PDSCH, PUCCH, PUSCH etc.
  • the downlink channel and uplink channel transmitted and received by the radio base station 10 and the user terminal 20 may be, for example, another channel such as PBCH (Physical Broadcast Channel) or RACH (Random Access Channel).
  • PBCH Physical Broadcast Channel
  • RACH Random Access Channel
  • the DL and / or UL signal waveforms generated in the radio base station 10 and the user terminal 20 may be signal waveforms based on orthogonal frequency division multiplexing (OFDM) modulation.
  • the DL and / or UL signal waveforms may be signal waveforms based on SC-FDMA (Single Carrier-Frequency Division Multiple Access) or DFT-S-OFDM (DFT-Spread-OFDM).
  • the DL and / or UL signal waveforms may be other signal waveforms.
  • the description of components for example, an IFFT processing unit, a CP adding unit, a CP removing unit, an FFT processing unit, etc. for generating a signal waveform is omitted.
  • FIG. 1 is a block diagram showing an example of the entire configuration of the radio base station 10 according to the present embodiment.
  • the radio base station 10 includes a scheduler 101, a transmission signal generation unit 102, an encoding / modulation unit 103, a mapping unit 104, a transmission unit 105, an antenna 106, a reception unit 107, a control unit 108, and a channel.
  • An estimation unit 109 and a demodulation / decoding unit 110 are included.
  • the radio base station 10 may have a configuration of MU-MIMO (Multi-User Multiple-Input Multiple-Output) in which communication is simultaneously performed with a plurality of user terminals 20.
  • MU-MIMO Multi-User Multiple-Input Multiple-Output
  • the radio base station 10 may have a configuration of Single-User Multiple-Input Multiple-Output (SU-MIMO) that communicates with one user terminal 20.
  • SU-MIMO Single-User Multiple-Input Multiple-Output
  • the radio base station 10 may have both SU-MIMO and MU-MIMO configurations.
  • the scheduler 101 performs scheduling (for example, resource allocation and port allocation) of DL signals (DL data signal, DL control signal, DMRS, etc.).
  • the scheduler 101 also performs scheduling (for example, resource allocation and port allocation) of UL signals (UL data signal, UL control signal, DMRS, etc.).
  • the scheduler 101 also sets the DMRS mapping type in the DL signal and the UL signal. Mapping types include mapping type A and mapping time B, which will be described later.
  • the scheduler 101 maps the DMRS to predetermined symbols determined in each mapping type.
  • the information related to the above DMRS mapping may be described as setting information.
  • the setting information may include other information.
  • the setting information may be included in, for example, downlink control information (DCI).
  • DCI downlink control information
  • the scheduler 101 outputs scheduling information including setting information to the transmission signal generation unit 102 and the mapping unit 104.
  • the scheduler 101 may be regarded as an example of a control unit that controls the position at which the DMRS is mapped to the DL signal, as described later.
  • the scheduler 101 may perform, for example, MCS (Modulation and Coding Scheme) (coding rate, modulation scheme, etc.) of the DL data signal and the UL data signal based on the channel quality between the radio base station 10 and the user terminal 20.
  • MCS Modulation and Coding Scheme
  • the scheduler 101 outputs the information on the set MCS to the transmission signal generation unit 102 and the coding / modulation unit 103.
  • MCS is not limited when the wireless base station 10 sets, and the user terminal 20 may set it.
  • the radio base station 10 may receive MCS information from the user terminal 20 (not shown).
  • the transmission signal generation unit 102 generates a transmission signal (including a DL data signal and a DL control signal).
  • the DL control signal includes DCI including scheduling information (for example, setting information) output from the scheduler 101 or MCS information.
  • the transmission signal generation unit 102 outputs the generated transmission signal to the coding / modulation unit 103.
  • the encoding / modulation unit 103 performs encoding processing and modulation processing on the transmission signal input from the transmission signal generation unit 102 based on, for example, the MCS information input from the scheduler 101. Encoding / modulation section 103 outputs the modulated transmission signal to mapping section 104.
  • mapping section 104 Based on the scheduling information (for example, DL resource allocation and setting information) input from scheduler 101, mapping section 104 transmits a predetermined radio resource (DL resource) from transmission signal input from encoding / modulation section 103. Map to). Also, the mapping unit 104 maps the DMRS to a predetermined radio resource (DL resource) based on the scheduling information. Mapping section 104 outputs the DL signal mapped to the radio resource to transmitting section 105.
  • DL resource DL resource
  • mapping section 104 Based on the scheduling information (for example, DL resource allocation and setting information) input from scheduler 101, mapping section 104 transmits a predetermined radio resource (DL resource) from transmission signal input from encoding / modulation section 103. Map to). Also, the mapping unit 104 maps the DMRS to a predetermined radio resource (DL resource) based on the scheduling information. Mapping section 104 outputs the DL signal mapped to the radio resource to transmitting section 105.
  • the transmission unit 105 performs transmission processing such as up-conversion and amplification on the DL signal input from the mapping unit 104, and transmits a radio frequency signal (DL signal) from the antenna 106.
  • transmission processing such as up-conversion and amplification on the DL signal input from the mapping unit 104
  • DL signal radio frequency signal
  • the reception unit 107 performs reception processing such as amplification and down conversion on the radio frequency signal (UL signal) received by the antenna 106, and outputs the UL signal to the control unit 108.
  • the control unit 108 separates (demaps) the UL data signal and the DMRS from the UL signal input from the receiving unit 107 based on the scheduling information (UL resource allocation) input from the scheduler 101. Then, control section 108 outputs the UL data signal to demodulation / decoding section 110 and outputs DMRS to channel estimation section 109.
  • Channel estimation section 109 performs channel estimation using the DMRS of the UL signal, and outputs a channel estimation value that is the estimation result to demodulation and decoding section 110.
  • Demodulation / decoding section 110 performs demodulation and decoding processing on the UL data signal input from control section 108 based on the channel estimation value input from channel estimation section 109.
  • the demodulation / decoding unit 110 transfers the UL data signal after demodulation to an application unit (not shown).
  • the application unit performs processing on a layer higher than the physical layer or the MAC layer.
  • the block including the scheduler 101, the transmission signal generation unit 102, the encoding / modulation unit 103, the mapping unit 104, and the transmission unit 105 may be regarded as an example of a wireless transmission apparatus provided in the wireless base station 10.
  • the block including the receiving unit 107, the control unit 108, the channel estimation unit 109, and the demodulation / decoding unit 110 may be considered as an example of a wireless reception apparatus provided in the wireless base station 10.
  • the block including the control unit 108, the channel estimation unit 109, and the demodulation / decoding unit 110 is a processing unit that receives and processes a UL signal using DMRS mapped in the time domain of the UL signal. You can think of it as an example of
  • FIG. 2 is a block diagram showing an example of the entire configuration of the user terminal 20 according to the present embodiment.
  • the user terminal 20 includes an antenna 201, a reception unit 202, a control unit 203, a channel estimation unit 204, a demodulation / decoding unit 205, a transmission signal generation unit 206, an encoding / modulation unit 207, and a mapping unit 208. And the transmission unit 209.
  • the reception unit 202 performs reception processing such as amplification and down conversion on the radio frequency signal (DL signal) received by the antenna 201, and outputs the DL signal to the control unit 203.
  • the DL signal includes at least a DL data signal and DMRS.
  • the control unit 203 separates (demaps) the DL control signal and the DMRS from the DL signal input from the receiving unit 202. Then, the control unit 203 outputs the DL control signal to the demodulation / decoding unit 205, and outputs the DMRS to the channel estimation unit 204.
  • the control unit 203 can separate DMRSs based on the setting information of the DMRSs.
  • Channel estimation section 204 performs channel estimation using the separated DMRS, and outputs a channel estimation value that is the estimation result to demodulation and decoding section 205.
  • the demodulation / decoding unit 205 demodulates the DL control signal input from the control unit 203. Further, the demodulation / decoding unit 205 performs a decoding process (for example, a blind detection process) on the DL control signal after demodulation. Demodulation / decoding section 205 outputs scheduling information (for example, DL / UL resource allocation) addressed to the own apparatus obtained by decoding the DL control signal to control section 203 and mapping section 208, for the UL data signal. The MCS information is output to the encoding / modulation unit 207.
  • a decoding process for example, a blind detection process
  • Demodulation / decoding section 205 outputs scheduling information (for example, DL / UL resource allocation) addressed to the own apparatus obtained by decoding the DL control signal to control section 203 and mapping section 208, for the UL data signal.
  • the MCS information is output to the encoding / modulation unit 207.
  • demodulation / decoding section 205 uses the channel estimation value input from channel estimation section 204 based on the MCS information for the DL data signal contained in the DL control signal input from control section 203, and uses control channel 203 from control section 203. Demodulation and decoding are performed on the input DL data signal. Also, the demodulation / decoding unit 205 transfers the demodulated DL data signal to an application unit (not shown). The application unit performs processing on a layer higher than the physical layer or the MAC layer.
  • the transmission signal generation unit 206 generates a transmission signal (including a UL data signal or a UL control signal), and outputs the generated transmission signal to the encoding / modulation unit 207.
  • the encoding / modulation unit 207 performs encoding processing and modulation processing on the transmission signal input from the transmission signal generation unit 206 based on, for example, the MCS information input from the demodulation / decoding unit 205. Coding / modulation section 207 outputs the modulated transmission signal to mapping section 208.
  • the mapping unit 208 maps the transmission signal input from the coding / modulation unit 207 to a predetermined radio resource (UL resource) based on the scheduling information (UL resource allocation) input from the demodulation / decoding unit 205. . Also, the mapping unit 208 maps the DMRS to a predetermined radio resource (UL resource) based on the scheduling information.
  • the mapping of the DMRS to the radio resource may be controlled by, for example, the control unit 203.
  • the control unit 203 may regard the position at which the DMRS is mapped to the UL signal as an example of a control unit that hops to different frequencies at different times.
  • the transmitting unit 209 performs transmission processing such as up-conversion and amplification on the UL signal (including at least the UL data signal and the DMRS) input from the mapping unit 208, and transmits a radio frequency signal (UL signal) from the antenna 201. Send.
  • the block including the transmission signal generation unit 206, the encoding / modulation unit 207, the mapping unit 208, and the transmission unit 209 may be considered as an example of a wireless transmission apparatus provided in the user terminal 20.
  • the block including the reception unit 202, the control unit 203, the channel estimation unit 204, and the demodulation / decoding unit 205 may be considered as an example of a wireless reception apparatus provided in the user terminal 20.
  • the block including the control unit 203, the channel estimation unit 204, and the demodulation / decoding unit 205 is a processing unit that receives and processes a DL signal using DMRS mapped in the time domain of the DL signal. You can think of it as an example of
  • a front-loaded DMRS is used as an example of the DMRS.
  • the front-loaded DMRSs are mapped forward in the time direction in slots, which are resource allocation units (or may be referred to as resource units and subframes, etc.).
  • the first DMRS in the time direction mapped to the slots is called front-loaded DMRS.
  • the forward mapping of the DMRS can reduce the processing time required for channel estimation and demodulation processing in the wireless communication system.
  • front-loaded DMRS may be described as FL-DMRS, front-load DMRS, or a first demodulation reference signal.
  • mapping type of DMRS is divided into mapping type A and mapping type B according to the mapping position of FL-DMRS.
  • mapping type A and mapping type B according to the mapping position of FL-DMRS.
  • FIG. 3A is a diagram for explaining mapping type A of DMRS.
  • the slot shown in FIG. 3A has, for example, a configuration in which 168 resource elements (RE: Resource Element) are aligned in the time direction and 14 in the frequency direction.
  • RE resource elements
  • One RE is a radio resource area defined by one symbol and one subcarrier.
  • One slot consists of 14 symbols and 12 subcarriers.
  • slot 14 symbols in the time direction of RU are referred to as SB0 to SB13 in order from the left. Also, 12 subcarriers in the frequency direction of RU are called SC0 to SC11 in order from the bottom.
  • the definition of slot is not limited to the above. For example, the number of symbols in a slot may be less than fourteen. Also, for example, the number of subcarriers in the slot may be less than 11 and may be 13 or more.
  • the PDCCH is mapped to two symbols SB0 and SB1 at the head of the slot.
  • the PDCCH is mapped to three symbols SB0, SB1, and SB2 at the head of the slot.
  • the PDCCH is mapped to two symbols SB0 and SB1 at the head of the slot.
  • the mapping of PUCCH in the UL signal may be the same as PDCCH.
  • mapping type A the FL-DMRS is mapped to the third symbol (SB2) or the fourth symbol (SB3) of the slot. That is, FL-DMRSs are mapped after PDCCH symbols in the time direction.
  • the FL-DMRS is mapped to SB2.
  • the PDCCH is mapped to three symbols SB0, SB1 and SB2, the FL-DMRS is mapped to SB3.
  • An additional DMRS may be mapped behind the time direction of the FL-DMRS.
  • the additional DMRS is mapped to SB11.
  • the additional DMRS can, for example, suppress DMRS degradation based on high doppler, or extend the DMRS coverage.
  • the additional DMRS may be described as an A-DMRS or a second demodulation reference signal.
  • FIG. 3B is a diagram for explaining mapping type B of DMRS.
  • the FL-DMRS is mapped to the third symbol (SB2) or the fourth symbol (SB3) of the slot.
  • SB2 the third symbol
  • SB3 the fourth symbol
  • FL-DMRS is mapped to the leading symbol of the slot. That is, as shown in FIG. 3B, FL-DMRS is mapped to SB0.
  • PDCCH or PUCCH is not mapped to the slot. If the FL-DMRS is mapped to the leading symbol of the slot, the PDCCH or PUCCH is mapped to another slot. Further, in the example of FIG. 3B, A-DMRS is mapped to SB12.
  • FIG. 3A and FIG. 3B illustrate the case where the number of symbols of A-DMRS is one, in this embodiment, the number of symbols of A-DMRS is not limited to one, and a plurality of symbols are also used. is there. Moreover, although the case where DMRS is mapped to a continuous subcarrier is illustrated in FIG. 3A and 3B, DMRS may be mapped discontinuously to a subcarrier in this Embodiment.
  • mapping positions of DMRS are defined.
  • mapping position of DMRS including A-DMRS will be described.
  • FIG. 4 is a diagram for explaining the mapping position of DMRS in the DL.
  • “Duration of PDSCH transmission” illustrated in FIG. 4 indicates the number of symbols constituting PDCCH and PDSCH in mapping type A.
  • “Duration of PDSCH transmission” indicates the number of symbols constituting PDSCH in mapping type B.
  • the number of symbols constituting PDSCH is variable.
  • the number of symbols constituting the PDCCH may be any of 1 to 3.
  • mapping position of DMRS in DL is divided into two types, mapping type A and mapping type B, as shown in “PDSCH mapping type A” and “PDSCH mapping type B” in FIG. 4. Then, as shown in “DL-DMRS-add-pos” in FIG. 4, in each mapping type, the position of A-DMRS in each of four cases “0, 1, 2, 3” is defined.
  • “0, 1, 2, 3” shown in the lower column of “DL-DMRS-add-pos” indicates the number of symbols of A-DMRS mapped to PDSCH. For example, “0” indicates that A-DMRS is not mapped to PDSCH. “1” indicates that the number of symbols of A-DMRS mapped to PDSCH is one. In other words, FL-DMRS and one symbol A-DMRS are mapped to PDSCH. “2” indicates that the number of A-DMRS symbols mapped to PDSCH is two. In other words, in the PDSCH, the FL-DMRS and the two-symbol A-DMRS are mapped. “3” indicates that the number of A-DMRS symbols mapped to PDSCH is three. In other words, FL-DMRS and 3-symbol A-DMRS are mapped to PDSCH.
  • “L 0 ” and the numbers shown in the bold frame A1 of FIG. 4 indicate the positions of symbols to which the DMRS is mapped.
  • Mapping type A “l 0 ” takes one of the values “2” and “3”.
  • Mapping type B “l 0 ” takes a value of “0”. That is, “l 0 ” indicates the symbol position to which the FL-DMRS is mapped (see FL-DMRS in FIGS. 3A and 3B).
  • the numbers shown in the bold frame A1 in FIG. 4 indicate the positions of symbols to which A-DMRSs are mapped.
  • the position of the DMRS of each mapping type is defined by the number of symbols constituting the PDSCH. For example, (if the Duration of PDSCH Transmission shown in Fig. 4 of "11") number of symbols constituting the PDSCH is the case of "11", the mapping type A, the symbols of "l 0", the “l 0, 9” The symbol is mapped to one of the symbols “l 0 , 6, 9”. Further, for example, (if the Duration of PDSCH Transmission shown in Fig. 4 of "12") when the number of symbols constituting the PDSCH is "12", the mapping type B, a symbol of "l 0", "l 0, 10 The symbol is mapped to one of the symbols of “ 0 , 5, 10” and “1 0 , 3, 6, 9”.
  • mapping type A when the number of symbols constituting PDSCH is eight or less, A-DMRS is not mapped to PDSCH.
  • mapping type B when the number of symbols constituting PDSCH is 6 or less, A-DMRSs are not mapped to PDSCH.
  • the position of the DMRS in the DL is notified from the radio base station 10 to the user terminal 20 by, for example, DCI.
  • the radio base station 10 stores the information of the table shown in FIG. 4 in the memory as a table, for example.
  • the radio base station 10 refers to the table stored in the memory, and specifies the DMRS mapping type and any value of “0 to 3” of DL-DMRS-add-pos shown in FIG.
  • the user terminal 20 stores the information of the table shown in FIG. 4 in the memory as a table, for example.
  • the user terminal 20 refers to the memory table based on the DMRS mapping type specified from the radio base station 10 and any value of “0 to 3” of the DL-DMRS-add-pos, Determine the position of the symbol to which is mapped.
  • the radio base station 10 configures PDSCH with 12 symbols and maps DMRS to the position indicated by DL-DMRS-add-pos “2” of mapping type B (dotted line frame A2 in FIG. 4). reference).
  • FIG. 5 is a diagram showing an example of the mapping position of the DMRS in the DL-DMRS-add-pos “2” of the mapping type B. It is assumed that the radio base station 10 configures the PDSCH with 12 symbols (SB0 to SB11), and maps the DMRS at the position indicated by the DL-DMRS-add-pos “2” of the mapping type B (dotted line in FIG. 4). See frame A2). In this case, FL-DMRS is mapped to SB0 and A-DMRS is mapped to SB5 and SB10 as shown in FIG. 5, for example.
  • the radio base station 10 notifies the user terminal 20 of the mapping position of the DMRS in the DL, for example, using the DCI.
  • the radio base station 10 includes information of DL-DMRS-add-pos “2” of mapping type B in the DCI, and notifies the user terminal 20 of the information.
  • the user terminal 20 refers to the table stored in the memory (the information in the table shown in FIG. 4) based on the information of the DL-DMRS-add-pos “2” of the mapping type B included in the DCI. . Then, the user terminal 20, FD-DMRS to l 0-th symbol (SB0) is mapped, determining that A-DMRS is mapped to and SB5 and SB 10. The user terminal 20 can determine the number of symbols (12 symbols) constituting the PDSCH based on the scheduling information notified from the radio base station 10.
  • mapping position of the DMRS in the frame A3 of the dashed dotted line of the mapping type B shown in FIG. 4 is not defined. So, in this invention, the mapping position of DMRS in frame A3 of the dashed dotted line of mapping type B was specified.
  • the DMRSs within the dashed dotted line frame A3 shown in FIG. 4 are defined so that the symbol intervals to be mapped are equal intervals or close to equal intervals, and are mapped to symbols determined to some extent. For example, when DL-DMRS-add-pos is “2”, when Duration of PDSCH transmission is “2 n” and “2 n + 1” (n is any of 4, 5 and 6), The positions from the beginning of the A-DMRS slot are the same.
  • the last DMRS is defined to be mapped within the last 3 symbols of the symbols making up the PDSCH.
  • DMRS is defined to be mapped to both ends of PDSCH (one end is FL-DMRS and is mapped to the leading symbol) in the time direction.
  • DMRSs are mapped to PDSCHs at five symbol intervals. Further, as shown in FIG. 4, the DMRS is mapped (reused) to symbols determined as SB3 to SB6, SB8 to SB10, and SB12. Further, as shown in FIG. 5, in the time direction, the last DMRS (A-DMRS) is mapped to SB10 in the last three symbols SB9, SB10 and SB11 of 12 symbols constituting the PDSCH.
  • the DMRS mapping intervals to be equal intervals or close to equal intervals, it is possible to equalize the channel estimation accuracy in the PDSCH. Also, by mapping the DMRS to a certain fixed symbol, the collision between the DMRS and the data signal is avoided, and the probability of the collision between the DMRSs is increased, and the DMRS and the data signal collide, compared to the DMRS. It is possible to improve on average the performance of channel estimation when the two collide with each other. Also, by mapping the last DMRS in the last 3 symbols of the symbols constituting the PDSCH in the time direction, it is possible to improve the interpolation accuracy of channel estimation over the PDSCH.
  • D-DMRS in DL DMRSs are mapped two consecutive symbols.
  • FL-DMRS is mapped to two symbols of the third and fourth and (SB2, SB3) consecutively, or two of the fourth and fifth and (SB3, SB4) It is mapped continuously to the symbol.
  • A-DMRSs are mapped to two symbols in succession.
  • mapping type A FL-DMRS is mapped to two symbols of first, second and (SB0, SB1) in succession. Also, A-DMRSs are mapped to two symbols in succession.
  • FIG. 6 is a diagram for explaining the mapping position of D-DMRS in the DL.
  • the view of the table shown in FIG. 6 is the same as that of FIG. However, the DMRS is mapped to a symbol indicated by “l 0 ” and a number shown in the bold line frame A11, and a symbol (continuous in the time direction) following the symbol.
  • mapping type of D-DMRS is mapping type B
  • PDCSH consists of 12 symbols.
  • DL-DMRS-add-pos is “1”.
  • FL-DMRS is mapped to SB0 and SB1
  • A-DMRS is mapped to SB9 and SB10 (see dotted frame A12 in FIG. 6).
  • FIG. 7 is a diagram showing an example of the mapping position of the DMRS in the DL-DMRS-add-pos “1” of the mapping type B. It is assumed that the radio base station 10 configures the PDSCH with 12 symbols (SB0 to SB11), and maps the DMRS at the position indicated by the DL-DMRS-add-pos “1” of the mapping type B (dotted line in FIG. 6). See frame A12). In this case, FL-DMRS is mapped to SB0 and SB1, and A-DMRS is mapped to SB9 and SB10, as shown in FIG. 7, for example.
  • the mapping position of the DMRS is notified from the radio base station 10 to the user terminal 20 as in the single DMRS.
  • the user terminal 20 stores the information of the table shown in FIG. 6 in the memory as a table, for example.
  • the user terminal 20 refers to the memory table based on the DMRS mapping type designated from the radio base station 10 and any value of “0, 1” of DL-DMRS-add-pos, and D -Determine (acquire) the position of the symbol to which DMRS is mapped.
  • mapping position of the DMRS in the frame A13 of the dashed dotted line of the mapping type B shown in FIG. 6 is not defined. So, in this invention, the mapping position of DMRS in frame A13 of the dashed dotted line of mapping type B was specified.
  • the DMRSs within the dashed-dotted line frame A13 shown in FIG. 6 are defined to be mapped to symbols determined to some extent. Also, in the time direction, the last DMRS is defined to be mapped within the last 3 symbols of the symbols making up the PDSCH. Also, when DL-DMRS-add-pos is “0, 1” or “2”, the position from the beginning of the A-DMRS slot where the Duration of PDSCH transmission is “10” or more is mapping type A And the mapping type B are identical.
  • two SBs 9 are reused in DMRS mapping.
  • the last DMRS (A-DMRS) is mapped to SB10 in the last three symbols SB9, SB10 and SB11 of the 12 symbols constituting the PDSCH.
  • mapping the DMRS to a certain fixed symbol the performance of channel estimation when DMRSs collide can be improved on average compared to when DMRSs collide with data. Also, by mapping the last DMRS in the last three symbols of the symbols that make up the PDSCH in the time direction, it is possible to improve the interpolation accuracy of channel estimation over the PDSCH.
  • one D-DMRS A-DMRS is defined. That is, in A-DMRS of D-DMRS, DL-DMRS-add-pos defines “0, 1” and does not define 2 or more. The reason why two or more A-DMRSs of D-DMRS are not defined is to suppress the reduction of PDSCH resources by DMRS.
  • A-DMRS of D-DMRS when there is one A-DMRS of D-DMRS, the number of symbols to which DMRS is mapped is four, that is, SB0, SB1, SB9, and SB10. Assuming that the number of A-DMRSs of D-DMRSs is two, the number of symbols to which DMRSs are mapped is six, and thus the resources of PDSCH for mapping data signals are reduced. Therefore, A-DMRS of D-DMRS is not specified to 2 or more.
  • mapping position of DMRS in UL Next, the mapping position of DMRS in UL will be described.
  • FIG. 8 is a diagram for explaining the mapping position of DMRS in UL.
  • the view of the table shown in FIG. 8 is the same as that of FIG.
  • “PUSCH duration in symbols” shown in FIG. 8 indicates the number of symbols constituting PUCCH and PUSCH when the mapping type is A.
  • “PUSCH duration in symbols” indicates the number of symbols constituting the PUSCH when the mapping type is B.
  • the number of symbols constituting PUSCH is variable.
  • the number of symbols constituting the PUCCH may be any of 1 to 3.
  • the position of the DMRS in the UL is notified from the radio base station 10 to the user terminal 20, for example, by DCI.
  • the user terminal 20 stores the information of the table shown in FIG. 8 in the memory as a table, for example.
  • the user terminal 20 refers to the memory table based on the information on the mapping position of the DMRS notified by the DCI, and determines the position of the DMRS symbol to be mapped to the PUSCH.
  • the user terminal 20 is notified from the radio base station 10 that the PUSCH is composed of 12 symbols and that the DMRS is mapped to the position indicated by the DL-DMRS-add-pos “2” of the mapping type B. (See the dotted frame A21 in FIG. 8).
  • FIG. 9 is a diagram showing an example of the mapping position of DMRS in UL-DMRS-add-pos “2” of mapping type B.
  • the user terminal 20 may configure the PUSCH with 12 symbols from the radio base station 10 and map the DMRS to the position indicated by the DL-DMRS-add-pos “2” of the mapping type B.
  • FL-DMRS is mapped to SB0
  • A-DMRS is mapped to SB5 and SB10, as shown in FIG. 9, for example.
  • the radio base station 10 sets the DMRS mapping position in UL and notifies the set information to the user terminal 20, it can determine which symbol of the PUSCH received from the user terminal 20 the DMRS is mapped to .
  • the user terminal 20 may determine the mapping position of DMRS in UL.
  • the user terminal 20 may map the DMRS of UL to the determined mapping position, and may notify the wireless base station 10 of the information of the determined mapping position, for example, included in UCI (Uplink Control Information).
  • UCI Uplink Control Information
  • the radio base station 10 stores the information of the table shown in FIG. 8 in a memory as a table, for example.
  • the radio base station 10 refers to the table of the memory based on the information on the mapping position of the DMRS notified by the UCI, and determines the position of the DMRS symbol mapped to the PUSCH.
  • mapping position of the DMRS in the frame A22 of the dashed dotted line of the mapping type B shown in FIG. 8 is not defined. So, in this invention, the mapping position of DMRS in frame A22 of the dashed dotted line of mapping type B was specified.
  • the DMRS in the dashed dotted line frame A22 shown in FIG. 8 is to be mapped to symbols to which the symbol intervals to be mapped are equidistant or near equidistant and to a certain degree. Also, in the time direction, it is defined that the last DMRS is mapped within the last 5 symbols of the symbols making up the PUSCH. In other words, DMRS is defined to be mapped to both ends of PUSCH (one end is FL-DMRS and is mapped to the leading symbol) in the time direction.
  • the DMRS mapping intervals are equal intervals or close to equal intervals, it is possible to equalize the accuracy of channel estimation in the PUSCH. Also, by mapping DMRSs to symbols determined to some extent, it is possible to improve the performance of channel estimation when DMRSs collide. Also, by mapping the last DMRS in the last 5 symbols of the symbols making up the PUSCH in the temporal direction, it is possible to improve the interpolation accuracy of channel estimation over the PDSCH.
  • D-DMRSs in UL are mapped to DMRSs in two consecutive symbols, similarly to DMRSs in DL.
  • DMRSs are mapped two consecutive symbols in the same manner as the DMRSs shown in FIG.
  • FIG. 10 is a diagram for explaining the mapping position of D-DMRS in UL.
  • the view of the table shown in FIG. 10 is the same as that of FIG. However, the DMRS is mapped to a symbol indicated by "l 0 " and a number shown in the bold line frame A31, and a symbol (continuous in the time direction) following the symbol.
  • mapping type of D-DMRS is mapping type B
  • PUCSH is configured of 12 symbols
  • UL-DMRS-add-pos is "1”
  • FL-DMRS is SB0, SB1.
  • the mapped A-DMRS is mapped to SB9 and SB10 (see dotted frame A32 in FIG. 10).
  • the mapping position of the DMRS is notified from the radio base station 10 to the user terminal 20 as in the single DMRS.
  • the user terminal 20 stores the information of the table shown in FIG. 10 in the memory as a table, for example.
  • the user terminal 20 refers to the memory table based on the DMRS mapping type designated from the radio base station 10 and any value of “0, 1” of UL-DMRS-add-pos, and D Determine the position of the symbol to which the DMRS is mapped.
  • mapping position of the DMRS in the frame A33 of the dashed dotted line of the mapping type B shown in FIG. 10 is not defined. Therefore, the mapping position of the DMRS in the frame A33 of the one-dot chain line of the mapping type B is defined.
  • the DMRSs in the frame A33 of one-dot chain line shown in FIG. 10 are mapped to symbols determined to some extent. Also, in the time direction, it is defined that the last DMRS is mapped to the fourth symbol after the symbols making up the PUSCH.
  • mapping the DMRS to a certain fixed symbol the performance of channel estimation when DMRSs collide can be improved on average compared to when DMRSs collide with data. Also, by mapping the last DMRS to the fourth symbol after the symbols making up the PUSCH in the time direction, it is possible to improve the interpolation accuracy of channel estimation over the PUSCH.
  • one D-DMRS A-DMRS is defined. That is, in A-DMRS of D-DMRS, UL-DMRS-add-pos defines “0, 1” and does not define 2 or more. The reason why two or more A-DMRSs of D-DMRS are not defined is to suppress the decrease of PUSCH resources by DMRS.
  • frequency hopping may be applied in one slot.
  • one slot may be divided into two areas configured by 7 symbols, and frequency hopping may be applied to the two areas.
  • mapping position of DMRS when frequency hopping is applied is not defined. So, in this invention, the mapping position of DMRS when frequency hopping is applied was specified.
  • FIG. 11 is a diagram for explaining an example of frequency hopping of the DMRS in UL.
  • one slot may be divided into a first hop region located in the first half and a second hop region located in the second half in the time direction.
  • the second hop region is hopped to a frequency band lower than the first hop region.
  • the second hop region may hop to a frequency band higher than the first hop region.
  • the seven symbols in each hop area in FIG. 11 are referred to as SB0 to SB6 in order from the left.
  • a PUCCH is mapped to the first two symbols (SB0 and SB1) of the first hop area in FIG.
  • the number of symbols of PUCCH is not limited to 2 symbols, and may be 1 symbol or 3 symbols.
  • the DMRS is mapped in each of the first hop region and the second hop region.
  • DMRS may be mapped to SB2 and SB4 in each of the first hop region and the second hop region.
  • FIG. 12 is a diagram for explaining the mapping position of DMRS in UL.
  • the view of the table shown in FIG. 12 is the same as that of FIG.
  • “PUSCH duration in symbols” shown in FIG. 12 indicates the number of symbols in the first hop area, and indicates the number of symbols in the second hop area.
  • PUCCH may be mapped also to the second hop region.
  • the DMRSs are mapped to the same symbol position in the first hop region and the second hop region, but may be mapped to different symbol positions in the first hop region and the second hop region.
  • DMRS may be mapped to the first symbol (SB0).
  • a table information defining a mapping position as shown in FIG. 12 may be prepared in each of the first hop area and the second hop area.
  • mapping of DMRS of mapping type A to which frequency hopping is applied the position of DMRS in the first hop region to which PUCCH is mapped is set based on mapping type A shown in FIG. 12 and PUCCH is not mapped.
  • the position of the DMRS in the second hop region may be set based on the mapping type B shown in FIG.
  • mapping positions of DMRSs of mapping types A and B in frequency hopping are not defined. So, in this invention, the mapping position of DMRS of mapping type A, B in frequency hopping was specified.
  • each functional block may be realized by one physically and / or logically coupled device, or directly and / or indirectly two or more physically and / or logically separated devices. It may be connected by (for example, wired and / or wireless) and realized by the plurality of devices.
  • the wireless base station 10, the user terminal 20, and the like in one embodiment of the present invention may function as a computer that performs the processing of the wireless communication method of the present invention.
  • FIG. 13 is a diagram showing an example of the hardware configuration of the radio base station 10 and the user terminal 20 according to an embodiment of the present invention.
  • the above-described wireless base station 10 and user terminal 20 may be physically configured as a computer device including a processor 1001, a memory 1002, a storage 1003, a communication device 1004, an input device 1005, an output device 1006, a bus 1007 and the like. Good.
  • the term “device” can be read as a circuit, a device, a unit, or the like.
  • the hardware configuration of the radio base station 10 and the user terminal 20 may be configured to include one or more of the devices illustrated in the figure, or may be configured without including some devices.
  • processor 1001 may be implemented by one or more chips.
  • Each function in the radio base station 10 and the user terminal 20 performs a calculation by causing the processor 1001 to read predetermined software (program) on hardware such as the processor 1001 and the memory 1002, and performs communication by the communication device 1004 or This is realized by controlling reading and / or writing of data in the memory 1002 and the storage 1003.
  • the processor 1001 operates, for example, an operating system to control the entire computer.
  • the processor 1001 may be configured by a central processing unit (CPU) including an interface with a peripheral device, a control device, an arithmetic device, a register, and the like.
  • CPU central processing unit
  • the above-described scheduler 101, transmission signal generation units 102 and 206, coding / modulation units 103 and 207, mapping units 104 and 208, control units 108 and 203, channel estimation units 109 and 204, demodulation / decoding units 110 and 205 And the like may be realized by the processor 1001.
  • the processor 1001 reads a program (program code), a software module or data from the storage 1003 and / or the communication device 1004 to the memory 1002, and executes various processing according to these.
  • a program a program that causes a computer to execute at least a part of the operations described in the above embodiments is used.
  • the scheduler 101 of the radio base station 10 may be realized by a control program stored in the memory 1002 and operated by the processor 1001, or may be realized similarly for other functional blocks.
  • the various processes described above have been described to be executed by one processor 1001, but may be executed simultaneously or sequentially by two or more processors 1001.
  • the processor 1001 may be implemented by one or more chips.
  • the program may be transmitted from the network via a telecommunication line.
  • the memory 1002 is a computer readable recording medium, and includes, for example, at least one of a ROM (Read Only Memory), an EPROM (Erasable Programmable ROM), an EEPROM (Electrically Erasable Programmable ROM), and a RAM (Random Access Memory). It may be done.
  • the memory 1002 may be called a register, a cache, a main memory (main storage device) or the like.
  • the memory 1002 can store a program (program code), a software module, and the like that can be executed to implement the wireless communication method according to an embodiment of the present invention.
  • the storage 1003 is a computer readable recording medium, and for example, an optical disc such as a CD-ROM (Compact Disc ROM), a hard disc drive, a flexible disc, a magneto-optical disc (eg, a compact disc, a digital versatile disc, a Blu-ray A (registered trademark) disk, a smart card, a flash memory (for example, a card, a stick, a key drive), a floppy (registered trademark) disk, a magnetic strip, and the like may be used.
  • the storage 1003 may be called an auxiliary storage device.
  • the above-mentioned storage medium may be, for example, a database including the memory 1002 and / or the storage 1003, a server or any other suitable medium.
  • the communication device 1004 is hardware (transmission / reception device) for performing communication between computers via a wired and / or wireless network, and is also called, for example, a network device, a network controller, a network card, a communication module, or the like.
  • a network device for example, a network controller, a network card, a communication module, or the like.
  • the above-described transmission units 105 and 209, antennas 106 and 201, and reception units 107 and 202 may be realized by the communication device 1004.
  • the input device 1005 is an input device (for example, a keyboard, a mouse, a microphone, a switch, a button, a sensor, and the like) that receives an input from the outside.
  • the output device 1006 is an output device (for example, a display, a speaker, an LED lamp, etc.) that performs output to the outside.
  • the input device 1005 and the output device 1006 may be integrated (for example, a touch panel).
  • each device such as the processor 1001 and the memory 1002 is connected by a bus 1007 for communicating information.
  • the bus 1007 may be configured by a single bus or may be configured by different buses among the devices.
  • radio base station 10 and the user terminal 20 may be microprocessors, digital signal processors (DSPs), application specific integrated circuits (ASICs), programmable logic devices (PLDs), field programmable gate arrays (FPGAs), etc. It may be configured to include hardware, and part or all of each functional block may be realized by the hardware. For example, processor 1001 may be implemented in at least one of these hardware.
  • DSPs digital signal processors
  • ASICs application specific integrated circuits
  • PLDs programmable logic devices
  • FPGAs field programmable gate arrays
  • notification of information is not limited to the aspect / embodiment described herein, and may be performed by other methods.
  • notification of information may be physical layer signaling (for example, Downlink Control Information (DCI), Uplink Control Information (UCI)), upper layer signaling (for example, Radio Resource Control (RRC) signaling, Medium Access Control (MAC) signaling, It may be implemented by broadcast information (MIB (Master Information Block), SIB (System Information Block)), other signals, or a combination thereof.
  • RRC signaling may be referred to as an RRC message, and may be, for example, an RRC connection setup (RRC Connection Setup) message, an RRC connection reconfiguration (RRC Connection Reconfiguration) message, or the like.
  • Each aspect / embodiment described in the present specification is LTE (Long Term Evolution), LTE-A (LTE-Advanced), SUPER 3G, IMT-Advanced, 4G, 5G, FRA (Future Radio Access), W-CDMA (Registered trademark), GSM (registered trademark), CDMA2000, UMB (Ultra Mobile Broadband), IEEE 802.11 (Wi-Fi), IEEE 802.16 (WiMAX), IEEE 802.20, UWB (Ultra-Wide Band), Bluetooth
  • the present invention may be applied to a system using (registered trademark), other appropriate systems, and / or an advanced next-generation system based on these.
  • the specific operation supposed to be performed by the base station (radio base station) in this specification may be performed by the upper node in some cases.
  • the various operations performed for communication with the terminals may be the base station and / or other network nodes other than the base station (eg, It is obvious that this may be performed by, but not limited to, MME (Mobility Management Entity) or S-GW (Serving Gateway).
  • MME Mobility Management Entity
  • S-GW Serving Gateway
  • Information, signals, etc. may be output from the upper layer (or lower layer) to the lower layer (or upper layer). Input and output may be performed via a plurality of network nodes.
  • the input / output information or the like may be stored in a specific place (for example, a memory) or may be managed by a management table. Information to be input or output may be overwritten, updated or added. The output information etc. may be deleted. The input information or the like may be transmitted to another device.
  • the determination may be performed by a value (0 or 1) represented by one bit, may be performed by a boolean value (Boolean: true or false), or may be compared with a numerical value (for example, a predetermined value). Comparison with the value).
  • Software may be called software, firmware, middleware, microcode, hardware description language, or any other name, and may be instructions, instruction sets, codes, code segments, program codes, programs, subprograms, software modules. Should be interpreted broadly to mean applications, software applications, software packages, routines, subroutines, objects, executables, threads of execution, procedures, functions, etc.
  • software, instructions, etc. may be sent and received via a transmission medium.
  • software may use a wireline technology such as coaxial cable, fiber optic cable, twisted pair and digital subscriber line (DSL) and / or a website, server or other using wireless technology such as infrared, radio and microwave When transmitted from a remote source, these wired and / or wireless technologies are included within the definition of transmission medium.
  • wireline technology such as coaxial cable, fiber optic cable, twisted pair and digital subscriber line (DSL) and / or a website, server or other using wireless technology such as infrared, radio and microwave
  • Information, signal The information, signals, etc. described herein may be represented using any of a variety of different techniques.
  • data, instructions, commands, information, signals, bits, symbols, chips etc may be voltage, current, electromagnetic waves, magnetic fields or particles, optical fields or photons, or any of these May be represented by a combination of
  • the channels and / or symbols may be signals.
  • the signal may be a message.
  • the component carrier (CC) may be called a carrier frequency, a cell or the like.
  • radio resources may be indexed.
  • a base station can accommodate one or more (e.g., three) cells (also called sectors). If the base station accommodates multiple cells, the entire coverage area of the base station can be divided into multiple smaller areas, each smaller area being a base station subsystem (eg, a small base station RRH for indoor use: Remote Communication service can also be provided by Radio Head.
  • the terms “cell” or “sector” refer to a part or all of the coverage area of a base station and / or a base station subsystem serving communication services in this coverage.
  • base station eNB”, “gNB”, “cell” and “sector” may be used interchangeably herein.
  • a base station may be called in terms of a fixed station (Node station), NodeB, eNodeB (eNB), gNodeB (gNB) access point, access point, femtocell, small cell, and the like.
  • the user terminal may be a mobile station, a subscriber station, a mobile unit, a subscriber unit, a wireless unit, a remote unit, a mobile device, a wireless device, a wireless communication device, a remote communication device, a mobile subscriber station, an access terminal, a mobile terminal by a person skilled in the art It may also be called a terminal, a wireless terminal, a remote terminal, a handset, a user agent, a mobile client, a client, a UE (User Equipment), or some other suitable term.
  • determining may encompass a wide variety of operations.
  • “Judgment”, “decision” are, for example, judging, calculating, calculating, processing, processing, deriving, investigating, looking up (for example, a table) (Searching in a database or another data structure), ascertaining may be regarded as “decision”, “decision”, etc.
  • “determination” and “determination” are receiving (e.g. receiving information), transmitting (e.g. transmitting information), input (input), output (output), access (accessing) (for example, accessing data in a memory) may be regarded as “judged” or “decided”.
  • connection means any direct or indirect connection or coupling between two or more elements, It can include the presence of one or more intermediate elements between two elements that are “connected” or “coupled”.
  • the coupling or connection between elements may be physical, logical or a combination thereof.
  • the two elements are by using one or more wires, cables and / or printed electrical connections, and radio frequency as some non-limiting and non-exclusive examples. It can be considered “connected” or “coupled” to one another by using electromagnetic energy such as electromagnetic energy having wavelengths in the region, microwave region and light (both visible and invisible) regions.
  • the reference signal may be abbreviated as RS (Reference Signal), and may be called a pilot (Pilot) according to the applied standard.
  • RS Reference Signal
  • DMRS may be another corresponding name, such as demodulation RS or DM-RS.
  • the phrase “based on” does not mean “based only on,” unless expressly stated otherwise. In other words, the phrase “based on” means both “based only on” and “based at least on.”
  • a radio frame may be comprised of one or more frames in the time domain.
  • One or more frames in the time domain may be referred to as subframes, time units, and so on.
  • a subframe may be further comprised of one or more slots in the time domain.
  • the slot may be further configured with one or more symbols (such as orthogonal frequency division multiplexing (OFDM) symbols, single carrier-frequency division multiple access (SC-FDMA) symbols, etc.) in the time domain.
  • OFDM orthogonal frequency division multiplexing
  • SC-FDMA single carrier-frequency division multiple access
  • a radio frame, a subframe, a slot, a minislot, and a symbol all represent time units when transmitting a signal.
  • a radio frame, a subframe, a slot, a minislot, and a symbol may be another name corresponding to each.
  • the base station performs scheduling to assign radio resources (frequency bandwidth usable in each mobile station, transmission power, etc.) to each mobile station.
  • the minimum time unit of scheduling may be called a TTI (Transmission Time Interval).
  • one subframe may be called a TTI
  • a plurality of consecutive subframes may be called a TTI
  • one slot may be called a TTI
  • one minislot may be called a TTI
  • a resource unit is a resource allocation unit in time domain and frequency domain, and may include one or more consecutive subcarriers in frequency domain.
  • the time domain of the resource unit may include one or more symbols, and may be one slot, one minislot, one subframe, or one TTI long.
  • One TTI and one subframe may be configured of one or more resource units, respectively.
  • resource units may be referred to as resource blocks (RBs), physical resource blocks (PRBs: physical RBs), PRB pairs, RB pairs, scheduling units, frequency units, and subbands.
  • a resource unit may be configured of one or more REs.
  • 1 RE may be a resource of a unit smaller than the resource unit serving as a resource allocation unit (for example, the smallest resource unit), and is not limited to the designation RE.
  • the above-described radio frame structure is merely an example, and the number of subframes included in the radio frame, the number of slots included in the subframe, the number of minislots included in the subframe, and the symbols and resource blocks included in the slots.
  • the number and the number of subcarriers included in the resource block can be variously changed.
  • notification of predetermined information is not limited to what is explicitly performed, but is performed by implicit (for example, not notifying of the predetermined information) It is also good.

Abstract

Provided is a novel configuration for defining Additional DMRS mapping in a situation where a front-loaded DMRS is mapped to a first symbol of a resource allocation unit of a radio resource. When a downlink radio link signal, in which a front-loaded DMRS (first demodulation reference signal) is mapped to a first symbol of a resource allocation unit, has eight or more symbols in the resource allocation unit and one or more Additional DMRSs (second demodulation reference signals), a base station device maps one Additional DMRS to within three symbols from the last symbol of the resource allocation unit.

Description

無線通信装置Wireless communication device
 本発明は、無線通信装置に関する。 The present invention relates to a wireless communication device.
 UMTS(Universal Mobile Telecommunication System)ネットワークにおいて、更なる高速データレート、低遅延などを目的としてロングタームエボリューション(LTE:Long Term Evolution)が仕様化された(非特許文献1)。また、LTEからの更なる広帯域化及び高速化を目的として、LTEの後継システムも検討されている。LTEの後継システムには、例えば、LTE-A(LTE-Advanced)、FRA(Future Radio Access)、5G(5th generation mobile communication system)、5G+(5G plus)、New-RAT(Radio Access Technology)などと呼ばれるものがある。 In Universal Mobile Telecommunications System (UMTS) networks, Long Term Evolution (LTE) has been specified for the purpose of further high data rates, low delays, etc. (Non-Patent Document 1). Moreover, the successor system of LTE is also considered for the purpose of the further broadbandization and speeding-up from LTE. As successor systems of LTE, for example, LTE-A (LTE-Advanced), FRA (Future Radio Access), 5G (5th generation mobile communication system), 5G + (5G plus), New-RAT (Radio Access Technology), etc. There is something called.
 将来の無線通信システム(例えば、5G)では、データ信号を復調するための復調用参照信号(Demodulation Reference Signal)が規定され、復調用参照信号のリソースへのマッピングについての仕様化が進められている(非特許文献2参照)。なお、復調用参照信号は、「DMRS」(Demodulation Reference Signal)、「DM-RS」、又は、「復調用RS」と表記されてもよい。 In a future wireless communication system (for example, 5G), a demodulation reference signal for demodulating a data signal is defined, and the specification of mapping of demodulation reference signals to resources is in progress (Refer nonpatent literature 2). Note that the demodulation reference signal may be denoted as “DMRS” (Demodulation Reference Signal), “DM-RS”, or “demodulation RS”.
 しかしながら、5Gの仕様では、無線リソースのリソース割り当て単位の先頭シンボルに、DMRS(front-loaded DMRS、第1の復調用参照信号)がマッピングされる場合の、アディショナルDMRS(Additional DMRS、第2の復調用参照信号)のマッピング位置について、一部、規定されていない部分がある。 However, in the 5G specification, additional DMRS (additional DMRS, second demodulation) is performed when DMRS (front-loaded DMRS, first demodulation reference signal) is mapped to the first symbol of the resource allocation unit of the radio resource. The mapping position of the (reference signal) is partially defined.
 本発明の一態様は、無線リソースのリソース割り当て単位の先頭シンボルに、DMRSがマッピングされる場合の、アディショナルDMRSのマッピングを規定することにある。 One aspect of the present invention is to define the mapping of an additional DMRS when the DMRS is mapped to the leading symbol of a resource allocation unit of a radio resource.
 本発明の無線通信装置は、第1の復調用参照信号がリソース割り当て単位の先頭シンボルにマッピングされた下り無線リンク信号を送信する送信部と、前記リソース割り当て単位のシンボル数と、前記リソース割り当て単位においてマッピングする第2の復調用参照信号の数と、に基づいて、前記第2の復調用参照信号の、前記リソース割り当て単位におけるマッピング位置を制御する制御部と、を具備し、前記制御部は、前記リソース割り当て単位のシンボル数が8以上であって前記第2の復調用参照信号の数が1以上である場合、前記リソース割り当て単位の最後方のシンボルから3シンボル以内に1つの前記第2の復調用参照信をマッピングする。 A wireless communication apparatus according to the present invention includes a transmitter configured to transmit a downlink radio signal in which a first demodulation reference signal is mapped to a leading symbol of a resource allocation unit, the number of symbols of the resource allocation unit, and the resource allocation unit And a controller configured to control a mapping position of the second demodulation reference signal in the resource allocation unit based on the number of second demodulation reference signals to be mapped in If the number of symbols of the resource allocation unit is 8 or more and the number of the second demodulation reference signals is 1 or more, one of the second symbols within 3 symbols from the last symbol of the resource allocation unit Map the demodulation reference signal for.
 本発明の一態様によれば、無線リソースのリソース割り当て単位の先頭シンボルに、DMRSがマッピングされる場合の、アディショナルDMRSのマッピングを規定する新たな構成を提供する。 According to one aspect of the present invention, a new configuration is provided that defines the mapping of the additional DMRS when the DMRS is mapped to the leading symbol of the resource allocation unit of the radio resource.
一実施の形態に係る無線基地局の全体構成の一例を示すブロック図である。It is a block diagram which shows an example of the whole structure of the wireless base station which concerns on one Embodiment. 一実施の形態に係るユーザ端末の全体構成の一例を示すブロック図である。It is a block diagram which shows an example of the whole structure of the user terminal which concerns on one Embodiment. DMRSのマッピングタイプAを説明する図である。It is a figure explaining mapping type A of DMRS. DMRSのマッピングタイプBを説明する図である。It is a figure explaining mapping type B of DMRS. DLにおけるDMRSのマッピング位置を説明する図である。It is a figure explaining the mapping position of DMRS in DL. マッピングタイプBのDL-DMRS-add-pos「2」におけるDMRSのマッピング位置の一例を示した図である。It is a figure showing an example of a mapping position of DMRS in DL-DMRS-add-pos "2" of mapping type B. DLにおけるD-DMRSのマッピング位置を説明する図である。It is a figure explaining the mapping position of D-DMRS in DL. マッピングタイプBのDL-DMRS-add-pos「1」におけるDMRSのマッピング位置の一例を示した図である。It is a figure showing an example of a mapping position of DMRS in DL-DMRS-add-pos “1” of mapping type B. ULにおけるDMRSのマッピング位置を説明する図である。It is a figure explaining the mapping position of DMRS in UL. マッピングタイプBのUL-DMRS-add-pos「2」におけるDMRSのマッピング位置の一例を示した図である。It is a figure showing an example of the mapping position of DMRS in UL-DMRS-add-pos "2" of mapping type B. ULにおけるD-DMRSのマッピング位置を説明する図である。It is a figure explaining the mapping position of D-DMRS in UL. ULのDMRSの周波数ホッピングの一例を説明する図である。It is a figure explaining an example of frequency hopping of DMRS of UL. ULにおけるDMRSのマッピング位置を説明する図である。It is a figure explaining the mapping position of DMRS in UL. 本発明の一実施の形態に係る無線基地局10及びユーザ端末20のハードウェア構成の一例を示す図である。It is a figure which shows an example of the hardware constitutions of the wireless base station 10 which concerns on one embodiment of this invention, and the user terminal 20. FIG.
 以下、本発明の一実施の形態について、図面を参照して説明する。 Hereinafter, an embodiment of the present invention will be described with reference to the drawings.
 (一実施の形態)
 本実施の形態に係る無線通信システムは、図1に示す無線基地局10と、図2に示すユーザ端末20とを備える。無線基地局10は、例えば、eNB(eNodeB)又はgNB(gNodeB)とも呼ばれる。ユーザ端末20は、例えば、UE(User Equipment)とも呼ばれる。ユーザ端末20は、無線基地局10と無線接続(無線アクセス)される。
(One embodiment)
The wireless communication system according to the present embodiment includes the wireless base station 10 shown in FIG. 1 and the user terminal 20 shown in FIG. The radio base station 10 is also called, for example, an eNB (eNodeB) or a gNB (gNodeB). The user terminal 20 is also called, for example, a UE (User Equipment). The user terminal 20 is wirelessly connected (wireless access) to the wireless base station 10.
 無線基地局10は、ユーザ端末20に対して、下り制御チャネル(例えば、PDCCH:Physical Downlink Control Channel)を用いて下りリンク(DL:Downlink)制御信号を送信する。無線基地局10は、ユーザ端末20に対して、下りデータチャネル(例えば、下り共有チャネル:PDSCH:Physical Downlink Shared Channel)を用いてDLデータ信号及びDMRSを送信する。 The radio base station 10 transmits a downlink (DL: Downlink) control signal to the user terminal 20 using a downlink control channel (for example, PDCCH: Physical Downlink Control Channel). The radio base station 10 transmits a DL data signal and DMRS to the user terminal 20 using a downlink data channel (for example, downlink shared channel: PDSCH: Physical Downlink Shared Channel).
 また、ユーザ端末20は、無線基地局10に対して、上り制御チャネル(例えば、PUCCH:Physical Uplink Control Channel)あるいは上りデータチャネル(例えば、上り共有チャネル:PUSCH:Physical Uplink Shared Channel)を用いて上りリンク(UL:Uplink)制御信号を送信する。ユーザ端末20は、無線基地局10に対して、上りデータチャネル(例えば、上り共有チャネル:PUSCH:Physical Uplink Shared Channel)を用いてULデータ信号及びDMRSを送信する。 In addition, the user terminal 20 performs uplink with the radio base station 10 using an uplink control channel (for example, PUCCH: Physical Uplink Control Channel) or an uplink data channel (for example, uplink shared channel: PUSCH: Physical Uplink Shared Channel). Transmit a link (UL: Uplink) control signal. The user terminal 20 transmits a UL data signal and a DMRS to the radio base station 10 using an uplink data channel (for example, uplink shared channel: PUSCH: Physical Uplink Shared Channel).
 本実施の形態における無線通信システムでは、後述するが、DMRSのマッピングにおいて、2つのマッピングタイプ(mapping type Aと mapping type B)のいずれか一方が設定される。そして、本実施の形態における無線通信システムでは、2つのマッピングタイプのそれぞれにおいて、DMRSの位置がいくつか規定され、そのうちの1つが設定される。 In the radio communication system in the present embodiment, although described later, one of two mapping types (mapping type A and mapping type B) is set in the mapping of DMRS. Then, in the wireless communication system in the present embodiment, in each of the two mapping types, some positions of DMRS are defined, and one of them is set.
 なお、無線基地局10及びユーザ端末20が送受信する下りチャネル及び上りチャネルは、上記のPDCCH、PDSCH、PUCCH、PUSCH等に限定されない。無線基地局10及びユーザ端末20が送受信する下りチャネル及び上りチャネルは、例えば、PBCH(Physical Broadcast Channel)、RACH(Random Access Channel)等の他のチャネルでもよい。 In addition, the downlink channel and uplink channel which the wireless base station 10 and the user terminal 20 transmit and receive are not limited to said PDCCH, PDSCH, PUCCH, PUSCH etc. The downlink channel and uplink channel transmitted and received by the radio base station 10 and the user terminal 20 may be, for example, another channel such as PBCH (Physical Broadcast Channel) or RACH (Random Access Channel).
 また、図1及び図2では、無線基地局10及びユーザ端末20において生成されるDLおよび/またはULの信号波形は、OFDM(Orthogonal Frequency Division Multiplexing)変調に基づく信号波形でもよい。あるいは、DLおよび/またはULの信号波形は、SC-FDMA(Single Carrier-Frequency Division Multiple Access)又はDFT-S-OFDM(DFT-Spread-OFDM))に基づく信号波形でもよい。あるいは、DLおよび/またはULの信号波形は、他の信号波形でもよい。図1及び図2では、信号波形を生成するための構成部(例えば、IFFT処理部、CP付加部、CP除去部、FFT処理部等)の記載を省略している。 Further, in FIG. 1 and FIG. 2, the DL and / or UL signal waveforms generated in the radio base station 10 and the user terminal 20 may be signal waveforms based on orthogonal frequency division multiplexing (OFDM) modulation. Alternatively, the DL and / or UL signal waveforms may be signal waveforms based on SC-FDMA (Single Carrier-Frequency Division Multiple Access) or DFT-S-OFDM (DFT-Spread-OFDM). Alternatively, the DL and / or UL signal waveforms may be other signal waveforms. In FIG. 1 and FIG. 2, the description of components (for example, an IFFT processing unit, a CP adding unit, a CP removing unit, an FFT processing unit, etc.) for generating a signal waveform is omitted.
 <無線基地局>
 図1は、本実施の形態に係る無線基地局10の全体構成の一例を示すブロック図である。無線基地局10は、スケジューラ101と、送信信号生成部102と、符号化・変調部103と、マッピング部104と、送信部105と、アンテナ106と、受信部107と、制御部108と、チャネル推定部109と、復調・復号部110と、を含む。なお、無線基地局10は、複数のユーザ端末20と同時に通信を行うMU-MIMO(Multi-User Multiple-Input Multiple-Output)の構成を有してもよい。あるいは、無線基地局10は、1つのユーザ端末20と通信を行うSU-MIMO(Single-User Multiple-Input Multiple-Output)の構成を有していてもよい。あるいは、無線基地局10は、SU-MIMOおよびMU-MIMOの両方の構成を有していてもよい。
<Wireless base station>
FIG. 1 is a block diagram showing an example of the entire configuration of the radio base station 10 according to the present embodiment. The radio base station 10 includes a scheduler 101, a transmission signal generation unit 102, an encoding / modulation unit 103, a mapping unit 104, a transmission unit 105, an antenna 106, a reception unit 107, a control unit 108, and a channel. An estimation unit 109 and a demodulation / decoding unit 110 are included. Note that the radio base station 10 may have a configuration of MU-MIMO (Multi-User Multiple-Input Multiple-Output) in which communication is simultaneously performed with a plurality of user terminals 20. Alternatively, the radio base station 10 may have a configuration of Single-User Multiple-Input Multiple-Output (SU-MIMO) that communicates with one user terminal 20. Alternatively, the radio base station 10 may have both SU-MIMO and MU-MIMO configurations.
 スケジューラ101は、DL信号(DLデータ信号、DL制御信号及びDMRS等)のスケジューリング(例えば、リソース割当及びポート割当)を行う。また、スケジューラ101は、UL信号(ULデータ信号、UL制御信号及びDMRS等)のスケジューリング(例えば、リソース割当及びポート割当)を行う。 The scheduler 101 performs scheduling (for example, resource allocation and port allocation) of DL signals (DL data signal, DL control signal, DMRS, etc.). The scheduler 101 also performs scheduling (for example, resource allocation and port allocation) of UL signals (UL data signal, UL control signal, DMRS, etc.).
 また、スケジューラ101は、DL信号およびUL信号におけるDMRSのマッピングタイプを設定する。マッピングタイプには、後述するが、マッピングタイプAとマッピングタイムBとがある。スケジューラ101は、各マッピングタイプで決められた所定のシンボルにDMRSをマッピングする。 The scheduler 101 also sets the DMRS mapping type in the DL signal and the UL signal. Mapping types include mapping type A and mapping time B, which will be described later. The scheduler 101 maps the DMRS to predetermined symbols determined in each mapping type.
 上記のDMRSのマッピングに関連する情報を、設定情報と記載することがある。設定情報には、他の情報が含まれていてもよい。設定情報は、例えば、下り制御情報(DCI:Downlink Control Information)に含まれてもよい。 The information related to the above DMRS mapping may be described as setting information. The setting information may include other information. The setting information may be included in, for example, downlink control information (DCI).
 スケジューラ101は、設定情報を含むスケジューリング情報を送信信号生成部102及びマッピング部104に出力する。スケジューラ101は、後述するように、DL信号にDMRSをマッピングする位置を制御する制御部の一例と捉えてよい。 The scheduler 101 outputs scheduling information including setting information to the transmission signal generation unit 102 and the mapping unit 104. The scheduler 101 may be regarded as an example of a control unit that controls the position at which the DMRS is mapped to the DL signal, as described later.
 また、スケジューラ101は、例えば、無線基地局10とユーザ端末20との間のチャネル品質に基づいて、DLデータ信号及びULデータ信号のMCS(Modulation and Coding Scheme)(符号化率、変調方式等)を設定する。スケジューラ101は、設定したMCSの情報を送信信号生成部102及び符号化・変調部103へ出力する。なお、MCSは、無線基地局10が設定する場合に限定されず、ユーザ端末20が設定してもよい。ユーザ端末20がMCSを設定する場合、無線基地局10は、ユーザ端末20からMCS情報を受信すればよい(図示せず)。 Also, the scheduler 101 may perform, for example, MCS (Modulation and Coding Scheme) (coding rate, modulation scheme, etc.) of the DL data signal and the UL data signal based on the channel quality between the radio base station 10 and the user terminal 20. Set The scheduler 101 outputs the information on the set MCS to the transmission signal generation unit 102 and the coding / modulation unit 103. In addition, MCS is not limited when the wireless base station 10 sets, and the user terminal 20 may set it. When the user terminal 20 sets an MCS, the radio base station 10 may receive MCS information from the user terminal 20 (not shown).
 送信信号生成部102は、送信信号(DLデータ信号、DL制御信号を含む)を生成する。例えば、DL制御信号には、スケジューラ101から出力されたスケジューリング情報(例えば、設定情報)又はMCS情報を含むDCIが含まれる。送信信号生成部102は、生成した送信信号を符号化・変調部103に出力する。 The transmission signal generation unit 102 generates a transmission signal (including a DL data signal and a DL control signal). For example, the DL control signal includes DCI including scheduling information (for example, setting information) output from the scheduler 101 or MCS information. The transmission signal generation unit 102 outputs the generated transmission signal to the coding / modulation unit 103.
 符号化・変調部103は、例えば、スケジューラ101から入力されるMCS情報に基づいて、送信信号生成部102から入力される送信信号に対して、符号化処理及び変調処理を行う。符号化・変調部103は、変調後の送信信号をマッピング部104に出力する。 The encoding / modulation unit 103 performs encoding processing and modulation processing on the transmission signal input from the transmission signal generation unit 102 based on, for example, the MCS information input from the scheduler 101. Encoding / modulation section 103 outputs the modulated transmission signal to mapping section 104.
 マッピング部104は、スケジューラ101から入力されるスケジューリング情報(例えば、DLのリソース割当、および、設定情報)に基づいて、符号化・変調部103から入力される送信信号を所定の無線リソース(DLリソース)にマッピングする。また、マッピング部104は、スケジューリング情報に基づいて、DMRSを所定の無線リソース(DLリソース)にマッピングする。マッピング部104は、無線リソースにマッピングされたDL信号を送信部105に出力する。 Based on the scheduling information (for example, DL resource allocation and setting information) input from scheduler 101, mapping section 104 transmits a predetermined radio resource (DL resource) from transmission signal input from encoding / modulation section 103. Map to). Also, the mapping unit 104 maps the DMRS to a predetermined radio resource (DL resource) based on the scheduling information. Mapping section 104 outputs the DL signal mapped to the radio resource to transmitting section 105.
 送信部105は、マッピング部104から入力されるDL信号に対して、アップコンバート、増幅等の送信処理を行い、無線周波数信号(DL信号)をアンテナ106から送信する。 The transmission unit 105 performs transmission processing such as up-conversion and amplification on the DL signal input from the mapping unit 104, and transmits a radio frequency signal (DL signal) from the antenna 106.
 受信部107は、アンテナ106で受信された無線周波数信号(UL信号)に対して、増幅、ダウンコンバート等の受信処理を行い、UL信号を制御部108に出力する。 The reception unit 107 performs reception processing such as amplification and down conversion on the radio frequency signal (UL signal) received by the antenna 106, and outputs the UL signal to the control unit 108.
 制御部108は、スケジューラ101から入力されるスケジューリング情報(ULのリソース割当)に基づいて、受信部107から入力されるUL信号からULデータ信号及びDMRSを分離(デマッピング)する。そして、制御部108は、ULデータ信号を復調・復号部110に出力しDMRSをチャネル推定部109に出力する。 The control unit 108 separates (demaps) the UL data signal and the DMRS from the UL signal input from the receiving unit 107 based on the scheduling information (UL resource allocation) input from the scheduler 101. Then, control section 108 outputs the UL data signal to demodulation / decoding section 110 and outputs DMRS to channel estimation section 109.
 チャネル推定部109は、UL信号のDMRSを用いてチャネル推定を行い、推定結果であるチャネル推定値を復調・復号部110に出力する。 Channel estimation section 109 performs channel estimation using the DMRS of the UL signal, and outputs a channel estimation value that is the estimation result to demodulation and decoding section 110.
 復調・復号部110は、チャネル推定部109から入力されるチャネル推定値に基づいて、制御部108から入力されるULデータ信号に対して復調及び復号処理を行う。復調・復号部110は、復調後のULデータ信号を、アプリケーション部(図示せず)に転送する。なお、アプリケーション部は、物理レイヤ又はMACレイヤより上位のレイヤに関する処理などを行う。 Demodulation / decoding section 110 performs demodulation and decoding processing on the UL data signal input from control section 108 based on the channel estimation value input from channel estimation section 109. The demodulation / decoding unit 110 transfers the UL data signal after demodulation to an application unit (not shown). The application unit performs processing on a layer higher than the physical layer or the MAC layer.
 スケジューラ101、送信信号生成部102、符号化・変調部103、マッピング部104、及び、送信部105を含むブロックは、無線基地局10に備えられた無線送信装置の一例と捉えてよい。また、受信部107、制御部108、チャネル推定部109、及び、復調・復号部110を含むブロックは、無線基地局10に備えられた無線受信装置の一例と捉えてよい。 The block including the scheduler 101, the transmission signal generation unit 102, the encoding / modulation unit 103, the mapping unit 104, and the transmission unit 105 may be regarded as an example of a wireless transmission apparatus provided in the wireless base station 10. Also, the block including the receiving unit 107, the control unit 108, the channel estimation unit 109, and the demodulation / decoding unit 110 may be considered as an example of a wireless reception apparatus provided in the wireless base station 10.
 また、制御部108、チャネル推定部109、及び、復調・復号部110を含むブロックは、後述するように、UL信号の時間領域にマッピングされたDMRSを用いて、UL信号を受信処理する処理部の一例と捉えてよい。 In addition, as described later, the block including the control unit 108, the channel estimation unit 109, and the demodulation / decoding unit 110 is a processing unit that receives and processes a UL signal using DMRS mapped in the time domain of the UL signal. You can think of it as an example of
 <ユーザ端末>
 図2は、本実施の形態に係るユーザ端末20の全体構成の一例を示すブロック図である。ユーザ端末20は、アンテナ201と、受信部202と、制御部203と、チャネル推定部204と、復調・復号部205と、送信信号生成部206と、符号化・変調部207と、マッピング部208と、送信部209と、を含む。
<User terminal>
FIG. 2 is a block diagram showing an example of the entire configuration of the user terminal 20 according to the present embodiment. The user terminal 20 includes an antenna 201, a reception unit 202, a control unit 203, a channel estimation unit 204, a demodulation / decoding unit 205, a transmission signal generation unit 206, an encoding / modulation unit 207, and a mapping unit 208. And the transmission unit 209.
 受信部202は、アンテナ201で受信された無線周波数信号(DL信号)に対して、増幅、ダウンコンバート等の受信処理を行い、DL信号を制御部203に出力する。DL信号には、少なくとも、DLデータ信号及びDMRSが含まれる。 The reception unit 202 performs reception processing such as amplification and down conversion on the radio frequency signal (DL signal) received by the antenna 201, and outputs the DL signal to the control unit 203. The DL signal includes at least a DL data signal and DMRS.
 制御部203は、受信部202から入力されるDL信号からDL制御信号及びDMRSを分離(デマッピング)する。そして、制御部203は、DL制御信号を復調・復号部205に出力し、DMRSをチャネル推定部204に出力する。制御部203は、DMRSの設定情報に基づいて、DMRSを分離できる。 The control unit 203 separates (demaps) the DL control signal and the DMRS from the DL signal input from the receiving unit 202. Then, the control unit 203 outputs the DL control signal to the demodulation / decoding unit 205, and outputs the DMRS to the channel estimation unit 204. The control unit 203 can separate DMRSs based on the setting information of the DMRSs.
 チャネル推定部204は、分離したDMRSを用いてチャネル推定を行い、推定結果であるチャネル推定値を復調・復号部205に出力する。 Channel estimation section 204 performs channel estimation using the separated DMRS, and outputs a channel estimation value that is the estimation result to demodulation and decoding section 205.
 復調・復号部205は、制御部203から入力されるDL制御信号を復調する。また、復調・復号部205は、復調後のDL制御信号に対して復号処理(例えば、ブラインド検出処理)を行う。復調・復号部205は、DL制御信号を復号することによって得られた自機宛てのスケジューリング情報(例えば、DL/ULのリソース割当)を制御部203及びマッピング部208に出力し、ULデータ信号に対するMCS情報を符号化・変調部207へ出力する。 The demodulation / decoding unit 205 demodulates the DL control signal input from the control unit 203. Further, the demodulation / decoding unit 205 performs a decoding process (for example, a blind detection process) on the DL control signal after demodulation. Demodulation / decoding section 205 outputs scheduling information (for example, DL / UL resource allocation) addressed to the own apparatus obtained by decoding the DL control signal to control section 203 and mapping section 208, for the UL data signal. The MCS information is output to the encoding / modulation unit 207.
 また、復調・復号部205は、制御部203から入力されるDL制御信号に含まれるDLデータ信号に対するMCS情報に基づいて、チャネル推定部204から入力されるチャネル推定値を用いて制御部203から入力されるDLデータ信号に対して復調及び復号処理を行う。また、復調・復号部205は、復調後のDLデータ信号をアプリケーション部(図示せず)に転送する。なお、アプリケーション部は、物理レイヤ又はMACレイヤより上位のレイヤに関する処理などを行う。 Further, demodulation / decoding section 205 uses the channel estimation value input from channel estimation section 204 based on the MCS information for the DL data signal contained in the DL control signal input from control section 203, and uses control channel 203 from control section 203. Demodulation and decoding are performed on the input DL data signal. Also, the demodulation / decoding unit 205 transfers the demodulated DL data signal to an application unit (not shown). The application unit performs processing on a layer higher than the physical layer or the MAC layer.
 送信信号生成部206は、送信信号(ULデータ信号又はUL制御信号を含む)を生成し、生成した送信信号を符号化・変調部207に出力する。 The transmission signal generation unit 206 generates a transmission signal (including a UL data signal or a UL control signal), and outputs the generated transmission signal to the encoding / modulation unit 207.
 符号化・変調部207は、例えば、復調・復号部205から入力されるMCS情報に基づいて、送信信号生成部206から入力される送信信号に対して、符号化処理及び変調処理を行う。符号化・変調部207は、変調後の送信信号をマッピング部208に出力する。 The encoding / modulation unit 207 performs encoding processing and modulation processing on the transmission signal input from the transmission signal generation unit 206 based on, for example, the MCS information input from the demodulation / decoding unit 205. Coding / modulation section 207 outputs the modulated transmission signal to mapping section 208.
 マッピング部208は、復調・復号部205から入力されるスケジューリング情報(ULのリソース割当)に基づいて、符号化・変調部207から入力される送信信号を所定の無線リソース(ULリソース)にマッピングする。また、マッピング部208は、スケジューリング情報に基づいて、DMRSを所定の無線リソース(ULリソース)にマッピングする。 The mapping unit 208 maps the transmission signal input from the coding / modulation unit 207 to a predetermined radio resource (UL resource) based on the scheduling information (UL resource allocation) input from the demodulation / decoding unit 205. . Also, the mapping unit 208 maps the DMRS to a predetermined radio resource (UL resource) based on the scheduling information.
 DMRSの無線リソースへのマッピングは、例えば、制御部203によって制御されてよい。例えば、制御部203は、後述するように、UL信号にDMRSをマッピングする位置を、異なる時間において異なる周波数にホッピングする制御部の一例と捉えてよい。 The mapping of the DMRS to the radio resource may be controlled by, for example, the control unit 203. For example, as described later, the control unit 203 may regard the position at which the DMRS is mapped to the UL signal as an example of a control unit that hops to different frequencies at different times.
 送信部209は、マッピング部208から入力されるUL信号(少なくともULデータ信号及びDMRSを含む)に対して、アップコンバート、増幅等の送信処理を行い、無線周波数信号(UL信号)をアンテナ201から送信する。 The transmitting unit 209 performs transmission processing such as up-conversion and amplification on the UL signal (including at least the UL data signal and the DMRS) input from the mapping unit 208, and transmits a radio frequency signal (UL signal) from the antenna 201. Send.
 送信信号生成部206、符号化・変調部207、マッピング部208、及び、送信部209を含むブロックは、ユーザ端末20に備えられた無線送信装置の一例と捉えてよい。また、受信部202、制御部203、チャネル推定部204、及び、復調・復号部205を含むブロックは、ユーザ端末20に備えられた無線受信装置の一例と捉えてよい。 The block including the transmission signal generation unit 206, the encoding / modulation unit 207, the mapping unit 208, and the transmission unit 209 may be considered as an example of a wireless transmission apparatus provided in the user terminal 20. Also, the block including the reception unit 202, the control unit 203, the channel estimation unit 204, and the demodulation / decoding unit 205 may be considered as an example of a wireless reception apparatus provided in the user terminal 20.
 また、制御部203、チャネル推定部204、及び、復調・復号部205を含むブロックは、後述するように、DL信号の時間領域にマッピングされたDMRSを用いて、DL信号を受信処理する処理部の一例と捉えてよい。 In addition, as described later, the block including the control unit 203, the channel estimation unit 204, and the demodulation / decoding unit 205 is a processing unit that receives and processes a DL signal using DMRS mapped in the time domain of the DL signal. You can think of it as an example of
 以上説明した無線基地局10とユーザ端末20とを備える無線通信システムでは、DMRSの一例として、front-loaded DMRSが用いられる。front-loaded DMRSは、リソース割り当て単位であるスロット(または、リソースユニットおよびサブフレーム等と呼ばれてもよい)における時間方向の前方にマッピングされる。別言すれば、スロットにマッピングされる、時間方向の最初のDMRSをfront-loaded DMRSと呼ぶ。DMRSが前方にマッピングされることにより、無線通信システムでは、チャネル推定および復調処理に要する処理時間を短縮できる。以下では、front-loaded DMRSをFL-DMRS、front-load DMRSあるいは第1の復調用参照信号と記載することがある。 In the wireless communication system including the wireless base station 10 and the user terminal 20 described above, a front-loaded DMRS is used as an example of the DMRS. The front-loaded DMRSs are mapped forward in the time direction in slots, which are resource allocation units (or may be referred to as resource units and subframes, etc.). In other words, the first DMRS in the time direction mapped to the slots is called front-loaded DMRS. The forward mapping of the DMRS can reduce the processing time required for channel estimation and demodulation processing in the wireless communication system. Hereinafter, front-loaded DMRS may be described as FL-DMRS, front-load DMRS, or a first demodulation reference signal.
 DMRSのマッピングタイプは、FL-DMRSのマッピング位置によって、マッピングタイプAとマッピングタイプBとに分けられる。以下、2つのマッピングタイプA,Bについて説明する。 The mapping type of DMRS is divided into mapping type A and mapping type B according to the mapping position of FL-DMRS. Hereinafter, two mapping types A and B will be described.
 <マッピングタイプA>
 図3Aは、DMRSのマッピングタイプAを説明する図である。図3Aに示すスロット(slot)は、例えば、168個のリソース要素(RE:Resource Element)が時間方向に14個、周波数方向に12個並んだ構成を有する。1REは、1シンボルと1サブキャリアとにより定義される無線リソース領域である。1つのスロットは、14シンボルと12サブキャリアとにより構成される。
<Mapping type A>
FIG. 3A is a diagram for explaining mapping type A of DMRS. The slot shown in FIG. 3A has, for example, a configuration in which 168 resource elements (RE: Resource Element) are aligned in the time direction and 14 in the frequency direction. One RE is a radio resource area defined by one symbol and one subcarrier. One slot consists of 14 symbols and 12 subcarriers.
 以下の説明では、RUの時間方向の14シンボルを、左から順にSB0~SB13と呼ぶ。また、RUの周波数方向の12サブキャリアを、下から順にSC0~SC11と呼ぶ。スロットの定義は、上記に限られない。例えば、スロットのシンボル数は、14未満の場合もあり得る。また、例えば、スロットのサブキャリア数は、11未満の場合および13以上の場合もあり得る。 In the following description, 14 symbols in the time direction of RU are referred to as SB0 to SB13 in order from the left. Also, 12 subcarriers in the frequency direction of RU are called SC0 to SC11 in order from the bottom. The definition of slot is not limited to the above. For example, the number of symbols in a slot may be less than fourteen. Also, for example, the number of subcarriers in the slot may be less than 11 and may be 13 or more.
 PDCCHは、スロットの先頭のSB0,SB1の2シンボルにマッピングされる。または、PDCCHは、スロットの先頭のSB0,SB1,SB2の3シンボルにマッピングされる。図3Aの例では、PDCCHは、スロットの先頭のSB0,SB1の2シンボルにマッピングされている。なお、UL信号におけるPUCCHのマッピングについてもPDCCHと同様でよい。 The PDCCH is mapped to two symbols SB0 and SB1 at the head of the slot. Alternatively, the PDCCH is mapped to three symbols SB0, SB1, and SB2 at the head of the slot. In the example of FIG. 3A, the PDCCH is mapped to two symbols SB0 and SB1 at the head of the slot. The mapping of PUCCH in the UL signal may be the same as PDCCH.
 マッピングタイプAでは、FL-DMRSは、スロットの3番目のシンボル(SB2)又は4番目のシンボル(SB3)にマッピングされる。つまり、FL-DMRSは、時間方向において、PDCCHのシンボルの後にマッピングされる。 In mapping type A, the FL-DMRS is mapped to the third symbol (SB2) or the fourth symbol (SB3) of the slot. That is, FL-DMRSs are mapped after PDCCH symbols in the time direction.
 例えば、PDCCHが、図3Aに示すように、SB0,SB1の2シンボルにマッピングされる場合、FL-DMRSは、SB2にマッピングされる。また、PDCCHがSB0,SB1,SB2の3シンボルにマッピングされる場合、FL-DMRSは、SB3にマッピングされる。 For example, when the PDCCH is mapped to two symbols SB0 and SB1 as shown in FIG. 3A, the FL-DMRS is mapped to SB2. Also, when the PDCCH is mapped to three symbols SB0, SB1 and SB2, the FL-DMRS is mapped to SB3.
 FL-DMRSの時間方向の後方に、アディショナルDMRS(additional DMRS)がマッピングされることがある。図3Aの例では、アディショナルDMRSは、SB11にマッピングされている。アディショナルDMRSによって、例えば、ハイドップラー(high doppler)に基づくDMRSの劣化を抑制でき、又は、DMRSのカバレッジを拡張できる。以下では、アディショナルDMRSを、A-DMRSあるいは第2の復調用参照信号と記載することがある。 An additional DMRS (additional DMRS) may be mapped behind the time direction of the FL-DMRS. In the example of FIG. 3A, the additional DMRS is mapped to SB11. The additional DMRS can, for example, suppress DMRS degradation based on high doppler, or extend the DMRS coverage. Hereinafter, the additional DMRS may be described as an A-DMRS or a second demodulation reference signal.
 <マッピングタイプB>
 図3Bは、DMRSのマッピングタイプBを説明する図である。上記したように、DMRSのマッピングタイプAでは、FL-DMRSは、スロットの3番目のシンボル(SB2)又は4番目のシンボル(SB3)にマッピングされる。これに対し、DMRSのマッピングタイプBでは、FL-DMRSは、スロットの先頭シンボルにマッピングされる。すなわち、図3Bに示すように、FL-DMRSは、SB0にマッピングされる。
<Mapping type B>
FIG. 3B is a diagram for explaining mapping type B of DMRS. As described above, in the DMRS mapping type A, the FL-DMRS is mapped to the third symbol (SB2) or the fourth symbol (SB3) of the slot. On the other hand, in DMRS mapping type B, FL-DMRS is mapped to the leading symbol of the slot. That is, as shown in FIG. 3B, FL-DMRS is mapped to SB0.
 なお、図3Bでは、PDCCH又はPUCCHは、スロットにマッピングされていない。FL-DMRSがスロットの先頭シンボルにマッピングされる場合、PDCCH又はPUCCHは、別のスロットにマッピングされる。また、図3Bの例では、A-DMRSは、SB12にマッピングされている。 In addition, in FIG. 3B, PDCCH or PUCCH is not mapped to the slot. If the FL-DMRS is mapped to the leading symbol of the slot, the PDCCH or PUCCH is mapped to another slot. Further, in the example of FIG. 3B, A-DMRS is mapped to SB12.
 なお、図3A及び図3Bでは、A-DMRSのシンボル数が1つの場合を例示しているが、本実施の形態では、A-DMRSのシンボル数は、1つに限られず、複数の場合もある。また、図3A及び図3Bでは、DMRSが、連続したサブキャリアにマッピングされている場合を例示しているが、本実施の形態では、DMRSが、サブキャリアに不連続にマッピングされてもよい。 Although FIG. 3A and FIG. 3B illustrate the case where the number of symbols of A-DMRS is one, in this embodiment, the number of symbols of A-DMRS is not limited to one, and a plurality of symbols are also used. is there. Moreover, although the case where DMRS is mapped to a continuous subcarrier is illustrated in FIG. 3A and 3B, DMRS may be mapped discontinuously to a subcarrier in this Embodiment.
 DL及びULのそれぞれにおいて、DMRSのマッピング位置が規定される。以下、A-DMRSを含むDMRSのマッピング位置について説明する。 In each of DL and UL, mapping positions of DMRS are defined. Hereinafter, the mapping position of DMRS including A-DMRS will be described.
 <DLにおけるDMRSのマッピング位置>
 図4は、DLにおけるDMRSのマッピング位置を説明する図である。図4に示す「Duration of PDSCH transmission」は、マッピングタイプAでの、PDCCHとPDSCHとを構成するシンボル数を示している。また、「Duration of PDSCH transmission」は、マッピングタイプBでの、PDSCHを構成するシンボル数を示している。なお、NR(New Radio)では、PDSCHを構成するシンボル数は、可変である。例えば、PDCCHを構成するシンボル数は、1~3の何れかであり得る。
<Mapping position of DMRS in DL>
FIG. 4 is a diagram for explaining the mapping position of DMRS in the DL. “Duration of PDSCH transmission” illustrated in FIG. 4 indicates the number of symbols constituting PDCCH and PDSCH in mapping type A. Also, “Duration of PDSCH transmission” indicates the number of symbols constituting PDSCH in mapping type B. In NR (New Radio), the number of symbols constituting PDSCH is variable. For example, the number of symbols constituting the PDCCH may be any of 1 to 3.
 DLにおけるDMRSのマッピング位置は、図4の「PDSCH mapping type A」および「PDSCH mapping type B」に示すように、マッピングタイプAとマッピングタイプBとの2つに分けられる。そして、図4の「DL-DMRS-add-pos」に示すように、各マッピングタイプにおいて、「0,1,2,3」の4つの場合のそれぞれにおけるA-DMRSの位置が規定される。 The mapping position of DMRS in DL is divided into two types, mapping type A and mapping type B, as shown in “PDSCH mapping type A” and “PDSCH mapping type B” in FIG. 4. Then, as shown in “DL-DMRS-add-pos” in FIG. 4, in each mapping type, the position of A-DMRS in each of four cases “0, 1, 2, 3” is defined.
 「DL-DMRS-add-pos」の下欄に示す「0,1,2,3」は、PDSCHにマッピングされるA-DMRSのシンボルの数を示している。例えば、「0」は、A-DMRSがPDSCHにマッピングされないことを示している。「1」は、PDSCHにマッピングされるA-DMRSのシンボルの数が1個であることを示している。別言すれば、PDSCHには、FL-DMRSと、1シンボルのA-DMRSがマッピングされる。「2」は、PDSCHにマッピングされるA-DMRSのシンボルの数が2個であることを示している。別言すれば、PDSCHには、FL-DMRSと、2シンボルのA-DMRSと、がマッピングされる。「3」は、PDSCHにマッピングされるA-DMRSのシンボルの数が3個であることを示している。別言すれば、PDSCHには、FL-DMRSと、3シンボルのA-DMRSと、がマッピングされる。 “0, 1, 2, 3” shown in the lower column of “DL-DMRS-add-pos” indicates the number of symbols of A-DMRS mapped to PDSCH. For example, “0” indicates that A-DMRS is not mapped to PDSCH. “1” indicates that the number of symbols of A-DMRS mapped to PDSCH is one. In other words, FL-DMRS and one symbol A-DMRS are mapped to PDSCH. “2” indicates that the number of A-DMRS symbols mapped to PDSCH is two. In other words, in the PDSCH, the FL-DMRS and the two-symbol A-DMRS are mapped. “3” indicates that the number of A-DMRS symbols mapped to PDSCH is three. In other words, FL-DMRS and 3-symbol A-DMRS are mapped to PDSCH.
 図4の太線の枠A1内に示す「l」および数字は、DMRSがマッピングされるシンボルの位置を示している。マッピングタイプAの「l」は、「2」及び「3」のいずれかの値を取る。マッピングタイプBの「l」は、「0」の値を取る。つまり、「l」は、FL-DMRSがマッピングされるシンボル位置を示している(図3A及び図3BのFL-DMRSを参照)。そして、図4の太線の枠A1内に示す数字は、A-DMRSがマッピングされるシンボルの位置を示している。 “L 0 ” and the numbers shown in the bold frame A1 of FIG. 4 indicate the positions of symbols to which the DMRS is mapped. Mapping type A “l 0 ” takes one of the values “2” and “3”. Mapping type B “l 0 ” takes a value of “0”. That is, “l 0 ” indicates the symbol position to which the FL-DMRS is mapped (see FL-DMRS in FIGS. 3A and 3B). The numbers shown in the bold frame A1 in FIG. 4 indicate the positions of symbols to which A-DMRSs are mapped.
 各マッピングタイプのDMRSの位置は、PDSCHを構成するシンボル数によって、それぞれ規定されている。例えば、PDSCHを構成するシンボル数が「11」の場合(図4に示すDuration of PDSCH transmissionが「11」の場合)、マッピングタイプAでは、「l」のシンボル、「l,9」のシンボル、及び「l,6,9」のシンボルのいずれかにマッピングされる。また、例えば、PDSCHを構成するシンボル数が「12」の場合(図4に示すDuration of PDSCH transmissionが「12」の場合)、マッピングタイプBでは、「l」のシンボル、「l,10」のシンボル、「l,5,10」、及び「l,3,6,9」のシンボルのいずれかにマッピングされる。 The position of the DMRS of each mapping type is defined by the number of symbols constituting the PDSCH. For example, (if the Duration of PDSCH Transmission shown in Fig. 4 of "11") number of symbols constituting the PDSCH is the case of "11", the mapping type A, the symbols of "l 0", the "l 0, 9" The symbol is mapped to one of the symbols “l 0 , 6, 9”. Further, for example, (if the Duration of PDSCH Transmission shown in Fig. 4 of "12") when the number of symbols constituting the PDSCH is "12", the mapping type B, a symbol of "l 0", "l 0, 10 The symbol is mapped to one of the symbols of “ 0 , 5, 10” and “1 0 , 3, 6, 9”.
 なお、マッピングタイプAでは、PDSCHを構成するシンボル数が8以下の場合、PDSCHに、A-DMRSはマッピングされない。マッピングタイプBでは、PDSCHを構成するシンボル数が6以下の場合、PDSCHに、A-DMRSはマッピングされない。 In mapping type A, when the number of symbols constituting PDSCH is eight or less, A-DMRS is not mapped to PDSCH. In mapping type B, when the number of symbols constituting PDSCH is 6 or less, A-DMRSs are not mapped to PDSCH.
 DLにおけるDMRSの位置は、例えば、DCIによって、無線基地局10から、ユーザ端末20に通知される。例えば、無線基地局10は、図4に示す表の情報を、例えば、テーブルとしてメモリに記憶している。無線基地局10は、メモリに記憶しているテーブルを参照し、DMRSのマッピングタイプと、図4に示すDL-DMRS-add-posの「0~3」のいずれかの値とを指定する。 The position of the DMRS in the DL is notified from the radio base station 10 to the user terminal 20 by, for example, DCI. For example, the radio base station 10 stores the information of the table shown in FIG. 4 in the memory as a table, for example. The radio base station 10 refers to the table stored in the memory, and specifies the DMRS mapping type and any value of “0 to 3” of DL-DMRS-add-pos shown in FIG.
 ユーザ端末20は、図4に示す表の情報を、例えば、テーブルとしてメモリに記憶している。ユーザ端末20は、無線基地局10から指定されたDMRSのマッピングタイプと、DL-DMRS-add-posの「0~3」のいずれかの値とに基づいて、メモリのテーブルを参照し、DMRSがマッピングされているシンボルの位置を判定する。 The user terminal 20 stores the information of the table shown in FIG. 4 in the memory as a table, for example. The user terminal 20 refers to the memory table based on the DMRS mapping type specified from the radio base station 10 and any value of “0 to 3” of the DL-DMRS-add-pos, Determine the position of the symbol to which is mapped.
 例えば、無線基地局10は、PDSCHを12シンボルで構成し、マッピングタイプBのDL-DMRS-add-pos「2」で示される位置に、DMRSをマッピングしたとする(図4の点線の枠A2参照)。 For example, it is assumed that the radio base station 10 configures PDSCH with 12 symbols and maps DMRS to the position indicated by DL-DMRS-add-pos “2” of mapping type B (dotted line frame A2 in FIG. 4). reference).
 図5は、マッピングタイプBのDL-DMRS-add-pos「2」におけるDMRSのマッピング位置の一例を示した図である。無線基地局10は、PDSCHを12シンボル(SB0~SB11)で構成し、マッピングタイプBのDL-DMRS-add-pos「2」が示す位置に、DMRSをマッピングしたとする(図4の点線の枠A2参照)。この場合、FL-DMRSは、例えば、図5に示すように、SB0にマッピングされ、A-DMRSは、SB5とSB10とにマッピングされる。 FIG. 5 is a diagram showing an example of the mapping position of the DMRS in the DL-DMRS-add-pos “2” of the mapping type B. It is assumed that the radio base station 10 configures the PDSCH with 12 symbols (SB0 to SB11), and maps the DMRS at the position indicated by the DL-DMRS-add-pos “2” of the mapping type B (dotted line in FIG. 4). See frame A2). In this case, FL-DMRS is mapped to SB0 and A-DMRS is mapped to SB5 and SB10 as shown in FIG. 5, for example.
 無線基地局10は、上記したように、例えば、DCIを用いて、DLにおけるDMRSのマッピング位置をユーザ端末20に通知する。上記例の場合、無線基地局10は、マッピングタイプBのDL-DMRS-add-pos「2」の情報をDCIに含め、ユーザ端末20に通知する。 As described above, the radio base station 10 notifies the user terminal 20 of the mapping position of the DMRS in the DL, for example, using the DCI. In the case of the above example, the radio base station 10 includes information of DL-DMRS-add-pos “2” of mapping type B in the DCI, and notifies the user terminal 20 of the information.
 ユーザ端末20は、DCIに含まれているマッピングタイプBのDL-DMRS-add-pos「2」の情報に基づいて、メモリに記憶しているテーブル(図4に示す表の情報)を参照する。そして、ユーザ端末20は、l番目のシンボル(SB0)にFD-DMRSがマッピングされ、SB5とSB10とにA-DMRSがマッピングされていることを判定する。なお、ユーザ端末20は、無線基地局10から通知されるスケジューリング情報に基づいて、PDSCHを構成しているシンボルの数(12シンボル)を判定できる。 The user terminal 20 refers to the table stored in the memory (the information in the table shown in FIG. 4) based on the information of the DL-DMRS-add-pos “2” of the mapping type B included in the DCI. . Then, the user terminal 20, FD-DMRS to l 0-th symbol (SB0) is mapped, determining that A-DMRS is mapped to and SB5 and SB 10. The user terminal 20 can determine the number of symbols (12 symbols) constituting the PDSCH based on the scheduling information notified from the radio base station 10.
 5Gの仕様では、図4に示すマッピングタイプBの一点鎖線の枠A3内のDMRSのマッピング位置は規定されていない。そこで、本発明では、マッピングタイプBの一点鎖線の枠A3内のDMRSのマッピング位置を規定した。 In the 5G specification, the mapping position of the DMRS in the frame A3 of the dashed dotted line of the mapping type B shown in FIG. 4 is not defined. So, in this invention, the mapping position of DMRS in frame A3 of the dashed dotted line of mapping type B was specified.
 図4に示す一点鎖線の枠A3内のDMRSは、マッピングされるシンボル間隔が等間隔または等間隔に近くなるように、かつ、ある程度決まったシンボルにマッピングされるよう規定されている。例えば、DL-DMRS-add-posが「2」である場合に、Duration of PDSCH transmissionが「2n」の場合と「2n+1」の場合とで(nは、4、5、6のいずれか)、A-DMRSのスロットの先頭からの位置が同一となる。 The DMRSs within the dashed dotted line frame A3 shown in FIG. 4 are defined so that the symbol intervals to be mapped are equal intervals or close to equal intervals, and are mapped to symbols determined to some extent. For example, when DL-DMRS-add-pos is “2”, when Duration of PDSCH transmission is “2 n” and “2 n + 1” (n is any of 4, 5 and 6), The positions from the beginning of the A-DMRS slot are the same.
 また、時間方向において、最後のDMRSは、PDSCHを構成するシンボルの後ろから3シンボル内にマッピングされるように規定されている。別言すれば、DMRSは、時間方向において、なるべくPDSCHの両端(一方の端は、FL-DMRSであり、先頭のシンボルにマッピングされている)にマッピングされるように規定されている。 Also, in the time direction, the last DMRS is defined to be mapped within the last 3 symbols of the symbols making up the PDSCH. In other words, DMRS is defined to be mapped to both ends of PDSCH (one end is FL-DMRS and is mapped to the leading symbol) in the time direction.
 例えば、図5に示すように、DMRSは、5シンボル間隔でPDSCHにマッピングされている。また、図4に示すように、DMRSは、SB3~SB6,SB8~SB10,SB12と決まったシンボルにマッピング(リユース)されている。また、図5に示すように、時間方向において、最後のDMRS(A-DMRS)は、PDSCHを構成する12シンボルのうちの最後の3シンボルSB9,SB10,SB11内のSB10にマッピングされている。 For example, as shown in FIG. 5, DMRSs are mapped to PDSCHs at five symbol intervals. Further, as shown in FIG. 4, the DMRS is mapped (reused) to symbols determined as SB3 to SB6, SB8 to SB10, and SB12. Further, as shown in FIG. 5, in the time direction, the last DMRS (A-DMRS) is mapped to SB10 in the last three symbols SB9, SB10 and SB11 of 12 symbols constituting the PDSCH.
 このように、DMRSのマッピング間隔を等間隔または等間隔に近くなるように規定することによって、PDSCH内のチャネル推定の精度を均一化できる。また、DMRSを、ある程度決まったシンボルにマッピングすることによって、DMRSとデータ信号との衝突を回避し、DMRS同士の衝突の確率を高くして、DMRSとデータ信号とが衝突した場合よりも、DMRS同士が衝突したときのチャネル推定の性能を平均的に向上できる。また、時間方向において、最後のDMRSを、PDSCHを構成するシンボルのうちの後ろから3シンボル内にマッピングすることによって、PDSCHの全体にわたるチャネル推定の補間精度を向上できる。 In this way, by defining the DMRS mapping intervals to be equal intervals or close to equal intervals, it is possible to equalize the channel estimation accuracy in the PDSCH. Also, by mapping the DMRS to a certain fixed symbol, the collision between the DMRS and the data signal is avoided, and the probability of the collision between the DMRSs is increased, and the DMRS and the data signal collide, compared to the DMRS. It is possible to improve on average the performance of channel estimation when the two collide with each other. Also, by mapping the last DMRS in the last 3 symbols of the symbols constituting the PDSCH in the time direction, it is possible to improve the interpolation accuracy of channel estimation over the PDSCH.
 <DLにおけるD-DMRS(Double-symbol DMRS)のマッピング位置>
 次に、ダブルシンボルDMRS(Double-symbol DMRS;以下、D-DMRSと記載することがある)のマッピング位置について説明する。
<Mapping position of D-DMRS (Double-symbol DMRS) in DL>
Next, the mapping position of the double symbol DMRS (Double-symbol DMRS; hereinafter may be described as D-DMRS) will be described.
 DLにおけるD-DMRSでは、DMRSが2シンボル連続してマッピングされる。例えば、マッピングタイプAでは、FL-DMRSは、3番目と4番目と(SB2,SB3)の2つのシンボルに連続してマッピングされ、または、4番目と5番目と(SB3,SB4)の2つのシンボルに連続してマッピングされる。また、A-DMRSも、2つのシンボルに連続してマッピングされる。 In D-DMRS in DL, DMRSs are mapped two consecutive symbols. For example, in mapping type A, FL-DMRS is mapped to two symbols of the third and fourth and (SB2, SB3) consecutively, or two of the fourth and fifth and (SB3, SB4) It is mapped continuously to the symbol. Also, A-DMRSs are mapped to two symbols in succession.
 マッピングタイプBもマッピングタイプAと同様に、FL-DMRSは、1番目と2番目と(SB0,SB1)の2つのシンボルに連続してマッピングされる。また、A-DMRSも、2つのシンボルに連続してマッピングされる。 Similarly to mapping type A, FL-DMRS is mapped to two symbols of first, second and (SB0, SB1) in succession. Also, A-DMRSs are mapped to two symbols in succession.
 図6は、DLにおけるD-DMRSのマッピング位置を説明する図である。図6に示す表の見方は、図4と同様である。ただし、DMRSは、太線の枠A11内に示される「l」と数字とが示すシンボルと、そのシンボルに連続する(時間方向において連続する)シンボルとにマッピングされる。 FIG. 6 is a diagram for explaining the mapping position of D-DMRS in the DL. The view of the table shown in FIG. 6 is the same as that of FIG. However, the DMRS is mapped to a symbol indicated by “l 0 ” and a number shown in the bold line frame A11, and a symbol (continuous in the time direction) following the symbol.
 例えば、D-DMRSのマッピングタイプは、マッピングタイプBであり、PDCSHは、12シンボルで構成されるとする。また、DL-DMRS-add-posは、「1」であるとする。この場合、FL-DMRSは、SB0,SB1にマッピングされ、A-DMRSは、SB9,SB10にマッピングされる(図6の点線の枠A12参照)。 For example, assume that the mapping type of D-DMRS is mapping type B, and PDCSH consists of 12 symbols. Also, it is assumed that DL-DMRS-add-pos is “1”. In this case, FL-DMRS is mapped to SB0 and SB1, and A-DMRS is mapped to SB9 and SB10 (see dotted frame A12 in FIG. 6).
 図7は、マッピングタイプBのDL-DMRS-add-pos「1」におけるDMRSのマッピング位置の一例を示した図である。無線基地局10は、PDSCHを12シンボル(SB0~SB11)で構成し、マッピングタイプBのDL-DMRS-add-pos「1」が示す位置に、DMRSをマッピングしたとする(図6の点線の枠A12参照)。この場合、FL-DMRSは、例えば、図7に示すように、SB0,SB1にマッピングされ、A-DMRSは、SB9,SB10にマッピングされる。 FIG. 7 is a diagram showing an example of the mapping position of the DMRS in the DL-DMRS-add-pos “1” of the mapping type B. It is assumed that the radio base station 10 configures the PDSCH with 12 symbols (SB0 to SB11), and maps the DMRS at the position indicated by the DL-DMRS-add-pos “1” of the mapping type B (dotted line in FIG. 6). See frame A12). In this case, FL-DMRS is mapped to SB0 and SB1, and A-DMRS is mapped to SB9 and SB10, as shown in FIG. 7, for example.
 D-DMRSにおいても、シングルDMRSと同様に、DMRSのマッピング位置が無線基地局10からユーザ端末20に通知される。ユーザ端末20は、図6に示す表の情報を、例えば、テーブルとしてメモリに記憶している。ユーザ端末20は、無線基地局10から指定されたDMRSのマッピングタイプと、DL-DMRS-add-posの「0,1」のいずれかの値とに基づいて、メモリのテーブルを参照し、D-DMRSがマッピングされているシンボルの位置を判定(取得)する。 Also in the D-DMRS, the mapping position of the DMRS is notified from the radio base station 10 to the user terminal 20 as in the single DMRS. The user terminal 20 stores the information of the table shown in FIG. 6 in the memory as a table, for example. The user terminal 20 refers to the memory table based on the DMRS mapping type designated from the radio base station 10 and any value of “0, 1” of DL-DMRS-add-pos, and D -Determine (acquire) the position of the symbol to which DMRS is mapped.
 5Gの仕様では、図6に示すマッピングタイプBの一点鎖線の枠A13内のDMRSのマッピング位置は規定されていない。そこで、本発明では、マッピングタイプBの一点鎖線の枠A13内のDMRSのマッピング位置を規定した。 In the specification of 5G, the mapping position of the DMRS in the frame A13 of the dashed dotted line of the mapping type B shown in FIG. 6 is not defined. So, in this invention, the mapping position of DMRS in frame A13 of the dashed dotted line of mapping type B was specified.
 図6に示す一点鎖線の枠A13内のDMRSは、ある程度決まったシンボルにマッピングされるように規定されている。また、時間方向において、最後のDMRSは、PDSCHを構成するシンボルの後ろから3シンボル内にマッピングされるように規定されている。また、DL-DMRS-add-posが「0、1」または「2」である場合に、Duration of PDSCH transmissionが「10」以上の、A-DMRSのスロットの先頭からの位置が、マッピングタイプAとマッピングタイプBとで同一となる。 The DMRSs within the dashed-dotted line frame A13 shown in FIG. 6 are defined to be mapped to symbols determined to some extent. Also, in the time direction, the last DMRS is defined to be mapped within the last 3 symbols of the symbols making up the PDSCH. Also, when DL-DMRS-add-pos is “0, 1” or “2”, the position from the beginning of the A-DMRS slot where the Duration of PDSCH transmission is “10” or more is mapping type A And the mapping type B are identical.
 例えば、図6に示すように、SB9は、DMRSのマッピングにおいて、2個リユースされている。また、図7に示すように、時間方向において、最後のDMRS(A-DMRS)は、PDSCHを構成する12シンボルのうちの最後の3シンボルSB9,SB10,SB11内のSB10にマッピングされている。 For example, as shown in FIG. 6, two SBs 9 are reused in DMRS mapping. Further, as shown in FIG. 7, in the time direction, the last DMRS (A-DMRS) is mapped to SB10 in the last three symbols SB9, SB10 and SB11 of the 12 symbols constituting the PDSCH.
 このように、DMRSを、ある程度決まったシンボルにマッピングすることによって、DMRS同士が衝突したときのチャネル推定の性能を、DMRSとデータとが衝突した場合よりも平均的に向上できる。また、時間方向において、最後のDMRSを、PDSCHを構成するシンボルの後ろから3シンボル内にマッピングすることによって、PDSCHの全体にわたるチャネル推定の補間精度を向上できる。 Thus, by mapping the DMRS to a certain fixed symbol, the performance of channel estimation when DMRSs collide can be improved on average compared to when DMRSs collide with data. Also, by mapping the last DMRS in the last three symbols of the symbols that make up the PDSCH in the time direction, it is possible to improve the interpolation accuracy of channel estimation over the PDSCH.
 なお、図6に示すように、D-DMRSのA-DMRSは、1個の場合が規定されている。すなわち、D-DMRSのA-DMRSは、DL-DMRS-add-posが「0,1」を規定し、2以上を規定していない。D-DMRSのA-DMRSを2以上規定していないのは、DMRSによって、PDSCHのリソースが減少するのを抑制するためである。 As shown in FIG. 6, one D-DMRS A-DMRS is defined. That is, in A-DMRS of D-DMRS, DL-DMRS-add-pos defines “0, 1” and does not define 2 or more. The reason why two or more A-DMRSs of D-DMRS are not defined is to suppress the reduction of PDSCH resources by DMRS.
 例えば、図7に示すように、D-DMRSのA-DMRSが1個の場合、DMRSがマッピングされるシンボルの数は、SB0,SB1,SB9,SB10の4個となる。仮に、D-DMRSのA-DMRSを2個とした場合、DMRSがマッピングされるシンボルの数は、6個となるため、データの信号をマッピングするPDSCHのリソースが減少してしまう。そのため、D-DMRSのA-DMRSを2以上に規定していない。 For example, as shown in FIG. 7, when there is one A-DMRS of D-DMRS, the number of symbols to which DMRS is mapped is four, that is, SB0, SB1, SB9, and SB10. Assuming that the number of A-DMRSs of D-DMRSs is two, the number of symbols to which DMRSs are mapped is six, and thus the resources of PDSCH for mapping data signals are reduced. Therefore, A-DMRS of D-DMRS is not specified to 2 or more.
 <ULにおけるDMRSのマッピング位置>
 次に、ULにおけるDMRSのマッピング位置について説明する。
<Mapping position of DMRS in UL>
Next, the mapping position of DMRS in UL will be described.
 図8は、ULにおけるDMRSのマッピング位置を説明する図である。図8に示す表の見方は、図4と同様である。ただし、図8に示す「PUSCH duration in symbols」は、マッピングタイプがAの場合、PUCCHとPUSCHとを構成するシンボル数を示している。また、「PUSCH duration in symbols」は、マッピングタイプがBの場合、PUSCHを構成するシンボル数を示している。なお、NR(New Radio)では、PUSCHを構成するシンボル数は、可変である。例えば、PUCCHを構成するシンボル数は、1~3の何れかであり得る。 FIG. 8 is a diagram for explaining the mapping position of DMRS in UL. The view of the table shown in FIG. 8 is the same as that of FIG. However, “PUSCH duration in symbols” shown in FIG. 8 indicates the number of symbols constituting PUCCH and PUSCH when the mapping type is A. Also, “PUSCH duration in symbols” indicates the number of symbols constituting the PUSCH when the mapping type is B. In NR (New Radio), the number of symbols constituting PUSCH is variable. For example, the number of symbols constituting the PUCCH may be any of 1 to 3.
 ULにおけるDMRSの位置は、例えば、DCIによって、無線基地局10から、ユーザ端末20に通知される。ユーザ端末20は、図8に示す表の情報を、例えば、テーブルとしてメモリに記憶している。ユーザ端末20は、DCIによって通知されたDMRSのマッピング位置の情報に基づいて、メモリのテーブルを参照し、PUSCHにマッピングするDMRSのシンボルの位置を判定する。 The position of the DMRS in the UL is notified from the radio base station 10 to the user terminal 20, for example, by DCI. The user terminal 20 stores the information of the table shown in FIG. 8 in the memory as a table, for example. The user terminal 20 refers to the memory table based on the information on the mapping position of the DMRS notified by the DCI, and determines the position of the DMRS symbol to be mapped to the PUSCH.
 例えば、ユーザ端末20は、無線基地局10から、PUSCHを12シンボルで構成し、マッピングタイプBのDL-DMRS-add-pos「2」で示される位置に、DMRSをマッピングするよう通知されたとする(図8の点線の枠A21参照)。 For example, it is assumed that the user terminal 20 is notified from the radio base station 10 that the PUSCH is composed of 12 symbols and that the DMRS is mapped to the position indicated by the DL-DMRS-add-pos “2” of the mapping type B. (See the dotted frame A21 in FIG. 8).
 図9は、マッピングタイプBのUL-DMRS-add-pos「2」におけるDMRSのマッピング位置の一例を示した図である。上記したように、ユーザ端末20は、無線基地局10から、PUSCHを12シンボルで構成し、マッピングタイプBのDL-DMRS-add-pos「2」で示される位置に、DMRSをマッピングすることが通知されたとする。この場合、FL-DMRSは、例えば、図9に示すように、SB0にマッピングされ、A-DMRSは、SB5とSB10とにマッピングされる。無線基地局10は、ULにおけるDMRSのマッピング位置を設定し、設定した情報をユーザ端末20に通知しているので、ユーザ端末20から受信したPUSCHのどのシンボルにDMRSがマッピングされているかを判定できる。 FIG. 9 is a diagram showing an example of the mapping position of DMRS in UL-DMRS-add-pos “2” of mapping type B. As described above, the user terminal 20 may configure the PUSCH with 12 symbols from the radio base station 10 and map the DMRS to the position indicated by the DL-DMRS-add-pos “2” of the mapping type B. Suppose that you were notified. In this case, FL-DMRS is mapped to SB0 and A-DMRS is mapped to SB5 and SB10, as shown in FIG. 9, for example. Since the radio base station 10 sets the DMRS mapping position in UL and notifies the set information to the user terminal 20, it can determine which symbol of the PUSCH received from the user terminal 20 the DMRS is mapped to .
 なお、ULにおけるDMRSのマッピング位置は、ユーザ端末20が決定してもよい。例えば、ユーザ端末20は、決定したマッピング位置にULのDMRSをマッピングし、決定したマッピング位置の情報を、例えば、UCI(Uplink Control Information)に含めて無線基地局10に通知してもよい。無線基地局10は、図8に示す表の情報を、例えば、テーブルとしてメモリに記憶している。無線基地局10は、UCIによって通知されたDMRSのマッピング位置の情報に基づいて、メモリのテーブルを参照し、PUSCHにマッピングされているDMRSのシンボルの位置を判定する。 In addition, the user terminal 20 may determine the mapping position of DMRS in UL. For example, the user terminal 20 may map the DMRS of UL to the determined mapping position, and may notify the wireless base station 10 of the information of the determined mapping position, for example, included in UCI (Uplink Control Information). The radio base station 10 stores the information of the table shown in FIG. 8 in a memory as a table, for example. The radio base station 10 refers to the table of the memory based on the information on the mapping position of the DMRS notified by the UCI, and determines the position of the DMRS symbol mapped to the PUSCH.
 5Gの仕様では、図8に示すマッピングタイプBの一点鎖線の枠A22内のDMRSのマッピング位置は規定されていない。そこで、本発明では、マッピングタイプBの一点鎖線の枠A22内のDMRSのマッピング位置を規定した。 In the 5G specification, the mapping position of the DMRS in the frame A22 of the dashed dotted line of the mapping type B shown in FIG. 8 is not defined. So, in this invention, the mapping position of DMRS in frame A22 of the dashed dotted line of mapping type B was specified.
 図8に示す一点鎖線の枠A22内のDMRSは、マッピングされるシンボル間隔が等間隔または等間隔に近くに、かつ、ある程度決まったシンボルにマッピングされることが規定されている。また、時間方向において、最後のDMRSは、PUSCHを構成するシンボルの後ろから5シンボル内マッピングされることが規定されている。別言すれば、DMRSは、時間方向において、なるべくPUSCHの両端(一方の端は、FL-DMRSであり、先頭のシンボルにマッピングされている)にマッピングされることが規定されている。 It is defined that the DMRS in the dashed dotted line frame A22 shown in FIG. 8 is to be mapped to symbols to which the symbol intervals to be mapped are equidistant or near equidistant and to a certain degree. Also, in the time direction, it is defined that the last DMRS is mapped within the last 5 symbols of the symbols making up the PUSCH. In other words, DMRS is defined to be mapped to both ends of PUSCH (one end is FL-DMRS and is mapped to the leading symbol) in the time direction.
 このように、DMRSのマッピング間隔を等間隔または等間隔に近くなるように規定することによって、PUSCH内のチャネル推定の精度を均一化できる。また、DMRSを、ある程度決まったシンボルにマッピングすることによって、DMRSが衝突したときのチャネル推定の性能を向上させることができる。また、時間方向において、最後のDMRSを、PUSCHを構成するシンボルの後ろから5シンボル内にマッピングすることによって、PDSCHの全体にわたるチャネル推定の補間精度を向上できる。 Thus, by defining the DMRS mapping intervals to be equal intervals or close to equal intervals, it is possible to equalize the accuracy of channel estimation in the PUSCH. Also, by mapping DMRSs to symbols determined to some extent, it is possible to improve the performance of channel estimation when DMRSs collide. Also, by mapping the last DMRS in the last 5 symbols of the symbols making up the PUSCH in the temporal direction, it is possible to improve the interpolation accuracy of channel estimation over the PDSCH.
 <ULにおけるD-DMRSのマッピング位置>
 次に、D-DMRSのマッピング位置について説明する。
<Mapping position of D-DMRS in UL>
Next, the mapping position of D-DMRS will be described.
 ULにおけるD-DMRSは、DLにおけるDMRSと同様に、DMRSが2シンボル連続してマッピングされる。例えば、図7に示したDMRSと同様に、PDSCHにおいて、DMRSが2シンボル連続してマッピングされる。 D-DMRSs in UL are mapped to DMRSs in two consecutive symbols, similarly to DMRSs in DL. For example, in the PDSCH, DMRSs are mapped two consecutive symbols in the same manner as the DMRSs shown in FIG.
 図10は、ULにおけるD-DMRSのマッピング位置を説明する図である。図10に示す表の見方は、図4と同様である。ただし、DMRSは、太線の枠A31内に示される「l」と数字とが示すシンボルと、そのシンボルに連続する(時間方向において連続する)シンボルとにマッピングされる。 FIG. 10 is a diagram for explaining the mapping position of D-DMRS in UL. The view of the table shown in FIG. 10 is the same as that of FIG. However, the DMRS is mapped to a symbol indicated by "l 0 " and a number shown in the bold line frame A31, and a symbol (continuous in the time direction) following the symbol.
 例えば、D-DMRSのマッピングタイプは、マッピングタイプBであり、PUCSHは、12シンボルで構成され、UL-DMRS-add-posは、「1」である場合、FL-DMRSは、SB0,SB1にマッピングされ、A-DMRSは、SB9,SB10にマッピングされる(図10の点線の枠A32参照)。 For example, when the mapping type of D-DMRS is mapping type B, PUCSH is configured of 12 symbols, and UL-DMRS-add-pos is "1", FL-DMRS is SB0, SB1. The mapped A-DMRS is mapped to SB9 and SB10 (see dotted frame A32 in FIG. 10).
 D-DMRSにおいても、シングルDMRSと同様に、DMRSのマッピング位置が無線基地局10からユーザ端末20に通知される。ユーザ端末20は、図10に示す表の情報を、例えば、テーブルとしてメモリに記憶している。ユーザ端末20は、無線基地局10から指定されたDMRSのマッピングタイプと、UL-DMRS-add-posの「0,1」のいずれかの値とに基づいて、メモリのテーブルを参照し、D-DMRSをマッピングするシンボルの位置を判定する。 Also in the D-DMRS, the mapping position of the DMRS is notified from the radio base station 10 to the user terminal 20 as in the single DMRS. The user terminal 20 stores the information of the table shown in FIG. 10 in the memory as a table, for example. The user terminal 20 refers to the memory table based on the DMRS mapping type designated from the radio base station 10 and any value of “0, 1” of UL-DMRS-add-pos, and D Determine the position of the symbol to which the DMRS is mapped.
 5Gの仕様では、図10に示すマッピングタイプBの一点鎖線の枠A33内のDMRSのマッピング位置は規定されていない。そこで、マッピングタイプBの一点鎖線の枠A33内のDMRSのマッピング位置を規定する。 In the 5G specification, the mapping position of the DMRS in the frame A33 of the dashed dotted line of the mapping type B shown in FIG. 10 is not defined. Therefore, the mapping position of the DMRS in the frame A33 of the one-dot chain line of the mapping type B is defined.
 図10に示す一点鎖線の枠A33内のDMRSは、ある程度決まったシンボルにマッピングされることが規定されている。また、時間方向において、最後のDMRSは、PUSCHを構成するシンボルの後ろから4シンボル目にマッピングされることが規定されている。 It is defined that the DMRSs in the frame A33 of one-dot chain line shown in FIG. 10 are mapped to symbols determined to some extent. Also, in the time direction, it is defined that the last DMRS is mapped to the fourth symbol after the symbols making up the PUSCH.
 このように、DMRSを、ある程度決まったシンボルにマッピングすることによって、DMRS同士が衝突したときのチャネル推定の性能を、DMRSとデータとが衝突した場合よりも平均的に向上できる。また、時間方向において、最後のDMRSを、PUSCHを構成するシンボルの後ろから4シンボル目にマッピングすることによって、PUSCHの全体にわたるチャネル推定の補間精度を向上できる。 Thus, by mapping the DMRS to a certain fixed symbol, the performance of channel estimation when DMRSs collide can be improved on average compared to when DMRSs collide with data. Also, by mapping the last DMRS to the fourth symbol after the symbols making up the PUSCH in the time direction, it is possible to improve the interpolation accuracy of channel estimation over the PUSCH.
 なお、図10に示すように、D-DMRSのA-DMRSは、1個の場合が規定されている。すなわち、D-DMRSのA-DMRSは、UL-DMRS-add-posが「0,1」を規定し、2以上を規定していない。D-DMRSのA-DMRSを2以上規定していないのは、DMRSによって、PUSCHのリソースが減少するのを抑制するためである。 As shown in FIG. 10, one D-DMRS A-DMRS is defined. That is, in A-DMRS of D-DMRS, UL-DMRS-add-pos defines “0, 1” and does not define 2 or more. The reason why two or more A-DMRSs of D-DMRS are not defined is to suppress the decrease of PUSCH resources by DMRS.
 <ULにおけるDMRSの周波数ホッピング>
 ULでは、1つのスロットにおいて、周波数ホッピングが適用されても良い。例えば、1つのスロットが14シンボルにより構成される場合、1つのスロットが、7シンボルから構成される2つの領域に分割されて、2つの領域に対して周波数ホッピングが適用されても良い。
<Frequency hopping of DMRS in UL>
In UL, frequency hopping may be applied in one slot. For example, when one slot is configured by 14 symbols, one slot may be divided into two areas configured by 7 symbols, and frequency hopping may be applied to the two areas.
 しかしながら、5Gの仕様では、周波数ホッピングが適用される場合のDMRSのマッピング位置は規定されていない。そこで、本発明では、周波数ホッピングが適用される場合のDMRSのマッピング位置を規定した。 However, in the 5G specification, the mapping position of DMRS when frequency hopping is applied is not defined. So, in this invention, the mapping position of DMRS when frequency hopping is applied was specified.
 図11は、ULのDMRSの周波数ホッピングの一例を説明する図である。図11に示すように、1スロットは、時間方向において、前半に位置する第1ホップ領域と、後半に位置する第2ホップ領域とに区切られてよい。図11の例では、第2ホップ領域が、第1ホップ領域よりも低い周波数帯にホップされる。なお、第2ホップ領域は、第1ホップ領域よりも高い周波数帯にホップされてもよい。 FIG. 11 is a diagram for explaining an example of frequency hopping of the DMRS in UL. As shown in FIG. 11, one slot may be divided into a first hop region located in the first half and a second hop region located in the second half in the time direction. In the example of FIG. 11, the second hop region is hopped to a frequency band lower than the first hop region. Note that the second hop region may hop to a frequency band higher than the first hop region.
 なお、図11における各ホップ領域の7シンボルを、左から順にSB0~SB6と呼ぶ。 The seven symbols in each hop area in FIG. 11 are referred to as SB0 to SB6 in order from the left.
 図11の第1ホップ領域の先頭2シンボル(SB0及びSB1)には、PUCCHがマッピングされている。PUCCHのシンボル数は、2シンボルに限定されず、1シンボル又は3シンボルでもよい。 A PUCCH is mapped to the first two symbols (SB0 and SB1) of the first hop area in FIG. The number of symbols of PUCCH is not limited to 2 symbols, and may be 1 symbol or 3 symbols.
 DMRSは、第1ホップ領域および第2ホップ領域のそれぞれにおいてマッピングされる。例えば、DMRSは、第1ホップ領域及び第2ホップ領域のそれぞれにおいて、SB2とSB4とにマッピングされてよい。 The DMRS is mapped in each of the first hop region and the second hop region. For example, DMRS may be mapped to SB2 and SB4 in each of the first hop region and the second hop region.
 図12は、ULにおけるDMRSのマッピング位置を説明する図である。図12に示す表の見方は、図4と同様である。ただし、図12に示す「PUSCH duration in symbols」は、第1ホップ領域のシンボル数を示し、また、第2ホップ領域のシンボル数を示している。なお、図11に示したDMRSは、マッピングタイプAの「l=2」の場合であって、図12の太線の枠A41で指定されたマッピング位置に基づいて、無線リソースにマッピングされている。すなわち、DMRSは、第1ホップ領域のSB2とSB6とにマッピングされ、第2ホップ領域のSB2とSB6とにマッピングされている。 FIG. 12 is a diagram for explaining the mapping position of DMRS in UL. The view of the table shown in FIG. 12 is the same as that of FIG. However, “PUSCH duration in symbols” shown in FIG. 12 indicates the number of symbols in the first hop area, and indicates the number of symbols in the second hop area. Note that the DMRS shown in FIG. 11 is the case of “l 0 = 2” of the mapping type A, and is mapped to the radio resource based on the mapping position designated by the bold frame A41 in FIG. . That is, the DMRS is mapped to SB2 and SB6 in the first hop area, and mapped to SB2 and SB6 in the second hop area.
 なお、図11において、第2ホップ領域にも、PUCCHがマッピングされてもよい。また、図11では、DMRSは、第1ホップ領域及び第2ホップ領域の同じシンボル位置にマッピングされているが、第1ホップ領域と第2ホップ領域とで、異なるシンボル位置にマッピングされてもよい。例えば、第2ホップ領域では、SB2にDMRSがマッピングされる代わりに、先頭のシンボル(SB0)にDMRSがマッピングされてもよい。この場合、第1ホップ領域及び第2ホップ領域のそれぞれにおいて、図12に示すような表(マッピング位置を規定する情報)を用意してもよい。あるいは、周波数ホッピングが適用されるマッピングタイプAのDMRSのマッピングの場合、PUCCHがマッピングされる第1ホップ領域のDMRSの位置は、図12に示すマッピングタイプAに基づいて設定され、PUCCHがマッピングされない第2ホップ領域のDMRSの位置は、図12に示すマッピングタイプBに基づいて設定されても良い。 Note that, in FIG. 11, PUCCH may be mapped also to the second hop region. Further, in FIG. 11, the DMRSs are mapped to the same symbol position in the first hop region and the second hop region, but may be mapped to different symbol positions in the first hop region and the second hop region. . For example, in the second hop region, instead of mapping DMRS to SB2, DMRS may be mapped to the first symbol (SB0). In this case, a table (information defining a mapping position) as shown in FIG. 12 may be prepared in each of the first hop area and the second hop area. Alternatively, in the case of mapping of DMRS of mapping type A to which frequency hopping is applied, the position of DMRS in the first hop region to which PUCCH is mapped is set based on mapping type A shown in FIG. 12 and PUCCH is not mapped. The position of the DMRS in the second hop region may be set based on the mapping type B shown in FIG.
 5Gの仕様では、周波数ホッピングにおける、マッピングタイプA,BのDMRSのマッピング位置は規定されていない。そこで、本発明では、周波数ホッピングにおける、マッピングタイプA,BのDMRSのマッピング位置を規定した。 In the 5G specification, mapping positions of DMRSs of mapping types A and B in frequency hopping are not defined. So, in this invention, the mapping position of DMRS of mapping type A, B in frequency hopping was specified.
 以上、本発明の実施の形態について説明した。 The embodiments of the present invention have been described above.
 (ハードウェア構成)
 なお、上記実施の形態の説明に用いたブロック図は、機能単位のブロックを示している。これらの機能ブロック(構成部)は、ハードウェア及び/又はソフトウェアの任意の組み合わせによって実現される。また、各機能ブロックの実現手段は特に限定されない。すなわち、各機能ブロックは、物理的及び/又は論理的に結合した1つの装置により実現されてもよいし、物理的及び/又は論理的に分離した2つ以上の装置を直接的及び/又は間接的に(例えば、有線及び/又は無線)で接続し、これら複数の装置により実現されてもよい。
(Hardware configuration)
Note that the block diagram used in the description of the above embodiment shows blocks in units of functions. These functional blocks (components) are realized by any combination of hardware and / or software. Moreover, the implementation means of each functional block is not particularly limited. That is, each functional block may be realized by one physically and / or logically coupled device, or directly and / or indirectly two or more physically and / or logically separated devices. It may be connected by (for example, wired and / or wireless) and realized by the plurality of devices.
 例えば、本発明の一実施の形態における無線基地局10、ユーザ端末20などは、本発明の無線通信方法の処理を行うコンピュータとして機能してもよい。図13は、本発明の一実施の形態に係る無線基地局10及びユーザ端末20のハードウェア構成の一例を示す図である。上述の無線基地局10及びユーザ端末20は、物理的には、プロセッサ1001、メモリ1002、ストレージ1003、通信装置1004、入力装置1005、出力装置1006、バス1007などを含むコンピュータ装置として構成されてもよい。 For example, the wireless base station 10, the user terminal 20, and the like in one embodiment of the present invention may function as a computer that performs the processing of the wireless communication method of the present invention. FIG. 13 is a diagram showing an example of the hardware configuration of the radio base station 10 and the user terminal 20 according to an embodiment of the present invention. The above-described wireless base station 10 and user terminal 20 may be physically configured as a computer device including a processor 1001, a memory 1002, a storage 1003, a communication device 1004, an input device 1005, an output device 1006, a bus 1007 and the like. Good.
 なお、以下の説明では、「装置」という文言は、回路、デバイス、ユニットなどに読み替えることができる。無線基地局10及びユーザ端末20のハードウェア構成は、図に示した各装置を1つ又は複数含むように構成されてもよいし、一部の装置を含まずに構成されてもよい。 In the following description, the term "device" can be read as a circuit, a device, a unit, or the like. The hardware configuration of the radio base station 10 and the user terminal 20 may be configured to include one or more of the devices illustrated in the figure, or may be configured without including some devices.
 例えば、プロセッサ1001は1つだけ図示されているが、複数のプロセッサがあってもよい。また、処理は、1のプロセッサで実行されてもよいし、処理が同時に、逐次に、又はその他の手法で、一以上のプロセッサで実行されてもよい。なお、プロセッサ1001は、一以上のチップで実装されてもよい。 For example, although only one processor 1001 is illustrated, there may be a plurality of processors. Also, the processing may be performed by one processor, or the processing may be performed by one or more processors simultaneously, sequentially, or in other manners. The processor 1001 may be implemented by one or more chips.
 無線基地局10及びユーザ端末20における各機能は、プロセッサ1001、メモリ1002などのハードウェア上に所定のソフトウェア(プログラム)を読み込ませることで、プロセッサ1001が演算を行い、通信装置1004による通信、又は、メモリ1002及びストレージ1003におけるデータの読み出し及び/又は書き込みを制御することで実現される。 Each function in the radio base station 10 and the user terminal 20 performs a calculation by causing the processor 1001 to read predetermined software (program) on hardware such as the processor 1001 and the memory 1002, and performs communication by the communication device 1004 or This is realized by controlling reading and / or writing of data in the memory 1002 and the storage 1003.
 プロセッサ1001は、例えば、オペレーティングシステムを動作させてコンピュータ全体を制御する。プロセッサ1001は、周辺装置とのインターフェース、制御装置、演算装置、レジスタなどを含む中央処理装置(CPU:Central Processing Unit)によって構成されてもよい。例えば、上述のスケジューラ101、送信信号生成部102,206、符号化・変調部103,207、マッピング部104,208、制御部108,203、チャネル推定部109,204、復調・復号部110,205などは、プロセッサ1001によって実現されてもよい。 The processor 1001 operates, for example, an operating system to control the entire computer. The processor 1001 may be configured by a central processing unit (CPU) including an interface with a peripheral device, a control device, an arithmetic device, a register, and the like. For example, the above-described scheduler 101, transmission signal generation units 102 and 206, coding / modulation units 103 and 207, mapping units 104 and 208, control units 108 and 203, channel estimation units 109 and 204, demodulation / decoding units 110 and 205 And the like may be realized by the processor 1001.
 また、プロセッサ1001は、プログラム(プログラムコード)、ソフトウェアモジュール又はデータを、ストレージ1003及び/又は通信装置1004からメモリ1002に読み出し、これらに従って各種の処理を実行する。プログラムとしては、上述の実施の形態で説明した動作の少なくとも一部をコンピュータに実行させるプログラムが用いられる。例えば、無線基地局10のスケジューラ101は、メモリ1002に格納され、プロセッサ1001で動作する制御プログラムによって実現されてもよく、他の機能ブロックについても同様に実現されてもよい。上述の各種処理は、1つのプロセッサ1001で実行される旨を説明してきたが、2以上のプロセッサ1001により同時又は逐次に実行されてもよい。プロセッサ1001は、1以上のチップで実装されてもよい。なお、プログラムは、電気通信回線を介してネットワークから送信されてもよい。 Also, the processor 1001 reads a program (program code), a software module or data from the storage 1003 and / or the communication device 1004 to the memory 1002, and executes various processing according to these. As a program, a program that causes a computer to execute at least a part of the operations described in the above embodiments is used. For example, the scheduler 101 of the radio base station 10 may be realized by a control program stored in the memory 1002 and operated by the processor 1001, or may be realized similarly for other functional blocks. The various processes described above have been described to be executed by one processor 1001, but may be executed simultaneously or sequentially by two or more processors 1001. The processor 1001 may be implemented by one or more chips. The program may be transmitted from the network via a telecommunication line.
 メモリ1002は、コンピュータ読み取り可能な記録媒体であり、例えば、ROM(Read Only Memory)、EPROM(Erasable Programmable ROM)、EEPROM(Electrically Erasable Programmable ROM)、RAM(Random Access Memory)などの少なくとも1つで構成されてもよい。メモリ1002は、レジスタ、キャッシュ、メインメモリ(主記憶装置)などと呼ばれてもよい。メモリ1002は、本発明の一実施の形態に係る無線通信方法を実施するために実行可能なプログラム(プログラムコード)、ソフトウェアモジュールなどを保存することができる。 The memory 1002 is a computer readable recording medium, and includes, for example, at least one of a ROM (Read Only Memory), an EPROM (Erasable Programmable ROM), an EEPROM (Electrically Erasable Programmable ROM), and a RAM (Random Access Memory). It may be done. The memory 1002 may be called a register, a cache, a main memory (main storage device) or the like. The memory 1002 can store a program (program code), a software module, and the like that can be executed to implement the wireless communication method according to an embodiment of the present invention.
 ストレージ1003は、コンピュータ読み取り可能な記録媒体であり、例えば、CD-ROM(Compact Disc ROM)などの光ディスク、ハードディスクドライブ、フレキシブルディスク、光磁気ディスク(例えば、コンパクトディスク、デジタル多用途ディスク、Blu-ray(登録商標)ディスク)、スマートカード、フラッシュメモリ(例えば、カード、スティック、キードライブ)、フロッピー(登録商標)ディスク、磁気ストリップなどの少なくとも1つで構成されてもよい。ストレージ1003は、補助記憶装置と呼ばれてもよい。上述の記憶媒体は、例えば、メモリ1002及び/又はストレージ1003を含むデータベース、サーバその他の適切な媒体であってもよい。 The storage 1003 is a computer readable recording medium, and for example, an optical disc such as a CD-ROM (Compact Disc ROM), a hard disc drive, a flexible disc, a magneto-optical disc (eg, a compact disc, a digital versatile disc, a Blu-ray A (registered trademark) disk, a smart card, a flash memory (for example, a card, a stick, a key drive), a floppy (registered trademark) disk, a magnetic strip, and the like may be used. The storage 1003 may be called an auxiliary storage device. The above-mentioned storage medium may be, for example, a database including the memory 1002 and / or the storage 1003, a server or any other suitable medium.
 通信装置1004は、有線及び/又は無線ネットワークを介してコンピュータ間の通信を行うためのハードウェア(送受信デバイス)であり、例えばネットワークデバイス、ネットワークコントローラ、ネットワークカード、通信モジュールなどともいう。例えば、上述の送信部105,209、アンテナ106,201、受信部107,202などは、通信装置1004で実現されてもよい。 The communication device 1004 is hardware (transmission / reception device) for performing communication between computers via a wired and / or wireless network, and is also called, for example, a network device, a network controller, a network card, a communication module, or the like. For example, the above-described transmission units 105 and 209, antennas 106 and 201, and reception units 107 and 202 may be realized by the communication device 1004.
 入力装置1005は、外部からの入力を受け付ける入力デバイス(例えば、キーボード、マウス、マイクロフォン、スイッチ、ボタン、センサなど)である。出力装置1006は、外部への出力を実施する出力デバイス(例えば、ディスプレイ、スピーカー、LEDランプなど)である。なお、入力装置1005及び出力装置1006は、一体となった構成(例えば、タッチパネル)であってもよい。 The input device 1005 is an input device (for example, a keyboard, a mouse, a microphone, a switch, a button, a sensor, and the like) that receives an input from the outside. The output device 1006 is an output device (for example, a display, a speaker, an LED lamp, etc.) that performs output to the outside. The input device 1005 and the output device 1006 may be integrated (for example, a touch panel).
 また、プロセッサ1001及びメモリ1002などの各装置は、情報を通信するためのバス1007で接続される。バス1007は、単一のバスで構成されてもよいし、装置間で異なるバスで構成されてもよい。 Also, each device such as the processor 1001 and the memory 1002 is connected by a bus 1007 for communicating information. The bus 1007 may be configured by a single bus or may be configured by different buses among the devices.
 また、無線基地局10及びユーザ端末20は、マイクロプロセッサ、デジタル信号プロセッサ(DSP:Digital Signal Processor)、ASIC(Application Specific Integrated Circuit)、PLD(Programmable Logic Device)、FPGA(Field Programmable Gate Array)などのハードウェアを含んで構成されてもよく、当該ハードウェアにより、各機能ブロックの一部又は全てが実現されてもよい。例えば、プロセッサ1001は、これらのハードウェアの少なくとも1つで実装されてもよい。 Also, the radio base station 10 and the user terminal 20 may be microprocessors, digital signal processors (DSPs), application specific integrated circuits (ASICs), programmable logic devices (PLDs), field programmable gate arrays (FPGAs), etc. It may be configured to include hardware, and part or all of each functional block may be realized by the hardware. For example, processor 1001 may be implemented in at least one of these hardware.
 (情報の通知、シグナリング)
 また、情報の通知は、本明細書で説明した態様/実施形態に限られず、他の方法で行われてもよい。例えば、情報の通知は、物理レイヤシグナリング(例えば、DCI(Downlink Control Information)、UCI(Uplink Control Information))、上位レイヤシグナリング(例えば、RRC(Radio Resource Control)シグナリング、MAC(Medium Access Control)シグナリング、報知情報(MIB(Master Information Block)、SIB(System Information Block)))、その他の信号又はこれらの組み合わせによって実施されてもよい。また、RRCシグナリングは、RRCメッセージと呼ばれてもよく、例えば、RRC接続セットアップ(RRC Connection Setup)メッセージ、RRC接続再構成(RRC Connection Reconfiguration)メッセージなどであってもよい。
(Information notification, signaling)
In addition, notification of information is not limited to the aspect / embodiment described herein, and may be performed by other methods. For example, notification of information may be physical layer signaling (for example, Downlink Control Information (DCI), Uplink Control Information (UCI)), upper layer signaling (for example, Radio Resource Control (RRC) signaling, Medium Access Control (MAC) signaling, It may be implemented by broadcast information (MIB (Master Information Block), SIB (System Information Block)), other signals, or a combination thereof. Also, RRC signaling may be referred to as an RRC message, and may be, for example, an RRC connection setup (RRC Connection Setup) message, an RRC connection reconfiguration (RRC Connection Reconfiguration) message, or the like.
 (適応システム)
 本明細書で説明した各態様/実施形態は、LTE(Long Term Evolution)、LTE-A(LTE-Advanced)、SUPER 3G、IMT-Advanced、4G、5G、FRA(Future Radio Access)、W-CDMA(登録商標)、GSM(登録商標)、CDMA2000、UMB(Ultra Mobile Broadband)、IEEE 802.11(Wi-Fi)、IEEE802.16(WiMAX)、IEEE 802.20、UWB(Ultra-WideBand)、Bluetooth(登録商標)、その他の適切なシステムを利用するシステム及び/又はこれらに基づいて拡張された次世代システムに適用されてもよい。
(Adaptive system)
Each aspect / embodiment described in the present specification is LTE (Long Term Evolution), LTE-A (LTE-Advanced), SUPER 3G, IMT-Advanced, 4G, 5G, FRA (Future Radio Access), W-CDMA (Registered trademark), GSM (registered trademark), CDMA2000, UMB (Ultra Mobile Broadband), IEEE 802.11 (Wi-Fi), IEEE 802.16 (WiMAX), IEEE 802.20, UWB (Ultra-Wide Band), Bluetooth The present invention may be applied to a system using (registered trademark), other appropriate systems, and / or an advanced next-generation system based on these.
 (処理手順等)
 本明細書で説明した各態様/実施形態の処理手順、シーケンス、フローチャートなどは、矛盾の無い限り、順序を入れ替えてもよい。例えば、本明細書で説明した方法については、例示的な順序で様々なステップの要素を提示しており、提示した特定の順序に限定されない。
(Processing procedure etc.)
As long as there is no contradiction, the processing procedure, sequence, flow chart, etc. of each aspect / embodiment described in this specification may be reversed. For example, for the methods described herein, elements of the various steps are presented in an exemplary order and are not limited to the particular order presented.
 (基地局の操作)
 本明細書において基地局(無線基地局)によって行われるとした特定動作は、場合によってはその上位ノード(upper node)によって行われることもある。基地局を有する1つまたは複数のネットワークノード(network nodes)からなるネットワークにおいて、端末との通信のために行われる様々な動作は、基地局および/または基地局以外の他のネットワークノード(例えば、MME(Mobility Management Entity)またはS-GW(Serving Gateway)などが考えられるが、これらに限られない)によって行われ得ることは明らかである。上記において基地局以外の他のネットワークノードが1つである場合を例示したが、複数の他のネットワークノードの組み合わせ(例えば、MMEおよびS-GW)であってもよい。
(Operation of base station)
The specific operation supposed to be performed by the base station (radio base station) in this specification may be performed by the upper node in some cases. In a network of one or more network nodes with a base station, the various operations performed for communication with the terminals may be the base station and / or other network nodes other than the base station (eg, It is obvious that this may be performed by, but not limited to, MME (Mobility Management Entity) or S-GW (Serving Gateway). Although the case where one other network node other than a base station was illustrated above was illustrated, it may be a combination of a plurality of other network nodes (for example, MME and S-GW).
 (入出力の方向)
 情報及び信号等は、上位レイヤ(または下位レイヤ)から下位レイヤ(または上位レイヤ)に出力され得る。複数のネットワークノードを介して入出力されてもよい。
(Direction of input / output)
Information, signals, etc. may be output from the upper layer (or lower layer) to the lower layer (or upper layer). Input and output may be performed via a plurality of network nodes.
 (入出力された情報等の扱い)
 入出力された情報等は特定の場所(例えば、メモリ)に保存されてもよいし、管理テーブルで管理してもよい。入出力される情報等は、上書き、更新、または追記され得る。出力された情報等は削除されてもよい。入力された情報等は他の装置に送信されてもよい。
(Handling of input / output information etc.)
The input / output information or the like may be stored in a specific place (for example, a memory) or may be managed by a management table. Information to be input or output may be overwritten, updated or added. The output information etc. may be deleted. The input information or the like may be transmitted to another device.
 (判定方法)
 判定は、1ビットで表される値(0か1か)によって行われてもよいし、真偽値(Boolean:trueまたはfalse)によって行われてもよいし、数値の比較(例えば、所定の値との比較)によって行われてもよい。
(Judgment method)
The determination may be performed by a value (0 or 1) represented by one bit, may be performed by a boolean value (Boolean: true or false), or may be compared with a numerical value (for example, a predetermined value). Comparison with the value).
 (ソフトウェア)
 ソフトウェアは、ソフトウェア、ファームウェア、ミドルウェア、マイクロコード、ハードウェア記述言語と呼ばれるか、他の名称で呼ばれるかを問わず、命令、命令セット、コード、コードセグメント、プログラムコード、プログラム、サブプログラム、ソフトウェアモジュール、アプリケーション、ソフトウェアアプリケーション、ソフトウェアパッケージ、ルーチン、サブルーチン、オブジェクト、実行可能ファイル、実行スレッド、手順、機能などを意味するよう広く解釈されるべきである。
(software)
Software may be called software, firmware, middleware, microcode, hardware description language, or any other name, and may be instructions, instruction sets, codes, code segments, program codes, programs, subprograms, software modules. Should be interpreted broadly to mean applications, software applications, software packages, routines, subroutines, objects, executables, threads of execution, procedures, functions, etc.
 また、ソフトウェア、命令などは、伝送媒体を介して送受信されてもよい。例えば、ソフトウェアが、同軸ケーブル、光ファイバケーブル、ツイストペア及びデジタル加入者回線(DSL)などの有線技術及び/又は赤外線、無線及びマイクロ波などの無線技術を使用してウェブサイト、サーバ、又は他のリモートソースから送信される場合、これらの有線技術及び/又は無線技術は、伝送媒体の定義内に含まれる。 Also, software, instructions, etc. may be sent and received via a transmission medium. For example, software may use a wireline technology such as coaxial cable, fiber optic cable, twisted pair and digital subscriber line (DSL) and / or a website, server or other using wireless technology such as infrared, radio and microwave When transmitted from a remote source, these wired and / or wireless technologies are included within the definition of transmission medium.
 (情報、信号)
 本明細書で説明した情報、信号などは、様々な異なる技術のいずれかを使用して表されてもよい。例えば、上記の説明全体に渡って言及され得るデータ、命令、コマンド、情報、信号、ビット、シンボル、チップなどは、電圧、電流、電磁波、磁界若しくは磁性粒子、光場若しくは光子、又はこれらの任意の組み合わせによって表されてもよい。
(Information, signal)
The information, signals, etc. described herein may be represented using any of a variety of different techniques. For example, data, instructions, commands, information, signals, bits, symbols, chips etc that may be mentioned throughout the above description may be voltage, current, electromagnetic waves, magnetic fields or particles, optical fields or photons, or any of these May be represented by a combination of
 なお、本明細書で説明した用語及び/又は本明細書の理解に必要な用語については、同一の又は類似する意味を有する用語と置き換えてもよい。例えば、チャネル及び/又はシンボルは信号(シグナル)であってもよい。また、信号はメッセージであってもよい。また、コンポーネントキャリア(CC)は、キャリア周波数、セルなどと呼ばれてもよい。 The terms described in the present specification and / or the terms necessary for the understanding of the present specification may be replaced with terms having the same or similar meanings. For example, the channels and / or symbols may be signals. Also, the signal may be a message. Also, the component carrier (CC) may be called a carrier frequency, a cell or the like.
 (「システム」、「ネットワーク」)
 本明細書で使用する「システム」および「ネットワーク」という用語は、互換的に使用される。
("System", "Network")
The terms "system" and "network" as used herein are used interchangeably.
 (パラメータ、チャネルの名称)
 また、本明細書で説明した情報、パラメータなどは、絶対値で表されてもよいし、所定の値からの相対値で表されてもよいし、対応する別の情報で表されてもよい。例えば、無線リソースはインデックスで指示されるものであってもよい。
(Name of parameter, channel)
In addition, the information, parameters, and the like described in the present specification may be represented by absolute values, may be represented by relative values from predetermined values, or may be represented by corresponding other information. . For example, radio resources may be indexed.
 上述したパラメータに使用する名称はいかなる点においても限定的なものではない。さらに、これらのパラメータを使用する数式等は、本明細書で明示的に開示したものと異なる場合もある。様々なチャネル(例えば、PUCCH、PDCCHなど)及び情報要素(例えば、TPCなど)は、あらゆる好適な名称によって識別できるので、これらの様々なチャネル及び情報要素に割り当てている様々な名称は、いかなる点においても限定的なものではない。 The names used for the parameters described above are in no way limiting. In addition, the formulas etc. that use these parameters may differ from those explicitly disclosed herein. Since various channels (eg PUCCH, PDCCH etc.) and information elements (eg TPC etc.) can be identified by any suitable names, the various names assigned to these various channels and information elements can be Is not limited.
 (基地局)
 基地局(無線基地局)は、1つまたは複数(例えば、3つ)の(セクタとも呼ばれる)セルを収容することができる。基地局が複数のセルを収容する場合、基地局のカバレッジエリア全体は複数のより小さいエリアに区分でき、各々のより小さいエリアは、基地局サブシステム(例えば、屋内用の小型基地局RRH:Remote Radio Head)によって通信サービスを提供することもできる。「セル」または「セクタ」という用語は、このカバレッジにおいて通信サービスを行う基地局、および/または基地局サブシステムのカバレッジエリアの一部または全体を指す。さらに、「基地局」、「eNB」、「gNB」、「セル」、および「セクタ」という用語は、本明細書では互換的に使用され得る。基地局は、固定局(fixed station)、NodeB、eNodeB(eNB)、gNodeB(gNB)アクセスポイント(access point)、フェムトセル、スモールセルなどの用語で呼ばれる場合もある。
(base station)
A base station (radio base station) can accommodate one or more (e.g., three) cells (also called sectors). If the base station accommodates multiple cells, the entire coverage area of the base station can be divided into multiple smaller areas, each smaller area being a base station subsystem (eg, a small base station RRH for indoor use: Remote Communication service can also be provided by Radio Head. The terms "cell" or "sector" refer to a part or all of the coverage area of a base station and / or a base station subsystem serving communication services in this coverage. Furthermore, the terms "base station", "eNB", "gNB", "cell" and "sector" may be used interchangeably herein. A base station may be called in terms of a fixed station (Node station), NodeB, eNodeB (eNB), gNodeB (gNB) access point, access point, femtocell, small cell, and the like.
 (端末)
 ユーザ端末は、当業者によって、移動局、加入者局、モバイルユニット、加入者ユニット、ワイヤレスユニット、リモートユニット、モバイルデバイス、ワイヤレスデバイス、ワイヤレス通信デバイス、リモートデバイス、モバイル加入者局、アクセス端末、モバイル端末、ワイヤレス端末、リモート端末、ハンドセット、ユーザエージェント、モバイルクライアント、クライアント、UE(User Equipment)、またはいくつかの他の適切な用語で呼ばれる場合もある。
(Terminal)
The user terminal may be a mobile station, a subscriber station, a mobile unit, a subscriber unit, a wireless unit, a remote unit, a mobile device, a wireless device, a wireless communication device, a remote communication device, a mobile subscriber station, an access terminal, a mobile terminal by a person skilled in the art It may also be called a terminal, a wireless terminal, a remote terminal, a handset, a user agent, a mobile client, a client, a UE (User Equipment), or some other suitable term.
 (用語の意味、解釈)
 本明細書で使用する「判断(determining)」、「決定(determining)」という用語は、多種多様な動作を包含する場合がある。「判断」、「決定」は、例えば、判定(judging)、計算(calculating)、算出(computing)、処理(processing)、導出(deriving)、調査(investigating)、探索(looking up)(例えば、テーブル、データベースまたは別のデータ構造での探索)、確認(ascertaining)した事を「判断」「決定」したとみなす事などを含み得る。また、「判断」、「決定」は、受信(receiving)(例えば、情報を受信すること)、送信(transmitting)(例えば、情報を送信すること)、入力(input)、出力(output)、アクセス(accessing)(例えば、メモリ中のデータにアクセスすること)した事を「判断」「決定」したとみなす事などを含み得る。また、「判断」、「決定」は、解決(resolving)、選択(selecting)、選定(choosing)、確立(establishing)、比較(comparing)などした事を「判断」「決定」したとみなす事を含み得る。つまり、「判断」「決定」は、何らかの動作を「判断」「決定」したとみなす事を含み得る。
(Meaning and interpretation of terms)
The terms "determining", "determining" as used herein may encompass a wide variety of operations. "Judgment", "decision" are, for example, judging, calculating, calculating, processing, processing, deriving, investigating, looking up (for example, a table) (Searching in a database or another data structure), ascertaining may be regarded as “decision”, “decision”, etc. Also, "determination" and "determination" are receiving (e.g. receiving information), transmitting (e.g. transmitting information), input (input), output (output), access (accessing) (for example, accessing data in a memory) may be regarded as “judged” or “decided”. Also, "judgement" and "decision" are to be considered as "judgement" and "decision" that they have resolved (resolving), selecting (selecting), choosing (choosing), establishing (establishing), etc. May be included. That is, "judgment""decision" may include considering that some action is "judged""decision".
 「接続された(connected)」、「結合された(coupled)」という用語、又はこれらのあらゆる変形は、2又はそれ以上の要素間の直接的又は間接的なあらゆる接続又は結合を意味し、互いに「接続」又は「結合」された2つの要素間に1又はそれ以上の中間要素が存在することを含むことができる。要素間の結合又は接続は、物理的なものであっても、論理的なものであっても、或いはこれらの組み合わせであってもよい。本明細書で使用する場合、2つの要素は、1又はそれ以上の電線、ケーブル及び/又はプリント電気接続を使用することにより、並びにいくつかの非限定的かつ非包括的な例として、無線周波数領域、マイクロ波領域及び光(可視及び不可視の両方)領域の波長を有する電磁エネルギーなどの電磁エネルギーを使用することにより、互いに「接続」又は「結合」されると考えることができる。 The terms "connected", "coupled" or any variants thereof mean any direct or indirect connection or coupling between two or more elements, It can include the presence of one or more intermediate elements between two elements that are “connected” or “coupled”. The coupling or connection between elements may be physical, logical or a combination thereof. As used herein, the two elements are by using one or more wires, cables and / or printed electrical connections, and radio frequency as some non-limiting and non-exclusive examples. It can be considered "connected" or "coupled" to one another by using electromagnetic energy such as electromagnetic energy having wavelengths in the region, microwave region and light (both visible and invisible) regions.
 参照信号は、RS(Reference Signal)と略称することもでき、適用される標準によってパイロット(Pilot)と呼ばれてもよい。また、DMRSは、対応する別の呼び方、例えば、復調用RSまたはDM-RSなどであってもよい。 The reference signal may be abbreviated as RS (Reference Signal), and may be called a pilot (Pilot) according to the applied standard. Also, DMRS may be another corresponding name, such as demodulation RS or DM-RS.
 本明細書で使用する「に基づいて」という記載は、別段に明記されていない限り、「のみに基づいて」を意味しない。言い換えれば、「に基づいて」という記載は、「のみに基づいて」と「に少なくとも基づいて」の両方を意味する。 As used herein, the phrase "based on" does not mean "based only on," unless expressly stated otherwise. In other words, the phrase "based on" means both "based only on" and "based at least on."
 上記の各装置の構成における「部」を、「手段」、「回路」、「デバイス」等に置き換えてもよい。 The “parts” in the configuration of each of the above-described devices may be replaced with “means”, “circuit”, “device” or the like.
 「含む(including)」、「含んでいる(comprising)」、およびそれらの変形が、本明細書あるいは特許請求の範囲で使用されている限り、これら用語は、用語「備える」と同様に、包括的であることが意図される。さらに、本明細書あるいは特許請求の範囲において使用されている用語「または(or)」は、排他的論理和ではないことが意図される。 As long as “including”, “comprising”, and variations thereof are used in the present specification or claims, these terms as well as the term “comprising” are inclusive. Intended to be Further, it is intended that the term "or" as used in the present specification or in the claims is not an exclusive OR.
 無線フレームは時間領域において1つまたは複数のフレームで構成されてもよい。時間領域において1つまたは複数の各フレームはサブフレーム、タイムユニット等と呼ばれてもよい。サブフレームは更に時間領域において1つまたは複数のスロットで構成されてもよい。スロットはさらに時間領域において1つまたは複数のシンボル(OFDM(Orthogonal Frequency Division Multiplexing)シンボル、SC-FDMA(Single Carrier-Frequency Division Multiple Access)シンボル等)で構成されてもよい。 A radio frame may be comprised of one or more frames in the time domain. One or more frames in the time domain may be referred to as subframes, time units, and so on. A subframe may be further comprised of one or more slots in the time domain. The slot may be further configured with one or more symbols (such as orthogonal frequency division multiplexing (OFDM) symbols, single carrier-frequency division multiple access (SC-FDMA) symbols, etc.) in the time domain.
 無線フレーム、サブフレーム、スロット、ミニスロット、およびシンボルは、いずれも信号を伝送する際の時間単位を表す。無線フレーム、サブフレーム、スロット、ミニスロット、およびシンボルは、それぞれに対応する別の呼び方であってもよい。 A radio frame, a subframe, a slot, a minislot, and a symbol all represent time units when transmitting a signal. A radio frame, a subframe, a slot, a minislot, and a symbol may be another name corresponding to each.
 例えば、LTEシステムでは、基地局が各移動局に無線リソース(各移動局において使用することが可能な周波数帯域幅、送信電力等)を割り当てるスケジューリングを行う。スケジューリングの最小時間単位をTTI(Transmission Time Interval)と呼んでもよい。 For example, in the LTE system, the base station performs scheduling to assign radio resources (frequency bandwidth usable in each mobile station, transmission power, etc.) to each mobile station. The minimum time unit of scheduling may be called a TTI (Transmission Time Interval).
 例えば、1サブフレームをTTIと呼んでもよいし、複数の連続したサブフレームをTTIと呼んでもよいし、1スロットをTTIと呼んでもよいし、1ミニスロットをTTIと呼んでもよい。 For example, one subframe may be called a TTI, a plurality of consecutive subframes may be called a TTI, one slot may be called a TTI, and one minislot may be called a TTI.
 リソースユニットは、時間領域および周波数領域のリソース割当単位であり、周波数領域では1つまたは複数個の連続した副搬送波(subcarrier)を含んでもよい。また、リソースユニットの時間領域では、1つまたは複数個のシンボルを含んでもよく、1スロット、1ミニスロット、1サブフレーム、または1TTIの長さであってもよい。1TTI、1サブフレームは、それぞれ1つまたは複数のリソースユニットで構成されてもよい。また、リソースユニットは、リソースブロック(RB:Resource Block)、物理リソースブロック(PRB:Physical RB)、PRBペア、RBペア、スケジューリングユニット、周波数ユニット、サブバンドと呼ばれてもよい。また、リソースユニットは、1つ又は複数のREで構成されてもよい。例えば、1REは、リソース割当単位となるリソースユニットより小さい単位のリソース(例えば、最小のリソース単位)であればよく、REという呼称に限定されない。 A resource unit is a resource allocation unit in time domain and frequency domain, and may include one or more consecutive subcarriers in frequency domain. Also, the time domain of the resource unit may include one or more symbols, and may be one slot, one minislot, one subframe, or one TTI long. One TTI and one subframe may be configured of one or more resource units, respectively. Also, resource units may be referred to as resource blocks (RBs), physical resource blocks (PRBs: physical RBs), PRB pairs, RB pairs, scheduling units, frequency units, and subbands. Also, a resource unit may be configured of one or more REs. For example, 1 RE may be a resource of a unit smaller than the resource unit serving as a resource allocation unit (for example, the smallest resource unit), and is not limited to the designation RE.
 上述した無線フレームの構造は例示に過ぎず、無線フレームに含まれるサブフレームの数、サブフレームに含まれるスロットの数、サブフレームに含まれるミニスロットの数、スロットに含まれるシンボルおよびリソースブロックの数、および、リソースブロックに含まれるサブキャリアの数は様々に変更することができる。 The above-described radio frame structure is merely an example, and the number of subframes included in the radio frame, the number of slots included in the subframe, the number of minislots included in the subframe, and the symbols and resource blocks included in the slots. The number and the number of subcarriers included in the resource block can be variously changed.
 本開示の全体において、例えば、英語でのa, an, 及びtheのように、翻訳により冠詞が追加された場合、これらの冠詞は、文脈から明らかにそうではないことが示されていなければ、複数のものを含むものとする。 Throughout the disclosure, when articles are added by translation, such as, for example, a, an, and the in English, these articles are not clearly indicated by the context: It shall contain several things.
 (態様のバリエーション等)
 本明細書で説明した各態様/実施形態は単独で用いてもよいし、組み合わせて用いてもよいし、実行に伴って切り替えて用いてもよい。また、所定の情報の通知(例えば、「Xであること」の通知)は、明示的に行うものに限られず、暗黙的(例えば、当該所定の情報の通知を行わない)ことによって行われてもよい。
(Variation of aspect etc.)
Each aspect / embodiment described in this specification may be used alone, may be used in combination, and may be switched and used along with execution. In addition, notification of predetermined information (for example, notification of "it is X") is not limited to what is explicitly performed, but is performed by implicit (for example, not notifying of the predetermined information) It is also good.
 以上、本発明について詳細に説明したが、当業者にとっては、本発明が本明細書中に説明した実施形態に限定されるものではないということは明らかである。本発明は、特許請求の範囲の記載により定まる本発明の趣旨及び範囲を逸脱することなく修正及び変更態様として実施することができる。したがって、本明細書の記載は、例示説明を目的とするものであり、本発明に対して何ら制限的な意味を有するものではない。 Although the present invention has been described above in detail, it is apparent to those skilled in the art that the present invention is not limited to the embodiments described herein. The present invention can be embodied as modifications and alterations without departing from the spirit and scope of the present invention defined by the description of the claims. Accordingly, the description in the present specification is for the purpose of illustration and does not have any limiting meaning on the present invention.
 10 無線基地局
 20 ユーザ端末
 101 スケジューラ
 102,206 送信信号生成部
 103,207 符号化・変調部
 104,208 マッピング部
 105,209 送信部
 106,201 アンテナ
 107,202 受信部
 108,203 制御部
 109,204 チャネル推定部
 110,205 復調・復号部
Reference Signs List 10 radio base station 20 user terminal 101 scheduler 102, 206 transmission signal generation unit 103, 207 encoding / modulation unit 104, 208 mapping unit 105, 209 transmission unit 106, 201 antenna 107, 202 reception unit 108, 203 control unit 109, 204 channel estimation unit 110, 205 demodulation and decoding unit

Claims (6)

  1.  第1の復調用参照信号がリソース割り当て単位の先頭シンボルにマッピングされた下り無線リンク信号を送信する送信部と、
     前記リソース割り当て単位のシンボル数と、前記リソース割り当て単位においてマッピングする第2の復調用参照信号の数と、に基づいて、前記第2の復調用参照信号の、前記リソース割り当て単位におけるマッピング位置を制御する制御部と、
     を具備し、
     前記制御部は、
     前記リソース割り当て単位のシンボル数が8以上であって前記第2の復調用参照信号の数が1以上である場合、前記リソース割り当て単位の最後方のシンボルから3シンボル以内に1つの前記第2の復調用参照信号をマッピングする、
     無線通信装置。
    A transmitter configured to transmit a downlink radio link signal in which the first demodulation reference signal is mapped to the leading symbol of the resource allocation unit;
    Control the mapping position in the resource allocation unit of the second demodulation reference signal based on the number of symbols of the resource allocation unit and the number of second demodulation reference signals mapped in the resource allocation unit Control unit, and
    Equipped with
    The control unit
    When the number of symbols in the resource allocation unit is eight or more and the number of the second demodulation reference signals is one or more, one second symbol within three symbols from the last symbol of the resource allocation unit. Map the demodulation reference signal,
    Wireless communication device.
  2.  前記制御部は、
     前記第2の復調用参照信号の数が2以上である場合、前記第1および第2の復調用参照信号を等間隔にマッピングする、
     請求項1に記載の無線通信装置。
    The control unit
    When the number of the second demodulation reference signals is two or more, the first and second demodulation reference signals are mapped at equal intervals.
    The wireless communication device according to claim 1.
  3.  前記制御部は、
     前記リソース割り当て単位の第2の復調用参照信号の数が2である場合、前記リソース割り当て単位のシンボル数が2nの場合と(2n+1)の場合とで(nは、4、5、6のいずれか)、前記リソース割り当て単位の先頭から同一の位置に、前記第2の復調用参照信号をマッピングする、
     請求項1に記載の無線通信装置。
    The control unit
    When the number of second demodulation reference signals in the resource allocation unit is 2, the number of symbols in the resource allocation unit is 2n or (2n + 1) (where n is 4, 5, or 6) Mapping the second demodulation reference signal in the same position from the beginning of the resource allocation unit;
    The wireless communication device according to claim 1.
  4.  第1の復調用参照信号がリソース割り当て単位の先頭から2シンボル連続してマッピングされた下り無線リンク信号を送信する送信部と、
     前記リソース割り当て単位のシンボル数と、前記リソース割り当て単位においてマッピングする第2の復調用参照信号の数と、に基づいて、前記第2の復調用参照信号の、前記リソース割り当て単位におけるマッピング位置を制御する制御部と、
     を具備し、
     前記制御部は、
     前記リソース割り当て単位のシンボル数が8以上であって前記第2の復調用参照信号の数が1以上である場合、前記第2の復調用参照信号を2シンボル連続してマッピングし、かつ、前記リソース割り当て単位の最後方のシンボルから3シンボル以内に少なくとも1つの前記第2の復調用参照信号をマッピングする、
     無線通信装置。
    A transmitter configured to transmit a downlink radio signal in which a first demodulation reference signal is mapped two consecutive symbols from the beginning of a resource allocation unit;
    Control the mapping position in the resource allocation unit of the second demodulation reference signal based on the number of symbols of the resource allocation unit and the number of second demodulation reference signals mapped in the resource allocation unit Control unit, and
    Equipped with
    The control unit
    When the number of symbols of the resource allocation unit is eight or more and the number of the second demodulation reference signals is one or more, the second demodulation reference signals are mapped continuously for two symbols, and Mapping at least one of the second demodulation reference signals within 3 symbols from the last symbol of the resource allocation unit;
    Wireless communication device.
  5.  第1の復調用参照信号がリソース割り当て単位の先頭シンボルにマッピングされた上り無線リンク信号を送信する送信部と、
     前記リソース割り当て単位のシンボル数と、前記リソース割り当て単位においてマッピングする第2の復調用参照信号の数と、に基づいて、前記第2の復調用参照信号の、前記リソース割り当て単位におけるマッピング位置を制御する制御部と、
     を具備し、
     前記制御部は、
     前記リソース割り当て単位のシンボル数が14であって前記第2の復調用参照信号の数が1以上である場合、前記リソース割り当て単位の最後方のシンボルから5シンボル以内に1つの前記第2の復調用参照信号をマッピングする、
     無線通信装置。
    A transmitter configured to transmit an uplink radio link signal in which a first demodulation reference signal is mapped to a leading symbol of a resource allocation unit;
    Control the mapping position in the resource allocation unit of the second demodulation reference signal based on the number of symbols of the resource allocation unit and the number of second demodulation reference signals mapped in the resource allocation unit Control unit, and
    Equipped with
    The control unit
    When the number of symbols of the resource allocation unit is 14 and the number of the second demodulation reference signals is 1 or more, one second demodulation within 5 symbols from the last symbol of the resource allocation unit Mapping the reference signal for
    Wireless communication device.
  6.  第1の復調用参照信号がリソース割り当て単位の先頭から2シンボル連続してマッピングされた上り無線リンク信号を送信する送信部と、
     前記リソース割り当て単位のシンボル数と、前記リソース割り当て単位においてマッピングする第2の復調用参照信号の数と、に基づいて、前記第2の復調用参照信号の、前記リソース割り当て単位におけるマッピング位置を制御する制御部と、
     を具備し、
     前記制御部は、
     前記リソース割り当て単位のシンボル数が13以上であって前記第2の復調用参照信号の数が1である場合に、前記第2の復調用参照信号を2シンボル連続してマッピングし、かつ、前記リソース割り当て単位の最後方のシンボルから5シンボル以内に少なくとも1つの前記第2の復調用参照信号をマッピングする、
     無線通信装置。
     
    A transmitter configured to transmit an uplink radio link signal in which a first demodulation reference signal is mapped two consecutive symbols from the beginning of a resource allocation unit;
    Control the mapping position in the resource allocation unit of the second demodulation reference signal based on the number of symbols of the resource allocation unit and the number of second demodulation reference signals mapped in the resource allocation unit Control unit, and
    Equipped with
    The control unit
    When the number of symbols of the resource allocation unit is 13 or more and the number of the second demodulation reference signals is 1, two symbols of the second demodulation reference signal are mapped consecutively, and Mapping at least one of the second demodulation reference signals within 5 symbols from the last symbol of the resource allocation unit;
    Wireless communication device.
PCT/JP2018/000730 2018-01-12 2018-01-12 Radio communication device WO2019138562A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2019564255A JPWO2019138562A1 (en) 2018-01-12 2018-01-12 Wireless communication device
PCT/JP2018/000730 WO2019138562A1 (en) 2018-01-12 2018-01-12 Radio communication device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/000730 WO2019138562A1 (en) 2018-01-12 2018-01-12 Radio communication device

Publications (1)

Publication Number Publication Date
WO2019138562A1 true WO2019138562A1 (en) 2019-07-18

Family

ID=67219519

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/000730 WO2019138562A1 (en) 2018-01-12 2018-01-12 Radio communication device

Country Status (2)

Country Link
JP (1) JPWO2019138562A1 (en)
WO (1) WO2019138562A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111836307A (en) * 2019-08-15 2020-10-27 维沃移动通信有限公司 Method for determining mapping type and terminal
WO2023112277A1 (en) * 2021-12-16 2023-06-22 株式会社Nttドコモ Terminal, wireless communication method, and base station

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016518758A (en) * 2013-04-01 2016-06-23 パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカPanasonic Intellectual Property Corporation of America Transmitting apparatus and control signal arrangement method

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016518758A (en) * 2013-04-01 2016-06-23 パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカPanasonic Intellectual Property Corporation of America Transmitting apparatus and control signal arrangement method

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
"3rd Generation Partnership Project;Technical Specification Group Radio Access Network;NR;Physical channels and modulation(Release 15", 3GPP TS 38.211 V15.0.0, vol. RAN WG1, 8 March 2018 (2018-03-08), pages 41 - 44 , 61-64, XP051392260, Retrieved from the Internet <URL:http://www.3gpp.org/ftp/Specs/2017-12/Rel-15/38_series/38211-f00.zip> [retrieved on 20180103] *
HUAWEI ET AL.: "Evaluation results of DMRS design for DL/UL data channel", 3GPP TSG RAN WG1 MEETING #91 R1-1719823, 17 November 2017 (2017-11-17), XP051369200, Retrieved from the Internet <URL:http://www.3gpp.org/ftp/tsg_ran/WG1_RL1/TSGR1_91/Docs/R1> [retrieved on 20180308] *
QUALCOMM INCORPORATED: "Remaining issues on DMRS design", 3GPP TSG RAN WG1 MEETING 91 R1-1720668, 18 November 2017 (2017-11-18), XP051370129, Retrieved from the Internet <URL:http://www.3gpp.org/ftp/tsg_ran/WG1_RL1/TSGR1_91/Docs/R1-1720668.zip> [retrieved on 20180308] *
QUALCOMM INCORPORATED: "Views on DL DMRS", 3GPP TSG-RAN WG1 #86B R1-1610152, 1 October 2016 (2016-10-01), pages 1 - 5, XP051159955, Retrieved from the Internet <URL:http://www.3gpp.org/ftp/tsg_ran/WG1_RL1/TSGR1_86b/Docs/R1-1610152.zip> [retrieved on 20180308] *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111836307A (en) * 2019-08-15 2020-10-27 维沃移动通信有限公司 Method for determining mapping type and terminal
CN111836307B (en) * 2019-08-15 2023-06-09 维沃移动通信有限公司 Mapping type determining method and terminal
WO2023112277A1 (en) * 2021-12-16 2023-06-22 株式会社Nttドコモ Terminal, wireless communication method, and base station

Also Published As

Publication number Publication date
JPWO2019138562A1 (en) 2021-01-28

Similar Documents

Publication Publication Date Title
CN110731071B (en) User terminal and wireless communication method
CN111386737B (en) Radio transmitter and radio receiver
US11336382B2 (en) Terminal, radio communication system, and radio communication method to reduce an increase in signaling overhead
JP7186853B2 (en) Terminal, base station and wireless communication method
WO2019102531A1 (en) Radio transmission device and radio reception device
JP2021101550A (en) Terminal and wireless communication system
WO2019138562A1 (en) Radio communication device
JP7230023B2 (en) Terminal and wireless communication method
JP7195153B2 (en) User terminal and wireless communication method
US11445527B2 (en) User terminal and channel estimation method
JP7145861B2 (en) Terminal, wireless communication method and base station
JP7053685B2 (en) User terminal and wireless communication method
WO2019097700A1 (en) Wireless transmission device and wireless reception device
WO2019049351A1 (en) User equipment and wireless communication method
JP7470513B2 (en) Terminal and base station
WO2019012596A1 (en) User terminal and wireless communication method
WO2019012595A1 (en) User terminal and wireless communication method
WO2019012594A1 (en) User terminal and wireless communication method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18899369

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019564255

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18899369

Country of ref document: EP

Kind code of ref document: A1