WO2019138498A1 - Vehicle-mounted device, adjustment method, and computer program - Google Patents

Vehicle-mounted device, adjustment method, and computer program Download PDF

Info

Publication number
WO2019138498A1
WO2019138498A1 PCT/JP2018/000481 JP2018000481W WO2019138498A1 WO 2019138498 A1 WO2019138498 A1 WO 2019138498A1 JP 2018000481 W JP2018000481 W JP 2018000481W WO 2019138498 A1 WO2019138498 A1 WO 2019138498A1
Authority
WO
WIPO (PCT)
Prior art keywords
vehicle
vehicles
planned
travel route
group
Prior art date
Application number
PCT/JP2018/000481
Other languages
French (fr)
Japanese (ja)
Inventor
隼人 四方
Original Assignee
住友電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友電気工業株式会社 filed Critical 住友電気工業株式会社
Priority to PCT/JP2018/000481 priority Critical patent/WO2019138498A1/en
Publication of WO2019138498A1 publication Critical patent/WO2019138498A1/en

Links

Images

Classifications

    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/09Arrangements for giving variable traffic instructions
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/16Anti-collision systems

Definitions

  • the present invention relates to an in-vehicle device, an adjustment method, and a computer program.
  • the device for controlling the automatic driving of the automobile generates a travel plan of the host vehicle, and controls steering so that the host vehicle travels according to the travel plan.
  • the surrounding environment changes such as changes in acceleration / deceleration speed of the surrounding vehicles
  • traveling according to the original travel plan may not be optimal.
  • JP 2008-129804 A and JP 2009-51356 A monitor a surrounding vehicle and change (correct) the travel plan based on the result of the travel control plan generation system or travel plan A generator is disclosed.
  • the in-vehicle apparatus is an in-vehicle apparatus of a vehicle having an inter-vehicle communication function, and a communication unit that transmits and receives an inter-vehicle communication frame to another vehicle and information processing in data included in the inter-vehicle communication frame And a first acquisition unit for acquiring information for specifying a planned travel route in the other vehicle from the inter-vehicle communication frame from the other vehicle, and And a determination unit configured to determine the number of leader vehicles less than the total number of vehicles of the target vehicle group according to the defined conditions.
  • Target vehicle group Vehicle group consisting of own vehicle and other vehicles whose planned travel route intersects with planned planned route of the vehicle
  • Leader vehicle Change of planned planned route of at least one vehicle in targeted vehicle group Vehicle that performs the change process
  • the adjustment method is a method of adjusting a planned travel route of a plurality of vehicles in an on-vehicle apparatus of a vehicle having an inter-vehicle communication function, which includes an inter-vehicle communication frame from another vehicle Obtaining information for specifying a planned travel route in the vehicle, and determining, from among the following target vehicle groups, the following leader vehicles of a number smaller than the total number of vehicles of the target vehicle group according to a prescribed condition; Equipped with Target vehicle group: Vehicle group consisting of own vehicle and other vehicles whose planned travel route intersects with planned planned route of the vehicle Leader vehicle: Change of planned planned route of at least one vehicle in targeted vehicle group Vehicle that performs the change process
  • the computer program is a computer program for causing a computer to function as an on-vehicle apparatus of a vehicle having an inter-vehicle communication function, and the on-vehicle apparatus transmits a communication unit for transmitting and receiving an inter-vehicle communication frame with another vehicle.
  • the computer program causes the computer to function as a control unit for performing information processing on data included in the inter-vehicle communication frame, and the control unit performs a planned traveling route in the other vehicle from the inter-vehicle communication frame from the other vehicle. It has an acquisition part which acquires the information to specify, and a determination part which determines the following leader vehicles of a number smaller than the total number of vehicles of the object vehicles group concerned according to regulation conditions among the following object vehicles group.
  • Target vehicle group Vehicle group consisting of own vehicle and other vehicles whose planned travel route intersects with planned planned route of the vehicle Leader vehicle: Change of planned planned route of at least one vehicle in targeted vehicle group Vehicle that performs the change process
  • FIG. 1 is an entire configuration diagram of a communication system according to an embodiment.
  • FIG. 2 is a block diagram showing the configuration of the in-vehicle system.
  • FIG. 3 is a block diagram showing an internal configuration of the relay apparatus.
  • FIG. 4 is a block diagram showing an internal configuration of the in-vehicle communication device.
  • FIG. 5 is an explanatory view showing the contents and generation method of “predicted traveling behavior data”.
  • FIG. 6 is an explanatory diagram of an outline of processing in the in-vehicle communication device.
  • FIG. 7 is a flowchart showing the flow of adjustment processing.
  • Vehicles affect each other in the actual vehicle traffic system. Therefore, changing (correcting) the travel plan of the own vehicle may affect the travel plans of other vehicles that affect the own vehicle, and also other vehicles that affect the other vehicles. Therefore, even if only the travel plan of the own vehicle is changed (corrected) according to the change of the surrounding environment, the travel plan may not be optimized as the whole vehicle group including the own vehicle and the surrounding vehicles affecting the own vehicle .
  • An object in one aspect of the present disclosure is to provide an on-vehicle device, an adjustment method, and a computer program capable of optimizing a travel plan as a whole vehicle group including the own vehicle and surrounding vehicles affecting the own vehicle. .
  • the travel plan is optimized as a whole vehicle group including the own vehicle and the surrounding vehicles affecting the own vehicle.
  • the present embodiment includes at least the following. That is, (1)
  • the on-vehicle apparatus included in the present embodiment is an on-vehicle apparatus of a vehicle having an inter-vehicle communication function, and includes a communication unit that transmits and receives an inter-vehicle communication frame to another vehicle and data included in the inter-vehicle communication frame A control unit that performs information processing on the information processing unit, the control unit acquiring, from the inter-vehicle communication frame from another vehicle, a first acquisition unit that acquires information specifying a planned travel route in the other vehicle; And a determination unit configured to determine the number of leader vehicles less than the total number of vehicles of the target vehicle group from among the group according to a prescribed condition.
  • Target vehicle group Vehicle group consisting of own vehicle and other vehicles whose planned travel route intersects with planned planned route of the vehicle
  • Leader vehicle Change of planned planned route of at least one vehicle in targeted vehicle group Vehicles that execute such change processing
  • the planned travel route of at least one vehicle in the vehicle group can be changed. Therefore, the planned travel route of the entire target vehicle group is adjusted, and an increase in the processing amount of the entire target vehicle group can be suppressed as compared with the case where all vehicles execute the processing for changing the planned travel route.
  • the prescribed condition is that the vehicle is a new vehicle on the day of manufacture of the vehicle, that the version of the program for realizing the change unit of the vehicle is the latest, and that the ID of the vehicle is predefined. And at least one of the types of vehicles being predetermined types.
  • the prescribed condition is that the vehicle is a priority vehicle, and in the case where the vehicle is a leader vehicle and a priority vehicle, the change process is performed by at least one vehicle other than the vehicle within the target vehicle group Is a process of changing the planned travel route of the vehicle.
  • the planned travel route of the entire target vehicle group is adjusted so that the planned travel route of the priority vehicle is prioritized.
  • the control unit performs a change process when the host vehicle is a leader vehicle, and a notification unit that causes the communication unit to transmit an inter-vehicle communication frame including the planned travel route after the change.
  • the planned travel route of the entire target vehicle group is adjusted by changing the planned travel route of at least one vehicle in the target vehicle group, and the travel schedule after the change is made By notifying the target vehicle of the route, it is possible to realize travel control of the vehicle on the post-travel route after the change in the vehicle by the following instruction unit.
  • control unit travels to the second acquisition unit that acquires the notification of the planned traveling route after the change from the leader vehicle from the inter-vehicle communication frame, and the driving support unit that controls the traveling of the own vehicle. And an instruction unit for performing travel control based on the planned route. Thereby, the adjustment by the leader vehicle is realized.
  • the adjustment method included in the present embodiment is a method of adjusting planned traveling routes of a plurality of vehicles in the on-vehicle according to any one of (1) to (5). Such an adjustment method has the same effect as the above-described in-vehicle devices (1) to (5).
  • a computer program included in the present embodiment causes a computer to function as the in-vehicle device according to any one of (1) to (5).
  • Such a computer program exhibits the same effects as those of the in-vehicle apparatus of the above (1) to (5).
  • FIG. 1 is an overall configuration diagram of a communication system according to an embodiment of the present invention.
  • the communication system of the present embodiment includes an in-vehicle communication device (in-vehicle device) 19 mounted on each of a plurality of vehicles 1.
  • the in-vehicle communication device 19 is a wireless communication device that performs wireless communication (inter-vehicle communication) with another vehicle 1 traveling on the road. Therefore, in the present embodiment, the in-vehicle communication device 19 of the vehicle 1 is also referred to as "inter-vehicle communication device 19", and the communication system is also referred to as "inter-vehicle communication system”. In the present embodiment, the in-vehicle communication device 19 adopts a multi-access method based on a carrier sense multiple access / collision avoidance (CSMA / CA) method.
  • CSMA / CA carrier sense multiple access / collision avoidance
  • the in-vehicle communication device 19 adopts, for example, a multi-access method that conforms to the "700 MHz band intelligent traffic system standard (ARIB STD-T109)". According to this method, the in-vehicle communication device 19 broadcasts a communication frame for inter-vehicle communication at predetermined time intervals (for example, 0.1 seconds). Therefore, the vehicle 1 executing inter-vehicle communication can detect the vehicle information of the other vehicle around the own vehicle in substantially real time by the communication frame received from the other vehicle included in the transmission / reception range of the wireless signal.
  • a communication frame for inter-vehicle communication at predetermined time intervals (for example, 0.1 seconds). Therefore, the vehicle 1 executing inter-vehicle communication can detect the vehicle information of the other vehicle around the own vehicle in substantially real time by the communication frame received from the other vehicle included in the transmission / reception range of the wireless signal.
  • the communication system for inter-vehicle communication is not limited to the above standard, and may be a communication technology for mobile phones, such as cellular V2V of 3GPP, applied to wireless communication of the vehicle 1.
  • FIG. 2 is a block diagram showing the configuration of the in-vehicle system. As shown in FIG. 2, each vehicle 1 includes an in-vehicle system 10.
  • the in-vehicle system 10 includes a relay device 20, a communication network 12, and various on-vehicle devices electronically controlled by an ECU belonging to the communication network 12.
  • the communication network 12 includes a plurality of in-vehicle communication lines 13 terminating in the relay device 20, and a plurality of in-vehicle control devices (hereinafter referred to as "ECUs") 16 connected to the in-vehicle communication lines 13.
  • the communication network 12 can communicate among the ECUs 16, and is formed of a master / slave communication network (for example, LIN (Local Interconnect Network)) in which the relay device 20 is a terminal node (master device).
  • the relay device 20 controls a plurality of communication networks 12.
  • the communication network 12 includes communication standards such as CAN (Controller Area Network), CANFD (CAN with Flexible Data Rate), Ethernet (registered trademark), or MOST (Media Oriented Systems Transport: MOST is a registered trademark) as well as LIN. It may be a network to be adopted.
  • the network configuration of the communication network 12 may include the relay device 20 and at least one ECU 16.
  • the common code of the communication network is “12”, and the individual codes of the communication network are “12A to 12C”. Further, the common code of the ECU is “16”, and the individual codes of the ECU are “16A1 to 16A4”, “16B1 to 16B3” and “16C1 to 16C2”.
  • the communication networks 12A, 12B, 12C share the different control fields of the vehicle 1, respectively.
  • a power system ECU whose control target is the drive device of the vehicle 1 is connected.
  • a multimedia ECU that controls information equipment of the vehicle 1.
  • Connected to the communication network 12C is an ADAS-based ECU whose control target is an advanced driver assistance system (ADAS: Advanced Driver-Assistance Systems) that supports the driving operation of the vehicle 1.
  • ADAS Advanced Driver-Assistance Systems
  • the communication network 12 is not limited to the above three types, but may be four or more types. Further, the control field corresponding to the communication network 12 varies depending on the design concept of the vehicle manufacturer, and is not limited to the sharing of the control field described above.
  • the power ECUs connected to the communication network 12A include, for example, an engine ECU 16A1, an EPS-ECU 16A2, a brake ECU 16A3, and an ABS-ECU 16A4.
  • the engine ECU 16A1 is connected to a fuel injection device 31 of the engine, and the fuel injection device 31 is controlled by the engine ECU 16A1.
  • An EPS (Electric Power Steering: Electric Power Steering) 32 is connected to the EPS-ECU 16A2, and the EPS 32 is controlled by the EPS-ECU 16A2.
  • a brake actuator 33 is connected to the brake ECU 16A3, and the brake actuator 33 is controlled by the brake ECU 16A3.
  • An ABS (Antilock Brake System) actuator 34 is connected to the ABS-ECU 16A4, and the ABS actuator 34 is controlled by the ABS-ECU 16A4.
  • the multimedia ECU connected to the communication network 12B includes, for example, a navigation ECU 16B1, a meter ECU 16B2, and a HUD-ECU 16B3.
  • An HDD (Hard Disk Drive) 41, a display 42, a GPS (Global Positioning System) receiver 43, a vehicle speed sensor 44, a gyro sensor 45, a speaker 46, and an input device 47 are connected to the navigation ECU 16B1.
  • the display 42 and the speaker 46 are output devices for presenting various information to the passenger of the vehicle. Specifically, the display 42 displays a map image around the host vehicle, route information to the destination, and the like, and the speaker 46 outputs a voice announcement for guiding the host vehicle to the destination.
  • the input device 47 is for the passenger to perform various inputs such as a destination, and is constituted by various input means such as an operation switch, a joystick, or a touch panel provided on the display 42.
  • the navigation ECU 16B1 has a time synchronization function of acquiring the current time from the GPS signal periodically acquired by the GPS receiver 43, and a position detection function of calculating an absolute position (latitude, longitude and altitude) of the vehicle from the GPS signal; It has an interpolation function that interpolates the position and orientation of the vehicle by the vehicle speed sensor 44 and the gyro sensor 45 to obtain the accurate current position and orientation of the vehicle.
  • the navigation ECU 16B1 reads the map information stored in the HDD 41 according to the obtained current position, and generates a map image in which the current position of the vehicle is superimposed on the map information. Then, the navigation ECU 16B1 displays a map image on the display 42, and displays route information and the like from the current position to the destination on the map image.
  • a meter actuator 48 is connected to the meter ECU 16B2, and the meter actuator 48 is controlled by the meter ECU 16B2.
  • a HUD (Head-Up Display) 49 is connected to the HUD-ECU 16B3, and the HUD 49 is controlled by the HUD-ECU 16B3.
  • the ADAS ECU connected to the communication network 12C includes, for example, an ADAS-ECU 16C1 and an environment recognition ECU 16C2.
  • a first sensor 51 and a second sensor 52 are connected to the environment recognition ECU 16C2, and the first and second sensors 51 and 52 are controlled by the environment recognition ECU 16C2.
  • the first sensor 51 is, for example, an ultrasonic sensor, a video camera or the like arranged at four corners in the front, rear, left, and right of the vehicle 1 (see FIG. 1).
  • the first sensor 51 provided on the front side is a sensor mainly for detecting an object present on the front of the vehicle
  • the first sensor 51 provided on the rear side is an object mainly present on the rear of the vehicle Is a sensor for detecting
  • the second sensor 52 is, for example, an ultrasonic sensor, a video camera, or the like disposed in a ceiling portion of the vehicle 1 (see FIG. 1).
  • the second sensor 52 is rotatable at a relatively high speed around the vertical axis, and is a sensor for detecting an object present around the host vehicle.
  • the sensing results of the first and second sensors 51 and 52 are stored in a communication packet by the environment recognition ECU 16C2 and transmitted to the ADAS-ECU 16C1.
  • the ADAS-ECU 16C1 can execute any one of, for example, levels 1 to 4 based on the sensing results of the first and second sensors 51 and 52.
  • the level of automatic driving is defined in SAE (Society of Automotive Engineers) International, J3016 (September 2016).
  • the “public-private ITS concept road map 2017” also adopts this definition. In this roadmap, level 3 or higher automatic driving is called “high-level automatic driving", and level 4 and 5 automatic driving is called “fully automatic driving”.
  • the "automatic operation” in the present embodiment means an automatic operation at level 2 or higher.
  • the ADAS-ECU 16C1 may be capable of performing level 5 automatic driving, but at the time of the present application, the vehicle 1 performing level 5 automatic driving has not been realized yet.
  • assisted driving As an example of automatic driving up to levels 1 to 3 (hereinafter, also referred to as “assisted driving”), the possibility of collision is predicted from the distance between the object detected by the first sensor 51 and the host vehicle, The control command is transmitted to the power system ECU or the multimedia system ECU so as to intervene in the deceleration or alert the passenger when it is determined that the vehicle speed is high.
  • level 4 and 5 automatic operation As an example of level 4 and 5 automatic operation (hereinafter, also referred to as “autonomous operation"), behavior expected to an object detected by the first and second sensors 51 and 52, deep learning of past behavior, etc. There are some which transmit a control command to a power system ECU or a multimedia system ECU so that the host vehicle is pointed to the target position based on the predicted behavior predicted by the above.
  • the ADAS-ECU 16C1 can also switch to a manual operation of the passenger without using the sensing results by the first and second sensors 51 and 52.
  • the vehicle 1 of the present embodiment is capable of executing the level 4 autonomous operation mode, and as the downgraded operation mode, the vehicle 1 of the level 1 to 3 assisted operation mode or the manual operation mode (level 0) You can do either.
  • the switching of the operation mode is performed by a manual operation input by the passenger or the like.
  • the relay device 20 transmits a control packet (hereinafter, also referred to as “control command”) to control the ECU 16.
  • the ECU 16 executes predetermined control on the target device in charge according to the content of the command included in the received control packet.
  • the relay device 20 When controlling the autonomous operation mode, the relay device 20 sends control commands to the ECUs 16A1 to 16A4 of the communication network 12A based on the sensing results of the first and second sensors 51 and 52 received from the environment recognition ECU 16C2. Send control packet including.
  • each of the ECUs 16A1 to 16A4 having received the control packet from the relay device 20 controls the fuel injection device 31, the EPS 32, the brake actuator 33, and the ABS actuator 34 according to the content of the command included in the control packet, thereby autonomous operation. Mode is executed.
  • the in-vehicle system 10 further includes an in-vehicle communication device 19 that performs wireless communication with the other vehicle 1.
  • the in-vehicle communication device 19 is connected to the relay device 20 via a communication line of a predetermined standard.
  • the relay device 20 relays the information received by the in-vehicle communication device 19 from the other vehicle 1 to the ECU 16.
  • the relay device 20 relays the information received from the ECU 16 to the in-vehicle communication device 19.
  • the in-vehicle communication device 19 wirelessly transmits the relayed information to the other vehicle 1.
  • the in-vehicle communication device 19 mounted on the vehicle 1 may be a device owned by a user, such as a mobile phone, a smartphone, a tablet terminal, or a notebook PC (Personal Computer).
  • FIG. 3 is a block diagram showing an internal configuration of the relay device 20.
  • the relay device 20 of the vehicle 1 includes a control unit 21, a storage unit 22, an in-vehicle communication unit 23, and the like.
  • the control unit 21 of the relay device 20 includes a CPU (Central Processing Unit).
  • the CPU of the control unit 21 has a function of reading one or a plurality of programs stored in the storage unit 22 or the like to execute various processes.
  • the CPU of the control unit 21 can execute a plurality of programs in parallel by switching and executing a plurality of programs in time division, for example.
  • the CPU of the control unit 21 includes one or more large scale integrated circuits (LSI).
  • LSI large scale integrated circuits
  • the plurality of LSIs cooperate to realize the function of the CPU.
  • the computer program executed by the CPU of the control unit 21 may be written in advance at the factory, may be provided via a specific tool, or is transferred by downloading from a computer device such as a server computer. It can also be done.
  • the storage unit 22 is formed of a non-volatile memory element such as a flash memory or an EEPROM (Electrically Erasable Programmable Read Only Memory).
  • the storage unit 22 has a storage area for storing a program executed by the CPU of the control unit 21 and data required for the execution.
  • a plurality of in-vehicle communication lines 13 disposed in the vehicle 1 are connected to the in-vehicle communication unit 23.
  • the in-vehicle communication unit 23 includes a communication device that communicates with the ECU 16 in accordance with a predetermined communication standard such as LIN.
  • the in-vehicle communication unit 23 transmits information given from the CPU of the control unit 21 to a predetermined ECU 16, and the ECU 16 gives information on the transmission source to the CPU of the control unit 21.
  • the in-vehicle communication device 19 transmits the information given from the control unit 21 to the other vehicle 1 and gives the information received from the other vehicle 1 to the control unit 21.
  • the on-vehicle communication device 19 is illustrated as an on-vehicle device that performs inter-vehicle communication with the other vehicle 1.
  • the relay device 20 when the relay device 20 has a wireless communication function, the relay device 20 itself is the other vehicle It may be an on-vehicle device that performs inter-vehicle communication with the device 1.
  • FIG. 4 is a block diagram showing an internal configuration of the in-vehicle communication device 19.
  • the in-vehicle communication device 19 includes a control unit 191, a storage unit 192, a wireless communication unit 193, and the like.
  • the control unit 191 of the in-vehicle communication device 19 includes a CPU.
  • the CPU of the control unit 191 has a function of reading out one or more programs stored in the storage unit 192 or the like to execute various processes.
  • the CPU of the control unit 191 can execute a plurality of programs in parallel by switching and executing a plurality of programs in time division, for example.
  • the CPU of the control unit 191 includes one or more large scale integrated circuits (LSI).
  • LSI large scale integrated circuits
  • the plurality of LSIs cooperate to realize the function of the CPU.
  • the computer program executed by the CPU of the control unit 191 may be written in advance at the factory, may be provided via a specific tool, or is transferred by downloading from a computer device such as a server computer. It can also be done.
  • the storage unit 192 is formed of a non-volatile memory element such as a flash memory or an EEPROM.
  • the storage unit 192 has a storage area for storing a program executed by the CPU of the control unit 191 and data required for the execution.
  • An antenna 194 for wireless communication is connected to the wireless communication unit 193.
  • the wireless communication unit 193 transmits the information given from the control unit 191 to the other vehicle 1 from the antenna 194 and gives the information received from the other vehicle 1 by the antenna 194 to the control unit 191.
  • the CPU of the control unit 191 transmits the information provided from the wireless communication unit 193 to the relay device 20, and provides the wireless communication unit 193 with the information received from the relay device 20.
  • FIG. 5 is an explanatory view showing the contents and generation method of “predicted travel behavior data” transmitted by the on-vehicle communication device 19 to the other vehicle 1 by inter-vehicle communication.
  • the predicted driving behavior data D includes a time within a prediction period Tc in the future for a relatively short predetermined time (for example, 10 seconds) from the current time, and information such as the absolute position and orientation of the vehicle 1 at that time.
  • the time within the prediction period Tc and the absolute position and orientation of the vehicle 1 are calculated as follows. For example, in the road plan view shown in the lower part of FIG. 5, when the vehicle 1 travels in the lane R1 by automatic driving, the ADAS-ECU 16C1 of the vehicle 1 responds to the contents of automatic driving being executed at the present time t0. A travel planned route during the prediction period Tc is calculated, and the calculated travel planned route is transmitted to the in-vehicle communication device 19.
  • the in-vehicle communication device 19 performs map matching processing between the received planned traveling route and the map information, and the like, and detects the plurality of discrete positions (absolute positions) of the vehicle 1 during the prediction period Tc and the direction of the vehicle 1 at each discrete position. Calculate Specifically, when the vehicle 1 continues to travel straight in the lane R1 during the prediction period Tc, the on-vehicle communication device 19 is operated on the straight travel planned route (arrow shown by the broken line in FIG. 5) along the lane R1. A plurality of discrete positions (positions indicated by ⁇ in FIG. 5) and directions of the vehicle 1 are calculated at fixed or indeterminate time intervals (or distance intervals).
  • the on-vehicle communication device 19 is a curved traveling planned route extending from the lane R1 to the lane R2 (an arrow shown by an alternate long and short dash line in FIG. A plurality of discrete positions (positions indicated by ⁇ marks in FIG. 5) and a direction of the vehicle 1 are calculated at fixed or indefinite time intervals (or distance intervals).
  • the vehicle-mounted communication device 19 calculates a plurality of discrete positions of the vehicle 1 at time intervals, it calculates the time corresponding to each discrete position based on the time interval and the time of the current time t0. In addition, when the vehicle-mounted communication device 19 calculates a plurality of discrete positions of the vehicle 1 at a distance interval, the distance from the current position of the vehicle 1 to each discrete position is calculated based on the distance interval, and the calculated distance and the vehicle The time corresponding to each discrete position is calculated based on the planned traveling speed of 1.
  • the planned traveling speed of the vehicle 1 can be acquired from the ADAS-ECU 16C1. Note that the time within the prediction period Tc and the absolute position and orientation of the vehicle 1 may be calculated by the ADAS-ECU 16C1 and the calculated time, discrete position and orientation may be transmitted to the in-vehicle communication device 19.
  • the predicted travel behavior data D of the present embodiment includes storage areas such as “vehicle ID”, “time”, “absolute position”, “vehicle attribute”, and “direction”. .
  • the “time” stores the value of the current time and the value of each time within the prediction period Tc calculated by the above method.
  • the value of the current time can be acquired from the navigation ECU 16B1 (see FIG. 2) having the above-described time synchronization function via the relay device 20.
  • the “vehicle ID” stores the value of the vehicle ID of the own vehicle. Since the value of vehicle ID is a fixed value, the same value is stored in “vehicle ID” corresponding to each time.
  • the “absolute position” stores each value of latitude, longitude and altitude indicating the absolute position of the vehicle corresponding to each time within the prediction period Tc calculated by the above method. In “absolute position” of FIG. 5, only the values of latitude and longitude are shown.
  • vehicle attribute for example, values such as the vehicle width and the vehicle length of the own vehicle, and the identification value of the vehicle application type of the own vehicle (such as a private vehicle or an emergency vehicle) are stored. Since each value of the vehicle width, the vehicle length, and the vehicle application type is a fixed value, the same value is stored in the "vehicle attribute" corresponding to each time.
  • vehicle attribute of FIG. 5
  • the description of specific numerical values is omitted.
  • the value of the heading of the vehicle corresponding to each time within the prediction period Tc calculated by the above method is stored in the "heading".
  • the description of specific numerical values is omitted.
  • the other vehicle 1 passing through the own vehicle and the periphery thereof transmits and receives predicted traveling behavior data D to each other when the on-vehicle communication devices 19 communicate with each other.
  • the own vehicle and the other vehicle 1 passing around it can share the predicted traveling behavior data D with each other.
  • the time of a fixed time interval is stored in "time" of prediction driving behavior data D
  • the time of an indefinite time interval may be stored.
  • the fixed time interval depends on the speed of the vehicle, the distance between the vehicle and the other vehicle, and the time to collision (TTC) before the vehicle collides with the other vehicle. It can be set appropriately.
  • the predicted travel behavior data D may also include other information such as the speed and acceleration of the host vehicle.
  • the velocity of the vehicle can be obtained by differentiating the absolute position of the vehicle, and the acceleration of the vehicle can be determined by differentiating the velocity obtained from the absolute position of the vehicle. Therefore, the predicted traveling behavior data D need not necessarily include the speed and acceleration of the host vehicle.
  • FIG. 6 is an explanatory diagram of an outline of processing in the on-vehicle communication device 19.
  • FIG. 6 shows the planned traveling route P1 of the vehicle A (vehicle 1A) traveling on the expressway, the planned traveling route P2 of the vehicle B (vehicle 1B), and the planned traveling route P3 of the vehicle C (vehicle 1C). ing.
  • vehicle A is traveling in lane R1 at 80 Km / h
  • planned traveling route P1 is a route for changing lanes from lane R1 to lane R2.
  • the vehicle B is traveling a little behind the vehicle A at a speed of 100 Km at a speed of 100 Km, and the planned traveling route P2 is a route which goes straight on the lane R2.
  • the vehicle C is traveling in the lane R1 further to the rear of the vehicles A and B, and the planned traveling route P3 is a route which goes straight in the lane R1.
  • the in-vehicle communication device 19 of each vehicle 1 executes the adjustment processing of the planned travel route.
  • FIG. 7 is a flowchart showing the flow of adjustment processing.
  • the control unit 191 of the in-vehicle communication device 19 executes the processing illustrated in the flowchart of FIG. 7 by the CPU reading out one or more programs stored in the storage unit 192 into the RAM and executing the program.
  • the adjustment process of FIG. 7 is performed using predicted traveling behavior data D (FIG. 5) which is information for specifying a planned traveling route of the other vehicle acquired by the control unit 191 of the in-vehicle communication device 19 from the other vehicle.
  • predicted traveling behavior data D FIG. 5
  • the control unit 191 of the in-vehicle communication device 19 causes the CPU to read out one or more programs stored in the storage unit 192 into the RAM and execute the program, thereby predicting traveling from the communication frame for inter-vehicle communication received by the wireless communication unit 193. It functions as a first acquisition unit 195 (FIG. 4) that acquires behavior data D.
  • control unit 191 executes a determination process (step S101).
  • the determination process is based on the planned traveling route obtained from the predicted traveling behavior data D (FIG. 5) of the own vehicle and the planned traveling route obtained from the predicted traveling behavior data D extracted from the communication frame received from the other vehicle by inter-vehicle communication. It is the process which determines whether there exists another vehicle which has a driving planned route which crosses with the driving planned route of the own vehicle by comparing with.
  • the on-vehicle communication device 19 of the vehicle A compares the planned travel route P1 with the planned travel routes P2 and P3 to determine that there is another vehicle having a planned travel route intersecting with the planned travel route P1. judge.
  • NO in step S103 the subsequent operation is not performed, and the process is returned to the beginning.
  • the control unit 191 determines a target vehicle, and generates a target vehicle group (group) with the subject vehicle and one or more target vehicles (step S105).
  • the target vehicle is a vehicle having a planned travel route intersecting with the planned travel route of the host vehicle. In addition to the crossing state where the planned travel route crosses at one point that the planned travel route of the two vehicles intersects, the planned travel route is mixed to such an extent that the two vehicles collide or contact (the distance is To be close, overlapping, etc.).
  • the in-vehicle communication devices 19 of the vehicles A and B respectively determine the vehicle B and the vehicle A as target vehicles. Therefore, in the on-vehicle communication devices 19 of both vehicles A and B, a target vehicle group consisting of the vehicles A and B is generated.
  • the control unit 191 executes a determination process (step S107) of determining a leader vehicle from the target vehicle group based on the defined condition.
  • the control unit 191 functions as a determination unit 196 (FIG. 4) that executes the determination process by causing the CPU to read one or more programs stored in the storage unit 192 into the RAM and execute the program.
  • the leader vehicle is a vehicle equipped with an on-vehicle communication device 19 that executes a change process described later.
  • the number of vehicles smaller than the total number of target vehicle groups is determined.
  • one vehicle is determined to be the leader vehicle.
  • the change process is a process of changing a planned travel route of one or more target vehicles of the target vehicle group so as not to cross any planned travel route of any target vehicle.
  • the control unit 191 functions as a change unit 197 (FIG. 4) that executes the change process by the CPU reading out one or more programs stored in the storage unit 192 into the RAM and executing the program.
  • changing the planned travel route of one or more target vehicles of the target vehicle group is also referred to as “adjustment”.
  • the processing amount can be suppressed for the entire target vehicle group rather than each vehicle of the target vehicle group performing the change process.
  • the prescribed condition is, for example, that the date of manufacture of each target vehicle is the newest.
  • the control unit 191 acquires the date of manufacture of each of the target vehicles by inter-vehicle communication.
  • information indicating the date of manufacture may be included in the predicted travel behavior data D as an attribute of a vehicle and transmitted by inter-vehicle communication.
  • the information indicating the date of manufacture may be acquired by inquiring a server (not shown) or the like using the vehicle ID included in the predicted traveling behavior data D.
  • regulation conditions may be the newest thing of VIN (car number) further. This allows the latest program to execute the change process.
  • the program version for executing the change process is the newest.
  • the information indicating the version of the program may be included in the predicted traveling behavior data D as an attribute of a vehicle and transmitted by inter-vehicle communication.
  • the version of the program of the vehicle may be specified by inquiring of a server (not shown) or the like using the vehicle ID included in the predicted travel behavior data D.
  • another example of the defined condition may be that the vehicle ID or the type of the vehicle is previously defined.
  • a vehicle ID or a type of vehicle having a high version of a program for executing the change process is defined in advance. This allows the latest program to execute the change process.
  • the vehicle A has a newer date of manufacture than the vehicle B.
  • the on-vehicle communication devices 19 of each of the vehicles A and B both determine the vehicle A as the leader vehicle in the determination process.
  • the leader vehicle is notified to each of the target vehicle groups.
  • the vehicle A notifies the vehicle B
  • the vehicle B notifies the vehicle A that the vehicle A has been determined as the leader vehicle.
  • the control unit 191 of the in-vehicle communication device 19 of the vehicle determined as the leader vehicle (YES in step S109) performs a change process (step S111) related to the change in the planned travel route for at least one vehicle in the target vehicle group.
  • the change process relating to the change of the planned travel route in step S111 is to change the planned travel route represented in the planned travel route and to change the route without changing the planned travel route (or in addition to the change). It includes changing the scheduled time to pass, that is, changing the vehicle speed.
  • the on-vehicle communication device 19 of the vehicle A changes, for example, a route for changing the traveling planned route P1 of the host vehicle from lane R1 to lane R2 to a route for going straight lane R1 without changing lanes Do. That is, the planned route is changed. Further, for example, instead of or in addition to the above change, the on-vehicle communication device 19 of the vehicle A decelerates the planned traveling route P2 of the vehicle B to 80 km / hr from the route going straight on the lane R2 at 100 km / hr. You may change it to the route going straight on R2. That is, the vehicle speed is changed in addition to the change of the planned route.
  • the control unit 191 of the in-vehicle communication device 19 of the leader vehicle notifies each vehicle of the target vehicle group of the planned travel route after adjustment (step S113). End the process.
  • the control unit 191 transfers the communication frame including the planned travel route after adjustment to the wireless communication unit 193 by the CPU reading and executing one or a plurality of programs stored in the storage unit 192 to the wireless communication unit 193 to perform inter-vehicle communication Functions as a notification unit 198 (FIG. 4) for broadcasting.
  • the in-vehicle communication device 19 of the vehicle A notifies the vehicle B of the planned travel route after the change.
  • the control unit 191 of the in-vehicle communication device 19 of the target vehicle that is not the leader vehicle does not execute the change process of step S111.
  • the corresponding in-vehicle communication device 19 acquires the planned traveling route after the change from the communication frame received from the leader vehicle by the inter-vehicle communication (YES in step S115).
  • the control unit 191 of the in-vehicle communication device 19 causes the CPU to read out one or more programs stored in the storage unit 192 into the RAM and execute the program, thereby changing the communication frame received by the wireless communication unit 193 through inter-vehicle communication Functions as a second acquisition unit 199 (FIG. 4) for acquiring a travel planned route of
  • step S115 the control unit 191 of the in-vehicle communication device 19 ends the series of processes.
  • step S117 When the planned travel route after the change of the host vehicle is acquired from the in-vehicle communication device 19 of the leader vehicle, the travel of the host vehicle is controlled based on the planned travel route after the change (step S117).
  • the control unit 191 of the in-vehicle communication device 19 outputs a control command (control packet) instructing the ADAS-ECU 16C1 to travel on the planned travel route after the change.
  • the control unit 191 of the in-vehicle communication device 19 instructs the ADAS-ECU 16C1 to travel on the planned travel route after the CPU reads out and executes one or a plurality of programs stored in the storage unit 192 into the RAM. It functions as the instruction unit 200 (FIG. 4).
  • the planned travel route is changed. That is, traveling according to the planned traveling route adjusted by the leader vehicle is realized in the entire target vehicle.
  • the control unit 191 of the in-vehicle communication device 19 returns the process to step S101 and repeats the above adjustment process at a predetermined timing.
  • the predetermined timing is, for example, a predetermined time interval, a timing at which predicted traveling behavior data D is received from another vehicle, or the like.
  • the adjustment process of FIG. 7 is repeatedly performed at a predetermined timing in the on-vehicle communication device 19 of each vehicle.
  • each vehicle can share the planned traveling route with other surrounding vehicles while traveling, and can determine whether there is a collision or a contact by comparing them. Then, if the determination result is affirmative (determination result that there is a collision, a touch, etc.), a target vehicle group consisting of a plurality of related vehicles including the own vehicle is generated, and the plurality of vehicles travel Adjust the planned route.
  • the planned travel route is optimized as the entire target vehicle group including the own vehicle and the surrounding vehicles affecting the own vehicle.
  • each of the vehicles in the target vehicle group does not execute the process of changing the planned traveling route of the own vehicle, but the number of leader vehicles at least the total number is scheduled to travel Adjust the route.
  • the planned travel route as the entire target vehicle group is optimized, and an increase in the processing amount of the entire target vehicle group can be suppressed.
  • the leader vehicle is determined to be the newest vehicle of the date of manufacture, or the newest vehicle of the version of the program for changing the planned traveling route out of the plurality of target vehicle groups. Thereby, the adjustment is realized by the latest program.
  • the prescribed condition may be a priority vehicle.
  • the priority vehicle is a vehicle for which a planned travel route of the vehicle is prioritized over other vehicles, and is, for example, a public vehicle such as a bus and an emergency vehicle such as an ambulance.
  • the control unit 191 of the in-vehicle communication device 19 of each vehicle determines the presence / absence of the priority vehicle in the target vehicle group from the vehicle ID or the type of vehicle represented by the vehicle attribute included in the predicted travel behavior data D. It can be determined.
  • the in-vehicle communication device 19 of the priority vehicle stores a program for adjusting to change the planned traveling route of the other vehicle by giving priority to the planned traveling route of the own vehicle.
  • the planned travel route of the entire target vehicle group is adjusted so that the planned travel route of the priority vehicle is prioritized.
  • the priority vehicle may be determined on a charge basis. For example, a certain vehicle or a specific area or a specific period may be a priority vehicle by paying a fee for administration or the like.
  • an attribute value indicating that the vehicle is a priority vehicle or a vehicle ID is assigned, and the vehicle is included in the predicted traveling behavior data D and transmitted to the other vehicle.
  • the control unit 191 of the in-vehicle communication device 19 of each vehicle sets the priority vehicle in the target vehicle group from the vehicle ID, the type of vehicle, the attribute value, etc., represented in the vehicle attribute included in the predicted travel behavior data D. The presence or absence can be determined.
  • the administration or the like may be rewarded for not becoming a priority vehicle.
  • control unit 191 of the in-vehicle communication device 19 performs all the adjustment processing.
  • the control unit 191 of the in-vehicle communication device 19 may perform the adjustment process in cooperation with other in-vehicle devices.
  • the control unit 21 of the relay device 20 may perform at least part of the processing. That is, the control unit 21 of the relay device 20 may function as at least one of the first acquisition unit 195, the determination unit 196, the change unit 197, the notification unit 198, the second acquisition unit 199, and the instruction unit 200.
  • control unit 191 of the in-vehicle communication device 19 may perform the adjustment process in cooperation with any of the ECUs 16.
  • the control unit 191 of the in-vehicle communication device 19 inputs information indicating the planned traveling route of each vehicle to the ADAS-ECU 16C1 or the environment recognition ECU 16C2, and the ADAS-ECU 16C1 or the environment recognition ECU 16C2 executes a determination process of determining the leader vehicle.
  • the result may be input to the in-vehicle communication device 19.
  • the ADAS-ECU 16C1 may receive information indicating the planned travel route of each vehicle from the in-vehicle communication device 19, and may execute the change process.
  • the determination unit 196 which is a function implemented by the control unit 191 of the in-vehicle communication device 19, passes information necessary for the determination process to another in-vehicle device such as the ADAS-ECU 16C1. Causing the on-vehicle device to execute the determination process.
  • the other functions are also the same.
  • the disclosed features are realized by one or more modules.
  • the feature can be realized by a circuit element or other hardware module, a software module that defines a process for realizing the feature, or a combination of a hardware module and a software module.
  • the program may be provided as a program that is a combination of one or more software modules for causing a computer to execute the above-described operations.
  • a program is provided as a program product by recording it on a computer readable recording medium such as a flexible disk attached to a computer, a CD-ROM (Compact Disk-Read Only Memory), a ROM, a RAM and a memory card. It can also be done.
  • the program can be provided by being recorded in a recording medium such as a hard disk built in the computer.
  • the program can be provided by downloading via a network.
  • the program according to the present disclosure is to call a necessary module among program modules provided as a part of an operating system (OS) of a computer in a predetermined arrangement at a predetermined timing to execute processing. It is also good. In that case, the program itself does not include the above module, and the processing is executed in cooperation with the OS. Programs not including such modules may also be included in the programs according to the present disclosure.
  • OS operating system
  • the program according to the present disclosure may be provided by being incorporated into a part of another program. Also in this case, the program itself does not include a module included in the other program, and the process is executed in cooperation with the other program. Programs incorporated into such other programs may also be included in the programs according to the present disclosure.
  • the provided program product is installed and executed in a program storage unit such as a hard disk.
  • the program product includes the program itself and a recording medium in which the program is recorded.

Abstract

A vehicle-mounted device for a vehicle having a vehicle-to-vehicle communication function, said vehicle-mounted device being provided with a communication unit which transmits vehicle-to-vehicle communication frames to and receives vehicle-to-vehicle communication frames from another vehicle, and a control unit which performs information processing on data included in these vehicle-to-vehicle communication frames, wherein the control unit comprises: a first acquisition unit which acquires, from vehicle-to-vehicle communication frames received from other vehicles, information identifying planned travel routes for these vehicles; and a determination unit which determines, from a target vehicle group (defined below), a number of leader vehicles (defined below) fewer than the total number of vehicles in the target vehicle group in accordance with prescribed criteria. The target vehicle group: a vehicle group consisting of the host vehicle and other vehicles, the planned travel route for which crosses a planned travel route for the host vehicle. The leader vehicles: vehicles that perform a changing process for changing the planned travel route for at least one vehicle of the target vehicle group.

Description

車載装置、調整方法、およびコンピュータプログラムVehicle-mounted device, adjustment method, and computer program
 この発明は車載装置、調整方法、およびコンピュータプログラムに関する。 The present invention relates to an in-vehicle device, an adjustment method, and a computer program.
 自動車の自動運転を制御する装置は、自車両の走行計画を生成し、走行計画に従って自車両が走行するように操舵を制御する。しかしながら、周辺車両の加減速度が変化するなど周辺環境が変化した場合には、当初の走行計画に従った走行は最適ではなくなる場合がある。この問題に対して、特開2008-129804号公報および特開2009-51356号公報は、周辺車両を監視し、その結果に基づいて走行計画を変更(修正)する走行制御計画生成システムまたは走行計画生成装置を開示している。 The device for controlling the automatic driving of the automobile generates a travel plan of the host vehicle, and controls steering so that the host vehicle travels according to the travel plan. However, if the surrounding environment changes, such as changes in acceleration / deceleration speed of the surrounding vehicles, traveling according to the original travel plan may not be optimal. With regard to this problem, JP 2008-129804 A and JP 2009-51356 A monitor a surrounding vehicle and change (correct) the travel plan based on the result of the travel control plan generation system or travel plan A generator is disclosed.
特開2008-129804号公報JP 2008-129804 A 特開2009-51356号公報JP, 2009-51356, A
 ある実施の形態に従うと、車載装置は、車車間通信機能を有する車両の車載装置であって、他車両と車車間通信フレームを送受信する通信部と、車車間通信フレームに含まれるデータに情報処理を施す制御部と、を備え、制御部は、他車両からの車車間通信フレームから当該他車両における走行予定ルートを特定する情報を取得する第1の取得部と、以下の対象車両群の中から、当該対象車両群の総車両台数よりも少ない台数の以下のリーダー車両を規定条件に従って決定する決定部と、を有する。
  対象車両群:自車両と、走行予定ルートが自車両の走行予定ルートと交錯する他車両と、からなる車両群
  リーダー車両:対象車両群の中の少なくとも1台の車両の走行予定ルートの変更に係る変更処理を実行する車両
According to an embodiment, the in-vehicle apparatus is an in-vehicle apparatus of a vehicle having an inter-vehicle communication function, and a communication unit that transmits and receives an inter-vehicle communication frame to another vehicle and information processing in data included in the inter-vehicle communication frame And a first acquisition unit for acquiring information for specifying a planned travel route in the other vehicle from the inter-vehicle communication frame from the other vehicle, and And a determination unit configured to determine the number of leader vehicles less than the total number of vehicles of the target vehicle group according to the defined conditions.
Target vehicle group: Vehicle group consisting of own vehicle and other vehicles whose planned travel route intersects with planned planned route of the vehicle Leader vehicle: Change of planned planned route of at least one vehicle in targeted vehicle group Vehicle that performs the change process
 他の実施の形態に従うと、調整方法は、車車間通信機能を有する車両の車載装置において、複数の車両の走行予定ルートを調整する方法であって、他車両からの車車間通信フレームから当該他車両における走行予定ルートを特定する情報を取得するステップと、以下の対象車両群の中から、当該対象車両群の総車両台数よりも少ない台数の以下のリーダー車両を規定条件に従って決定するステップと、を備える。
  対象車両群:自車両と、走行予定ルートが自車両の走行予定ルートと交錯する他車両と、からなる車両群
  リーダー車両:対象車両群の中の少なくとも1台の車両の走行予定ルートの変更に係る変更処理を実行する車両
According to another embodiment, the adjustment method is a method of adjusting a planned travel route of a plurality of vehicles in an on-vehicle apparatus of a vehicle having an inter-vehicle communication function, which includes an inter-vehicle communication frame from another vehicle Obtaining information for specifying a planned travel route in the vehicle, and determining, from among the following target vehicle groups, the following leader vehicles of a number smaller than the total number of vehicles of the target vehicle group according to a prescribed condition; Equipped with
Target vehicle group: Vehicle group consisting of own vehicle and other vehicles whose planned travel route intersects with planned planned route of the vehicle Leader vehicle: Change of planned planned route of at least one vehicle in targeted vehicle group Vehicle that performs the change process
 他の実施の形態に従うと、コンピュータプログラムは車車間通信機能を有する車両の車載装置としてコンピュータを機能させるためのコンピュータプログラムであって、車載装置は他車両と車車間通信フレームを送受信する通信部を有し、コンピュータプログラムは、コンピュータを、車車間通信フレームに含まれるデータに情報処理を施す制御部として機能させ、制御部は、他車両からの車車間通信フレームから当該他車両における走行予定ルートを特定する情報を取得する取得部と、以下の対象車両群の中から、当該対象車両群の総車両台数よりも少ない台数の以下のリーダー車両を規定条件に従って決定する決定部と、を有する。
  対象車両群:自車両と、走行予定ルートが自車両の走行予定ルートと交錯する他車両と、からなる車両群
  リーダー車両:対象車両群の中の少なくとも1台の車両の走行予定ルートの変更に係る変更処理を実行する車両
According to another embodiment, the computer program is a computer program for causing a computer to function as an on-vehicle apparatus of a vehicle having an inter-vehicle communication function, and the on-vehicle apparatus transmits a communication unit for transmitting and receiving an inter-vehicle communication frame with another vehicle. The computer program causes the computer to function as a control unit for performing information processing on data included in the inter-vehicle communication frame, and the control unit performs a planned traveling route in the other vehicle from the inter-vehicle communication frame from the other vehicle. It has an acquisition part which acquires the information to specify, and a determination part which determines the following leader vehicles of a number smaller than the total number of vehicles of the object vehicles group concerned according to regulation conditions among the following object vehicles group.
Target vehicle group: Vehicle group consisting of own vehicle and other vehicles whose planned travel route intersects with planned planned route of the vehicle Leader vehicle: Change of planned planned route of at least one vehicle in targeted vehicle group Vehicle that performs the change process
図1は、実施の形態にかかる通信システムの全体構成図である。FIG. 1 is an entire configuration diagram of a communication system according to an embodiment. 図2は、車内システムの構成を示すブロック図である。FIG. 2 is a block diagram showing the configuration of the in-vehicle system. 図3は、中継装置の内部構成を示すブロック図である。FIG. 3 is a block diagram showing an internal configuration of the relay apparatus. 図4は、車載通信機の内部構成を示すブロック図である。FIG. 4 is a block diagram showing an internal configuration of the in-vehicle communication device. 図5は、「予測走行挙動データ」の内容及び生成方法を示す説明図である。FIG. 5 is an explanatory view showing the contents and generation method of “predicted traveling behavior data”. 図6は、車載通信機における処理の概要の説明図である。FIG. 6 is an explanatory diagram of an outline of processing in the in-vehicle communication device. 図7は、調整処理の流れを表したフローチャートである。FIG. 7 is a flowchart showing the flow of adjustment processing.
<本開示が解決しようとする課題>
 実際の車両交通システムでは車両が相互に影響しあっている。そのため、自車両の走行計画を変更(修正)すると、自車両に影響する他車両、さらにその他車両に影響する車両の走行計画に影響を及ぼす場合がある。それ故、周辺環境の変化に応じて自車両の走行計画のみ変更(修正)しても、自車両と自車両に影響する周辺車両とを含む車両群全体として走行計画が最適化されない場合がある。
<Issues the present disclosure is trying to solve>
Vehicles affect each other in the actual vehicle traffic system. Therefore, changing (correcting) the travel plan of the own vehicle may affect the travel plans of other vehicles that affect the own vehicle, and also other vehicles that affect the other vehicles. Therefore, even if only the travel plan of the own vehicle is changed (corrected) according to the change of the surrounding environment, the travel plan may not be optimized as the whole vehicle group including the own vehicle and the surrounding vehicles affecting the own vehicle .
 本開示のある局面における目的は、自車両と自車両に影響する周辺車両とを含む車両群全体として走行計画が最適化することができる車載装置、調整方法、およびコンピュータプログラムを提供することである。 An object in one aspect of the present disclosure is to provide an on-vehicle device, an adjustment method, and a computer program capable of optimizing a travel plan as a whole vehicle group including the own vehicle and surrounding vehicles affecting the own vehicle. .
<本開示の効果>
 この開示によると、自車両と自車両に影響する周辺車両とを含む車両群全体として走行計画が最適化される。
<Effect of the present disclosure>
According to this disclosure, the travel plan is optimized as a whole vehicle group including the own vehicle and the surrounding vehicles affecting the own vehicle.
<実施の形態の説明>
 本実施の形態には、少なくとも以下のものが含まれる。すなわち、
 (1)本実施の形態に含まれる車載装置は、車車間通信機能を有する車両の車載装置であって、他車両と車車間通信フレームを送受信する通信部と、車車間通信フレームに含まれるデータに情報処理を施す制御部と、を備え、制御部は、他車両からの車車間通信フレームから当該他車両における走行予定ルートを特定する情報を取得する第1の取得部と、以下の対象車両群の中から、当該対象車両群の総車両台数よりも少ない台数の以下のリーダー車両を規定条件に従って決定する決定部と、を有する。
  対象車両群:自車両と、走行予定ルートが自車両の走行予定ルートと交錯する他車両と、からなる車両群
  リーダー車両:対象車両群の中の少なくとも1台の車両の走行予定ルートの変更に係る変更処理を実行する車両
 対象車両群の総車両台数よりも少ない台数のリーダー車両が決定されることによって、各車両が走行予定ルートを変更するのではなく、以下の変更部によってリーダー車両が対象車両群の中の少なくとも1台の車両の走行予定ルートを変更することができる。そのため、対象車両群全体の走行予定ルートが調整されるとともに、全車両が走行予定ルートの変更処理を実行するよりも対象車両群全体としての処理量の増加を抑えることができる。
<Description of the embodiment>
The present embodiment includes at least the following. That is,
(1) The on-vehicle apparatus included in the present embodiment is an on-vehicle apparatus of a vehicle having an inter-vehicle communication function, and includes a communication unit that transmits and receives an inter-vehicle communication frame to another vehicle and data included in the inter-vehicle communication frame A control unit that performs information processing on the information processing unit, the control unit acquiring, from the inter-vehicle communication frame from another vehicle, a first acquisition unit that acquires information specifying a planned travel route in the other vehicle; And a determination unit configured to determine the number of leader vehicles less than the total number of vehicles of the target vehicle group from among the group according to a prescribed condition.
Target vehicle group: Vehicle group consisting of own vehicle and other vehicles whose planned travel route intersects with planned planned route of the vehicle Leader vehicle: Change of planned planned route of at least one vehicle in targeted vehicle group Vehicles that execute such change processing By determining the number of leader vehicles smaller than the total number of vehicles in the target vehicle group, each vehicle does not change the planned travel route, and the leader vehicle is targeted by the following change unit The planned travel route of at least one vehicle in the vehicle group can be changed. Therefore, the planned travel route of the entire target vehicle group is adjusted, and an increase in the processing amount of the entire target vehicle group can be suppressed as compared with the case where all vehicles execute the processing for changing the planned travel route.
 (2)好ましくは、規定条件は、車両の製造日の新しい車両であること、車両の変更部を実現するプログラムのバージョンが最新であること、車両のIDが予め規定されているIDであること、および、車両の種別が予め規定されている種別であること、のうちの少なくとも1つである。
 上記の規定条件によってリーダー車両が決定されることによって、対象車両群の中で最新のプログラムを用いて変更部が実現される可能性が高い。そのため、対象車両群全体の走行予定ルートがより最適化されることになる。
(2) Preferably, the prescribed condition is that the vehicle is a new vehicle on the day of manufacture of the vehicle, that the version of the program for realizing the change unit of the vehicle is the latest, and that the ID of the vehicle is predefined. And at least one of the types of vehicles being predetermined types.
By determining the leader vehicle according to the above-described prescribed conditions, there is a high possibility that the change unit will be realized using the latest program in the target vehicle group. Therefore, the planned travel route of the entire target vehicle group is further optimized.
 (3)好ましくは、規定条件は優先車両であることであり、自車両がリーダー車両であり、かつ、優先車両である場合、変更処理は、対象車両群の中の自車両以外の少なくとも1台の車両の走行予定ルートを変更する処理である。
 これにより、優先車両の走行予定ルートが優先されるように、対象車両群全体の走行予定ルートが調整される。
(3) Preferably, the prescribed condition is that the vehicle is a priority vehicle, and in the case where the vehicle is a leader vehicle and a priority vehicle, the change process is performed by at least one vehicle other than the vehicle within the target vehicle group Is a process of changing the planned travel route of the vehicle.
As a result, the planned travel route of the entire target vehicle group is adjusted so that the planned travel route of the priority vehicle is prioritized.
 (4)好ましくは、制御部は、自車両がリーダー車両である場合に変更処理を実行する変更部と、変更後の走行予定ルートを含む車車間通信フレームを通信部に送信させる通知部と、をさらに有する。
 これにより、リーダー車両と決定された車両では、対象車両群の中の少なくとも1台の車両の走行予定ルートを変更することによって対象車両群全体の走行予定ルートを調整するとともに、変更後の走行予定ルートを対象の車両に通知することで、以下の指示部によって当該車両での変更後の走行後ルートでの車両の走行制御を実現させることができる。
(4) Preferably, the control unit performs a change process when the host vehicle is a leader vehicle, and a notification unit that causes the communication unit to transmit an inter-vehicle communication frame including the planned travel route after the change. In addition,
Thus, in the vehicle determined as the leader vehicle, the planned travel route of the entire target vehicle group is adjusted by changing the planned travel route of at least one vehicle in the target vehicle group, and the travel schedule after the change is made By notifying the target vehicle of the route, it is possible to realize travel control of the vehicle on the post-travel route after the change in the vehicle by the following instruction unit.
 (5)好ましくは、制御部は、車車間通信フレームからリーダー車両からの変更後の走行予定ルートの通知を取得する第2の取得部と、自車両の走行を制御する運転支援部に、走行予定ルートに基づいた走行制御を行わせる指示部と、をさらに有する。
 これにより、リーダー車両による調整が実現される。
(5) Preferably, the control unit travels to the second acquisition unit that acquires the notification of the planned traveling route after the change from the leader vehicle from the inter-vehicle communication frame, and the driving support unit that controls the traveling of the own vehicle. And an instruction unit for performing travel control based on the planned route.
Thereby, the adjustment by the leader vehicle is realized.
 (6)本実施の形態に含まれる調整方法は、(1)~(5)のいずれか1項に記載の車載において、複数の車両の走行予定ルートを調整する方法である。
 かかる調整方法は、上記(1)~(5)の車載装置と同様の効果を奏する。
(6) The adjustment method included in the present embodiment is a method of adjusting planned traveling routes of a plurality of vehicles in the on-vehicle according to any one of (1) to (5).
Such an adjustment method has the same effect as the above-described in-vehicle devices (1) to (5).
 (7)本実施の形態に含まれるコンピュータプログラムは、コンピュータを、(1)~(5)のいずれか1つに記載の車載装置として機能させる。
 かかるコンピュータプログラムは、上記(1)~(5)の車載装置と同様の効果を奏する。
(7) A computer program included in the present embodiment causes a computer to function as the in-vehicle device according to any one of (1) to (5).
Such a computer program exhibits the same effects as those of the in-vehicle apparatus of the above (1) to (5).
<本発明の実施形態の詳細>
 以下、図面を参照して、本発明の実施形態の詳細を説明する。なお、以下に記載する実施形態の少なくとも一部を任意に組み合わせてもよい。
 [通信システムの全体構成]
 図1は、本発明の実施形態に係る通信システムの全体構成図である。
 図1に示すように、本実施形態の通信システムは、複数の車両1にそれぞれ搭載された車載通信機(車載装置)19を備える。
<Details of the Embodiment of the Present Invention>
The details of the embodiments of the present invention will be described below with reference to the drawings. Note that at least a part of the embodiments described below may be arbitrarily combined.
[Overall configuration of communication system]
FIG. 1 is an overall configuration diagram of a communication system according to an embodiment of the present invention.
As shown in FIG. 1, the communication system of the present embodiment includes an in-vehicle communication device (in-vehicle device) 19 mounted on each of a plurality of vehicles 1.
 車載通信機19は、道路を通行中の他車両1との間で無線通信(車車間通信)を行う無線通信機である。従って、本実施形態では、車両1の車載通信機19を「車車間通信装置19」ともいい、通信システムを「車車間通信システム」ともいう。
 本実施形態では、車載通信機19は、CSMA/CA(Carrier Sense Multiple Access/ Collision Avoidance)方式によるマルチアクセス方式を採用している。
The in-vehicle communication device 19 is a wireless communication device that performs wireless communication (inter-vehicle communication) with another vehicle 1 traveling on the road. Therefore, in the present embodiment, the in-vehicle communication device 19 of the vehicle 1 is also referred to as "inter-vehicle communication device 19", and the communication system is also referred to as "inter-vehicle communication system".
In the present embodiment, the in-vehicle communication device 19 adopts a multi-access method based on a carrier sense multiple access / collision avoidance (CSMA / CA) method.
 より具体的には、車載通信機19は、例えば「700MHz帯高度道路交通システム標準規格(ARIB STD-T109)」に倣ったマルチアクセス方式を採用している。
 この方式によれば、車載通信機19は、車車間通信の通信フレームを所定時間(例えば0.1秒)ごとにブロードキャスト送信する。従って、車車間通信を実行中の車両1は、無線信号の送受信範囲に含まれる他車両から受信した通信フレームにより、自車両の周囲の他車両の車両情報をほぼリアルタイムで察知することができる。
More specifically, the in-vehicle communication device 19 adopts, for example, a multi-access method that conforms to the "700 MHz band intelligent traffic system standard (ARIB STD-T109)".
According to this method, the in-vehicle communication device 19 broadcasts a communication frame for inter-vehicle communication at predetermined time intervals (for example, 0.1 seconds). Therefore, the vehicle 1 executing inter-vehicle communication can detect the vehicle information of the other vehicle around the own vehicle in substantially real time by the communication frame received from the other vehicle included in the transmission / reception range of the wireless signal.
 車車間通信の通信方式は、上記の標準規格に限定されるものではなく、例えば3GPPのセルラーV2Vなど、携帯電話向けの通信技術を車両1の無線通信に応用したものであってもよい。 The communication system for inter-vehicle communication is not limited to the above standard, and may be a communication technology for mobile phones, such as cellular V2V of 3GPP, applied to wireless communication of the vehicle 1.
 [車内システムの構成]
 図2は、車内システムの構成を示すブロック図である。
 図2に示すように、各車両1は、車内システム10を備える。車内システム10は、中継装置20と、通信ネットワーク12と、通信ネットワーク12に属するECUにより電子制御される各種の車載機器とを含む。
[In-vehicle system configuration]
FIG. 2 is a block diagram showing the configuration of the in-vehicle system.
As shown in FIG. 2, each vehicle 1 includes an in-vehicle system 10. The in-vehicle system 10 includes a relay device 20, a communication network 12, and various on-vehicle devices electronically controlled by an ECU belonging to the communication network 12.
 通信ネットワーク12は、中継装置20において終端する複数の車内通信線13と、各車内通信線13に接続された複数の車載制御装置(以下、「ECU」という。)16と、を備える。
 通信ネットワーク12は、ECU16相互間の通信が可能であり、中継装置20を終端ノード(親機)とするマスター/スレーブ型の通信ネットワーク(例えば、LIN(Local Interconnect Network))よりなる。中継装置20は、複数の通信ネットワーク12を制御する。
The communication network 12 includes a plurality of in-vehicle communication lines 13 terminating in the relay device 20, and a plurality of in-vehicle control devices (hereinafter referred to as "ECUs") 16 connected to the in-vehicle communication lines 13.
The communication network 12 can communicate among the ECUs 16, and is formed of a master / slave communication network (for example, LIN (Local Interconnect Network)) in which the relay device 20 is a terminal node (master device). The relay device 20 controls a plurality of communication networks 12.
 通信ネットワーク12は、LINだけでなく、CAN(Controller Area Network)、CANFD(CAN with Flexible Data Rate)、Ethernet(登録商標)、又はMOST(Media Oriented Systems Transport:MOSTは登録商標)などの通信規格を採用するネットワークであってもよい。
 また、通信ネットワーク12のネットワーク構成は、中継装置20と少なくとも1つのECU16が含まれておればよい。
The communication network 12 includes communication standards such as CAN (Controller Area Network), CANFD (CAN with Flexible Data Rate), Ethernet (registered trademark), or MOST (Media Oriented Systems Transport: MOST is a registered trademark) as well as LIN. It may be a network to be adopted.
The network configuration of the communication network 12 may include the relay device 20 and at least one ECU 16.
 以下において、通信ネットワークの共通符号を「12」とし、通信ネットワークの個別符号を「12A~12C」とする。また、ECUの共通符号を「16」とし、ECUの個別符号を「16A1~16A4」、「16B1~16B3」及び「16C1~16C2」とする。 In the following, the common code of the communication network is “12”, and the individual codes of the communication network are “12A to 12C”. Further, the common code of the ECU is “16”, and the individual codes of the ECU are “16A1 to 16A4”, “16B1 to 16B3” and “16C1 to 16C2”.
 各通信ネットワーク12A,12B,12Cは、車両1の異なる制御分野をそれぞれ分担している。
 例えば、通信ネットワーク12Aには、車両1の駆動機器を制御対象とするパワー系ECUが接続されている。通信ネットワーク12Bには、車両1の情報機器を制御対象とするマルチメディア系ECUが接続されている。通信ネットワーク12Cには、車両1の運転操作を支援する先進運転支援システム(ADAS:Advanced Driver-Assistance Systems)を制御対象とするADAS系ECUが接続されている。
The communication networks 12A, 12B, 12C share the different control fields of the vehicle 1, respectively.
For example, to the communication network 12A, a power system ECU whose control target is the drive device of the vehicle 1 is connected. Connected to the communication network 12B is a multimedia ECU that controls information equipment of the vehicle 1. Connected to the communication network 12C is an ADAS-based ECU whose control target is an advanced driver assistance system (ADAS: Advanced Driver-Assistance Systems) that supports the driving operation of the vehicle 1.
 通信ネットワーク12は、上記の3種類に限らず4種類以上であってもよい。また、通信ネットワーク12に対応付ける制御分野は、車両メーカーの設計思想に応じて様々であり、上記の制御分野の分担に限定されるものではない。 The communication network 12 is not limited to the above three types, but may be four or more types. Further, the control field corresponding to the communication network 12 varies depending on the design concept of the vehicle manufacturer, and is not limited to the sharing of the control field described above.
 具体的には、通信ネットワーク12Aに接続されているパワー系ECUには、例えば、エンジンECU16A1、EPS-ECU16A2、ブレーキECU16A3、及びABS-ECU16A4などが含まれる。
 エンジンECU16A1には、エンジンの燃料噴射装置31が接続されており、燃料噴射装置31は、エンジンECU16A1によって制御される。
Specifically, the power ECUs connected to the communication network 12A include, for example, an engine ECU 16A1, an EPS-ECU 16A2, a brake ECU 16A3, and an ABS-ECU 16A4.
The engine ECU 16A1 is connected to a fuel injection device 31 of the engine, and the fuel injection device 31 is controlled by the engine ECU 16A1.
 EPS-ECU16A2には、EPS(Electric Power Steering:電動パワーステアリング)32が接続されており、EPS32は、EPS-ECU16A2によって制御される。ブレーキECU16A3には、ブレーキアクチュエータ33が接続されており、ブレーキアクチュエータ33は、ブレーキECU16A3によって制御される。
 ABS-ECU16A4には、ABS(Antilock Brake System)アクチュエータ34が接続されており、ABSアクチュエータ34は、ABS-ECU16A4によって制御される。
An EPS (Electric Power Steering: Electric Power Steering) 32 is connected to the EPS-ECU 16A2, and the EPS 32 is controlled by the EPS-ECU 16A2. A brake actuator 33 is connected to the brake ECU 16A3, and the brake actuator 33 is controlled by the brake ECU 16A3.
An ABS (Antilock Brake System) actuator 34 is connected to the ABS-ECU 16A4, and the ABS actuator 34 is controlled by the ABS-ECU 16A4.
 通信ネットワーク12Bに接続されているマルチメディア系ECUには、例えば、ナビゲーションECU16B1、メータECU16B2、及びHUD-ECU16B3などが含まれる。
 ナビゲーションECU16B1には、HDD(Hard Disk Drive)41、ディスプレイ42、GPS(Global Positioning System)受信機43、車速センサ44、ジャイロセンサ45、スピーカ46、及び入力デバイス47が接続されている。
The multimedia ECU connected to the communication network 12B includes, for example, a navigation ECU 16B1, a meter ECU 16B2, and a HUD-ECU 16B3.
An HDD (Hard Disk Drive) 41, a display 42, a GPS (Global Positioning System) receiver 43, a vehicle speed sensor 44, a gyro sensor 45, a speaker 46, and an input device 47 are connected to the navigation ECU 16B1.
 ディスプレイ42とスピーカ46は、各種情報を自車両の搭乗者に提示するための出力装置である。具体的には、ディスプレイ42は、自車両周辺の地図画像及び目的地までの経路情報などを表示し、スピーカ46は、自車両を目的地に誘導するためのアナウンスを音声出力する。
 入力デバイス47は、搭乗者が目的地等の各種入力を行うためのものであり、操作スイッチ、ジョイスティック、或いはディスプレイ42に設けたタッチパネル等の各種入力手段により構成される。
The display 42 and the speaker 46 are output devices for presenting various information to the passenger of the vehicle. Specifically, the display 42 displays a map image around the host vehicle, route information to the destination, and the like, and the speaker 46 outputs a voice announcement for guiding the host vehicle to the destination.
The input device 47 is for the passenger to perform various inputs such as a destination, and is constituted by various input means such as an operation switch, a joystick, or a touch panel provided on the display 42.
 ナビゲーションECU16B1は、GPS受信機43が定期的に取得したGPS信号から現時点の時刻を取得する時刻同期機能と、GPS信号から自車両の絶対位置(緯度、経度及び高度)を求める位置検出機能と、車速センサ44及びジャイロセンサ45によって自車両の位置及び方位を補間して自車両の正確な現在位置及び方位を求める補間機能などを有する。
 ナビゲーションECU16B1は、求めた現在位置に応じてHDD41に格納された地図情報を読み出し、地図情報に自車両の現在位置を重ねた地図画像を生成する。そして、ナビゲーションECU16B1は、ディスプレイ42に地図画像を表示させ、その地図画像に現在位置から目的地までの経路情報などを表示する。
The navigation ECU 16B1 has a time synchronization function of acquiring the current time from the GPS signal periodically acquired by the GPS receiver 43, and a position detection function of calculating an absolute position (latitude, longitude and altitude) of the vehicle from the GPS signal; It has an interpolation function that interpolates the position and orientation of the vehicle by the vehicle speed sensor 44 and the gyro sensor 45 to obtain the accurate current position and orientation of the vehicle.
The navigation ECU 16B1 reads the map information stored in the HDD 41 according to the obtained current position, and generates a map image in which the current position of the vehicle is superimposed on the map information. Then, the navigation ECU 16B1 displays a map image on the display 42, and displays route information and the like from the current position to the destination on the map image.
 メータECU16B2には、メータアクチュエータ48が接続されてり、メータアクチュエータ48は、メータECU16B2によって制御される。HUD-ECU16B3には、HUD(Head-Up Display)49が接続されており、HUD49は、HUD-ECU16B3によって制御される。 A meter actuator 48 is connected to the meter ECU 16B2, and the meter actuator 48 is controlled by the meter ECU 16B2. A HUD (Head-Up Display) 49 is connected to the HUD-ECU 16B3, and the HUD 49 is controlled by the HUD-ECU 16B3.
 通信ネットワーク12Cに接続されているADAS系ECUには、例えば、ADAS-ECU16C1、及び環境認識ECU16C2などが含まれる。
 環境認識ECU16C2には、第1センサ51及び第2センサ52が接続されており、第1及び第2センサ51,52は、環境認識ECU16C2によって制御される。
The ADAS ECU connected to the communication network 12C includes, for example, an ADAS-ECU 16C1 and an environment recognition ECU 16C2.
A first sensor 51 and a second sensor 52 are connected to the environment recognition ECU 16C2, and the first and second sensors 51 and 52 are controlled by the environment recognition ECU 16C2.
 第1センサ51は、例えば、車両1の前後左右の四隅に配置された超音波センサやビデオカメラなどよりなる(図1参照)。
 前側に設けられた第1センサ51は、主として自車両の前方に存在する物体を検出するためのセンサであり、後側に設けられた第1センサ51は、主として自車両の後方に存在する物体を検出するためのセンサである。
The first sensor 51 is, for example, an ultrasonic sensor, a video camera or the like arranged at four corners in the front, rear, left, and right of the vehicle 1 (see FIG. 1).
The first sensor 51 provided on the front side is a sensor mainly for detecting an object present on the front of the vehicle, and the first sensor 51 provided on the rear side is an object mainly present on the rear of the vehicle Is a sensor for detecting
 第2センサ52は、例えば、車両1の天井部分に配置された超音波センサやビデオカメラなどよりなる(図1参照)。第2センサ52は、鉛直軸心回りに比較的高速で回転自在となっており、自車両の周囲に存在する物体を検出するためのセンサである。
 第1及び第2センサ51,52のセンシング結果は、環境認識ECU16C2によって通信パケットに格納されてADAS-ECU16C1に送信される。
The second sensor 52 is, for example, an ultrasonic sensor, a video camera, or the like disposed in a ceiling portion of the vehicle 1 (see FIG. 1). The second sensor 52 is rotatable at a relatively high speed around the vertical axis, and is a sensor for detecting an object present around the host vehicle.
The sensing results of the first and second sensors 51 and 52 are stored in a communication packet by the environment recognition ECU 16C2 and transmitted to the ADAS-ECU 16C1.
 ADAS-ECU16C1は、第1及び第2センサ51,52のセンシング結果に基づいて、例えばレベル1~4までのいずれかの自動運転を実行可能である。自動運転のレベルはSAE(Society of Automotive Engineers)インターナショナルのJ3016(2016年9月)に定義が記載されている。
 「官民ITS構想・ロードマップ2017」も当該定義を採用している。このロードマップでは、レベル3以上の自動運転を「高度自動運転」と呼び、レベル4及び5の自動運転を「完全自動運転」と呼ぶ。本実施形態における「自動運転」は、レベル2以上の自動運転を意味する。
The ADAS-ECU 16C1 can execute any one of, for example, levels 1 to 4 based on the sensing results of the first and second sensors 51 and 52. The level of automatic driving is defined in SAE (Society of Automotive Engineers) International, J3016 (September 2016).
The “public-private ITS concept road map 2017” also adopts this definition. In this roadmap, level 3 or higher automatic driving is called "high-level automatic driving", and level 4 and 5 automatic driving is called "fully automatic driving". The "automatic operation" in the present embodiment means an automatic operation at level 2 or higher.
 ADAS-ECU16C1は、レベル5の自動運転を実行可能であってもよいが、本出願時点では、レベル5の自動運転を行う車両1は未だ実現されていない。 The ADAS-ECU 16C1 may be capable of performing level 5 automatic driving, but at the time of the present application, the vehicle 1 performing level 5 automatic driving has not been realized yet.
 レベル1~3までの自動運転(以下、「支援運転」ともいう。)の例としては、第1センサ51によって検出した物体と自車両の間の距離から衝突可能性を予測し、衝突可能性が高いと判断した場合に減速介入したり、搭乗者に注意喚起したりするように、パワー系ECUやマルチメディア系ECUに制御指令を送信するものがある。 As an example of automatic driving up to levels 1 to 3 (hereinafter, also referred to as “assisted driving”), the possibility of collision is predicted from the distance between the object detected by the first sensor 51 and the host vehicle, The control command is transmitted to the power system ECU or the multimedia system ECU so as to intervene in the deceleration or alert the passenger when it is determined that the vehicle speed is high.
 レベル4及び5の自動運転(以下、「自律運転」ともいう。)の例としては、第1及び第2センサ51,52によって検出した物体に予期される挙動を、過去の挙動の深層学習などにより予測し、予測した挙動に基づいて自車両が目的位置に指向するように、パワー系ECUやマルチメディア系ECUに制御指令を送信するものがある。 As an example of level 4 and 5 automatic operation (hereinafter, also referred to as "autonomous operation"), behavior expected to an object detected by the first and second sensors 51 and 52, deep learning of past behavior, etc. There are some which transmit a control command to a power system ECU or a multimedia system ECU so that the host vehicle is pointed to the target position based on the predicted behavior predicted by the above.
 ADAS-ECU16C1は、第1及び第2センサ51,52によるセンシング結果を利用せず、搭乗者の手動運転に切り替えることもできる。
 このように、本実施形態の車両1は、レベル4の自律運転モードの実行が可能であるとともに、ダウングレードした動作モードとして、レベル1~3の支援運転モード又は手動運転モード(レベル0)のいずれかを実行することができる。動作モードの切り替えは、搭乗者による手動の操作入力などによって行われる。
The ADAS-ECU 16C1 can also switch to a manual operation of the passenger without using the sensing results by the first and second sensors 51 and 52.
Thus, the vehicle 1 of the present embodiment is capable of executing the level 4 autonomous operation mode, and as the downgraded operation mode, the vehicle 1 of the level 1 to 3 assisted operation mode or the manual operation mode (level 0) You can do either. The switching of the operation mode is performed by a manual operation input by the passenger or the like.
 中継装置20は、ECU16を制御するために制御パケット(以下、「制御指令」ともいう。)を送信する。ECU16は、受信した制御パケットに含まれる指令内容に従って、担当する対象機器に対して所定の制御を実行する。 The relay device 20 transmits a control packet (hereinafter, also referred to as “control command”) to control the ECU 16. The ECU 16 executes predetermined control on the target device in charge according to the content of the command included in the received control packet.
 自律運転モードを制御する場合、中継装置20は、環境認識ECU16C2から受信した第1及び第2センサ51,52のセンシング結果に基づいて、通信ネットワーク12Aの各ECU16A1~16A4に対して、制御指令を含む制御パケットを送信する。 When controlling the autonomous operation mode, the relay device 20 sends control commands to the ECUs 16A1 to 16A4 of the communication network 12A based on the sensing results of the first and second sensors 51 and 52 received from the environment recognition ECU 16C2. Send control packet including.
 そして、中継装置20から制御パケットを受信した各ECU16A1~16A4が、制御パケットに含まれる指令内容に従って、燃料噴射装置31、EPS32、ブレーキアクチュエータ33、及びABSアクチュエータ34をそれぞれ制御することにより、自律運転モードが実行される。 Then, each of the ECUs 16A1 to 16A4 having received the control packet from the relay device 20 controls the fuel injection device 31, the EPS 32, the brake actuator 33, and the ABS actuator 34 according to the content of the command included in the control packet, thereby autonomous operation. Mode is executed.
 車内システム10は、更に、他車両1と無線通信を行う車載通信機19を備える。車載通信機19は、所定規格の通信線を介して中継装置20に接続されている。中継装置20は、他車両1から車載通信機19が受信した情報をECU16に中継する。 The in-vehicle system 10 further includes an in-vehicle communication device 19 that performs wireless communication with the other vehicle 1. The in-vehicle communication device 19 is connected to the relay device 20 via a communication line of a predetermined standard. The relay device 20 relays the information received by the in-vehicle communication device 19 from the other vehicle 1 to the ECU 16.
 中継装置20は、ECU16から受信した情報を、車載通信機19に中継する。車載通信機19は、中継された情報を他車両1に無線送信する。
 車両1に搭載される車載通信機19は、ユーザが所有する携帯電話機、スマートフォン、タブレット型端末、ノートPC(Personal Computer)等の装置であってもよい。
The relay device 20 relays the information received from the ECU 16 to the in-vehicle communication device 19. The in-vehicle communication device 19 wirelessly transmits the relayed information to the other vehicle 1.
The in-vehicle communication device 19 mounted on the vehicle 1 may be a device owned by a user, such as a mobile phone, a smartphone, a tablet terminal, or a notebook PC (Personal Computer).
 [中継装置の構成]
 図3は、中継装置20の内部構成を示すブロック図である。
 図3に示すように、車両1の中継装置20は、制御部21、記憶部22、及び車内通信部23などを備える。
[Configuration of relay device]
FIG. 3 is a block diagram showing an internal configuration of the relay device 20. As shown in FIG.
As shown in FIG. 3, the relay device 20 of the vehicle 1 includes a control unit 21, a storage unit 22, an in-vehicle communication unit 23, and the like.
 中継装置20の制御部21は、CPU(Central Processing Unit)を含む。制御部21のCPUは、記憶部22等に記憶された1又は複数のプログラムを読み出して、各種処理を実行するための機能を有している。
 制御部21のCPUは、例えば時分割で複数のプログラムを切り替えて実行することにより、複数のプログラムを並列的に実行可能である。
The control unit 21 of the relay device 20 includes a CPU (Central Processing Unit). The CPU of the control unit 21 has a function of reading one or a plurality of programs stored in the storage unit 22 or the like to execute various processes.
The CPU of the control unit 21 can execute a plurality of programs in parallel by switching and executing a plurality of programs in time division, for example.
 制御部21のCPUは、1又は複数の大規模集積回路(LSI)を含む。複数のLSIを含むCPUでは、複数のLSIが協働して当該CPUの機能を実現する。 The CPU of the control unit 21 includes one or more large scale integrated circuits (LSI). In a CPU including a plurality of LSIs, the plurality of LSIs cooperate to realize the function of the CPU.
 制御部21のCPUが実行するコンピュータプログラムは、予め工場で書き込まれていてもよいし、特定のツールを介して提供されてもよいし、または、サーバコンピュータなどのコンピュータ装置からのダウンロードによって譲渡することもできる。 The computer program executed by the CPU of the control unit 21 may be written in advance at the factory, may be provided via a specific tool, or is transferred by downloading from a computer device such as a server computer. It can also be done.
 記憶部22は、フラッシュメモリ若しくはEEPROM(Electrically Erasable Programmable Read Only Memory)などの不揮発性のメモリ素子よりなる。
 記憶部22は、制御部21のCPUが実行するプログラム及び実行に必要なデータなどを記憶する記憶領域を有する。
The storage unit 22 is formed of a non-volatile memory element such as a flash memory or an EEPROM (Electrically Erasable Programmable Read Only Memory).
The storage unit 22 has a storage area for storing a program executed by the CPU of the control unit 21 and data required for the execution.
 車内通信部23には、車両1に配設された複数の車内通信線13が接続されている。車内通信部23は、LINなどの所定の通信規格に則ってECU16と通信する通信装置よりなる。
 車内通信部23は、制御部21のCPUから与えられた情報を所定のECU16宛てに送信し、ECU16が送信元の情報を制御部21のCPUに与える。
A plurality of in-vehicle communication lines 13 disposed in the vehicle 1 are connected to the in-vehicle communication unit 23. The in-vehicle communication unit 23 includes a communication device that communicates with the ECU 16 in accordance with a predetermined communication standard such as LIN.
The in-vehicle communication unit 23 transmits information given from the CPU of the control unit 21 to a predetermined ECU 16, and the ECU 16 gives information on the transmission source to the CPU of the control unit 21.
 車載通信機19は、制御部21から与えられた情報を他車両1に送信するとともに、他車両1から受信した情報を制御部21に与える。
 図3の例では、車載通信機19が他車両1と車車間通信を行う車載装置として例示しているが、中継装置20が無線通信の機能を有する場合には、中継装置20自身が他車両1と車車間通信を行う車載装置としてもよい。
The in-vehicle communication device 19 transmits the information given from the control unit 21 to the other vehicle 1 and gives the information received from the other vehicle 1 to the control unit 21.
In the example of FIG. 3, the on-vehicle communication device 19 is illustrated as an on-vehicle device that performs inter-vehicle communication with the other vehicle 1. However, when the relay device 20 has a wireless communication function, the relay device 20 itself is the other vehicle It may be an on-vehicle device that performs inter-vehicle communication with the device 1.
 [車載通信機の構成]
 図4は、車載通信機19の内部構成を示すブロック図である。
 図4に示すように、車載通信機19は、制御部191、記憶部192、及び無線通信部193などを備える。
[Configuration of in-vehicle communication device]
FIG. 4 is a block diagram showing an internal configuration of the in-vehicle communication device 19.
As shown in FIG. 4, the in-vehicle communication device 19 includes a control unit 191, a storage unit 192, a wireless communication unit 193, and the like.
 車載通信機19の制御部191は、CPUを含む。制御部191のCPUは、記憶部192等に記憶された1又は複数のプログラムを読み出して、各種処理を実行するための機能を有している。
 制御部191のCPUは、例えば時分割で複数のプログラムを切り替えて実行することにより、複数のプログラムを並列的に実行可能である。
The control unit 191 of the in-vehicle communication device 19 includes a CPU. The CPU of the control unit 191 has a function of reading out one or more programs stored in the storage unit 192 or the like to execute various processes.
The CPU of the control unit 191 can execute a plurality of programs in parallel by switching and executing a plurality of programs in time division, for example.
 制御部191のCPUは、1又は複数の大規模集積回路(LSI)を含む。複数のLSIを含むCPUでは、複数のLSIが協働して当該CPUの機能を実現する。 The CPU of the control unit 191 includes one or more large scale integrated circuits (LSI). In a CPU including a plurality of LSIs, the plurality of LSIs cooperate to realize the function of the CPU.
 制御部191のCPUが実行するコンピュータプログラムは、予め工場で書き込まれていてもよいし、特定のツールを介して提供されてもよいし、または、サーバコンピュータなどのコンピュータ装置からのダウンロードによって譲渡することもできる。 The computer program executed by the CPU of the control unit 191 may be written in advance at the factory, may be provided via a specific tool, or is transferred by downloading from a computer device such as a server computer. It can also be done.
 記憶部192は、フラッシュメモリ若しくはEEPROMなどの不揮発性のメモリ素子よりなる。
 記憶部192は、制御部191のCPUが実行するプログラム及び実行に必要なデータなどを記憶する記憶領域を有する。
The storage unit 192 is formed of a non-volatile memory element such as a flash memory or an EEPROM.
The storage unit 192 has a storage area for storing a program executed by the CPU of the control unit 191 and data required for the execution.
 無線通信部193には、無線通信のためのアンテナ194が接続されている。無線通信部193は、制御部191から与えられた情報をアンテナ194から他車両1に送信するとともに、他車両1からアンテナ194により受信した情報を制御部191に与える。
 制御部191のCPUは、無線通信部193から与えられた情報を中継装置20に送信し、中継装置20から受信した情報を無線通信部193に与える。
An antenna 194 for wireless communication is connected to the wireless communication unit 193. The wireless communication unit 193 transmits the information given from the control unit 191 to the other vehicle 1 from the antenna 194 and gives the information received from the other vehicle 1 by the antenna 194 to the control unit 191.
The CPU of the control unit 191 transmits the information provided from the wireless communication unit 193 to the relay device 20, and provides the wireless communication unit 193 with the information received from the relay device 20.
 [予測走行挙動データの内容及び生成方法]
 図5は、車載通信機19が車車間通信により他車両1に送信する「予測走行挙動データ」の内容及び生成方法を示す説明図である。予測走行挙動データDには、現時点から比較的短い所定時間(例えば10秒)だけ未来の予測期間Tc内の時刻と、その時刻における車両1の絶対位置及び方位などの情報と、が含まれる。
[Contents and Method of Generating Predicted Driving Behavior Data]
FIG. 5 is an explanatory view showing the contents and generation method of “predicted travel behavior data” transmitted by the on-vehicle communication device 19 to the other vehicle 1 by inter-vehicle communication. The predicted driving behavior data D includes a time within a prediction period Tc in the future for a relatively short predetermined time (for example, 10 seconds) from the current time, and information such as the absolute position and orientation of the vehicle 1 at that time.
 予測期間Tc内の時刻と、車両1の絶対位置及び方位は、以下のように算出される。例えば、図5の下段に示す道路平面図において、車両1が車線R1を自動運転で走行している場合、車両1のADAS-ECU16C1は、現時点t0で実行中の自動運転の内容に応じて、予測期間Tc中における走行予定ルートを算出し、算出した走行予定ルートを車載通信機19に送信する。 The time within the prediction period Tc and the absolute position and orientation of the vehicle 1 are calculated as follows. For example, in the road plan view shown in the lower part of FIG. 5, when the vehicle 1 travels in the lane R1 by automatic driving, the ADAS-ECU 16C1 of the vehicle 1 responds to the contents of automatic driving being executed at the present time t0. A travel planned route during the prediction period Tc is calculated, and the calculated travel planned route is transmitted to the in-vehicle communication device 19.
 車載通信機19は、受信した走行予定ルートと地図情報とのマップマッチング処理等を行って、予測期間Tc中における車両1の複数の離散位置(絶対位置)と、各離散位置における車両1の方位を算出する。具体的には、予測期間Tc中において車両1が車線R1を直進し続ける場合、車載通信機19は、車線R1に沿って直線状の走行予定ルート(図5の破線で示す矢印)上において、一定又は不定の時間間隔(又は距離間隔)で、車両1の複数の離散位置(図5の○印で示す位置)及び方位を算出する。 The in-vehicle communication device 19 performs map matching processing between the received planned traveling route and the map information, and the like, and detects the plurality of discrete positions (absolute positions) of the vehicle 1 during the prediction period Tc and the direction of the vehicle 1 at each discrete position. Calculate Specifically, when the vehicle 1 continues to travel straight in the lane R1 during the prediction period Tc, the on-vehicle communication device 19 is operated on the straight travel planned route (arrow shown by the broken line in FIG. 5) along the lane R1. A plurality of discrete positions (positions indicated by ○ in FIG. 5) and directions of the vehicle 1 are calculated at fixed or indeterminate time intervals (or distance intervals).
 また、予測期間Tc中において車両1が車線R1から車線R2に車線変更する場合、車載通信機19は、車線R1から車線R2へ延びる曲線状の走行予定ルート(図5の1点鎖線で示す矢印)上において、一定又は不定の時間間隔(又は距離間隔)で、車両1の複数の離散位置(図5の△印で示す位置)及び方位を算出する。 Further, when the vehicle 1 changes lanes from the lane R1 to the lane R2 during the prediction period Tc, the on-vehicle communication device 19 is a curved traveling planned route extending from the lane R1 to the lane R2 (an arrow shown by an alternate long and short dash line in FIG. A plurality of discrete positions (positions indicated by Δ marks in FIG. 5) and a direction of the vehicle 1 are calculated at fixed or indefinite time intervals (or distance intervals).
 車載通信機19は、車両1の複数の離散位置を時間間隔で算出する場合、この時間間隔と現時点t0の時刻に基づいて、各離散位置に対応する時刻を算出する。また、車載通信機19は、車両1の複数の離散位置を距離間隔で算出する場合、この距離間隔に基づいて車両1の現在位置から各離散位置までの距離を算出し、算出した距離と車両1の走行予定速度に基づいて各離散位置に対応する時刻を算出する。車両1の走行予定速度は、ADAS-ECU16C1から取得することができる。
 なお、予測期間Tc内の時刻と車両1の絶対位置及び方位は、ADAS-ECU16C1で算出し、算出した時刻、離散位置及び方位を車載通信機19に送信してもよい。
When the vehicle-mounted communication device 19 calculates a plurality of discrete positions of the vehicle 1 at time intervals, it calculates the time corresponding to each discrete position based on the time interval and the time of the current time t0. In addition, when the vehicle-mounted communication device 19 calculates a plurality of discrete positions of the vehicle 1 at a distance interval, the distance from the current position of the vehicle 1 to each discrete position is calculated based on the distance interval, and the calculated distance and the vehicle The time corresponding to each discrete position is calculated based on the planned traveling speed of 1. The planned traveling speed of the vehicle 1 can be acquired from the ADAS-ECU 16C1.
Note that the time within the prediction period Tc and the absolute position and orientation of the vehicle 1 may be calculated by the ADAS-ECU 16C1 and the calculated time, discrete position and orientation may be transmitted to the in-vehicle communication device 19.
 図5の上段に示すように、本実施形態の予測走行挙動データDには、「車両ID」、「時刻」、「絶対位置」、「車両属性」、「方位」などの格納領域が含まれる。
 「時刻」には、現時点の時刻の値、及び上記方法で算出された予測期間Tc内の各時刻の値が格納される。現時点の時刻の値は、上記の時刻同期機能を有するナビゲーションECU16B1(図2参照)から中継装置20を介して取得することができる。
As shown in the upper part of FIG. 5, the predicted travel behavior data D of the present embodiment includes storage areas such as “vehicle ID”, “time”, “absolute position”, “vehicle attribute”, and “direction”. .
The “time” stores the value of the current time and the value of each time within the prediction period Tc calculated by the above method. The value of the current time can be acquired from the navigation ECU 16B1 (see FIG. 2) having the above-described time synchronization function via the relay device 20.
 「車両ID」には、自車両の車両IDの値が格納される。車両IDの値は固定値であるため、各時刻に対応する「車両ID」には、全て同じ値が格納される。
 「絶対位置」は、上記方法で算出された予測期間Tc内の各時刻に対応する自車両の絶対位置を示す緯度、経度及び高度の各値が格納される。図5の「絶対位置」では、緯度及び経度の値のみを示している。
The "vehicle ID" stores the value of the vehicle ID of the own vehicle. Since the value of vehicle ID is a fixed value, the same value is stored in "vehicle ID" corresponding to each time.
The “absolute position” stores each value of latitude, longitude and altitude indicating the absolute position of the vehicle corresponding to each time within the prediction period Tc calculated by the above method. In "absolute position" of FIG. 5, only the values of latitude and longitude are shown.
 「車両属性」には、例えば、自車両の車幅および車長などの値、および自車両の車両用途種別(自家用車両又は緊急車両など)の識別値が格納される。車幅、車長、及び車両用途種別の各値は固定値であるため、各時刻に対応する「車両属性」には、全て同じ値が格納される。図5の「車両属性」では、具体的な数値の記載を省略している。
 「方位」には、上記方法で算出された予測期間Tc内の各時刻に対応する自車両の方位の値が格納される。図5の「方位」では、具体的な数値の記載を省略している。
In the “vehicle attribute”, for example, values such as the vehicle width and the vehicle length of the own vehicle, and the identification value of the vehicle application type of the own vehicle (such as a private vehicle or an emergency vehicle) are stored. Since each value of the vehicle width, the vehicle length, and the vehicle application type is a fixed value, the same value is stored in the "vehicle attribute" corresponding to each time. In "vehicle attribute" of FIG. 5, the description of specific numerical values is omitted.
The value of the heading of the vehicle corresponding to each time within the prediction period Tc calculated by the above method is stored in the "heading". In the "azimuth" of FIG. 5, the description of specific numerical values is omitted.
 自車両及びその周辺を通行する他車両1は、車載通信機19同士が車車間通信を行うことで、予測走行挙動データDを互いに送受信する。これにより、自車両、及びその周辺を通行する他車両1が、互いに予測走行挙動データDを共有することができる。 The other vehicle 1 passing through the own vehicle and the periphery thereof transmits and receives predicted traveling behavior data D to each other when the on-vehicle communication devices 19 communicate with each other. As a result, the own vehicle and the other vehicle 1 passing around it can share the predicted traveling behavior data D with each other.
 なお、図5の例では、予測走行挙動データDの「時刻」に、一定時間間隔の時刻が格納されているが、不定時間間隔の時刻が格納されていてもよい。この場合、不定時間間隔は、自車両の速度、自車両と他車両との車間距離、自車両が他車両に衝突するまでの衝突余裕時間(TTC:Time To Collision)などの各値に応じて適宜設定することができる。 In the example of FIG. 5, although the time of a fixed time interval is stored in "time" of prediction driving behavior data D, the time of an indefinite time interval may be stored. In this case, the fixed time interval depends on the speed of the vehicle, the distance between the vehicle and the other vehicle, and the time to collision (TTC) before the vehicle collides with the other vehicle. It can be set appropriately.
 また、予測走行挙動データDには、自車両の速度や加速度などの他の情報を含めてもよい。但し、自車両の速度は、自車両の絶対位置を微分することで求めることができ、自車両の加速度は、自車両の絶対位置から求めた速度を微分することで求めることができる。このため、予測走行挙動データDには、自車両の速度及び加速度は必ずしも含める必要はない。 The predicted travel behavior data D may also include other information such as the speed and acceleration of the host vehicle. However, the velocity of the vehicle can be obtained by differentiating the absolute position of the vehicle, and the acceleration of the vehicle can be determined by differentiating the velocity obtained from the absolute position of the vehicle. Therefore, the predicted traveling behavior data D need not necessarily include the speed and acceleration of the host vehicle.
 [調整処理]
 図6は、車載通信機19における処理の概要の説明図である。図6は、高速道路上を走行している車両A(車両1A)の走行予定ルートP1と車両B(車両1B)の走行予定ルートP2と車両C(車両1C)の走行予定ルートP3とを表している。
 図6を参照して、車両Aは時速80Kmで車線R1を走行中で、走行予定ルートP1は車線R1から車線R2に車線変更するルートである。車両Bは時速100Kmで車線R2を車両Aのやや後方を走行中で、走行予定ルートP2は車線R2を直進するルートである。車両Cは、車両A,Bのさらに後方で、車線R1を走行中であって、走行予定ルートP3は車線R1を直進するルートである。
Adjustment process
FIG. 6 is an explanatory diagram of an outline of processing in the on-vehicle communication device 19. FIG. 6 shows the planned traveling route P1 of the vehicle A (vehicle 1A) traveling on the expressway, the planned traveling route P2 of the vehicle B (vehicle 1B), and the planned traveling route P3 of the vehicle C (vehicle 1C). ing.
Referring to FIG. 6, vehicle A is traveling in lane R1 at 80 Km / h, and planned traveling route P1 is a route for changing lanes from lane R1 to lane R2. The vehicle B is traveling a little behind the vehicle A at a speed of 100 Km at a speed of 100 Km, and the planned traveling route P2 is a route which goes straight on the lane R2. The vehicle C is traveling in the lane R1 further to the rear of the vehicles A and B, and the planned traveling route P3 is a route which goes straight in the lane R1.
 車両A,Bが走行予定ルートP1,P2を維持して走行すると、車両A,Bは衝突または進路の干渉が生じる可能性が高い。そこで、各車両1の車載通信機19は、走行予定ルートの調整処理を実行する。 When the vehicles A and B travel while maintaining the planned travel routes P1 and P2, the vehicles A and B are likely to cause collisions or interference in the course. Therefore, the in-vehicle communication device 19 of each vehicle 1 executes the adjustment processing of the planned travel route.
 図7は、調整処理の流れを表したフローチャートである。車載通信機19の制御部191は、CPUが記憶部192に記憶された1又は複数のプログラムをRAMに読み出して実行することによって図7のフローチャートに表わされた処理を実行する。図7の調整処理は、車載通信機19の制御部191が他車両から取得した、当該他車両の走行予定ルートを特定する情報である予測走行挙動データD(図5)を用いて行われる。車載通信機19の制御部191は、CPUが記憶部192に記憶された1又は複数のプログラムをRAMに読み出して実行することによって、無線通信部193が受信した車車間通信の通信フレームから予測走行挙動データDを取得する第1の取得部195(図4)として機能する。 FIG. 7 is a flowchart showing the flow of adjustment processing. The control unit 191 of the in-vehicle communication device 19 executes the processing illustrated in the flowchart of FIG. 7 by the CPU reading out one or more programs stored in the storage unit 192 into the RAM and executing the program. The adjustment process of FIG. 7 is performed using predicted traveling behavior data D (FIG. 5) which is information for specifying a planned traveling route of the other vehicle acquired by the control unit 191 of the in-vehicle communication device 19 from the other vehicle. The control unit 191 of the in-vehicle communication device 19 causes the CPU to read out one or more programs stored in the storage unit 192 into the RAM and execute the program, thereby predicting traveling from the communication frame for inter-vehicle communication received by the wireless communication unit 193. It functions as a first acquisition unit 195 (FIG. 4) that acquires behavior data D.
 図7を参照して、始めに、制御部191は、判定処理(ステップS101)を実行する。判定処理は、自車両の予測走行挙動データD(図5)から得られる走行予定ルートと、車車間通信によって他車両から受信した通信フレームから抽出される予測走行挙動データDから得られる走行予定ルートとを比較することによって、自車両の走行予定ルートと交錯する走行予定ルートを有する他車両があるか否かを判定する処理である。図6の例では、車両Aの車載通信機19は、走行予定ルートP1と走行予定ルートP2,P3とを比較することによって、走行予定ルートP1と交錯する走行予定ルートを有する他車両があると判定する。該当する車両がない場合には(ステップS103でNO)、以降の動作を行なわず、処理を最初に戻す。 Referring to FIG. 7, first, control unit 191 executes a determination process (step S101). The determination process is based on the planned traveling route obtained from the predicted traveling behavior data D (FIG. 5) of the own vehicle and the planned traveling route obtained from the predicted traveling behavior data D extracted from the communication frame received from the other vehicle by inter-vehicle communication. It is the process which determines whether there exists another vehicle which has a driving planned route which crosses with the driving planned route of the own vehicle by comparing with. In the example of FIG. 6, the on-vehicle communication device 19 of the vehicle A compares the planned travel route P1 with the planned travel routes P2 and P3 to determine that there is another vehicle having a planned travel route intersecting with the planned travel route P1. judge. When there is no corresponding vehicle (NO in step S103), the subsequent operation is not performed, and the process is returned to the beginning.
 該当する車両がある場合(ステップS103でYES)、制御部191は対象車両を決定し、自車両と1台または複数台の対象車両とで対象車両群(グループ)を生成する(ステップS105)。対象車両は、自車両の走行予定ルートと交錯する走行予定ルートを有する車両である。2台の車両の走行予定ルートと交錯するとは、走行予定ルートが1点で交わる交差状態となることに加えて、2台の車両が衝突または接触する程度に走行予定ルートが入り混じる(距離が近くなる、重なる、等)ことを指す。図6の例では、車両A,Bの車載通信機19が、それぞれ、車両B、車両Aを対象車両と決定する。そのため、両車両A,Bの車載通信機19において、車両A,Bからなる対象車両群が生成される。 If there is a corresponding vehicle (YES in step S103), the control unit 191 determines a target vehicle, and generates a target vehicle group (group) with the subject vehicle and one or more target vehicles (step S105). The target vehicle is a vehicle having a planned travel route intersecting with the planned travel route of the host vehicle. In addition to the crossing state where the planned travel route crosses at one point that the planned travel route of the two vehicles intersects, the planned travel route is mixed to such an extent that the two vehicles collide or contact (the distance is To be close, overlapping, etc.). In the example of FIG. 6, the in-vehicle communication devices 19 of the vehicles A and B respectively determine the vehicle B and the vehicle A as target vehicles. Therefore, in the on-vehicle communication devices 19 of both vehicles A and B, a target vehicle group consisting of the vehicles A and B is generated.
 対象車両群が生成されると、制御部191は、対象車両群の中から規定条件に基づいてリーダー車両を決定する決定処理(ステップS107)を実行する。制御部191は、CPUが記憶部192に記憶された1又は複数のプログラムをRAMに読み出して実行することによって、決定処理を実行する決定部196(図4)として機能する。リーダー車両は、後述する変更処理を実行する車載通信機19を搭載した車両である。ステップS107では、対象車両群の総台数よりも少ない台数、決定される。好ましくは、1台の車両がリーダー車両に決定される。 When the target vehicle group is generated, the control unit 191 executes a determination process (step S107) of determining a leader vehicle from the target vehicle group based on the defined condition. The control unit 191 functions as a determination unit 196 (FIG. 4) that executes the determination process by causing the CPU to read one or more programs stored in the storage unit 192 into the RAM and execute the program. The leader vehicle is a vehicle equipped with an on-vehicle communication device 19 that executes a change process described later. In step S107, the number of vehicles smaller than the total number of target vehicle groups is determined. Preferably, one vehicle is determined to be the leader vehicle.
 変更処理は、対象車両群の1台以上の対象車両の走行予定ルートを、いずれの対象車両の走行予定ルートも交錯しないように変更する処理である。制御部191は、CPUが記憶部192に記憶された1又は複数のプログラムをRAMに読み出して実行することによって、変更処理を実行する変更部197(図4)として機能する。以下、対象車両群の1台以上の対象車両の走行予定ルートを変更することを「調整」ともいう。リーダー車両が対象車両群の総台数よりも少ない台数決定されることで、対象車両群の各車両が変更処理を実行するより、対象車両群全体としては処理量を抑えることができる The change process is a process of changing a planned travel route of one or more target vehicles of the target vehicle group so as not to cross any planned travel route of any target vehicle. The control unit 191 functions as a change unit 197 (FIG. 4) that executes the change process by the CPU reading out one or more programs stored in the storage unit 192 into the RAM and executing the program. Hereinafter, changing the planned travel route of one or more target vehicles of the target vehicle group is also referred to as “adjustment”. By determining the number of leader vehicles smaller than the total number of target vehicle groups, the processing amount can be suppressed for the entire target vehicle group rather than each vehicle of the target vehicle group performing the change process.
 規定条件は、たとえば、各対象車両の製造年月日が最も新しいことである。この場合、制御部191は、車車間通信によって、対象車両それぞれの製造年月日を取得する。または、製造年月日を示す情報は、車両の属性として予測走行挙動データDに含まれて車車間通信によって送信されてもよい。または、製造年月日を示す情報は、予測走行挙動データDに含まれる車両IDを用いて図示しないサーバ等に問い合わせることによって取得されてもよい。なお、対象車両の製造年月日が同じ場合、規定条件は、さらに、VIN(車台番号)の最も新しいことであってもよい。これにより、最新のプログラムによって変更処理が実行されるようになる。 The prescribed condition is, for example, that the date of manufacture of each target vehicle is the newest. In this case, the control unit 191 acquires the date of manufacture of each of the target vehicles by inter-vehicle communication. Alternatively, information indicating the date of manufacture may be included in the predicted travel behavior data D as an attribute of a vehicle and transmitted by inter-vehicle communication. Alternatively, the information indicating the date of manufacture may be acquired by inquiring a server (not shown) or the like using the vehicle ID included in the predicted traveling behavior data D. In addition, when the manufacture date of an object vehicle is the same, prescription | regulation conditions may be the newest thing of VIN (car number) further. This allows the latest program to execute the change process.
 また、規定条件の他の例は、変更処理を実行するためのプログラムのバージョンが最も新しいことであってもよい。当該プログラムのバージョンを示す情報は、車両の属性として予測走行挙動データDに含まれて車車間通信によって送信されてもよい。または、予測走行挙動データDに含まれる車両IDを用いて図示しないサーバ等に問い合わせることによって、当該車両の上記プログラムのバージョンを特定してもよい。 Also, another example of the prescribed condition may be that the program version for executing the change process is the newest. The information indicating the version of the program may be included in the predicted traveling behavior data D as an attribute of a vehicle and transmitted by inter-vehicle communication. Alternatively, the version of the program of the vehicle may be specified by inquiring of a server (not shown) or the like using the vehicle ID included in the predicted travel behavior data D.
 また、規定条件の他の例は、車両IDまたは車両の種別が予め規定されたものであることであってもよい。この場合、変更処理を実行するためのプログラムのバージョンが高い車両IDまたは車両の種別が予め規定されている。これにより、最新のプログラムによって変更処理が実行されるようになる。 In addition, another example of the defined condition may be that the vehicle ID or the type of the vehicle is previously defined. In this case, a vehicle ID or a type of vehicle having a high version of a program for executing the change process is defined in advance. This allows the latest program to execute the change process.
 図6の例において、車両Bより車両Aが製造年月日が新しいものとする。規定条件が製造年月日の最も新しいことである場合、車両A,Bそれぞれの車載通信機19は、いずれも、決定処理において、車両Aをリーダー車両に決定する。 In the example of FIG. 6, it is assumed that the vehicle A has a newer date of manufacture than the vehicle B. When the prescribed condition is the newest of the date of manufacture, the on-vehicle communication devices 19 of each of the vehicles A and B both determine the vehicle A as the leader vehicle in the determination process.
 好ましくは、決定処理においてリーダー車両が決定されると、対象車両群それぞれに対してリーダー車両が通知される。図6の例では、車両Aは車両Bに対して、車両Bは車両Aに対して、いずれも、車両Aがリーダー車両に決定されたことを通知する。 Preferably, when the leader vehicle is determined in the determination process, the leader vehicle is notified to each of the target vehicle groups. In the example of FIG. 6, the vehicle A notifies the vehicle B, and the vehicle B notifies the vehicle A that the vehicle A has been determined as the leader vehicle.
 リーダー車両に決定された車両の車載通信機19の制御部191は(ステップS109でYES)、対象車両群の中の少なくとも1台の車両について走行予定ルートの変更に係る変更処理(ステップS111)を実行する。ステップS111の走行予定ルートの変更に係る変更処理は、走行予定ルートに表される走行予定経路を変更すること、および、走行予定経路を変更することなく(または変更に加えて)、当該経路を通過する予定時刻を変更すること、つまり、車速を変更すること、を含む。 The control unit 191 of the in-vehicle communication device 19 of the vehicle determined as the leader vehicle (YES in step S109) performs a change process (step S111) related to the change in the planned travel route for at least one vehicle in the target vehicle group. Run. The change process relating to the change of the planned travel route in step S111 is to change the planned travel route represented in the planned travel route and to change the route without changing the planned travel route (or in addition to the change). It includes changing the scheduled time to pass, that is, changing the vehicle speed.
 図6の例の場合、車両Aの車載通信機19は、たとえば、自車両の走行予定ルートP1を、車線R1から車線R2に車線変更するルートから、車線R1を車線変更なく直進するルートに変更する。つまり、予定経路を変更する。またたとえば、車両Aの車載通信機19は、上記の変更に替えて、または加えて、車両Bの走行予定ルートP2を、時速100Kmで車線R2を直進するルートから、時速80Kmまで減速して車線R2を直進するルートに変更してもよい。つまり、予定経路の変更に加えて車速を変更する。 In the case of the example of FIG. 6, the on-vehicle communication device 19 of the vehicle A changes, for example, a route for changing the traveling planned route P1 of the host vehicle from lane R1 to lane R2 to a route for going straight lane R1 without changing lanes Do. That is, the planned route is changed. Further, for example, instead of or in addition to the above change, the on-vehicle communication device 19 of the vehicle A decelerates the planned traveling route P2 of the vehicle B to 80 km / hr from the route going straight on the lane R2 at 100 km / hr. You may change it to the route going straight on R2. That is, the vehicle speed is changed in addition to the change of the planned route.
 変更処理によって各車両の走行予定ルートが調整されると、リーダー車両の車載通信機19の制御部191は対象車両群の各車両に調整後の走行予定ルートを通知し(ステップS113)、一連の処理を終了する。制御部191は、CPUが記憶部192に記憶された1又は複数のプログラムをRAMに読み出して実行することによって、調整後の走行予定ルートを含む通信フレームを無線通信部193に渡し、車車間通信でブロードキャストする通知部198(図4)として機能する。図6の例では、車両Aの車載通信機19が、車両Bに対して変更後の走行予定ルートを通知する。 When the planned travel route of each vehicle is adjusted by the change processing, the control unit 191 of the in-vehicle communication device 19 of the leader vehicle notifies each vehicle of the target vehicle group of the planned travel route after adjustment (step S113). End the process. The control unit 191 transfers the communication frame including the planned travel route after adjustment to the wireless communication unit 193 by the CPU reading and executing one or a plurality of programs stored in the storage unit 192 to the wireless communication unit 193 to perform inter-vehicle communication Functions as a notification unit 198 (FIG. 4) for broadcasting. In the example of FIG. 6, the in-vehicle communication device 19 of the vehicle A notifies the vehicle B of the planned travel route after the change.
 リーダー車両でない対象車両の車載通信機19の制御部191は(ステップS109でNO)、ステップS111の変更処理を実行しない。この場合、該当する車載通信機19は、リーダー車両から車車間通信で受信した通信フレームから変更後の走行予定ルートを取得する(ステップS115でYES)。車載通信機19の制御部191は、CPUが記憶部192に記憶された1又は複数のプログラムをRAMに読み出して実行することによって、無線通信部193が車車間通信で受信した通信フレームから変更後の走行予定ルートを取得する第2の取得部199(図4)として機能する。 The control unit 191 of the in-vehicle communication device 19 of the target vehicle that is not the leader vehicle (NO in step S109) does not execute the change process of step S111. In this case, the corresponding in-vehicle communication device 19 acquires the planned traveling route after the change from the communication frame received from the leader vehicle by the inter-vehicle communication (YES in step S115). The control unit 191 of the in-vehicle communication device 19 causes the CPU to read out one or more programs stored in the storage unit 192 into the RAM and execute the program, thereby changing the communication frame received by the wireless communication unit 193 through inter-vehicle communication Functions as a second acquisition unit 199 (FIG. 4) for acquiring a travel planned route of
 なお、自車両についての変更後の走行予定ルートを受信しなかった場合、または、所定時間、変更後の走行予定ルートが送信されなかった場合、つまり、自車両の走行予定ルートに変更がない場合には(ステップS115でNO)、車載通信機19の制御部191は一連の処理を終了する。 When the planned travel route after the change of the host vehicle is not received, or when the planned travel route after the change is not transmitted for a predetermined time, that is, when the planned travel route of the host vehicle is not changed In step S115 (NO in step S115), the control unit 191 of the in-vehicle communication device 19 ends the series of processes.
 リーダー車両の車載通信機19から自車両の変更後の走行予定ルートを取得すると、変更後の走行予定ルートに基づいて自車両の走行を制御する(ステップS117)。ステップS117では、車載通信機19の制御部191は、ADAS-ECU16C1に対して変更後の走行予定ルートでの走行を指示する制御指令(制御パケット)を出力する。車載通信機19の制御部191は、CPUが記憶部192に記憶された1又は複数のプログラムをRAMに読み出して実行することによって、変更後の走行予定ルートでの走行をADAS-ECU16C1に指示する指示部200(図4)として機能する。これにより、走行予定ルートが変更される。すなわち、対象車両全体において、リーダー車両によって調整された走行予定ルートに従った走行が実現される。 When the planned travel route after the change of the host vehicle is acquired from the in-vehicle communication device 19 of the leader vehicle, the travel of the host vehicle is controlled based on the planned travel route after the change (step S117). In step S117, the control unit 191 of the in-vehicle communication device 19 outputs a control command (control packet) instructing the ADAS-ECU 16C1 to travel on the planned travel route after the change. The control unit 191 of the in-vehicle communication device 19 instructs the ADAS-ECU 16C1 to travel on the planned travel route after the CPU reads out and executes one or a plurality of programs stored in the storage unit 192 into the RAM. It functions as the instruction unit 200 (FIG. 4). As a result, the planned travel route is changed. That is, traveling according to the planned traveling route adjusted by the leader vehicle is realized in the entire target vehicle.
 一連の処理が終了すると、車載通信機19の制御部191は、処理をステップS101に戻して、所定のタイミングで以上の調整処理を繰り返す。上記所定のタイミングは、たとえば、所定時間間隔、他車両から予測走行挙動データDを受信したタイミング、などである。 When the series of processes is completed, the control unit 191 of the in-vehicle communication device 19 returns the process to step S101 and repeats the above adjustment process at a predetermined timing. The predetermined timing is, for example, a predetermined time interval, a timing at which predicted traveling behavior data D is received from another vehicle, or the like.
<実施の形態の効果>
 本実施形態にかかる通信システムでは、各車両の車載通信機19において図7の調整処理が所定のタイミングで繰り返し実行される。これにより、各車両は走行中に周囲の他車両と走行予定ルートを共有し、それらを比較することによって衝突や接触などの有無を判定することができる。そして、判定結果が肯定的(衝突や接触などがあるとの判定結果)である場合、自車両を含んだ関連する複数台の車両からなる対象車両群を生成し、これら複数台の車両の走行予定ルートを調整する。これにより、自車両と自車両に影響する周辺車両とを含む対象車両群全体として走行予定ルートが最適化される。
<Effect of the embodiment>
In the communication system according to the present embodiment, the adjustment process of FIG. 7 is repeatedly performed at a predetermined timing in the on-vehicle communication device 19 of each vehicle. Thus, each vehicle can share the planned traveling route with other surrounding vehicles while traveling, and can determine whether there is a collision or a contact by comparing them. Then, if the determination result is affirmative (determination result that there is a collision, a touch, etc.), a target vehicle group consisting of a plurality of related vehicles including the own vehicle is generated, and the plurality of vehicles travel Adjust the planned route. As a result, the planned travel route is optimized as the entire target vehicle group including the own vehicle and the surrounding vehicles affecting the own vehicle.
 本実施形態にかかる調整処理では、対象車両群の車両それぞれが自車両の走行予定ルートを変更する処理を実行するのではなく、少なくとも総台数よりも少ない数のリーダー車両が、各車両の走行予定ルートを調整する。これにより、対象車両群全体として走行予定ルートが最適化されるとともに、対象車両群全体としての処理量の増加を抑えることができる。 In the adjustment process according to the present embodiment, each of the vehicles in the target vehicle group does not execute the process of changing the planned traveling route of the own vehicle, but the number of leader vehicles at least the total number is scheduled to travel Adjust the route. Thus, the planned travel route as the entire target vehicle group is optimized, and an increase in the processing amount of the entire target vehicle group can be suppressed.
 このとき、複数台の対象車両群の中から、製造年月日の最も新しい車両、または、走行予定ルートを変更するためのプログラムのバージョンの最も新しい車両がリーダー車両に決定される。これにより、最新のプログラムによって調整が実現される。 At this time, the leader vehicle is determined to be the newest vehicle of the date of manufacture, or the newest vehicle of the version of the program for changing the planned traveling route out of the plurality of target vehicle groups. Thereby, the adjustment is realized by the latest program.
 [変形例1]
 決定処理の他の例として、規定条件は、優先車両であることであってもよい。優先車両は、車両の走行予定ルートが他の車両よりも優先される車両であって、たとえば、バス等の公共車両、および、救急車等の緊急車両、などである。この場合、各車両の車載通信機19の制御部191は、予測走行挙動データDに含まれる車両属性に表された車両IDまたは車両の種別などから、対象車両群の中の優先車両の有無を判定することができる。
[Modification 1]
As another example of the determination process, the prescribed condition may be a priority vehicle. The priority vehicle is a vehicle for which a planned travel route of the vehicle is prioritized over other vehicles, and is, for example, a public vehicle such as a bus and an emergency vehicle such as an ambulance. In this case, the control unit 191 of the in-vehicle communication device 19 of each vehicle determines the presence / absence of the priority vehicle in the target vehicle group from the vehicle ID or the type of vehicle represented by the vehicle attribute included in the predicted travel behavior data D. It can be determined.
 好ましくは、優先車両の車載通信機19には、自車両の走行予定ルートを優先して他車両の走行予定ルートを変更するように調整するためのプログラムが格納されている。これにより、優先車両の走行予定ルートが優先されるように、対象車両群全体の走行予定ルートが調整される。 Preferably, the in-vehicle communication device 19 of the priority vehicle stores a program for adjusting to change the planned traveling route of the other vehicle by giving priority to the planned traveling route of the own vehicle. As a result, the planned travel route of the entire target vehicle group is adjusted so that the planned travel route of the priority vehicle is prioritized.
 または、優先車両は、課金制で決定されてもよい。行政などに対して対価を支払うことによって、たとえば、特定の地域や特定期間、ある車両が優先車両となってもよい。この場合、優先車両であることを示す属性値または車両IDが割り当てられ、当該車両から予測走行挙動データDに含められて他車両に送信される。各車両の車載通信機19の制御部191は、予測走行挙動データDに含まれる車両属性に表された車両ID、車両の種別、または上記属性値などから、対象車両群の中の優先車両の有無を判定することができる。または、優先車両とならないことに対して、行政などから報酬が与えられてもよい。 Alternatively, the priority vehicle may be determined on a charge basis. For example, a certain vehicle or a specific area or a specific period may be a priority vehicle by paying a fee for administration or the like. In this case, an attribute value indicating that the vehicle is a priority vehicle or a vehicle ID is assigned, and the vehicle is included in the predicted traveling behavior data D and transmitted to the other vehicle. The control unit 191 of the in-vehicle communication device 19 of each vehicle sets the priority vehicle in the target vehicle group from the vehicle ID, the type of vehicle, the attribute value, etc., represented in the vehicle attribute included in the predicted travel behavior data D. The presence or absence can be determined. Alternatively, the administration or the like may be rewarded for not becoming a priority vehicle.
 [変形例2]
 以上の説明では、調整処理のすべてを車載通信機19の制御部191が行うものとしている。しかしながら、車載通信機19の制御部191は、他の車載装置と協働して調整処理を行ってもよい。たとえば、少なくとも一部の処理を中継装置20の制御部21が行ってもよい。すなわち、中継装置20の制御部21が、第1取得部195、決定部196、変更部197、通知部198、第2取得部199、および指示部200の少なくとも1つとして機能してもよい。
[Modification 2]
In the above description, it is assumed that the control unit 191 of the in-vehicle communication device 19 performs all the adjustment processing. However, the control unit 191 of the in-vehicle communication device 19 may perform the adjustment process in cooperation with other in-vehicle devices. For example, the control unit 21 of the relay device 20 may perform at least part of the processing. That is, the control unit 21 of the relay device 20 may function as at least one of the first acquisition unit 195, the determination unit 196, the change unit 197, the notification unit 198, the second acquisition unit 199, and the instruction unit 200.
 また、他の例として、車載通信機19の制御部191は、いずれかのECU16と協働して調整処理を行ってもよい。たとえば、車載通信機19の制御部191はADAS-ECU16C1または環境認識ECU16C2に各車の走行予定ルートを示す情報を入力し、ADAS-ECU16C1または環境認識ECU16C2がリーダー車両を決定する決定処理を実行してその結果を車載通信機19に入力してもよい。また、ADAS-ECU16C1が各車の走行予定ルートを示す情報を車載通信機19から受け取り、変更処理を実行してもよい。 As another example, the control unit 191 of the in-vehicle communication device 19 may perform the adjustment process in cooperation with any of the ECUs 16. For example, the control unit 191 of the in-vehicle communication device 19 inputs information indicating the planned traveling route of each vehicle to the ADAS-ECU 16C1 or the environment recognition ECU 16C2, and the ADAS-ECU 16C1 or the environment recognition ECU 16C2 executes a determination process of determining the leader vehicle. The result may be input to the in-vehicle communication device 19. Alternatively, the ADAS-ECU 16C1 may receive information indicating the planned travel route of each vehicle from the in-vehicle communication device 19, and may execute the change process.
 従って、車載通信機19の制御部191によって実現される機能である決定部196においてリーダー車両を決定することは、ADAS-ECU16C1などの他の車載装置に決定処理に必要な情報を渡し、当該他の車載装置に決定処理を実行させることを含む。他の機能も同様である。 Therefore, to determine the leader vehicle in the determination unit 196, which is a function implemented by the control unit 191 of the in-vehicle communication device 19, passes information necessary for the determination process to another in-vehicle device such as the ADAS-ECU 16C1. Causing the on-vehicle device to execute the determination process. The other functions are also the same.
 開示された特徴は、1つ以上のモジュールによって実現される。たとえば、当該特徴は、回路素子その他のハードウェアモジュールによって、当該特徴を実現する処理を規定したソフトウェアモジュールによって、または、ハードウェアモジュールとソフトウェアモジュールとの組み合わせによって実現され得る。 The disclosed features are realized by one or more modules. For example, the feature can be realized by a circuit element or other hardware module, a software module that defines a process for realizing the feature, or a combination of a hardware module and a software module.
 上述の動作をコンピュータに実行させるための、1つ以上のソフトウェアモジュールの組み合わせであるプログラムとして提供することもできる。このようなプログラムは、コンピュータに付属するフレキシブルディスク、CD-ROM(Compact Disk-Read Only Memory)、ROM、RAMおよびメモリカードなどのコンピュータ読取り可能な記録媒体にて記録させて、プログラム製品として提供することもできる。あるいは、コンピュータに内蔵するハードディスクなどの記録媒体にて記録させて、プログラムを提供することもできる。また、ネットワークを介したダウンロードによって、プログラムを提供することもできる。 The program may be provided as a program that is a combination of one or more software modules for causing a computer to execute the above-described operations. Such a program is provided as a program product by recording it on a computer readable recording medium such as a flexible disk attached to a computer, a CD-ROM (Compact Disk-Read Only Memory), a ROM, a RAM and a memory card. It can also be done. Alternatively, the program can be provided by being recorded in a recording medium such as a hard disk built in the computer. Also, the program can be provided by downloading via a network.
 なお、本開示にかかるプログラムは、コンピュータのオペレーティングシステム(OS)の一部として提供されるプログラムモジュールのうち、必要なモジュールを所定の配列で所定のタイミングで呼出して処理を実行させるものであってもよい。その場合、プログラム自体には上記モジュールが含まれずOSと協働して処理が実行される。このようなモジュールを含まないプログラムも、本開示にかかるプログラムに含まれ得る。 Note that the program according to the present disclosure is to call a necessary module among program modules provided as a part of an operating system (OS) of a computer in a predetermined arrangement at a predetermined timing to execute processing. It is also good. In that case, the program itself does not include the above module, and the processing is executed in cooperation with the OS. Programs not including such modules may also be included in the programs according to the present disclosure.
 また、本開示にかかるプログラムは他のプログラムの一部に組込まれて提供されるものであってもよい。その場合にも、プログラム自体には上記他のプログラムに含まれるモジュールが含まれず、他のプログラムと協働して処理が実行される。このような他のプログラムに組込まれたプログラムも、本開示にかかるプログラムに含まれ得る。提供されるプログラム製品は、ハードディスクなどのプログラム格納部にインストールされて実行される。なお、プログラム製品は、プログラム自体と、プログラムが記録された記録媒体とを含む。 Also, the program according to the present disclosure may be provided by being incorporated into a part of another program. Also in this case, the program itself does not include a module included in the other program, and the process is executed in cooperation with the other program. Programs incorporated into such other programs may also be included in the programs according to the present disclosure. The provided program product is installed and executed in a program storage unit such as a hard disk. The program product includes the program itself and a recording medium in which the program is recorded.
 今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。 It should be understood that the embodiments disclosed herein are illustrative and non-restrictive in every respect. The scope of the present invention is shown not by the above description but by the scope of claims, and is intended to include all modifications within the scope and meaning equivalent to the scope of claims.
  1 車両
  10 車内システム
  12 通信ネットワーク
  13 車内通信線
  16 車載制御装置(ECU)
  16A1 エンジンECU
  16A2 EPS-ECU
  16A3 ブレーキECU
  16A4 ABS-ECU
  16B1 ナビゲーションECU
  16B2 メータECU
  16B3 HUD-ECU
  16C1 ADAS-ECU
  16C2 環境認識ECU
  19 車載通信機
  20 中継装置
  21 制御部
  22 記憶部
  23 車内通信部
  31 燃料噴射装置
  32 EPS
  33 ブレーキアクチュエータ
  34 ABSアクチュエータ
  41 HDD
  42 ディスプレイ
  43 GPS受信機
  44 車速センサ
  45 ジャイロセンサ
  46 スピーカ
  47 入力デバイス
  48 メータアクチュエータ
  49 HUD
  51 第1センサ
  52 第2センサ
  191 制御部
  192 記憶部
  193 無線通信部(通信部)
  194 アンテナ
  195 第1取得部
  196 決定部
  197 変更部
  198 通知部
  199 第2取得部
  200 指示部
  D 予測走行挙動データ
  R1 車線
  R2 車線
  Tc 予測期間
Reference Signs List 1 vehicle 10 in-vehicle system 12 communication network 13 in-vehicle communication line 16 in-vehicle control unit (ECU)
16A1 engine ECU
16A2 EPS-ECU
16A3 brake ECU
16A4 ABS-ECU
16B1 Navigation ECU
16B2 meter ECU
16B3 HUD-ECU
16C1 ADAS-ECU
16C2 Environment recognition ECU
Reference Signs List 19 in-vehicle communication device 20 relay device 21 control unit 22 storage unit 23 in-vehicle communication unit 31 fuel injection device 32 EPS
33 brake actuator 34 ABS actuator 41 HDD
42 Display 43 GPS Receiver 44 Vehicle Speed Sensor 45 Gyro Sensor 46 Speaker 47 Input Device 48 Meter Actuator 49 HUD
51 first sensor 52 second sensor 191 control unit 192 storage unit 193 wireless communication unit (communication unit)
194 antenna 195 first acquisition unit 196 determination unit 197 change unit 198 notification unit 199 second acquisition unit 200 instruction unit D predicted traveling behavior data R1 lane R2 lane Tc prediction period

Claims (7)

  1.  車車間通信機能を有する車両の車載装置であって、
     他車両と車車間通信フレームを送受信する通信部と、
     前記車車間通信フレームに含まれるデータに情報処理を施す制御部と、を備え、
     前記制御部は、
     他車両からの前記車車間通信フレームから当該他車両における走行予定ルートを特定する情報を取得する第1の取得部と、
     以下の対象車両群の中から、当該対象車両群の総車両台数よりも少ない台数の以下のリーダー車両を規定条件に従って決定する決定部と、を有する、車載装置。
      対象車両群:自車両と、前記走行予定ルートが自車両の走行予定ルートと交錯する他車両と、からなる車両群
      リーダー車両:対象車両群の中の少なくとも1台の車両の前記走行予定ルートの変更に係る変更処理を実行する車両
    An on-vehicle apparatus of a vehicle having an inter-vehicle communication function,
    A communication unit that transmits and receives an inter-vehicle communication frame with another vehicle;
    A control unit that performs information processing on data included in the inter-vehicle communication frame;
    The control unit
    A first acquisition unit that acquires information specifying a planned travel route in the other vehicle from the inter-vehicle communication frame from the other vehicle;
    An on-vehicle apparatus comprising: a determination unit configured to determine the number of leader vehicles smaller than the total number of vehicles of the target vehicle group among the following target vehicle groups according to a prescribed condition.
    Target vehicle group: Vehicle group consisting of own vehicle and other vehicles whose planned travel route intersects with planned travel route of own vehicle Leader vehicle: the planned travel route of at least one vehicle in the targeted vehicle group Vehicle that executes the change process related to the change
  2.  前記規定条件は、車両の製造日の新しい車両であること、車両の前記変更部を実現するプログラムのバージョンが最新であること、車両のIDが予め規定されているIDであること、および、車両の種別が予め規定されている種別であること、のうちの少なくとも1つである、請求項1に記載の車載装置。 The prescribed condition is that the vehicle is a new vehicle on the manufacturing date, that the version of the program for realizing the change unit of the vehicle is the latest, that the ID of the vehicle is an ID defined in advance, and the vehicle The on-vehicle apparatus according to claim 1, wherein the type of at least one of the types defined in advance is a type defined in advance.
  3.  前記規定条件は優先車両であることであり、
     自車両が前記リーダー車両であり、かつ、前記優先車両である場合、前記変更処理は、前記対象車両群の中の自車両以外の少なくとも1台の車両の前記走行予定ルートを変更する処理である、請求項1に記載の車載装置。
    The prescribed condition is that it is a priority vehicle,
    When the own vehicle is the leader vehicle and the priority vehicle, the change process is a process of changing the planned traveling route of at least one vehicle other than the own vehicle in the target vehicle group. The in-vehicle device according to claim 1.
  4.  前記制御部は、
     自車両が前記リーダー車両である場合に前記変更処理を実行する変更部と、
     変更後の走行予定ルートを含む前記車車間通信フレームを前記通信部に送信させる通知部と、をさらに有する、請求項1~請求項3のいずれか1項に記載の車載装置。
    The control unit
    A change unit that executes the change process when the host vehicle is the leader vehicle;
    The in-vehicle apparatus according to any one of claims 1 to 3, further comprising: a notification unit that causes the communication unit to transmit the inter-vehicle communication frame including the travel planned route after the change.
  5.  前記制御部は、
     前記車車間通信フレームから前記リーダー車両からの前記変更後の前記走行予定ルートの通知を取得する第2の取得部と、
     自車両の走行を制御する運転支援部に、前記走行予定ルートに基づいた走行制御を行わせる指示部と、をさらに有する、請求項1~請求項4のいずれか1項に記載の車載装置。
    The control unit
    A second acquisition unit that acquires a notification of the planned travel route after the change from the leader vehicle from the inter-vehicle communication frame;
    The in-vehicle apparatus according to any one of claims 1 to 4, further comprising an instruction unit that causes the driving support unit that controls the traveling of the host vehicle to perform traveling control based on the planned traveling route.
  6.  車車間通信機能を有する車両の車載装置において、複数の車両の走行予定ルートを調整する方法であって、
     他車両からの車車間通信フレームから当該他車両における走行予定ルートを特定する情報を取得するステップと、
     以下の対象車両群の中から、当該対象車両群の総車両台数よりも少ない台数の以下のリーダー車両を規定条件に従って決定するステップと、を備える、調整方法。
      対象車両群:自車両と、前記走行予定ルートが自車両の走行予定ルートと交錯する他車両と、からなる車両群
      リーダー車両:対象車両群の中の少なくとも1台の車両の前記走行予定ルートの変更に係る変更処理を実行する車両
    A method of adjusting a planned travel route of a plurality of vehicles in an on-vehicle apparatus of a vehicle having an inter-vehicle communication function, comprising:
    Acquiring, from an inter-vehicle communication frame from another vehicle, information specifying a planned traveling route of the other vehicle;
    Determining the number of leader vehicles less than the total number of vehicles of the target vehicle group among the following target vehicle groups according to a prescribed condition.
    Target vehicle group: Vehicle group consisting of own vehicle and other vehicles whose planned travel route intersects with planned travel route of own vehicle Leader vehicle: the planned travel route of at least one vehicle in the targeted vehicle group Vehicle that executes the change process related to the change
  7.  車車間通信機能を有する車両の車載装置としてコンピュータを機能させるためのコンピュータプログラムであって、
     前記車載装置は他車両と車車間通信フレームを送受信する通信部を有し、
     前記コンピュータを、前記車車間通信フレームに含まれるデータに情報処理を施す制御部として機能させ、
     前記制御部は、
     他車両からの前記車車間通信フレームから当該他車両における走行予定ルートを特定する情報を取得する取得部と、
     以下の対象車両群の中から、当該対象車両群の総車両台数よりも少ない台数の以下のリーダー車両を規定条件に従って決定する決定部と、を有する、コンピュータプログラム。
      対象車両群:自車両と、前記走行予定ルートが自車両の走行予定ルートと交錯する他車両と、からなる車両群
      リーダー車両:対象車両群の中の少なくとも1台の車両の前記走行予定ルートの変更に係る変更処理を実行する車両
    A computer program for causing a computer to function as an on-vehicle device of a vehicle having an inter-vehicle communication function,
    The in-vehicle device includes a communication unit that transmits and receives an inter-vehicle communication frame with another vehicle.
    Causing the computer to function as a control unit that performs information processing on data included in the inter-vehicle communication frame;
    The control unit
    An acquisition unit for acquiring information for specifying a planned traveling route in the other vehicle from the inter-vehicle communication frame from the other vehicle;
    A computer program comprising: a determination unit which determines, from among the following target vehicle groups, the following leader vehicles of a number smaller than the total number of vehicles of the target vehicle group according to a prescribed condition.
    Target vehicle group: Vehicle group consisting of own vehicle and other vehicles whose planned travel route intersects with planned travel route of own vehicle Leader vehicle: the planned travel route of at least one vehicle in the targeted vehicle group Vehicle that executes the change process related to the change
PCT/JP2018/000481 2018-01-11 2018-01-11 Vehicle-mounted device, adjustment method, and computer program WO2019138498A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/000481 WO2019138498A1 (en) 2018-01-11 2018-01-11 Vehicle-mounted device, adjustment method, and computer program

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/000481 WO2019138498A1 (en) 2018-01-11 2018-01-11 Vehicle-mounted device, adjustment method, and computer program

Publications (1)

Publication Number Publication Date
WO2019138498A1 true WO2019138498A1 (en) 2019-07-18

Family

ID=67218526

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/000481 WO2019138498A1 (en) 2018-01-11 2018-01-11 Vehicle-mounted device, adjustment method, and computer program

Country Status (1)

Country Link
WO (1) WO2019138498A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000207691A (en) * 1999-01-12 2000-07-28 Toyota Motor Corp Running controller for vehicle
JP2007034382A (en) * 2005-07-22 2007-02-08 Toyota Motor Corp Vehicle control system
JP2014056483A (en) * 2012-09-13 2014-03-27 Toyota Motor Corp Road traffic control method, road traffic control system, and in-vehicle terminal
JP2016091077A (en) * 2014-10-30 2016-05-23 三菱電機株式会社 Automatic operation controller and automatic operation control method
US20170031361A1 (en) * 2015-07-31 2017-02-02 Ford Global Technologies, Llc Vehicle trajectory determination

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000207691A (en) * 1999-01-12 2000-07-28 Toyota Motor Corp Running controller for vehicle
JP2007034382A (en) * 2005-07-22 2007-02-08 Toyota Motor Corp Vehicle control system
JP2014056483A (en) * 2012-09-13 2014-03-27 Toyota Motor Corp Road traffic control method, road traffic control system, and in-vehicle terminal
JP2016091077A (en) * 2014-10-30 2016-05-23 三菱電機株式会社 Automatic operation controller and automatic operation control method
US20170031361A1 (en) * 2015-07-31 2017-02-02 Ford Global Technologies, Llc Vehicle trajectory determination

Similar Documents

Publication Publication Date Title
JP6682629B2 (en) Method and control system for identifying a traffic gap between two vehicles for vehicle lane change
CN108027990B (en) Device, method and computer program for providing information about a predicted driving intention
US10304333B2 (en) Method and vehicle communication system for determining a driving intention for a vehicle
CN111524346B (en) Server and information providing device
US20180056998A1 (en) System and Method for Multi-Vehicle Path Planning Technical Field
US20180154893A1 (en) Drive assist apparatus
JP2019510674A5 (en)
WO2019138485A1 (en) Collision possibility determination device, collision possibility determination method, and computer program
US11508161B2 (en) Driving support system and server device
CN114026623B (en) Traffic control device and signal machine
WO2019138488A1 (en) Predicted travel behavior data adjustment device, predicted travel behavior data transmission device, predicted travel behavior data adjustment method, predicted travel behavior data transmission method, computer program, and communication frame data structure
WO2019150458A1 (en) Vehicle-mounted device, generation method, and computer program
US11429115B2 (en) Vehicle-platoons implementation under autonomous driving system designed for single vehicle
JP5024225B2 (en) Driving support adjustment device
JP6784338B2 (en) In-vehicle device, communication path information generation method, and computer program
WO2019150460A1 (en) Vehicle-mounted device, vehicle-to-vehicle communication method, and computer program
US20210024060A1 (en) Driving assistance device
WO2019138498A1 (en) Vehicle-mounted device, adjustment method, and computer program
WO2019138486A1 (en) Vehicle-mounted device, determination method, and computer program
EP3825196A1 (en) Method, apparatus, and computer program product for automated lane merging assistance
CN111516684B (en) Driving support device
WO2019150455A1 (en) Automotive device, communication method, and computer program
US20200158521A1 (en) Automatic driving device
CN114596727A (en) Assistance method, system for a vehicle, corresponding vehicle and storage medium
WO2019138487A1 (en) Vehicle-mounted device, travel control method, and computer program

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18899290

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18899290

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP