WO2019136791A1 - 快速评价塑料管材耐慢速裂纹增长性能的方法 - Google Patents

快速评价塑料管材耐慢速裂纹增长性能的方法 Download PDF

Info

Publication number
WO2019136791A1
WO2019136791A1 PCT/CN2018/076328 CN2018076328W WO2019136791A1 WO 2019136791 A1 WO2019136791 A1 WO 2019136791A1 CN 2018076328 W CN2018076328 W CN 2018076328W WO 2019136791 A1 WO2019136791 A1 WO 2019136791A1
Authority
WO
WIPO (PCT)
Prior art keywords
crack growth
plastic pipe
growth resistance
slow crack
cylindrical sample
Prior art date
Application number
PCT/CN2018/076328
Other languages
English (en)
French (fr)
Inventor
杨波
翟伟
李茂东
王志刚
黄国家
丁金森
张双红
李仕平
伍振凌
何颖怡
喻文
笪菁
Original Assignee
广州特种承压设备检测研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广州特种承压设备检测研究院 filed Critical 广州特种承压设备检测研究院
Publication of WO2019136791A1 publication Critical patent/WO2019136791A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • G01N1/286Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q involving mechanical work, e.g. chopping, disintegrating, compacting, homogenising
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N3/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N3/08Investigating strength properties of solid materials by application of mechanical stress by applying steady tensile or compressive forces
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/0014Type of force applied
    • G01N2203/0016Tensile or compressive
    • G01N2203/0017Tensile
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/02Details not specific for a particular testing method
    • G01N2203/026Specifications of the specimen
    • G01N2203/0262Shape of the specimen
    • G01N2203/0274Tubular or ring-shaped specimens

Definitions

  • the invention relates to a method for evaluating the performance of plastic pipes, in particular to a method for quickly evaluating the growth resistance of plastic pipes against slow crack growth.
  • the traditional method for evaluating the slow crack growth resistance of pipes is to carry out long-term hydrostatic experiments to observe the brittle-ductile transition point of the pipe.
  • the special resin for PE pipe has experienced the development of several generations of technologies from PE63, PE80, PE100 to PE100RC, and its slow crack growth is gradually improved, especially the successful development of PE100RC pipe special resin in recent years, which is resistant to slow crack growth.
  • the performance is extremely good.
  • the existing cracked tube test, full-notch tensile creep test and other methods were used to evaluate the slow crack growth resistance of PE63, PE80, PE100 and PE100RC pipes, and the typical failure time of the pipes was 5, 50, 1000, 15000h, respectively.
  • the object of the present invention is achieved by the following technical solutions: a method for quickly evaluating the slow crack growth resistance of a plastic pipe, including two steps of sample preparation and tensile test;
  • the sample preparation comprises the steps of:
  • the tensile test includes the steps of:
  • the present invention can reduce the test time to several tens of hours or even several hours by presetting a notch on the sample and performing a cyclic tensile test on the sample by a tensile force varying with a sinusoidal function.
  • the equipment required for testing is simple, the test temperature is normal temperature, and the test cost is low; in addition, the relationship between the failure time t and the stress range ⁇ obtained by the test is used to evaluate the slow crack growth resistance of the plastic pipe, the same plastic pipe The relationship between the failure time t and the stress range ⁇ obtained by multiple tests is almost the same, and the reproducibility of the result is good and the accuracy is high.
  • the notch crack is perpendicular to the axial direction of the cylindrical rod and has a depth of 1.3 to 2.2 mm.
  • step S102 during the pre-cracking process, the blade feed speed is 0.05 to 0.06 mm/turn.
  • the cylindrical sample has a diameter of 12 to 20 mm and a length of 80 to 130 mm.
  • the cylindrical sample has a diameter of 13 to 15 mm and a length of 95 to 110 mm.
  • step S203 the ratio of the minimum stress to the maximum stress applied to the cylindrical sample during the cyclic tensile test is 0.05 to 0.5.
  • step S203 the frequency f of the sinusoidal function is 1 to 12 Hz.
  • step S202 the stress range ⁇ is classified according to the density of the cylindrical sample, the density is ⁇ 1000 kg/m 3 , the stress range ⁇ is 9.0 to 13.5 MPa, the density is >1000 kg/m 3 , and the stress range ⁇ is 11.5 to 18.0 MPa.
  • step S201 the cylindrical sample is held in the jig for at least 60 minutes before the load is applied.
  • the fracture surface of the cylindrical sample is observed by a scanning electron microscope to analyze and verify the failure mode.
  • the fracture surface of the cylindrical specimen was observed by scanning electron microscopy and the fracture surface was analyzed as brittle fracture to verify whether the failure mode was a brittle failure mode caused by slow crack growth.
  • Fig. 1 is a test result obtained by a method for rapidly evaluating a slow crack growth resistance of a plastic pipe by an embodiment.
  • the method for quickly evaluating the slow crack growth resistance of a plastic pipe of the present embodiment includes two steps of sample preparation and tensile test.
  • the equipment used in the sample preparation process includes plastic injection molding machine, slicer and crack preset machine.
  • the specific preparation process is as follows:
  • the plastic pipe material is placed in a plastic injection molding machine to produce a cylindrical rod by injection molding.
  • the cylindrical rod is cut by a microtome.
  • the size of the cylindrical rod after cutting is 12-20 mm in diameter and 80-130 mm in length.
  • the preferred size is 13-15 mm in diameter and 95-110 mm in length. .
  • the blade feeding speed is 0.05-0.06 mm/turn, preferably, the direction of the notch crack is perpendicular to the axial direction of the cylindrical rod, and the depth is From 1.3 to 2.2 mm, a cylindrical sample for tensile testing was prepared.
  • the equipment used in the tensile test process is a universal electronic stretching machine.
  • the specific testing process is as follows:
  • the sample is subjected to cyclic tensile test using a universal electronic stretching machine.
  • the sample is subjected to cyclic tensile test using a sinusoidal pulling force with a frequency f of 1 to 12 Hz, minimum stress and maximum stress.
  • the ratio R is 0.05 to 0.5.
  • the test temperature T is 20 ° C
  • the frequency f is 5 Hz
  • the ratio R of the minimum stress to the maximum stress is 0.1.
  • Test until the sample fails record the failure period N f (N f is the number of cycles from the start of the test to the failure of the sample) and the value of the stress range ⁇ . Test at least 3 samples of the same plastic pipe.
  • the failure mode can be analyzed by scanning electron microscopy. Specifically, by observing the fracture surface of the plastic pipe sample and analyzing whether the fracture surface is brittle fracture, it is verified whether the failure mode is caused by slow crack growth. Brittle failure mode.
  • FIG. 1 is a test result obtained by the method of the embodiment. It can be seen from the results that the relationship function between the failure time t and the stress range ⁇ is a linear relationship function. Under the same stress range ⁇ , different kinds of pipes correspond to different failure times t, and the larger the failure time t indicates the service life of the pipes. The longer the resistance to slow crack growth is, the better the linearity relationship between the failure time t and the stress range ⁇ obtained by multiple tests of the same tube indicates that the test results are reproducible and accurate.
  • the method for quickly evaluating the slow crack growth resistance of a plastic pipe has the following advantages: (1) The test test equipment is simple, the test temperature is room temperature, the cost is low, and the test time can be shortened to several tens of Hours or even hours; (2) The linear relationship function between stress range and failure time is obtained to evaluate the slow crack growth resistance of plastic pipes. The linear relationship between stress range and failure time is almost tested by the same plastic pipe. Consistent, the result is reproducible and accurate; (3) The fracture surface of the plastic pipe sample can be observed by scanning electron microscope, and whether the fracture surface is brittle fracture is analyzed to verify whether the failure mode is brittleness caused by slow crack growth. Failure mode.

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)

Abstract

一种快速评价塑料管材耐慢速裂纹增长性能的方法,包括试样制备和拉伸测试两个步骤,通过注塑、预置缺口裂纹得到圆柱形试样,采用呈正弦函数变化的拉力对圆柱形试样进行循环拉伸测试,获得失效时间和应力范围的关系函数,用以评价圆柱形试样的耐慢速裂纹增长性能。快速评价塑料管材耐慢速裂纹增长性能的方法具有测试时间短、成本低、结果可再现性好的优点。

Description

快速评价塑料管材耐慢速裂纹增长性能的方法 技术领域
本发明涉及评价塑料管材性能的方法,尤其涉及一种快速评价塑料管材耐慢速裂纹增长性能的方法。
背景技术
目前,越来越多以聚乙烯、聚氯乙烯、聚丙烯为代表的管道制品应用在市政、建筑等领域中,这些材料由于具有柔性好、延展性强、耐腐蚀、易施工、抗震等特点,作为给水和燃气管道材料已经得到广泛的认可。随着现代工业对塑料管材制品的使用寿命、耐压等级要求越来越高,原材料生产商、生产企业一直在探求和开发耐压等级更高、综合性能更出色的塑料原料和管道制品。塑料原料和管道制品的耐慢速裂纹增长导致的破坏是影响塑料管道制品寿命的决定性因素。因此,必须对塑料专用树脂以及管材的耐慢速裂纹增长性能进行全面的表征与评价。
评价管材耐慢速裂纹增长性能的传统方法是进行长期静液压实验,观察管材的脆韧转变点,脆性破坏时间越长,说明材料的耐慢速裂纹增长性能越好,但该类实验费用高且时间长。后来研究者开发出通过预制各种缺陷形式来评价塑料管材耐慢速裂纹增长性能的试验方法,包括切口管试验、全切口拉伸蠕变试验、宾夕法尼亚拉伸试验、锥体试验、缺口环试验。例如PE管材专用树脂经历了从PE63,PE80,PE100到PE100RC等几代技术的发展,其耐慢速裂纹增长逐步提高,尤其是近几年来PE100RC管材专用树脂的成功开发,其耐慢速裂纹增长性能极为优越。
通过现有的切口管试验、全切口拉伸蠕变试验等方法评价PE63,PE80,PE100,PE100RC管材耐慢速裂纹增长性能,使管材产生典型破坏时间分别为5,50,1000,15000h,破坏时间呈指数增长。也就是说,在PE管材行业,与上一代产品相比,新一代PE管材专用树脂的耐慢速裂纹增长的破坏时间增加了一个数量级。那么未来第5代PE管材专用树脂的耐慢速裂纹增长的破坏时间会超过100000h(约12年)。
现有常规的切口管试验、全切口拉伸蠕变试验、宾夕法尼亚拉伸试验、锥体试验、缺口环试验等测试方法,存在实验条件苛刻、成本高且测试时间长、测试结果稳定性差、无法界定失效破坏模式是属于管材的慢速裂纹增长导致的脆性失效模式等问题,同时严重阻碍了新一代专用树脂开发速度。
发明内容
基于此,本发明的目的在于,提供一种快速评价塑料管材耐慢速裂纹增长性能的方法,该测试方法具有测试时间短、成本低、结果可再现性好的优点。
本发明的目的是通过以下技术方案实现的:快速评价塑料管材耐慢速裂纹增长性能的方法,包括试样制备和拉伸测试两个步骤;
所述试样制备包括步骤:
S101:将塑料管材原料注塑制成圆柱形棒;
S102:在步骤S101制得的圆柱形棒上预置缺口裂纹,得到圆柱形试样;
所述拉伸测试包括步骤:
S201:采用夹具夹紧圆柱形试样;
S202:计算试验载荷,测量应力范围△σ;
S203:采用呈正弦函数变化的拉力对圆柱形试样进行循环拉伸测试;
S204:测试直至圆柱形试样失效,记录失效周期N f和应力范围△σ的数值,将失效周期N f数值转换为失效时间t,得到失效时间t和应力范围△σ的关系函数,用以评价所述圆柱形试样的耐慢速裂纹增长性能;
其中,所述应力范围△σ为测试开始时施加的最大应力值和最小应力值之差;所述失效周期N f为从测试开始至试样失效时的循环周期次数;所述失效时间t和失效周期N f的转换关系为:t=N f/3600f,f为所述正弦函数的频率。
相对于现有技术,本发明通过在试样上预置缺口,并采用呈正弦函数变化的拉力对试样进行循环拉伸测试,从而可以将测试时间缩短至几十个小时甚至几个小时,且测试所需设备简单,试验温度为常温即可,测试成本低;此外,利用测试得到的失效时间t和应力范围△σ的关系函数来评价塑料管材的耐慢速裂纹增长性能,同一塑料管材多次测试得到的失效时间t和应力范围△σ的关系函数几乎一致,结果的再现性好,精确度高。
进一步地,步骤S102中,所述缺口裂纹垂直于圆柱形棒的轴向,且深度为1.3~2.2mm。
进一步地,步骤S102中,预置裂纹过程中,刀片进给的速度为0.05~0.06mm/圈。
进一步地,所述圆柱形试样的直径为12~20mm,长度为80~130mm。
进一步地,所述圆柱形试样的直径为13~15mm,长度为95~110mm。
进一步地,步骤S203中,所述循环拉伸测试过程中,对圆柱形试样施加的最小应力与最大应力的比值为0.05~0.5。
进一步地,步骤S203中,所述正弦函数的频率f为1~12Hz。
进一步地,步骤S202中,应力范围△σ根据圆柱形试样的密度来分级,密度≤1000kg/m 3, 应力范围△σ为9.0~13.5MPa;密度﹥1000kg/m 3,应力范围△σ为11.5~18.0MPa。
进一步地,步骤S201中,施加载荷前,所述圆柱形试样在夹具中保持至少60min。
进一步地,圆柱形试样失效后,利用扫描电子显微镜观察圆柱形试样断裂表面,用以分析并验证其失效模式。通过扫描电子显微镜观察圆柱形试样断裂表面,分析断裂面是否属于脆性断裂,来验证失效模式是否为由慢速裂纹增长导致的脆性失效模式。
为了更好地理解和实施,下面结合附图详细说明本发明。
附图说明
图1为通过实施例的快速评价塑料管材耐慢速裂纹增长性能的方法获得的测试结果。
具体实施方式
本实施例的快速评价塑料管材耐慢速裂纹增长性能的方法,包括试样制备和拉伸测试两个步骤。
试样制备过程中使用的设备包括塑料注塑机、切片机、裂纹预置机,具体制备过程如下:
(1)将塑料管材原料放入塑料注塑机中,注塑制出圆柱形棒。
(2)利用切片机对圆柱形棒进行裁剪,裁剪后的圆柱形棒的尺寸为:直径为12~20mm,长度为80~130mm,优选尺寸为:直径为13~15mm,长度为95~110mm。
(3)利用裂纹预置机在圆柱形棒上预置缺口裂纹,刀片进给的速度为0.05~0.06mm/圈,优选的,该缺口裂纹的方向垂直于圆柱形棒的轴向,深度为1.3~2.2mm,从而制得拉伸测试所用的圆柱形试样。
拉伸测试过程中使用的设备为万能电子拉伸机,具体测试过程如下:
(1)测量试样尺寸,在距离试样裂纹2~3mm位置处测量试样的直径,测量三次并取平均值(精确到0.1mm),测量试样两端距离为长度,测量三次并取平均值(精确到0.1mm)。
(2)采用夹具夹紧试样,同时避免弯曲、扭曲和滑移,未加载的试样装夹在夹具上保持至少60min。
(3)计算试验载荷,测量应力范围△σ(△σ为测试开始时施加的最大应力值和最小应力值之差),根据塑料管材的密度来分级,当密度≤1000kg/m 3,△σ为9.0~13.5MPa;当密度﹥1000kg/m 3,△σ为11.5~18.0MPa。
(4)室温环境下,利用万能电子拉伸机对试样进行循环拉伸测试,优选的,采用频率f为1~12Hz的正弦函数拉力对试样进行循环拉伸测试,最小应力与最大应力之比R为0.05~0.5。本实施例中,测试温度T为20℃,频率f为5Hz,最小应力与最大应力之比R为0.1。
(5)测试直至试样失效,记录失效周期N f(N f为从测试开始至试样失效时的循环周期次数)和应力范围△σ的数值,同一种塑料管材测试至少3个试样。
(6)将失效周期N f和应力范围△σ的作用关系列于双对数图中,并对失效周期N f数值转换为t(t为失效时间,单位为小时),转换公式为:t=N f/3600f,然后在双对数图中建立失效时间t和应力范围△σ的作用关系函数。
(7)分析失效时间t和应力范围△σ的关系函数,得到塑料管材不同应力范围△σ时对应的不同失效时间t的线性关系函数。当同一应力范围△σ时,不同塑料管材对应着不同失效时间t,失效时间t越大表示塑料管材使用寿命越长。
(8)试样失效后,可以利用扫描电子显微镜来分析失效模式,具体的,通过观察塑料管材试样断裂表面,分析断裂面是否属于脆性断裂,来验证失效模式是否为由慢速裂纹增长导致的脆性失效模式。
选取PE100和PE100RC两种管材、且每种管材选取两组进行上述试验,分别记为PE100-1、PE100-2、PE100RC-1和PE100RC-2。请参阅图1,其为通过本实施例的方法获得的测试结果。从该结果中可以看出:失效时间t和应力范围△σ的关系函数为线性关系函数,同一应力范围△σ下,不同种管材对应着不同失效时间t,失效时间t越大表示管材使用寿命越长,耐慢速裂纹增长性能越好;此外,同种管材多次测试得到的失效时间t和应力范围△σ的线性关系几乎一致,表明测试结果的再现性好,精确度高。
相对于现有技术,本发明的快速评价塑料管材耐慢速裂纹增长性能的方法,具有以下优点:(1)测试试验设备简单,试验温度为室温,成本低,测试时间可缩短至几十个小时甚至几个小时;(2)测试得到应力范围和失效时间的线性关系函数,用以评价塑料管材的耐慢速裂纹增长性能,同一塑料管材多次测试得到应力范围和失效时间的线性关系几乎一致,结果的再现性好,精确度高;(3)可利用扫描电子显微镜观察塑料管材试样断裂表面,分析断裂面是否属于脆性断裂,来验证失效模式是否为由慢速裂纹增长导致的脆性失效模式。
以上所述实施例仅表达了本发明的一种实施方式,其描述较为具体和详细,但并不能因此而理解为对发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。

Claims (10)

  1. 快速评价塑料管材耐慢速裂纹增长性能的方法,其特征在于:包括试样制备和拉伸测试两个步骤;
    所述试样制备包括步骤:
    S101:将塑料管材原料注塑制成圆柱形棒;
    S102:在步骤S101制得的圆柱形棒上预置缺口裂纹,得到圆柱形试样;
    所述拉伸测试包括步骤:
    S201:采用夹具夹紧圆柱形试样;
    S202:计算试验载荷,测量应力范围△σ;
    S203:采用呈正弦函数变化的拉力对圆柱形试样进行循环拉伸测试;
    S204:测试直至圆柱形试样失效,记录失效周期N f和应力范围△σ的数值,将失效周期N f数值转换为失效时间t,得到失效时间t和应力范围△σ的关系函数,用以评价所述圆柱形试样的耐慢速裂纹增长性能;
    其中,所述应力范围△σ为测试开始时施加的最大应力值和最小应力值之差;所述失效周期N f为从测试开始至试样失效时的循环周期次数;所述失效时间t和失效周期N f的转换关系为:t=N f/3600f,f为所述正弦函数的频率。
  2. 根据权利要求1所述的快速评价塑料管材耐慢速裂纹增长性能的方法,其特征在于:步骤S102中,所述缺口裂纹垂直于圆柱形棒的轴向,且深度为1.3~2.2mm。
  3. 根据权利要求1所述的快速评价塑料管材耐慢速裂纹增长性能的方法,其特征在于:步骤S102中,预置裂纹过程中,刀片进给的速度为0.05~0.06mm/圈。
  4. 根据权利要求1所述的快速评价塑料管材耐慢速裂纹增长性能的方法,其特征在于:所述圆柱形试样的直径为12~20mm,长度为80~130mm。
  5. 根据权利要求4所述的快速评价塑料管材耐慢速裂纹增长性能的方法,其特征在于:所述圆柱形试样的直径为13~15mm,长度为95~110mm。
  6. 根据权利要求1所述的快速评价塑料管材耐慢速裂纹增长性能的方法,其特征在于:步骤S203中,所述循环拉伸测试过程中,对圆柱形试样施加的最小应力与最大应力的比值为0.05~0.5。
  7. 根据权利要求1所述的快速评价塑料管材耐慢速裂纹增长性能的方法,其特征在于:步骤S203中,所述正弦函数的频率f为1~12Hz。
  8. 根据权利要求1所述的快速评价塑料管材耐慢速裂纹增长性能的方法,其特征在于: 步骤S202中,应力范围△σ根据圆柱形试样的密度来分级,密度≤1000kg/m 3,应力范围△σ为9.0~13.5MPa;密度﹥1000kg/m 3,应力范围△σ为11.5~18.0MPa。
  9. 根据权利要求1所述的快速评价塑料管材耐慢速裂纹增长性能的方法,其特征在于:步骤S201中,施加载荷前,所述圆柱形试样在夹具中保持至少60min。
  10. 根据权利要求1-9中的任一权利要求所述的快速评价塑料管材耐慢速裂纹增长性能的方法,其特征在于:圆柱形试样失效后,利用扫描电子显微镜观察圆柱形试样断裂表面,用以分析并验证其失效模式。
PCT/CN2018/076328 2018-01-09 2018-02-11 快速评价塑料管材耐慢速裂纹增长性能的方法 WO2019136791A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810018896.4 2018-01-09
CN201810018896.4A CN108318336A (zh) 2018-01-09 2018-01-09 快速评价塑料管材耐慢速裂纹增长性能的方法

Publications (1)

Publication Number Publication Date
WO2019136791A1 true WO2019136791A1 (zh) 2019-07-18

Family

ID=62894833

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/076328 WO2019136791A1 (zh) 2018-01-09 2018-02-11 快速评价塑料管材耐慢速裂纹增长性能的方法

Country Status (2)

Country Link
CN (1) CN108318336A (zh)
WO (1) WO2019136791A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109813609A (zh) * 2019-03-26 2019-05-28 四川大学 塑料慢速裂纹扩展在线监测装置及方法
CN110082184B (zh) * 2019-05-24 2023-08-29 山东东宏管业股份有限公司 钢丝网骨架聚乙烯复合管材耐慢速裂纹增长的试验方法
CN111351814B (zh) * 2020-04-13 2023-03-31 全球能源互联网研究院有限公司 用于环氧材料的抗开裂性能评价方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101025413A (zh) * 2007-03-30 2007-08-29 浙江大学 一种快速检测聚乙烯管材料的iso9080等级的方法
CN103575595A (zh) * 2012-07-26 2014-02-12 中国石油化工股份有限公司 一种评价塑料管材的点载荷性能的方法
CN107449675A (zh) * 2017-08-09 2017-12-08 广州特种承压设备检测研究院 一种加速评价聚乙烯管材耐慢速裂纹增长性能的测试方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9034991B2 (en) * 2013-01-29 2015-05-19 Chevron Phillips Chemical Company Lp Polymer compositions and methods of making and using same
KR101787928B1 (ko) * 2013-10-30 2017-10-19 아부 다비 폴리머스 씨오. 엘티디 (보르쥬) 엘엘씨. 사출 성형 적용물에 적합한 폴리에틸렌 조성물
EP3209722A2 (en) * 2014-10-21 2017-08-30 Nova Chemicals (International) S.A. Ethylene interpolymer product with dilution index

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101025413A (zh) * 2007-03-30 2007-08-29 浙江大学 一种快速检测聚乙烯管材料的iso9080等级的方法
CN103575595A (zh) * 2012-07-26 2014-02-12 中国石油化工股份有限公司 一种评价塑料管材的点载荷性能的方法
CN107449675A (zh) * 2017-08-09 2017-12-08 广州特种承压设备检测研究院 一种加速评价聚乙烯管材耐慢速裂纹增长性能的测试方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
"Research Progresses in Accelerated Evaluation Methods for Slow-crack-growth Resistant Performance of Polyethylene Pipes", CHINA PLASTICS, vol. 31, no. 7, 31 July 2017 (2017-07-31), pages 121 - 125, ISSN: 1001-9278 *
"The Standards Policy and Strategy Committee", POLYETHYLENE (PE) MATERIALS FOR PIPING SYSTEMS-DETERMINATION OF RESISTANCE TO SLOW CRACK GROWTH UNDER CYCLIC LOADING-CRACKED ROUND BAR TEST METHOD, 1 September 2015 (2015-09-01) *
LI, HAIJING ET AL.: "PE (Analysis of Crack Growth Behavior and Creep Lifetime Prediction of PE Material)", PLASTICS, vol. 46, no. 1, 28 February 2017 (2017-02-28), pages 125 - 128, ISSN: 1001-9456 *

Also Published As

Publication number Publication date
CN108318336A (zh) 2018-07-24

Similar Documents

Publication Publication Date Title
WO2019136791A1 (zh) 快速评价塑料管材耐慢速裂纹增长性能的方法
CN110763567B (zh) 一种管材任意方向的厚向异性系数和屈服应力测定方法
CN109890526A (zh) 压溃强度预测方法
WO2019029104A1 (zh) 一种加速评价聚乙烯管材耐慢速裂纹增长性能的测试方法
CN105043873A (zh) 测试纤维单丝拉伸强度的方法及装置
CN108064335A (zh) 塑料管材寿命评价方法
Murariu et al. Long-term behaviour of polyethylene PE 80 pressurized pipes, in presence of longitudinal simulated imperfections
CN109459320B (zh) 一种热塑性塑料最高使用温度的测试方法
JP5355832B1 (ja) ベイナイト組織を有する製品のクリープ余寿命の予測方法、及び、この予測方法に用いる検量線の作成方法
Yao et al. Tensile strength and its variation for PAN‐based carbon fibers. II. Calibration of the variation from testing
CN107084888B (zh) 一种应变诱导裂纹优化可锻造性最佳温度范围的方法
CN109187731B (zh) 一种制氢转化炉管加强接头的渗碳检测方法
Papadakis et al. Use of Different Geometries Specimens for the Material Characterization of CFRP Filament Wound Cylinders
CN108572134B (zh) 管材剩余寿命的测试方法和测试系统
CN105738224B (zh) 电子枪热子组件的力学性能测试方法
Ghazal The Process of Maintenance and Assessment of The Universal Testing Material Machine H50KS
CN109490112A (zh) 一种测试预紧螺栓轴向应力疲劳寿命的试验方法
RU2597811C1 (ru) Способ определения механических характеристик полых трубчатых изделий из полимерных композиционных материалов
Guerout et al. Development of indentation techniques in support of cable condition monitoring programs
Choi et al. Development of notched ring test for measuring slow cracking resistance in plastics pipes and fittings
CN114486516B (zh) 涂层裂缝追随性能的测试方法
Machado et al. Experimental study of crack growth in HDPE PE100 pipes
CN116735389A (zh) 基于低周疲劳试验获取弹塑性疲劳裂纹扩展速率的方法
CN117433888A (zh) 一种基于疲劳失效试样获取材料断裂韧度的方法
CN115290443A (zh) 一种t/p92钢的机械拉伸强度的评估方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18900359

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18900359

Country of ref document: EP

Kind code of ref document: A1