WO2019137095A1 - 一种三位一体条纹变像管组 - Google Patents

一种三位一体条纹变像管组 Download PDF

Info

Publication number
WO2019137095A1
WO2019137095A1 PCT/CN2018/115900 CN2018115900W WO2019137095A1 WO 2019137095 A1 WO2019137095 A1 WO 2019137095A1 CN 2018115900 W CN2018115900 W CN 2018115900W WO 2019137095 A1 WO2019137095 A1 WO 2019137095A1
Authority
WO
WIPO (PCT)
Prior art keywords
stripe image
image tube
stripe
tube
image converter
Prior art date
Application number
PCT/CN2018/115900
Other languages
English (en)
French (fr)
Inventor
顾礼
杨方
杨勤劳
周军兰
Original Assignee
深圳大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳大学 filed Critical 深圳大学
Publication of WO2019137095A1 publication Critical patent/WO2019137095A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J31/00Cathode ray tubes; Electron beam tubes
    • H01J31/08Cathode ray tubes; Electron beam tubes having a screen on or from which an image or pattern is formed, picked up, converted, or stored
    • H01J31/50Image-conversion or image-amplification tubes, i.e. having optical, X-ray, or analogous input, and optical output
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J29/00Details of cathode-ray tubes or of electron-beam tubes of the types covered by group H01J31/00
    • H01J29/02Electrodes; Screens; Mounting, supporting, spacing or insulating thereof

Definitions

  • the present invention relates to an X-ray stripe camera, and more particularly to a three-in-one stripe image tube set.
  • X-ray stripe cameras can image X-ray and ultraviolet light signals, but are generally referred to as X-ray stripe cameras.
  • X-ray stripe camera is an important diagnostic instrument for obtaining continuous spatiotemporal change information of ultra-fast X-ray/ultraviolet radiation. Imaging research of X-ray/ultraviolet ultrafast phenomenon on natural science, clean energy, material physics, photobio, photochemistry, super Short-wave technology, laser physics, high-energy physics and other scientific research and technology fields play an important role. In particular, it is an indispensable diagnostic instrument for obtaining impulsive dynamics and implosion compression information in laser-driven inertial confinement fusion to obtain continuous spatiotemporal changes of plasma radiation.
  • the photocathode of the X-ray stripe camera converts the ultra-fast optical pulse to be converted into an electronic pulse by photoelectric conversion.
  • the electronic pulse carries the optical pulse information in time, space and intensity, which is the first step of the diagnostic imaging of the stripe camera.
  • the photocathodes are gold (Au) and cesium iodide (CsI). Both photocathodes will degrade or fail due to long-term, high-intensity X-ray bombardment, especially CsI photoelectric conversion.
  • the quantum efficiency is high, but it is easy to decompose and crystallize, and it will fail after being exposed to air for several hours.
  • the difference in cathode fabrication process and the thickness of the film layer also affect the imaging stability of the camera.
  • the photocathode film can only be obtained from the appearance observation, and when it is mounted on an X-ray stripe camera for diagnostic imaging, it can be concluded whether the photocathode is effective, and a large number of photocathode films can only be inspected one by one.
  • This method not only has high detection cost and low efficiency, but the imaging quality of different photocathode films cannot be compared in the same image.
  • the technical problem to be solved by the present invention is to provide a three-in-one stripe image tube set for the above-mentioned drawbacks of the prior art.
  • the technical solution adopted by the present invention to solve the technical problem is to construct a three-in-one stripe image tube group, including a first stripe image tube, a second stripe image tube, and a third stripe image tube, the first stripe
  • the image tube, the second stripe image tube, and the third stripe image tube are arranged side by side, and the incident ends of the first stripe image tube, the second stripe image tube, and the third stripe image tube are on the same side. Used to receive test light signals.
  • the first stripe image tube, the second stripe image tube, and the third stripe image tube have the same structure.
  • the three-strip stripe image tube of the present invention includes a photocathode, a grid, a focusing electrode, an anode, and a deflecting plate, wherein
  • the photocathode is detachably mounted at an incident end of the first fringe tube through a cathode base for converting a light pulse into an electron pulse, the photocathode being parallel to the grid; the focusing electrode a flight path of the first fringe tube and axially symmetrically distributed; the anode is located in a flight path of the first fringe tube and is axially symmetrically distributed; the deflector is located at the first stripe image tube
  • the exit ends are symmetrically distributed on both sides.
  • the first stripe image tube, the second stripe image tube, and the third stripe image tube are located in a vacuum chamber.
  • the vacuum chamber has an openable cathode replacement window, the opening position of the cathode replacement window and the first stripe image tube and the second stripe
  • the incident end of the image tube and the third stripe image tube corresponds to an operation space for replacing the photocathode when the cathode replacement window is opened.
  • the vacuum chamber is disposed adjacent to an incident end side of the first stripe image tube, the second stripe image tube, and the third stripe image tube; A detached vacuum shutter valve that closes the vacuum chamber through the vacuum shutter valve.
  • the first stripe image tube, the second stripe image tube, and the third stripe image tube are fixed by an upper splint and a lower splint, and the lower splint is fixed.
  • the lower splint is fixed.
  • the exit end of the first stripe image tube, the second stripe image tube, and the third stripe image tube is provided for receiving an electron beam emitted from the exit end and a fluorescent screen, wherein the phosphor screen is a common screen for the first stripe image tube, the second stripe image tube, and the third stripe image tube.
  • the first stripe image tube, the second stripe image tube, and the third stripe image tube are respectively connected to a power supply;
  • the first stripe image tube, the second stripe image tube, and the third stripe image tube are grounded by a common ground electrode.
  • the first stripe image tube, the second stripe image tube and the third stripe image tube are respectively connected to a power supply through a high voltage input flange.
  • a three-in-one stripe image tube assembly embodying the present invention has the following beneficial effects: including a first stripe image tube, a second stripe image tube, a third stripe image tube, a first stripe image tube, and a second stripe
  • the image tube and the third stripe image tube are arranged side by side, and the incident ends of the first stripe image tube, the second stripe image tube and the third stripe image tube are located on the same side for receiving the test light signal.
  • the Trinity stripe image tube set is the core component of the X-ray stripe camera cathode detection system. According to the theoretical design and engineering realization requirements, both parameters of large working area, small volume and high withstand voltage are balanced and balanced. Constraint the problem, optimize the design of the stripe image tube electron optical system and electrode structure, and realize the simultaneous detection of the X-ray stripe camera photocathode.
  • FIG. 1 is a schematic structural view of a photocathode rapid detection system of an X-ray stripe camera according to the present invention
  • FIG. 2 is a schematic structural view of a three-in-one stripe image tube group of the present invention.
  • FIG. 3 is a schematic cross-sectional structural view of a first stripe image tube of the present invention.
  • Figure 4 is a test image of an experiment of the present invention.
  • Figure 5 is a spatial resolution test image of an experiment of the present invention.
  • FIG. 1 is a schematic structural view of a photocathode rapid detection system of an X-ray stripe camera according to the present invention.
  • the X-ray stripe camera photocathode rapid detection system comprises a light source 10, a trinity stripe image tube set, a CCD camera 302, a power supply, and a computer 40, wherein the light source 10 is disposed at an incident end of the Trinity stripe image tube set On the side, the test light signal from the light source 10 is directed to the incident end of the Trinity stripe tube group.
  • the light source 10 is an X-ray source or an ultraviolet light source.
  • an ultraviolet disc-shaped lamp is taken as an example for detection.
  • the detection of X-rays can be referred to.
  • the Trinity stripe image tube group receives the input test light signal to generate a test image.
  • the CCD camera 302 is disposed at the exit end of the Trinity stripe image tube set for acquiring a test image of the exit end of the Trinity stripe image tube set.
  • the CCD camera 302 is connected to the computer 40 and transmits the test image to the computer 40.
  • the computer 40 processes the test image according to a preset algorithm to obtain a test result.
  • the power supply is used to supply power to the entire detection system, and the power supply is respectively connected to the trinity stripe image tube group and the CCD camera 302, wherein the first stripe image tube T1, the second stripe image tube T2, and the third stripe image tube T3 are respectively connected.
  • the power supply is connected, and the first stripe image tube T1, the second stripe image tube T2, and the third stripe image tube T3 are grounded through a common ground electrode.
  • the first stripe image tube T1, the second stripe image tube T2, and the third stripe image tube T3 are respectively connected to the power supply via the high voltage input flange 503.
  • the power supply includes a high voltage power supply 501 and a voltage divider 502.
  • the high voltage power supply 501 is connected to the first stripe image tube T1, the second stripe image tube T2, the third stripe image tube T3, and the CCD through the voltage divider 502. Camera 302.
  • FIG. 2 is a schematic view showing the structure of a three-in-one stripe image tube group of the present invention.
  • the trinity stripe image tube group includes a first stripe image tube T1, a second stripe image tube T2, a third stripe image tube T3, a first stripe image tube T1, and a second stripe image tube T2.
  • the third stripe image tube T3 is arranged side by side, and the incident ends of the first stripe image tube T1, the second stripe image tube T2, and the third stripe image tube T3 are located on the same side for receiving the test light signal.
  • the structures of the first stripe image tube T1, the second stripe image tube T2, and the third stripe image tube T3 in the embodiment are the same, thereby implementing simultaneous testing of three photocathodes, and performing experimental results. Intuitive comparison, the imaging quality of the three cathodes is compared in the same image to improve the test efficiency.
  • the Trinity Stripe Transformer Tube Group is the core component of the X-ray stripe camera cathode detection system. According to the theoretical design and engineering requirements, the problem of mutual constraints between large working area, small volume and high withstand voltage is balanced and optimized.
  • the stripe image tube electron optical system and electrode structure According to the theoretical design and engineering requirements, the problem of mutual constraints between large working area, small volume and high withstand voltage is balanced and optimized.
  • Fig. 3 is a schematic cross-sectional view showing the first stripe image tube of the present invention.
  • the first stripe image tube T1 is a seven-electrode electrostatic focusing type stripe image tube including a photocathode 201 (P/C in the drawing), a grid M, a focusing electrode F, an anode A, and a deflecting plate DP, wherein
  • the photocathode 201 is detachably mounted on the incident end of the first stripe image tube T1 through the cathode base for converting the light pulse into an electron pulse, and the electron pulse carries the light pulse information in time, space and intensity. It is the basis for diagnostic imaging of stripe cameras. And to ensure that the photocathode 201 and the grid M are strictly parallel, the uniform acceleration field of the photoelectron is not destroyed.
  • the focus electrode F includes a first focus electrode barrel F1 and a second focus electrode barrel F2, and the first focus electrode barrel F1 and the second focus electrode barrel F2 are located in the flight path of the first fringe tube T1 and are axially symmetrically distributed.
  • the anode A includes a first anode cylinder A1 and a second anode cylinder A2, and the first anode cylinder A1 and the second anode cylinder A2 are located in a flight path of the first fringe tube T1 and are axially symmetrically distributed.
  • the first focus electrode cylinder F1, the second focus electrode cylinder F2, the first anode cylinder A1, and the second anode cylinder A2 are arranged at intervals.
  • the deflector plate DP is located on both sides of the exit end of the first stripe image tube T1 and is symmetrically distributed. In addition, there are common grounding electrodes between the electrodes to ensure that the respective focusing and anode electrodes are independent of each other, and the electrostatic fields do not interfere with each other.
  • the exit end of the first stripe image tube T1 is aligned with the phosphor screen 301 (P/S in the figure)
  • the second stripe image tube T2 and the third stripe image tube T3 have the same structure as the first stripe image tube T1, and the first stripe image tube T1 can be referred to, and details are not described herein again.
  • the use of precision mount tires allows the electrodes to be both suspended and maintain a precise symmetrical structure.
  • the first stripe image tube T1, the second stripe image tube T2, and the third stripe image tube T3 are fixed by the upper and lower plates, the electrode leads of the above electrodes are introduced by the upper plate, and the lower plate is fixed by the vacuum.
  • the inner wall of the chamber 20 On the inner wall of the chamber 20.
  • the first stripe image tube T1, the second stripe image tube T2, and the third stripe image tube T3 are located in the vacuum chamber 20, and the vacuum chamber 20 is adjacent to the first stripe image tube T1 and the second stripe is changed.
  • a test light signal input window 203 for testing the entrance of the optical signal is disposed on the incident end side of the image tube T2 and the third stripe image tube T3.
  • the vacuum chamber 20 is disposed near the incident end side of the first stripe image tube T1, the second stripe image tube T2, and the third stripe image tube T3, and is provided with a detachable vacuum shutter valve 204 through the vacuum.
  • the gate valve 204 closes the vacuum chamber 20.
  • the vacuum shutter valve 204 is removed.
  • the vacuum chamber 20 has an openable cathode replacement window 202, and the opening position of the cathode replacement window 202 is aligned with the first stripe image tube T1, the second stripe image tube T2, and the third stripe.
  • the incident end of the image tube T3 corresponds to, and when the cathode replacement window 202 is opened, an operation space is provided for replacing the photocathode 201.
  • the vacuum shutter valve 204 is closed, the cathode replacement window 202 is opened, and the three photocathodes 201 can be easily and quickly replaced using the cathode plug-in tool.
  • the isolation experimental target chamber can be realized, and the photocathode 201 can be quickly replaced without destroying the vacuum of the experimental target chamber and without disassembling the calibration system.
  • the system is compact and allows simultaneous detection and rapid replacement of three photocathodes.
  • the exit end of the first stripe image tube T1, the second stripe image tube T2, and the third stripe image tube T3 is provided with a phosphor screen 301 for receiving an electron beam emitted from the exit end and emitting light, and the phosphor screen 301 is a first stripe image tube.
  • the T1, the second stripe image tube T2, and the third stripe image tube T3 share a fluorescent screen.
  • a CCD camera 302 is disposed on one side of the phosphor screen 301 for collecting test images on the screen.
  • the three stripe image tubes share a phosphor screen 301 and a CCD camera 302, which can save cost and reduce volume, and can also achieve imaging quality of three cathodes in the same image.
  • the vacuum chamber 20 further includes a vacuum gauge 205 for measuring the degree of vacuum in the vacuum chamber 20; the vacuum chamber 20 is connected to a vacuum pump 206 for changing the degree of vacuum in the vacuum chamber 20.
  • the vacuum pump 206 is connected to the voltage divider 502 through a high voltage input flange 503, and the partial pressure 502 is connected to the high voltage power source 501 to supply power to the vacuum pump 206.
  • Photoelectric cathode detection system test principle is shown in Figure 1, the light source 10 is an ultraviolet disk lamp. After the test is started, the vacuum shutter valve 204 is replaced with an ultraviolet light input window, and the ultraviolet light emitted by the ultraviolet disk lamp is simultaneously irradiated on the three stripe image tubes (the first stripe image tube T1 and the second stripe image tube T2). The third stripe is on the photocathode (Au cathode) of the tube T3).
  • the photocathode emits photoelectrons, which are respectively accelerated and focused in three stripe image tubes, imaged onto the same phosphor screen 301 and converted into visible light, and then converted into digital signals by the light cone coupling into the CCD camera 302.
  • the photocathode 201 is photolithographically patterned with a center of 15 lp/mm and 10 lp/mm at both ends. By obtaining a digital image of the grading pattern on the photocathode 201, the effectiveness of the photocathode 201 and the imaging quality of the system can be calibrated and detected. .
  • a high voltage power supply and voltage divider are used to provide a stable DC high voltage to each electrode of the stripe tube.
  • the photocathode 201 has a pattern length of 30 mm, a phosphor screen of 301 ⁇ 50 mm, a PI 1300 CCD camera 302 of 1300 ⁇ 1340 pixels, and a pixel size of 20 ⁇ 20 ⁇ m 2 with a 1.5:1 coupling cone.
  • the Trinity stripe image tube group forms three stripe images of about 39 mm in length in the same CCD camera 302 image, and the stripe image is placed in the center area of the 40.2 ⁇ 39 mm2 CCD camera 302.
  • the stripe images have no overlap and interference with each other, and the whole is parallel to each other without significant bending.
  • the stripe image is slightly wider to the left than the right side, and the T2 stripe (imaged by the second stripe image tube T2) is completely in the imaging area of the screen 301, and the T1 stripe (the first)
  • the image of the stripe image tube T1 and the T3 stripe (imaged by the third stripe image tube T3) slightly exceed the imaged area at the upper end, and the resolution pattern area is clear overall.
  • the test results confirmed the effectiveness of the three photocathodes 201.
  • the positions of the three stripe image centers in the slit direction are 619, 656, and 621 pixels, respectively, and the maximum deviation is 37 pixels.
  • the maximum shift rate ⁇ y of the slit direction image is:
  • the middle 3mm pattern area of the T1 image, the starting point and the ending point are 480, 688 pixels, the length is 128 pixels, and the light cone magnification is 1.5:1, then the stripe image magnification M 1 is:
  • the magnification of the stripe tube T1 is 1.28.
  • the same method can measure the magnification of T2 and T3 to 1.29 and 1.29.
  • the system magnification test data is shown in Table 2.
  • the imaging error of the three stripe image tubes is up to 0.8%, and the system magnification has good consistency.
  • T1, T2, T3 stripe image edge 10lp / mm resolution test results shown in Figure 5 three stripe image can see the light and dark resolution pattern, T2 stripes are the clearest, followed by T1 stripes and T3 stripes, by light and dark
  • the gray value of the pattern calculates the contrast of the image.
  • the contrast of the T2 stripe image at the center is up to 0.29
  • the contrast of the T1 stripe and the T3 stripe image is less than T2, and still exceeds the discriminant criterion of 0.05.
  • the spatial resolution of the detection system is 10 lp/mm. The result proves that the X-ray stripe camera photocathode 201 rapid detection system detects three photocathodes 201 at the same time, and the three stripe images are evenly distributed, and the spatial resolution reaches 10 lp/mm.
  • the three slits are simultaneously imaged in a central area detectable by the CCD camera, and the X-ray stripe camera photocathode is simultaneously and quickly detected.

Landscapes

  • Image-Pickup Tubes, Image-Amplification Tubes, And Storage Tubes (AREA)

Abstract

本发明涉及一种三位一体条纹变像管组,包括第一条纹变像管、第二条纹变像管、第三条纹变像管,第一条纹变像管、第二条纹变像管、第三条纹变像管并列排布且共用一个荧光屏,第一条纹变像管、第二条纹变像管、第三条纹变像管的入射端位于同侧,用于接收测试光信号,共用荧光屏用于输出可见光信号。通过实施本发明,三位一体条纹变像管组是X射线条纹相机阴极检测系统的核心部件,根据理论设计和工程实现的要求,兼顾并均衡大工作面积、小体积、高耐压等参数之间相互制约问题,优化设计了条纹变像管电子光学系统和电极结构,实现X射线条纹相机光电阴极的同时快速检测。

Description

一种三位一体条纹变像管组 技术领域
本发明涉及X射线条纹相机,更具体地说,涉及一种三位一体条纹变像管组。
背景技术
X射线条纹相机可以成像X射线和紫外光信号,但是一般称X射线条纹相机。X射线条纹相机是获取超快X射线/紫外光辐射连续时空变化信息的重要诊断仪器,X射线/紫外光超快现象的成像研究对自然科学、清洁能源、材料物理、光生物、光化学、超短激光技术、激光物理、高能物理等科学研究和技术领域具有重要作用。尤其是研究激光驱动惯性约束聚变中获得内爆动力学及内爆压缩信息,获取等离子辐射连续时空变化图像的不可或缺的诊断仪器。
X射线条纹相机的光电阴极通过光电转换,把超快待测的光脉冲转换成电子脉冲,电子脉冲在时间、空间和强度上携带了光脉冲信息,这是条纹相机诊断成像的第一步。常用于X射线条纹相机的光电阴极有金(Au)和碘化铯(CsI),这两种光电阴极都会因长时间、高强度的X射线轰击而性能衰退或失效,尤其是CsI虽光电转换的量子效率高,但易潮解结晶,在空气环境下暴露若干小时就会失效。此外阴极制作工艺的差别、膜层厚度的大小,也影响相机成像稳定性。随着X射线能量和强度的增大,定期检测光电阴极的有效性,筛选性能稳定的光电阴极具有重要性和必要性。
目前光电阴极片只从外观观察无法得出有效性,将其安装到X射线条纹相机上进行诊断成像时,才能得出光电阴极是否有效,且大量的光电阴极片只能逐一检查。这种方法不但检测成本高,效率低,且不同光电阴极片的成像质量无法在同幅像中比较。
发明内容
本发明要解决的技术问题在于,针对现有技术的上述缺陷,提供一种三位一体条纹变像管组。
本发明解决其技术问题所采用的技术方案是:构造一种三位一体条纹变像管组,包括第一条纹变像管、第二条纹变像管、第三条纹变像管,所述第一条纹变像管、第二条纹变像管、第三条纹变像管并列排布,所述第一条纹变像管、第二条纹变像管、第三条纹变像管的入射端位于同侧,用于接收测试光信号。
优选地,本发明所述的三位一体条纹变像管组,所述第一条纹变像管、第二条纹变像管、第三条纹变像管的结构相同。
优选地,本发明所述的三位一体条纹变像管组,所述第一条纹变像管包括光电阴极、栅网、聚焦电极、阳极、以及偏转板,其中,
所述光电阴极通过阴极基座可拆卸地安装在所述第一条纹变像管的入射端,用于将光脉冲转换为电子脉冲,所述光电阴极与所述栅网平行;所述聚焦电极位于所述第一条纹变像管的飞行通道且轴对称分布;所述阳极位于所述第一条纹变像管的飞行通道且轴对称分布;所述偏转板位于所述第一条纹变像管的出射端两侧且对称分布。
优选地,本发明所述的三位一体条纹变像管组,所述第一条纹变像管、第二条纹变像管、第三条纹变像管位于真空室内。
优选地,本发明所述的三位一体条纹变像管组,所述真空室上有可开合的阴极更换窗,所述阴极更换窗的开口位置与所述第一条纹变像管、第二条纹变像管、第三条纹变像管的入射端对应,所述阴极更换窗打开时为更换光电阴极提供操作空间。
优选地,本发明所述的三位一体条纹变像管组,所述真空室靠近所述第一条纹变像管、第二条纹变像管、第三条纹变像管的入射端一侧设置有可拆卸的真空闸板阀,通过所述真空闸板阀将所述真空室封闭。
优选地,本发明所述的三位一体条纹变像管组,所述第一条纹变像管、第二条纹变像管、第三条纹变像管通过上夹板和下夹板固定,所述下夹板固 定在所述真空室的内壁上。
优选地,本发明所述的三位一体条纹变像管组,所述第一条纹变像管、第二条纹变像管、第三条纹变像管的出射端设置有用于接收出射端射出电子脉冲并发光的荧光屏,所述荧光屏为所述第一条纹变像管、第二条纹变像管、第三条纹变像管共用荧光屏。
优选地,本发明所述的三位一体条纹变像管组,所述第一条纹变像管、第二条纹变像管、第三条纹变像管分别连接供电电源;
所述第一条纹变像管、第二条纹变像管、第三条纹变像管通过共用接地电极接地。
优选地,本发明所述的三位一体条纹变像管组,所述第一条纹变像管、第二条纹变像管、第三条纹变像管通过高压输入法兰分别连接供电电源。
实施本发明的一种三位一体条纹变像管组,具有以下有益效果:包括第一条纹变像管、第二条纹变像管、第三条纹变像管,第一条纹变像管、第二条纹变像管、第三条纹变像管并列排布,第一条纹变像管、第二条纹变像管、第三条纹变像管的入射端位于同侧,用于接收测试光信号。通过实施本发明,三位一体条纹变像管组是X射线条纹相机阴极检测系统的核心部件,根据理论设计和工程实现的要求,兼顾并均衡大工作面积、小体积、高耐压等参数之间相互制约问题,优化设计了条纹变像管电子光学系统和电极结构,实现X射线条纹相机光电阴极的同时快速检测。
附图说明
下面将结合附图及实施例对本发明作进一步说明,附图中:
图1是本发明一种X射线条纹相机光电阴极快速检测系统的结构示意图;
图2是本发明三位一体条纹变像管组的结构示意图;
图3是本发明第一条纹变像管的剖面结构示意图;
图4是本发明实验的测试图像;
图5是本发明实验的空间分辨率测试图像。
具体实施方式
为了对本发明的技术特征、目的和效果有更加清楚的理解,现对照附图详细说明本发明的具体实施方式。
图1是本发明一种X射线条纹相机光电阴极快速检测系统的结构示意图。
具体的,该X射线条纹相机光电阴极快速检测系统包括光源10、三位一体条纹变像管组、CCD摄像机302、供电电源、以及计算机40,其中,光源10设置在三位一体条纹变像管组的入射端侧,光源10发出的测试光信号射向三位一体条纹变像管组的入射端。优选地,光源10为X射线光源或紫外光光源,本实施例以紫外盘形灯为例进行检测说明,X射线的检测可参照执行。三位一体条纹变像管组接收输入的测试光信号,产生测试图像。CCD摄像机302设置在三位一体条纹变像管组的出射端,用于采集三位一体条纹变像管组的出射端的测试图像。CCD摄像机302连接计算机40,并将测试图像传输至计算机40,计算机40根据预设算法处理测试图像,得到测试结果。
供电电源用于为整个检测系统供电,供电电源分别连接三位一体条纹变像管组和CCD摄像机302,其中,第一条纹变像管T1、第二条纹变像管T2、第三条纹变像管T3分别连接供电电源,第一条纹变像管T1、第二条纹变像管T2、第三条纹变像管T3通过共用接地电极接地。优选地,第一条纹变像管T1、第二条纹变像管T2、第三条纹变像管T3通过高压输入法兰503分别连接供电电源。进一步,供电电源包括高压电源501和分压器502,高压电源501通过分压器502分别连接第一条纹变像管T1、第二条纹变像管T2、第三条纹变像管T3、以及CCD摄像机302。
图2是本发明三位一体条纹变像管组的结构示意图。
具体的,三位一体条纹变像管组包括第一条纹变像管T1、第二条纹变像管T2、第三条纹变像管T3,第一条纹变像管T1、第二条纹变像管T2、第三条纹变像管T3并列排布,第一条纹变像管T1、第二条纹变像管T2、第三条纹变像管T3的入射端位于同侧,用于接收测试光信号。优选地,本实施例中的第一条纹变像管T1、第二条纹变像管T2、第三条纹变像管T3的结构相同,从而实现对三个光电阴极的同时测试,对实验结果进行直观的比较,实现三 个阴极的成像质量在同幅像中比较,提高测试效率。
三位一体条纹变像管组是X射线条纹相机阴极检测系统的核心部件,根据理论设计和工程实现的要求,兼顾并均衡大工作面积、小体积、高耐压等参数之间相互制约问题,优化设计了条纹变像管电子光学系统和电极结构。
图3是本发明第一条纹变像管的剖面结构示意图。
具体的,第一条纹变像管T1为七电极静电聚焦型条纹变像管,包括光电阴极201(图中P/C)、栅网M、聚焦电极F、阳极A、以及偏转板DP,其中,光电阴极201通过阴极基座可拆卸地安装在第一条纹变像管T1的入射端,用于将光脉冲转换为电子脉冲,电子脉冲在时间、空间和强度上携带了光脉冲信息,这是条纹相机诊断成像的基础。并且要保证光电阴极201与栅网M之间严格平行,实现光电子的均匀加速场不被破坏。聚焦电极F包括第一聚焦电极筒F1和第二聚焦电极筒F2,第一聚焦电极筒F1和第二聚焦电极筒F2位于第一条纹变像管T1的飞行通道且轴对称分布。阳极A包括第一阳极筒A1和第二阳极筒A2,第一阳极筒A1和第二阳极筒A2位于第一条纹变像管T1的飞行通道且轴对称分布。第一聚焦电极筒F1、第二聚焦电极筒F2、第一阳极筒A1和第二阳极筒A2呈间隔排布。偏转板DP位于第一条纹变像管T1的出射端两侧且对称分布。另外,电极之间既有共用的接地电极,保证各自聚焦和阳极电极的彼此独立性,静电场之间不互相干扰。第一条纹变像管T1的出射端对准荧光屏301(图中P/S)
第二条纹变像管T2和第三条纹变像管T3与第一条纹变像管T1结构相同,可参照第一条纹变像管T1,在此不再赘述。
进一步,使用精密装架胎具,使各电极既悬空又保持精确的对称结构。优选地,第一条纹变像管T1、第二条纹变像管T2、第三条纹变像管T3通过上夹板和下夹板固定,以上各电极的电极引线由上夹板引入,下夹板固定在真空室20的内壁上。
本实施例中,第一条纹变像管T1、第二条纹变像管T2、第三条纹变像管T3位于真空室20内,真空室20靠近第一条纹变像管T1、第二条纹变像管T2、第三条纹变像管T3的入射端一侧设置有用于测试光信号进入的测试光信号输 入窗203。在非测试阶段,真空室20靠近第一条纹变像管T1、第二条纹变像管T2、第三条纹变像管T3的入射端一侧设置有可拆卸的真空闸板阀204,通过真空闸板阀204将真空室20封闭。在测试阶段,将真空闸板阀204取下。
为更加方便快速的更换光电阴极,真空室20上有可开合的阴极更换窗202,阴极更换窗202的开口位置与第一条纹变像管T1、第二条纹变像管T2、第三条纹变像管T3的入射端对应,阴极更换窗202打开时为更换光电阴极201提供操作空间。在关闭真空闸板阀204,打开阴极更换窗202,使用阴极插件工具可方便快速的更换三个光电阴极201。即可实现隔离实验靶室,在不破坏实验靶室真空,不拆卸标定系统的情况下快速更换光电阴极201。该系统结构紧凑,可以实现三个光电阴极的同时检测和快速更换。
第一条纹变像管T1、第二条纹变像管T2、第三条纹变像管T3的出射端设置有用于接收出射端射出电子脉冲并发光的荧光屏301,荧光屏301为第一条纹变像管T1、第二条纹变像管T2、第三条纹变像管T3共用荧光屏。CCD摄像机302设置在荧光屏301的一侧,用于采集荧光屏上的测试图像。三个条纹变像管共用一个荧光屏301和CCD摄像机302,可以节约成本减少体积,还可以实现三个阴极的成像质量在同幅像中比较。
真空室20还包括用于测量真空室20内真空度的真空计205;真空室20连接有用于改变真空室20内真空度的真空泵206。真空泵206通过高压输入法兰503连接分压器502,分压力502连接高压电源501,为真空泵206供电。
以下通过实验对上述系统进行测试。
光电阴极检测系统测试原理如图1,光源10为紫外盘形灯。开始测试后,将真空闸板阀204更换为紫外光输入窗,紫外盘形灯发射的紫外光同时照射在三个条纹变像管(第一条纹变像管T1、第二条纹变像管T2、第三条纹变像管T3)的光电阴极(Au阴极)上。光电阴极发射光电子,分别在三个条纹变像管内加速并聚焦,成像到同一个荧光屏301上转换成可见光,进而通过光锥耦合进CCD摄像机302转换成数字信号。光电阴极201上光刻有分划图案,中心15lp/mm,两端10lp/mm,通过获取光电阴极201上分划图案的数字图像,可以标定和检测光电阴极201的有效性和系统的成像质量。
高压电源和分压器用于给条纹变像管各个电极提供稳定直流高压。光电阴极201分划图案长度为30mm,荧光屏301Φ50mm,PI1300型CCD摄像机302尺寸1300×1340像素,像素尺寸20×20μm2自带1.5:1的耦合光锥。
光电阴极检测系统测试图像如图4,三位一体条纹变像管组在同幅CCD摄像机302图像中形成三条长度约39mm的条纹像,条纹像置于40.2×39mm2的CCD摄像机302中心区域。条纹像相互无重叠和干扰,整体相互平行无明显弯曲,条纹像间距左侧略宽于右侧,T2条纹(第二条纹变像管T2所成像)完全在荧光屏301成像区域,T1条纹(第一条纹变像管T1所成像)与T3条纹(第三条纹变像管T3所成像)像上端略有超出成像区域,分辨率图案区域整体清晰。测试结果证实了三个光电阴极201的有效性。
三个条纹图像中心在狭缝方向的位置分别为619、656、621像素,最大偏差37像素,则狭缝方向图像的最大偏移率δ y为:
Figure PCTCN2018115900-appb-000001
同样方法可以得出垂直于狭缝方向图像的偏移率6.6%,数据如表1。
表1 图像偏移率测试数据
Figure PCTCN2018115900-appb-000002
T1图像中间3mm图案区域,起始点和末点为480、688像素,长度为128像素,光锥倍率1.5:1,则条纹像放大倍率M 1为:
Figure PCTCN2018115900-appb-000003
条纹变像管T1放大倍率为1.28,同样方法可以测出T2、T3的放大倍率为1.29、1.29。系统放大倍率测试数据如表2。三个条纹变像管成像放大倍率误差最大为0.8%,系统放大倍率具有较好的一致性。
表2 系统放大倍率测试数据
参数 T1条纹 T2条纹 T3条纹
条纹位置/像素 480 517 484
条纹垂直位置/像素 688 646 612
长度/像素 128 129 128
放大倍率 1.28 1.29 1.29
T1、T2、T3条纹图像边缘10lp/mm分辨率测试结果如图5所示,三条条纹像均可以看到明暗相间的分辨率图案,T2条纹最为清晰,其次是T1条纹和T3条纹,由明暗图案的灰度值可以计算出图像的对比度。
T1条纹明暗条纹最大值I max 10547.33,最小值I min 8619.47,背景强度1921.6,因此对比度为C:
Figure PCTCN2018115900-appb-000004
同样方法可以得出T2条纹和T3条纹对比度为0.29和0.06,10lp/mm分辨率图像对比度数据如表3。
表3 空间分辨率图像对比度
Figure PCTCN2018115900-appb-000005
表中可以看出位于中心T2条纹图像对比度最高为0.29,T1条纹、T3条纹图像对比度小于T2,仍然超过了0.05的判别标准。检测系统的空间分辨率达到10lp/mm。该结果证明了该套X射线条纹相机光电阴极201快速检测系统,同时检测三个光电阴极201,三条条纹像均匀分布,空间分辨率达到10lp/mm。
通过实施本发明,通过调节三位一体条纹变像管组的电压、结构和相对位置,三条狭缝同时成像在CCD摄像机可探测的中心区域,实现X射线条纹 相机光电阴极的同时快速检测。
以上实施例只为说明本发明的技术构思及特点,其目的在于让熟悉此项技术的人士能够了解本发明的内容并据此实施,并不能限制本发明的保护范围。凡跟本发明权利要求范围所做的均等变化与修饰,均应属于本发明权利要求的涵盖范围。

Claims (10)

  1. 一种三位一体条纹变像管组,其特征在于,包括第一条纹变像管(T1)、第二条纹变像管(T2)、第三条纹变像管(T3),所述第一条纹变像管(T1)、第二条纹变像管(T2)、第三条纹变像管(T3)并列排布,所述第一条纹变像管(T1)、第二条纹变像管(T2)、第三条纹变像管(T3)的入射端位于同侧,用于接收测试光信号。
  2. 根据权利要求1所述的三位一体条纹变像管组,其特征在于,所述第一条纹变像管(T1)、第二条纹变像管(T2)、第三条纹变像管(T3)的结构相同。
  3. 根据权利要求2所述的三位一体条纹变像管组,其特征在于,所述第一条纹变像管(T1)包括光电阴极(201)、栅网(M)、聚焦电极(F)、阳极
    (A)、以及偏转板(DP),其中,
    所述光电阴极(201)通过阴极基座可拆卸地安装在所述第一条纹变像管(T1)的入射端,用于将光脉冲转换为电子脉冲,所述光电阴极(201)与所述栅网(M)平行;所述聚焦电极(F)位于所述第一条纹变像管(T1)的飞行通道且轴对称分布;所述阳极(A)位于所述第一条纹变像管(T1)的飞行通道且轴对称分布;所述偏转板(DP)位于所述第一条纹变像管(T1)的出射端飞行通道两侧且对称分布。
  4. 根据权利要求1所述的三位一体条纹变像管组,其特征在于,所述第一条纹变像管(T1)、第二条纹变像管(T2)、第三条纹变像管(T3)位于真空室(20)内。
  5. 根据权利要求4所述的三位一体条纹变像管组,其特征在于,所述真空室(20)上有可开合的阴极更换窗(202),所述阴极更换窗(202)的开口位置与所述第一条纹变像管(T1)、第二条纹变像管(T2)、第三条纹变像管(T3)的入射端对应,所述阴极更换窗(202)打开时为更换光电阴极(201)提供操作空间。
  6. 根据权利要求4所述的三位一体条纹变像管组,其特征在于,所述真空室(20)靠近所述第一条纹变像管(T1)、第二条纹变像管(T2)、第三条 纹变像管(T3)的入射端一侧设置有可拆卸的真空闸板阀(204),通过所述真空闸板阀(204)将所述真空室(20)封闭。
  7. 根据权利要求4所述的三位一体条纹变像管组,其特征在于,所述第一条纹变像管(T1)、第二条纹变像管(T2)、第三条纹变像管(T3)通过上夹板和下夹板固定,所述下夹板固定在所述真空室(20)的内壁上。
  8. 根据权利要求4所述的三位一体条纹变像管组,其特征在于,所述第一条纹变像管(T1)、第二条纹变像管(T2)、第三条纹变像管(T3)的出射端设置有用于接收出射端射出电子脉冲并发光的荧光屏(301),所述荧光屏(301)为所述第一条纹变像管(T1)、第二条纹变像管(T2)、第三条纹变像管(T3)共用荧光屏(301)。
  9. 根据权利要求1所述的三位一体条纹变像管组,其特征在于,所述第一条纹变像管(T1)、第二条纹变像管(T2)、第三条纹变像管(T3)分别连接供电电源(50);
    所述第一条纹变像管(T1)、第二条纹变像管(T2)、第三条纹变像管(T3)通过共用接地电极接地。
  10. 根据权利要求9所述的三位一体条纹变像管组,其特征在于,所述第一条纹变像管(T1)、第二条纹变像管(T2)、第三条纹变像管(T3)通过高压输入法兰(503)分别连接供电电源(50)。
PCT/CN2018/115900 2018-01-12 2018-11-16 一种三位一体条纹变像管组 WO2019137095A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810032014.XA CN108198739B (zh) 2018-01-12 2018-01-12 一种三位一体条纹变像管组
CN201810032014.X 2018-01-12

Publications (1)

Publication Number Publication Date
WO2019137095A1 true WO2019137095A1 (zh) 2019-07-18

Family

ID=62589005

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/115900 WO2019137095A1 (zh) 2018-01-12 2018-11-16 一种三位一体条纹变像管组

Country Status (2)

Country Link
CN (1) CN108198739B (zh)
WO (1) WO2019137095A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108181783B (zh) * 2018-01-12 2023-06-02 深圳大学 一种x射线条纹相机光电阴极快速检测系统
CN108198739B (zh) * 2018-01-12 2019-08-09 深圳大学 一种三位一体条纹变像管组

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1148639A (en) * 1966-07-29 1969-04-16 Eltro Gmbh A long-distance viewing device, for example a telescope or binocular
CN103197499A (zh) * 2013-03-20 2013-07-10 中国工程物理研究院流体物理研究所 一种同时分幅扫描超高速光电摄影系统
CN203826336U (zh) * 2014-04-09 2014-09-10 云南云光发展有限公司 一种红外变像管的外部整体结构
CN108181783A (zh) * 2018-01-12 2018-06-19 深圳大学 一种x射线条纹相机光电阴极快速检测系统
CN108198739A (zh) * 2018-01-12 2018-06-22 深圳大学 一种三位一体条纹变像管组
CN207977293U (zh) * 2018-01-12 2018-10-16 深圳大学 一种三位一体条纹变像管组
CN207976689U (zh) * 2018-01-12 2018-10-16 深圳大学 一种x射线条纹相机光电阴极快速检测系统

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1148639A (en) * 1966-07-29 1969-04-16 Eltro Gmbh A long-distance viewing device, for example a telescope or binocular
CN103197499A (zh) * 2013-03-20 2013-07-10 中国工程物理研究院流体物理研究所 一种同时分幅扫描超高速光电摄影系统
CN203826336U (zh) * 2014-04-09 2014-09-10 云南云光发展有限公司 一种红外变像管的外部整体结构
CN108181783A (zh) * 2018-01-12 2018-06-19 深圳大学 一种x射线条纹相机光电阴极快速检测系统
CN108198739A (zh) * 2018-01-12 2018-06-22 深圳大学 一种三位一体条纹变像管组
CN207977293U (zh) * 2018-01-12 2018-10-16 深圳大学 一种三位一体条纹变像管组
CN207976689U (zh) * 2018-01-12 2018-10-16 深圳大学 一种x射线条纹相机光电阴极快速检测系统

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
GU, LI: "Research on X-Ray Femtosecond Streak Tube Design and Performance Improvement", CHINA DOCTORAL DISSERTATIONS FULL-TEXT DATABASE (BASIC SCIENCES, 15 March 2016 (2016-03-15), pages 94 - 105, ISSN: 1674-022X *

Also Published As

Publication number Publication date
CN108198739A (zh) 2018-06-22
CN108198739B (zh) 2019-08-09

Similar Documents

Publication Publication Date Title
WO2019137096A1 (zh) 一种x射线条纹相机光电阴极快速检测系统
US9076639B2 (en) Transmissive-reflective photocathode
TWI419196B (zh) 帶電粒子成像系統的偵測單元、檢視試片系統及試片表面成像方法
KR20110112409A (ko) 하전 입자선 장치
WO2019137095A1 (zh) 一种三位一体条纹变像管组
CN103915311A (zh) 一种静电聚焦微通道板光电倍增管
WO2019114496A1 (zh) 一种x射线条纹相机成像性能测试系统及方法
CN109273338B (zh) 电子束成像装置
CN108013891B (zh) 一种x射线诊断装置
CN107765506B (zh) 一种硬x射线分幅相机及其探测硬x射线方法
CN207976689U (zh) 一种x射线条纹相机光电阴极快速检测系统
CN207977293U (zh) 一种三位一体条纹变像管组
US10068746B2 (en) Scanning electron microscope
JP2019175861A (ja) 収差補正およびイオンダメージ軽減のためのイメージインテンシファイア管設計
JP2021048114A (ja) 走査型電子顕微鏡および走査型電子顕微鏡の2次電子検出方法
CN207440514U (zh) 一种硬x射线分幅相机
US20070051879A1 (en) Image Intensifier Device and Method
Darling et al. Performance results of the ICON FUV sealed tube converters
KR20230111205A (ko) 하전 입자 평가 툴, 검사 방법 및 이미지
Jing-Jin et al. Design of a large-format high-resolution streak camera with a planar photocathode
JP2012142129A (ja) 軟x線源
CN215812515U (zh) 电子探测器
Rodenburg et al. The recording of microdiffraction patterns in scanning transmission electron microscopy
RU2704330C1 (ru) Фотоэмиссионный профилометр лазерного луча
WO2019205595A1 (zh) 一种成像性能稳定的条纹相机及条纹相机系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18899039

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 07.10.2020)

122 Ep: pct application non-entry in european phase

Ref document number: 18899039

Country of ref document: EP

Kind code of ref document: A1