WO2019137389A1 - 一种系统信息配置方法和装置 - Google Patents

一种系统信息配置方法和装置 Download PDF

Info

Publication number
WO2019137389A1
WO2019137389A1 PCT/CN2019/070963 CN2019070963W WO2019137389A1 WO 2019137389 A1 WO2019137389 A1 WO 2019137389A1 CN 2019070963 W CN2019070963 W CN 2019070963W WO 2019137389 A1 WO2019137389 A1 WO 2019137389A1
Authority
WO
WIPO (PCT)
Prior art keywords
rmsi
ssb
frequency
frequency offset
candidate
Prior art date
Application number
PCT/CN2019/070963
Other languages
English (en)
French (fr)
Inventor
达人
任斌
赵铮
郑方政
Original Assignee
电信科学技术研究院有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 电信科学技术研究院有限公司 filed Critical 电信科学技术研究院有限公司
Priority to KR1020227029478A priority Critical patent/KR102552443B1/ko
Priority to US16/961,217 priority patent/US11546914B2/en
Priority to KR1020207021538A priority patent/KR20200102478A/ko
Priority to EP19738542.0A priority patent/EP3739797B1/en
Publication of WO2019137389A1 publication Critical patent/WO2019137389A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/08Access restriction or access information delivery, e.g. discovery data delivery
    • H04W48/10Access restriction or access information delivery, e.g. discovery data delivery using broadcasted information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/53Allocation or scheduling criteria for wireless resources based on regulatory allocation policies
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/26025Numerology, i.e. varying one or more of symbol duration, subcarrier spacing, Fourier transform size, sampling rate or down-clocking
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0028Variable division
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0044Arrangements for allocating sub-channels of the transmission path allocation of payload
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0094Indication of how sub-channels of the path are allocated
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/001Synchronization between nodes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA

Definitions

  • the present disclosure relates to the field of communications, and in particular, to a system information configuration method and apparatus.
  • Minimum System Information is the system information necessary for the terminal to make initial access.
  • the part of the minimum system information is transmitted through a PBCH (Physical Broadcast Channel), and the remaining minimum system information (RMSI) is transmitted through a PDSCH (Physical Downlink Shared Channel).
  • the PDSCH that transmits the RMSI is scheduled by a PDCCH (Physical Downlink Control Channel).
  • the PDCCH (used to schedule the PDSCH carrying the RMSI) is indicated by the RMSI Control Resource Set (CORESET) configuration information.
  • the RMSI CORESET configuration information belongs to the minimum system information and is transmitted on the PBCH channel.
  • Each RMSI CORESET is associated with a System Synchronization Block (SSB).
  • RMSI CORESET and SSB have two multiplexing modes, namely, Frequency Division Multiplexing (FDM) or Time Division Multiplexing (TDM).
  • FDM Frequency Division Multiplexing
  • TDM Time Division Multiplexing
  • the time division multiplexing means that the RMSI CORESET and the associated SSB are transmitted on different OFDM (Orthogonal Frequency Division Multiplexing) symbols in the time domain.
  • OFDM Orthogonal Frequency Division Multiplexing
  • the NR supports different multiplexing modes between SSB and RMSI CORESET.
  • the time division multiplexing method is also called “mode 1" [1, 2] refers to the multiplexing mode in which SSB and RMSI CORESET appear at different times.
  • mode 1 the time division multiplexing of RMSI CORESET and associated SSB is shown in Figure 1.
  • 'A' is the carrier bandwidth, with RMSI RB (Resource Block) as the granularity;
  • 'B' is the RMSI CORESET occupied bandwidth, with RMSI RB as the granularity;
  • 'C' is the SSB occupied bandwidth to SSB RB Is the granularity;
  • 'D' is the frequency domain offset indication of the RMSI CORESET relative to the SSB, with the RMSI RB as the granularity.
  • the carrier bandwidth used to design a frequency offset setting for a radio band will be greater than or equal to the minimum bandwidth specified for that radio band.
  • the SCS of the RMSI may be the same or different from the SCS of the associated SSB.
  • a key point in the RMSI CORESET configuration design is how to configure the frequency offset between the RMSI CORESET and the associated SSB, ie how to configure the difference between the minimum RB index of the SSB and the minimum RB index of the RMSI CORESET, corresponding to Parameter D in Figure 1.
  • ⁇ SS SCS ⁇ SS SCS
  • RMSI SCS ⁇ ⁇ 15, 15 ⁇ kHz, ⁇ 15, 30 ⁇ kHz, ⁇ 30, 15 ⁇ kHz, ⁇ 30, 30 ⁇ kHz;
  • SSB subcarrier spacing SCS, Subcarrier Spacing
  • RMSI CORESET SCS RMSI CORESET SCS
  • the technical problem to be solved by the present disclosure is to provide a system information configuration method and apparatus, which solves the problem of not comprehensively considering the frequency offset configuration of the RMSI CORESET with respect to the SSB in the related art.
  • the present disclosure provides a system information configuration method, including:
  • the target parameter includes a channel bandwidth parameter, a subcarrier spacing SCS parameter of the RMSI, and an SSB
  • SCS parameters system sync raster SS Raster parameters, and RMSI CORESET bandwidth parameters
  • a frequency offset configuration of the RMSI CORESET with respect to the SSB is performed according to the frequency offset configuration parameter.
  • the step of determining the remaining minimum system information RMSI control resource set CORESET relative to the frequency offset configuration parameter of the system synchronization block SSB according to the preset target parameter includes:
  • the step of performing the frequency offset configuration of the RMSI CORESET relative to the SSB according to the frequency offset configuration parameter includes:
  • the frequency offset configuration of the RMSI CORESET with respect to the SSB is respectively performed for the carrier frequency bands of different frequency ranges, and the frequency offset configuration table corresponding to the carrier frequency bands of different frequency ranges is obtained.
  • the step of determining the frequency offset configuration parameter of the carrier frequency band of different frequency ranges according to the target parameters corresponding to the carrier frequency bands of different frequency ranges respectively includes:
  • the target frequency parameters corresponding to the carrier frequency bands of different frequency ranges respectively determine the frequency offset configuration of the carrier frequency band in different frequency ranges. parameter.
  • the carrier frequency band of the different frequency ranges includes a carrier frequency band with a frequency range of 0 to 2.65 GHz and/or a carrier frequency band with a frequency range of 2.4 GHz to 6 GHz;
  • the minimum channel bandwidth of the carrier frequency band with a frequency range of 0 to 2.65 GHz includes 5 MHz, 10 MHz, and/or 20 MHz;
  • the minimum channel bandwidth of the carrier frequency band in the frequency range of 2.4 GHz to 6 GHz includes 10 MHz, 20 MHz, and/or 40 MHz.
  • the minimum channel bandwidth of the carrier frequency band with a frequency range of 0 to 2.65 GHz includes 5 MHz and 10 MHz, and the carrier frequency band with a frequency range of 0 to 2.65 GHz uses the same frequency offset at a minimum channel bandwidth of 5 MHz and 10 MHz. Move the configuration table.
  • the frequency offset configuration parameter includes a candidate frequency offset number and a frequency offset
  • the step of determining the remaining minimum system information RMSI control resource set CORESET relative to the frequency offset configuration parameter of the system synchronization block SSB according to the preset target parameter includes:
  • the channel bandwidth parameter includes a quantity of resource blocks RBs within a channel bandwidth
  • the RMSI CORESET bandwidth parameter includes an RB number within an RMSI CORESET bandwidth
  • the SS Raster parameter includes an SS Raster interval.
  • the determining the candidate frequency offset number and the frequency offset according to the preset target parameter and based on the predetermined criterion comprises:
  • each offset value in the configuration can support the maximum position of the SSB according to the number of RBs in the channel bandwidth and the number of RBs in the RMSI CORESET bandwidth;
  • the SS Raster interval and the maximum number of RB positions where the SS Raster may be placed within the channel bandwidth and based on the criterion that all possible numbers of candidate frequency offset positions within one SS Raster interval are minimized, it is determined that SS may be placed within the channel bandwidth.
  • the maximum number of candidate RB positions of the Raster is determined that SS may be placed within the channel bandwidth.
  • a candidate set of frequency offsets is determined based on the number of candidate frequency offsets, each of the configurations may support a maximum location of the SSB and a predefined initial offset.
  • the determining, according to the number of RBs in the channel bandwidth and the number of RBs in the RMSI CORESET bandwidth, determining that each offset value in the configuration can support the maximum position of the SSB includes:
  • the channel bandwidth in RMSI RB RB is the maximum number of locations within and RMSI CORESET N BW Bandwidth increment in RMSI RB RB number N RMSI as graininess, by the following formula to determine the offset value may be configured to support each of SSB ⁇ SSB :
  • ⁇ SSB floor([(N BW -N RMSI )+1]*2 - ⁇ );
  • is the scale factor between the SCS of the SSB and the SCS of the RMSI, and floor represents the downward rounding function.
  • the steps of placing the maximum number of candidate RB locations of the SS Raster within the channel bandwidth include:
  • the maximum number of RB positions where the SS Raster may be placed in the channel bandwidth is determined by the following formula:
  • N' N SSB -19;
  • the maximum number of candidate RB positions where SS Raster may be placed in the channel bandwidth is determined by the following formula:
  • N min(N Sync , N');
  • the step of determining a maximum number of candidate RB positions that may be placed in the channel bandwidth and each offset value in the configuration may support a maximum position of the SSB, and the step of determining the number of candidate frequency offsets includes: :
  • each offset value in the configuration may support the maximum position ⁇ SSB of the SSB , and determine the number of candidate frequency offsets P by the following formula:
  • the step of determining a candidate set of frequency offsets according to the number of candidate frequency offsets, each offset value in the configuration may support a maximum position of the SSB, and a predefined initial offset include:
  • the maximum position ⁇ SSB of the SSB can be supported according to each offset value in the configuration, and the frequency offset step size ⁇ RMSI is determined by the following formula:
  • is the scaling factor between the SCS of the SSB and the SCS of the RMSI
  • N RMSI is the number of RBs with the RMSI RB as the granularity within the RMSI CORESET bandwidth
  • the ith frequency in the candidate set of the frequency offset is determined by the following formula Before the value of the offset O i , the method further includes:
  • the initial offset O is determined based on the RMS number N RMSI of the RMSI RB granularity within the RMSI CORESET bandwidth, the candidate frequency offset number P, and the frequency offset step size ⁇ RMSI , and based on the criterion of SSB alignment with the RMSI CORESET center. 0 .
  • the determining, according to the RMSI CORESET bandwidth, the RMS number of the RMSI RB, the number of RBs N RMSI , the number of candidate frequency offsets P, and the frequency offset step size ⁇ RMSI are determined based on a criterion of SSB alignment with the RMSICORESET center.
  • the steps of the initial offset O 0 include:
  • the initial offset O 0 is determined by the following formula:
  • the present disclosure further provides a system information configuration apparatus, including:
  • a determining module configured to determine, according to a preset target parameter, a frequency offset configuration parameter of the remaining minimum system information RMSI control resource set CORESET relative to the system synchronization block SSB;
  • the target parameter includes a channel bandwidth parameter, a subcarrier spacing of the RMSI One or more of an SCS parameter, an SSS parameter of the SSB, a system synchronization raster SS Raster parameter, and an RMSI CORESET bandwidth parameter;
  • a configuration module configured to perform frequency offset configuration of the RMSI CORESET relative to the SSB according to the frequency offset configuration parameter.
  • the present disclosure further provides a system information configuration apparatus, including a transceiver, a memory, a processor, and a computer program stored on the memory and operable on the processor;
  • the processor is configured to read a program in the memory, and perform the following process: determining, according to a preset target parameter, a frequency offset configuration parameter of the remaining minimum system information RMSI control resource set CORESET relative to the system synchronization block SSB;
  • the parameters include one or more of a channel bandwidth parameter, a subcarrier spacing SCS parameter of the RMSI, an SSS parameter of the SSB, a system synchronization raster SS Raster parameter, and an RMSI CORESET bandwidth parameter; performing RMSI CORESET according to the frequency offset configuration parameter Frequency offset configuration relative to SSB.
  • the processor is further configured to: determine frequency offset configuration parameters of carrier frequency bands in different frequency ranges according to target parameters corresponding to carrier frequency bands of different frequency ranges; and frequency offset of carrier frequency bands according to different frequency ranges.
  • the configuration parameter is configured to perform frequency offset configuration of the RMSI CORESET relative to the SSB for the carrier frequency bands of different frequency ranges, and obtain frequency offset configuration tables corresponding to the carrier frequency bands of different frequency ranges respectively.
  • the processor is further configured to: according to an SS Raster definition in different carrier frequency bands, different RMSI SCS and SSB SCS combinations, and different minimum channel bandwidths, target frequency parameters corresponding to carrier frequency bands in different frequency ranges, The frequency offset configuration parameters of the carrier frequency bands of different frequency ranges are determined.
  • the carrier frequency band of the different frequency ranges includes a carrier frequency band with a frequency range of 0 to 2.65 GHz and/or a carrier frequency band with a frequency range of 2.4 GHz to 6 GHz;
  • the minimum channel bandwidth of the carrier frequency band with a frequency range of 0 to 2.65 GHz includes 5 MHz, 10 MHz, and/or 20 MHz;
  • the minimum channel bandwidth of the carrier frequency band in the frequency range of 2.4 GHz to 6 GHz includes 10 MHz, 20 MHz, and/or 40 MHz.
  • the minimum channel bandwidth of the carrier frequency band with a frequency range of 0 to 2.65 GHz includes 5 MHz and 10 MHz, and the carrier frequency band with a frequency range of 0 to 2.65 GHz uses the same frequency offset at a minimum channel bandwidth of 5 MHz and 10 MHz. Move the configuration table.
  • the frequency offset configuration parameter includes a candidate frequency offset number and a frequency offset; the processor is further configured to: determine a candidate frequency offset according to a preset target parameter, and based on a predetermined criterion.
  • Number and frequency offset includes one or more of criteria for minimizing all possible numbers of candidate frequency offset locations within one SS Raster interval, criteria for alignment of SSB and RMSI CORESET centers .
  • the channel bandwidth parameter includes a quantity of resource blocks RBs within a channel bandwidth
  • the RMSI CORESET bandwidth parameter includes an RB number within an RMSI CORESET bandwidth
  • the SS Raster parameter includes an SS Raster interval
  • each offset value in the configuration can support the maximum position of the SSB according to the number of RBs in the channel bandwidth and the number of RBs in the RMSI CORESET bandwidth;
  • the SS Raster interval and the maximum number of RB positions where the SS Raster may be placed within the channel bandwidth and based on the criterion that all possible numbers of candidate frequency offset positions within one SS Raster interval are minimized, it is determined that SS may be placed within the channel bandwidth.
  • the maximum number of candidate RB positions of the Raster is determined that SS may be placed within the channel bandwidth.
  • a candidate set of frequency offsets is determined based on the number of candidate frequency offsets, each of the configurations may support a maximum location of the SSB and a predefined initial offset.
  • the processor is further configured to: according to the channel bandwidth of the RB RMSI N BW RB number and a bandwidth granularity RMSI CORESET RMSI RB to RB number N RMSI as graininess, by the following formula, to determine the configuration
  • Each offset value can support the maximum position of the SSB ⁇ SSB :
  • ⁇ SSB floor([(N BW -N RMSI )+1]*2 - ⁇ );
  • is the scale factor between the SCS of the SSB and the SCS of the RMSI, and floor represents the downward rounding function.
  • the processor is further configured to: determine, according to a formula, the maximum number of RB positions N′ in the channel bandwidth that may be placed in the channel bandwidth according to the number of RBs N SSB in the channel bandwidth that is the granularity of the SSB RB;
  • N' N SSB -19;
  • the maximum number of candidate RB positions where SS Raster may be placed in the channel bandwidth is determined by the following formula:
  • N min(N Sync , N');
  • the processor is further configured to: according to a maximum number N of candidate RB positions where the SS Raster may be placed in the channel bandwidth, and a maximum position ⁇ SSB of the SSB that can be supported by each offset value in the configuration, by using the following formula: Number of candidate frequency offsets P:
  • the processor is further configured to: according to each offset value in the configuration, support a maximum position ⁇ SSB of the SSB , and determine a frequency offset step size ⁇ RMSI by using the following formula:
  • is the scaling factor between the SCS of the SSB and the SCS of the RMSI
  • N RMSI is the number of RBs with the RMSI RB as the granularity within the RMSI CORESET bandwidth
  • the processor is further configured to: according to the RMSI CORESET bandwidth, the number of RBs of the RMSI RB granularity N RMSI , the number of candidate frequency offsets P, and the frequency offset step size ⁇ RMSI , and based on the SSB and the RMSI
  • the criteria for CORESET center alignment determines the initial offset O 0 .
  • the processor is further configured to: according to the RMSI CORESET RMSI RB bandwidth is the number of RB N RMSI graininess, P is the number of candidate frequency offset and frequency offset step size ⁇ RMSI, by the following formula, is determined Initial offset O 0 :
  • the present disclosure further provides a computer readable storage medium having stored thereon a computer program, the program being executed by a processor, the step of the system information configuration method according to any one of the above.
  • the frequency offset configuration parameter of the RMSI CORESET relative to the SSB is first determined according to a preset target parameter; the target parameters include a channel bandwidth parameter, an SCS parameter of the RMSI, an SCS parameter of the SSB, and an SS Raster.
  • the target parameters include a channel bandwidth parameter, an SCS parameter of the RMSI, an SCS parameter of the SSB, and an SS Raster.
  • Figure 1 is a schematic diagram of RMSI CORESET and SSB time division multiplexing
  • FIG. 2 is a flowchart of a method for configuring system information provided by some embodiments of the present disclosure
  • FIG. 3 is a schematic diagram of a frequency offset configuration of a system information configuration method according to some embodiments of the present disclosure
  • FIG. 4 is a schematic diagram of another frequency offset configuration of a system information configuration method according to some embodiments of the present disclosure.
  • FIG. 5 is a schematic diagram of another frequency offset configuration of a system information configuration method according to some embodiments of the present disclosure.
  • FIG. 6 is a schematic structural diagram of a system information configuration apparatus according to some embodiments of the present disclosure.
  • FIG. 7 is another schematic structural diagram of a system information configuration apparatus according to some embodiments of the present disclosure.
  • a system information configuration method including:
  • Step 21 Determine, according to a preset target parameter, a frequency offset configuration parameter of the remaining minimum system information RMSI control resource set CORESET relative to the system synchronization block SSB;
  • the target parameter includes a channel bandwidth parameter, and a subcarrier spacing SCS parameter of the RMSI
  • SCS SCS parameters system sync raster SS Raster parameters, and RMSI CORESET bandwidth parameters
  • Step 22 Perform frequency offset configuration of the RMSI CORESET with respect to the SSB according to the frequency offset configuration parameter.
  • the system information configuration method of some embodiments of the present disclosure integrates RMSI SCS and SSB SCS combination, channel bandwidth, SS Raster, and RMSI CORESET bandwidth to perform frequency offset configuration of RMSI CORESET relative to SSB, considering comprehensive and perfecting the protocol.
  • the configuration method ensures the correct configuration of the protocol.
  • the RMSI refers to the RMSI CORESET.
  • the foregoing step 21 includes:
  • Step 211 Determine frequency offset configuration parameters of carrier frequency bands in different frequency ranges according to target parameters respectively corresponding to carrier frequency bands of different frequency ranges.
  • the carrier frequency bands of different frequency ranges respectively correspond to different target parameters
  • the frequency offset configuration parameters of the carrier frequency bands of different frequency ranges are determined according to the target parameters corresponding to the carrier frequency bands of different frequency ranges, so as to be used for carriers of different frequency ranges.
  • the frequency bands are individually configured for frequency offset.
  • the above step 22 includes:
  • Step 222 Perform frequency offset configuration of the RMSI CORESET relative to the SSB for the carrier frequency bands of different frequency ranges according to the frequency offset configuration parameters of the carrier frequency bands of different frequency ranges, and obtain frequency offsets corresponding to the carrier frequency bands of different frequency ranges respectively.
  • Configuration table Perform frequency offset configuration of the RMSI CORESET relative to the SSB for the carrier frequency bands of different frequency ranges according to the frequency offset configuration parameters of the carrier frequency bands of different frequency ranges, and obtain frequency offsets corresponding to the carrier frequency bands of different frequency ranges respectively.
  • the frequency offset configuration parameters of the carrier frequency bands of different frequency ranges are separately configured according to the frequency offset configuration parameters of the carrier frequency bands of different frequency ranges, and the frequency offset configuration tables corresponding to the carrier frequency bands of different frequency ranges are obtained.
  • the carrier frequency band of the different frequency ranges may include a carrier frequency band with a frequency range of 0 to 2.65 GHz and/or a carrier frequency band with a frequency range of 2.4 GHz to 6 GHz, but is not limited thereto.
  • TS 38.213 Table 13-1 Due to the current design, TS 38.213 Table 13-1 is almost full, and the frequency offset value required for the [2.4-6 GHz] frequency range cannot be supported by adding more configurations, which can be [0, 2.65 GHz in this disclosure.
  • the frequency range of [2.4-6 GHz] and the separate RMSI CORESET frequency offset configuration table are used to avoid this problem.
  • the current minimum channel bandwidth is 10 MHz, that is, no frequency offset configuration is required for the 5 MHz bandwidth, and the present disclosure passes [0, 2.65 GHz] and [2.4-6 GHz].
  • the frequency range uses separate RMSI CORESET frequency offset configuration tables to provide more room for the [2.4-6 GHz] frequency range to handle excessive offset issues.
  • step 211 includes:
  • Step 2111 Determine a frequency of a carrier frequency band in different frequency ranges according to a target parameter corresponding to a carrier frequency band of different frequency ranges according to an SS Raster definition in different carrier frequency bands, different RMSI SCS and SSB SCS combinations, and different minimum channel bandwidths. Offset configuration parameters.
  • the SS Raster definition, different RMSI SCS and SSB SCS combinations and different minimum channel bandwidth conditions in different carrier frequency bands are integrated, and the frequency offset configuration is determined by using the target frequency parameters of the carrier frequency bands of different frequency ranges under these conditions respectively.
  • the parameters, and then the RMSI CORESET frequency offset configuration based on the frequency offset configuration parameters implements all RMSI CORESET frequency offset configurations, and considers the comprehensive, perfect protocol configuration method to ensure the correct configuration of the protocol.
  • the carrier frequency band of the different frequency ranges includes a carrier frequency band with a frequency range of 0 to 2.65 GHz and/or a carrier frequency band with a frequency range of 2.4 GHz to 6 GHz; the minimum frequency channel of the carrier frequency band with a frequency range of 0 to 2.65 GHz
  • the bandwidth includes 5 MHz, 10 MHz, and/or 20 MHz; the minimum channel bandwidth of the carrier frequency band in the frequency range of 2.4 GHz to 6 GHz includes 10 MHz, 20 MHz, and/or 40 MHz.
  • the target parameters corresponding to the SS Raster definition, the different RMSI SCS and the SSB SCS combination in the different channel bands at the minimum channel bandwidths of 5 MHz, 10 MHz, and 20 MHz are obtained.
  • the frequency offset configuration parameter of the carrier frequency band of [0-2.65 GHz] further obtains an offset configuration table of the carrier frequency band of [0-2.65 GHz].
  • the corresponding target parameters of different RMSI SCS and SSB SCS combinations respectively obtain [2.4
  • the frequency offset configuration parameter of the carrier frequency band of GHz-6 GHz] further obtains an offset configuration table of the carrier frequency band of [2.4 GHz-6 GHz].
  • a frequency offset configuration table for a frequency range of [2.4, 6 GHz] and a minimum channel bandwidth of 40 MHz band is added in some embodiments of the present disclosure.
  • the minimum channel bandwidth of the carrier frequency band with a frequency range of 0 to 2.65 GHz includes 5 MHz and 10 MHz, and the carrier frequency band with a frequency range of 0 to 2.65 GHz uses the same frequency offset at a minimum channel bandwidth of 5 MHz and 10 MHz. Move the configuration table.
  • the same frequency offset configuration table can be used with a minimum channel bandwidth of 5 MHz and 10 MHz by a reasonable design.
  • the frequency offset configuration parameter includes a candidate frequency offset number and a frequency offset.
  • the above step 21 includes:
  • Step 212 Determine, according to a preset target parameter, and based on a predetermined criterion, a candidate frequency offset number and a frequency offset quantity; the predetermined criterion includes all possible numbers of candidate frequency offset positions within one SS Raster interval.
  • a predetermined criterion includes all possible numbers of candidate frequency offset positions within one SS Raster interval.
  • candidate frequency offset locations are within one SS Raster interval All possible minimum number criteria to simplify all configuration and efficiency when designing all RMSI CORESET configurations, based on SSB and RMSI CORESET frequency domain position center alignment criteria, to design all RMSI CORESET configurations
  • the bandwidth of the RMSI CORESET is large, the frequency domain channel responses of the RMSI CORESET and the SSB are guaranteed to be substantially equal to ensure the quasi-collocation relationship in the frequency domain.
  • the channel bandwidth parameter includes a quantity of resource blocks RBs within a channel bandwidth
  • the RMSI CORESET bandwidth parameter includes an RB number within an RMSI CORESET bandwidth
  • the SS Raster parameter includes an SS Raster interval.
  • Step 2121 Determine, according to the number of RBs in the channel bandwidth and the number of RBs in the RMSI CORESET bandwidth, that each offset value in the configuration can support the maximum position of the SSB.
  • step 2121 includes:
  • the channel bandwidth in RMSI RB RB is the maximum number of locations within and RMSI CORESET N BW Bandwidth increment in RMSI RB RB number N RMSI as graininess, by the following formula to determine the offset value may be configured to support each of SSB ⁇ SSB :
  • ⁇ SSB floor([(N BW -N RMSI )+1]*2 - ⁇ ).
  • Floor represents the rounding down function.
  • Step 2122 Determine the maximum number of RB positions where the SS Raster may be placed according to the SS Raster interval and the channel bandwidth, and determine the channel bandwidth based on the criterion that all possible numbers of the candidate frequency offset positions are minimized within one SS Raster interval. The maximum number of candidate RB locations where the SS Raster may be placed.
  • the maximum number of candidate RB locations that may be placed in the channel bandwidth that may be placed in the SS Raster is equivalent to the number N of possible SSB locations that need to be considered within the channel bandwidth.
  • N depends on the following two values: a) SS Raster interval; b) the maximum number of RB locations where SS Raster may be placed within the channel bandwidth.
  • step 2122 includes:
  • Step 21221 Determine, according to the following formula, the maximum number of RB positions N' in which the SS Raster may be placed in the channel bandwidth according to the number of RBs N SSB with the SSB RB as the granularity in the channel bandwidth;
  • N' N SSB -19.
  • the length of the SSB is 20 RBs, and the SS Raster is located at the 1st subcarrier of the 11th RB.
  • Step 21222 According to the interval N Sync and N′ of the SS Raster with the SSB RB as the granularity, determine the maximum number N of candidate RB positions where the SS Raster may be placed in the channel bandwidth by using the following formula:
  • N min(N Sync , N');
  • step 2123 the maximum number of candidate RB positions in which the SS Raster may be placed in the channel bandwidth and each offset value in the configuration may support the maximum position of the SSB, and determine the number of candidate frequency offsets.
  • step 2123 includes:
  • each offset value in the configuration may support the maximum position ⁇ SSB of the SSB , and determine the number of candidate frequency offsets P by the following formula:
  • the number of subsequent frequency offsets P required for the RMSI CORESET configuration is equal to the maximum number of candidate RB locations where the SS Raster may be placed within the channel bandwidth. N.
  • Each offset value in the configuration can support the maximum position ⁇ SSB of the SSB . Then round up.
  • Step 2124 Determine a candidate set of frequency offsets according to the candidate frequency offset number, each offset value in the configuration may support a maximum position of the SSB and a predefined initial offset.
  • step 2124 includes:
  • Step 21241 according to each offset value in the configuration, the maximum position ⁇ SSB of the SSB can be supported, and the frequency offset step size ⁇ RMSI is determined by the following formula:
  • is the scale factor between the SCS of the SSB and the SCS of the RMSI
  • N RMSI is the number of RBs with the RMSI RB as the granularity within the RMSI CORESET bandwidth.
  • the frequency offset step size ⁇ RMSI is calculated according to the scaling factor between the SCS of the SSB and the SCS of the RMSI , and the value of ⁇ RMSI is RMSI RB as the granularity. Since ⁇ SSB is granular with SSB RB, ⁇ SSB is multiplied by 2 ⁇ to convert to ⁇ RMSI . In addition, the maximum frequency offset should be less than the difference between the RMSI CORESET bandwidth and the SSB bandwidth, so there are:
  • Step 21242 according to the candidate frequency offset number P, the frequency offset step size ⁇ IRI, and the predefined initial offset O 0 , determine the ith frequency offset in the candidate set of the frequency offset by the following formula The value of O i :
  • O 0 0 means that SSB and RMSI CORESET start with bottom alignment.
  • the SSB and RMSI CORESET should be designed to be as close as possible to the center alignment criterion, so that when the bandwidth of the RMSI is large, the frequency domain channel responses of the RMSI and the SSB are substantially equal to ensure the QCL relationship in the frequency domain.
  • the method further includes:
  • Step 23 Determine the initial bias based on the RMS number N RMSI of the RMSI RB granularity, the candidate frequency offset number P, and the frequency offset step size ⁇ RMSI within the RMSI CORESET bandwidth , and based on the criterion of SSB alignment with the RMSI CORESET center.
  • the shift O 0 The shift O 0 .
  • the initial offset O 0 is determined, and the frequency domain channel response of the RMSI CORESET and the SSB can be substantially equal when the bandwidth of the RMSI CORESET is large, so as to ensure the QCL in the frequency domain. relationship.
  • step 23 includes:
  • Step 231 Determine an initial offset O 0 according to the following formula according to the RB number N RMSI with the RMSI RB granularity within the RMSI CORESET bandwidth, the candidate frequency offset number P, and the frequency offset step size ⁇ RMSI :
  • FIG. 3, FIG. 4 and FIG. 5 are respectively schematic diagrams showing the frequency offset configuration of the above system information configuration method according to some embodiments of the present disclosure in three typical scenarios.
  • M N RMSI .
  • the RMSI CORESET frequency offset configuration table of the NR band with a carrier frequency lower than 6 GHz generated by the above-described system information configuration method of some embodiments of the present disclosure is exemplified below.
  • Table 1 below provides the different channel bandwidths that need to be considered when designing the frequency offset in some embodiments of the present disclosure.
  • the number of RBs (Resource Blocks) for different SCSs under different channel bandwidths (in terms of RMSI) RB is granularity), and the number of supported RMSI CORESET bandwidths RB (in terms of RMSI RB granularity) needs to be considered when designing the frequency offset.
  • the defined SS Raster interval is 900 kHz.
  • SSB SCS 15 kHz
  • the defined SS Raster interval is 1800 kHz.
  • SSB SCS 15 kHz
  • SSB SCS 15 kHz
  • SSB SCS is 30 kHz
  • Tables 2 to 4, Table 5a, and Table 5b show ⁇ SSB SCS, RMSI SCS ⁇ for ⁇ 15, 15 ⁇ kHz, ⁇ 15, 30 ⁇ kHz, ⁇ 30, 15 ⁇ kHz, ⁇ 30, 30 ⁇ kHz, respectively.
  • Frequency offset configuration parameters ⁇ 15, 15 ⁇ kHz, ⁇ 15, 30 ⁇ kHz, ⁇ 30, 15 ⁇ kHz, ⁇ 30, 30 ⁇ kHz, respectively.
  • the first three items in Tables 2 to 4 and Table 5a ([0-2.65 GHz] minimum channel bandwidth is 5 MHz band, [0-2.65 GHz] minimum channel bandwidth is 10 MHz band and [2.4-6 GHz] minimum channel bandwidth is
  • the corresponding frequency offset configuration parameter of the 10 MHz band and the frequency offset configuration parameter of Table 5b are processes for determining the frequency offset configuration parameter in the above system information configuration method based on some embodiments of the present disclosure, Table 1 and above SS
  • the Raster parameter information is calculated.
  • the configuration parameters of Table 13-1 or Table 13-2 from TS 38.213 [1] are also compared in Tables 2 to 4 and Table 5a.
  • N/A represents no value.
  • Table 2 Frequency offset configuration for ⁇ SSB SCS, RMSI SCS ⁇ at ⁇ 15, 15 ⁇ kHz
  • Table 3 Frequency Offset Configuration for ⁇ SSB SCS, RMSI SCS ⁇ at ⁇ 15, 30 ⁇ kHz
  • Table 4 Frequency Offset Configuration for ⁇ SSB SCS, RMSI SCS ⁇ at ⁇ 30, 15 ⁇ kHz
  • Table 5a Frequency offset configuration for ⁇ SSB SCS, RMSI SCS ⁇ at ⁇ 30, 30 ⁇ kHz
  • Table 5b Frequency offset configuration for ⁇ SSB SCS, RMSI SCS ⁇ at ⁇ 30, 30 ⁇ kHz
  • the frequency offset configuration parameters of Table 13-1 of TS 38.213 [1] and the frequency obtained by applying the method of some embodiments of the present disclosure are in the frequency band of [0-2.65 GHz] minimum channel bandwidth of 5 MHz.
  • the offset configuration parameters are consistent when the channel bandwidth is 5 MHz and 20 MHz, but when the channel bandwidth is 10 MHz, the method of some embodiments of the present disclosure requires only one offset.
  • Table 13-1 of TS 38.213 [1] obviously does not consider the scenario where the minimum channel bandwidth is 10 MHz, while in some embodiments of the present disclosure, the [0-2.65 GHz] minimum channel bandwidth is 10 MHz. Frequency offset configuration parameters.
  • the method of some embodiments of the present disclosure for a frequency offset configuration table of RMSI CORESET versus SSB, is jointly designed considering the following factors: combinations of different SSB SCS and RMSI SCS, different channel bandwidths, different SS Rasters in different carrier bands Define and different RMSI CORESET bandwidths.
  • ⁇ SSB SCS, RMSI SCS ⁇ as an example of ⁇ 30, 30 ⁇ kHz.
  • the required set of frequency offsets are ⁇ 0, 1, 2, 3, 4 ⁇ and ⁇ 12,18 ⁇ .
  • the required set of frequency offsets is ⁇ 1, 2, 3 ⁇ .
  • the frequency offset at a minimum channel bandwidth of 10 MHz already includes all of the frequency offsets required for a minimum channel bandwidth of 5 MHz.
  • Table 13-1 to Table 13-4 can be modified based on the method of some embodiments of the present disclosure for the frequency range of [0-2.65 GHz], the minimum channel bandwidth 5 MHz and the 10 MHz frequency offset use the same Configuration table.
  • Table 13-1, Table 13-2, Table 13-3 and Table 13-4 in the modified TS 38.213 are shown in Tables 6 to 9 below.
  • the SS Raster interval is 30.24 MHz.
  • the SCS is 30 kHz
  • only one RB per 84 SSB RBs can be placed in the SS Raster.
  • the frequency offset configuration values used can be as shown in Table 13.
  • RMSI SCS ⁇ is a frequency offset configuration table of ⁇ 30, 30 ⁇ kHz, as shown in Table 14.
  • Tables 8 and 12 can be combined into one table, as shown in Table 15.
  • Tables 9 and 13 can be combined into one table, as shown in Table 16.
  • Table 6 (TS 38.213 Table 13-1): For the frequency band of the [0-2.65 GHz] frequency range, when the ⁇ SS/PBCH block, PDCCH ⁇ subcarrier spacing is ⁇ 15, 15 ⁇ kHz, for type 0-PDCCH Search space RBs collection and CORESET slot symbol
  • Table 7 For the frequency band of the [0-2.65 GHz] frequency range, when the ⁇ SS/PBCH block, PDCCH ⁇ subcarrier spacing is ⁇ 15, 30 ⁇ kHz, for type 0-PDCCH Search space RBs collection and CORESET slot symbol
  • Table 8 (TS 38.213 Table 13-3): For the frequency band of the [0-2.65 GHz] frequency range, when the ⁇ SS/PBCH block, PDCCH ⁇ subcarrier spacing is ⁇ 30, 15 ⁇ kHz, for type 0-PDCCH Search space RBs collection and CORESET slot symbol
  • Table 9 (TS 38.213 Table 13-4): For the frequency band of the [0-2.65 GHz] frequency range, when the ⁇ SS/PBCH block, PDCCH ⁇ subcarrier spacing is ⁇ 30, 30 ⁇ kHz, for type 0-PDCCH Search space RBs collection and CORESET slot symbol
  • Table 10 (TS 38.213 Table 13-x1): For the frequency band of the [2.4-6 GHz] frequency range, when the ⁇ SS/PBCH block, PDCCH ⁇ subcarrier spacing is ⁇ 15, 15 ⁇ kHz, it is used for type 0-PDCCH search. Space RBs set and CORESET slot symbol
  • Table 11 For the frequency band of the [2.4-6 GHz] frequency range, when the ⁇ SS/PBCH block, PDCCH ⁇ subcarrier spacing is ⁇ 15, 30 ⁇ kHz, it is used for type 0-PDCCH search. Space RBs set and CORESET slot symbol
  • Table 12 (TS 38.213 Table 13-x3): For the frequency band of the [2.4-6 GHz] frequency range, when the ⁇ SS/PBCH block, PDCCH ⁇ subcarrier spacing is ⁇ 30, 15 ⁇ kHz, for type 0-PDCCH search Space RBs set and CORESET slot symbol
  • Table 13 (TS 38.213 Table 13-x4): For the frequency band of the [2.4-6 GHz] frequency range, when the ⁇ SS/PBCH block, PDCCH ⁇ subcarrier spacing is ⁇ 30, 30 ⁇ kHz, it is used for type 0-PDCCH search. Space RBs set and CORESET slot symbol
  • Table 14 (TS 38.213 Table 13-x5): For the [2.4-6 GHz] frequency range, the minimum channel bandwidth is 40 MHz, when the ⁇ SS/PBCH block, PDCCH ⁇ subcarrier spacing is ⁇ 30, 30 ⁇ kHz, RBs set in type 0-PDCCH search space and time slot symbol of CORESET
  • Table 15 (TS 38.213 Table 13-3): RBs set for type 0-PDCCH search space and time slot symbol for CORESET when ⁇ SS/PBCH block, PDCCH ⁇ subcarrier spacing is ⁇ 30, 15 ⁇ kHz
  • Table 16 (TS 38.213 Table 13-4): RBs set for type 0-PDCCH search space and time slot symbol for CORESET when ⁇ SS/PBCH block, PDCCH ⁇ subcarrier spacing is ⁇ 30, 30 ⁇ kHz
  • some embodiments of the present disclosure provide a systematic system information configuration method, based on a combination of a carrier frequency band, a channel bandwidth, an SSB SCS, and an RMSI SCS, based on a candidate frequency offset position in an SS.
  • All RMSI CORESET configurations are designed with all possible number of criteria within the Raster interval, guidelines for SSB alignment with the RMSI CORESET center.
  • the method of the embodiment of the invention is used to modify and redesign the existing configuration method in the 3GPP protocol standard to ensure the correctness of the protocol configuration method.
  • a system information configuration apparatus including:
  • a first determining module 601 configured to determine, according to a preset target parameter, a frequency offset configuration parameter of the remaining minimum system information RMSI control resource set CORESET relative to the system synchronization block SSB;
  • the target parameter includes a channel bandwidth parameter, an RMSI One or more of a subcarrier spacing SCS parameter, an SSS SSS parameter, a system synchronization raster SS Raster parameter, and an RMSI CORESET bandwidth parameter;
  • the configuration module 602 is configured to perform frequency offset configuration of the RMSI CORESET relative to the SSB according to the frequency offset configuration parameter.
  • the system information configuration apparatus of some embodiments of the present disclosure integrates the RMSI SCS and SSB SCS combination, the channel bandwidth, the SS Raster, and the RMSI CORESET bandwidth to perform frequency offset configuration of the RMSI CORESET relative to the SSB, and comprehensively improves the protocol.
  • the configuration method ensures the correct configuration of the protocol.
  • the first determining module 601 includes:
  • a first determining submodule configured to determine a frequency offset configuration parameter of a carrier frequency band of different frequency ranges according to target parameters respectively corresponding to carrier frequency bands of different frequency ranges;
  • the configuration module 602 includes:
  • the first configuration sub-module is configured to perform frequency offset configuration parameters of the carrier frequency band of different frequency ranges according to the frequency band of the carrier frequency band of different frequency ranges, and respectively perform frequency offset configuration of the RMSI CORESET with respect to the SSB, and obtain carrier frequency bands of different frequency ranges respectively. Corresponding frequency offset configuration table.
  • the first determining submodule includes:
  • a first determining unit configured to determine a target frequency parameter corresponding to a carrier frequency band of different frequency ranges according to an SS Raster definition in different carrier frequency bands, different RMSI SCS and SSB SCS combinations, and different minimum channel bandwidths, and determine different frequency ranges Frequency offset configuration parameters for the carrier band.
  • the carrier frequency band of the different frequency ranges includes a carrier frequency band with a frequency range of 0 to 2.65 GHz and/or a carrier frequency band with a frequency range of 2.4 GHz to 6 GHz;
  • the minimum channel bandwidth of the carrier frequency band with a frequency range of 0 to 2.65 GHz includes 5 MHz, 10 MHz, and/or 20 MHz;
  • the minimum channel bandwidth of the carrier frequency band in the frequency range of 2.4 GHz to 6 GHz includes 10 MHz, 20 MHz, and/or 40 MHz.
  • the minimum channel bandwidth of the carrier frequency band with a frequency range of 0 to 2.65 GHz includes 5 MHz and 10 MHz, and the carrier frequency band with a frequency range of 0 to 2.65 GHz uses the same frequency offset at a minimum channel bandwidth of 5 MHz and 10 MHz. Move the configuration table.
  • the frequency offset configuration parameter includes a candidate frequency offset number and a frequency offset
  • the first determining module 601 includes:
  • a second determining submodule configured to determine, according to a preset target parameter, a candidate frequency offset number and a frequency offset according to a predetermined criterion; the predetermined criterion includes a candidate frequency offset position at an SS Raster interval One or more of the criteria for minimizing all possible numbers within the SSB and the RMSI CORESET center alignment criteria.
  • the channel bandwidth parameter includes a quantity of resource blocks RBs within a channel bandwidth
  • the RMSI CORESET bandwidth parameter includes an RB number within an RMSI CORESET bandwidth
  • the SS Raster parameter includes an SS Raster interval.
  • the second determining submodule includes:
  • a second determining unit configured to determine, according to the number of RBs in the channel bandwidth and the number of RBs in the RMSI CORESET bandwidth, that each offset value in the configuration can support a maximum position of the SSB;
  • a third determining unit configured to: according to an SS Raster interval and a maximum number of RB positions where the SS Raster may be placed in the channel bandwidth, and based on a criterion that all possible numbers of the candidate frequency offset positions are minimized within one SS Raster interval, Determining the maximum number of candidate RB locations where SS Raster may be placed within the channel bandwidth;
  • a fourth determining unit configured to determine a candidate frequency offset number according to a maximum number of candidate RB positions where the SS Raster may be placed in the channel bandwidth and a maximum position of the SSB in each of the configurations;
  • a fifth determining unit configured to determine a candidate set of frequency offsets according to the candidate frequency offset number, each offset value in the configuration may support a maximum position of the SSB, and a predefined initial offset.
  • the second determining unit includes:
  • a first determining sub-unit according to the channel bandwidth of the RB RMSI N BW RB number and a bandwidth granularity RMSI CORESET RMSI RB to RB number N RMSI as graininess, by the following formula, to determine the configuration of each of the partial
  • the shift value can support the maximum position of the SSB ⁇ SSB :
  • ⁇ SSB floor([(N BW -N RMSI )+1]*2 - ⁇ );
  • is the scale factor between the SCS of the SSB and the SCS of the RMSI, and floor represents the downward rounding function.
  • the third determining unit includes:
  • a second determining subunit configured to determine, according to the following formula, the maximum number of RB positions N' in which the SS Raster may be placed in the channel bandwidth according to the number of RBs N SSB in the channel bandwidth with the SSB RB as granularity;
  • N' N SSB -19;
  • a third determining subunit configured to determine, according to the interval R Sync and N′ of the SS Raster with the SSB RB as a granularity, determine, by using the following formula, a maximum number N of candidate RB positions where the SS Raster may be placed in the channel bandwidth:
  • N min(N Sync , N');
  • the fourth determining unit includes:
  • a fourth determining subunit configured to support a maximum position ⁇ SSB of the SSB according to a maximum number N of candidate RB positions in which the SS Raster may be placed in the channel bandwidth, and determine a candidate frequency offset by using the following formula: Number P:
  • the fifth determining unit includes:
  • is the scaling factor between the SCS of the SSB and the SCS of the RMSI
  • N RMSI is the number of RBs with the RMSI RB as the granularity within the RMSI CORESET bandwidth
  • a sixth determining subunit configured to determine, according to the candidate frequency offset number P, the frequency offset step ⁇ RMSI, and the predefined initial offset O 0 , by using the following formula, determining the i th in the candidate set of the frequency offset The value of the frequency offset O i :
  • the device further includes:
  • a second determining module for aligning the number of RBs N RMSI with the RMSI RB granularity within the RMSI CORESET bandwidth, the number of candidate frequency offsets P and the frequency offset step size ⁇ RMSI , and based on the alignment of the SSB with the RMSI CORESET center , determine the initial offset O 0 .
  • the second determining module includes:
  • a third determining submodule configured to determine an initial offset according to an RMSI CORESET bandwidth with an RMSI RB granularity NR number N RMSI , a candidate frequency offset number P, and a frequency offset step size ⁇ RMSI O 0 :
  • the system information configuration apparatus of some embodiments of the present disclosure integrates the RMSI SCS and SSB SCS combination, the channel bandwidth, the SS Raster, and the RMSI CORESET bandwidth to perform frequency offset configuration of the RMSI CORESET relative to the SSB, and comprehensively improves the protocol.
  • the configuration method ensures the correct configuration of the protocol.
  • a system information configuration apparatus including a transceiver 710, a memory 720, a processor 700, a bus interface, and is stored on the memory 720 and a computer program running on the processor 700;
  • the processor 700 is configured to read a program in the memory, and perform the following process: determining, according to a preset target parameter, a frequency offset configuration parameter of the remaining minimum system information RMSI control resource set CORESET relative to the system synchronization block SSB;
  • the target parameter includes one or more of a channel bandwidth parameter, a subcarrier spacing SCS parameter of the RMSI, an SCS parameter of the SSB, a system synchronization raster SS Raster parameter, and an RMSI CORESET bandwidth parameter; according to the frequency offset configuration parameter, RMSI CORESET is configured relative to the frequency offset of the SSB.
  • the system information configuration apparatus of some embodiments of the present disclosure integrates the RMSI SCS and SSB SCS combination, the channel bandwidth, the SS Raster, and the RMSI CORESET bandwidth to perform frequency offset configuration of the RMSI CORESET relative to the SSB, and comprehensively improves the protocol.
  • the configuration method ensures the correct configuration of the protocol.
  • the bus architecture may include any number of interconnected buses and bridges, specifically linked by one or more processors represented by processor 700 and various circuits of memory represented by memory 720.
  • the bus architecture can also link various other circuits, such as peripherals, voltage regulators, and power management circuits, as is well known in the art and, therefore, will not be further described herein.
  • the bus interface provides an interface.
  • Transceiver 710 can be a plurality of components, including a transmitter and a transceiver, providing means for communicating with various other devices on a transmission medium.
  • the processor 700 is responsible for managing the bus architecture and general processing, and the memory 720 can store data used by the processor 700 in performing operations.
  • the processor 700 is further configured to: determine frequency offset configuration parameters of carrier frequency bands in different frequency ranges according to target parameters corresponding to carrier frequency bands of different frequency ranges; and frequency offset of carrier frequency bands according to different frequency ranges.
  • the configuration parameters are shifted, and the frequency offset configuration of the RMSI CORESET with respect to the SSB is separately performed for the carrier frequency bands of different frequency ranges, and the frequency offset configuration table corresponding to the carrier frequency bands of different frequency ranges is obtained.
  • the processor 700 is further configured to: target parameters corresponding to carrier frequency bands of different frequency ranges, according to SS Raster definitions in different carrier frequency bands, different RMSI SCS and SSB SCS combinations, and different minimum channel bandwidths. And determining frequency offset configuration parameters of carrier frequency bands of different frequency ranges.
  • the carrier frequency band of the different frequency ranges includes a carrier frequency band with a frequency range of 0 to 2.65 GHz and/or a carrier frequency band with a frequency range of 2.4 GHz to 6 GHz;
  • the minimum channel bandwidth of the carrier frequency band with a frequency range of 0 to 2.65 GHz includes 5 MHz, 10 MHz, and/or 20 MHz;
  • the minimum channel bandwidth of the carrier frequency band in the frequency range of 2.4 GHz to 6 GHz includes 10 MHz, 20 MHz, and/or 40 MHz.
  • the minimum channel bandwidth of the carrier frequency band with a frequency range of 0 to 2.65 GHz includes 5 MHz and 10 MHz, and the carrier frequency band with a frequency range of 0 to 2.65 GHz uses the same frequency offset at a minimum channel bandwidth of 5 MHz and 10 MHz. Move the configuration table.
  • the frequency offset configuration parameter includes a candidate frequency offset number and a frequency offset; the processor 700 is further configured to: determine a candidate frequency offset according to a preset target parameter, and based on a predetermined criterion. Moving the number and the frequency offset; the predetermined criterion includes one or more of a criterion that all possible number of candidate frequency offset positions are minimized within one SS Raster interval, and a criterion for alignment of the SSB and the RMSI CORESET center item.
  • the channel bandwidth parameter includes a quantity of resource blocks RBs within a channel bandwidth
  • the RMSI CORESET bandwidth parameter includes an RB number within an RMSI CORESET bandwidth
  • the SS Raster parameter includes an SS Raster interval
  • each offset value in the configuration can support the maximum position of the SSB according to the number of RBs in the channel bandwidth and the number of RBs in the RMSI CORESET bandwidth;
  • the SS Raster interval and the maximum number of RB positions where the SS Raster may be placed within the channel bandwidth and based on the criterion that all possible numbers of candidate frequency offset positions within one SS Raster interval are minimized, it is determined that SS may be placed within the channel bandwidth.
  • the maximum number of candidate RB positions of the Raster is determined that SS may be placed within the channel bandwidth.
  • a candidate set of frequency offsets is determined based on the number of candidate frequency offsets, each of the configurations may support a maximum location of the SSB and a predefined initial offset.
  • the processor 700 is further configured to: according to the channel bandwidth of the RB RMSI N BW RB number and a bandwidth granularity RMSI CORESET RMSI RB to RB number N RMSI as graininess, by the following formula, is determined
  • Each offset value in the configuration can support the maximum position of the SSB ⁇ SSB :
  • ⁇ SSB floor([(N BW -N RMSI )+1]*2 - ⁇ );
  • is the scale factor between the SCS of the SSB and the SCS of the RMSI, and floor represents the downward rounding function.
  • the processor 700 is further configured to: determine, according to the following formula, the maximum number of RB positions N′ in the channel bandwidth that may be placed in the channel bandwidth according to the number of RBs N SSB in the channel bandwidth with the SSB RB as granularity;
  • N' N SSB -19;
  • the maximum number of candidate RB positions where SS Raster may be placed in the channel bandwidth is determined by the following formula:
  • N min(N Sync , N');
  • the processor 700 is further configured to: support a maximum position ⁇ SSB of the SSB according to a maximum number N of candidate RB positions where the SS Raster may be placed in the channel bandwidth, and each offset value in the configuration, by using the following formula: Determine the number of candidate frequency offsets P:
  • the processor 700 is further configured to: according to each offset value in the configuration, support a maximum position ⁇ SSB of the SSB , and determine a frequency offset step size ⁇ IRI by using the following formula:
  • is the scaling factor between the SCS of the SSB and the SCS of the RMSI
  • N RMSI is the number of RBs with the RMSI RB as the granularity within the RMSI CORESET bandwidth
  • the processor 700 is further configured to: according to the RMSI CORESET bandwidth, the RMS number of the RMSI RB, the number of RBs N RMSI , the number of candidate frequency offsets P, and the frequency offset step size ⁇ RMSI , and based on the SSB and The RMSI CORESET center alignment criterion determines the initial offset O 0 .
  • the processor 700 is further configured to: according to the RMSI CORESET bandwidth, the number of RBs of the RMSI RB granularity N RMSI , the number of candidate frequency offsets P, and the frequency offset step size ⁇ RMSI , by using the following formula, Determine the initial offset O 0 :
  • a computer readable storage medium having stored thereon a computer program that, when executed by a processor, implements the following steps:
  • the target parameter includes a channel bandwidth parameter, a subcarrier spacing SCS parameter of the RMSI, and an SSB
  • SCS parameters system sync raster SS Raster parameters, and RMSI CORESET bandwidth parameters
  • a frequency offset configuration of the RMSI CORESET with respect to the SSB is performed according to the frequency offset configuration parameter.
  • the following steps are further performed: determining frequency offset configuration parameters of carrier frequency bands in different frequency ranges according to target parameters corresponding to carrier frequency bands of different frequency ranges; and carrier frequency bands according to different frequency ranges
  • the frequency offset configuration parameter is configured to perform frequency offset configuration of the RMSI CORESET relative to the SSB for the carrier frequency bands of different frequency ranges, and obtain frequency offset configuration tables corresponding to the carrier frequency bands of different frequency ranges respectively.
  • the following steps are further implemented: according to the SS Raster definition in different carrier frequency bands, different RMSI SCS and SSB SCS combinations, and different minimum channel bandwidths, carrier frequency bands of different frequency ranges respectively correspond to The target parameter determines frequency offset configuration parameters of the carrier frequency band in different frequency ranges.
  • the carrier frequency band of the different frequency ranges includes a carrier frequency band with a frequency range of 0 to 2.65 GHz and/or a carrier frequency band with a frequency range of 2.4 GHz to 6 GHz; the frequency range is a carrier frequency band of 0 to 2.65 GHz.
  • the minimum channel bandwidth includes 5 MHz, 10 MHz, and/or 20 MHz; the minimum channel bandwidth of the carrier band having a frequency range of 2.4 GHz to 6 GHz includes 10 MHz, 20 MHz, and/or 40 MHz.
  • the minimum channel bandwidth of the carrier frequency band with a frequency range of 0 to 2.65 GHz includes 5 MHz and 10 MHz, and the carrier frequency band with a frequency range of 0 to 2.65 GHz uses the same frequency offset at a minimum channel bandwidth of 5 MHz and 10 MHz. Move the configuration table.
  • the frequency offset configuration parameter includes a candidate frequency offset number and a frequency offset; when the program is executed by the processor, the following steps are further implemented: determining, according to a preset target parameter, based on a predetermined criterion, a candidate frequency offset number and a frequency offset; the predetermined criterion includes one of a criterion for minimizing all possible numbers of candidate frequency offset positions within one SS Raster interval, and one of criteria for SSB and RMSI CORESET center alignment Item or multiple items.
  • the channel bandwidth parameter includes a quantity of resource blocks RB within a channel bandwidth
  • the RMSI CORESET bandwidth parameter includes an RB number within an RMSI CORESET bandwidth
  • the SS Raster parameter includes an SS Raster interval
  • each offset value in the configuration can support the maximum position of the SSB according to the number of RBs in the channel bandwidth and the number of RBs in the RMSI CORESET bandwidth;
  • the SS Raster interval and the maximum number of RB positions where the SS Raster may be placed within the channel bandwidth and based on the criterion that all possible numbers of candidate frequency offset positions within one SS Raster interval are minimized, it is determined that SS may be placed within the channel bandwidth.
  • the maximum number of candidate RB positions of the Raster is determined that SS may be placed within the channel bandwidth.
  • a candidate set of frequency offsets is determined based on the number of candidate frequency offsets, each of the configurations may support a maximum location of the SSB and a predefined initial offset.
  • the program is executed by the processor, further implemented steps of: within a channel bandwidth to the RB number of RB RMSI N BW Bandwidth increment and RMSI CORESET to RMSI RB RB number N RMSI as graininess, by Formula, determining that each offset value in the configuration can support the maximum position of the SSB ⁇ SSB :
  • ⁇ SSB floor([(N BW -N RMSI )+1]*2 - ⁇ );
  • is the scale factor between the SCS of the SSB and the SCS of the RMSI, and floor represents the downward rounding function.
  • the following steps are further performed: determining, according to the following formula, the maximum number of RB positions where the SS Raster may be placed in the channel bandwidth according to the number of RBs N SSB with the SSB RB as the granularity in the channel bandwidth. N';
  • N' N SSB -19;
  • the maximum number of candidate RB positions where SS Raster may be placed in the channel bandwidth is determined by the following formula:
  • N min(N Sync , N');
  • the maximum position ⁇ SSB of the SSB can be supported according to each offset value in the configuration, and the frequency offset step size ⁇ RMSI is determined by the following formula:
  • is the scaling factor between the SCS of the SSB and the SCS of the RMSI
  • N RMSI is the number of RBs with the RMSI RB as the granularity within the RMSI CORESET bandwidth
  • the following steps are further performed: according to the RMSI CORESET bandwidth, the number of RBs of the RMSI RB granularity N RMSI , the number of candidate frequency offsets P, and the frequency offset step size ⁇ RMSI , and
  • the initial offset O 0 is determined based on the criteria for SSB alignment with the RMSI CORESET center.
  • the program is executed by the processor, further implemented steps of: within RMSI CORESET RMSI RB bandwidth is the number of RB N RMSI graininess, P is the number of candidate frequency offset and frequency offset step size ⁇ RMSI, by Determine the initial offset O 0 by the following formula:

Abstract

本公开提供了一种系统信息配置方法和装置,涉及通信领域,该方法包括:根据预先设定的目标参数,确定RMSI CORESET相对于SSB的频率偏移配置参数;目标参数包括信道带宽参数、RMSI的SCS参数、SSB的SCS参数、SS Raster参数和RMSI CORESET带宽参数中的一项或多项;根据频率偏移配置参数,进行频率偏移配置。

Description

一种系统信息配置方法和装置
相关申请的交叉引用
本申请主张在2018年1月12日在中国提交的中国专利申请号No.201810032494.X的优先权,其全部内容通过引用包含于此。
技术领域
本公开涉及通信领域,特别涉及一种系统信息配置方法和装置。
背景技术
在5G NR(New Radio,新空口)系统中,最小系统信息(MSI,Minimum System Information)是终端做初始接入必要的系统信息。其中,一部分最小系统信息通过PBCH(Physical Broadcast Channel,物理广播信道)传输,而剩余最小系统信息(RMSI,Remaining Minimum System Information)通过PDSCH(Physical Downlink Shared Channel,物理下行共享信道)传输。此外,传输RMSI的PDSCH通过PDCCH(Physical Downlink Control Channel,物理下行控制信道)进行调度。该PDCCH(用来调度承载RMSI的PDSCH)通过RMSI控制资源集(CORESET,Control Resource Set)配置信息来指示。其中,RMSI CORESET配置信息属于最小系统信息,在PBCH信道上传输。
每个RMSI CORESET与一个系统同步块(SSB,System Synchronization Block)关联。RMSI CORESET和SSB有两种复用方式,分别是频分复用(FDM,Frequency Division Multiplexing)或时分复用(TDM,Time Division Multiplexing)。其中,时分复用表示RMSI CORESET和相关联的SSB在时域上在不同的OFDM(Orthogonal Frequency Division Multiplexing,正交频分复用)符号上进行传输。时分复用方式是在系统不能支持频分复用方式时必须支持的。
NR支持SSB和RMSI CORESET之间的不同复用模式。其中,时分复用方式也叫“模式1”[1,2]是指SSB和RMSI CORESET在不同时刻出现的复用模式。对于时分复用“模式1”,RMSI CORESET和相关联的SSB的时分复用方 式如图1所示。其中,‘A’是载波带宽,以RMSI RB(Resource Block,资源块)为颗粒度;‘B’是RMSI CORESET占用带宽,以RMSI RB为颗粒度;‘C’是SSB占用带宽,以SSB RB为颗粒度;‘D’是RMSI CORESET相对于SSB的频域偏移指示,以RMSI RB为颗粒度。为某无线电频带设计频率偏移设置时采用的载波带宽将大于或等于为该无线电频带规定的最小带宽。每个RMSI RB及SSB RB使用的带宽等于它们各自的SCS的12倍。例如,当SCS=15kHz时,一个RB使用的带宽为180kHz。RMSI的SCS与相关联的SSB的SCS可以相同或不同。
在RMSI CORESET配置设计中的一个关键点是如何配置RMSI CORESET和相关联的SSB之间的频率偏移,即如何配置SSB的最小RB索引与RMSI CORESET的最小RB索引之间的差值,对应于图1中的参数D。
在3GPP RAN1#91会议中,已确定支持在以下SSB SCS和RMSI CORSET SCS的组合:
·6GHz以下的组合包括:{SS SCS,RMSI SCS}={15,15}kHz,{15,30}kHz,{30,15}kHz,{30,30}kHz;
·6GHz以上的组合包括:{SS SCS,RMSI SCS}={120,60}kHz,{120,120}kHz,{240,60}kHz,{240,120}kHz。
对于任意一种SSB子载波间隔(SCS,Subcarrier Spacing)和RMSI CORESET SCS的组合,从系统设计角度来看,希望能支持尽可能多的RMSI CORESET配置。但NR协议规定PBCH中只有4比特可用于指示RMSI CORESET的起始位置与关联的SSB的起始位置之间的频率偏移,即一共只能指示2^4=16种情况。
在3GPP协议标准TS 38.213[2]中的表13-1至13-8已给出了支持以上SSB SCS和RMSI CORSET SCS的组合的RMSI CORESET和相关的SSB之间的频率偏移配置。
但相关技术中由于会议时间的限制,TS38.213[2]中表13-1至表13-8中针对RMSI CORESET相对于SSB的频率偏移配置的考虑不全面。尤其是对6GHz以下,没有考虑同步光栅(SS Raster)和最小信道带宽等因素的影响。
发明内容
本公开要解决的技术问题是提供一种系统信息配置方法和装置,解决相关技术中针对RMSI CORESET相对于SSB的频率偏移配置的考虑不全面的问题。
为解决上述技术问题,本公开提供一种系统信息配置方法,包括:
根据预先设定的目标参数,确定剩余最小系统信息RMSI控制资源集CORESET相对于系统同步块SSB的频率偏移配置参数;所述目标参数包括信道带宽参数、RMSI的子载波间隔SCS参数、SSB的SCS参数、系统同步光栅SS Raster参数和RMSI CORESET带宽参数中的一项或多项;
根据所述频率偏移配置参数,进行RMSI CORESET相对于SSB的频率偏移配置。
可选的,所述根据预先设定的目标参数,确定剩余最小系统信息RMSI控制资源集CORESET相对于系统同步块SSB的频率偏移配置参数的步骤包括:
根据不同频率范围的载波频带分别对应的目标参数,确定不同频率范围的载波频带的频率偏移配置参数;
所述根据所述频率偏移配置参数,进行RMSI CORESET相对于SSB的频率偏移配置的步骤包括:
根据不同频率范围的载波频带的频率偏移配置参数,对不同频率范围的载波频带分别进行RMSI CORESET相对于SSB的频率偏移配置,获得不同频率范围的载波频带分别对应的频率偏移配置表。
可选的,所述根据不同频率范围的载波频带分别对应的目标参数,确定不同频率范围的载波频带的频率偏移配置参数的步骤包括:
根据不同载波频带里的SS Raster定义、不同RMSI SCS和SSB SCS组合以及不同最小信道带宽的条件下,不同频率范围的载波频带分别对应的目标参数,确定不同频率范围的载波频带的频率偏移配置参数。
可选的,所述不同频率范围的载波频带包括频率范围为0至2.65GHz的载波频带和/或频率范围为2.4GHz至6GHz的载波频带;
所述频率范围为0至2.65GHz的载波频带的最小信道带宽包括5MHz、10MHz和/或20MHz;
所述频率范围为2.4GHz至6GHz的载波频带的最小信道带宽包括10MHz、20MHz和/或40MHz。
可选的,所述频率范围为0至2.65GHz的载波频带的最小信道带宽包括5MHz和10MHz,所述频率范围为0至2.65GHz的载波频带在最小信道带宽5MHz和10MHz下使用相同的频率偏移配置表。
可选的,所述频率偏移配置参数包括候选频率偏移个数和频率偏移量;
所述根据预先设定的目标参数,确定剩余最小系统信息RMSI控制资源集CORESET相对于系统同步块SSB的频率偏移配置参数的步骤包括:
根据预先设定的目标参数,并基于预定准则,确定候选频率偏移个数和频率偏移量;所述预定准则包括候选的频率偏移位置在一个SS Raster间隔内的所有可能个数最小化的准则、SSB与RMSI CORESET中心对齐的准则中的一项或多项。
可选的,所述信道带宽参数包括信道带宽内的资源块RB数量,所述RMSI CORESET带宽参数包括RMSI CORESET带宽内的RB数量,所述SS Raster参数包括SS Raster间隔;
所述根据预先设定的目标参数,并基于预定准则,确定候选频率偏移个数和频率偏移量的步骤包括:
根据信道带宽内的RB数量和RMSI CORESET带宽内的RB数量,确定配置中每个偏移值可以支持SSB的最大位置;
根据SS Raster间隔和信道带宽内可能放置SS Raster的RB位置最大个数,并基于候选的频率偏移位置在一个SS Raster间隔内的所有可能个数最小化的准则,确定信道带宽内可能放置SS Raster的候选RB位置最大个数;
根据所述信道带宽内可能放置SS Raster的候选RB位置最大个数和所述配置中每个偏移值可以支持SSB的最大位置,确定候选频率偏移个数;
根据所述候选频率偏移个数、所述配置中每个偏移值可以支持SSB的最大位置以及预定义的初始偏移量,确定频率偏移量的候选集合。
可选的,所述根据信道带宽内的RB数量和RMSI CORESET带宽内的RB数量,确定配置中每个偏移值可以支持SSB的最大位置的步骤包括:
根据信道带宽内以RMSI RB为颗粒度的RB数量N BW和RMSI CORESET带 宽内以RMSI RB为颗粒度的RB数量N RMSI,通过如下公式,确定配置中每个偏移值可以支持SSB的最大位置Δ SSB
Δ SSB=floor([(N BW-N RMSI)+1]*2 );
其中,μ为SSB的SCS和RMSI的SCS之间的比例因子,floor表示向下取整函数。
可选的,所述根据SS Raster间隔和信道带宽内可能放置SS Raster的RB位置最大个数,并基于候选的频率偏移位置在一个SS Raster间隔内的所有可能个数最小化的准则,确定信道带宽内可能放置SS Raster的候选RB位置最大个数的步骤包括:
根据信道带宽内以SSB RB为颗粒度的RB数量N SSB,通过如下公式,确定信道带宽内可能放置SS Raster的RB位置最大个数N';
N'=N SSB-19;
根据SS Raster以SSB RB为颗粒度的间隔N Sync和N',通过如下公式,确定信道带宽内可能放置SS Raster的候选RB位置最大个数N:
N=min(N Sync,N');
其中,min表示求最小值函数。
可选的,所述根据所述信道带宽内可能放置SS Raster的候选RB位置最大个数和所述配置中每个偏移值可以支持SSB的最大位置,确定候选频率偏移个数的步骤包括:
根据信道带宽内可能放置SS Raster的候选RB位置最大个数N和配置中每个偏移值可以支持SSB的最大位置Δ SSB,通过如下公式,确定候选频率偏移个数P:
Figure PCTCN2019070963-appb-000001
其中,ceiling表示向上取整函数。
可选的,所述根据所述候选频率偏移个数、所述配置中每个偏移值可以支持SSB的最大位置以及预定义的初始偏移量,确定频率偏移量的候选集合的步骤包括:
根据配置中每个偏移值可以支持SSB的最大位置Δ SSB,通过如下公式,确定频率偏移步长Δ RMSI
Figure PCTCN2019070963-appb-000002
其中,μ为SSB的SCS和RMSI的SCS之间的比例因子;N RMSI为RMSI CORESET带宽内以RMSI RB为颗粒度的RB数量;
根据候选频率偏移个数P、频率偏移步长Δ RMSI以及预定义的初始偏移量O 0,通过如下公式,确定频率偏移量的候选集合中第i个频率偏移量O i的值:
O i=O 0+(i-1)*Δ RMSI
其中,1≤i≤P。
可选的,所述根据候选频率偏移个数P、频率偏移步长Δ RMSI以及预定义的初始偏移量O 0,通过如下公式,确定频率偏移量的候选集合中第i个频率偏移量O i的值之前,所述方法还包括:
根据RMSI CORESET带宽内以RMSI RB为颗粒度的RB数量N RMSI、候选频率偏移个数P和频率偏移步长Δ RMSI,并基于SSB与RMSI CORESET中心对齐的准则,确定初始偏移量O 0
可选的,所述根据RMSI CORESET带宽内以RMSI RB为颗粒度的RB数量N RMSI、候选频率偏移个数P和频率偏移步长Δ RMSI,并基于SSB与RMSICORESET中心对齐的准则,确定初始偏移量O 0的步骤包括:
根据RMSI CORESET带宽内以RMSI RB为颗粒度的RB数量N RMSI、候选频率偏移个数P和频率偏移步长Δ RMSI,通过如下公式,确定初始偏移量O 0
Figure PCTCN2019070963-appb-000003
为解决上述技术问题,本公开还提供一种系统信息配置装置,包括:
确定模块,用于根据预先设定的目标参数,确定剩余最小系统信息RMSI控制资源集CORESET相对于系统同步块SSB的频率偏移配置参数;所述目标参数包括信道带宽参数、RMSI的子载波间隔SCS参数、SSB的SCS参数、系统同步光栅SS Raster参数和RMSI CORESET带宽参数中的一项或多项;
配置模块,用于根据所述频率偏移配置参数,进行RMSI CORESET相对于SSB的频率偏移配置。
为解决上述技术问题,本公开还提供一种系统信息配置装置,包括收发机、存储器、处理器及存储在所述存储器上并可在所述处理器上运行的计算 机程序;
所述处理器用于读取存储器中的程序,执行下列过程:根据预先设定的目标参数,确定剩余最小系统信息RMSI控制资源集CORESET相对于系统同步块SSB的频率偏移配置参数;所述目标参数包括信道带宽参数、RMSI的子载波间隔SCS参数、SSB的SCS参数、系统同步光栅SS Raster参数和RMSI CORESET带宽参数中的一项或多项;根据所述频率偏移配置参数,进行RMSI CORESET相对于SSB的频率偏移配置。
可选的,所述处理器还用于:根据不同频率范围的载波频带分别对应的目标参数,确定不同频率范围的载波频带的频率偏移配置参数;根据不同频率范围的载波频带的频率偏移配置参数,对不同频率范围的载波频带分别进行RMSI CORESET相对于SSB的频率偏移配置,获得不同频率范围的载波频带分别对应的频率偏移配置表。
可选的,所述处理器还用于:根据不同载波频带里的SS Raster定义、不同RMSI SCS和SSB SCS组合以及不同最小信道带宽的条件下,不同频率范围的载波频带分别对应的目标参数,确定不同频率范围的载波频带的频率偏移配置参数。
可选的,所述不同频率范围的载波频带包括频率范围为0至2.65GHz的载波频带和/或频率范围为2.4GHz至6GHz的载波频带;
所述频率范围为0至2.65GHz的载波频带的最小信道带宽包括5MHz、10MHz和/或20MHz;
所述频率范围为2.4GHz至6GHz的载波频带的最小信道带宽包括10MHz、20MHz和/或40MHz。
可选的,所述频率范围为0至2.65GHz的载波频带的最小信道带宽包括5MHz和10MHz,所述频率范围为0至2.65GHz的载波频带在最小信道带宽5MHz和10MHz下使用相同的频率偏移配置表。
可选的,所述频率偏移配置参数包括候选频率偏移个数和频率偏移量;所述处理器还用于:根据预先设定的目标参数,并基于预定准则,确定候选频率偏移个数和频率偏移量;所述预定准则包括候选的频率偏移位置在一个SS Raster间隔内的所有可能个数最小化的准则、SSB与RMSI CORESET中心 对齐的准则中的一项或多项。
可选的,所述信道带宽参数包括信道带宽内的资源块RB数量,所述RMSI CORESET带宽参数包括RMSI CORESET带宽内的RB数量,所述SS Raster参数包括SS Raster间隔;所述处理器还用于:
根据信道带宽内的RB数量和RMSI CORESET带宽内的RB数量,确定配置中每个偏移值可以支持SSB的最大位置;
根据SS Raster间隔和信道带宽内可能放置SS Raster的RB位置最大个数,并基于候选的频率偏移位置在一个SS Raster间隔内的所有可能个数最小化的准则,确定信道带宽内可能放置SS Raster的候选RB位置最大个数;
根据所述信道带宽内可能放置SS Raster的候选RB位置最大个数和所述配置中每个偏移值可以支持SSB的最大位置,确定候选频率偏移个数;
根据所述候选频率偏移个数、所述配置中每个偏移值可以支持SSB的最大位置以及预定义的初始偏移量,确定频率偏移量的候选集合。
可选的,所述处理器还用于:根据信道带宽内以RMSI RB为颗粒度的RB数量N BW和RMSI CORESET带宽内以RMSI RB为颗粒度的RB数量N RMSI,通过如下公式,确定配置中每个偏移值可以支持SSB的最大位置Δ SSB
Δ SSB=floor([(N BW-N RMSI)+1]*2 );
其中,μ为SSB的SCS和RMSI的SCS之间的比例因子,floor表示向下取整函数。
可选的,所述处理器还用于:根据信道带宽内以SSB RB为颗粒度的RB数量N SSB,通过如下公式,确定信道带宽内可能放置SS Raster的RB位置最大个数N';
N'=N SSB-19;
根据SS Raster以SSB RB为颗粒度的间隔N Sync和N',通过如下公式,确定信道带宽内可能放置SS Raster的候选RB位置最大个数N:
N=min(N Sync,N');
其中,min表示求最小值函数。
可选的,所述处理器还用于:根据信道带宽内可能放置SS Raster的候选RB位置最大个数N和配置中每个偏移值可以支持SSB的最大位置Δ SSB, 通过如下公式,确定候选频率偏移个数P:
Figure PCTCN2019070963-appb-000004
其中,ceiling表示向上取整函数。
可选的,所述处理器还用于:根据配置中每个偏移值可以支持SSB的最大位置Δ SSB,通过如下公式,确定频率偏移步长Δ RMSI
Figure PCTCN2019070963-appb-000005
其中,μ为SSB的SCS和RMSI的SCS之间的比例因子;N RMSI为RMSI CORESET带宽内以RMSI RB为颗粒度的RB数量;
根据候选频率偏移个数P、频率偏移步长Δ RMSI以及预定义的初始偏移量O 0,通过如下公式,确定频率偏移量的候选集合中第i个频率偏移量O i的值:
O i=O 0+(i-1)*Δ RMSI
其中,1≤i≤P。
可选的,所述处理器还用于:根据RMSI CORESET带宽内以RMSI RB为颗粒度的RB数量N RMSI、候选频率偏移个数P和频率偏移步长Δ RMSI,并基于SSB与RMSI CORESET中心对齐的准则,确定初始偏移量O 0
可选的,所述处理器还用于:根据RMSI CORESET带宽内以RMSI RB为颗粒度的RB数量N RMSI、候选频率偏移个数P和频率偏移步长Δ RMSI,通过如下公式,确定初始偏移量O 0
Figure PCTCN2019070963-appb-000006
为解决上述技术问题,本公开还提供一种计算机可读存储介质,其上存储有计算机程序,该程序被处理器执行时如上任一项所述的系统信息配置方法的步骤。
本公开的上述技术方案的有益效果如下:
根据本公开的系统信息配置方法,首先根据预先设定的目标参数,确定RMSI CORESET相对于SSB的频率偏移配置参数;目标参数包括信道带宽参数、RMSI的SCS参数、SSB的SCS参数、SS Raster参数和RMSI CORESET带宽参数中的一项或多项;然后根据频率偏移配置参数,进行RMSI CORESET相对于 SSB的频率偏移配置。如此综合RMSI SCS和SSB SCS组合、信道带宽、SS Raster以及RMSI CORESET带宽等因素,进行RMSI CORESET相对于SSB的频率偏移配置,考虑全面,完善了协议配置方法,保证了协议配置的正确性,解决了相关技术中频率偏移配置考虑不全面的问题。
附图说明
图1为RMSI CORESET和SSB时分复用方式示意图;
图2为本公开的一些实施例提供的系统信息配置方法的流程图;
图3为本公开的一些实施例提供的系统信息配置方法频率偏移配置示意图;
图4为本公开的一些实施例提供的系统信息配置方法另一频率偏移配置示意图;
图5为本公开的一些实施例提供的系统信息配置方法另一频率偏移配置示意图;
图6为本公开的一些实施例提供的系统信息配置装置的结构示意图;
图7为本公开的一些实施例提供的系统信息配置装置的另一结构示意图。
具体实施方式
为使本公开要解决的技术问题、技术方案和优点更加清楚,下面将结合附图及具体实施例进行详细描述。
在本公开的一些实施例中,参照图2所示,提供了一种系统信息配置方法,包括:
步骤21,根据预先设定的目标参数,确定剩余最小系统信息RMSI控制资源集CORESET相对于系统同步块SSB的频率偏移配置参数;所述目标参数包括信道带宽参数、RMSI的子载波间隔SCS参数、SSB的SCS参数、系统同步光栅SS Raster参数和RMSI CORESET带宽参数中的一项或多项;
步骤22,根据所述频率偏移配置参数,进行RMSI CORESET相对于SSB的频率偏移配置。
本公开的一些实施例的系统信息配置方法,综合RMSI SCS和SSB SCS组 合、信道带宽、SS Raster以及RMSI CORESET带宽等因素,进行RMSI CORESET相对于SSB的频率偏移配置,考虑全面,完善了协议配置方法,保证了协议配置的正确性。
本公开的一些实施例中,只涉及到RMSI CORESET,如无特别说明RMSI均指的是RMSI CORESET。
可选的,上述步骤21包括:
步骤211,根据不同频率范围的载波频带分别对应的目标参数,确定不同频率范围的载波频带的频率偏移配置参数。
这里,对于不同频率范围的载波频带分别对应不同的目标参数,根据不同频率范围的载波频带分别对应的目标参数,确定不同频率范围的载波频带的频率偏移配置参数,以对不同频率范围的载波频带各自单独进行频率偏移配置。
上述步骤22包括:
步骤222,根据不同频率范围的载波频带的频率偏移配置参数,对不同频率范围的载波频带分别进行RMSI CORESET相对于SSB的频率偏移配置,获得不同频率范围的载波频带分别对应的频率偏移配置表。
这里,根据不同频率范围的载波频带的频率偏移配置参数,对不同频率范围的载波频带各自单独进行频率偏移配置,获得不同频率范围的载波频带分别对应的频率偏移配置表。
其中,所述不同频率范围的载波频带如可包括频率范围为0至2.65GHz的载波频带和/或频率范围为2.4GHz至6GHz的载波频带,但不限于此。
此时,通过上述步骤211和222,能够实现对[0-2.65GHz]频率范围的载波频带和[2.4GHz-6GHz]频率范围的载波频带各自单独进行频率偏移配置,从而获得各自单独的频率偏移配置表。
由于目前的设计中,TS 38.213表13-1几乎已经满了,不能通过添加更多配置来支持[2.4-6GHz]频率范围所需的频率偏移值,本公开中可对[0,2.65GHz]和[2.4-6GHz]的频率范围使用各自单独的RMSI CORESET频率偏移配置表,避免了这一问题。且对于[2.4-6GHz]的频率范围,目前最小信道带宽为10MHz的频段,即不需要对5MHz带宽进行频率偏移配置,本公开中通过 对[0,2.65GHz]和[2.4-6GHz]的频率范围使用各自单独的RMSI CORESET频率偏移配置表,可对[2.4-6GHz]的频率范围提供较多的空间来处理过多偏移量的问题。
可选的,上述步骤211包括:
步骤2111,根据不同载波频带里的SS Raster定义、不同RMSI SCS和SSB SCS组合以及不同最小信道带宽的条件下,不同频率范围的载波频带分别对应的目标参数,确定不同频率范围的载波频带的频率偏移配置参数。
此时,综合不同载波频带里的SS Raster定义、不同RMSI SCS和SSB SCS组合以及不同最小信道带宽的条件,利用不同频率范围的载波频带在这些条件下分别对应的目标参数,确定频率偏移配置参数,进而基于频率偏移配置参数进行RMSI CORESET频率偏移配置,实现了所有的RMSI CORESET频率偏移配置,且考虑全面,完善了协议配置方法,保证了协议配置的正确性。
其中,所述不同频率范围的载波频带包括频率范围为0至2.65GHz的载波频带和/或频率范围为2.4GHz至6GHz的载波频带;所述频率范围为0至2.65GHz的载波频带的最小信道带宽包括5MHz、10MHz和/或20MHz;所述频率范围为2.4GHz至6GHz的载波频带的最小信道带宽包括10MHz、20MHz和/或40MHz。
此时,可根据[0-2.65GHz]的载波频带在最小信道带宽5MHz、10MHz和20MHz下,以及不同载波频带里的SS Raster定义、不同RMSI SCS和SSB SCS组合下分别对应的目标参数,获得[0-2.65GHz]的载波频带的频率偏移配置参数,进而获得[0-2.65GHz]的载波频带的偏移配置表。同时,可根据[2.4GHz-6GHz]的载波频带在最小信道带宽10MHz、20MHz和40MHz,以及不同载波频带里的SS Raster定义、不同RMSI SCS和SSB SCS组合下分别对应的目标参数,获得[2.4GHz-6GHz]的载波频带的频率偏移配置参数,进而获得[2.4GHz-6GHz]的载波频带的偏移配置表。
特别的,本公开的一些实施例中增加了用于在[2.4,6GHz]的频率范围、且最小信道带宽为40MHz频带的频率偏移配置表。
可选的,所述频率范围为0至2.65GHz的载波频带的最小信道带宽包括5MHz和10MHz,所述频率范围为0至2.65GHz的载波频带在最小信道带宽5MHz 和10MHz下使用相同的频率偏移配置表。
此时,在[0-2.65GHz]的频率范围,可通过合理的设计,使最小信道带宽5MHz和10MHz下使用相同的频率偏移配置表。
下面对本公开的一些实施例中确定频率偏移配置参数的方法进行详细说明。
可选的,所述频率偏移配置参数包括候选频率偏移个数和频率偏移量。上述步骤21包括:
步骤212,根据预先设定的目标参数,并基于预定准则,确定候选频率偏移个数和频率偏移量;所述预定准则包括候选的频率偏移位置在一个SS Raster间隔内的所有可能个数最小化的准则、SSB与RMSI CORESET中心对齐的准则中的一项或多项。
本公开的一些实施例中,对于给定的载波频带对应的SS Raster、信道带宽、RMSI的SCS、SSB的SCS和RMSI CORESET带宽条件下,基于候选的频率偏移位置在一个SS Raster间隔内的所有可能个数最小化的准则,来设计所有的RMSI CORESET配置时,简化了配置方法,提高了效率,基于SSB与RMSI CORESET频域位置中心对齐的准则,来设计所有的RMSI CORESET配置时,能够在RMSI CORESET的带宽较大时,保证RMSI CORESET和SSB的频域信道响应基本相等,以保证频域的准共站址(QCL,Quasi-collocation)关系。
可选的,所述信道带宽参数包括信道带宽内的资源块RB数量,所述RMSI CORESET带宽参数包括RMSI CORESET带宽内的RB数量,所述SS Raster参数包括SS Raster间隔。上述步骤212包括步骤2121-2124:
步骤2121,根据信道带宽内的RB数量和RMSI CORESET带宽内的RB数量,确定配置中每个偏移值可以支持SSB的最大位置。
具体的,上述步骤2121包括:
根据信道带宽内以RMSI RB为颗粒度的RB数量N BW和RMSI CORESET带宽内以RMSI RB为颗粒度的RB数量N RMSI,通过如下公式,确定配置中每个偏移值可以支持SSB的最大位置Δ SSB
Δ SSB=floor([(N BW-N RMSI)+1]*2 )。
其中,μ为SSB的SCS(SCS SSB)和RMSI的SCS(SCS RMSI)之间的比例因子。即SCS SSB=2 μ*SCS RMSI。μ可取-1、0、1、2,但不限于此。floor表示向下取整函数。
步骤2122,根据SS Raster间隔和信道带宽内可能放置SS Raster的RB位置最大个数,并基于候选的频率偏移位置在一个SS Raster间隔内的所有可能个数最小化的准则,确定信道带宽内可能放置SS Raster的候选RB位置最大个数。
这里,信道带宽内需要考虑的可能放置SS Raster的候选RB位置最大个数N,相当于信道带宽内需要考虑的可能放置SSB位置的个数N。N取决于下面两个值:a)SS Raster间隔;b)信道带宽内可能放置SS Raster的RB位置最大个数。
具体的,上述步骤2122包括:
步骤21221,根据信道带宽内以SSB RB为颗粒度的RB数量N SSB,通过如下公式,确定信道带宽内可能放置SS Raster的RB位置最大个数N';
N'=N SSB-19。
这里,SSB的长度为20RBs,SS Raster位于第11RB的第1子载波。因而,SS Raster不能放置在信道带宽内的开头10RBs,也不能放置在信道带宽内的最后9RBs。即,信道带宽内可能放置SS Raster的RB位置最大个数N'为N'=N SSB-19。
步骤21222,根据SS Raster以SSB RB为颗粒度的间隔N Sync和N',通过如下公式,确定信道带宽内可能放置SS Raster的候选RB位置最大个数N:
N=min(N Sync,N');
其中,min表示求最小值函数。
这里,如果SS Raster间隔N Sync小于N',则载波带宽内有可能放置多个SS Raster。但从RMSI CORESET频率偏移配置设计上,要求用最小的频率偏移个数——即基于候选的频率偏移位置在一个SS Raster间隔内的所有可能个数最小化的准则,因此,只需要考虑有可能放置一个SS Raster在其周期内可能出现的RB位置个数,即:N=min(N Sync,N')。
步骤2123,根据所述信道带宽内可能放置SS Raster的候选RB位置最 大个数和所述配置中每个偏移值可以支持SSB的最大位置,确定候选频率偏移个数。
具体的,上述步骤2123包括:
根据信道带宽内可能放置SS Raster的候选RB位置最大个数N和配置中每个偏移值可以支持SSB的最大位置Δ SSB,通过如下公式,确定候选频率偏移个数P:
Figure PCTCN2019070963-appb-000007
其中,ceiling表示向上取整函数。
这里,RMSI CORESET配置所需的后续频率偏移个数P,等于信道带宽内可能放置SS Raster的候选RB位置最大个数N除上配置中每个偏移值可以支持SSB的最大位置Δ SSB,然后向上取整。
步骤2124,根据所述候选频率偏移个数、所述配置中每个偏移值可以支持SSB的最大位置以及预定义的初始偏移量,确定频率偏移量的候选集合。
具体的,上述步骤2124包括:
步骤21241,根据配置中每个偏移值可以支持SSB的最大位置Δ SSB,通过如下公式,确定频率偏移步长Δ RMSI
Figure PCTCN2019070963-appb-000008
其中,μ为SSB的SCS和RMSI的SCS之间的比例因子;N RMSI为RMSI CORESET带宽内以RMSI RB为颗粒度的RB数量。
这里,根据SSB的SCS和RMSI的SCS之间的比例因子来计算频率偏移步长Δ RMSI,Δ RMSI取值以RMSI RB为颗粒度。由于Δ SSB以SSB RB为颗粒度,因此,Δ SSB要乘上2^μ,以转换为Δ RMSI。另外,频率偏移最大值应小于RMSI CORESET带宽与SSB带宽之差,因此有:
Figure PCTCN2019070963-appb-000009
步骤21242,根据候选频率偏移个数P、频率偏移步长Δ RMSI以及预定义的初始偏移量O 0,通过如下公式,确定频率偏移量的候选集合中第i个频率偏移量O i的值:
O i=O 0+(i-1)*Δ RMSI
其中,1≤i≤P。
最后,可获得频率偏移量的候选集合O:
O={O 0,O 1,L,O p-1}={O 0,O 0RMSI,L,O 0+(i-1)*Δ RMSI,L,O 0+(p-1)*Δ RMSI}。
其中,O 0的选择不是唯一的。例如O 0=0意味着SSB和RMSI CORESET以底部对齐开始。一般来说,设计时应满足SSB和RMSI CORESET尽可能居中对齐准则,以便于当RMSI的带宽较大时,保证RMSI和SSB的频域信道响应基本相等,以保证频域的QCL关系。
可选的,上述步骤21242之前,所述方法还包括:
步骤23,根据RMSI CORESET带宽内以RMSI RB为颗粒度的RB数量N RMSI、候选频率偏移个数P和频率偏移步长Δ RMSI,并基于SSB与RMSI CORESET中心对齐的准则,确定初始偏移量O 0
此时,基于SSB与RMSI CORESET中心对齐的准则,确定初始偏移量O 0,能够在RMSI CORESET的带宽较大时,保证RMSI CORESET和SSB的频域信道响应基本相等,以保证频域的QCL关系。
具体的,上述步骤23包括:
步骤231,根据RMSI CORESET带宽内以RMSI RB为颗粒度的RB数量N RMSI、候选频率偏移个数P和频率偏移步长Δ RMSI,通过如下公式,确定初始偏移量O 0
Figure PCTCN2019070963-appb-000010
图3,图4和图5分别给出了三种典型场景下,应用本公开的一些实施例的上述系统信息配置方法进行频率偏移配置的示意图。图3场景下SCS SSB=SCS RMSI,μ=0。图4场景下2SCS SSB=SCS RMSI,μ=-1。图5场景下SCS SSB=2SCS RMSI,μ=1。其中,M=N RMSI
下面对应用本公开的一些实施例的上述系统信息配置方法生成的载波频率低于6GHz的NR频带的RMSI CORESET频率偏移配置表举例说明介绍。
如下表1,提供了本公开的一些实施例中设计频率偏移时需要考虑支持的不同信道带宽,不同信道带宽下对于不同SCS时的信道带宽RB(Resource Block,资源块)个数(以RMSI RB为颗粒度),以及设计频率偏移时需要考 虑支持的RMSI CORESET带宽RB个数(以RMSI RB为颗粒度)。
表1
Figure PCTCN2019070963-appb-000011
其中,关于SS Raster参数:
在[0-2.65GHz]的频率范围内,具有5MHz的最小信道带宽的频带,定义的SS Raster间隔是900kHz。例如,SSB SCS为15kHz时,SSB RB=12*15kHz=180kHz。SS Raster间隔为900kHz,意味着每5个SSB RB里有一个RB可放置SS Raster,即:N Sync=floor(900kHz/180kHz)=5RBs。同理可得,当SSB SCS为30kHz时,N Sync=floor(900kHz/360kHz)=2RBs。
在[0-2.65GHz]的频率范围内,具有10MHz的最小信道带宽的频带,定义的SS Raster间隔是1800kHz。例如,SSB SCS为15kHz时,SSB RB=12*15kHz=180kHz。SS Raster间隔为1800kHz,意味着每10个SSB RB里有一个RB可放置SS Raster,即:N Sync=floor(1800kHz/180kHz)=10RBs。同理可得,当SSB SCS为30kHz时,N Sync=floor(1800kHz/360kHz)=5RBs。
在[2.4,6GHz]的频率范围内,具有10MHz的最小信道带宽的频带,定义的SS Raster间隔是3*1.44=4.32MHz。例如,SSB SCS为15kHz时,SSB RB=12*15kHz=180kHz。SS Raster间隔为4.32MHz,意味着每24个SSB RB里有一个RB可放置SS Raster,即: N Sync=floor(4.32MHz/180kHz)=24RBs。同理可得,当SSB SCS为30kHz时,N Sync=floor(4.32MHz/360kHz)=12RBs。
在[2.4,6GHz]的频率范围内,具有40MHz的最小信道带宽的频带,定义的SS Raster间隔是21*1.44=30.24MHz。例如,当SSB SCS为30kHz时,SSB RB=12*30kHz=360kHz。SS Raster间隔为30.24MHz,意味着每84个SSB RB里有一个RB可放置SS Raster,即:N Sync=floor(30.24MHz/360kHz)=84RBs。
表2至表4、表5a和表5b分别给出了{SSB SCS,RMSI SCS}为{15,15}kHz,{15,30}kHz,{30,15}kHz,{30,30}kHz时的频率偏移配置参数。
表2至表4、表5a的前三项([0-2.65GHz]最小信道带宽为5MHz的频带、[0-2.65GHz]最小信道带宽为10MHz的频带和[2.4-6GHz]最小信道带宽为10MHz的频带)对应的频率偏移配置参数以及表5b的频率偏移配置参数,是基于本公开的一些实施例的上述系统信息配置方法中确定频率偏移配置参数的流程、表1和以上SS Raster参数信息计算得到的。表2至表4、表5a中还对比列出了来自TS 38.213[1]的表13-1或表13-2的配置参数。
其中N/A代表没有取值。
表2:{SSB SCS,RMSI SCS}为{15,15}kHz时频率偏移配置
Figure PCTCN2019070963-appb-000012
Figure PCTCN2019070963-appb-000013
表3:{SSB SCS,RMSI SCS}为{15,30}kHz时频率偏移配置
Figure PCTCN2019070963-appb-000014
表4:{SSB SCS,RMSI SCS}为{30,15}kHz时频率偏移配置
Figure PCTCN2019070963-appb-000015
Figure PCTCN2019070963-appb-000016
表5a:{SSB SCS,RMSI SCS}为{30,30}kHz时频率偏移配置
Figure PCTCN2019070963-appb-000017
表5b:{SSB SCS,RMSI SCS}为{30,30}kHz时频率偏移配置
Figure PCTCN2019070963-appb-000018
如表2所示,在[0-2.65GHz]最小信道带宽为5MHz的频带,TS 38.213[1]的表13-1的频率偏移配置参数与应用本公开的一些实施例的方法所得的频率偏移配置参数相比,在信道带宽为5MHz和20MHz时一致,但当信道带宽为10MHz时,本公开的一些实施例的方法只需一个偏移个数。且TS 38.213[1]的表13-1显然未考虑到最小信道带宽为10MHz的场景,而本公开的一些实施例中同时给出了[0-2.65GHz]最小信道带宽为10MHz的频带时的频率偏移配置参数。
本公开的一些实施例的方法,针对RMSI CORESET相对于SSB的频率偏移配置表格,考虑以下因素进行联合设计:不同SSB SCS和RMSI SCS的组合、不同信道带宽、不同载波频带里的不同SS Raster定义和不同RMSI CORESET带宽。
且对[0-2.65GHz]频率范围的载波频带和[2.4GHz-6GHz]频率范围的载波频带使用各自单独的频率偏移配置表。
且在[0-2.65GHz]的频率范围,通过合理的设计,使最小信道带宽5MHz和10MHz使用相同的频率偏移配置表。
具体的,以表5a,{SSB SCS,RMSI SCS}为{30,30}kHz为例。最小信道带宽为10MHz时,对于RMSI CORESET带宽RB个数N RMSI为24RBs和48RBs时,根据表5a,所需要的频率偏移量的候选集合分别为{0,1,2,3,4}和{12,18}。最小信道带宽为5MHz时,对于RMSI CORESET带宽RB个数N RMSI为24RBs时,根据表5a,所需要的频率偏移量的候选集合为{1,2,3}。从而,对于N RMSI为24RBs,最小信道带宽为10MHz时的频率偏移量已包括最小信道带宽为5MHz时需要的所有频率偏移量。对于N RMSI为48RBs时,根据表5a给出的最小信道带宽为5MHz时的第一个频率偏移量,也是唯一需要的一个频率偏移量为O 0=14。由于第一个频率偏移量实际上可以是任意一个从0到O 0的值,如12,因此对于N RMSI为48RBs,最小信道带宽为10MHz时的频率偏移量已包括最小信道带宽为5MHz时需要的所有频率偏移量。因此通过合理的设计,能够使最小信道带宽5MHz和10MHz使用相同的频率偏移配置表。
其中,可基于本公开的一些实施例的方法,修改TS 38.213表13-1到表13-4,用于[0-2.65GHz]的频率范围,最小信道带宽5MHz和10MHz频率偏移 使用相同的配置表。修改后的TS 38.213中的表13-1,表13-2,表13-3和表13-4如下表6到表9所示。
其中,在TS 38.213中,增加用于在[2.4-6GHz]的频率范围,最小信道带宽为10MHz的频带所使用的频率偏移配置表,如表10到表13所示。
此外,对于在[2.4-6GHz]的频率范围,最小信道带宽为40MHz的频带,SS Raster间隔是30.24MHz。例如,SCS为30kHz时,每84个SSB RB里才有一个RB可放置SS Raster。所使用的频率偏移配置值可如表13所示。不同于[2.4-6GHz]的频率范围,最小信道带宽为10MHz的频带,我们建议在TS 38.213中,增加用于在[2.4-6GHz]的频率范围最小信道带宽为40MHz频带,且{SSB SCS,RMSI SCS}为{30,30}kHz的频率偏移配置表,如表14所示。
进一步的,表8和表12可以合并成一张表格,如表15。同样的,表9和表13很可以合并成一张表,如表16。
表6(TS 38.213表13-1):对于[0-2.65GHz]频率范围的频带,当{SS/PBCH块,PDCCH}子载波间隔为{15,15}kHz时,用于类型0-PDCCH搜索空间的RBs集合和CORESET的时隙符号
Figure PCTCN2019070963-appb-000019
表7(TS 38.213表13-2):对于[0-2.65GHz]频率范围的频带,当{SS/PBCH块,PDCCH}子载波间隔为{15,30}kHz时,用于类型0-PDCCH搜索空间的RBs集合和CORESET的时隙符号
Figure PCTCN2019070963-appb-000020
表8(TS 38.213表13-3):对于[0-2.65GHz]频率范围的频带,当{SS/PBCH块,PDCCH}子载波间隔为{30,15}kHz时,用于类型0-PDCCH搜索空间的RBs集合和CORESET的时隙符号
Figure PCTCN2019070963-appb-000021
表9(TS 38.213表13-4):对于[0-2.65GHz]频率范围的频带,当{SS/PBCH块,PDCCH}子载波间隔为{30,30}kHz时,用于类型0-PDCCH搜索空间的RBs集合和CORESET的时隙符号
Figure PCTCN2019070963-appb-000022
表10(TS 38.213表13-x1):对于[2.4-6GHz]频率范围的频带,当{SS/PBCH块,PDCCH}子载波间隔为{15,15}kHz时,用于类型0-PDCCH搜索空间的RBs集合和CORESET的时隙符号
Figure PCTCN2019070963-appb-000023
表11(TS 38.213表13-x2):对于[2.4-6GHz]频率范围的频带,当{SS/PBCH块,PDCCH}子载波间隔为{15,30}kHz时,用于类型0-PDCCH搜索空间的RBs集合和CORESET的时隙符号
Figure PCTCN2019070963-appb-000024
表12(TS 38.213表13-x3):对于[2.4-6GHz]频率范围的频带,当{SS/PBCH块,PDCCH}子载波间隔为{30,15}kHz时,用于类型0-PDCCH搜索空间的RBs集合和CORESET的时隙符号
Figure PCTCN2019070963-appb-000025
表13(TS 38.213表13-x4):对于[2.4-6GHz]频率范围的频带,当{SS/PBCH块,PDCCH}子载波间隔为{30,30}kHz时,用于类型0-PDCCH搜索空间的RBs集合和CORESET的时隙符号
Figure PCTCN2019070963-appb-000026
表14(TS 38.213表13-x5):对于[2.4-6GHz]频率范围,最小信道带宽为40MHz的频带,当{SS/PBCH块,PDCCH}子载波间隔为{30,30}kHz时,用于类型0-PDCCH搜索空间的RBs集合和CORESET的时隙符号
Figure PCTCN2019070963-appb-000027
表15(TS 38.213表13-3):当{SS/PBCH块,PDCCH}子载波间隔为{30,15}kHz时,用于类型0-PDCCH搜索空间的RBs集合和CORESET的时隙符号
Figure PCTCN2019070963-appb-000028
表16(TS 38.213表13-4):当{SS/PBCH块,PDCCH}子载波间隔为{30,30}kHz时,用于类型0-PDCCH搜索空间的RBs集合和CORESET的时隙符号
Figure PCTCN2019070963-appb-000029
综上,本公开的一些实施例提供了一种系统性的系统信息配置方法,在给定载波频带、信道带宽、SSB SCS和RMSI SCS的组合条件下,基于候选的频率偏移位置在一个SS Raster间隔内的所有可能个数最小化的准则、SSB与RMSI CORESET中心对齐的准则来设计所有的RMSI CORESET配置。并利用发明实施例的方法来修正和重新设计了3GPP协议标准中已有的配置方法,保证了协议配置方法的正确性。
在本公开的一些实施例中,参照图6所示,还提供了一种系统信息配置装置,包括:
第一确定模块601,用于根据预先设定的目标参数,确定剩余最小系统信息RMSI控制资源集CORESET相对于系统同步块SSB的频率偏移配置参数;所述目标参数包括信道带宽参数、RMSI的子载波间隔SCS参数、SSB的SCS参数、系统同步光栅SS Raster参数和RMSI CORESET带宽参数中的一项或多 项;
配置模块602,用于根据所述频率偏移配置参数,进行RMSI CORESET相对于SSB的频率偏移配置。
本公开的一些实施例的系统信息配置装置,综合RMSI SCS和SSB SCS组合、信道带宽、SS Raster以及RMSI CORESET带宽等因素,进行RMSI CORESET相对于SSB的频率偏移配置,考虑全面,完善了协议配置方法,保证了协议配置的正确性。
可选的,所述第一确定模块601包括:
第一确定子模块,用于根据不同频率范围的载波频带分别对应的目标参数,确定不同频率范围的载波频带的频率偏移配置参数;
所述配置模块602包括:
第一配置子模块,用于根据不同频率范围的载波频带的频率偏移配置参数,对不同频率范围的载波频带分别进行RMSI CORESET相对于SSB的频率偏移配置,获得不同频率范围的载波频带分别对应的频率偏移配置表。
可选的,所述第一确定子模块包括:
第一确定单元,用于根据不同载波频带里的SS Raster定义、不同RMSI SCS和SSB SCS组合以及不同最小信道带宽的条件下,不同频率范围的载波频带分别对应的目标参数,确定不同频率范围的载波频带的频率偏移配置参数。
可选的,所述不同频率范围的载波频带包括频率范围为0至2.65GHz的载波频带和/或频率范围为2.4GHz至6GHz的载波频带;
所述频率范围为0至2.65GHz的载波频带的最小信道带宽包括5MHz、10MHz和/或20MHz;
所述频率范围为2.4GHz至6GHz的载波频带的最小信道带宽包括10MHz、20MHz和/或40MHz。
可选的,所述频率范围为0至2.65GHz的载波频带的最小信道带宽包括5MHz和10MHz,所述频率范围为0至2.65GHz的载波频带在最小信道带宽5MHz和10MHz下使用相同的频率偏移配置表。
可选的,所述频率偏移配置参数包括候选频率偏移个数和频率偏移量;
所述第一确定模块601包括:
第二确定子模块,用于根据预先设定的目标参数,并基于预定准则,确定候选频率偏移个数和频率偏移量;所述预定准则包括候选的频率偏移位置在一个SS Raster间隔内的所有可能个数最小化的准则、SSB与RMSI CORESET中心对齐的准则中的一项或多项。
可选的,所述信道带宽参数包括信道带宽内的资源块RB数量,所述RMSI CORESET带宽参数包括RMSI CORESET带宽内的RB数量,所述SS Raster参数包括SS Raster间隔;
所述第二确定子模块包括:
第二确定单元,用于根据信道带宽内的RB数量和RMSI CORESET带宽内的RB数量,确定配置中每个偏移值可以支持SSB的最大位置;
第三确定单元,用于根据SS Raster间隔和信道带宽内可能放置SS Raster的RB位置最大个数,并基于候选的频率偏移位置在一个SS Raster间隔内的所有可能个数最小化的准则,确定信道带宽内可能放置SS Raster的候选RB位置最大个数;
第四确定单元,用于根据所述信道带宽内可能放置SS Raster的候选RB位置最大个数和所述配置中每个偏移值可以支持SSB的最大位置,确定候选频率偏移个数;
第五确定单元,用于根据所述候选频率偏移个数、所述配置中每个偏移值可以支持SSB的最大位置以及预定义的初始偏移量,确定频率偏移量的候选集合。
可选的,所述第二确定单元包括:
第一确定子单元,用于根据信道带宽内以RMSI RB为颗粒度的RB数量N BW和RMSI CORESET带宽内以RMSI RB为颗粒度的RB数量N RMSI,通过如下公式,确定配置中每个偏移值可以支持SSB的最大位置Δ SSB
Δ SSB=floor([(N BW-N RMSI)+1]*2 );
其中,μ为SSB的SCS和RMSI的SCS之间的比例因子,floor表示向下取整函数。
可选的,所述第三确定单元包括:
第二确定子单元,用于根据信道带宽内以SSB RB为颗粒度的RB数量N SSB,通过如下公式,确定信道带宽内可能放置SS Raster的RB位置最大个数N';
N'=N SSB-19;
第三确定子单元,用于根据SS Raster以SSB RB为颗粒度的间隔N Sync和N',通过如下公式,确定信道带宽内可能放置SS Raster的候选RB位置最大个数N:
N=min(N Sync,N');
其中,min表示求最小值函数。
可选的,所述第四确定单元包括:
第四确定子单元,用于根据信道带宽内可能放置SS Raster的候选RB位置最大个数N和配置中每个偏移值可以支持SSB的最大位置Δ SSB,通过如下公式,确定候选频率偏移个数P:
Figure PCTCN2019070963-appb-000030
其中,ceiling表示向上取整函数。
可选的,所述第五确定单元包括:
第五确定子单元,用于根据配置中每个偏移值可以支持SSB的最大位置Δ SSB,通过如下公式,确定频率偏移步长Δ RMSI
Figure PCTCN2019070963-appb-000031
其中,μ为SSB的SCS和RMSI的SCS之间的比例因子;N RMSI为RMSI CORESET带宽内以RMSI RB为颗粒度的RB数量;
第六确定子单元,用于根据候选频率偏移个数P、频率偏移步长Δ RMSI以及预定义的初始偏移量O 0,通过如下公式,确定频率偏移量的候选集合中第i个频率偏移量O i的值:
O i=O 0+(i-1)*Δ RMSI
其中,1≤i≤P。
可选的,所述装置还包括:
第二确定模块,用于根据RMSI CORESET带宽内以RMSI RB为颗粒度的RB数量N RMSI、候选频率偏移个数P和频率偏移步长Δ RMSI,并基于SSB与RMSI  CORESET中心对齐的准则,确定初始偏移量O 0
可选的,所述第二确定模块包括:
第三确定子模块,用于根据RMSI CORESET带宽内以RMSI RB为颗粒度的RB数量N RMSI、候选频率偏移个数P和频率偏移步长Δ RMSI,通过如下公式,确定初始偏移量O 0
Figure PCTCN2019070963-appb-000032
本公开的一些实施例的系统信息配置装置,综合RMSI SCS和SSB SCS组合、信道带宽、SS Raster以及RMSI CORESET带宽等因素,进行RMSI CORESET相对于SSB的频率偏移配置,考虑全面,完善了协议配置方法,保证了协议配置的正确性。
需要说明的是,其中上述系统信息配置方法实施例中所有实现方式均适用于该系统信息配置装置的实施例中,也能达到同样的技术效果。
在本公开的一些实施例中,参照图7所示,还提供了一种系统信息配置装置,包括收发机710、存储器720、处理器700、总线接口及存储在所述存储器720上并可在所述处理器700上运行的计算机程序;
所述处理器700用于读取存储器中的程序,执行下列过程:根据预先设定的目标参数,确定剩余最小系统信息RMSI控制资源集CORESET相对于系统同步块SSB的频率偏移配置参数;所述目标参数包括信道带宽参数、RMSI的子载波间隔SCS参数、SSB的SCS参数、系统同步光栅SS Raster参数和RMSI CORESET带宽参数中的一项或多项;根据所述频率偏移配置参数,进行RMSI CORESET相对于SSB的频率偏移配置。
本公开的一些实施例的系统信息配置装置,综合RMSI SCS和SSB SCS组合、信道带宽、SS Raster以及RMSI CORESET带宽等因素,进行RMSI CORESET相对于SSB的频率偏移配置,考虑全面,完善了协议配置方法,保证了协议配置的正确性。
其中,在图7中,总线架构可以包括任意数量的互联的总线和桥,具体由处理器700代表的一个或多个处理器和存储器720代表的存储器的各种电路链接在一起。总线架构还可以将诸如外围设备、稳压器和功率管理电路等之类的各种其他电路链接在一起,这些都是本领域所公知的,因此,本文不 再对其进行进一步描述。总线接口提供接口。收发机710可以是多个元件,即包括发送机和收发机,提供用于在传输介质上与各种其他装置通信的单元。处理器700负责管理总线架构和通常的处理,存储器720可以存储处理器700在执行操作时所使用的数据。
可选的,所述处理器700还用于:根据不同频率范围的载波频带分别对应的目标参数,确定不同频率范围的载波频带的频率偏移配置参数;根据不同频率范围的载波频带的频率偏移配置参数,对不同频率范围的载波频带分别进行RMSI CORESET相对于SSB的频率偏移配置,获得不同频率范围的载波频带分别对应的频率偏移配置表。
可选的,所述处理器700还用于:根据不同载波频带里的SS Raster定义、不同RMSI SCS和SSB SCS组合以及不同最小信道带宽的条件下,不同频率范围的载波频带分别对应的目标参数,确定不同频率范围的载波频带的频率偏移配置参数。
可选的,所述不同频率范围的载波频带包括频率范围为0至2.65GHz的载波频带和/或频率范围为2.4GHz至6GHz的载波频带;
所述频率范围为0至2.65GHz的载波频带的最小信道带宽包括5MHz、10MHz和/或20MHz;
所述频率范围为2.4GHz至6GHz的载波频带的最小信道带宽包括10MHz、20MHz和/或40MHz。
可选的,所述频率范围为0至2.65GHz的载波频带的最小信道带宽包括5MHz和10MHz,所述频率范围为0至2.65GHz的载波频带在最小信道带宽5MHz和10MHz下使用相同的频率偏移配置表。
可选的,所述频率偏移配置参数包括候选频率偏移个数和频率偏移量;所述处理器700还用于:根据预先设定的目标参数,并基于预定准则,确定候选频率偏移个数和频率偏移量;所述预定准则包括候选的频率偏移位置在一个SS Raster间隔内的所有可能个数最小化的准则、SSB与RMSI CORESET中心对齐的准则中的一项或多项。
可选的,所述信道带宽参数包括信道带宽内的资源块RB数量,所述RMSI CORESET带宽参数包括RMSI CORESET带宽内的RB数量,所述SS Raster参 数包括SS Raster间隔;所述处理器700还用于:
根据信道带宽内的RB数量和RMSI CORESET带宽内的RB数量,确定配置中每个偏移值可以支持SSB的最大位置;
根据SS Raster间隔和信道带宽内可能放置SS Raster的RB位置最大个数,并基于候选的频率偏移位置在一个SS Raster间隔内的所有可能个数最小化的准则,确定信道带宽内可能放置SS Raster的候选RB位置最大个数;
根据所述信道带宽内可能放置SS Raster的候选RB位置最大个数和所述配置中每个偏移值可以支持SSB的最大位置,确定候选频率偏移个数;
根据所述候选频率偏移个数、所述配置中每个偏移值可以支持SSB的最大位置以及预定义的初始偏移量,确定频率偏移量的候选集合。
可选的,所述处理器700还用于:根据信道带宽内以RMSI RB为颗粒度的RB数量N BW和RMSI CORESET带宽内以RMSI RB为颗粒度的RB数量N RMSI,通过如下公式,确定配置中每个偏移值可以支持SSB的最大位置Δ SSB
Δ SSB=floor([(N BW-N RMSI)+1]*2 );
其中,μ为SSB的SCS和RMSI的SCS之间的比例因子,floor表示向下取整函数。
可选的,所述处理器700还用于:根据信道带宽内以SSB RB为颗粒度的RB数量N SSB,通过如下公式,确定信道带宽内可能放置SS Raster的RB位置最大个数N';
N'=N SSB-19;
根据SS Raster以SSB RB为颗粒度的间隔N Sync和N',通过如下公式,确定信道带宽内可能放置SS Raster的候选RB位置最大个数N:
N=min(N Sync,N');
其中,min表示求最小值函数。
可选的,所述处理器700还用于:根据信道带宽内可能放置SS Raster的候选RB位置最大个数N和配置中每个偏移值可以支持SSB的最大位置Δ SSB,通过如下公式,确定候选频率偏移个数P:
Figure PCTCN2019070963-appb-000033
其中,ceiling表示向上取整函数。
可选的,所述处理器700还用于:根据配置中每个偏移值可以支持SSB的最大位置Δ SSB,通过如下公式,确定频率偏移步长Δ RMSI
Figure PCTCN2019070963-appb-000034
其中,μ为SSB的SCS和RMSI的SCS之间的比例因子;N RMSI为RMSI CORESET带宽内以RMSI RB为颗粒度的RB数量;
根据候选频率偏移个数P、频率偏移步长Δ RMSI以及预定义的初始偏移量O 0,通过如下公式,确定频率偏移量的候选集合中第i个频率偏移量O i的值:
O i=O 0+(i-1)*Δ RMSI
其中,1≤i≤P。
可选的,所述处理器700还用于:根据RMSI CORESET带宽内以RMSI RB为颗粒度的RB数量N RMSI、候选频率偏移个数P和频率偏移步长Δ RMSI,并基于SSB与RMSI CORESET中心对齐的准则,确定初始偏移量O 0
可选的,所述处理器700还用于:根据RMSI CORESET带宽内以RMSI RB为颗粒度的RB数量N RMSI、候选频率偏移个数P和频率偏移步长Δ RMSI,通过如下公式,确定初始偏移量O 0
Figure PCTCN2019070963-appb-000035
在本公开的一些实施例中,还提供了一种计算机可读存储介质,其上存储有计算机程序,该程序被处理器执行时实现以下步骤:
根据预先设定的目标参数,确定剩余最小系统信息RMSI控制资源集CORESET相对于系统同步块SSB的频率偏移配置参数;所述目标参数包括信道带宽参数、RMSI的子载波间隔SCS参数、SSB的SCS参数、系统同步光栅SS Raster参数和RMSI CORESET带宽参数中的一项或多项;
根据所述频率偏移配置参数,进行RMSI CORESET相对于SSB的频率偏移配置。
可选的,该程序被处理器执行时还实现以下步骤:根据不同频率范围的载波频带分别对应的目标参数,确定不同频率范围的载波频带的频率偏移配置参数;根据不同频率范围的载波频带的频率偏移配置参数,对不同频率范围的载波频带分别进行RMSI CORESET相对于SSB的频率偏移配置,获得不同 频率范围的载波频带分别对应的频率偏移配置表。
可选的,该程序被处理器执行时还实现以下步骤:根据不同载波频带里的SS Raster定义、不同RMSI SCS和SSB SCS组合以及不同最小信道带宽的条件下,不同频率范围的载波频带分别对应的目标参数,确定不同频率范围的载波频带的频率偏移配置参数。
可选的,所述不同频率范围的载波频带包括频率范围为0至2.65GHz的载波频带和/或频率范围为2.4GHz至6GHz的载波频带;所述频率范围为0至2.65GHz的载波频带的最小信道带宽包括5MHz、10MHz和/或20MHz;所述频率范围为2.4GHz至6GHz的载波频带的最小信道带宽包括10MHz、20MHz和/或40MHz。
可选的,所述频率范围为0至2.65GHz的载波频带的最小信道带宽包括5MHz和10MHz,所述频率范围为0至2.65GHz的载波频带在最小信道带宽5MHz和10MHz下使用相同的频率偏移配置表。
可选的,所述频率偏移配置参数包括候选频率偏移个数和频率偏移量;该程序被处理器执行时还实现以下步骤:根据预先设定的目标参数,并基于预定准则,确定候选频率偏移个数和频率偏移量;所述预定准则包括候选的频率偏移位置在一个SS Raster间隔内的所有可能个数最小化的准则、SSB与RMSI CORESET中心对齐的准则中的一项或多项。
可选的,所述信道带宽参数包括信道带宽内的资源块RB数量,所述RMSI CORESET带宽参数包括RMSI CORESET带宽内的RB数量,所述SS Raster参数包括SS Raster间隔;该程序被处理器执行时还实现以下步骤:
根据信道带宽内的RB数量和RMSI CORESET带宽内的RB数量,确定配置中每个偏移值可以支持SSB的最大位置;
根据SS Raster间隔和信道带宽内可能放置SS Raster的RB位置最大个数,并基于候选的频率偏移位置在一个SS Raster间隔内的所有可能个数最小化的准则,确定信道带宽内可能放置SS Raster的候选RB位置最大个数;
根据所述信道带宽内可能放置SS Raster的候选RB位置最大个数和所述配置中每个偏移值可以支持SSB的最大位置,确定候选频率偏移个数;
根据所述候选频率偏移个数、所述配置中每个偏移值可以支持SSB的最 大位置以及预定义的初始偏移量,确定频率偏移量的候选集合。
可选的,该程序被处理器执行时还实现以下步骤:根据信道带宽内以RMSI RB为颗粒度的RB数量N BW和RMSI CORESET带宽内以RMSI RB为颗粒度的RB数量N RMSI,通过如下公式,确定配置中每个偏移值可以支持SSB的最大位置Δ SSB
Δ SSB=floor([(N BW-N RMSI)+1]*2 );
其中,μ为SSB的SCS和RMSI的SCS之间的比例因子,floor表示向下取整函数。
可选的,该程序被处理器执行时还实现以下步骤:根据信道带宽内以SSB RB为颗粒度的RB数量N SSB,通过如下公式,确定信道带宽内可能放置SS Raster的RB位置最大个数N';
N'=N SSB-19;
根据SS Raster以SSB RB为颗粒度的间隔N Sync和N',通过如下公式,确定信道带宽内可能放置SS Raster的候选RB位置最大个数N:
N=min(N Sync,N');
其中,min表示求最小值函数。
可选的,该程序被处理器执行时还实现以下步骤:根据信道带宽内可能放置SS Raster的候选RB位置最大个数N和配置中每个偏移值可以支持SSB的最大位置Δ SSB,通过如下公式,确定候选频率偏移个数P:
Figure PCTCN2019070963-appb-000036
其中,ceiling表示向上取整函数。
可选的,该程序被处理器执行时还实现以下步骤:根据配置中每个偏移值可以支持SSB的最大位置Δ SSB,通过如下公式,确定频率偏移步长Δ RMSI
Figure PCTCN2019070963-appb-000037
其中,μ为SSB的SCS和RMSI的SCS之间的比例因子;N RMSI为RMSI CORESET带宽内以RMSI RB为颗粒度的RB数量;
根据候选频率偏移个数P、频率偏移步长Δ RMSI以及预定义的初始偏移量O 0,通过如下公式,确定频率偏移量的候选集合中第i个频率偏移量O i的值:
O i=O 0+(i-1)*Δ RMSI
其中,1≤i≤P。
可选的,该程序被处理器执行时还实现以下步骤:根据RMSI CORESET带宽内以RMSI RB为颗粒度的RB数量N RMSI、候选频率偏移个数P和频率偏移步长Δ RMSI,并基于SSB与RMSI CORESET中心对齐的准则,确定初始偏移量O 0
可选的,该程序被处理器执行时还实现以下步骤:根据RMSI CORESET带宽内以RMSI RB为颗粒度的RB数量N RMSI、候选频率偏移个数P和频率偏移步长Δ RMSI,通过如下公式,确定初始偏移量O 0
Figure PCTCN2019070963-appb-000038
在本公开的各种实施例中,应理解,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本公开的一些实施例的实施过程构成任何限定。
以上所述是本公开的一些实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本公开所述原理的前提下,还可以作出若干改进和润饰,这些改进和润饰也应视为本公开的保护范围。

Claims (28)

  1. 一种系统信息配置方法,包括:
    根据预先设定的目标参数,确定剩余最小系统信息RMSI控制资源集CORESET相对于系统同步块SSB的频率偏移配置参数;所述目标参数包括信道带宽参数、RMSI的子载波间隔SCS参数、SSB的SCS参数、系统同步光栅SS Raster参数和RMSI CORESET带宽参数中的一项或多项;
    根据所述频率偏移配置参数,进行RMSI CORESET相对于SSB的频率偏移配置。
  2. 根据权利要求1所述的方法,其中,所述根据预先设定的目标参数,确定剩余最小系统信息RMSI控制资源集CORESET相对于系统同步块SSB的频率偏移配置参数的步骤包括:
    根据不同频率范围的载波频带分别对应的目标参数,确定不同频率范围的载波频带的频率偏移配置参数;
    所述根据所述频率偏移配置参数,进行RMSI CORESET相对于SSB的频率偏移配置的步骤包括:
    根据不同频率范围的载波频带的频率偏移配置参数,对不同频率范围的载波频带分别进行RMSI CORESET相对于SSB的频率偏移配置,获得不同频率范围的载波频带分别对应的频率偏移配置表。
  3. 根据权利要求2所述的方法,其中,所述根据不同频率范围的载波频带分别对应的目标参数,确定不同频率范围的载波频带的频率偏移配置参数的步骤包括:
    根据不同载波频带里的SS Raster定义、不同RMSI SCS和SSB SCS组合以及不同最小信道带宽的条件下,不同频率范围的载波频带分别对应的目标参数,确定不同频率范围的载波频带的频率偏移配置参数。
  4. 根据权利要求3所述的方法,其中,所述不同频率范围的载波频带包括频率范围为0至2.65GHz的载波频带和/或频率范围为2.4GHz至6GHz的载波频带;
    所述频率范围为0至2.65GHz的载波频带的最小信道带宽包括5MHz、 10MHz和/或20MHz;
    所述频率范围为2.4GHz至6GHz的载波频带的最小信道带宽包括10MHz、20MHz和/或40MHz。
  5. 根据权利要求4所述的方法,其中,所述频率范围为0至2.65GHz的载波频带的最小信道带宽包括5MHz和10MHz,所述频率范围为0至2.65GHz的载波频带在最小信道带宽5MHz和10MHz下使用相同的频率偏移配置表。
  6. 根据权利要求1所述的方法,其中,所述频率偏移配置参数包括候选频率偏移个数和频率偏移量;
    所述根据预先设定的目标参数,确定剩余最小系统信息RMSI控制资源集CORESET相对于系统同步块SSB的频率偏移配置参数的步骤包括:
    根据预先设定的目标参数,并基于预定准则,确定候选频率偏移个数和频率偏移量;所述预定准则包括候选的频率偏移位置在一个SS Raster间隔内的所有可能个数最小化的准则、SSB与RMSI CORESET中心对齐的准则中的一项或多项。
  7. 根据权利要求6所述的方法,其中,所述信道带宽参数包括信道带宽内的资源块RB数量,所述RMSI CORESET带宽参数包括RMSI CORESET带宽内的RB数量,所述SS Raster参数包括SS Raster间隔;
    所述根据预先设定的目标参数,并基于预定准则,确定候选频率偏移个数和频率偏移量的步骤包括:
    根据信道带宽内的RB数量和RMSI CORESET带宽内的RB数量,确定配置中每个偏移值可以支持SSB的最大位置;
    根据SS Raster间隔和信道带宽内可能放置SS Raster的RB位置最大个数,并基于候选的频率偏移位置在一个SS Raster间隔内的所有可能个数最小化的准则,确定信道带宽内可能放置SS Raster的候选RB位置最大个数;
    根据所述信道带宽内可能放置SS Raster的候选RB位置最大个数和所述配置中每个偏移值可以支持SSB的最大位置,确定候选频率偏移个数;
    根据所述候选频率偏移个数、所述配置中每个偏移值可以支持SSB的最大位置以及预定义的初始偏移量,确定频率偏移量的候选集合。
  8. 根据权利要求7所述的方法,其中,所述根据信道带宽内的RB数量 和RMSI CORESET带宽内的RB数量,确定配置中每个偏移值可以支持SSB的最大位置的步骤包括:
    根据信道带宽内以RMSI RB为颗粒度的RB数量N BW和RMSI CORESET带宽内以RMSI RB为颗粒度的RB数量N RMSI,通过如下公式,确定配置中每个偏移值可以支持SSB的最大位置Δ SSB
    Δ SSB=floor([(N BW-N RMSI)+1]*2 );
    其中,μ为SSB的SCS和RMSI的SCS之间的比例因子,floor表示向下取整函数。
  9. 根据权利要求7所述的方法,其中,所述根据SS Raster间隔和信道带宽内可能放置SS Raster的RB位置最大个数,并基于候选的频率偏移位置在一个SS Raster间隔内的所有可能个数最小化的准则,确定信道带宽内可能放置SS Raster的候选RB位置最大个数的步骤包括:
    根据信道带宽内以SSB RB为颗粒度的RB数量N SSB,通过如下公式,确定信道带宽内可能放置SS Raster的RB位置最大个数N';
    N'=N SSB-19;
    根据SS Raster以SSB RB为颗粒度的间隔N Sync和N',通过如下公式,确定信道带宽内可能放置SS Raster的候选RB位置最大个数N:
    N=min(N Sync,N');
    其中,min表示求最小值函数。
  10. 根据权利要求7所述的方法,其中,所述根据所述信道带宽内可能放置SS Raster的候选RB位置最大个数和所述配置中每个偏移值可以支持SSB的最大位置,确定候选频率偏移个数的步骤包括:
    根据信道带宽内可能放置SS Raster的候选RB位置最大个数N和配置中每个偏移值可以支持SSB的最大位置Δ SSB,通过如下公式,确定候选频率偏移个数P:
    Figure PCTCN2019070963-appb-100001
    其中,ceiling表示向上取整函数。
  11. 根据权利要求7所述的方法,其中,所述根据所述候选频率偏移个数、所述配置中每个偏移值可以支持SSB的最大位置以及预定义的初始偏移 量,确定频率偏移量的候选集合的步骤包括:
    根据配置中每个偏移值可以支持SSB的最大位置Δ SSB,通过如下公式,确定频率偏移步长Δ RMSI
    Figure PCTCN2019070963-appb-100002
    其中,μ为SSB的SCS和RMSI的SCS之间的比例因子;N RMSI为RMSI CORESET带宽内以RMSI RB为颗粒度的RB数量;
    根据候选频率偏移个数P、频率偏移步长Δ RMSI以及预定义的初始偏移量O 0,通过如下公式,确定频率偏移量的候选集合中第i个频率偏移量O i的值:
    O i=O 0+(i-1)*Δ RMSI
    其中,1≤i≤P。
  12. 根据权利要求11所述的方法,其中,所述根据候选频率偏移个数P、频率偏移步长Δ RMSI以及预定义的初始偏移量O 0,通过如下公式,确定频率偏移量的候选集合中第i个频率偏移量O i的值之前,所述方法还包括:
    根据RMSI CORESET带宽内以RMSI RB为颗粒度的RB数量N RMSI、候选频率偏移个数P和频率偏移步长Δ RMSI,并基于SSB与RMSI CORESET中心对齐的准则,确定初始偏移量O 0
  13. 根据权利要求12所述的方法,其中,所述根据RMSI CORESET带宽内以RMSI RB为颗粒度的RB数量N RMSI、候选频率偏移个数P和频率偏移步长Δ RMSI,并基于SSB与RMSI CORESET中心对齐的准则,确定初始偏移量O 0的步骤包括:
    根据RMSI CORESET带宽内以RMSI RB为颗粒度的RB数量N RMSI、候选频率偏移个数P和频率偏移步长Δ RMSI,通过如下公式,确定初始偏移量O 0
    Figure PCTCN2019070963-appb-100003
  14. 一种系统信息配置装置,包括:
    确定模块,用于根据预先设定的目标参数,确定剩余最小系统信息RMSI控制资源集CORESET相对于系统同步块SSB的频率偏移配置参数;所述目标参数包括信道带宽参数、RMSI的子载波间隔SCS参数、SSB的SCS参数、系统同步光栅SS Raster参数和RMSI CORESET带宽参数中的一项或多项;
    配置模块,用于根据所述频率偏移配置参数,进行RMSI CORESET相对于SSB的频率偏移配置。
  15. 一种系统信息配置装置,包括收发机、存储器、处理器及存储在所述存储器上并可在所述处理器上运行的计算机程序;其中,
    所述处理器用于读取存储器中的程序,执行下列过程:根据预先设定的目标参数,确定剩余最小系统信息RMSI控制资源集CORESET相对于系统同步块SSB的频率偏移配置参数;所述目标参数包括信道带宽参数、RMSI的子载波间隔SCS参数、SSB的SCS参数、系统同步光栅SS Raster参数和RMSI CORESET带宽参数中的一项或多项;根据所述频率偏移配置参数,进行RMSI CORESET相对于SSB的频率偏移配置。
  16. 根据权利要求15所述的装置,其中,所述处理器还用于:根据不同频率范围的载波频带分别对应的目标参数,确定不同频率范围的载波频带的频率偏移配置参数;根据不同频率范围的载波频带的频率偏移配置参数,对不同频率范围的载波频带分别进行RMSI CORESET相对于SSB的频率偏移配置,获得不同频率范围的载波频带分别对应的频率偏移配置表。
  17. 根据权利要求15所述的装置,其中,所述处理器还用于:根据不同载波频带里的SS Raster定义、不同RMSI SCS和SSB SCS组合以及不同最小信道带宽的条件下,不同频率范围的载波频带分别对应的目标参数,确定不同频率范围的载波频带的频率偏移配置参数。
  18. 根据权利要求17所述的装置,其中,所述不同频率范围的载波频带包括频率范围为0至2.65GHz的载波频带和/或频率范围为2.4GHz至6GHz的载波频带;
    所述频率范围为0至2.65GHz的载波频带的最小信道带宽包括5MHz、10MHz和/或20MHz;
    所述频率范围为2.4GHz至6GHz的载波频带的最小信道带宽包括10MHz、20MHz和/或40MHz。
  19. 根据权利要求18所述的装置,其中,所述频率范围为0至2.65GHz的载波频带的最小信道带宽包括5MHz和10MHz,所述频率范围为0至2.65GHz的载波频带在最小信道带宽5MHz和10MHz下使用相同的频率偏移配置表。
  20. 根据权利要求15所述的装置,其中,所述频率偏移配置参数包括候选频率偏移个数和频率偏移量;所述处理器还用于:根据预先设定的目标参数,并基于预定准则,确定候选频率偏移个数和频率偏移量;所述预定准则包括候选的频率偏移位置在一个SS Raster间隔内的所有可能个数最小化的准则、SSB与RMSI CORESET中心对齐的准则中的一项或多项。
  21. 根据权利要求20所述的装置,其中,所述信道带宽参数包括信道带宽内的资源块RB数量,所述RMSI CORESET带宽参数包括RMSI CORESET带宽内的RB数量,所述SS Raster参数包括SS Raster间隔;所述处理器还用于:
    根据信道带宽内的RB数量和RMSI CORESET带宽内的RB数量,确定配置中每个偏移值可以支持SSB的最大位置;
    根据SS Raster间隔和信道带宽内可能放置SS Raster的RB位置最大个数,并基于候选的频率偏移位置在一个SS Raster间隔内的所有可能个数最小化的准则,确定信道带宽内可能放置SS Raster的候选RB位置最大个数;
    根据所述信道带宽内可能放置SS Raster的候选RB位置最大个数和所述配置中每个偏移值可以支持SSB的最大位置,确定候选频率偏移个数;
    根据所述候选频率偏移个数、所述配置中每个偏移值可以支持SSB的最大位置以及预定义的初始偏移量,确定频率偏移量的候选集合。
  22. 根据权利要求21所述的装置,其中,所述处理器还用于:根据信道带宽内以RMSI RB为颗粒度的RB数量N BW和RMSI CORESET带宽内以RMSI RB为颗粒度的RB数量N RMSI,通过如下公式,确定配置中每个偏移值可以支持SSB的最大位置Δ SSB
    Δ SSB=floor([(N BW-N RMSI)+1]*2 );
    其中,μ为SSB的SCS和RMSI的SCS之间的比例因子,floor表示向下取整函数。
  23. 根据权利要求21所述的装置,其中,所述处理器还用于:根据信道带宽内以SSB RB为颗粒度的RB数量N SSB,通过如下公式,确定信道带宽内可能放置SS Raster的RB位置最大个数N';
    N'=N SSB-19;
    根据SS Raster以SSB RB为颗粒度的间隔N Sync和N',通过如下公式, 确定信道带宽内可能放置SS Raster的候选RB位置最大个数N:
    N=min(N Sync,N');
    其中,min表示求最小值函数。
  24. 根据权利要求21所述的装置,其中,所述处理器还用于:根据信道带宽内可能放置SS Raster的候选RB位置最大个数N和配置中每个偏移值可以支持SSB的最大位置Δ SSB,通过如下公式,确定候选频率偏移个数P:
    Figure PCTCN2019070963-appb-100004
    其中,ceiling表示向上取整函数。
  25. 根据权利要求21所述的装置,其中,所述处理器还用于:根据配置中每个偏移值可以支持SSB的最大位置Δ SSB,通过如下公式,确定频率偏移步长Δ RMSI
    Figure PCTCN2019070963-appb-100005
    其中,μ为SSB的SCS和RMSI的SCS之间的比例因子;N RMSI为RMSI CORESET带宽内以RMSI RB为颗粒度的RB数量;
    根据候选频率偏移个数P、频率偏移步长Δ RMSI以及预定义的初始偏移量O 0,通过如下公式,确定频率偏移量的候选集合中第i个频率偏移量O i的值:
    O i=O 0+(i-1)*Δ RMSI
    其中,1≤i≤P。
  26. 根据权利要求25所述的装置,其中,所述处理器还用于:根据RMSI CORESET带宽内以RMSI RB为颗粒度的RB数量N RMSI、候选频率偏移个数P和频率偏移步长Δ RMSI,并基于SSB与RMSI CORESET中心对齐的准则,确定初始偏移量O 0
  27. 根据权利要求26所述的装置,其中,所述处理器还用于:根据RMSI CORESET带宽内以RMSI RB为颗粒度的RB数量N RMSI、候选频率偏移个数P和频率偏移步长Δ RMSI,通过如下公式,确定初始偏移量O 0
    Figure PCTCN2019070963-appb-100006
  28. 一种计算机可读存储介质,其上存储有计算机程序,其中,该计算 机程序被处理器执行时如权利要求1至13中任一项所述的系统信息配置方法的步骤。
PCT/CN2019/070963 2018-01-12 2019-01-09 一种系统信息配置方法和装置 WO2019137389A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020227029478A KR102552443B1 (ko) 2018-01-12 2019-01-09 시스템 정보 배치 방법 및 장치
US16/961,217 US11546914B2 (en) 2018-01-12 2019-01-09 System information configuration method and device
KR1020207021538A KR20200102478A (ko) 2018-01-12 2019-01-09 시스템 정보 배치 방법 및 장치
EP19738542.0A EP3739797B1 (en) 2018-01-12 2019-01-09 System information configuration method and device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810032494.X 2018-01-12
CN201810032494.XA CN110034891B (zh) 2018-01-12 2018-01-12 一种系统信息配置方法和装置

Publications (1)

Publication Number Publication Date
WO2019137389A1 true WO2019137389A1 (zh) 2019-07-18

Family

ID=67218507

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/070963 WO2019137389A1 (zh) 2018-01-12 2019-01-09 一种系统信息配置方法和装置

Country Status (6)

Country Link
US (1) US11546914B2 (zh)
EP (1) EP3739797B1 (zh)
KR (2) KR20200102478A (zh)
CN (1) CN110034891B (zh)
TW (1) TWI712329B (zh)
WO (1) WO2019137389A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022544799A (ja) * 2019-08-16 2022-10-21 華為技術有限公司 制御情報を示す方法及び装置

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111106913B (zh) * 2018-11-02 2021-04-27 维沃移动通信有限公司 无线通信的方法和设备
US11234219B2 (en) * 2019-01-11 2022-01-25 Intel Corporation Discovery reference signal and control resource set multiplexing
BR112021016911A2 (pt) * 2019-03-01 2021-11-03 Guangdong Oppo Mobile Telecommunications Corp Ltd Método de comunicação sem fio, dispositivo terminal e dispositivo de rede
JP7428243B2 (ja) * 2019-09-30 2024-02-06 富士通株式会社 信号の伝送方法、装置及び通信システム
EP4037230B1 (en) * 2019-10-02 2023-11-29 LG Electronics Inc. Method and device for transmitting and receiving wireless signal in wireless communication system
US11539486B2 (en) * 2019-11-05 2022-12-27 Qualcomm Incorporated SSB enhancements for fine time-frequency estimation in NR
WO2022021241A1 (zh) * 2020-07-30 2022-02-03 Oppo广东移动通信有限公司 同步信号块的传输方法、装置、设备及存储介质
CN112042239B (zh) * 2020-07-31 2023-07-25 北京小米移动软件有限公司 偏移指示确定方法和装置、偏移确定方法和装置
US20230396399A1 (en) * 2020-10-28 2023-12-07 Beijing Xiaomi Mobile Software Co., Ltd. Information transmission method, communication device and storage medium

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107046721A (zh) * 2016-02-05 2017-08-15 中兴通讯股份有限公司 传输信息的方法及装置
CN108282877A (zh) * 2017-01-06 2018-07-13 华为技术有限公司 一种参考信号的配置方法、装置及系统

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8868110B2 (en) * 2011-11-21 2014-10-21 Broadcom Corporation Wireless communication device capable of efficient network search
CN105007631B (zh) * 2015-08-05 2018-06-26 山东大学 一种协作认知网络中保证QoS要求的联合资源分配方法
US10616877B2 (en) * 2017-11-16 2020-04-07 Huawei Technologies Co., Ltd. Configuration of the initial active bandwidth part for initial network access
US10993248B2 (en) * 2017-11-17 2021-04-27 Qualcomm Incorporated Designs for remaining minimum system information (RMSI) control resource set (CORESET) and other system information (OSI) coreset
WO2019104672A1 (zh) * 2017-11-30 2019-06-06 北京小米移动软件有限公司 信息指示方法及装置、基站和用户设备

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107046721A (zh) * 2016-02-05 2017-08-15 中兴通讯股份有限公司 传输信息的方法及装置
CN108282877A (zh) * 2017-01-06 2018-07-13 华为技术有限公司 一种参考信号的配置方法、装置及系统

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
3GPP PROTOCOL STANDARD TS 38.213
AT &T: "Remaining details on Remaining minimum system information", 3GPP TSG RAN WG1 MEETING 91, RL-1719622, 1 December 2017 (2017-12-01), XP051369429 *
CATT: "On Remaining Issues on RMSI", 3GPP TSG RAN WG1 MEETING AH 1801, R1-1800229, 26 January 2018 (2018-01-26), XP051384709 *
CATT: "RMSI Delivery", 3GPP TSG RAN WG1 NR AD-HOC#2, R1-1710029, 30 June 2017 (2017-06-30), XP051299254 *
NOKIA ET AL: "Remaining details related to SS blocks", 3GPP TSG-RAN WG1 MEETING #91, RL-1721361, 1 December 2017 (2017-12-01), XP051363822 *
See also references of EP3739797A4

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022544799A (ja) * 2019-08-16 2022-10-21 華為技術有限公司 制御情報を示す方法及び装置
JP7432708B2 (ja) 2019-08-16 2024-02-16 華為技術有限公司 制御情報を示す方法及び装置

Also Published As

Publication number Publication date
EP3739797A4 (en) 2021-03-03
TWI712329B (zh) 2020-12-01
EP3739797B1 (en) 2023-03-01
CN110034891A (zh) 2019-07-19
CN110034891B (zh) 2020-10-20
EP3739797A1 (en) 2020-11-18
US11546914B2 (en) 2023-01-03
KR20200102478A (ko) 2020-08-31
KR102552443B1 (ko) 2023-07-05
KR20220122806A (ko) 2022-09-02
US20210058931A1 (en) 2021-02-25
TW201931922A (zh) 2019-08-01

Similar Documents

Publication Publication Date Title
WO2019137389A1 (zh) 一种系统信息配置方法和装置
US8228922B2 (en) Multiradio synchronization and scheduling control
TW201828754A (zh) 分別配置與參數集相關的資源
WO2019095954A1 (zh) 一种资源配置方法及装置、计算机存储介质
CN109495227A (zh) 一种控制资源集的配置方法、网络设备及终端
US9520976B2 (en) Mobile communication method, wireless base station and mobile station
WO2019095953A1 (zh) 一种资源配置方法及装置、计算机存储介质
US11411706B2 (en) Resource block group partitioning method and user equipment
CN109802803A (zh) 信息指示方法、终端设备及网络设备
WO2018018776A1 (zh) 上下行数据处理方法、装置及计算机存储介质
CN107079297A (zh) 用于减小与重叠的大带宽小区的干扰的小宽带小区配置
EP3618530A1 (en) Resource mapping method for demodulation reference signal and base station
JP6980170B2 (ja) ダウンリンクリソースの集合を決定するための方法とデバイス、およびリソース位置情報を送信するための方法とデバイス
WO2019191898A1 (zh) 免授权频谱的信道传输方法及网络设备、终端
CN110225589A (zh) 一种数据传输方法、装置及设备
JP2020530738A (ja) 制御情報送信/受信方法及び装置
CN104144519A (zh) 用于设备对设备通信的方法和装置
WO2017133444A1 (zh) 一种上下行传输资源分配方法及装置
CN111684852A (zh) 一种资源分配的方法、装置及计算机可读存储介质
WO2018054136A1 (zh) 一种下行传输方法及相关设备
WO2019165937A1 (zh) 一种数据传输方法、装置及设备
WO2021032023A1 (zh) 一种通信方法及装置
JP7438325B2 (ja) 無線リソースを割り当てる方法及び割り当てユニット
TWI670959B (zh) 一種上行傳輸方法、終端及基地台
CN111373812A (zh) 用于分配资源块的系统和方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19738542

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20207021538

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2019738542

Country of ref document: EP

Effective date: 20200812