WO2019138486A1 - Vehicle-mounted device, determination method, and computer program - Google Patents

Vehicle-mounted device, determination method, and computer program Download PDF

Info

Publication number
WO2019138486A1
WO2019138486A1 PCT/JP2018/000424 JP2018000424W WO2019138486A1 WO 2019138486 A1 WO2019138486 A1 WO 2019138486A1 JP 2018000424 W JP2018000424 W JP 2018000424W WO 2019138486 A1 WO2019138486 A1 WO 2019138486A1
Authority
WO
WIPO (PCT)
Prior art keywords
vehicle
lane change
unit
inter
communication
Prior art date
Application number
PCT/JP2018/000424
Other languages
French (fr)
Japanese (ja)
Inventor
中野 貴之
Original Assignee
住友電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友電気工業株式会社 filed Critical 住友電気工業株式会社
Priority to PCT/JP2018/000424 priority Critical patent/WO2019138486A1/en
Publication of WO2019138486A1 publication Critical patent/WO2019138486A1/en

Links

Images

Classifications

    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/09Arrangements for giving variable traffic instructions
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/16Anti-collision systems

Definitions

  • the present invention relates to an in-vehicle apparatus, a determination method, and a computer program.
  • a technology has been proposed that performs wireless communication (inter-vehicle communication) with another vehicle and performs driving support for securing safety with the other vehicle.
  • a driving support device for example, JP-A-10-105880, JP-A-10-307997 and JP-A-2014-67125 change the lane of the vehicle using inter-vehicle communication.
  • JP 10-105 880 A Japanese Patent Application Laid-Open No. 10-307997 JP, 2014-67125, A
  • the on-vehicle apparatus is an on-vehicle apparatus of a vehicle having an inter-vehicle communication function, and a communication unit that transmits and receives an inter-vehicle communication frame to another vehicle and information processing on data included in the inter-vehicle communication frame
  • a control unit to perform the inter-vehicle communication frame from another vehicle and a first notification unit that causes the communication unit to transmit the inter-vehicle communication frame including the purpose of the lane change before the lane change is executed;
  • An acquisition unit for acquiring a response of presence / absence of change in traveling behavior by another vehicle accompanying a lane change; a determination unit for determining whether to execute lane change based on the response; and inter-vehicle communication including the result of the determination
  • a second notification unit that causes the communication unit to transmit the frame.
  • the determination method is a method of determining whether to execute lane change in an on-vehicle apparatus of a vehicle having an inter-vehicle communication function, including the purpose of lane change before the lane change is executed. Step of transmitting an inter-vehicle communication frame, Step of acquiring from the inter-vehicle communication frame from another vehicle a response of presence / absence of change of traveling behavior by another vehicle accompanying lane change, and execution of lane change based on the response. And a step of transmitting an inter-vehicle communication frame including the result of the determination.
  • the computer program is a computer program for causing a computer to function as an on-vehicle apparatus of a vehicle having an inter-vehicle communication function, and the on-vehicle apparatus transmits a communication unit for transmitting and receiving an inter-vehicle communication frame with another vehicle.
  • the computer program causes the computer to function as a control unit that processes information contained in the inter-vehicle communication frame, and the control unit performs an inter-vehicle communication frame including the purpose of the lane change before the lane change is executed.
  • the acquisition unit Based on the response from the first notification unit that causes the communication unit to transmit to the communication unit, the acquisition unit that acquires, from the inter-vehicle communication frame from another vehicle, the presence or absence of the change in travel behavior by the other vehicle accompanying the lane change; A determination unit that determines whether or not to execute the change; and a second notification unit that causes the communication unit to transmit an inter-vehicle communication frame including the determination result.
  • FIG. 1 is an entire configuration diagram of a communication system according to an embodiment.
  • FIG. 2 is a block diagram showing the configuration of the in-vehicle system.
  • FIG. 3 is a block diagram showing an internal configuration of the relay apparatus.
  • FIG. 4 is a block diagram showing an internal configuration of the in-vehicle communication device.
  • FIG. 5 is an explanatory view showing the contents and generation method of “predicted traveling behavior data”.
  • FIG. 6 is an explanatory diagram of an outline of processing in the in-vehicle communication device.
  • FIG. 7 is a sequence diagram showing the flow of processing in the on-vehicle communication devices of the vehicles A, B and C.
  • FIG. 8 is an explanatory view showing the contents of “setting data of urgency”.
  • FIG. 9 is an explanatory view for explaining a specific example of calculation processing in the vehicle A.
  • FIG. 10 is an explanatory view for explaining a specific example of calculation processing in the vehicle A.
  • FIG. 10 is an explanatory view
  • An object in a certain aspect of the present disclosure is an in-vehicle device capable of enhancing a success rate of smooth lane change coordinated with surrounding vehicles in a vehicle performing wireless communication (inter-vehicle communication) with another vehicle, and a determination method , And providing a computer program.
  • the present embodiment includes at least the following. That is, (1)
  • the on-vehicle apparatus included in the present embodiment is an on-vehicle apparatus of a vehicle having an inter-vehicle communication function, and includes a communication unit that transmits and receives an inter-vehicle communication frame to another vehicle and data included in the inter-vehicle communication frame.
  • a control unit that performs information processing, the control unit transmitting a first inter-vehicle communication frame including the purpose of the lane change to the communication unit before the lane change is executed, and an inter-vehicle distance from another vehicle
  • An acquisition unit for acquiring from the communication frame a response of presence / absence of change in traveling behavior by another vehicle accompanying lane change, a determination unit for determining whether to execute lane change based on the response, and a result of the determination.
  • a second notification unit that causes the communication unit to transmit the inter-vehicle communication frame.
  • the control unit further includes a calculation unit that calculates the following gain, and the determination unit makes the determination based on the response and the gain.
  • Gain The degree of loss in the target vehicle group consisting of the own vehicle and the other vehicle according to the respective behaviors of the own vehicle and the other vehicle It is determined whether or not the lane change can be performed based on the presence and the gain of the change of the traveling behavior in the other vehicle. Thus, it is possible to determine whether the lane change can be performed, taking into consideration the loss of the entire target vehicle group. As a result, it is possible to improve the success rate of smooth lane change coordinated with surrounding vehicles.
  • the calculation unit calculates the gain based on at least one of the purpose of the lane change and the distance between the host vehicle and the other vehicle. In this way, it is possible to determine whether or not the lane change can be made in consideration of at least one of the purpose of the lane change and the ease with which the other vehicle can change the traveling behavior.
  • control unit further includes an extraction unit that extracts the following target vehicle from other vehicles, and the calculation unit calculates gains of the host vehicle and the target vehicle.
  • Target vehicle Vehicle having traveling behavior related to lane change of own vehicle By extracting the target vehicle from the other vehicle, it is possible to suppress the throughput of the own vehicle and the other vehicle.
  • the first notification unit causes the communication unit to transmit
  • the purpose of changing lanes for different vehicles As a result, it is possible to suppress the loss as a whole of the target vehicle group and to improve the success rate of the smooth lane change coordinated with the surrounding vehicles.
  • the determination unit changes the lane if the urgent purpose of the lane change is high even if the response from the vehicle requiring a change in all the traveling behavior is no change in the traveling behavior. Is determined to be executable. As a result, when the degree of urgency of the purpose of the lane change is high, the lane change is realized even if the change in the traveling behavior of the other vehicle is not performed.
  • the determination method included in the present embodiment is a method of determining whether or not to execute the lane change in the on-vehicle described in any one of (1) to (6). This determination method has the same effects as the above-described in-vehicle devices (1) to (6).
  • a computer program included in the present embodiment causes a computer to function as the in-vehicle device according to any one of (1) to (6).
  • Such a computer program exhibits the same effects as those of the in-vehicle apparatus of the above (1) to (6).
  • FIG. 1 is an overall configuration diagram of a communication system according to an embodiment.
  • the communication system of the present embodiment includes an in-vehicle communication device (in-vehicle device) 19 mounted on each of a plurality of vehicles 1.
  • in-vehicle device in-vehicle device
  • the in-vehicle communication device 19 is a wireless communication device that performs wireless communication (inter-vehicle communication) with another vehicle 1 traveling on the road. Therefore, in the present embodiment, the in-vehicle communication device 19 of the vehicle 1 is also referred to as "inter-vehicle communication device 19", and the communication system is also referred to as "inter-vehicle communication system”. In the present embodiment, the in-vehicle communication device 19 adopts a multi-access method based on a carrier sense multiple access / collision avoidance (CSMA / CA) method.
  • CSMA / CA carrier sense multiple access / collision avoidance
  • the in-vehicle communication device 19 adopts, for example, a multi-access method that conforms to the "700 MHz band intelligent traffic system standard (ARIB STD-T109)". According to this method, the in-vehicle communication device 19 broadcasts a communication frame for inter-vehicle communication at predetermined time intervals (for example, 0.1 seconds). Therefore, the vehicle 1 executing inter-vehicle communication can detect the vehicle information of the other vehicle around the own vehicle in substantially real time by the communication frame received from the other vehicle included in the transmission / reception range of the wireless signal.
  • a communication frame for inter-vehicle communication at predetermined time intervals (for example, 0.1 seconds). Therefore, the vehicle 1 executing inter-vehicle communication can detect the vehicle information of the other vehicle around the own vehicle in substantially real time by the communication frame received from the other vehicle included in the transmission / reception range of the wireless signal.
  • the communication system for inter-vehicle communication is not limited to the above standard, and may be a communication technology for mobile phones, such as cellular V2V of 3GPP, applied to wireless communication of the vehicle 1.
  • FIG. 2 is a block diagram showing the configuration of the in-vehicle system. As shown in FIG. 2, each vehicle 1 includes an in-vehicle system 10.
  • the in-vehicle system 10 includes a relay device 20, a communication network 12, and various on-vehicle devices electronically controlled by an ECU belonging to the communication network 12.
  • the communication network 12 includes a plurality of in-vehicle communication lines 13 terminating in the relay device 20, and a plurality of in-vehicle control devices (hereinafter referred to as "ECUs") 16 connected to the in-vehicle communication lines 13.
  • the communication network 12 can communicate among the ECUs 16, and is formed of a master / slave communication network (for example, LIN (Local Interconnect Network)) in which the relay device 20 is a terminal node (master device).
  • the relay device 20 controls a plurality of communication networks 12.
  • the communication network 12 includes communication standards such as CAN (Controller Area Network), CANFD (CAN with Flexible Data Rate), Ethernet (registered trademark), or MOST (Media Oriented Systems Transport: MOST is a registered trademark) as well as LIN. It may be a network to be adopted. Further, the network configuration of the communication network 12 may include the relay device 20 and at least one ECU 16.
  • the common code of the communication network is “12”, and the individual codes of the communication network are “12A to 12C”. Further, the common code of the ECU is “16”, and the individual codes of the ECU are “16A1 to 16A4”, “16B1 to 16B3” and “16C1 to 16C2”.
  • the communication networks 12A, 12B, 12C share the different control fields of the vehicle 1, respectively.
  • a power system ECU whose control target is the drive device of the vehicle 1 is connected.
  • a multimedia ECU that controls information equipment of the vehicle 1.
  • Connected to the communication network 12C is an ADAS-based ECU whose control target is an advanced driver assistance system (ADAS: Advanced Driver-Assistance Systems) that supports the driving operation of the vehicle 1.
  • ADAS Advanced Driver-Assistance Systems
  • the communication network 12 is not limited to the above three types, but may be four or more types. Further, the control field corresponding to the communication network 12 varies depending on the design concept of the vehicle manufacturer, and is not limited to the sharing of the control field described above.
  • the power ECUs connected to the communication network 12A include, for example, an engine ECU 16A1, an EPS-ECU 16A2, a brake ECU 16A3, and an ABS-ECU 16A4.
  • the engine ECU 16A1 is connected to a fuel injection device 31 of the engine, and the fuel injection device 31 is controlled by the engine ECU 16A1.
  • An EPS (Electric Power Steering: Electric Power Steering) 32 is connected to the EPS-ECU 16A2, and the EPS 32 is controlled by the EPS-ECU 16A2.
  • a brake actuator 33 is connected to the brake ECU 16A3, and the brake actuator 33 is controlled by the brake ECU 16A3.
  • An ABS (Antilock Brake System) actuator 34 is connected to the ABS-ECU 16A4, and the ABS actuator 34 is controlled by the ABS-ECU 16A4.
  • the multimedia ECU connected to the communication network 12B includes, for example, a navigation ECU 16B1, a meter ECU 16B2, and a HUD-ECU 16B3.
  • An HDD (Hard Disk Drive) 41, a display 42, a GPS (Global Positioning System) receiver 43, a vehicle speed sensor 44, a gyro sensor 45, a speaker 46, and an input device 47 are connected to the navigation ECU 16B1.
  • the display 42 and the speaker 46 are output devices for presenting various information to the passenger of the vehicle. Specifically, the display 42 displays a map image around the host vehicle, route information to the destination, and the like, and the speaker 46 outputs a voice announcement for guiding the host vehicle to the destination.
  • the input device 47 is for the passenger to perform various inputs such as a destination, and is constituted by various input means such as an operation switch, a joystick, or a touch panel provided on the display 42.
  • the navigation ECU 16B1 has a time synchronization function of acquiring the current time from the GPS signal periodically acquired by the GPS receiver 43, and a position detection function of calculating an absolute position (latitude, longitude and altitude) of the vehicle from the GPS signal; It has an interpolation function that interpolates the position and orientation of the vehicle by the vehicle speed sensor 44 and the gyro sensor 45 to obtain the accurate current position and orientation of the vehicle.
  • the navigation ECU 16B1 reads the map information stored in the HDD 41 according to the obtained current position, and generates a map image in which the current position of the vehicle is superimposed on the map information. Then, the navigation ECU 16B1 displays a map image on the display 42, and displays route information and the like from the current position to the destination on the map image.
  • a meter actuator 48 is connected to the meter ECU 16B2, and the meter actuator 48 is controlled by the meter ECU 16B2.
  • a HUD (Head-Up Display) 49 is connected to the HUD-ECU 16B3, and the HUD 49 is controlled by the HUD-ECU 16B3.
  • the ADAS ECU connected to the communication network 12C includes, for example, an ADAS-ECU 16C1 and an environment recognition ECU 16C2.
  • a first sensor 51 and a second sensor 52 are connected to the environment recognition ECU 16C2, and the first and second sensors 51 and 52 are controlled by the environment recognition ECU 16C2.
  • the first sensor 51 is, for example, an ultrasonic sensor, a video camera, or the like disposed at four corners in the front, rear, left, and right of the vehicle 1 (see FIG. 1).
  • the first sensor 51 provided on the front side is a sensor mainly for detecting an object present on the front of the vehicle
  • the first sensor 51 provided on the rear side is an object mainly present on the rear of the vehicle Is a sensor for detecting
  • the second sensor 52 is, for example, an ultrasonic sensor, a video camera, or the like disposed in a ceiling portion of the vehicle 1 (see FIG. 1).
  • the second sensor 52 is rotatable at a relatively high speed around the vertical axis, and is a sensor for detecting an object present around the host vehicle.
  • the sensing results of the first and second sensors 51 and 52 are stored in a communication packet by the environment recognition ECU 16C2 and transmitted to the ADAS-ECU 16C1.
  • the ADAS-ECU 16C1 can execute any one of, for example, levels 1 to 4 based on the sensing results of the first and second sensors 51 and 52.
  • the level of automatic driving is defined in SAE (Society of Automotive Engineers) International, J3016 (September 2016).
  • the “public-private ITS concept road map 2017” also adopts this definition. In this roadmap, level 3 or higher automatic driving is called “high-level automatic driving", and level 4 and 5 automatic driving is called “fully automatic driving”.
  • the "automatic operation” in the present embodiment means an automatic operation at level 2 or higher.
  • the ADAS-ECU 16C1 may be capable of performing level 5 automatic driving, but at the time of the present application, the vehicle 1 performing level 5 automatic driving has not been realized yet.
  • assisted driving As an example of automatic driving up to levels 1 to 3 (hereinafter, also referred to as “assisted driving”), the possibility of collision is predicted from the distance between the object detected by the first sensor 51 and the host vehicle, The control command is transmitted to the power system ECU or the multimedia system ECU so as to intervene in the deceleration or alert the passenger when it is determined that the vehicle speed is high.
  • level 4 and 5 automatic operation As an example of level 4 and 5 automatic operation (hereinafter, also referred to as “autonomous operation"), behavior expected to an object detected by the first and second sensors 51 and 52, deep learning of past behavior, etc. There are some which transmit a control command to a power system ECU or a multimedia system ECU so that the host vehicle is pointed to the target position based on the predicted behavior predicted by the above.
  • the ADAS-ECU 16C1 can also switch to a manual operation of the passenger without using the sensing results by the first and second sensors 51 and 52.
  • the vehicle 1 of the present embodiment is capable of executing the level 4 autonomous operation mode, and as the downgraded operation mode, the vehicle 1 of the level 1 to 3 assisted operation mode or the manual operation mode (level 0) You can do either.
  • the switching of the operation mode is performed by a manual operation input by the passenger or the like.
  • the relay device 20 transmits a control packet (hereinafter, also referred to as “control command”) to control the ECU 16.
  • the ECU 16 executes predetermined control on the target device in charge according to the content of the command included in the received control packet.
  • the relay device 20 When controlling the autonomous operation mode, the relay device 20 sends control commands to the ECUs 16A1 to 16A4 of the communication network 12A based on the sensing results of the first and second sensors 51 and 52 received from the environment recognition ECU 16C2. Send control packet including.
  • each of the ECUs 16A1 to 16A4 having received the control packet from the relay device 20 controls the fuel injection device 31, the EPS 32, the brake actuator 33, and the ABS actuator 34 according to the content of the command included in the control packet, thereby autonomous operation. Mode is executed.
  • the in-vehicle system 10 further includes an in-vehicle communication device 19 that performs wireless communication with the other vehicle 1.
  • the in-vehicle communication device 19 is connected to the relay device 20 via a communication line of a predetermined standard.
  • the relay device 20 relays the information received by the in-vehicle communication device 19 from the other vehicle 1 to the ECU 16.
  • the relay device 20 relays the information received from the ECU 16 to the in-vehicle communication device 19.
  • the in-vehicle communication device 19 wirelessly transmits the relayed information to the other vehicle 1.
  • the in-vehicle communication device 19 mounted on the vehicle 1 may be a device owned by a user, such as a mobile phone, a smartphone, a tablet terminal, or a notebook PC (Personal Computer).
  • FIG. 3 is a block diagram showing an internal configuration of the relay device 20.
  • the relay device 20 of the vehicle 1 includes a control unit 21, a storage unit 22, an in-vehicle communication unit 23, and the like.
  • the control unit 21 of the relay device 20 includes a CPU (Central Processing Unit).
  • the CPU of the control unit 21 has a function of reading one or a plurality of programs stored in the storage unit 22 or the like to execute various processes.
  • the CPU of the control unit 21 can execute a plurality of programs in parallel by switching and executing a plurality of programs in time division, for example.
  • the CPU of the control unit 21 includes one or more large scale integrated circuits (LSI).
  • LSI large scale integrated circuits
  • the plurality of LSIs cooperate to realize the function of the CPU.
  • the computer program executed by the CPU of the control unit 21 may be written in advance at the factory, may be provided via a specific tool, or is transferred by downloading from a computer device such as a server computer. It can also be done.
  • the storage unit 22 is formed of a non-volatile memory element such as a flash memory or an EEPROM (Electrically Erasable Programmable Read Only Memory).
  • the storage unit 22 has a storage area for storing a program executed by the CPU of the control unit 21 and data required for the execution.
  • a plurality of in-vehicle communication lines 13 disposed in the vehicle 1 are connected to the in-vehicle communication unit 23.
  • the in-vehicle communication unit 23 includes a communication device that communicates with the ECU 16 in accordance with a predetermined communication standard such as LIN.
  • the in-vehicle communication unit 23 transmits information given from the CPU of the control unit 21 to a predetermined ECU 16, and the ECU 16 gives information on the transmission source to the CPU of the control unit 21.
  • the in-vehicle communication device 19 transmits the information given from the control unit 21 to the other vehicle 1 and gives the information received from the other vehicle 1 to the control unit 21.
  • the on-vehicle communication device 19 is illustrated as an on-vehicle device that performs inter-vehicle communication with the other vehicle 1.
  • the relay device 20 when the relay device 20 has a wireless communication function, the relay device 20 itself is the other vehicle It may be an on-vehicle device that performs inter-vehicle communication with the device 1.
  • FIG. 4 is a block diagram showing an internal configuration of the in-vehicle communication device 19.
  • the in-vehicle communication device 19 includes a control unit 191, a storage unit 192, a wireless communication unit 193, and the like.
  • the control unit 191 of the in-vehicle communication device 19 includes a CPU.
  • the CPU of the control unit 191 has a function of reading out one or more programs stored in the storage unit 192 or the like to execute various processes.
  • the CPU of the control unit 191 can execute a plurality of programs in parallel by switching and executing a plurality of programs in time division, for example.
  • the CPU of the control unit 191 includes one or more large scale integrated circuits (LSI).
  • LSI large scale integrated circuits
  • the plurality of LSIs cooperate to realize the function of the CPU.
  • the computer program executed by the CPU of the control unit 191 may be written in advance at the factory, may be provided via a specific tool, or is transferred by downloading from a computer device such as a server computer. It can also be done.
  • the storage unit 192 is formed of a non-volatile memory element such as a flash memory or an EEPROM.
  • the storage unit 192 has a storage area for storing a program executed by the CPU of the control unit 191 and data required for the execution.
  • An antenna 194 for wireless communication is connected to the wireless communication unit 193.
  • the wireless communication unit 193 transmits the information given from the control unit 191 to the other vehicle 1 from the antenna 194 and gives the information received from the other vehicle 1 by the antenna 194 to the control unit 191.
  • the CPU of the control unit 191 transmits the information provided from the wireless communication unit 193 to the relay device 20, and provides the wireless communication unit 193 with the information received from the relay device 20.
  • FIG. 5 is an explanatory view showing the contents and generation method of “predicted travel behavior data” transmitted by the on-vehicle communication device 19 to the other vehicle 1 by inter-vehicle communication.
  • the predicted driving behavior data D includes information such as the time within the prediction period Tc in the future for a relatively short predetermined time (for example, 10 seconds) from the current time, and the absolute position and orientation of the vehicle 1 at that time.
  • the time within the prediction period Tc and the absolute position and orientation of the vehicle 1 are calculated as follows. For example, in the road plan view shown in the lower part of FIG. 5, when the vehicle 1 travels in the lane R1 by automatic driving, the ADAS-ECU 16C1 of the vehicle 1 responds to the contents of automatic driving being executed at the present time t0. A travel planned route during the prediction period Tc is calculated, and the calculated travel planned route is transmitted to the in-vehicle communication device 19.
  • the in-vehicle communication device 19 performs map matching processing between the received planned traveling route and the map information, and the like, and detects the plurality of discrete positions (absolute positions) of the vehicle 1 during the prediction period Tc and the direction of the vehicle 1 at each discrete position. Calculate Specifically, when the vehicle 1 continues to travel straight in the lane R1 during the prediction period Tc, the on-vehicle communication device 19 is operated on the straight travel planned route (arrow shown by the broken line in FIG. 5) along the lane R1. A plurality of discrete positions (positions indicated by ⁇ in FIG. 5) and directions of the vehicle 1 are calculated at fixed or indeterminate time intervals (or distance intervals).
  • the on-vehicle communication device 19 is a curved traveling planned route extending from the lane R1 to the lane R2 (an arrow shown by an alternate long and short dash line in FIG. A plurality of discrete positions (positions indicated by ⁇ marks in FIG. 5) and a direction of the vehicle 1 are calculated at fixed or indefinite time intervals (or distance intervals).
  • the vehicle-mounted communication device 19 calculates a plurality of discrete positions of the vehicle 1 at time intervals, it calculates the time corresponding to each discrete position based on the time interval and the time of the current time t0. In addition, when the vehicle-mounted communication device 19 calculates a plurality of discrete positions of the vehicle 1 at a distance interval, the distance from the current position of the vehicle 1 to each discrete position is calculated based on the distance interval, and the calculated distance and the vehicle The time corresponding to each discrete position is calculated based on the planned traveling speed of 1.
  • the planned traveling speed of the vehicle 1 can be acquired from the ADAS-ECU 16C1. Note that the time within the prediction period Tc and the absolute position and orientation of the vehicle 1 may be calculated by the ADAS-ECU 16C1 and the calculated time, discrete position and orientation may be transmitted to the in-vehicle communication device 19.
  • the predicted travel behavior data D of the present embodiment includes storage areas such as “vehicle ID”, “time”, “absolute position”, “vehicle attribute”, and “direction”. .
  • the “time” stores the value of the current time and the value of each time within the prediction period Tc calculated by the above method.
  • the value of the current time can be acquired from the navigation ECU 16B1 (see FIG. 2) having the above-described time synchronization function via the relay device 20.
  • the “vehicle ID” stores the value of the vehicle ID of the own vehicle. Since the value of vehicle ID is a fixed value, the same value is stored in “vehicle ID” corresponding to each time.
  • the “absolute position” stores each value of latitude, longitude and altitude indicating the absolute position of the vehicle corresponding to each time within the prediction period Tc calculated by the above method. In “absolute position” of FIG. 5, only the values of latitude and longitude are shown.
  • vehicle attribute for example, values such as the vehicle width and the vehicle length of the own vehicle, and the identification value of the vehicle application type of the own vehicle (such as a private vehicle or an emergency vehicle) are stored. Since each value of the vehicle width, the vehicle length, and the vehicle application type is a fixed value, the same value is stored in the "vehicle attribute" corresponding to each time.
  • vehicle attribute of FIG. 5
  • the description of specific numerical values is omitted.
  • the value of the heading of the vehicle corresponding to each time within the prediction period Tc calculated by the above method is stored in the "heading".
  • the description of specific numerical values is omitted.
  • the other vehicle 1 passing through the own vehicle and the periphery thereof transmits and receives predicted traveling behavior data D to each other when the on-vehicle communication devices 19 communicate with each other.
  • the own vehicle and the other vehicle 1 passing around it can share the predicted traveling behavior data D with each other.
  • the time of a fixed time interval is stored in "time" of prediction driving behavior data D
  • the time of an indefinite time interval may be stored.
  • the fixed time interval depends on the speed of the vehicle, the distance between the vehicle and the other vehicle, and the time to collision (TTC) before the vehicle collides with the other vehicle. It can be set appropriately.
  • the predicted travel behavior data D may also include other information such as the speed and acceleration of the host vehicle.
  • the velocity of the vehicle can be obtained by differentiating the absolute position of the vehicle, and the acceleration of the vehicle can be determined by differentiating the velocity obtained from the absolute position of the vehicle. Therefore, the predicted traveling behavior data D need not necessarily include the speed and acceleration of the host vehicle.
  • FIG. 6 is an explanatory diagram of an outline of processing in the on-vehicle communication device 19.
  • FIG. 6 shows a case where the vehicle A (vehicle 1A) traveling on the expressway changes lanes from the lane R1 to the lane R2.
  • the vehicle B (vehicle 1B) and the vehicle C (vehicle 1C) exist in the vehicle A in the lane R2.
  • FIG. 7 is a sequence diagram showing the flow of processing in the on-vehicle communication device 19 of each of the vehicles A, B and C in this case.
  • the on-vehicle communication device 19 of the vehicle A whose lane is to be changed performs extraction processing (step S1), calculation processing (step S2), first notification processing (step S3), acquisition processing (step S1). S5), determination processing (step S6), and second notification processing (step S7) are executed in this order. Further, the in-vehicle communication devices 19 of the vehicles B and C around the vehicle A execute the determination process (step S4).
  • the control unit 191 of the in-vehicle communication device 19 causes the extraction unit 200 to execute the above processes by the CPU reading and executing one or more programs stored in the storage unit 192 into the RAM.
  • the calculation unit 199 functions as a first notification unit 195, an acquisition unit 196, a determination unit 197, and a second notification unit 198. Each processing will be described below.
  • the extraction process of step S1 is a process of extracting a target vehicle which is another vehicle to be processed. It is executed by the control unit 191 of the in-vehicle communication device 19 functioning as the extraction unit 200.
  • the target vehicle is another vehicle having a traveling behavior related to the lane change of the host vehicle, specifically, another vehicle that is likely to collide with the vehicle A or cause interference in the course.
  • the vehicles are B and C.
  • the on-vehicle communication device 19 of the vehicle A compares the predicted travel behavior data D of the own vehicle (upper part in FIG. 5) with the predicted travel behavior data D transmitted from the other vehicle. Other vehicles that cross or approach within a predetermined range on the planned travel route of are extracted. As another example, the on-vehicle communication device 19 of the vehicle A extracts other vehicles existing in a predetermined range from the host vehicle based on the sensing results of the first and second sensors 51 and 52. It is also good.
  • the calculation process of step S2 is a process of calculating a gain (score) BE based on the traveling behavior of each of the target vehicle group including the host vehicle and the target vehicle for each vehicle. It is executed by the control unit 191 of the in-vehicle communication device 19 functioning as the calculation unit 199.
  • the gain is a value representing the degree of loss in the entire target vehicle group due to the traveling behavior of the target vehicle group for each vehicle, and as one example, the loss with the larger value is smaller and the loss with the smaller value is larger. In this case, the larger the gain BE, the more efficient the target vehicle group as a whole.
  • control unit 191 of the in-vehicle communication device 19 of the vehicle A specifies the values of the parameters R (RA, RB, RC) of each vehicle, and stores them in advance for each combination pattern of the traveling behavior of each vehicle.
  • the gain BE of each pattern is obtained by substituting the specified value into the parameter R of the arithmetic expression.
  • the value of the parameter R (parameter RA) of the host vehicle is set in advance for each degree of urgency of lane change, and becomes higher as the degree of urgency is higher.
  • the degree of urgency of lane change is preset for each purpose of lane change.
  • the values of the parameter R (parameters RB and RC) of the other vehicle represent the degree of loss due to the deceleration caused by the other vehicle giving the lane, and the larger the closer the distance to the own vehicle (vehicle A) is.
  • Pattern 1 Vehicle A ⁇ Straight, Vehicle B ⁇ Give Lane, Vehicle C ⁇ Give Lane Pattern 2: Vehicle A ⁇ Straight, Vehicle B ⁇ Give Lane, Vehicle C ⁇ Don't Give Lane Pattern 3: Vehicle A ⁇ Straight , Vehicle B ⁇ Do not give lane, Vehicle C ⁇ Give lane Pattern 4: Vehicle A ⁇ Go straight, Vehicle B ⁇ Do not give lane Vehicle C ⁇ Do not give lane Pattern 5: Vehicle A ⁇ Change course, Vehicle B ⁇ Give lane, vehicle C ⁇ give lane Pattern 6: Vehicle A ⁇ change course, vehicle B ⁇ give lane, vehicle C ⁇ don't give lane Pattern 7: vehicle A ⁇ change course, vehicle B ⁇ don't give lane, Vehicle C ⁇ yield lane Pattern 8: Vehicle A ⁇ change course, vehicle B ⁇ not yield lane, vehicle C ⁇ not yield lane In this example, the
  • the control unit 191 of the in-vehicle communication device 19 stores, in advance, an arithmetic expression for calculating the gain BE for each pattern.
  • the arithmetic expression of each pattern is, for example, the following arithmetic expression.
  • the gain BE is calculated based on at least one of the purpose of the lane change of the vehicle A and the distance between the vehicle A and the other vehicle, as shown in an example of the following arithmetic expression. In this way, it is possible to determine whether or not the lane change is possible in consideration of at least one of the purpose (urgency) of the lane change and the ease of change of the traveling behavior by the other vehicle.
  • the in-vehicle communication device 19 of each vehicle stores in advance the setting of the degree of urgency for each purpose of the lane change.
  • the degree of urgency is set for each purpose and cause of the lane change.
  • the in-vehicle communication device 19 of each vehicle stores in advance the value of the parameter R (the parameter RA in the case of the vehicle A) of the own vehicle for each degree of urgency.
  • FIG. 8 is an explanatory view showing the contents of “setting data of degree of urgency” stored in the in-vehicle communication device 19.
  • the setting data of the degree of urgency is stored in the storage unit 192.
  • the setting data of the degree of urgency includes the degree of urgency for each purpose and cause, and the value of the parameter R for each degree of urgency.
  • the “purpose” stores information indicating the purpose of the lane change.
  • the information indicating the purpose of the lane change is, for example, "I want to pass”, “I want to change the traveling direction”, “I want to merge”, “I want to break away”, and "I want to return to the original lane”.
  • “Cause” stores information indicating the cause of the purpose of each lane change.
  • the information indicating the cause is, for example, “slow forward vehicle”, “slow work vehicle”, and “parked vehicle”.
  • the “urgency level” stores information indicating the level of urgency of lane change.
  • the information indicating the urgency level is, for example, “high”, “medium”, and “low”.
  • the information indicating the degree of urgency is not limited to these three stages, and may be subdivided into more stages. Or, it may be two stages of "present” and "absent".
  • the degree of urgency is set for each purpose. Preferably, they are set according to purpose and cause.
  • the cause of the purpose “overtaking” is “low forward vehicle” while the degree of urgency is “low”
  • the purpose of the purpose “overtaking” “there is a low speed work vehicle” and “there is a parked vehicle”
  • the degree of urgency is set to "medium”.
  • the degree of urgency is “high”, the cause of the purpose "want to change the direction of travel”
  • the degree of urgency is “low” for “want to travel on uphill lane” and “will interfere with merging vehicles”
  • the degree of urgency is set to “medium” with respect to the cause "I want to give way to the emergency vehicle”.
  • the reason for the cause “I want to merge” is “Medium” for the “end of the uphill lane”
  • the cause for the purpose “I want to merge” for the “Highway main line merge” is “high”
  • the degree of urgency is set to “medium” with respect to the cause “want to leave the expressway” for the purpose “want to change lanes”. In addition, the degree of urgency is set to be “low” with respect to the purpose of "want to return to the original lane” and “the overtaking is completed” and "the falling object can be avoided”.
  • the “high emergency reason” stores information indicating the reason of high urgency for each purpose (preferably for each purpose and cause).
  • the information may be stored only when the degree of urgency is higher than a predetermined level (for example, “medium” and “high”).
  • the “following vehicle notification” stores information indicating whether or not notification to the following vehicle is necessary for each purpose (preferably for each purpose and cause).
  • the in-vehicle communication device 19 may be capable of wireless communication (road-vehicle communication) with a roadside device (not shown), and communication between vehicles may be relayed to road-vehicle communication. Relaying by road-to-vehicle communication enables transmission and reception of information with vehicles outside the range of inter-vehicle communication. Therefore, the necessity of the notification to the following vehicle may indicate whether it is necessary to relay the wireless communication with the roadside apparatus and to communicate to the following vehicle.
  • the value of the parameter R of the host vehicle (parameter RA) is stored in the “value of parameter RA”.
  • the value of the parameter RA is preset according to the degree of urgency. As one example, the higher the degree of urgency, the higher the value of the parameter RA, and the lower the degree of urgency, the lower the value of the parameter RA. In the example of FIG. 8, the value of parameter RA when the degree of urgency is "high” is "50”, the value of parameter RA when the degree of urgency is "medium” is "2”, and the degree of urgency is "low” The value of the parameter RA is “1”.
  • the values of the parameter R (parameters RB and RC) of the other vehicle represent the degree of loss due to the deceleration caused by the other vehicle giving the lane, and depend on the distance to the own vehicle (vehicle A). As one example, the closer the distance to the host vehicle, the larger the value.
  • the on-vehicle communication device 19 of the vehicle A stores in advance an arithmetic expression using the distance to the other vehicle for obtaining the value of the parameter R (parameters RB, RC) of the other vehicle.
  • the arithmetic expression is not limited to a specific expression.
  • the control unit 191 of the in-vehicle communication device 19 applies the subject vehicle based on the predicted travel behavior data D received from the other vehicle (upper part in FIG. 5) or the sensing results of the first and second sensors 51 and 52.
  • the distance to the other vehicle is specified, and the value of the parameter R of the other vehicle is obtained by substituting the distance into the arithmetic expression.
  • FIG. 9 and FIG. 10 are explanatory diagrams for explaining a specific example of the calculation process in the vehicle A.
  • FIG. 9 shows the case where the lane change urgency of the vehicle A is “medium”, and
  • FIG. 10 shows the case where the urgency is “high”.
  • the parameters RB and RC are assumed to be 2 and 1 respectively.
  • FIGS. 9 and 10 in the columns of RA to RC, values associated with the parameters RA to RC of the arithmetic expression are described, and the arithmetic values are described in the column of total.
  • a vehicle whose lane is to be changed needs to change the traveling behavior associated with the change of lane among the target vehicles (transfer lane) before the lane change is executed (hereinafter referred to as Is a process of transmitting a communication frame including the purpose of lane change for the required vehicle) by inter-vehicle communication. That is, it is also a process of requesting the required vehicle to change the traveling behavior, that is, to request cooperation to change the lane. It is executed by the control unit 191 of the in-vehicle communication device 19 functioning as the first notification unit 195.
  • the purpose of the lane change may be included in the communication frame together with the predicted driving behavior data D of FIG.
  • each vehicle stores the setting of the degree of urgency shown in FIG. 8, when the purpose of the lane change is notified from the vehicle A, the degree of urgency of the lane change in the vehicle A can be specified. In the first notification processing, the degree of urgency of lane change may be notified instead of or in addition to the purpose of the lane change.
  • the first notification process of step 3 includes a process of specifying a required vehicle from among the target vehicles.
  • the control unit 191 sets a vehicle for achieving a pattern with a high (large) value of the gain BE as a necessary vehicle by comparing the gain BE for each pattern.
  • the vehicle B or the vehicle C giving the lane to realize the pattern 6 or the pattern 7 which is the maximum value “2” of the gain BE Identify as a required vehicle in
  • the purpose of the lane change in which the vehicle B is identified as the required vehicle is included in the communication frame and transmitted.
  • step S4 is performed to determine whether or not to change (whether to yield the lane).
  • the determination process of step S4 is not limited to a specific processing method here.
  • the on-vehicle communication device 19 of the required vehicle stores in advance a determination formula using the degree of urgency obtained for the purpose of lane change in the vehicle A and the distance to the vehicle A, and substitutes them. It is determined based on the obtained value whether to give or not give.
  • the required vehicle outputs the determination result by inter-vehicle communication as a response to the vehicle A.
  • the acquisition process of step S5 is a process of acquiring from the communication frame of the inter-vehicle communication a response of the determination result of the presence or absence of the change in the traveling behavior from the required vehicle. It is executed by the control unit 191 of the in-vehicle communication device 19 functioning as the acquisition unit 196.
  • the determination process of step S6 is a process of determining whether or not to execute the lane change based on the determination result acquired from the required vehicle, and determining the course based on the determination result. It is executed by the control unit 191 of the in-vehicle communication device 19 functioning as the determination unit 197.
  • the determination result to give the lane from the required vehicle is acquired in the acquisition process of step S5
  • the in-vehicle communication device 19 returns to the first notification processing in step S3 and then identifies the vehicle for realizing the pattern of high gain BE (large value) as the required vehicle, and is identified. Inform the required vehicles of the purpose of the lane change.
  • the determination result to the effect that the lane is not to be obtained is acquired from the vehicle B which is the required vehicle of pattern 6, the purpose of the lane change is notified to the vehicle C which is the required vehicle of pattern 7.
  • the in-vehicle communication device 19 repeats the process from step S3 in the order of the values of gain BE from those with high gain BE (the large value) shown in FIG. 9 or 10 until any pattern is realized.
  • the range of the pattern for executing the process from step S3 is previously defined in accordance with the degree of urgency of the lane change. For example, when the degree of urgency is "medium”, the processes from step S3 are executed in order of the value of gain BE until the determination result of giving the lane is obtained for patterns 5 to 8 in which the lane change is realized. On the other hand, when the degree of urgency is "high”, the process from step S3 is executed only up to the pattern in which the gain BE is the second highest.
  • the in-vehicle communication device 19 determines whether to change the lane according to the degree of urgency (purpose) of the lane change. For example, if the degree of urgency is "medium", it determines that the lane change is not possible, and keeps going straight. Since there is the possibility of unsafety such as contact with the target vehicle when the lane change is performed, it is possible to place more importance on avoiding the unsafe possibility than the purpose of the lane change.
  • the degree of urgency when the degree of urgency is "high", it may be determined that the lane change is not possible. In this case, in addition to the determination that the lane change is not possible, it is determined that the traveling itself is also not possible. Thus, in the case where the degree of urgency is high and the lane change is not possible, travel control is realized in which the vehicle is suddenly braked and stopped.
  • the second notification process of step S7 is a process of transmitting a communication frame including the determination result in the determination process by inter-vehicle communication. It is executed by the control unit 191 of the in-vehicle communication device 19 functioning as the second notification unit 198.
  • the determination result is notified only when it is determined that the lane change is executable, and the notification may not be performed when it is determined that the lane change is not executable. In this case, there is no change in the predicted traveling behavior data D. Thereby, the amount of communication of inter-vehicle communication can be suppressed.
  • the on-vehicle communication device 19 of the vehicle A outputs a control command (control packet) instructing the ADAS-ECU 16C1 to change the lane after the second notification process of step S7. Do. Thereby, a lane change is realized.
  • the vehicle A whose lane change is to be performed outputs the purpose of the lane change by inter-vehicle communication before the lane change is performed.
  • the other vehicles B and C that have received this notification by inter-vehicle communication it is possible to determine whether to give the lane based on the purpose (urgency) of the lane change of the vehicle A.
  • the vehicle A determines whether or not to execute the lane change based on the response of presence or absence of the change of the traveling behavior accompanying the lane change obtained from the vehicles B and C, and executes the lane change according to the determination result.
  • the vehicle A is likely to obtain cooperation for the lane change depending on the purpose of the lane change, and the success rate of the lane change can be increased.
  • the vehicle A when performing a lane change, the vehicle A gains BE based on at least one of the purpose of the lane change and the distance from the host vehicle to the target vehicle for each combination of traveling behavior of each vehicle. It is calculated, and the required vehicle is required to change the traveling behavior so that the gain BE becomes a large pattern. As a result, it is possible to suppress the loss as a whole of the target vehicle group and to improve the success rate of the smooth lane change coordinated with the surrounding vehicles.
  • control unit 191 of the in-vehicle communication device 19 performs all the adjustment processing.
  • the control unit 191 of the in-vehicle communication device 19 may perform the process of FIG. 6 in cooperation with other in-vehicle devices.
  • the control unit 21 of the relay device 20 may perform at least part of the processing. That is, the control unit 21 of the relay device 20 may function as at least one of the extraction unit 200, the calculation unit 199, the first notification unit 195, the acquisition unit 196, the determination unit 197, and the second notification unit 198.
  • control unit 191 of the in-vehicle communication device 19 may perform the process of FIG. 6 in cooperation with any of the ECUs 16.
  • the control unit 191 of the in-vehicle communication device 19 inputs information indicating the planned traveling route of each car to the ADAS-ECU 16C1 or the environment recognition ECU 16C2, and the ADAS-ECU 16C1 or the environment recognition ECU 16C2 executes an extraction process for extracting the target vehicle The result may be input to the in-vehicle communication device 19.
  • the ADAS-ECU 16C1 may execute calculation processing, and may input a gain (score) BE based on the traveling behavior of each of the target vehicle groups to the in-vehicle communication device 19.
  • the disclosed features are realized by one or more modules.
  • the feature can be realized by a circuit element or other hardware module, a software module that defines a process for realizing the feature, or a combination of a hardware module and a software module.
  • the program may be provided as a program that is a combination of one or more software modules for causing a computer to execute the above-described operations.
  • a program may be provided as a program product by being recorded on a computer readable recording medium such as a flexible disk, a CD-ROM (Compact Disk-ROM), a ROM, a RAM, and a memory card attached to a computer. It can.
  • the program can be provided by being recorded in a recording medium such as a hard disk built in the computer.
  • the program can be provided by downloading via a network.
  • the program according to the present disclosure is to call a necessary module among program modules provided as a part of an operating system (OS) of a computer in a predetermined arrangement at a predetermined timing to execute processing. It is also good. In that case, the program itself does not include the above module, and the processing is executed in cooperation with the OS. Programs not including such modules may also be included in the programs according to the present disclosure.
  • OS operating system
  • the program according to the present disclosure may be provided by being incorporated into a part of another program. Also in this case, the program itself does not include a module included in the other program, and the process is executed in cooperation with the other program. Programs incorporated into such other programs may also be included in the programs according to the present disclosure.
  • the provided program product is installed and executed in a program storage unit such as a hard disk.
  • the program product includes the program itself and a recording medium in which the program is recorded.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Traffic Control Systems (AREA)

Abstract

A vehicle-mounted device for a vehicle having a vehicle-to-vehicle communication function, said vehicle-mounted device being provided with a communication unit which transmits vehicle-to-vehicle communication frames to and receives vehicle-to-vehicle communication frames from another vehicle, and a control unit which performs information processing on data included in these vehicle-to-vehicle communication frames, wherein the control unit comprises: a first notification unit which causes the communication unit to transmit a vehicle-to-vehicle communication frame including the purpose of a lane change, before the lane change is attempted; an acquisition unit which acquires, from a vehicle-to-vehicle communication frame received from the other vehicle, a response indicating whether or not the lane change would, if executed, cause a change in the travel behavior of the other vehicle; a determination unit which determines whether or not to execute the lane change, on the basis of the response; and a second notification unit which causes the communication unit to transmit a vehicle-to-vehicle communication frame including the determination result.

Description

車載装置、判定方法、およびコンピュータプログラムIn-vehicle device, determination method, and computer program
 この発明は車載装置、判定方法、およびコンピュータプログラムに関する。 The present invention relates to an in-vehicle apparatus, a determination method, and a computer program.
 他車両との間で無線通信(車車間通信)を行い、他車両との間での安全を確保する運転支援を行う技術が提案されている。このような運転支援装置として、たとえば、特開平10-105880号公報、特開平10-307997号公報、および特開2014-67125号公報が、車車間通信を利用して自車の車線変更を行う旨の情報など、挙動を他車両に送信する装置を開示している。 A technology has been proposed that performs wireless communication (inter-vehicle communication) with another vehicle and performs driving support for securing safety with the other vehicle. As such a driving support device, for example, JP-A-10-105880, JP-A-10-307997 and JP-A-2014-67125 change the lane of the vehicle using inter-vehicle communication. Disclosed is an apparatus for transmitting behavior, such as information to the effect, to another vehicle.
特開平10-105880号公報JP 10-105 880 A 特開平10-307997号公報Japanese Patent Application Laid-Open No. 10-307997 特開2014-67125号公報JP, 2014-67125, A
 ある実施の形態に従うと、車載装置は車車間通信機能を有する車両の車載装置であって、他車両と車車間通信フレームを送受信する通信部と、車車間通信フレームに含まれるデータに情報処理を施す制御部と、を備え、制御部は、車線変更の実行前に、車線変更の目的を含む車車間通信フレームを通信部に送信させる第1通知部と、他車両からの車車間通信フレームから、車線変更に伴う他車両による走行挙動の変更の有無の応答を取得する取得部と、応答に基づいて、車線変更の実行の可否の判定を行う判定部と、判定の結果を含む車車間通信フレームを通信部に送信させる第2通知部と、を有する、車載装置。 According to an embodiment, the on-vehicle apparatus is an on-vehicle apparatus of a vehicle having an inter-vehicle communication function, and a communication unit that transmits and receives an inter-vehicle communication frame to another vehicle and information processing on data included in the inter-vehicle communication frame A control unit to perform the inter-vehicle communication frame from another vehicle and a first notification unit that causes the communication unit to transmit the inter-vehicle communication frame including the purpose of the lane change before the lane change is executed; An acquisition unit for acquiring a response of presence / absence of change in traveling behavior by another vehicle accompanying a lane change; a determination unit for determining whether to execute lane change based on the response; and inter-vehicle communication including the result of the determination And a second notification unit that causes the communication unit to transmit the frame.
 他の実施の形態に従うと、判定方法は、車車間通信機能を有する車両の車載装置において、車線変更の実行可否を判定する方法であって、車線変更の実行前に、車線変更の目的を含む車車間通信フレームを送信するステップと、他車両からの車車間通信フレームから、車線変更に伴う他車両による走行挙動の変更の有無の応答を取得するステップと、応答に基づいて、車線変更の実行の可否の判定を行うステップと、判定の結果を含む車車間通信フレームを送信するステップと、を備える。 According to another embodiment, the determination method is a method of determining whether to execute lane change in an on-vehicle apparatus of a vehicle having an inter-vehicle communication function, including the purpose of lane change before the lane change is executed. Step of transmitting an inter-vehicle communication frame, Step of acquiring from the inter-vehicle communication frame from another vehicle a response of presence / absence of change of traveling behavior by another vehicle accompanying lane change, and execution of lane change based on the response. And a step of transmitting an inter-vehicle communication frame including the result of the determination.
 他の実施の形態に従うと、コンピュータプログラムは車車間通信機能を有する車両の車載装置としてコンピュータを機能させるためのコンピュータプログラムであって、車載装置は他車両と車車間通信フレームを送受信する通信部を有し、コンピュータプログラムは、コンピュータを、車車間通信フレームに含まれるデータに情報処理を施す制御部として機能させ、制御部は、車線変更の実行前に、車線変更の目的を含む車車間通信フレームを通信部に送信させる第1通知部と、他車両からの車車間通信フレームから、車線変更に伴う他車両による走行挙動の変更の有無の応答を取得する取得部と、応答に基づいて、車線変更の実行の可否の判定を行う判定部と、判定の結果を含む車車間通信フレームを通信部に送信させる第2通知部と、を有する。 According to another embodiment, the computer program is a computer program for causing a computer to function as an on-vehicle apparatus of a vehicle having an inter-vehicle communication function, and the on-vehicle apparatus transmits a communication unit for transmitting and receiving an inter-vehicle communication frame with another vehicle. The computer program causes the computer to function as a control unit that processes information contained in the inter-vehicle communication frame, and the control unit performs an inter-vehicle communication frame including the purpose of the lane change before the lane change is executed. Based on the response from the first notification unit that causes the communication unit to transmit to the communication unit, the acquisition unit that acquires, from the inter-vehicle communication frame from another vehicle, the presence or absence of the change in travel behavior by the other vehicle accompanying the lane change; A determination unit that determines whether or not to execute the change; and a second notification unit that causes the communication unit to transmit an inter-vehicle communication frame including the determination result. A.
図1は、実施の形態にかかる通信システムの全体構成図である。FIG. 1 is an entire configuration diagram of a communication system according to an embodiment. 図2は、車内システムの構成を示すブロック図である。FIG. 2 is a block diagram showing the configuration of the in-vehicle system. 図3は、中継装置の内部構成を示すブロック図である。FIG. 3 is a block diagram showing an internal configuration of the relay apparatus. 図4は、車載通信機の内部構成を示すブロック図である。FIG. 4 is a block diagram showing an internal configuration of the in-vehicle communication device. 図5は、「予測走行挙動データ」の内容及び生成方法を示す説明図である。FIG. 5 is an explanatory view showing the contents and generation method of “predicted traveling behavior data”. 図6は、車載通信機における処理の概要の説明図である。FIG. 6 is an explanatory diagram of an outline of processing in the in-vehicle communication device. 図7は、車両A,B,Cの車載通信機における処理の流れを表したシーケンス図である。FIG. 7 is a sequence diagram showing the flow of processing in the on-vehicle communication devices of the vehicles A, B and C. 図8は、「緊急度の設定データ」の内容を示す説明図である。FIG. 8 is an explanatory view showing the contents of “setting data of urgency”. 図9は、車両Aでの算出処理の具体例を説明する説明図である。FIG. 9 is an explanatory view for explaining a specific example of calculation processing in the vehicle A. As shown in FIG. 図10は、車両Aでの算出処理の具体例を説明する説明図である。FIG. 10 is an explanatory view for explaining a specific example of calculation processing in the vehicle A. As shown in FIG.
<本開示が解決しようとする課題>
 車車間通信によって他車両に対して自車の車線変更を行う旨の情報を送信することによって車線変更が成功する可能性は高くなるものの、緊急性が高い場合には、より高い成功率が求められる。
<Issues the present disclosure is trying to solve>
Although the possibility of a successful lane change is high by transmitting information to the effect that the lane change of the host vehicle is to be made to another vehicle by inter-vehicle communication, a higher success rate is required if the urgency is high. Be
 本開示のある局面における目的は、他車両との間で無線通信(車車間通信)を行う車両において、周囲の車両と協調したスムーズな車線変更の成功率を高めることができる車載装置、判定方法、およびコンピュータプログラムを提供することである。 An object in a certain aspect of the present disclosure is an in-vehicle device capable of enhancing a success rate of smooth lane change coordinated with surrounding vehicles in a vehicle performing wireless communication (inter-vehicle communication) with another vehicle, and a determination method , And providing a computer program.
<本開示の効果>
 この開示によると、他車両との間で無線通信(車車間通信)を行う車両において、周囲の車両と協調したスムーズな車線変更の成功率を高めることができる。
<Effect of the present disclosure>
According to this disclosure, in a vehicle performing wireless communication (inter-vehicle communication) with another vehicle, it is possible to increase the success rate of smooth lane change coordinated with surrounding vehicles.
<実施の形態の説明>
 本実施の形態には、少なくとも以下のものが含まれる。すなわち、
 (1)本実施の形態に含まれる車載装置は車車間通信機能を有する車両の車載装置であって、他車両と車車間通信フレームを送受信する通信部と、車車間通信フレームに含まれるデータに情報処理を施す制御部と、を備え、制御部は、車線変更の実行前に、車線変更の目的を含む車車間通信フレームを通信部に送信させる第1通知部と、他車両からの車車間通信フレームから、車線変更に伴う他車両による走行挙動の変更の有無の応答を取得する取得部と、応答に基づいて、車線変更の実行の可否の判定を行う判定部と、判定の結果を含む車車間通信フレームを通信部に送信させる第2通知部と、を有する。
 車線変更の目的を他車両に通知することによって、他車両では、当該目的に基づいて車線変更に伴う走行挙動を変更するか否かを判定することができる。当該判定結果を示す応答に基づいて車線変更の実行の可否を判定することで、車線変更の目的によっては他車両において当該車線変更に伴う走行挙動の変更が行われる可能性が高くなり、車線変更の成功率を高めることができる。
<Description of the embodiment>
The present embodiment includes at least the following. That is,
(1) The on-vehicle apparatus included in the present embodiment is an on-vehicle apparatus of a vehicle having an inter-vehicle communication function, and includes a communication unit that transmits and receives an inter-vehicle communication frame to another vehicle and data included in the inter-vehicle communication frame. A control unit that performs information processing, the control unit transmitting a first inter-vehicle communication frame including the purpose of the lane change to the communication unit before the lane change is executed, and an inter-vehicle distance from another vehicle An acquisition unit for acquiring from the communication frame a response of presence / absence of change in traveling behavior by another vehicle accompanying lane change, a determination unit for determining whether to execute lane change based on the response, and a result of the determination. And a second notification unit that causes the communication unit to transmit the inter-vehicle communication frame.
By notifying the other vehicle of the purpose of the lane change, the other vehicle can determine, based on the purpose, whether to change the traveling behavior accompanying the lane change. By determining whether or not to execute the lane change based on the response indicating the determination result, there is a high possibility that the other vehicle will change the travel behavior accompanying the lane change depending on the purpose of the lane change, and the lane change Can increase the success rate of
 (2)好ましくは、制御部は、さらに、下記の利得を算出する算出部を有し、判定部は、応答と利得とに基づいて判定を行う。
  利得:自車両および他車両それぞれの走行挙動による自車両および他車両からなる対象車両群における損失度合い
 他車両における走行挙動の変更の有無と利得とに基づいて車線変更の実行の可否を判定することで、対象車両群全体として損失を考慮して車線変更の実行の可否を判定することができる。その結果、周囲の車両と協調したスムーズな車線変更の成功率を高めることができる。
(2) Preferably, the control unit further includes a calculation unit that calculates the following gain, and the determination unit makes the determination based on the response and the gain.
Gain: The degree of loss in the target vehicle group consisting of the own vehicle and the other vehicle according to the respective behaviors of the own vehicle and the other vehicle It is determined whether or not the lane change can be performed based on the presence and the gain of the change of the traveling behavior in the other vehicle. Thus, it is possible to determine whether the lane change can be performed, taking into consideration the loss of the entire target vehicle group. As a result, it is possible to improve the success rate of smooth lane change coordinated with surrounding vehicles.
 (3)好ましくは、算出部は、車線変更の目的、および自車両と他車両との間の距離のうちの少なくとも一方に基づいて利得を算出する。
 これにより、車線変更の目的と他車両による走行挙動の変更のしやすさとの少なくとも一方を考慮して車線変更の可否を判定することができる。
(3) Preferably, the calculation unit calculates the gain based on at least one of the purpose of the lane change and the distance between the host vehicle and the other vehicle.
In this way, it is possible to determine whether or not the lane change can be made in consideration of at least one of the purpose of the lane change and the ease with which the other vehicle can change the traveling behavior.
 (4)好ましくは、制御部は、さらに、他車両のうちから下記の対象車両を抽出する抽出部を有し、算出部は、自車両および対象車両についての利得を算出する。
  対象車両:自車両の車線変更に関連する走行挙動を有する車両
 他車両から対象車両を抽出することによって、自車両および他車両の処理量を抑えることができる。
(4) Preferably, the control unit further includes an extraction unit that extracts the following target vehicle from other vehicles, and the calculation unit calculates gains of the host vehicle and the target vehicle.
Target vehicle: Vehicle having traveling behavior related to lane change of own vehicle By extracting the target vehicle from the other vehicle, it is possible to suppress the throughput of the own vehicle and the other vehicle.
 (5)好ましくは、第1通知部が通信部に送信させる車車間通信フレームは、算出された利得のうちの損失度合いが最も小さい利得に示される、対象車両のうちの走行挙動の変更が必要な車両に対する車線変更の目的を含む。
 これにより、対象車両群全体として損失を抑え、周囲の車両と協調したスムーズな車線変更の成功率を高めることができる。
(5) Preferably, in the inter-vehicle communication frame that the first notification unit causes the communication unit to transmit, it is necessary to change the traveling behavior of the target vehicle indicated by the gain with the smallest loss degree of the calculated gains. The purpose of changing lanes for different vehicles.
As a result, it is possible to suppress the loss as a whole of the target vehicle group and to improve the success rate of the smooth lane change coordinated with the surrounding vehicles.
 (6)好ましくは、判定部は、すべての走行挙動の変更が必要な車両からの応答が走行挙動の変更無しの場合であっても、車線変更の目的の緊急度が高い場合には車線変更が実行可能と判定する。
 これにより、車線変更の目的の緊急度が高い場合には、他車両における走行挙動の変更が行われない場合であっても車線変更が実現される。
(6) Preferably, the determination unit changes the lane if the urgent purpose of the lane change is high even if the response from the vehicle requiring a change in all the traveling behavior is no change in the traveling behavior. Is determined to be executable.
As a result, when the degree of urgency of the purpose of the lane change is high, the lane change is realized even if the change in the traveling behavior of the other vehicle is not performed.
 (7)本実施の形態に含まれる判定方法は、(1)~(6)のいずれか1項に記載の車載において、車線変更の実行の可否を判定する方法である。
 かかる判定方法は、上記(1)~(6)の車載装置と同様の効果を奏する。
(7) The determination method included in the present embodiment is a method of determining whether or not to execute the lane change in the on-vehicle described in any one of (1) to (6).
This determination method has the same effects as the above-described in-vehicle devices (1) to (6).
 (8)本実施の形態に含まれるコンピュータプログラムは、コンピュータを、(1)~(6)のいずれか1つに記載の車載装置として機能させる。
 かかるコンピュータプログラムは、上記(1)~(6)の車載装置と同様の効果を奏する。
(8) A computer program included in the present embodiment causes a computer to function as the in-vehicle device according to any one of (1) to (6).
Such a computer program exhibits the same effects as those of the in-vehicle apparatus of the above (1) to (6).
<実施形態の詳細>
 以下、図面を参照して、実施形態の詳細を説明する。なお、以下に記載する実施形態の少なくとも一部を任意に組み合わせてもよい。
 [通信システムの全体構成]
 図1は、実施形態に係る通信システムの全体構成図である。
 図1に示すように、本実施形態の通信システムは、複数の車両1にそれぞれ搭載された車載通信機(車載装置)19を備える。
<Details of the embodiment>
Hereinafter, the details of the embodiment will be described with reference to the drawings. Note that at least a part of the embodiments described below may be arbitrarily combined.
[Overall configuration of communication system]
FIG. 1 is an overall configuration diagram of a communication system according to an embodiment.
As shown in FIG. 1, the communication system of the present embodiment includes an in-vehicle communication device (in-vehicle device) 19 mounted on each of a plurality of vehicles 1.
 車載通信機19は、道路を通行中の他車両1との間で無線通信(車車間通信)を行う無線通信機である。従って、本実施形態では、車両1の車載通信機19を「車車間通信装置19」ともいい、通信システムを「車車間通信システム」ともいう。
 本実施形態では、車載通信機19は、CSMA/CA(Carrier Sense Multiple Access/ Collision Avoidance)方式によるマルチアクセス方式を採用している。
The in-vehicle communication device 19 is a wireless communication device that performs wireless communication (inter-vehicle communication) with another vehicle 1 traveling on the road. Therefore, in the present embodiment, the in-vehicle communication device 19 of the vehicle 1 is also referred to as "inter-vehicle communication device 19", and the communication system is also referred to as "inter-vehicle communication system".
In the present embodiment, the in-vehicle communication device 19 adopts a multi-access method based on a carrier sense multiple access / collision avoidance (CSMA / CA) method.
 より具体的には、車載通信機19は、例えば「700MHz帯高度道路交通システム標準規格(ARIB STD-T109)」に倣ったマルチアクセス方式を採用している。
 この方式によれば、車載通信機19は、車車間通信の通信フレームを所定時間(例えば0.1秒)ごとにブロードキャスト送信する。従って、車車間通信を実行中の車両1は、無線信号の送受信範囲に含まれる他車両から受信した通信フレームにより、自車両の周囲の他車両の車両情報をほぼリアルタイムで察知することができる。
More specifically, the in-vehicle communication device 19 adopts, for example, a multi-access method that conforms to the "700 MHz band intelligent traffic system standard (ARIB STD-T109)".
According to this method, the in-vehicle communication device 19 broadcasts a communication frame for inter-vehicle communication at predetermined time intervals (for example, 0.1 seconds). Therefore, the vehicle 1 executing inter-vehicle communication can detect the vehicle information of the other vehicle around the own vehicle in substantially real time by the communication frame received from the other vehicle included in the transmission / reception range of the wireless signal.
 車車間通信の通信方式は、上記の標準規格に限定されるものではなく、例えば3GPPのセルラーV2Vなど、携帯電話向けの通信技術を車両1の無線通信に応用したものであってもよい。 The communication system for inter-vehicle communication is not limited to the above standard, and may be a communication technology for mobile phones, such as cellular V2V of 3GPP, applied to wireless communication of the vehicle 1.
 [車内システムの構成]
 図2は、車内システムの構成を示すブロック図である。
 図2に示すように、各車両1は、車内システム10を備える。車内システム10は、中継装置20と、通信ネットワーク12と、通信ネットワーク12に属するECUにより電子制御される各種の車載機器とを含む。
[In-vehicle system configuration]
FIG. 2 is a block diagram showing the configuration of the in-vehicle system.
As shown in FIG. 2, each vehicle 1 includes an in-vehicle system 10. The in-vehicle system 10 includes a relay device 20, a communication network 12, and various on-vehicle devices electronically controlled by an ECU belonging to the communication network 12.
 通信ネットワーク12は、中継装置20において終端する複数の車内通信線13と、各車内通信線13に接続された複数の車載制御装置(以下、「ECU」という。)16と、を備える。
 通信ネットワーク12は、ECU16相互間の通信が可能であり、中継装置20を終端ノード(親機)とするマスター/スレーブ型の通信ネットワーク(例えば、LIN(Local Interconnect Network))よりなる。中継装置20は、複数の通信ネットワーク12を制御する。
The communication network 12 includes a plurality of in-vehicle communication lines 13 terminating in the relay device 20, and a plurality of in-vehicle control devices (hereinafter referred to as "ECUs") 16 connected to the in-vehicle communication lines 13.
The communication network 12 can communicate among the ECUs 16, and is formed of a master / slave communication network (for example, LIN (Local Interconnect Network)) in which the relay device 20 is a terminal node (master device). The relay device 20 controls a plurality of communication networks 12.
 通信ネットワーク12は、LINだけでなく、CAN(Controller Area Network)、CANFD(CAN with Flexible Data Rate)、Ethernet(登録商標)、又はMOST(Media Oriented Systems Transport:MOSTは登録商標)などの通信規格を採用するネットワークであってもよい。
 また、通信ネットワーク12のネットワーク構成としては、中継装置20と少なくとも1つのECU16が含まれておればよい。
The communication network 12 includes communication standards such as CAN (Controller Area Network), CANFD (CAN with Flexible Data Rate), Ethernet (registered trademark), or MOST (Media Oriented Systems Transport: MOST is a registered trademark) as well as LIN. It may be a network to be adopted.
Further, the network configuration of the communication network 12 may include the relay device 20 and at least one ECU 16.
 以下において、通信ネットワークの共通符号を「12」とし、通信ネットワークの個別符号を「12A~12C」とする。また、ECUの共通符号を「16」とし、ECUの個別符号を「16A1~16A4」、「16B1~16B3」及び「16C1~16C2」とする。 In the following, the common code of the communication network is “12”, and the individual codes of the communication network are “12A to 12C”. Further, the common code of the ECU is “16”, and the individual codes of the ECU are “16A1 to 16A4”, “16B1 to 16B3” and “16C1 to 16C2”.
 各通信ネットワーク12A,12B,12Cは、車両1の異なる制御分野をそれぞれ分担している。
 例えば、通信ネットワーク12Aには、車両1の駆動機器を制御対象とするパワー系ECUが接続されている。通信ネットワーク12Bには、車両1の情報機器を制御対象とするマルチメディア系ECUが接続されている。通信ネットワーク12Cには、車両1の運転操作を支援する先進運転支援システム(ADAS:Advanced Driver-Assistance Systems)を制御対象とするADAS系ECUが接続されている。
The communication networks 12A, 12B, 12C share the different control fields of the vehicle 1, respectively.
For example, to the communication network 12A, a power system ECU whose control target is the drive device of the vehicle 1 is connected. Connected to the communication network 12B is a multimedia ECU that controls information equipment of the vehicle 1. Connected to the communication network 12C is an ADAS-based ECU whose control target is an advanced driver assistance system (ADAS: Advanced Driver-Assistance Systems) that supports the driving operation of the vehicle 1.
 通信ネットワーク12は、上記の3種類に限らず4種類以上であってもよい。また、通信ネットワーク12に対応付ける制御分野は、車両メーカーの設計思想に応じて様々であり、上記の制御分野の分担に限定されるものではない。 The communication network 12 is not limited to the above three types, but may be four or more types. Further, the control field corresponding to the communication network 12 varies depending on the design concept of the vehicle manufacturer, and is not limited to the sharing of the control field described above.
 具体的には、通信ネットワーク12Aに接続されているパワー系ECUには、例えば、エンジンECU16A1、EPS-ECU16A2、ブレーキECU16A3、及びABS-ECU16A4などが含まれる。
 エンジンECU16A1には、エンジンの燃料噴射装置31が接続されており、燃料噴射装置31は、エンジンECU16A1によって制御される。
Specifically, the power ECUs connected to the communication network 12A include, for example, an engine ECU 16A1, an EPS-ECU 16A2, a brake ECU 16A3, and an ABS-ECU 16A4.
The engine ECU 16A1 is connected to a fuel injection device 31 of the engine, and the fuel injection device 31 is controlled by the engine ECU 16A1.
 EPS-ECU16A2には、EPS(Electric Power Steering:電動パワーステアリング)32が接続されており、EPS32は、EPS-ECU16A2によって制御される。ブレーキECU16A3には、ブレーキアクチュエータ33が接続されており、ブレーキアクチュエータ33は、ブレーキECU16A3によって制御される。
 ABS-ECU16A4には、ABS(Antilock Brake System)アクチュエータ34が接続されており、ABSアクチュエータ34は、ABS-ECU16A4によって制御される。
An EPS (Electric Power Steering: Electric Power Steering) 32 is connected to the EPS-ECU 16A2, and the EPS 32 is controlled by the EPS-ECU 16A2. A brake actuator 33 is connected to the brake ECU 16A3, and the brake actuator 33 is controlled by the brake ECU 16A3.
An ABS (Antilock Brake System) actuator 34 is connected to the ABS-ECU 16A4, and the ABS actuator 34 is controlled by the ABS-ECU 16A4.
 通信ネットワーク12Bに接続されているマルチメディア系ECUには、例えば、ナビゲーションECU16B1、メータECU16B2、及びHUD-ECU16B3などが含まれる。
 ナビゲーションECU16B1には、HDD(Hard Disk Drive)41、ディスプレイ42、GPS(Global Positioning System)受信機43、車速センサ44、ジャイロセンサ45、スピーカ46、及び入力デバイス47が接続されている。
The multimedia ECU connected to the communication network 12B includes, for example, a navigation ECU 16B1, a meter ECU 16B2, and a HUD-ECU 16B3.
An HDD (Hard Disk Drive) 41, a display 42, a GPS (Global Positioning System) receiver 43, a vehicle speed sensor 44, a gyro sensor 45, a speaker 46, and an input device 47 are connected to the navigation ECU 16B1.
 ディスプレイ42とスピーカ46は、各種情報を自車両の搭乗者に提示するための出力装置である。具体的には、ディスプレイ42は、自車両周辺の地図画像及び目的地までの経路情報などを表示し、スピーカ46は、自車両を目的地に誘導するためのアナウンスを音声出力する。
 入力デバイス47は、搭乗者が目的地等の各種入力を行うためのものであり、操作スイッチ、ジョイスティック、或いはディスプレイ42に設けたタッチパネル等の各種入力手段により構成される。
The display 42 and the speaker 46 are output devices for presenting various information to the passenger of the vehicle. Specifically, the display 42 displays a map image around the host vehicle, route information to the destination, and the like, and the speaker 46 outputs a voice announcement for guiding the host vehicle to the destination.
The input device 47 is for the passenger to perform various inputs such as a destination, and is constituted by various input means such as an operation switch, a joystick, or a touch panel provided on the display 42.
 ナビゲーションECU16B1は、GPS受信機43が定期的に取得したGPS信号から現時点の時刻を取得する時刻同期機能と、GPS信号から自車両の絶対位置(緯度、経度及び高度)を求める位置検出機能と、車速センサ44及びジャイロセンサ45によって自車両の位置及び方位を補間して自車両の正確な現在位置及び方位を求める補間機能などを有する。
 ナビゲーションECU16B1は、求めた現在位置に応じてHDD41に格納された地図情報を読み出し、地図情報に自車両の現在位置を重ねた地図画像を生成する。そして、ナビゲーションECU16B1は、ディスプレイ42に地図画像を表示させ、その地図画像に現在位置から目的地までの経路情報などを表示する。
The navigation ECU 16B1 has a time synchronization function of acquiring the current time from the GPS signal periodically acquired by the GPS receiver 43, and a position detection function of calculating an absolute position (latitude, longitude and altitude) of the vehicle from the GPS signal; It has an interpolation function that interpolates the position and orientation of the vehicle by the vehicle speed sensor 44 and the gyro sensor 45 to obtain the accurate current position and orientation of the vehicle.
The navigation ECU 16B1 reads the map information stored in the HDD 41 according to the obtained current position, and generates a map image in which the current position of the vehicle is superimposed on the map information. Then, the navigation ECU 16B1 displays a map image on the display 42, and displays route information and the like from the current position to the destination on the map image.
 メータECU16B2には、メータアクチュエータ48が接続されてり、メータアクチュエータ48は、メータECU16B2によって制御される。HUD-ECU16B3には、HUD(Head-Up Display)49が接続されており、HUD49は、HUD-ECU16B3によって制御される。 A meter actuator 48 is connected to the meter ECU 16B2, and the meter actuator 48 is controlled by the meter ECU 16B2. A HUD (Head-Up Display) 49 is connected to the HUD-ECU 16B3, and the HUD 49 is controlled by the HUD-ECU 16B3.
 通信ネットワーク12Cに接続されているADAS系ECUには、例えば、ADAS-ECU16C1、及び環境認識ECU16C2などが含まれる。
 環境認識ECU16C2には、第1センサ51及び第2センサ52が接続されており、第1及び第2センサ51,52は、環境認識ECU16C2によって制御される。
The ADAS ECU connected to the communication network 12C includes, for example, an ADAS-ECU 16C1 and an environment recognition ECU 16C2.
A first sensor 51 and a second sensor 52 are connected to the environment recognition ECU 16C2, and the first and second sensors 51 and 52 are controlled by the environment recognition ECU 16C2.
 第1センサ51は、例えば、車両1の前後左右の四隅に配置された超音波センサやビデオカメラなどよりなる(図1参照)。
 前側に設けられた第1センサ51は、主として自車両の前方に存在する物体を検出するためのセンサであり、後側に設けられた第1センサ51は、主として自車両の後方に存在する物体を検出するためのセンサである。
The first sensor 51 is, for example, an ultrasonic sensor, a video camera, or the like disposed at four corners in the front, rear, left, and right of the vehicle 1 (see FIG. 1).
The first sensor 51 provided on the front side is a sensor mainly for detecting an object present on the front of the vehicle, and the first sensor 51 provided on the rear side is an object mainly present on the rear of the vehicle Is a sensor for detecting
 第2センサ52は、例えば、車両1の天井部分に配置された超音波センサやビデオカメラなどよりなる(図1参照)。第2センサ52は、鉛直軸心回りに比較的高速で回転自在となっており、自車両の周囲に存在する物体を検出するためのセンサである。
 第1及び第2センサ51,52のセンシング結果は、環境認識ECU16C2によって通信パケットに格納されてADAS-ECU16C1に送信される。
The second sensor 52 is, for example, an ultrasonic sensor, a video camera, or the like disposed in a ceiling portion of the vehicle 1 (see FIG. 1). The second sensor 52 is rotatable at a relatively high speed around the vertical axis, and is a sensor for detecting an object present around the host vehicle.
The sensing results of the first and second sensors 51 and 52 are stored in a communication packet by the environment recognition ECU 16C2 and transmitted to the ADAS-ECU 16C1.
 ADAS-ECU16C1は、第1及び第2センサ51,52のセンシング結果に基づいて、例えばレベル1~4までのいずれかの自動運転を実行可能である。自動運転のレベルはSAE(Society of Automotive Engineers)インターナショナルのJ3016(2016年9月)に定義が記載されている。
 「官民ITS構想・ロードマップ2017」も当該定義を採用している。このロードマップでは、レベル3以上の自動運転を「高度自動運転」と呼び、レベル4及び5の自動運転を「完全自動運転」と呼ぶ。本実施形態における「自動運転」は、レベル2以上の自動運転を意味する。
The ADAS-ECU 16C1 can execute any one of, for example, levels 1 to 4 based on the sensing results of the first and second sensors 51 and 52. The level of automatic driving is defined in SAE (Society of Automotive Engineers) International, J3016 (September 2016).
The “public-private ITS concept road map 2017” also adopts this definition. In this roadmap, level 3 or higher automatic driving is called "high-level automatic driving", and level 4 and 5 automatic driving is called "fully automatic driving". The "automatic operation" in the present embodiment means an automatic operation at level 2 or higher.
 ADAS-ECU16C1は、レベル5の自動運転を実行可能であってもよいが、本出願時点では、レベル5の自動運転を行う車両1は未だ実現されていない。 The ADAS-ECU 16C1 may be capable of performing level 5 automatic driving, but at the time of the present application, the vehicle 1 performing level 5 automatic driving has not been realized yet.
 レベル1~3までの自動運転(以下、「支援運転」ともいう。)の例としては、第1センサ51によって検出した物体と自車両の間の距離から衝突可能性を予測し、衝突可能性が高いと判断した場合に減速介入したり、搭乗者に注意喚起したりするように、パワー系ECUやマルチメディア系ECUに制御指令を送信するものがある。 As an example of automatic driving up to levels 1 to 3 (hereinafter, also referred to as “assisted driving”), the possibility of collision is predicted from the distance between the object detected by the first sensor 51 and the host vehicle, The control command is transmitted to the power system ECU or the multimedia system ECU so as to intervene in the deceleration or alert the passenger when it is determined that the vehicle speed is high.
 レベル4及び5の自動運転(以下、「自律運転」ともいう。)の例としては、第1及び第2センサ51,52によって検出した物体に予期される挙動を、過去の挙動の深層学習などにより予測し、予測した挙動に基づいて自車両が目的位置に指向するように、パワー系ECUやマルチメディア系ECUに制御指令を送信するものがある。 As an example of level 4 and 5 automatic operation (hereinafter, also referred to as "autonomous operation"), behavior expected to an object detected by the first and second sensors 51 and 52, deep learning of past behavior, etc. There are some which transmit a control command to a power system ECU or a multimedia system ECU so that the host vehicle is pointed to the target position based on the predicted behavior predicted by the above.
 ADAS-ECU16C1は、第1及び第2センサ51,52によるセンシング結果を利用せず、搭乗者の手動運転に切り替えることもできる。
 このように、本実施形態の車両1は、レベル4の自律運転モードの実行が可能であるとともに、ダウングレードした動作モードとして、レベル1~3の支援運転モード又は手動運転モード(レベル0)のいずれかを実行することができる。動作モードの切り替えは、搭乗者による手動の操作入力などによって行われる。
The ADAS-ECU 16C1 can also switch to a manual operation of the passenger without using the sensing results by the first and second sensors 51 and 52.
Thus, the vehicle 1 of the present embodiment is capable of executing the level 4 autonomous operation mode, and as the downgraded operation mode, the vehicle 1 of the level 1 to 3 assisted operation mode or the manual operation mode (level 0) You can do either. The switching of the operation mode is performed by a manual operation input by the passenger or the like.
 中継装置20は、ECU16を制御するために制御パケット(以下、「制御指令」ともいう。)を送信する。ECU16は、受信した制御パケットに含まれる指令内容に従って、担当する対象機器に対して所定の制御を実行する。 The relay device 20 transmits a control packet (hereinafter, also referred to as “control command”) to control the ECU 16. The ECU 16 executes predetermined control on the target device in charge according to the content of the command included in the received control packet.
 自律運転モードを制御する場合、中継装置20は、環境認識ECU16C2から受信した第1及び第2センサ51,52のセンシング結果に基づいて、通信ネットワーク12Aの各ECU16A1~16A4に対して、制御指令を含む制御パケットを送信する。 When controlling the autonomous operation mode, the relay device 20 sends control commands to the ECUs 16A1 to 16A4 of the communication network 12A based on the sensing results of the first and second sensors 51 and 52 received from the environment recognition ECU 16C2. Send control packet including.
 そして、中継装置20から制御パケットを受信した各ECU16A1~16A4が、制御パケットに含まれる指令内容に従って、燃料噴射装置31、EPS32、ブレーキアクチュエータ33、及びABSアクチュエータ34をそれぞれ制御することにより、自律運転モードが実行される。 Then, each of the ECUs 16A1 to 16A4 having received the control packet from the relay device 20 controls the fuel injection device 31, the EPS 32, the brake actuator 33, and the ABS actuator 34 according to the content of the command included in the control packet, thereby autonomous operation. Mode is executed.
 車内システム10は、更に、他車両1と無線通信を行う車載通信機19を備える。車載通信機19は、所定規格の通信線を介して中継装置20に接続されている。中継装置20は、他車両1から車載通信機19が受信した情報をECU16に中継する。 The in-vehicle system 10 further includes an in-vehicle communication device 19 that performs wireless communication with the other vehicle 1. The in-vehicle communication device 19 is connected to the relay device 20 via a communication line of a predetermined standard. The relay device 20 relays the information received by the in-vehicle communication device 19 from the other vehicle 1 to the ECU 16.
 中継装置20は、ECU16から受信した情報を、車載通信機19に中継する。車載通信機19は、中継された情報を他車両1に無線送信する。
 車両1に搭載される車載通信機19は、ユーザが所有する携帯電話機、スマートフォン、タブレット型端末、ノートPC(Personal Computer)等の装置であってもよい。
The relay device 20 relays the information received from the ECU 16 to the in-vehicle communication device 19. The in-vehicle communication device 19 wirelessly transmits the relayed information to the other vehicle 1.
The in-vehicle communication device 19 mounted on the vehicle 1 may be a device owned by a user, such as a mobile phone, a smartphone, a tablet terminal, or a notebook PC (Personal Computer).
 [中継装置の構成]
 図3は、中継装置20の内部構成を示すブロック図である。
 図3に示すように、車両1の中継装置20は、制御部21、記憶部22、及び車内通信部23などを備える。
[Configuration of relay device]
FIG. 3 is a block diagram showing an internal configuration of the relay device 20. As shown in FIG.
As shown in FIG. 3, the relay device 20 of the vehicle 1 includes a control unit 21, a storage unit 22, an in-vehicle communication unit 23, and the like.
 中継装置20の制御部21は、CPU(Central Processing Unit)を含む。制御部21のCPUは、記憶部22等に記憶された1又は複数のプログラムを読み出して、各種処理を実行するための機能を有している。
 制御部21のCPUは、例えば時分割で複数のプログラムを切り替えて実行することにより、複数のプログラムを並列的に実行可能である。
The control unit 21 of the relay device 20 includes a CPU (Central Processing Unit). The CPU of the control unit 21 has a function of reading one or a plurality of programs stored in the storage unit 22 or the like to execute various processes.
The CPU of the control unit 21 can execute a plurality of programs in parallel by switching and executing a plurality of programs in time division, for example.
 制御部21のCPUは、1又は複数の大規模集積回路(LSI)を含む。複数のLSIを含むCPUでは、複数のLSIが協働して当該CPUの機能を実現する。 The CPU of the control unit 21 includes one or more large scale integrated circuits (LSI). In a CPU including a plurality of LSIs, the plurality of LSIs cooperate to realize the function of the CPU.
 制御部21のCPUが実行するコンピュータプログラムは、予め工場で書き込まれていてもよいし、特定のツールを介して提供されてもよいし、または、サーバコンピュータなどのコンピュータ装置からのダウンロードによって譲渡することもできる。 The computer program executed by the CPU of the control unit 21 may be written in advance at the factory, may be provided via a specific tool, or is transferred by downloading from a computer device such as a server computer. It can also be done.
 記憶部22は、フラッシュメモリ若しくはEEPROM(Electrically Erasable Programmable Read Only Memory)などの不揮発性のメモリ素子よりなる。
 記憶部22は、制御部21のCPUが実行するプログラム及び実行に必要なデータなどを記憶する記憶領域を有する。
The storage unit 22 is formed of a non-volatile memory element such as a flash memory or an EEPROM (Electrically Erasable Programmable Read Only Memory).
The storage unit 22 has a storage area for storing a program executed by the CPU of the control unit 21 and data required for the execution.
 車内通信部23には、車両1に配設された複数の車内通信線13が接続されている。車内通信部23は、LINなどの所定の通信規格に則ってECU16と通信する通信装置よりなる。
 車内通信部23は、制御部21のCPUから与えられた情報を所定のECU16宛てに送信し、ECU16が送信元の情報を制御部21のCPUに与える。
A plurality of in-vehicle communication lines 13 disposed in the vehicle 1 are connected to the in-vehicle communication unit 23. The in-vehicle communication unit 23 includes a communication device that communicates with the ECU 16 in accordance with a predetermined communication standard such as LIN.
The in-vehicle communication unit 23 transmits information given from the CPU of the control unit 21 to a predetermined ECU 16, and the ECU 16 gives information on the transmission source to the CPU of the control unit 21.
 車載通信機19は、制御部21から与えられた情報を他車両1に送信するとともに、他車両1から受信した情報を制御部21に与える。
 図3の例では、車載通信機19が他車両1と車車間通信を行う車載装置として例示しているが、中継装置20が無線通信の機能を有する場合には、中継装置20自身が他車両1と車車間通信を行う車載装置としてもよい。
The in-vehicle communication device 19 transmits the information given from the control unit 21 to the other vehicle 1 and gives the information received from the other vehicle 1 to the control unit 21.
In the example of FIG. 3, the on-vehicle communication device 19 is illustrated as an on-vehicle device that performs inter-vehicle communication with the other vehicle 1. However, when the relay device 20 has a wireless communication function, the relay device 20 itself is the other vehicle It may be an on-vehicle device that performs inter-vehicle communication with the device 1.
 [車載通信機の構成]
 図4は、車載通信機19の内部構成を示すブロック図である。
 図4に示すように、車載通信機19は、制御部191、記憶部192、及び無線通信部193などを備える。
[Configuration of in-vehicle communication device]
FIG. 4 is a block diagram showing an internal configuration of the in-vehicle communication device 19.
As shown in FIG. 4, the in-vehicle communication device 19 includes a control unit 191, a storage unit 192, a wireless communication unit 193, and the like.
 車載通信機19の制御部191は、CPUを含む。制御部191のCPUは、記憶部192等に記憶された1又は複数のプログラムを読み出して、各種処理を実行するための機能を有している。
 制御部191のCPUは、例えば時分割で複数のプログラムを切り替えて実行することにより、複数のプログラムを並列的に実行可能である。
The control unit 191 of the in-vehicle communication device 19 includes a CPU. The CPU of the control unit 191 has a function of reading out one or more programs stored in the storage unit 192 or the like to execute various processes.
The CPU of the control unit 191 can execute a plurality of programs in parallel by switching and executing a plurality of programs in time division, for example.
 制御部191のCPUは、1又は複数の大規模集積回路(LSI)を含む。複数のLSIを含むCPUでは、複数のLSIが協働して当該CPUの機能を実現する。 The CPU of the control unit 191 includes one or more large scale integrated circuits (LSI). In a CPU including a plurality of LSIs, the plurality of LSIs cooperate to realize the function of the CPU.
 制御部191のCPUが実行するコンピュータプログラムは、予め工場で書き込まれていてもよいし、特定のツールを介して提供されてもよいし、または、サーバコンピュータなどのコンピュータ装置からのダウンロードによって譲渡することもできる。 The computer program executed by the CPU of the control unit 191 may be written in advance at the factory, may be provided via a specific tool, or is transferred by downloading from a computer device such as a server computer. It can also be done.
 記憶部192は、フラッシュメモリ若しくはEEPROMなどの不揮発性のメモリ素子よりなる。
 記憶部192は、制御部191のCPUが実行するプログラム及び実行に必要なデータなどを記憶する記憶領域を有する。
The storage unit 192 is formed of a non-volatile memory element such as a flash memory or an EEPROM.
The storage unit 192 has a storage area for storing a program executed by the CPU of the control unit 191 and data required for the execution.
 無線通信部193には、無線通信のためのアンテナ194が接続されている。無線通信部193は、制御部191から与えられた情報をアンテナ194から他車両1に送信するとともに、他車両1からアンテナ194により受信した情報を制御部191に与える。
 制御部191のCPUは、無線通信部193から与えられた情報を中継装置20に送信し、中継装置20から受信した情報を無線通信部193に与える。
An antenna 194 for wireless communication is connected to the wireless communication unit 193. The wireless communication unit 193 transmits the information given from the control unit 191 to the other vehicle 1 from the antenna 194 and gives the information received from the other vehicle 1 by the antenna 194 to the control unit 191.
The CPU of the control unit 191 transmits the information provided from the wireless communication unit 193 to the relay device 20, and provides the wireless communication unit 193 with the information received from the relay device 20.
 [予測走行挙動データの内容及び生成方法]
 図5は、車載通信機19が車車間通信により他車両1に送信する「予測走行挙動データ」の内容及び生成方法を示す説明図である。予測走行挙動データDには、現時点から比較的短い所定時間(例えば10秒)だけ未来の予測期間Tc内の時刻と、その時刻における車両1の絶対位置及び方位などの情報が含まれる。
[Contents and Method of Generating Predicted Driving Behavior Data]
FIG. 5 is an explanatory view showing the contents and generation method of “predicted travel behavior data” transmitted by the on-vehicle communication device 19 to the other vehicle 1 by inter-vehicle communication. The predicted driving behavior data D includes information such as the time within the prediction period Tc in the future for a relatively short predetermined time (for example, 10 seconds) from the current time, and the absolute position and orientation of the vehicle 1 at that time.
 予測期間Tc内の時刻と、車両1の絶対位置及び方位は、以下のように算出される。例えば、図5の下段に示す道路平面図において、車両1が車線R1を自動運転で走行している場合、車両1のADAS-ECU16C1は、現時点t0で実行中の自動運転の内容に応じて、予測期間Tc中における走行予定ルートを算出し、算出した走行予定ルートを車載通信機19に送信する。 The time within the prediction period Tc and the absolute position and orientation of the vehicle 1 are calculated as follows. For example, in the road plan view shown in the lower part of FIG. 5, when the vehicle 1 travels in the lane R1 by automatic driving, the ADAS-ECU 16C1 of the vehicle 1 responds to the contents of automatic driving being executed at the present time t0. A travel planned route during the prediction period Tc is calculated, and the calculated travel planned route is transmitted to the in-vehicle communication device 19.
 車載通信機19は、受信した走行予定ルートと地図情報とのマップマッチング処理等を行って、予測期間Tc中における車両1の複数の離散位置(絶対位置)と、各離散位置における車両1の方位を算出する。具体的には、予測期間Tc中において車両1が車線R1を直進し続ける場合、車載通信機19は、車線R1に沿って直線状の走行予定ルート(図5の破線で示す矢印)上において、一定又は不定の時間間隔(又は距離間隔)で、車両1の複数の離散位置(図5の○印で示す位置)及び方位を算出する。 The in-vehicle communication device 19 performs map matching processing between the received planned traveling route and the map information, and the like, and detects the plurality of discrete positions (absolute positions) of the vehicle 1 during the prediction period Tc and the direction of the vehicle 1 at each discrete position. Calculate Specifically, when the vehicle 1 continues to travel straight in the lane R1 during the prediction period Tc, the on-vehicle communication device 19 is operated on the straight travel planned route (arrow shown by the broken line in FIG. 5) along the lane R1. A plurality of discrete positions (positions indicated by ○ in FIG. 5) and directions of the vehicle 1 are calculated at fixed or indeterminate time intervals (or distance intervals).
 また、予測期間Tc中において車両1が車線R1から車線R2に車線変更する場合、車載通信機19は、車線R1から車線R2へ延びる曲線状の走行予定ルート(図5の1点鎖線で示す矢印)上において、一定又は不定の時間間隔(又は距離間隔)で、車両1の複数の離散位置(図5の△印で示す位置)及び方位を算出する。 Further, when the vehicle 1 changes lanes from the lane R1 to the lane R2 during the prediction period Tc, the on-vehicle communication device 19 is a curved traveling planned route extending from the lane R1 to the lane R2 (an arrow shown by an alternate long and short dash line in FIG. A plurality of discrete positions (positions indicated by Δ marks in FIG. 5) and a direction of the vehicle 1 are calculated at fixed or indefinite time intervals (or distance intervals).
 車載通信機19は、車両1の複数の離散位置を時間間隔で算出する場合、この時間間隔と現時点t0の時刻に基づいて、各離散位置に対応する時刻を算出する。また、車載通信機19は、車両1の複数の離散位置を距離間隔で算出する場合、この距離間隔に基づいて車両1の現在位置から各離散位置までの距離を算出し、算出した距離と車両1の走行予定速度に基づいて各離散位置に対応する時刻を算出する。車両1の走行予定速度は、ADAS-ECU16C1から取得することができる。
 なお、予測期間Tc内の時刻と車両1の絶対位置及び方位は、ADAS-ECU16C1で算出し、算出した時刻、離散位置及び方位を車載通信機19に送信してもよい。
When the vehicle-mounted communication device 19 calculates a plurality of discrete positions of the vehicle 1 at time intervals, it calculates the time corresponding to each discrete position based on the time interval and the time of the current time t0. In addition, when the vehicle-mounted communication device 19 calculates a plurality of discrete positions of the vehicle 1 at a distance interval, the distance from the current position of the vehicle 1 to each discrete position is calculated based on the distance interval, and the calculated distance and the vehicle The time corresponding to each discrete position is calculated based on the planned traveling speed of 1. The planned traveling speed of the vehicle 1 can be acquired from the ADAS-ECU 16C1.
Note that the time within the prediction period Tc and the absolute position and orientation of the vehicle 1 may be calculated by the ADAS-ECU 16C1 and the calculated time, discrete position and orientation may be transmitted to the in-vehicle communication device 19.
 図5の上段に示すように、本実施形態の予測走行挙動データDには、「車両ID」、「時刻」、「絶対位置」、「車両属性」、「方位」などの格納領域が含まれる。
 「時刻」には、現時点の時刻の値、及び上記方法で算出された予測期間Tc内の各時刻の値が格納される。現時点の時刻の値は、上記の時刻同期機能を有するナビゲーションECU16B1(図2参照)から中継装置20を介して取得することができる。
As shown in the upper part of FIG. 5, the predicted travel behavior data D of the present embodiment includes storage areas such as “vehicle ID”, “time”, “absolute position”, “vehicle attribute”, and “direction”. .
The “time” stores the value of the current time and the value of each time within the prediction period Tc calculated by the above method. The value of the current time can be acquired from the navigation ECU 16B1 (see FIG. 2) having the above-described time synchronization function via the relay device 20.
 「車両ID」には、自車両の車両IDの値が格納される。車両IDの値は固定値であるため、各時刻に対応する「車両ID」には、全て同じ値が格納される。
 「絶対位置」は、上記方法で算出された予測期間Tc内の各時刻に対応する自車両の絶対位置を示す緯度、経度及び高度の各値が格納される。図5の「絶対位置」では、緯度及び経度の値のみを示している。
The "vehicle ID" stores the value of the vehicle ID of the own vehicle. Since the value of vehicle ID is a fixed value, the same value is stored in "vehicle ID" corresponding to each time.
The “absolute position” stores each value of latitude, longitude and altitude indicating the absolute position of the vehicle corresponding to each time within the prediction period Tc calculated by the above method. In "absolute position" of FIG. 5, only the values of latitude and longitude are shown.
 「車両属性」には、例えば、自車両の車幅および車長などの値、および自車両の車両用途種別(自家用車両又は緊急車両など)の識別値が格納される。車幅、車長、及び車両用途種別の各値は固定値であるため、各時刻に対応する「車両属性」には、全て同じ値が格納される。図5の「車両属性」では、具体的な数値の記載を省略している。
 「方位」には、上記方法で算出された予測期間Tc内の各時刻に対応する自車両の方位の値が格納される。図5の「方位」では、具体的な数値の記載を省略している。
In the “vehicle attribute”, for example, values such as the vehicle width and the vehicle length of the own vehicle, and the identification value of the vehicle application type of the own vehicle (such as a private vehicle or an emergency vehicle) are stored. Since each value of the vehicle width, the vehicle length, and the vehicle application type is a fixed value, the same value is stored in the "vehicle attribute" corresponding to each time. In "vehicle attribute" of FIG. 5, the description of specific numerical values is omitted.
The value of the heading of the vehicle corresponding to each time within the prediction period Tc calculated by the above method is stored in the "heading". In the "azimuth" of FIG. 5, the description of specific numerical values is omitted.
 自車両及びその周辺を通行する他車両1は、車載通信機19同士が車車間通信を行うことで、予測走行挙動データDを互いに送受信する。これにより、自車両、及びその周辺を通行する他車両1が、互いに予測走行挙動データDを共有することができる。 The other vehicle 1 passing through the own vehicle and the periphery thereof transmits and receives predicted traveling behavior data D to each other when the on-vehicle communication devices 19 communicate with each other. As a result, the own vehicle and the other vehicle 1 passing around it can share the predicted traveling behavior data D with each other.
 なお、図5の例では、予測走行挙動データDの「時刻」に、一定時間間隔の時刻が格納されているが、不定時間間隔の時刻が格納されていてもよい。この場合、不定時間間隔は、自車両の速度、自車両と他車両との車間距離、自車両が他車両に衝突するまでの衝突余裕時間(TTC:Time To Collision)などの各値に応じて適宜設定することができる。 In the example of FIG. 5, although the time of a fixed time interval is stored in "time" of prediction driving behavior data D, the time of an indefinite time interval may be stored. In this case, the fixed time interval depends on the speed of the vehicle, the distance between the vehicle and the other vehicle, and the time to collision (TTC) before the vehicle collides with the other vehicle. It can be set appropriately.
 また、予測走行挙動データDには、自車両の速度や加速度などの他の情報を含めてもよい。但し、自車両の速度は、自車両の絶対位置を微分することで求めることができ、自車両の加速度は、自車両の絶対位置から求めた速度を微分することで求めることができる。このため、予測走行挙動データDには、自車両の速度及び加速度は必ずしも含める必要はない。 The predicted travel behavior data D may also include other information such as the speed and acceleration of the host vehicle. However, the velocity of the vehicle can be obtained by differentiating the absolute position of the vehicle, and the acceleration of the vehicle can be determined by differentiating the velocity obtained from the absolute position of the vehicle. Therefore, the predicted traveling behavior data D need not necessarily include the speed and acceleration of the host vehicle.
 [処理概要]
 図6は、車載通信機19における処理の概要の説明図である。図6は、高速道路上を走行している車両A(車両1A)が車線R1から車線R2に車線変更する場合を示している。このとき、車線R2の車両Aに車両B(車両1B)および車両C(車両1C)が存在している。図7は、この場合における各車両A,B,Cの車載通信機19における処理の流れを表したシーケンス図である。
[Outline of processing]
FIG. 6 is an explanatory diagram of an outline of processing in the on-vehicle communication device 19. FIG. 6 shows a case where the vehicle A (vehicle 1A) traveling on the expressway changes lanes from the lane R1 to the lane R2. At this time, the vehicle B (vehicle 1B) and the vehicle C (vehicle 1C) exist in the vehicle A in the lane R2. FIG. 7 is a sequence diagram showing the flow of processing in the on-vehicle communication device 19 of each of the vehicles A, B and C in this case.
 図6および図7を参照して、車線変更する車両Aの車載通信機19は、抽出処理(ステップS1)、算出処理(ステップS2)、第1の通知処理(ステップS3)、取得処理(ステップS5)、決定処理(ステップS6)、および、第2の通知処理(ステップS7)を、この順で実行する。また、車両A周辺の車両B,Cの車載通信機19は、判定処理(ステップS4)を実行する。図4を参照して、車載通信機19の制御部191は、CPUが記憶部192に記憶された1又は複数のプログラムをRAMに読み出して実行することによって、上記各処理を実行する抽出部200、算出部199、第1通知部195、取得部196、判定部197、および第2通知部198として機能する。以下、各処理を説明する。 6 and 7, the on-vehicle communication device 19 of the vehicle A whose lane is to be changed performs extraction processing (step S1), calculation processing (step S2), first notification processing (step S3), acquisition processing (step S1). S5), determination processing (step S6), and second notification processing (step S7) are executed in this order. Further, the in-vehicle communication devices 19 of the vehicles B and C around the vehicle A execute the determination process (step S4). Referring to FIG. 4, the control unit 191 of the in-vehicle communication device 19 causes the extraction unit 200 to execute the above processes by the CPU reading and executing one or more programs stored in the storage unit 192 into the RAM. The calculation unit 199 functions as a first notification unit 195, an acquisition unit 196, a determination unit 197, and a second notification unit 198. Each processing will be described below.
 (抽出処理)
 ステップS1の抽出処理は、処理対象とする他車両である対象車両を抽出する処理である。抽出部200として機能する車載通信機19の制御部191によって実行される。対象車両は、自車両の車線変更に関連する走行挙動を有する他車両であって、具体的には、車両Aと衝突または進路の干渉を及ぼしそうな他車両である。図6の例では車両B,Cである。自車両以外の車両から対象車両を抽出することによって、自車両および他車両の処理量を抑えることができる。
(Extraction process)
The extraction process of step S1 is a process of extracting a target vehicle which is another vehicle to be processed. It is executed by the control unit 191 of the in-vehicle communication device 19 functioning as the extraction unit 200. The target vehicle is another vehicle having a traveling behavior related to the lane change of the host vehicle, specifically, another vehicle that is likely to collide with the vehicle A or cause interference in the course. In the example of FIG. 6, the vehicles are B and C. By extracting the target vehicle from vehicles other than the own vehicle, it is possible to suppress the throughput of the own vehicle and other vehicles.
 車両Aの車載通信機19は、一例として、自車両の予測走行挙動データD(図5の上段)と、他車両から送信された予測走行挙動データDとを比較し、走行予定ルートが自車両の走行予定ルートに交差または所定範囲内に接近する他車両を抽出する。他の例として、車両Aの車載通信機19は、第1及び第2センサ51,52のセンシング結果に基づいて、自車両から予め規定された範囲内に存在している他車両を抽出してもよい。 As an example, the on-vehicle communication device 19 of the vehicle A compares the predicted travel behavior data D of the own vehicle (upper part in FIG. 5) with the predicted travel behavior data D transmitted from the other vehicle. Other vehicles that cross or approach within a predetermined range on the planned travel route of are extracted. As another example, the on-vehicle communication device 19 of the vehicle A extracts other vehicles existing in a predetermined range from the host vehicle based on the sensing results of the first and second sensors 51 and 52. It is also good.
 (算出処理)
 ステップS2の算出処理は、自車両および対象車両からなる対象車両群の車両ごとの走行挙動に基づいた利得(スコア)BEを算出する処理である。算出部199として機能する車載通信機19の制御部191によって実行される。利得とは、対象車両群の車両ごとの走行挙動による、対象車両群全体における損失度合いを表す値であって、一例として、値が大きい方の損失が小さく、値が小さい方の損失が大きい。この場合、利得BEが大きい方が対象車両群全体として効率的である。具体的に、車両Aの車載通信機19の制御部191は、各車両のパラメータR(RA,RB,RC)の値を特定して、各車両の走行挙動の組合せのパターンごとに予め記憶している演算式のパラメータRに特定した値を代入することによって、各パターンの利得BEを得る。
(Calculation process)
The calculation process of step S2 is a process of calculating a gain (score) BE based on the traveling behavior of each of the target vehicle group including the host vehicle and the target vehicle for each vehicle. It is executed by the control unit 191 of the in-vehicle communication device 19 functioning as the calculation unit 199. The gain is a value representing the degree of loss in the entire target vehicle group due to the traveling behavior of the target vehicle group for each vehicle, and as one example, the loss with the larger value is smaller and the loss with the smaller value is larger. In this case, the larger the gain BE, the more efficient the target vehicle group as a whole. Specifically, the control unit 191 of the in-vehicle communication device 19 of the vehicle A specifies the values of the parameters R (RA, RB, RC) of each vehicle, and stores them in advance for each combination pattern of the traveling behavior of each vehicle. The gain BE of each pattern is obtained by substituting the specified value into the parameter R of the arithmetic expression.
 自車両のパラメータR(パラメータRA)の値は、車線変更の緊急度ごとに予め設定されており、緊急度が高いほど大きい値となる。車線変更の緊急度は、車線変更の目的ごとに予め設定されている。他車両のパラメータR(パラメータRB,RC)の値は、当該他車両が車線を譲ることに伴う減速による損失度合いを表し、自車両(車両A)との距離が近いほど大きい値である。 The value of the parameter R (parameter RA) of the host vehicle is set in advance for each degree of urgency of lane change, and becomes higher as the degree of urgency is higher. The degree of urgency of lane change is preset for each purpose of lane change. The values of the parameter R (parameters RB and RC) of the other vehicle represent the degree of loss due to the deceleration caused by the other vehicle giving the lane, and the larger the closer the distance to the own vehicle (vehicle A) is.
 一例として、対象車両群(車両A,B,C)の各車両の走行挙動の組合せのパターンを、下のパターン1~8とする。
  パターン1:車両A→直進、車両B→車線を譲る、車両C→車線を譲る
  パターン2:車両A→直進、車両B→車線を譲る、車両C→車線を譲らない
  パターン3:車両A→直進、車両B→車線を譲らない、車両C→車線を譲る
  パターン4:車両A→直進、車両B→車線を譲らない、車両C→車線を譲らない
  パターン5:車両A→進路変更、車両B→車線を譲る、車両C→車線を譲る
  パターン6:車両A→進路変更、車両B→車線を譲る、車両C→車線を譲らない
  パターン7:車両A→進路変更、車両B→車線を譲らない、車両C→車線を譲る
  パターン8:車両A→進路変更、車両B→車線を譲らない、車両C→車線を譲らない
 この例では、走行挙動の変更を、車線変更する車両Aに対して車線を譲ること、とし、各車両の走行挙動の変更の有無(車線を譲る/譲らない)の組合せのパターンが示されている。車線を譲ることは、車線変更すること、減速すること、加速すること、および停車すること、の少なくとも1つを含む。
As an example, let us say that patterns of combinations of traveling behavior of each vehicle of the target vehicle group (vehicles A, B, C) are patterns 1 to 8 below.
Pattern 1: Vehicle A → Straight, Vehicle B → Give Lane, Vehicle C → Give Lane Pattern 2: Vehicle A → Straight, Vehicle B → Give Lane, Vehicle C → Don't Give Lane Pattern 3: Vehicle A → Straight , Vehicle B → Do not give lane, Vehicle C → Give lane Pattern 4: Vehicle A → Go straight, Vehicle B → Do not give lane Vehicle C → Do not give lane Pattern 5: Vehicle A → Change course, Vehicle B → Give lane, vehicle C → give lane Pattern 6: Vehicle A → change course, vehicle B → give lane, vehicle C → don't give lane Pattern 7: vehicle A → change course, vehicle B → don't give lane, Vehicle C → yield lane Pattern 8: Vehicle A → change course, vehicle B → not yield lane, vehicle C → not yield lane In this example, the change of the driving behavior is changed to the lane A Of the driving behavior of each vehicle Combination of patterns is shown in the presence of a further (cede lane / adamant). Giving the lane includes at least one of lane changing, decelerating, accelerating, and stopping.
 車載通信機19の制御部191は、パターンごとに、利得BEを算出するための演算式を予め記憶している。各パターンの演算式は一例として、以下の演算式とする。以下の演算式の例に示すように、利得BEは、車両Aの車線変更の目的、および車両Aと他車両との間の距離のうちの少なくとも一方に基づいて算出される。これにより、車線変更の目的(緊急度)と他車両による走行挙動の変更のしやすさとの少なくとも一方を考慮して車線変更の可否を判定することができる。
 パターン1:BE=(-1)×RA+(-1)×RB+(-1)×RC
 パターン2:BE=(-1)×RA+(-1)×RB+(0)×RC
 パターン3:BE=(-1)×RA+(0)×RB+(-1)×RC
 パターン4:BE=(-1)×RA+(0)×RB+(0)×RC
 パターン5:BE=4+(0)×RA+(-1)×RB+(-1)×RC
 パターン6:BE=4+(0)×RA+(-1)×RB+(0)×RC
 パターン7:BE=3+(0)×RA+(0)×RB+(-1)×RC
 パターン8:BE=-10+(0)×RA-10+(0)×RB-10+(0)×RC
The control unit 191 of the in-vehicle communication device 19 stores, in advance, an arithmetic expression for calculating the gain BE for each pattern. The arithmetic expression of each pattern is, for example, the following arithmetic expression. The gain BE is calculated based on at least one of the purpose of the lane change of the vehicle A and the distance between the vehicle A and the other vehicle, as shown in an example of the following arithmetic expression. In this way, it is possible to determine whether or not the lane change is possible in consideration of at least one of the purpose (urgency) of the lane change and the ease of change of the traveling behavior by the other vehicle.
Pattern 1: BE = (-1) x RA + (-1) x RB + (-1) x RC
Pattern 2: BE = (-1) x RA + (-1) x RB + (0) x RC
Pattern 3: BE = (-1) x RA + (0) x RB + (-1) x RC
Pattern 4: BE = (-1) x RA + (0) x RB + (0) x RC
Pattern 5: BE = 4 + (0) x RA + (-1) x RB + (-1) x RC
Pattern 6: BE = 4 + (0) x RA + (-1) x RB + (0) x RC
Pattern 7: BE = 3 + (0) x RA + (0) x RB + (-1) x RC
Pattern 8: BE = −10 + (0) × RA−10 + (0) × RB−10 + (0) × RC
 各車両の車載通信機19は、車線変更の目的ごとの緊急度の設定を予め記憶している。好ましくは、緊急度は、車線変更の目的および原因(理由)ごとに設定されている。さらに、各車両の車載通信機19は、緊急度ごとの自車両のパラメータR(車両Aの場合、パラメータRA)の値を予め記憶している。 The in-vehicle communication device 19 of each vehicle stores in advance the setting of the degree of urgency for each purpose of the lane change. Preferably, the degree of urgency is set for each purpose and cause of the lane change. Furthermore, the in-vehicle communication device 19 of each vehicle stores in advance the value of the parameter R (the parameter RA in the case of the vehicle A) of the own vehicle for each degree of urgency.
 図8は、車載通信機19に記憶されている「緊急度の設定データ」の内容を示す説明図である。緊急度の設定データは、記憶部192に格納されている。緊急度の設定データには、目的および原因ごとの緊急度と、緊急度ごとのパラメータRの値と、が含まれる。 FIG. 8 is an explanatory view showing the contents of “setting data of degree of urgency” stored in the in-vehicle communication device 19. The setting data of the degree of urgency is stored in the storage unit 192. The setting data of the degree of urgency includes the degree of urgency for each purpose and cause, and the value of the parameter R for each degree of urgency.
 図8に示すように、本実施形態の緊急度の設定データには、「目的」、「原因」、「緊急度」、「緊急度が高い理由」、「後続車両通知」、「パラメータRAの値」などの格納領域が含まれる。
 「目的」には、車線変更の目的を示す情報が格納される。車線変更の目的を示す情報は、たとえば、「追い越したい」、「進行方向を変えたい」、「合流したい」、「離合したい」、および「元の車線に戻りたい」、などである。
As shown in FIG. 8, in the setting data of the degree of urgency of this embodiment, “purpose”, “cause”, “urgency degree”, “reason why urgency degree is high”, “following vehicle notification”, “parameter RA Storage area such as "Value" is included.
The “purpose” stores information indicating the purpose of the lane change. The information indicating the purpose of the lane change is, for example, "I want to pass", "I want to change the traveling direction", "I want to merge", "I want to break away", and "I want to return to the original lane".
 「原因」には、各車線変更の目的の原因を示す情報が格納される。原因を示す情報は、たとえば、「前方車両が遅い」、「低速作業車がある」、および「駐車車両がある」などである。
 「緊急度」には、車線変更の緊急度を示す情報が格納される。緊急度を示す情報は、たとえば、「高」、「中」、および「低」などである。緊急度を示す情報はこの3段階に限定されず、より多段階に細分化されていてもよい。または、「有」および「無」の2段階であってもよい。
“Cause” stores information indicating the cause of the purpose of each lane change. The information indicating the cause is, for example, “slow forward vehicle”, “slow work vehicle”, and “parked vehicle”.
The “urgency level” stores information indicating the level of urgency of lane change. The information indicating the urgency level is, for example, “high”, “medium”, and “low”. The information indicating the degree of urgency is not limited to these three stages, and may be subdivided into more stages. Or, it may be two stages of "present" and "absent".
 緊急度は、目的ごとに設定される。好ましくは、目的および原因ごとに設定される。図8の例では、目的「追い越したい」の原因「前方車両が遅い」に対して緊急度が「低」、目的「追い越したい」の原因「低速作業車がある」および「駐車車両がある」に対して緊急度が「中」、と設定されている。 The degree of urgency is set for each purpose. Preferably, they are set according to purpose and cause. In the example of FIG. 8, the cause of the purpose "overtaking" is "low forward vehicle" while the degree of urgency is "low", the purpose of the purpose "overtaking" "there is a low speed work vehicle" and "there is a parked vehicle" The degree of urgency is set to "medium".
 また、目的「進行方向を変えたい」の原因「右左折をしたい」、「料金所でECT/一般レーンに入りたい」、「前方で車線規制がある」、および「前方に障害物あり」に対して緊急度が「高」、目的「進行方向を変えたい」の原因「登坂車線を走行したい」および「合流車両と干渉しそう」に対して緊急度が「低」、ならびに目的進行方向を変えたい」の原因「緊急車両に進路を譲りたい」に対して緊急度が「中」、と設定されている。 In addition, for the purpose of "want to change the direction of travel", "want to turn left," "want to enter ECT / general lane at toll booth", "there is a lane restriction ahead", and "an obstacle ahead". In contrast, the degree of urgency is "high", the cause of the purpose "want to change the direction of travel" The degree of urgency is "low" for "want to travel on uphill lane" and "will interfere with merging vehicles" The degree of urgency is set to "medium" with respect to the cause "I want to give way to the emergency vehicle".
 また、目的「合流したい」の原因「登坂車線終了」に対して緊急度が「中」、目的「合流したい」の原因「高速道路本線合流」に対して緊急度が「高」、ならびに目的「合流したい」の原因「駐車中の作業が完了した」に対して緊急度が「低」、と設定されている。 In addition, the reason for the cause “I want to merge” is “Medium” for the “end of the uphill lane”, the cause for the purpose “I want to merge” for the “Highway main line merge” is “high”, and the purpose “ It is set that the degree of urgency is "low" with respect to the cause "I want to join" and "the work while parking is completed".
 また、目的「車線を変更したい」の原因「高速道路を出たい」に対して緊急度が「中」と設定されている。
 また、目的「元の車線に戻りたい」の原因「追い越しが完了した」および「落下物を回避できた」に対して緊急度が「低」と設定されている。
In addition, the degree of urgency is set to "medium" with respect to the cause "want to leave the expressway" for the purpose "want to change lanes".
In addition, the degree of urgency is set to be "low" with respect to the purpose of "want to return to the original lane" and "the overtaking is completed" and "the falling object can be avoided".
 「緊急度が高い理由」には、目的ごとに(好ましくは目的および原因ごとに)緊急度が高い理由を示す情報が格納される。緊急度が所定以上(たとえば「中」および「高」)にのみ当該情報が格納されていてもよい。 The “high emergency reason” stores information indicating the reason of high urgency for each purpose (preferably for each purpose and cause). The information may be stored only when the degree of urgency is higher than a predetermined level (for example, “medium” and “high”).
 「後続車両通知」には、目的ごとに(好ましくは目的および原因ごとに)後続車両への通知の要否を示す情報が格納される。車載通信機19は、図示しない路側装置と無線通信(路車間通信)が可能であってもよく、車両間の通信は路車通信に中継されてもよい。路車通信によって中継されることで、車車間通信の範囲外にある車両との間でも情報の送受信が可能になる。そこで、後続車両への通知の要否は、路側装置との無線通信を中継して後続車両に対して通信する必要の要否を示すものであってもよい。 The “following vehicle notification” stores information indicating whether or not notification to the following vehicle is necessary for each purpose (preferably for each purpose and cause). The in-vehicle communication device 19 may be capable of wireless communication (road-vehicle communication) with a roadside device (not shown), and communication between vehicles may be relayed to road-vehicle communication. Relaying by road-to-vehicle communication enables transmission and reception of information with vehicles outside the range of inter-vehicle communication. Therefore, the necessity of the notification to the following vehicle may indicate whether it is necessary to relay the wireless communication with the roadside apparatus and to communicate to the following vehicle.
 「パラメータRAの値」には、自車両のパラメータR(パラメータRA)の値が格納される。パラメータRAの値は、緊急度に応じて予め設定されている。一例として、緊急度が高いほどパラメータRAの値は高く設定され、緊急度が低いとパラメータRAの値は低く設定されている。図8の例では、緊急度が「高」のときのパラメータRAの値が「50」、緊急度が「中」のときのパラメータRAの値が「2」、および、緊急度が「低」ときのパラメータRAの値が「1」である。 The value of the parameter R of the host vehicle (parameter RA) is stored in the “value of parameter RA”. The value of the parameter RA is preset according to the degree of urgency. As one example, the higher the degree of urgency, the higher the value of the parameter RA, and the lower the degree of urgency, the lower the value of the parameter RA. In the example of FIG. 8, the value of parameter RA when the degree of urgency is "high" is "50", the value of parameter RA when the degree of urgency is "medium" is "2", and the degree of urgency is "low" The value of the parameter RA is “1”.
 他車両のパラメータR(パラメータRB,RC)の値は、当該他車両が車線を譲ることに伴う減速による損失度合いを表す値であって、自車両(車両A)との距離に依存する。一例として、自車両との距離が近いほど大きい値である。車両Aの車載通信機19は、他車両のパラメータR(パラメータRB,RC)の値を得るための、当該他車両までの距離を用いた演算式を予め記憶しておく。演算式は特定の式に限定されない。車載通信機19の制御部191は、当該他車両から受信した予測走行挙動データD(図5の上段)、または、第1及び第2センサ51,52のセンシング結果に基づいて、自車両から当該他車両までの距離を特定し、当該距離を上記演算式に代入することによって当該他車両のパラメータRの値を得る。 The values of the parameter R (parameters RB and RC) of the other vehicle represent the degree of loss due to the deceleration caused by the other vehicle giving the lane, and depend on the distance to the own vehicle (vehicle A). As one example, the closer the distance to the host vehicle, the larger the value. The on-vehicle communication device 19 of the vehicle A stores in advance an arithmetic expression using the distance to the other vehicle for obtaining the value of the parameter R (parameters RB, RC) of the other vehicle. The arithmetic expression is not limited to a specific expression. The control unit 191 of the in-vehicle communication device 19 applies the subject vehicle based on the predicted travel behavior data D received from the other vehicle (upper part in FIG. 5) or the sensing results of the first and second sensors 51 and 52. The distance to the other vehicle is specified, and the value of the parameter R of the other vehicle is obtained by substituting the distance into the arithmetic expression.
 図9および図10は、車両Aでの算出処理の具体例を説明する説明図である。図9は車両Aの車線変更の緊急度が「中」の場合、図10は緊急度が「高」の場合を示している。また、パラメータRB,RCは、それぞれ、2、1が算出されたものとしている。図9および図10において、RA~RCの欄には、それぞれ、演算式のパラメータRA~RCに関連した値が記述され、合計の欄に演算値が記述されている。 FIG. 9 and FIG. 10 are explanatory diagrams for explaining a specific example of the calculation process in the vehicle A. FIG. 9 shows the case where the lane change urgency of the vehicle A is “medium”, and FIG. 10 shows the case where the urgency is “high”. The parameters RB and RC are assumed to be 2 and 1 respectively. In FIGS. 9 and 10, in the columns of RA to RC, values associated with the parameters RA to RC of the arithmetic expression are described, and the arithmetic values are described in the column of total.
 (第1の通知処理)
 ステップS3の第1の通知処理は、車線変更する車両Aが、車線変更の実行前に、対象車両のうちの車線変更に伴う走行挙動を変更する(車線を譲る)必要のある車両(以下、必要車両)に対する車線変更の目的を含む通信フレームを車車間通信によって送信する処理である。すなわち、必要車両に対して、走行挙動の変更、つまり、車線変更への協力を要求する処理でもある。第1通知部195として機能する車載通信機19の制御部191によって実行される。車線変更の目的は、図5の予測走行挙動データDともに通信フレームに含められて車車間通信によって出力されてもよい。各車両は、図8に示された緊急度の設定を記憶しているため、車両Aから車線変更の目的が通知されることで、車両Aにおける車線変更の緊急度を特定することができる。なお、第1の通知処理において、車線変更の目的に替えて、または加えて、車線変更の緊急度が通知されてもよい。
(First notification process)
In the first notification process of step S3, a vehicle whose lane is to be changed needs to change the traveling behavior associated with the change of lane among the target vehicles (transfer lane) before the lane change is executed (hereinafter referred to as Is a process of transmitting a communication frame including the purpose of lane change for the required vehicle) by inter-vehicle communication. That is, it is also a process of requesting the required vehicle to change the traveling behavior, that is, to request cooperation to change the lane. It is executed by the control unit 191 of the in-vehicle communication device 19 functioning as the first notification unit 195. The purpose of the lane change may be included in the communication frame together with the predicted driving behavior data D of FIG. 5 and output by inter-vehicle communication. Since each vehicle stores the setting of the degree of urgency shown in FIG. 8, when the purpose of the lane change is notified from the vehicle A, the degree of urgency of the lane change in the vehicle A can be specified. In the first notification processing, the degree of urgency of lane change may be notified instead of or in addition to the purpose of the lane change.
 ステップ3の第1の通知処理は、対象車両の中から必要車両を特定する処理を含む。特定する処理において、制御部191は、パターンごとの利得BEを比較して利得BEの高い(値の大きい)パターンを実現するための車両を必要車両とする。パターンごとの利得BEが図9、図10のいずれの場合も、利得BEの最大値「2」であるパターン6またはパターン7を実現するために車線を譲る車両Bまたは車両Cを、それぞれのパターンでの必要車両として特定する。この場合、第1の通知処理では、たとえば車両Bを必要車両と特定された車線変更の目的が通信フレームに含められて送信される。 The first notification process of step 3 includes a process of specifying a required vehicle from among the target vehicles. In the identification processing, the control unit 191 sets a vehicle for achieving a pattern with a high (large) value of the gain BE as a necessary vehicle by comparing the gain BE for each pattern. In each of the patterns BE and BE in FIG. 9 and FIG. 10, the vehicle B or the vehicle C giving the lane to realize the pattern 6 or the pattern 7 which is the maximum value “2” of the gain BE Identify as a required vehicle in In this case, in the first notification process, for example, the purpose of the lane change in which the vehicle B is identified as the required vehicle is included in the communication frame and transmitted.
 (判定処理)
 第1の通知処理によって車両Aから車線変更の目的が通知されると、必要車両の車載通信機19では、車両Aにおける車線変更の目的に応じて、車両Aの車線変更に伴って走行挙動を変更するか否か(車線を譲るか否か)を判定する判定処理(ステップS4)を実行する。ステップS4の判定処理は、ここでは特定の処理方法に限定されない。一例として、必要車両の車載通信機19は、車両Aにおける車線変更の目的から得られる緊急度と、車両Aまでの距離とを用いた判定式を予め記憶しておき、それらを代入することによって得られる値に基づいて譲るか譲らないかを判定する。必要車両は、車両Aへの応答として、判定結果を車車間通信で出力する。
(Determination process)
When the purpose of the lane change is notified from the vehicle A by the first notification processing, the on-vehicle communication device 19 of the required vehicle performs the traveling behavior along with the lane change of the vehicle A according to the purpose of the lane change in the vehicle A. A determination process (step S4) is performed to determine whether or not to change (whether to yield the lane). The determination process of step S4 is not limited to a specific processing method here. As an example, the on-vehicle communication device 19 of the required vehicle stores in advance a determination formula using the degree of urgency obtained for the purpose of lane change in the vehicle A and the distance to the vehicle A, and substitutes them. It is determined based on the obtained value whether to give or not give. The required vehicle outputs the determination result by inter-vehicle communication as a response to the vehicle A.
 (取得処理)
 ステップS5の取得処理は、必要車両から走行挙動の変更の有無の判定結果の応答を、車車間通信の通信フレームから取得する処理である。取得部196として機能する車載通信機19の制御部191によって実行される。
(Acquisition process)
The acquisition process of step S5 is a process of acquiring from the communication frame of the inter-vehicle communication a response of the determination result of the presence or absence of the change in the traveling behavior from the required vehicle. It is executed by the control unit 191 of the in-vehicle communication device 19 functioning as the acquisition unit 196.
 (決定処理)
 ステップS6の決定処理は、必要車両から取得した判定結果に基づいて車線変更の実行の可否を判定し、判定結果に基づいて進路を決定する処理である。判定部197として機能する車載通信機19の制御部191によって実行される。ステップS5の取得処理において必要車両から車線を譲る旨の判定結果を取得した場合、決定処理では車線変更が実行可能と判定されて、進路を変更後の車線に決定する。
(Decision processing)
The determination process of step S6 is a process of determining whether or not to execute the lane change based on the determination result acquired from the required vehicle, and determining the course based on the determination result. It is executed by the control unit 191 of the in-vehicle communication device 19 functioning as the determination unit 197. When the determination result to give the lane from the required vehicle is acquired in the acquisition process of step S5, it is determined that the lane change is executable in the determination process, and the course is determined to be the changed lane.
 必要車両から車線を譲らない旨の判定結果を取得した場合、決定処理では、車線変更を実行不可と判定する。この時点においては、進路を現車線、つまり直進を維持するものと決定する。この場合、車載通信機19では、上記ステップS3の第1の通知処理に戻って、次に利得BEの高い(値の大きい)パターンを実現するための車両を必要車両と特定し、特定された必要車両に車線変更の目的を通知する。図9および図10の場合、パターン6の必要車両である車両Bから車線を譲らない旨の判定結果を取得した場合、パターン7の必要車両である車両Cに車線変更の目的を通知する。 When the determination result indicating that the lane is not to be obtained is acquired from the required vehicle, it is determined that the lane change is not executable in the determination process. At this point, it is decided to keep the current lane, that is, going straight. In this case, the in-vehicle communication device 19 returns to the first notification processing in step S3 and then identifies the vehicle for realizing the pattern of high gain BE (large value) as the required vehicle, and is identified. Inform the required vehicles of the purpose of the lane change. In the case of FIG. 9 and FIG. 10, when the determination result to the effect that the lane is not to be obtained is acquired from the vehicle B which is the required vehicle of pattern 6, the purpose of the lane change is notified to the vehicle C which is the required vehicle of pattern 7.
 車載通信機19は、図9または図10に示された利得BEの高い(値の大きい)ものから、いずれかのパターンが実現されるまで利得BEの値の順に、ステップS3からの処理を繰り返す。好ましくは、ステップS3からの処理を実行するパターンの範囲は、車線変更の緊急度に応じて予め規定されている。たとえば、緊急度が「中」の場合、車線変更が実現するパターン5~8について、車線を譲る旨の判定結果が得られるまで利得BEの値の順にステップS3からの処理を実行する。一方、緊急度が「高」の場合、利得BEが2番目に高いパターンまでしかステップS3からの処理を実行しない。 The in-vehicle communication device 19 repeats the process from step S3 in the order of the values of gain BE from those with high gain BE (the large value) shown in FIG. 9 or 10 until any pattern is realized. . Preferably, the range of the pattern for executing the process from step S3 is previously defined in accordance with the degree of urgency of the lane change. For example, when the degree of urgency is "medium", the processes from step S3 are executed in order of the value of gain BE until the determination result of giving the lane is obtained for patterns 5 to 8 in which the lane change is realized. On the other hand, when the degree of urgency is "high", the process from step S3 is executed only up to the pattern in which the gain BE is the second highest.
 いずれのパターンの必要車両からも車線を譲らない旨の判定結果を取得した場合、決定処理において車載通信機19は、車線変更の緊急度(目的)に応じて車線変更の可否を判定する。
 たとえば、緊急度が「中」の場合、車線変更を不可と判定し、直進を維持する。車線変更を実行すると対象車両と接触等してしまうなどの不安全な可能性があるために、車線変更の目的よりも不安全な可能性を回避する方を重視することができる。
When the determination result to the effect that the lane is not to be obtained is acquired from the required vehicle of any pattern, in the determination process, the in-vehicle communication device 19 determines whether to change the lane according to the degree of urgency (purpose) of the lane change.
For example, if the degree of urgency is "medium", it determines that the lane change is not possible, and keeps going straight. Since there is the possibility of unsafety such as contact with the target vehicle when the lane change is performed, it is possible to place more importance on avoiding the unsafe possibility than the purpose of the lane change.
 一方、緊急度が「高」の場合、車線変更を可能と判定する。なお、この場合、車線変更が可能の判定に加えて、ウィンカー等による表示が必要と判定する。これにより、緊急度が高い場合には車線変更が実現される。 On the other hand, when the degree of urgency is "high", it is determined that the lane change is possible. In this case, in addition to the determination that the lane change is possible, it is determined that display by a blinker or the like is necessary. Thereby, the lane change is realized when the degree of urgency is high.
 または、緊急度が「高」の場合、車線変更を不可と判定してもよい。この場合、車線変更が不可の判定に加えて、走行自体も不可と判定する。これにより、緊急度が高い場合であって、車線変更が不可能なこの場合には、急ブレーキをかけて停車する走行制御が実現される。 Alternatively, when the degree of urgency is "high", it may be determined that the lane change is not possible. In this case, in addition to the determination that the lane change is not possible, it is determined that the traveling itself is also not possible. Thus, in the case where the degree of urgency is high and the lane change is not possible, travel control is realized in which the vehicle is suddenly braked and stopped.
 (第2の通知処理)
 ステップS7の第2の通知処理は、決定処理における判定結果を含む通信用フレームを車車間通信によって送信する処理である。第2通知部198として機能する車載通信機19の制御部191によって実行される。第2の通知処理では、車線変更が実行可能と判定された場合にのみその判定結果が通知され、車線変更が実行不可と判定された場合には通知が行われなくてもよい。この場合、予測走行挙動データDに変更がないためである。これにより、車車間通信の通信量を抑えることができる。
(Second notification process)
The second notification process of step S7 is a process of transmitting a communication frame including the determination result in the determination process by inter-vehicle communication. It is executed by the control unit 191 of the in-vehicle communication device 19 functioning as the second notification unit 198. In the second notification process, the determination result is notified only when it is determined that the lane change is executable, and the notification may not be performed when it is determined that the lane change is not executable. In this case, there is no change in the predicted traveling behavior data D. Thereby, the amount of communication of inter-vehicle communication can be suppressed.
 車線変更が実行可能と判定された場合、車両Aの車載通信機19は、ステップS7の第2の通知処理の後に、ADAS-ECU16C1に対して車線変更を指示する制御指令(制御パケット)を出力する。これにより、車線変更が実現される。 If it is determined that the lane change is executable, the on-vehicle communication device 19 of the vehicle A outputs a control command (control packet) instructing the ADAS-ECU 16C1 to change the lane after the second notification process of step S7. Do. Thereby, a lane change is realized.
<実施の形態の効果>
 本実施形態にかかる通信システムでは、車線変更を実行しようとする車両Aが、車線変更の実行前に車線変更の目的を車車間通信で出力する。この通知を車車間通信で受信した他車両B,Cにおいては、車両Aの車線変更の目的(緊急度)に基づいて車線を譲るか否かの判定処理を行うことができる。車両Aは、車両B,Cから得られた車線変更に伴う走行挙動の変更の有無の応答に基づいて車線変更の実行の可否を判定し、判定結果に従って車線変更を実行する。これにより、車両Aは、車線変更の目的によっては車線変更に対する協力が得られる可能性が高くなり、車線変更の成功率を高めることができる。
<Effect of the embodiment>
In the communication system according to the present embodiment, the vehicle A whose lane change is to be performed outputs the purpose of the lane change by inter-vehicle communication before the lane change is performed. In the other vehicles B and C that have received this notification by inter-vehicle communication, it is possible to determine whether to give the lane based on the purpose (urgency) of the lane change of the vehicle A. The vehicle A determines whether or not to execute the lane change based on the response of presence or absence of the change of the traveling behavior accompanying the lane change obtained from the vehicles B and C, and executes the lane change according to the determination result. As a result, the vehicle A is likely to obtain cooperation for the lane change depending on the purpose of the lane change, and the success rate of the lane change can be increased.
 また、車線変更を実行しようとする際、車両Aは、各車両の走行挙動の組合せの各パターンについて、車線変更の目的と自車両から対象車両までの距離との少なくとも一方に基づいて利得BEを算出し、利得BEが大きいパターンとなるように必要車両に対して走行挙動の変更を要求する。これにより、対象車両群全体として損失を抑え、周囲の車両と協調したスムーズな車線変更の成功率を高めることができる。 Also, when performing a lane change, the vehicle A gains BE based on at least one of the purpose of the lane change and the distance from the host vehicle to the target vehicle for each combination of traveling behavior of each vehicle. It is calculated, and the required vehicle is required to change the traveling behavior so that the gain BE becomes a large pattern. As a result, it is possible to suppress the loss as a whole of the target vehicle group and to improve the success rate of the smooth lane change coordinated with the surrounding vehicles.
 [変形例]
 以上の説明では、調整処理のすべてを車載通信機19の制御部191が行うものとしている。しかしながら、車載通信機19の制御部191は、他の車載装置と協働して図6の処理を行ってもよい。たとえば、少なくとも一部の処理を中継装置20の制御部21が行ってもよい。すなわち、中継装置20の制御部21が、抽出部200、算出部199、第1通知部195、取得部196、判定部197、および第2通知部198の少なくとも1つとして機能してもよい。
[Modification]
In the above description, it is assumed that the control unit 191 of the in-vehicle communication device 19 performs all the adjustment processing. However, the control unit 191 of the in-vehicle communication device 19 may perform the process of FIG. 6 in cooperation with other in-vehicle devices. For example, the control unit 21 of the relay device 20 may perform at least part of the processing. That is, the control unit 21 of the relay device 20 may function as at least one of the extraction unit 200, the calculation unit 199, the first notification unit 195, the acquisition unit 196, the determination unit 197, and the second notification unit 198.
 また、他の例として、車載通信機19の制御部191は、いずれかのECU16と協働して図6の処理を行ってもよい。たとえば、車載通信機19の制御部191はADAS-ECU16C1または環境認識ECU16C2に各車の走行予定ルートを示す情報を入力し、ADAS-ECU16C1または環境認識ECU16C2が対象車両を抽出する抽出処理を実行してその結果を車載通信機19に入力してもよい。また、ADAS-ECU16C1が算出処理を実行し、対象車両群の車両ごとの走行挙動に基づいた利得(スコア)BEを車載通信機19に入力してもよい。 Further, as another example, the control unit 191 of the in-vehicle communication device 19 may perform the process of FIG. 6 in cooperation with any of the ECUs 16. For example, the control unit 191 of the in-vehicle communication device 19 inputs information indicating the planned traveling route of each car to the ADAS-ECU 16C1 or the environment recognition ECU 16C2, and the ADAS-ECU 16C1 or the environment recognition ECU 16C2 executes an extraction process for extracting the target vehicle The result may be input to the in-vehicle communication device 19. Alternatively, the ADAS-ECU 16C1 may execute calculation processing, and may input a gain (score) BE based on the traveling behavior of each of the target vehicle groups to the in-vehicle communication device 19.
 開示された特徴は、1つ以上のモジュールによって実現される。たとえば、当該特徴は、回路素子その他のハードウェアモジュールによって、当該特徴を実現する処理を規定したソフトウェアモジュールによって、または、ハードウェアモジュールとソフトウェアモジュールとの組み合わせによって実現され得る。 The disclosed features are realized by one or more modules. For example, the feature can be realized by a circuit element or other hardware module, a software module that defines a process for realizing the feature, or a combination of a hardware module and a software module.
 上述の動作をコンピュータに実行させるための、1つ以上のソフトウェアモジュールの組み合わせであるプログラムとして提供することもできる。このようなプログラムは、コンピュータに付属するフレキシブルディスク、CD-ROM(Compact Disk-ROM)、ROM、RAMおよびメモリカードなどのコンピュータ読取り可能な記録媒体にて記録させて、プログラム製品として提供することもできる。あるいは、コンピュータに内蔵するハードディスクなどの記録媒体にて記録させて、プログラムを提供することもできる。また、ネットワークを介したダウンロードによって、プログラムを提供することもできる。 The program may be provided as a program that is a combination of one or more software modules for causing a computer to execute the above-described operations. Such a program may be provided as a program product by being recorded on a computer readable recording medium such as a flexible disk, a CD-ROM (Compact Disk-ROM), a ROM, a RAM, and a memory card attached to a computer. it can. Alternatively, the program can be provided by being recorded in a recording medium such as a hard disk built in the computer. Also, the program can be provided by downloading via a network.
 なお、本開示にかかるプログラムは、コンピュータのオペレーティングシステム(OS)の一部として提供されるプログラムモジュールのうち、必要なモジュールを所定の配列で所定のタイミングで呼出して処理を実行させるものであってもよい。その場合、プログラム自体には上記モジュールが含まれずOSと協働して処理が実行される。このようなモジュールを含まないプログラムも、本開示にかかるプログラムに含まれ得る。 Note that the program according to the present disclosure is to call a necessary module among program modules provided as a part of an operating system (OS) of a computer in a predetermined arrangement at a predetermined timing to execute processing. It is also good. In that case, the program itself does not include the above module, and the processing is executed in cooperation with the OS. Programs not including such modules may also be included in the programs according to the present disclosure.
 また、本開示にかかるプログラムは他のプログラムの一部に組込まれて提供されるものであってもよい。その場合にも、プログラム自体には上記他のプログラムに含まれるモジュールが含まれず、他のプログラムと協働して処理が実行される。このような他のプログラムに組込まれたプログラムも、本開示にかかるプログラムに含まれ得る。提供されるプログラム製品は、ハードディスクなどのプログラム格納部にインストールされて実行される。なお、プログラム製品は、プログラム自体と、プログラムが記録された記録媒体とを含む。 Also, the program according to the present disclosure may be provided by being incorporated into a part of another program. Also in this case, the program itself does not include a module included in the other program, and the process is executed in cooperation with the other program. Programs incorporated into such other programs may also be included in the programs according to the present disclosure. The provided program product is installed and executed in a program storage unit such as a hard disk. The program product includes the program itself and a recording medium in which the program is recorded.
 今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。 It should be understood that the embodiments disclosed herein are illustrative and non-restrictive in every respect. The scope of the present invention is shown not by the above description but by the scope of claims, and is intended to include all modifications within the scope and meaning equivalent to the scope of claims.
  1 車両
  10 車内システム
  12 通信ネットワーク
  13 車内通信線
  16 車載制御装置(ECU)
  16A1 エンジンECU
  16A2 EPS-ECU
  16A3 ブレーキECU
  16A4 ABS-ECU
  16B1 ナビゲーションECU
  16B2 メータECU
  16B3 HUD-ECU
  16C1 ADAS-ECU
  16C2 環境認識ECU
  19 車載通信機
  20 中継装置
  21 制御部
  22 記憶部
  23 車内通信部
  31 燃料噴射装置
  32 EPS
  33 ブレーキアクチュエータ
  34 ABSアクチュエータ
  41 HDD
  42 ディスプレイ
  43 GPS受信機
  44 車速センサ
  45 ジャイロセンサ
  46 スピーカ
  47 入力デバイス
  48 メータアクチュエータ
  49 HUD
  51 第1センサ
  52 第2センサ
  191 制御部
  192 記憶部
  193 無線通信部(通信部)
  194 アンテナ
  195 第1通知部
  196 取得部
  197 判定部
  198 第2通知部
  199 算出部
  200 抽出部
  D 予測走行挙動データ
  R1 車線
  R2 車線
  Tc 予測期間
Reference Signs List 1 vehicle 10 in-vehicle system 12 communication network 13 in-vehicle communication line 16 in-vehicle control unit (ECU)
16A1 engine ECU
16A2 EPS-ECU
16A3 brake ECU
16A4 ABS-ECU
16B1 Navigation ECU
16B2 meter ECU
16B3 HUD-ECU
16C1 ADAS-ECU
16C2 Environment recognition ECU
Reference Signs List 19 in-vehicle communication device 20 relay device 21 control unit 22 storage unit 23 in-vehicle communication unit 31 fuel injection device 32 EPS
33 brake actuator 34 ABS actuator 41 HDD
42 Display 43 GPS Receiver 44 Vehicle Speed Sensor 45 Gyro Sensor 46 Speaker 47 Input Device 48 Meter Actuator 49 HUD
51 first sensor 52 second sensor 191 control unit 192 storage unit 193 wireless communication unit (communication unit)
194 antenna 195 first notification unit 196 acquisition unit 197 determination unit 198 second notification unit 199 calculation unit 200 extraction unit D predicted traveling behavior data R1 lane R2 lane Tc prediction period

Claims (8)

  1.  車車間通信機能を有する車両の車載装置であって、
     他車両と車車間通信フレームを送受信する通信部と、
     前記車車間通信フレームに含まれるデータに情報処理を施す制御部と、を備え、
     前記制御部は、
     車線変更の実行前に、前記車線変更の目的を含む前記車車間通信フレームを前記通信部に送信させる第1通知部と、
     前記他車両からの前記車車間通信フレームから、前記車線変更に伴う前記他車両による走行挙動の変更の有無の応答を取得する取得部と、
     前記応答に基づいて、前記車線変更の実行の可否の判定を行う判定部と、
     前記判定の結果を含む前記車車間通信フレームを前記通信部に送信させる第2通知部と、を有する、車載装置。
    An on-vehicle apparatus of a vehicle having an inter-vehicle communication function,
    A communication unit that transmits and receives an inter-vehicle communication frame with another vehicle;
    A control unit that performs information processing on data included in the inter-vehicle communication frame;
    The control unit
    A first notification unit that causes the communication unit to transmit the inter-vehicle communication frame including the purpose of the lane change before the lane change is executed;
    An acquisition unit that acquires, from the inter-vehicle communication frame from the other vehicle, a response indicating presence or absence of a change in traveling behavior by the other vehicle accompanying the lane change;
    A determination unit that determines whether to execute the lane change based on the response;
    And a second notification unit that causes the communication unit to transmit the inter-vehicle communication frame including the result of the determination.
  2.  前記制御部は、さらに、下記の利得を算出する算出部を有し、
     前記判定部は、前記応答と前記利得とに基づいて前記判定を行う、請求項1に記載の車載装置。
      利得:自車両および前記他車両それぞれの走行挙動による自車両および前記他車両からなる対象車両群における損失度合い
    The control unit further includes a calculation unit that calculates the following gain:
    The on-vehicle apparatus according to claim 1, wherein the determination unit performs the determination based on the response and the gain.
    Gain: Degree of loss in a target vehicle group consisting of the own vehicle and the other vehicle according to the traveling behavior of the own vehicle and the other vehicle
  3.  前記算出部は、前記車線変更の目的、および自車両と前記他車両との間の距離のうちの少なくとも一方に基づいて前記利得を算出する、請求項2に記載の車載装置。 The in-vehicle device according to claim 2, wherein the calculation unit calculates the gain based on at least one of the purpose of the lane change and the distance between the host vehicle and the other vehicle.
  4.  前記制御部は、さらに、他車両のうちから下記の対象車両を抽出する抽出部を有し、
     前記算出部は、自車両および前記対象車両についての前記利得を算出する、請求項2または請求項3に記載の車載装置。
      対象車両:自車両の車線変更に関連する走行挙動を有する車両
    The control unit further includes an extraction unit for extracting the following target vehicle from other vehicles,
    The in-vehicle device according to claim 2, wherein the calculation unit calculates the gains of the host vehicle and the target vehicle.
    Target vehicle: Vehicle with driving behavior related to lane change of own vehicle
  5.  前記第1通知部が前記通信部に送信させる前記車車間通信フレームは、算出された前記利得のうちの前記損失度合いが最も小さい利得に示される、前記対象車両のうちの走行挙動の変更が必要な車両に対する前記車線変更の目的を含む、請求項4に記載の車載装置。 In the inter-vehicle communication frame that the first notification unit causes the communication unit to transmit, it is necessary to change the traveling behavior of the target vehicle indicated by the gain with the smallest loss degree of the calculated gains. 5. The on-vehicle apparatus according to claim 4, comprising the purpose of the lane change for a flexible vehicle.
  6.  前記判定部は、すべての前記走行挙動の変更が必要な車両からの前記応答が前記走行挙動の変更無しの場合であっても、前記車線変更の目的の緊急度が高い場合には前記車線変更が実行可能と判定する、請求項5に記載の車載装置。 The determination unit is configured to change the lane if the emergency from the purpose of the lane change is high even if the response from the vehicle that requires a change in the traveling behavior is not to change the traveling behavior. The on-vehicle apparatus according to claim 5, wherein it is determined that is executable.
  7.  車車間通信機能を有する車両の車載装置において、車線変更の実行可否を判定する方法であって、
     車線変更の実行前に、前記車線変更の目的を含む車車間通信フレームを送信するステップと、
     前記他車両からの前記車車間通信フレームから、前記車線変更に伴う前記他車両による走行挙動の変更の有無の応答を取得するステップと、
     前記応答に基づいて、前記車線変更の実行の可否の判定を行うステップと、
     前記判定の結果を含む前記車車間通信フレームを送信するステップと、を備える、判定方法。
    In an on-vehicle apparatus of a vehicle having an inter-vehicle communication function, a method of determining whether or not to execute a lane change,
    Sending an inter-vehicle communication frame including the purpose of the lane change before performing the lane change;
    Acquiring from the inter-vehicle communication frame from the other vehicle a response indicating presence or absence of a change in traveling behavior by the other vehicle accompanying the lane change;
    Determining whether to execute the lane change based on the response;
    Transmitting the inter-vehicle communication frame including the result of the determination.
  8.  車車間通信機能を有する車両の車載装置としてコンピュータを機能させるためのコンピュータプログラムであって、
     前記車載装置は他車両と車車間通信フレームを送受信する通信部を有し、
     前記コンピュータを、前記車車間通信フレームに含まれるデータに情報処理を施す制御部として機能させ、
     前記制御部は、
     車線変更の実行前に、前記車線変更の目的を含む前記車車間通信フレームを前記通信部に送信させる第1通知部と、
     前記他車両からの前記車車間通信フレームから、前記車線変更に伴う前記他車両による走行挙動の変更の有無の応答を取得する取得部と、
     前記応答に基づいて、前記車線変更の実行の可否の判定を行う判定部と、
     前記判定の結果を含む前記車車間通信フレームを前記通信部に送信させる第2通知部と、を有する、コンピュータプログラム。
    A computer program for causing a computer to function as an on-vehicle device of a vehicle having an inter-vehicle communication function,
    The in-vehicle device includes a communication unit that transmits and receives an inter-vehicle communication frame with another vehicle.
    Causing the computer to function as a control unit that performs information processing on data included in the inter-vehicle communication frame;
    The control unit
    A first notification unit that causes the communication unit to transmit the inter-vehicle communication frame including the purpose of the lane change before the lane change is executed;
    An acquisition unit that acquires, from the inter-vehicle communication frame from the other vehicle, a response indicating presence or absence of a change in traveling behavior by the other vehicle accompanying the lane change;
    A determination unit that determines whether to execute the lane change based on the response;
    A second notification unit that causes the communication unit to transmit the inter-vehicle communication frame including the result of the determination.
PCT/JP2018/000424 2018-01-11 2018-01-11 Vehicle-mounted device, determination method, and computer program WO2019138486A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/000424 WO2019138486A1 (en) 2018-01-11 2018-01-11 Vehicle-mounted device, determination method, and computer program

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/000424 WO2019138486A1 (en) 2018-01-11 2018-01-11 Vehicle-mounted device, determination method, and computer program

Publications (1)

Publication Number Publication Date
WO2019138486A1 true WO2019138486A1 (en) 2019-07-18

Family

ID=67218958

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/000424 WO2019138486A1 (en) 2018-01-11 2018-01-11 Vehicle-mounted device, determination method, and computer program

Country Status (1)

Country Link
WO (1) WO2019138486A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114267171A (en) * 2021-11-08 2022-04-01 南宁小欧技术开发有限公司 Vehicle control method and system based on vehicle track prediction
US20220262253A1 (en) * 2019-07-22 2022-08-18 Zhibin Wu Prioritized lane change with v2x assistance

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008134841A (en) * 2006-11-28 2008-06-12 Toyota Motor Corp Traveling support device
JP2014134897A (en) * 2013-01-08 2014-07-24 Denso Corp Vehicular communication device and vehicular communication system employing the same
WO2016147623A1 (en) * 2015-03-18 2016-09-22 日本電気株式会社 Driving control device, driving control method, and vehicle-to-vehicle communication system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008134841A (en) * 2006-11-28 2008-06-12 Toyota Motor Corp Traveling support device
JP2014134897A (en) * 2013-01-08 2014-07-24 Denso Corp Vehicular communication device and vehicular communication system employing the same
WO2016147623A1 (en) * 2015-03-18 2016-09-22 日本電気株式会社 Driving control device, driving control method, and vehicle-to-vehicle communication system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220262253A1 (en) * 2019-07-22 2022-08-18 Zhibin Wu Prioritized lane change with v2x assistance
CN114267171A (en) * 2021-11-08 2022-04-01 南宁小欧技术开发有限公司 Vehicle control method and system based on vehicle track prediction

Similar Documents

Publication Publication Date Title
CN108834434B (en) Method and apparatus for initiating or executing a coordinated driving maneuver
CN109562760B (en) Testing predictions for autonomous vehicles
CN108349496B (en) Method and control system for determining a traffic gap between two vehicles for lane change of a vehicle
US10304333B2 (en) Method and vehicle communication system for determining a driving intention for a vehicle
US20180056998A1 (en) System and Method for Multi-Vehicle Path Planning Technical Field
US20200184827A1 (en) Electronic control device and vehicle comprising the same
US20200410852A1 (en) Communication device, control method thereof, and communication system including the same
WO2019138485A1 (en) Collision possibility determination device, collision possibility determination method, and computer program
CN111583697B (en) Driving support system and server device
US20200211379A1 (en) Roundabout assist
WO2019138488A1 (en) Predicted travel behavior data adjustment device, predicted travel behavior data transmission device, predicted travel behavior data adjustment method, predicted travel behavior data transmission method, computer program, and communication frame data structure
JP6658968B2 (en) Driving support method and driving support device
EP4030792A1 (en) V2x communication system with autonomous driving information
WO2019138486A1 (en) Vehicle-mounted device, determination method, and computer program
WO2019150458A1 (en) Vehicle-mounted device, generation method, and computer program
JP6784338B2 (en) In-vehicle device, communication path information generation method, and computer program
US12110010B2 (en) Driving assistance device
US10495721B2 (en) Communication device, communication terminal device, communication method, and non-transitory tangible computer readable medium
US20220281482A1 (en) Vehicle control device, vehicle control method, and computer-readable storage medium storing program
WO2019150460A1 (en) Vehicle-mounted device, vehicle-to-vehicle communication method, and computer program
WO2019138498A1 (en) Vehicle-mounted device, adjustment method, and computer program
WO2019150455A1 (en) Automotive device, communication method, and computer program
WO2019138487A1 (en) Vehicle-mounted device, travel control method, and computer program
JPWO2020136893A1 (en) Communication systems, communication terminals, control methods, programs, and storage media for storing programs.
CN114596727A (en) Assistance method, system for a vehicle, corresponding vehicle and storage medium

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18899484

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18899484

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP