WO2019136674A1 - 涡轮叶片 - Google Patents

涡轮叶片 Download PDF

Info

Publication number
WO2019136674A1
WO2019136674A1 PCT/CN2018/072288 CN2018072288W WO2019136674A1 WO 2019136674 A1 WO2019136674 A1 WO 2019136674A1 CN 2018072288 W CN2018072288 W CN 2018072288W WO 2019136674 A1 WO2019136674 A1 WO 2019136674A1
Authority
WO
WIPO (PCT)
Prior art keywords
cavity
turbine blade
blade
arc
tip
Prior art date
Application number
PCT/CN2018/072288
Other languages
English (en)
French (fr)
Inventor
王志强
李立华
王俊
潘晓聪
Original Assignee
贵州智慧能源科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 贵州智慧能源科技有限公司 filed Critical 贵州智慧能源科技有限公司
Priority to PCT/CN2018/072288 priority Critical patent/WO2019136674A1/zh
Publication of WO2019136674A1 publication Critical patent/WO2019136674A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/14Form or construction

Definitions

  • the present invention relates to a turbine blade, and more particularly to a blade tip streamlined cavity turbine blade.
  • the blades of the prior art have solid blades and porous hollow blades. Solid blades do not consider cooling and tip loss, so the efficiency is lower, the life is shorter; porous hollow blades are difficult to manufacture and the yield is low; in this context, combining the above problems, a new type of blade is proposed to solve the tip loss. Big, difficult to manufacture and other issues.
  • the present invention provides a turbine blade having a concave streamlined tip cavity.
  • the present invention provides a turbine blade including a blade body having a blade tip and a blade root, the blade tip having a blade tip plane at a tip end of the blade body, and a concave cavity in the turbine blade.
  • the concave cavity is streamlined, the concave cavity having an opening, the opening being located on the blade tip plane.
  • the tip plane has a tip leading edge and a trailing edge opposite the leading edge of the tip, the opening having a leading edge and a proximity of the leading edge of the tip a trailing edge of the recess of the trailing edge of the blade tip, the opening being configured in a lateral direction of the turbine blade to expand and contract from a leading edge of the cavity to a trailing edge of the cavity, the concave cavity being in the turbine
  • the longitudinal direction of the blade is configured to first expand and contract from the opening to the bottom of the concave cavity and contract toward the center of the bottom.
  • the portion of the concave cavity along the cross section of the turbine blade is formed by a plurality of arcs.
  • the portion of the concave cavity along the cross section of the turbine blade is formed by eight arcs, including a first arc at the leading edge of the cavity, from the first end arc a second arc extending to the two sides, a third arc, a fourth arc, a fifth arc, a sixth arc, a seventh arc, and a trailing edge of the cavity The eighth arc.
  • the cavity segment formed by the first segment of the arc is used for rectification.
  • the cavity segments formed by the second segment of the arc and the third segment of the arc are used to form a vortex.
  • the cavity segments formed by the fourth arc segment and the fifth segment arc are used to develop the influence of the vortex.
  • the cavity segments formed by the sixth segment arc, the seventh segment arc, and the eighth segment arc are used for gentle rectification.
  • the bottom of the concave cavity has a concave curved surface that is recessed downward.
  • the blade root is connected to a flange plate, and the turbine blade has a stacking shaft, and the height of the concave cavity in the longitudinal direction of the turbine blade is 8.865 mm, and the bottom of the concave cavity
  • the distance from the stacking axis is 5.16 mm, the distance between the end of the edge plate and the stacking axis is 9.7 mm, and the point span of the leading edge of the cavity is 156 degrees, the trailing edge of the cavity The point span is 183 degrees.
  • the present invention proposes a novel type of turbine blade.
  • a tip streamline concave cavity By designing a tip streamline concave cavity, the advantages of the turbine blade in a high temperature, high speed, high pressure environment are concentrated:
  • the working fluid of the gas turbine will be moved to the top of the blade by the centrifugal force, and some of the fluid working fluid will leak from the gap between the tip and the stator component without working, resulting in turbine efficiency. decline.
  • the design of the tip streamline concave cavity forms a gap between the turbine blade and the stator member, and a fluid is passed therethrough to generate a step vortex, where the leakage fluid energy is weakened and the speed is slowed down. Reduce the leakage of work fluids and improve efficiency.
  • Figure 1 is a front elevational view of a turbine blade of the present invention.
  • Figure 2 is a top plan view of the turbine blade of the present invention at an angle.
  • Figure 3 is a cross-sectional view of the turbine blade of the present invention at an angle.
  • FIG. 4 is a top plan view of the turbine blade of the present invention at another angle.
  • Figure 5 is a cross-sectional view of the turbine blade of the present invention at another angle.
  • the present invention provides a turbine blade that includes a blade body 10, a blade edge panel 16, and a molar 18.
  • the blade body 10 and the molars 18 are located on opposite sides of the blade edge panel 16, respectively.
  • the blade body 10 has a blade tip 12 and a blade root 14, and the blade root 14 is fixed to the turbine disk by a eucalyptus groove.
  • the blade root 14 is smoothly transitionally connected to the blade edge panel 16, and the blade edge panel 16 is curved such that the blade edge panel 16 conforms to the aerodynamic characteristics of the fluid, and the lower side of the blade edge panel 16 connects the molars 18.
  • the tip 12 has a tip plane 20 at the top end of the blade body 10, the tip plane 20 having a tip leading edge 22 and a trailing edge 24 opposite the tip leading edge 22.
  • a concave cavity 26 is provided in the turbine blade, and the concave cavity 26 is streamlined.
  • the concave cavity 26 has an opening 28 on the blade tip plane 20.
  • the opening 28 has a cavity leading edge 30 and a cavity trailing edge 32, the cavity leading edge 30 being adjacent the blade tip leading edge 22 and the cavity trailing edge 32 being adjacent the blade tip trailing edge 24.
  • the blade body 10 includes a first end 34 at the tip end 22 of the tip and a second end 36 at the trailing edge 24 of the blade tip.
  • the blade body 10 is configured as a self-leaf body in the lateral direction of the turbine blade.
  • the first end 34 to the second end 36 of 10 first expand and contract.
  • the blade body 10 smoothly transitions from the second end 36 toward the side of the turbine blade to the first end 34, and the angle of curvature gradually increases, and the thickness of the blade body 10 increases first from the second end 36 toward the first end 34. Small, the thickness of the blade body 10 at the first end 34 is greater than the thickness of the second end 36.
  • the opening 28 is configured in the lateral direction of the turbine blade to expand and retract from the cavity leading edge 30 to the cavity trailing edge 32.
  • the concave cavity 26 is configured in the longitudinal direction of the turbine blade from the opening 28 to the bottom of the concave cavity 26. The expansion expands and contracts, and shrinks toward the center of the bottom.
  • the bottom of the concave cavity 26 is designed to have a concave curved surface 38 that is recessed downward.
  • the opening 28 is similar in shape to the tip plane 20.
  • the opening 28 smoothly transitions from the rear edge 32 of the cavity toward the side of the turbine blade to the leading edge 30 of the cavity, and the angle of curvature gradually increases, the width of the opening 28 being at the leading edge 30 of the cavity being greater than at the trailing edge 32 of the cavity width.
  • the leading edge 30 of the cavity is located near the leading edge 22 of the tip, and the trailing edge 32 of the recess is located at an intermediate portion of the tip plane 20 in the lateral direction.
  • the portion of the concave cavity 26 along the cross section of the turbine blade is formed by a number of arcs.
  • the portion of the concave cavity 26 along the cross-section of the turbine blade is comprised of eight arcs including a first segment of the arc 40 at the leading edge 30 of the cavity,
  • the second section of the arc 40 extends to the two sides of the second section of the arc 42, the third section of the arc 44, the fourth section of the arc 46, the fifth section of the arc 48, the sixth section of the arc 50, the seventh arc Line 52 and an eighth arc 54 located at the trailing edge 32 of the cavity.
  • the way the working fluid leaks from the tip 12 is from the tip leading edge 22 into the concave cavity 26, and through the concave cavity 26 in the cavity near the leading edge 30 of the cavity, which is a process of section expansion and then passes through the concave shape.
  • the cavity 26 is in the cavity adjacent the trailing edge 32 of the cavity, which is a process of contraction of the section.
  • the purpose of the cross-sectional change is to allow the airflow to form a vortex, thereby reducing the amount of airflow leakage, and finally flowing out through the rear edge 32 of the cavity to the trailing edge 24 of the tip.
  • the cavity segment formed by the first segment of the arc 40 acts as a rectification; the cavity segment formed by the second segment of the arc 42 and the third segment of the arc 44 is the most eddy current.
  • the cavity segment formed by the segment arc 54 mainly functions as a gentle rectification. Since the concave cavity 26 changes both in the cross-sectional direction and in the longitudinal cross-section, the formed vortex can be fully developed throughout the concave cavity 26, which is advantageous in reducing the amount of fluid leakage.
  • the turbine blade of the present invention has a stacking shaft 56 having a height set in the longitudinal direction of the turbine blade of 8.865 mm and a distance from the bottom of the concave cavity 26 to the stacking shaft 26.
  • the distance between the end of the blade edge plate 14 and the stacking axis is set to 9.7 mm.
  • the point span of the leading edge 30 of the cavity is 156 degrees, and the point span of the trailing edge of the cavity is 183 degrees. It should be understood that the above parameter values are a specific setting and can be modified according to actual conditions.
  • the design of the streamlined concave cavity on the turbine blade of the invention has its unique features in terms of structural mechanics, flow field, life and vibration mechanism.
  • the utility model solves the problem that the traditional turbine blade is excessively centrifugal force, the blade tip is excessively lost due to the diffusion flow of the working medium to the tip of the blade, and the turbine efficiency is low; the prior art is difficult to adjust the natural frequency of the blade, and other components of the whole machine are avoided.
  • the problem of resonance occurring at the critical speed occurs; the problem of low yield and difficult processing in the porous hollow blade is solved.
  • the above analysis shows that the turbine blade with the streamlined concave cavity of the invention has many advantages of saving manufacturing materials, improving turbine efficiency, reliable and stable operation, and long service life.
  • the present invention proposes a novel type of turbine blade.
  • a tip streamline concave cavity By designing a tip streamline concave cavity, the advantages of the turbine blade in a high temperature, high speed, high pressure environment are concentrated:
  • the working fluid of the gas turbine will be moved to the top of the blade by the centrifugal force, and some of the fluid working fluid will leak from the gap between the tip and the stator component without working, resulting in turbine efficiency. decline.
  • the design of the tip streamline concave cavity forms a gap between the turbine blade and the stator member, and a fluid is passed therethrough to generate a step vortex, where the leakage fluid energy is weakened and the speed is slowed down. Reduce the leakage of work fluids and improve efficiency.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)

Abstract

一种涡轮叶片,包括叶体(10),叶体(10)具有叶尖(12)和叶根(14),叶尖(12)在叶体(10)的顶端具有叶尖平面(20),涡轮叶片内设有一凹形腔(26),凹形腔(26)呈流线型,凹形腔(26)具有一开口(28),开口(28)位于叶尖平面(20)上,凹形腔(26)沿涡轮叶片的横截面的部分由若干段弧线构成。该涡轮叶片使得整个叶片的质量变轻,在高温、高速、高压的环境下避免热应力集中。

Description

涡轮叶片 技术领域
本发明涉及一种涡轮叶片,特别涉及一种叶尖流线凹形腔涡轮叶片。
背景技术
在燃气轮机系统中,涡轮叶片要承受高温、高速、高压的环境,在这样的环境下稳定工作是现代燃气轮机对涡轮性能提出最基本的要求,在此基础上,提高燃气轮机的效率、寿命成为现阶段涡轮叶片结构设计要考虑和解决的主要问题。
现有技术背景下的叶片有实心叶片、多孔空心叶片。实心叶片不考虑冷却和叶尖损失,所以效率较低,寿命较短;多孔空心叶片则制造难度大、成品率低;在这样的背景下,综合上述问题,提出一种新型叶片解决叶尖损失大、制造难度大等问题。
技术问题
有鉴于此,本发明提出一种具有叶尖流线凹形腔的涡轮叶片。
技术解决方案
本发明提供一种涡轮叶片,包括叶体,所述叶体具有叶尖和叶根,所述叶尖在所述叶体的顶端具有叶尖平面,所述涡轮叶片内设有一凹形腔,所述凹形腔呈流线型,所述凹形腔具有一开口,所述开口位于所述叶尖平面上。
在一实施例中,所述叶尖平面具有叶尖前缘和与所述叶尖前缘相反的叶尖后缘,所述开口具有靠近所述叶尖前缘的凹腔前缘和靠近所述叶尖后缘的凹腔后缘,所述开口在所述涡轮叶片的横向上构造成自所述凹腔前缘到凹腔后缘先扩张再收缩,所述凹形腔在所述涡轮叶片的纵向上构造成自所述开口到所述凹形腔的底部先扩张再收缩,且往所述底部的中心收缩。
在一实施例中,所述凹形腔沿所述涡轮叶片的横截面的部分由若干段弧线构成。
在一实施例中,所述凹形腔沿所述涡轮叶片的横截面的部分由八段弧线构成,包括位于所述凹腔前缘的第一段弧线、自所述第一端弧线向两侧延伸的第二段弧线、第三段弧线、第四段弧线、第五段弧线、第六段弧线、第七段弧线及位于所述凹腔后缘的第八段弧线。
在一实施例中,所述第一段弧线所构成的腔段用于整流。
在一实施例中,所述第二段弧线和第三段弧线所构成的腔段用于形成涡流。
在一实施例中,所述第四段弧线和第五段弧线所构成的腔段用于发展涡旋的影响作用。
在一实施例中,所述第六段弧线、第七段弧线和第八段弧线所构成的腔段用于平缓整流。
在一实施例中,所述凹形腔的底部具有一向下凹陷的凹弧面。
在一实施例中,所述叶根上连接一缘板,所述涡轮叶片具有一积叠轴,所述凹形腔在所述涡轮叶片纵向上的高度为8.865mm,所述凹形腔的底部与所述积叠轴的距离为5.16mm,所述缘板的末端与所述积叠轴的距离为9.7mm,所述凹腔前缘的点跨距为156度,所述凹腔后缘的点跨距为183度。
有益效果
综上所述,本发明提出一种新型的涡轮叶片,通过设计一叶尖流线凹形腔,使得该涡轮叶片在高温、高速、高压的环境下工作集中体现的优点有:
(1) 叶尖流线凹形腔的设计使得整个叶片的质量变轻,在高温、高速、高压的环境下避免热应力集中,温度场变化呈现均匀化现象,进而提高整个涡轮叶片的寿命。
(2)在高转速环境中,燃气轮机的做功流体受离心力的作用会往叶顶部位甩动,而导致部分流体工质未做功就从叶顶与静子部件之间的间隙中泄露,导致涡轮效率下降。叶尖流线凹形腔的设计使得涡轮叶片与静子部件之间的间隙形成一个扩容腔体,流体通过此处会产生台阶涡旋作用,泄露流体能量在此处被削弱,速度变慢,进而减少做功工质的泄露,进而提高效率。
(3)叶尖流线凹形腔的设计还起到调频的作用,每个叶片在转动时都有自己的固有振动频率,通过叶尖流线凹形腔深度、大小的设计可以有效避免与涡轮盘、轴等转动部件发生共振现象,进而增加机组寿命。
附图说明
图1为本发明涡轮叶片的正视图。
图2为本发明涡轮叶片在一个角度的俯视图。
图3为本发明涡轮叶片在一个角度的剖视图。
图4为本发明涡轮叶片在另一角度的俯视图。
图5为本发明涡轮叶片在另一角度的剖视图。
本发明的实施方式
在详细描述实施例之前,应该理解的是,本发明不限于本申请中下文或附图中所描述的详细结构或元件排布。本发明可为其它方式实现的实施例。而且,应当理解,本文所使用的措辞及术语仅仅用作描述用途,不应作限定性解释。本文所使用的“包括”、“包含”、“具有”等类似措辞意为包含其后所列出之事项、其等同物及其它附加事项。特别是,当描述“一个某元件”时,本发明并不限定该元件的数量为一个,也可以包括多个。
如图1-5所示,本发明提出一种涡轮叶片,其包括叶体10、叶片缘板16和榫齿18。叶体10和榫齿18分别位于叶片缘板16的相对两侧。叶体10具有叶尖12和叶根14,叶根14与涡轮盘的固定形式采用枞树形榫槽固定。具体来说,叶根14与叶片缘板16圆滑过渡连接,叶片缘板16为曲面的,使得叶片缘板16切合流体的气动特性,叶片缘板16的下侧连接榫齿18。
叶尖12在叶体10的顶端具有叶尖平面20,叶尖平面20具有叶尖前缘22和与叶尖前缘22相反的叶尖后缘24。涡轮叶片内设有一凹形腔26,凹形腔26呈流线型。凹形腔26具有一开口28,开口28位于叶尖平面20上。开口28具有凹腔前缘30和凹腔后缘32,凹腔前缘30靠近叶尖前缘22,凹腔后缘32靠近叶尖后缘24。
在所示的实施例中,叶体10包括位于叶尖前缘22的第一端34和位于叶尖后缘24的第二端36,叶体10在涡轮叶片的横向上构造成自叶体10的第一端34到第二端36先扩张再收缩。叶体10从第二端36朝向涡轮叶片的一侧圆滑过渡至第一端34,且弯曲的角度逐渐增大,叶体10的厚度自第二端36朝向第一端34先增大后减小,叶体10在第一端34的厚度大于第二端36的厚度。
开口28在涡轮叶片的横向上构造成自凹腔前缘30到凹腔后缘32先扩张再收缩,凹形腔26在涡轮叶片的纵向上构造成自开口28到凹形腔26的底部先扩张再收缩,且往底部的中心收缩。在所示的实施例中,凹形腔26的底部设计为具有一向下凹陷的凹弧面38。这样设计的好处是当气流受离心力往叶尖12泄漏时,经过凹形腔26时,气流因结构截面积变化会在腔内迅速扩散形成涡旋,涡旋的存在使得气体流速缓慢,阻碍新来气流工质的泄漏,提高了效率。
开口28与叶尖平面20的形状相似。开口28从凹腔后缘32朝向涡轮叶片的一侧圆滑过渡至凹腔前缘30,且弯曲的角度逐渐增大,开口28在位于凹腔前缘30的宽度大于在凹腔后缘32的宽度。其中,凹腔前缘30位于靠近叶尖前缘22的位置,凹腔后缘32位于叶尖平面20在横向上的中间部位。
凹形腔26沿涡轮叶片的横截面的部分由若干段弧线构成。具体而言,在所示的实施例中,凹形腔26沿所述涡轮叶片的横截面的部分由八段弧线构成,其包括位于凹腔前缘30的第一段弧线40、自第一段弧线40向两侧延伸的第二段弧线42、第三段弧线44、第四段弧线46、第五段弧线48、第六段弧线50、第七段弧线52及位于凹腔后缘32的第八段弧线54。工质从叶尖12泄漏的途径是由叶尖前缘22进入凹形腔26,经凹形腔26在靠近凹腔前缘30的腔体,这是一个截面扩张的过程,然后经过凹形腔26在靠近凹腔后缘32的腔体,这是一个截面收缩的过程。截面变化的目的是让气流形成涡旋,进而减少气流泄漏量,最后经凹腔后缘32到叶尖后缘24流出。
在工质经过凹形腔26的过程中,第一段弧线40所构成的腔段其作用是整流;第二段弧线42和第三段弧线44所构成的腔段是形成涡流最重要的腔段;第四段弧线46和第五段弧线48所构成的腔段的主要作用是发展涡旋的影响作用;第六段弧线50、第七段弧线52和第八段弧线54所构成的腔段其主要起平缓整流的作用。由于凹形腔26既在横截面方向有变化,又在纵截面方向有变化,使得形成的涡旋可以在整个凹形腔26内充分发展,有利于减少流体泄漏量。
请继续参考图3-5,本发明的涡轮叶片具有一积叠轴56,凹形腔26在涡轮叶片纵向上的高度设置为8.865mm,凹形腔26的底部与积叠轴26的距离设置为5.16mm,叶片缘板14的末端与积叠轴的距离设置为9.7mm。凹腔前缘30的点跨距为156度,凹腔后缘的点跨距为183度。应当理解的是,以上参数值是一种具体设置,可根据实际情况进行修改。
本发明在涡轮叶片上的流线型凹形腔的设计,无论从结构力学来看,还是从流场、寿命、振动机理上来看都具有其独到之处。其解决了传统涡轮叶片因离心力过大,工质往叶尖扩散流动导致的叶尖损失过大、涡轮效率低的问题;解决了现有技术中调节叶片固有频率难,避免与整机其它部件发生在临界转速发生共振的问题;解决了多孔空心叶片中成品率低、加工困难的问题。通过以上分析表明,本发明具有流线型凹形腔的涡轮叶片具有节省制造材料、提高涡轮效率、工作可靠稳定、寿命长的众多优势。
综上所述,本发明提出一种新型的涡轮叶片,通过设计一叶尖流线凹形腔,使得该涡轮叶片在高温、高速、高压的环境下工作集中体现的优点有:
(1) 叶尖流线凹形腔的设计使得整个叶片的质量变轻,在高温、高速、高压的环境下避免热应力集中,温度场变化呈现均匀化现象,进而提高整个涡轮叶片的寿命。
(2)在高转速环境中,燃气轮机的做功流体受离心力的作用会往叶顶部位甩动,而导致部分流体工质未做功就从叶顶与静子部件之间的间隙中泄露,导致涡轮效率下降。叶尖流线凹形腔的设计使得涡轮叶片与静子部件之间的间隙形成一个扩容腔体,流体通过此处会产生台阶涡旋作用,泄露流体能量在此处被削弱,速度变慢,进而减少做功工质的泄露,进而提高效率。
(3)叶尖流线凹形腔的设计还起到调频的作用,每个叶片在转动时都有自己的固有振动频率,通过叶尖流线凹形腔深度、大小的设计可以有效避免与涡轮盘、轴等转动部件发生共振现象,进而增加机组寿命。
本文所描述的概念在不偏离其精神和特性的情况下可以实施成其它形式。所公开的具体实施例应被视为例示性而不是限制性的。因此,本发明的范围是由所附的权利要求,而不是根据之前的这些描述进行确定。在权利要求的字面意义及等同范围内的任何改变都应属于这些权利要求的范围。

Claims (10)

  1. 一种涡轮叶片,包括叶体,所述叶体具有叶尖和叶根,所述叶尖在所述叶体的顶端具有叶尖平面,其特征在于,所述涡轮叶片内设有一凹形腔,所述凹形腔呈流线型,所述凹形腔具有一开口,所述开口位于所述叶尖平面上。
  2. 如权利要求1所述的涡轮叶片,其特征在于,所述叶尖平面具有叶尖前缘和与所述叶尖前缘相反的叶尖后缘,所述开口具有靠近所述叶尖前缘的凹腔前缘和靠近所述叶尖后缘的凹腔后缘,所述开口在所述涡轮叶片的横向上构造成自所述凹腔前缘到凹腔后缘先扩张再收缩,所述凹形腔在所述涡轮叶片的纵向上构造成自所述开口到所述凹形腔的底部先扩张再收缩,且往所述底部的中心收缩。
  3. 如权利要求2所述的涡轮叶片,其特征在于,所述凹形腔沿所述涡轮叶片的横截面的部分由若干段弧线构成。
  4. 如权利要求3所述的涡轮叶片,其特征在于,所述凹形腔沿所述涡轮叶片的横截面的部分由八段弧线构成,包括位于所述凹腔前缘的第一段弧线、自所述第一端弧线向两侧延伸的第二段弧线、第三段弧线、第四段弧线、第五段弧线、第六段弧线、第七段弧线及位于所述凹腔后缘的第八段弧线。
  5. 如权利要求4所述的涡轮叶片,其特征在于,所述第一段弧线所构成的腔段用于整流。
  6. 如权利要求4所述的涡轮叶片,其特征在于,所述第二段弧线和第三段弧线所构成的腔段用于形成涡流。
  7. 如权利要求4所述的涡轮叶片,其特征在于,所述第四段弧线和第五段弧线所构成的腔段用于发展涡旋的影响作用。
  8. 如权利要求4所述的涡轮叶片,其特征在于,所述第六段弧线、第七段弧线和第八段弧线所构成的腔段用于平缓整流。
  9. 如权利要求4所述的涡轮叶片,其特征在于,所述凹形腔的底部具有一向下凹陷的凹弧面。
  10. 如权利要求9所述的涡轮叶片,其特征在于,所述叶根上连接一缘板,所述涡轮叶片具有一积叠轴,所述凹形腔在所述涡轮叶片纵向上的高度为8.865mm,所述凹形腔的底部与所述积叠轴的距离为5.16mm,所述缘板的末端与所述积叠轴的距离为9.7mm,所述凹腔前缘的点跨距为156度,所述凹腔后缘的点跨距为183度。
     
PCT/CN2018/072288 2018-01-11 2018-01-11 涡轮叶片 WO2019136674A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/072288 WO2019136674A1 (zh) 2018-01-11 2018-01-11 涡轮叶片

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/072288 WO2019136674A1 (zh) 2018-01-11 2018-01-11 涡轮叶片

Publications (1)

Publication Number Publication Date
WO2019136674A1 true WO2019136674A1 (zh) 2019-07-18

Family

ID=67218410

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/072288 WO2019136674A1 (zh) 2018-01-11 2018-01-11 涡轮叶片

Country Status (1)

Country Link
WO (1) WO2019136674A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105179022A (zh) * 2015-09-30 2015-12-23 北京大学 一种采用叶顶肋翼结构的涡轮叶片
CN105569740A (zh) * 2016-03-03 2016-05-11 哈尔滨工程大学 一种带有叶片波浪状凹陷尾缘半劈缝冷却结构的涡轮
CN206769964U (zh) * 2017-06-06 2017-12-19 哈尔滨汽轮机厂有限责任公司 一种能够降低应力的燃气轮机透平第一级动叶片

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105179022A (zh) * 2015-09-30 2015-12-23 北京大学 一种采用叶顶肋翼结构的涡轮叶片
CN105569740A (zh) * 2016-03-03 2016-05-11 哈尔滨工程大学 一种带有叶片波浪状凹陷尾缘半劈缝冷却结构的涡轮
CN206769964U (zh) * 2017-06-06 2017-12-19 哈尔滨汽轮机厂有限责任公司 一种能够降低应力的燃气轮机透平第一级动叶片

Similar Documents

Publication Publication Date Title
JP4923073B2 (ja) 遷音速翼
JP5384621B2 (ja) 変化する楕円形の接続部を備えている圧縮機のインペラの羽根
US20100196154A1 (en) Turbine blade cascade endwall
CN109630207B (zh) 一种带叶冠加强筋的空心涡轮转子叶片
RU2541078C2 (ru) Турбинная лопатка и способ ее изготовления
JPH04262002A (ja) 蒸気タービンの静翼構造
JP2003074306A (ja) 軸流タービン
JP2015183691A (ja) ガスタービンブレード
JP2013545936A (ja) 積み重ね規則を改善したタービンエンジンブレード
JP2011513628A (ja) 非軸対称プラットフォームならびに外輪上の陥没および突起を備えるブレード
WO2007108232A1 (ja) タービン翼列エンドウォール
US8016551B2 (en) Reverse curved nozzle for radial inflow turbines
JP2002339703A (ja) タービン動翼
CN202417610U (zh) 涡轮叶片尾缘劈缝冷却结构及具有该冷却结构的涡轮叶片
US8777564B2 (en) Hybrid flow blade design
CN109340179B (zh) 一种适用于吸尘器的高强度离心叶轮及电机
CN109237040B (zh) 一种径向流致开启性增强的箔片端面气膜密封结构
CN204419278U (zh) 涡轮导向器
WO2019136674A1 (zh) 涡轮叶片
CN108005729A (zh) 涡轮叶片
JPH10306702A (ja) ガスタービン翼
CN113550795B (zh) 一种全疆域适用的燃气涡轮
CN202360151U (zh) 变转速空冷工业汽轮机的低压级组末级叶片
CN207715190U (zh) 涡轮叶片
CN115182892A (zh) 一种仿生多因素耦合的无蜗壳离心风机

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18900046

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18900046

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC - (EPO FORM 1205A) - 08.12.2020

122 Ep: pct application non-entry in european phase

Ref document number: 18900046

Country of ref document: EP

Kind code of ref document: A1