WO2019136592A1 - 激活电路及其激活方法、电池保护线路、电池 - Google Patents

激活电路及其激活方法、电池保护线路、电池 Download PDF

Info

Publication number
WO2019136592A1
WO2019136592A1 PCT/CN2018/071909 CN2018071909W WO2019136592A1 WO 2019136592 A1 WO2019136592 A1 WO 2019136592A1 CN 2018071909 W CN2018071909 W CN 2018071909W WO 2019136592 A1 WO2019136592 A1 WO 2019136592A1
Authority
WO
WIPO (PCT)
Prior art keywords
charging
battery
switch tube
capacitor
management chip
Prior art date
Application number
PCT/CN2018/071909
Other languages
English (en)
French (fr)
Inventor
潘启辉
卢良飞
郎华敏
Original Assignee
海能达通信股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 海能达通信股份有限公司 filed Critical 海能达通信股份有限公司
Priority to PCT/CN2018/071909 priority Critical patent/WO2019136592A1/zh
Publication of WO2019136592A1 publication Critical patent/WO2019136592A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries

Definitions

  • Embodiments of the present invention relate to the field of battery technologies, and in particular, to an activation circuit applied to a battery protection circuit, an activation method thereof, a battery protection circuit, and a battery.
  • the battery protection circuit includes at least a battery management chip, wherein the battery management chip is used to control the charging and discharging operation of the battery cell, and the operating voltage of the battery management chip is provided by the battery cell protected by the battery.
  • the power management chip no longer operates normally, thereby making the battery core unable to perform the charging operation.
  • a prior art method is to apply a pulse voltage of a certain voltage value to the battery charging input terminal, so that the voltage of the battery core is raised to the lowest operating voltage of the power management chip. That is, the cells are intermittently charged to activate the power management chip.
  • a dedicated activation device is required, the activation time is long, the activation voltage is high, the activation effect is uncertain, the voltage withstand voltage of the battery protection circuit is high, and the activation cost is high.
  • the technical problem to be solved by the present invention is to provide an activation circuit applied to a battery protection circuit, an activation method thereof, a battery protection circuit, and a battery, which can realize activation of a battery protection circuit in a relatively simple manner, with short activation time and low activation cost. .
  • a technical solution adopted by the present invention is to provide an activation circuit for a battery protection circuit
  • the battery protection circuit includes a battery management chip and a charging switch tube
  • the battery management chip is connected to the charging switch tube and used Controlling the charging switch tube to charge the battery core, the operating voltage of the battery management chip is provided by the battery cell it protects
  • the activation circuit comprises: a capacitor, one end of the capacitor is connected to the gate of the charging switch tube, The other end of the capacitor is connected to the source of the charging switch tube; the capacitor charging line connected to the capacitor, and the capacitor charging line is used to charge the capacitor when the battery management chip fails to control the charging switch tube to charge the battery core Therefore, the charging switch tube is provided with a forward bias voltage to turn on the charging switch tube, so that the external power source can directly charge the battery cell through the charging interface and the charging switch tube to activate the battery management chip.
  • another technical solution adopted by the present invention is to provide a battery protection circuit including the above activation circuit.
  • another technical solution adopted by the present invention is to provide a battery including the above battery protection circuit.
  • the battery protection circuit includes a battery management chip and a charging switch tube, and the battery management chip is connected to the charging switch tube and used To control the charging switch tube to charge the battery core, the operating voltage of the battery management chip is provided by the battery cell it protects.
  • the activation method includes: setting a capacitor between the gate of the charging switch tube and the source of the charging switch tube And setting a capacitor charging circuit for charging the capacitor; when the battery is over-discharged, the battery management chip is insufficiently powered to control the charging switch tube to charge the battery through the capacitor charging line, thereby providing the charging switch tube
  • the forward bias voltage is used to turn on the charging switch tube; the external power source directly charges the battery core through the charging interface and the charging switch tube; when the voltage value of the charged battery core reaches the minimum working voltage voltage of the battery management chip, the capacitor is stopped. Charging, the battery management chip controls the charging switch tube to the battery core Line charging operation.
  • the invention has the beneficial effects that the activation circuit applied to the battery protection circuit of the invention and the activation method thereof are charged by charging the capacitor when the battery management chip cannot control the charging switch tube to charge the battery core when the battery is over-discharged, thereby charging
  • the switch tube provides a forward bias voltage to turn on the charging switch tube, so that the external power source can directly charge the battery cell through the charging interface and the charging switch tube to activate the battery management chip.
  • the present invention enables activation of the battery protection circuit in a relatively simple manner with a short activation time and low activation cost.
  • FIG. 1 is a block diagram showing an activation circuit applied to a battery protection circuit according to an embodiment of the present invention
  • FIG. 2 is a circuit schematic diagram of an activation circuit applied to a battery protection circuit according to a first embodiment of the present invention
  • FIG. 3 is a circuit schematic diagram of an activation circuit applied to a battery protection circuit according to a second embodiment of the present invention.
  • FIG. 4 is a circuit schematic diagram of an activation circuit applied to a battery protection circuit according to a third embodiment of the present invention.
  • Figure 5 is a circuit schematic diagram of a practical application example of the first embodiment shown in Figure 2;
  • FIG. 6 is a waveform diagram of a working test of the practical application example shown in FIG. 5;
  • FIG. 7 is a schematic block diagram of a battery protection circuit according to an embodiment of the present invention.
  • Figure 8 is a block diagram of a battery of an embodiment of the present invention.
  • FIG. 9 is a flow chart of an activation method applied to a battery protection circuit according to an embodiment of the present invention.
  • the battery protection circuit includes a battery management chip 11 and a charging switch tube 12.
  • the battery management chip 11 is connected to the charge switch tube 12 and is used to control the charge switch tube 12 to perform a charging operation on the battery unit 14.
  • the operating voltage of the battery management chip 11 is provided by the cell 14 it protects.
  • the activation circuit 13 includes a capacitor 131 and a capacitor charging line 132.
  • One end of the capacitor 131 is connected to the gate of the charge switch tube 12, and the other end of the capacitor 131 is connected to the source of the charge switch tube 12.
  • the capacitor charging line 132 is connected to the capacitor 131.
  • the capacitor charging line 132 is used to charge the capacitor 131 when the battery core 14 is over-discharged so that the battery management chip 11 cannot control the charging switch tube 12 to charge the battery core, thereby providing the charging switch tube 12 with a forward bias voltage to turn on the charging switch.
  • the tube 12 enables the external power source 16 to directly charge the battery cells 14 through the charging interface 15 and the charging switch tube 12 to activate the battery management chip 11.
  • the battery protection circuit includes a battery management chip 21 and a charging switch tube 22.
  • the battery management chip 21 includes a charging control terminal C0.
  • the activation circuit 24 includes a capacitor C1, a diode D1, and a resistor R1, wherein the diode D1 and the resistor R1 form a capacitor charging line.
  • the gate of the charge switch transistor 22 is connected to the charge control terminal C0.
  • the charging interface 25 is connected to the battery cell 23 through the source and the drain of the charging switch tube 22 in sequence.
  • the charging interface 25 includes a charging input positive terminal CH+ and a charging input negative terminal CH-. Specifically, the charging input negative terminal CH- is connected to the source of the charging switch tube 22, the drain of the charging switch tube 22 is connected to the negative electrode of the battery cell 23, and the anode of the battery cell 23 is connected to the charging input positive terminal CH+.
  • the charge switch tube 22 is an N-type MOS tube.
  • One end of the capacitor C1 is connected to the source of the charge input negative terminal CH- and the charge switch tube 22, and the other end of the capacitor C1 is connected to the gate of the charge switch tube 22.
  • the capacitor C1 is connected in parallel between the source and the gate of the charge switch transistor 22.
  • the cathode of the diode D1 is connected to the gate of the charge switch transistor 22, the anode of the diode D1 is connected to the cathode of the battery cell 23 via the resistor R1, and the cathode of the battery cell 23 is grounded.
  • the battery management chip 21 functions to determine the operating state of the battery pack by detecting the terminal voltage of the battery cell 23, the charging current, and the discharging current, and performs corresponding control on the charging switch tube 22.
  • the operating voltage of the battery management chip 21 is supplied from the battery cells 23.
  • the charging control terminal C0 of the battery management chip 21 is in a high-resistance state, and the battery management chip 21 loses control of the charging switch 22, and
  • the activation of the battery protection circuit that is, the battery management chip 21, is activated by the activation circuit 24 to restore the control of the charge switch tube 22 by the battery management chip 21.
  • the charging switch 22 is turned off, and the negative electrode of the battery cell 23 (denoted as G point)
  • the charging input negative terminal CH- is disconnected, and the voltage at point G is the same as the positive input CH+ input voltage of the charging input.
  • the charging input positive terminal CH+ and the charging input negative terminal CH- are connected to an external power source (not shown), and the positive voltage of the charging input positive terminal CH+ input is charged to the capacitor C1 through the battery cell 23, the resistor R1, and the diode D1. .
  • the charge switch transistor 22 When the voltage accumulated across the capacitor C1 reaches the turn-on voltage Vgs of the charge switch transistor 22, the charge switch transistor 22 is turned on. At this time, the external power source can directly charge the battery cell 23. After the charging switch 22 is turned on, the source of the charging switch 22 (denoted as point A) is close to the potential of the G point, and the capacitor charging line resistance R1 and the diode D1 terminate charging C1.
  • the activation circuit After the start of operation 24, when the voltage across the capacitor C1 reaches the turn-on voltage Vgs of the charge switch tube 22, the battery protection line enters an active state. When the terminal voltage of the battery cell 23 reaches the minimum operating voltage of the battery management chip 21, the battery management chip 21 starts normal operation, the battery protection circuit activation ends, and the battery cell 23 enters a normal charging state under the control of the battery management chip 21.
  • the voltage across the capacitor C1 is maintained near the turn-on voltage Vgs of the charge switch transistor 22.
  • the charging control terminal C0 of the battery management chip 21 outputs a high level, and the points A and G are short-circuited to the ground due to the conduction of the charging switch 22, and the diode D1 is reverse biased, and there is no resistor R1. Current, therefore, the presence of capacitor C1, diode D1 and resistor R1 has no effect on the line.
  • the charging control terminal C0 of the battery management chip 21 When the battery cell 23 is overcharged, the charging control terminal C0 of the battery management chip 21 is pulled low, and the capacitor C1 can be quickly discharged so that the charging switch tube 22 is quickly turned off, so the presence of the capacitor C1, the diode D1 and the resistor R1 is original.
  • the battery protection circuit has no effect. That is to say, the activation circuit 24 starts to operate only before the battery management chip 21 is activated, and does not work at other times, which does not affect the normal operation of the battery protection circuit.
  • the function of the resistor R1 is to limit the voltage of the charging control terminal C0 of the battery management chip 21 during overcharge protection, and prevent the charging input voltage from rising so that the battery protection circuit forcibly exits the overcharge protection state. Therefore, the value of the resistor R1 satisfies the following formula:
  • Rr is the resistance value of the resistor R1
  • VCmax is the maximum allowable charging voltage value at the charging interface 25 when the battery core 23 is overcharged
  • Vgs is the opening voltage of the charging switch tube 22
  • Rc is the charging control end of the power management chip 21.
  • the value of the resistor R1 is based on: when the battery core 23 is overcharged, when the charging interface 25 is added with the highest allowable charging voltage VCmax, the charging input voltage is passed through the resistor R1 and the grounding resistance of the charging control terminal C0 of the power management chip 21.
  • the divided voltage of Rc is smaller than the turn-on voltage Vgs of the charge switch transistor 22.
  • the capacitance of the capacitor C1 is 0.01 uF
  • the diode D1 is a diode with a small reverse current leakage and a large forward voltage drop.
  • FIG. 3 is a circuit schematic diagram of an activation circuit applied to a battery protection circuit in accordance with a second embodiment of the present invention.
  • the battery protection circuit includes a battery management chip 31 and a charging switch tube 32.
  • the battery management chip 31 includes a charging control terminal C0.
  • the activation circuit 34 includes a capacitor C12, a storage capacitor CC, a third switching transistor Q3, and a resistor R12, wherein the auxiliary capacitor CC, the third switching transistor Q3, and the resistor R12 form a capacitor charging circuit.
  • the gate of the charge switch transistor 32 is connected to the charge control terminal C0.
  • the charging interface 35 is connected to the battery cell 33 through the source and the drain of the charging switch 32 in sequence.
  • the charging interface 35 includes a charging input positive terminal CH2+ and a charging input negative terminal CH2-. Specifically, the charging input negative terminal CH2- is connected to the source of the charging switch tube 32, the drain of the charging switch tube 32 is connected to the negative electrode of the battery cell 33, and the anode of the battery core 33 is connected to the charging input positive terminal CH2+.
  • One end of the capacitor C12 and the auxiliary capacitor CC are respectively connected to the charging input negative terminal CH2- and the source of the charging switch tube 32, the other end of the capacitor C12 is connected to the gate of the charging switch tube 32, and the other end of the auxiliary capacitor CC is respectively connected to the resistor.
  • One end of R12 and the gate of the third switching transistor Q3 are connected.
  • the drain of the third switching transistor Q3 is connected to the gate of the charging switch tube 32, the gate of the third switching transistor Q3 is connected to the other end of the resistor R12, and is connected to the anode of the battery cell 33, and the cathode of the battery cell 33 is grounded.
  • FIG. 4 is a circuit schematic diagram of an activation circuit applied to a battery protection circuit in accordance with a third embodiment of the present invention.
  • the battery protection circuit includes a battery management chip 41 and a charge switch tube 42.
  • the battery management chip 41 includes a charging control terminal C0.
  • the activation circuit 44 includes a capacitor C13, a diode D13, and a resistor R13, wherein the diode D13 and the resistor R13 form a capacitor charging line.
  • the charging interface 45 is connected to the battery cell 43 through the source and the drain of the charging switch tube 42 in sequence.
  • the charging interface 45 includes a charging input positive terminal CH4+ and a charging input negative terminal CH4-. Specifically, the charge input positive terminal CH4+ is connected to the source of the charge switch tube 42, the drain of the charge switch tube 42 is connected to the positive electrode of the battery cell 43, and the negative electrode of the battery core 43 is connected to the charge input negative terminal CH4-.
  • the capacitor C13 is connected to the source of the charge switch tube 42, and the other end of the capacitor C13 is connected to the gate of the charge switch tube 42.
  • the anode of the diode D13 is connected to the gate of the charge switch transistor 42, and the cathode of the diode D13 is connected to the charge control terminal C0 via a resistor R13.
  • the negative electrode of the battery cell 43 is grounded.
  • the charge switch tube 42 is a P-type MOS tube.
  • the activation principle of the battery protection circuit shown in FIG. 3 and FIG. 4 is similar to the activation principle of the battery protection circuit shown in FIG. 2.
  • the charging control terminal of the battery management chip is in a high impedance state, and the charging switch is turned off.
  • the positive voltage input from the positive input terminal charges the capacitor.
  • the charging switch is turned on, and the external power source charges the battery.
  • the battery protection circuit enters an active state.
  • the terminal voltage of the battery reaches the minimum operating voltage of the battery management chip, the battery protection circuit is activated when the battery management chip is working normally.
  • FIG. 5 is a circuit schematic diagram of a practical application example of the first embodiment shown in FIG. 2.
  • the power management chip U1 in FIG. 5 corresponds to the power management chip 22 in FIG. 2, and the model is specifically the power management chip S8232 of the TI company.
  • the charging switch tube Q1 in FIG. 5 corresponds to the charging switch tube 22 in FIG.
  • the resistance of resistor R1 is 10M
  • the capacitance of capacitor C1 is 0.01uF
  • the diode D1 is BAS16XV2T.
  • the power management chip U1 includes an overcharge and overdischarge detection terminal SENS, a discharge control terminal D0, a charge control terminal C0, an overcurrent detection terminal VM, a negative power supply output terminal VCS, a delay capacitor connection terminal ICT, and a midpoint power input. End VC and positive power input VCC.
  • the overcharge and overdischarge detection terminal SENS is respectively connected to one end of the resistor R2 and the capacitor C2, the other end of the capacitor C2 is grounded, and the other end of the resistor R2 is connected to the cathode of the diode D2 and the positive terminal D+ of the discharge output, and the anode and the charging input of the diode D2. Positive CH+ connection.
  • the charge control tube C0 is connected to the gate of the charge switch tube Q1, and the discharge control terminal D0 is connected to the gate of the discharge switch tube Q2.
  • the source of the charge switch transistor Q1 is connected to the charge input negative terminal CH-
  • the drain of the charge switch transistor Q1 is connected to the drain of the discharge switch transistor Q2
  • the source of the discharge switch transistor Q2 is connected to the cathode of the second battery BAT2.
  • the capacitor C1 is connected in parallel to the gate and the source of the charge switch transistor Q1, the cathode of the diode D1 is connected to the gate of the charge switch transistor Q1, and the anode of the diode D1 is connected to the cathode of the second battery BAT2 via the resistor R1.
  • the positive electrode of the second battery BAT2 is connected to the negative electrode of the first battery BAT1, the positive electrode of the first battery BAT1 is connected to the discharge output positive terminal D+, and the negative electrode of the second battery BAT2 is grounded.
  • the overcurrent detecting terminal VM is connected to one end of the resistor R5, and the other end of the resistor R5 is connected to the charging input negative terminal CH- and the discharging output negative terminal D-, respectively.
  • the negative power supply output VCS is grounded.
  • the delay capacitor connection ICT is connected to one end of the capacitor C4, and the other end of the capacitor C4 is grounded.
  • the midpoint power input terminal VC is respectively connected to one end of the capacitor C5 and the resistor R4, the other end of the capacitor C5 is grounded, and the other end of the resistor R4 is connected to the cathode of the first battery BAT1.
  • the positive power input terminal VCC is connected to one end of the capacitor C3 and the resistor R3, the other end of the capacitor C3 is grounded, and the other end of the resistor R3 is connected to the positive pole of the first battery BAT1 and the positive output terminal D+ of the discharge.
  • Test 1 Remove the resistor R1, the capacitor C1 and the diode D1, and discharge the terminal voltage of the first battery BAT1 and the second battery BAT2 to 0V, and then use the DC stabilized power supply at the charging input positive terminal CH+ and the charging input negative terminal CH. - Apply 12V DC voltage, and the output current limit value of the DC stabilized power supply is set to 0.5A. The current clamp is used to monitor the charging current waveform.
  • the test results show that during the charging process, the charging current waveform has no current display. After 8 hours, the terminal voltages of the batteries BAT1 and BAT2 were tested to be 0.15 V, indicating that the charging was unsuccessful.
  • Test 2 the resistor R1, the capacitor C1 and the diode D1 are removed, and the terminal voltages of the first battery BAT1 and the second battery BAT2 are discharged to 0V, and then the DC power supply is used at the charging input positive terminal CH+ and the charging input negative terminal CH.
  • - Apply a pulse voltage, and the output current limit value of the DC stabilized power supply is set to 0.5A, and the charging current waveform is monitored by the current clamp.
  • the high level of the pulse voltage is 12V
  • the low level is 0V
  • the high and low level duration is 0.2S.
  • the test results show that during the charging process, the charging current waveform has a current display.
  • the charging current waveform has a pulse current, wherein the high current of the pulse current is 0.5A, the low current is 0A, and the high and low current duration is 0.2S, indicating that the battery protection circuit is activated successfully.
  • the same experiment was performed three times in succession, and the time from the start of charging to the success of the test was 55 minutes, 78 minutes, and 65 minutes, respectively.
  • Test three retaining the resistor R1, the capacitor C1 and the diode D1, after discharging the terminal voltages of the first battery BAT1 and the second battery BAT2 to 0V, applying the DC power supply at the positive end of the charging input CH+ and the charging input negative terminal CH-
  • the DC voltage of the predetermined voltage value is set, and the output current limit value of the DC stabilized power supply is set to a predetermined current value, and the current clamp is used to monitor the charging current waveform of the battery.
  • test results are shown in Figure 6.
  • two transient pulse current waveforms W1 and W2 are displayed on the charging current waveform.
  • the time difference between the leading edges of the two transient pulse current waveforms is the battery protection.
  • the activation time T is 6.8 s.
  • the activation time T is 0.136 s.
  • the activation time T is 6.5s.
  • the activation time T is 0.106 s.
  • the battery protection circuit enters an active state, and the charging switch Q1 starts to conduct, and the charging current waveform is on.
  • the first transient pulse current W1 of charging is displayed.
  • the transient current is suppressed, and the pulse width and pulse height of the transient pulse current W1 are determined by the current limiting response speed of the DC regulated power supply. If the charger is charged, this transient The current depends on the transient current suppression performance of the charger.
  • the battery protection circuit When the terminal voltages of the first battery BAT1 and the second battery BAT2 in series reach the minimum operating voltage of the battery management chip U1, the battery protection circuit is activated, and the output voltage of the charging control terminal C0 of the battery management chip U1 suddenly rises, and the charging switch tube The on-resistance of Q1 suddenly decreases, and the second transient pulse current W2 is displayed on the charging current waveform.
  • the amplitude and pulse width of the pulse current W1 are determined by the overcurrent protection performance and the overcurrent protection threshold setting of the battery management chip U1 and the on-resistance variation of the charge switch transistor Q1.
  • FIG. 7 is a schematic block diagram of a battery protection circuit according to an embodiment of the present invention.
  • the battery protection circuit 50 includes an activation circuit 51, wherein the activation circuit 51 is the activation circuit 13, activation circuit 24, activation circuit 34 or activation circuit 44 described above.
  • FIG 8 is a block diagram of a battery of an embodiment of the present invention. As shown in Figure 8, the battery 5 includes the battery protection circuit 50 previously described.
  • FIG. 9 is a flow chart of an activation method applied to a battery protection circuit according to an embodiment of the present invention, which is based on the activation circuit applied to the battery protection circuit shown in FIGS. 2, 3, and 4. As shown in FIG. 9, the activation method includes the steps of:
  • Step S101 A capacitor is disposed between the gate of the charging switch tube and the source of the charging switch tube, and a capacitor charging line is provided for charging the capacitor.
  • Step S102 when the battery is over-discharged, the battery management chip is insufficiently powered to control the charging switch tube to charge the battery, and the capacitor is charged through the capacitor charging line, thereby providing a forward bias voltage to the charging switch tube to turn on the charging switch. tube.
  • the capacitor is charged through the capacitor charging line. When the voltage value of the charged capacitor reaches the turn-on voltage of the charging switch, the charging switch is turned on.
  • Step S103 The battery is directly charged by the external power source through the charging interface and the charging switch tube.
  • step S103 when the charging switch tube is turned on, the external power source can directly charge the battery cell through the charging interface and the charging switch tube.
  • Step S104 After the voltage value of the battery core reaches the minimum operating voltage of the battery management chip after charging, the charging of the capacitor is stopped, and the charging management tube is controlled by the battery management chip to perform charging operation on the battery core.
  • step S104 the activation time of the battery protection line is inversely proportional to the charging current provided by the external power source, wherein the activation time is the time difference between the start of the battery charging and the voltage across the capacitor reaching the start of operation of the battery management chip.
  • the invention has the beneficial effects that the activation circuit and the activation method applied to the battery protection circuit of the present invention charge the capacitor when the battery management chip cannot control the charging switch tube to charge the battery core when the battery is over-discharged, thereby charging the charging switch
  • the tube provides a forward bias voltage to turn on the charging switch tube, so that the external power source can directly charge the battery cell through the charging interface and the charging switch tube to activate the battery management chip.
  • the present invention enables activation of the battery protection circuit in a relatively simple manner with a short activation time and low activation cost.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

一种应用于电池保护线路的激活电路及其激活方法、电池保护线路、电池。该电池保护线路包括电池管理芯片(11)及充电开关管(12),电池管理芯片控制充电开关管对电芯(14)进行充电操作,电池管理芯片的工作电压由其所保护的电芯提供。该激活电路(13)包括:电容(131)和电容充电线路(132),电容的两端分别与充电开关管的栅极和源极连接,电容充电线路用于当电芯过放电使得电池管理芯片无法控制充电开关管对电芯进行充电时给电容充电,从而给充电开关管提供正向偏置电压以开通充电开关管,使外接电源能通过充电接口和充电开关管直接对电芯充电以激活电池管理芯片。该激活电路及其激活方法以相对简单的方式实现电池保护线路的激活,激活时间短且激活成本低。

Description

激活电路及其激活方法、电池保护线路、电池 【技术领域】
本发明实施例涉及电池技术领域,具体涉及一种应用于电池保护线路的激活电路及其激活方法、电池保护线路、电池。
【背景技术】
为保障使用安全,现有独立封装的锂离子电池组内部都设计有一套专用的电池保护线路。电池保护线路至少包括电池管理芯片,其中,电池管理芯片用于控制电芯的充放电操作,电池管理芯片的工作电压由其保护的电芯来提供。
在实际应用中,当电芯由于过放电使得电芯的剩余电压低于电源管理芯片的最低工作电压时,电源管理芯片不再正常工作,从而使得电芯无法进行充电操作。
为了解决这个问题,现有技术的一种做法是:对电池充电输入端施加一定电压值的脉冲电压,使得电芯的电压提升到电源管理芯片的最低工作电压。也就是说,对电芯进行间歇式充电以激活电源管理芯片。采用这种做法,需要专用的激活设备,激活时间长,激活电压高,激活效果不确定,对电池保护线路的耐压要求高且激活费用高。
【发明内容】
本发明主要解决的技术问题是提供一种应用于电池保护线路的激活电路及其激活方法、电池保护线路、电池,能够以相对简单的方式实现电池保护线路的激活,激活时间短且激活成本低。
为解决上述技术问题,本发明采用的一个技术方案是:提供一种应用于电池保护线路的激活电路,该电池保护线路包括电池管理芯片及充电开关管,电池管理芯片与充电开关管连接并且用于控制充电开关管对电芯进行充电操作, 电池管理芯片的工作电压由其所保护的电芯提供,其特征在于,该激活电路包括:电容,电容的一端与充电开关管的栅极连接、电容的另一端与充电开关管的源极连接;与电容相连接的电容充电线路,电容充电线路用于当电芯过放电使得电池管理芯片无法控制充电开关管对电芯进行充电时给电容充电,从而给充电开关管提供正向偏置电压以开通充电开关管,使外接电源能通过充电接口和充电开关管直接对电芯充电以激活电池管理芯片。
为解决上述技术问题,本发明采用的另一个技术方案是:提供一种电池保护线路,该电池保护线路包括了上述的激活电路。
为解决上述技术问题,本发明采用的再一个技术方案是:提供一种电池,该电池包括了上述的电池保护线路。
为解决上述技术问题,本发明采用的再一个技术方案是:提供一种应用于电池保护线路的激活方法,电池保护线路包括电池管理芯片及充电开关管,电池管理芯片与充电开关管连接并且用于控制充电开关管对电芯进行充电操作,电池管理芯片的工作电压由其所保护的电芯提供,该激活方法包括:在充电开关管的栅极和充电开关管的源极之间设置电容,并且设置电容充电线路用于对电容充电;当电芯过放电使得电池管理芯片供电不足以无法控制充电开关管对电芯进行充电时通过电容充电线路给电容进行充电,从而给充电开关管提供正向偏置电压以开通充电开关管;由外接电源通过充电接口和充电开关管直接对电芯充电;当充电后的电芯的电压值达到电池管理芯片的最小工作电压电压后,停止对电容进行充电,由电池管理芯片控制充电开关管以对电芯进行充电操作。
本发明的有益效果是:本发明的应用于电池保护线路的激活电路及其激活方法通过当电芯过放电使得电池管理芯片无法控制充电开关管对电芯进行充电时给电容充电,从而给充电开关管提供正向偏置电压以开通充电开关管,使外接电源能通过充电接口和充电开关管直接对电芯充电以激活电池管理芯片。通过上述方式,本发明能够以相对简单的方式实现电池保护线路的激活,激活时间短且激活成本低。
【附图说明】
图1是本发明实施例的应用于电池保护线路的激活电路的模块示意图;
图2是本发明第一实施例的应用于电池保护线路的激活电路的电路原理图;
图3是本发明第二实施例的应用于电池保护线路的激活电路的电路原理图;
图4是本发明第三实施例的应用于电池保护线路的激活电路的电路原理图;
图5是图2所示的第一实施例的实际应用实例的电路原理图;
图6是图5所示的实际应用实例的工作测试波形图;
图7是本发明实施例的电池保护线路的模块示意图;
图8是本发明实施例的电池的模块示意图;
图9是本发明实施例的应用于电池保护线路的激活方法的流程图。
【具体实施方式】
下面将结合本发明实施例中的附图,对本发明所提供的各个示例性的实施例的技术方案进行清楚、完整地描述。需要说明的是,在不冲突的情况下,下述实施例及实施例中的特征可以相互组合。
图1是本发明实施例的应用于电池保护线路的激活电路的模块示意图。如图1所示,电池保护线路包括电池管理芯片11和充电开关管12。电池管理芯片11与充电开关管12连接并且用于控制充电开关管12对电芯14进行充电操作。电池管理芯片11的工作电压由其所保护的电芯14提供。
激活电路13包括电容131和电容充电线路132。电容131的一端与充电开关管12的栅极连接、电容131的另一端与充电开关管12的源极连接。电容充电线路132与电容131连接。
电容充电线路132用于当电芯14过放电使得电池管理芯片11无法控制充电开关管12对电芯进行充电时给电容131充电,从而给充电开关管12提供正向偏置电压以开通充电开关管12,使外接电源16能通过充电接口15和充电开 关管12直接对电芯14充电以激活电池管理芯片11。
图2是本发明第一实施例的应用于电池保护线路的激活电路的电路原理图。如图2所示,电池保护线路包括电池管理芯片21和充电开关管22。电池管理芯片21包括充电控制端C0。
激活电路24包括电容C1、二极管D1和电阻R1,其中,二极管D1和电阻R1形成电容充电线路。
充电开关管22的栅极与充电控制端C0连接。充电接口25依次通过充电开关管22的源极、漏极与电芯23连接。其中,充电接口25包括充电输入正端CH+和充电输入负端CH-。具体来说,充电输入负端CH-与充电开关管22的源极连接,充电开关管22的漏极与电芯23的负极连接,电芯23的正极与充电输入正端CH+连接。充电开关管22为N型MOS管。
电容C1的一端分别与充电输入负端CH-和充电开关管22的源极连接,电容C1的另一端与充电开关管22的栅极连接。换句话来说,电容C1并联在充电开关管22的源极和栅极之间。
二极管D1的负极与充电开关管22的栅极连接,二极管D1的正极通过电阻R1与电芯23的负极连接,电芯23的负极接地。
在本实施例中,电池管理芯片21的作用是通过检测电芯23的端电压以及充电电流、放电电流来判断电池组的工作状态,并对充电开关管22执行相应的控制。电池管理芯片21的工作电压由电芯23提供。其中,当电芯23过放电导致电池管理芯片21供电不足无法正常工作时,电池管理芯片21的充电控制端C0呈高阻状态,电池管理芯片21失去对充电开关管22的控制,此时可以通过激活电路24实现对电池保护线路也即电池管理芯片21的激活恢复电池管理芯片21对充电开关管22的控制。
具体来说,当电池管理芯片21供电不足无法正常工作时,由于电池管理芯片21的充电控制端C0呈高阻抗状态,充电开关管22关断,电芯23的负极(记为G点)与充电输入负端CH-断开,G点的电压与充电输入正端CH+输入电压 相同。此时,在充电输入正端CH+和充电输入负端CH-接入外接电源(未图示),充电输入正端CH+输入的正电压通过电芯23、电阻R1、二极管D1对电容C1进行充电。当电容C1两端累积的电压达到充电开关管22的开启电压Vgs时,充电开关管22导通。此时,外接电源可直接对电芯23进行充电。其中,充电开关管22导通后,充电开关管22的源极(记为A点)与G点的电位相近,电容充电线路电阻R1、二极管D1终止对C1充电在本实施例中,激活电路24开始工作后,当电容C1两端的电压达到充电开关管22的开启电压Vgs时,电池保护线路进入激活状态。当电芯23的端电压达到电池管理芯片21的最低工作电压时,电池管理芯片21开始正常工作,电池保护线路激活结束,电芯23在电池管理芯片21的控制下进入正常的充电状态。
在本实施例中,当电池保护线路进入激活状态后,电容C1两端的电压保持在充电开关管22的开启电压Vgs附近。
在本实施例中,当电池保护线路进入激活状态后,充电开关管22导通后,A点和G点之间压差小到不足以让二极管D1导通,因此电容C1、二极管D1和电阻R1的存在入对线路无影响。激活结束后,电池管理芯片21的充电控制端C0输出高电平,A点、G点由于充电开关管22的导通被短接于地,二极管D1加反向偏置电压,电阻R1上没有电流,因此,电容C1、二极管D1和电阻R1的存在对线路无影响。当电芯23过充时,电池管理芯片21的充电控制端C0被拉低,电容C1可迅速放电使得充电开关管22快速关断,因此电容C1、二极管D1和电阻R1的存在对原有的电池保护线路无影响。也就是说,激活电路24只在电池管理芯片21被激活前开始工作,其它时间不工作,其不会不影响电池保护线路的正常工作。
在本实施例中,电阻R1的作用是在过充保护时,限制电池管理芯片21的充电控制端C0的电压的大小,防止充电输入电压升高使得电池保护线路强行退出过充保护状态。因此,电阻R1的取值满足如下公式:
Figure PCTCN2018071909-appb-000001
其中,Rr为电阻R1的阻值,VCmax为电芯23过充状态时在充电接口25最高允许的充电电压值,Vgs为充电开关管22的开启电压,Rc为电源管理芯片21的充电控制端C0对地的电阻值。
也就是说,电阻R1的取值依据是:电芯23过充状态在充电接口25加入最高允许充电电压VCmax时,充电输入电压经电阻R1与电源管理芯片21的充电控制端C0的对地电阻Rc的分压小于充电开关管22的开启电压Vgs。
优选地,在本实施例中,电容C1的容值为0.01uF,二极管D1为反向漏电流小正向压降大的二极管。
图3是本发明第二实施例的应用于电池保护线路的激活电路的电路原理图。如图3所示,电池保护线路包括电池管理芯片31和充电开关管32。电池管理芯片31包括充电控制端C0。
激活电路34包括电容C12、辅助电容CC、第三开关管Q3和电阻R12,其中,辅助电容CC、第三开关管Q3和电阻R12形成电容充电线路。
充电开关管32的栅极与充电控制端C0连接。充电接口35依次通过充电开关管32的源极、漏极与电芯33连接。其中,充电接口35包括充电输入正端CH2+和充电输入负端CH2-。具体来说,充电输入负端CH2-与充电开关管32的源极连接,充电开关管32的漏极与电芯33的负极连接,电芯33的正极与充电输入正端CH2+连接。
电容C12、辅助电容CC的一端分别与充电输入负端CH2-和充电开关管32的源极连接,电容C12的另一端与充电开关管32的栅极连接,辅助电容CC的另一端分别与电阻R12的一端、第三开关管Q3的栅极连接。
第三开关管Q3的漏极与充电开关管32的栅极连接,第三开关管Q3的栅极与电阻R12的另一端连接后与电芯33的正极连接,电芯33的负极接地。
图4是本发明第三实施例的应用于电池保护线路的激活电路的电路原理图。如图4所示,电池保护线路包括电池管理芯片41和充电开关管42。电池管理芯片41包括充电控制端C0。
激活电路44包括电容C13、二极管D13和电阻R13,其中,二极管D13和电阻R13形成电容充电线路。
充电接口45依次通过充电开关管42的源极、漏极与电芯43连接。其中,充电接口45包括充电输入正端CH4+和充电输入负端CH4-。具体来说,充电输入正端CH4+与充电开关管42的源极连接,充电开关管42的漏极与电芯43的正极连接,电芯43的负极与充电输入负端CH4-连接。
电容C13的一端充电开关管42的源极连接,电容C13的另一端与充电开关管42的栅极连接。二极管D13的正极与充电开关管42的栅极连接,二极管D13的负极通过电阻R13与充电控制端C0连接。电芯43的负极接地。充电开关管42是P型MOS管。
本领域的技术人员可以理解,图3、图4所示的电池保护线路的激活原理与图2所示的电池保护线路的激活原理类似。简单来说,当电池管理芯片供电不足无法正常工作时,电池管理芯片的充电控制端呈高阻抗状态,充电开关管关断。此时,在充电接口接入外接电源后,充电输入正端输入的正电压对电容进行充电。当电容两端累积的电压达到充电开关管的开启电压时,充电开关管导通,外接电源对电芯进行充电。其中,当电容两端累积的电压达到充电开关管的开启电压时,电池保护线路进入激活状态。当电芯的端电压达到电池管理芯片的最低工作电压,电池管理芯片正常工作时电池保护线路激活结束。
请参考图5,图5是图2所示的第一实施例的实际应用实例的电路原理图。其中,图5中的电源管理芯片U1对应为图2中的电源管理芯片22,其型号具体为TI公司的电源管理芯片S8232,图5中的串联的第一电池BAT1和第二电池BAT2对应为图2中的电芯23。图5中的充电开关管Q1对应为图2中的充电开关管22。
图5中电阻R1的阻值为10M,电容C1的容值为0.01uF,二极管D1选用BAS16XV2T。
在图5中,电源管理芯片U1包括过充电过放电检测端SENS、放电控制端 D0、充电控制端C0、过电流检测端VM、负电源输出端VCS、延迟电容连接端ICT、中点电源输入端VC和正电源输入端VCC。
过充电过放电检测端SENS分别与电阻R2、电容C2的一端连接,电容C2的另一端接地,电阻R2的另一端与二极管D2的负极和放电输出正端D+连接,二极管D2的正极与充电输入正端CH+连接。
充电控制管C0与充电开关管Q1的栅极连接,放电控制端D0与放电开关管Q2的栅极连接。充电开关管Q1的源极与充电输入负端CH-连接,充电开关管Q1的漏极与放电开关管Q2的漏极连接,放电开关管Q2的源极与第二电池BAT2的负极连接。
电容C1并联在充电开关管Q1的栅极和源极,二极管D1的负极与充电开关管Q1的栅极连接,二极管D1的正极通过电阻R1与第二电池BAT2的负极连接。其中,第二电池BAT2的正极与第一电池BAT1的负极连接,第一电池BAT1的正极与放电输出正端D+连接,第二电池BAT2的负极接地。
过电流检测端VM与电阻R5的一端连接,电阻R5的另一端分别与充电输入负端CH-和放电输出负端D-连接。
负电源输出端VCS接地。
延迟电容连接端ICT与电容C4的一端连接,电容C4的另一端接地。
中点电源输入端VC分别与电容C5和电阻R4的一端连接,电容C5的另一端接地,电阻R4的另一端与第一电池BAT1的负极连接。
正电源输入端VCC与电容C3和电阻R3的一端连接,电容C3的另一端接地,电阻R3的另一端与第一电池BAT1的正极和放电输出正端D+连接。
对图5所示的电路图进行三种不同的测试实验:
测试一、将电阻R1、电容C1和二极管D1取下,将第一电池BAT1、第二电池BAT2的端电压放电到0V后,利用直流稳压电源在充电输入正端CH+和充电输入负端CH-施加12V直流电压,同时直流稳压电源的输出限流值设置为0.5A,用电流钳监测充电电流波形。
测试结果显示:在充电过程中,充电电流波形无电流显示。8个小时后测试电芯BAT1、BAT2的端电压为0.15V,说明充电不成功。
测试二、将电阻R1、电容C1和二极管D1取下,将第一电池BAT1、第二电池BAT2的端电压放电到0V后,利用直流稳压电源在充电输入正端CH+和充电输入负端CH-施加脉冲电压,同时直流稳压电源的输出限流值设置为0.5A,用电流钳监测充电电流波形。其中,脉冲电压的高电平为12V,低电平为0V,高低电平持续的时间为0.2S。
测试结果显示:在充电过程中,充电电流波形有电流显示。其中,当充电电流波形出现脉冲电流时,其中,脉冲电流的高电流为0.5A,低电流为0A,高低电流持续的时间为0.2S,说明电池保护线路激活成功。其中,连续做三次相同的实验,测试从开始充电到激活成功的时间分别为55分钟、78分钟、65分钟。
测试三、保留电阻R1、电容C1和二极管D1,将第一电池BAT1、第二电池BAT2的端电压放电到0V后,利用直流稳压电源在充电输入正端CH+和充电输入负端CH-施加预定电压值的直流电压,同时直流稳压电源的输出限流值设置为预定电流值,同时用电流钳监视电池的充电电流波形。
测试结果如图6所示:在充电的过程中,在充电电流波形上会显示两个瞬态脉冲电流波形W1和W2,其中,前后两个瞬态脉冲电流波形的前沿的时间差即为电池保护线路的激活时间T。
连续做四次实验,其结果如下所示:
当预定电压值为8.4V,预定电流值为0.5A时,激活时间T为6.8s。
当预定电压值为8.4V,预定电流值为1A时,激活时间T为0.136s。
当预定电压值为12V,预定电流值为0.5A时,激活时间T为6.5s。
当预定电压值为12V,预定电流为1A时,激活时间T为0.106s。
从测试三的实验结果可分析出,充电电流越大,激活时间越短。另外,与测试二相比,本发明的电池保护线路的激活时间要远远小于测试二所显示的现 有方法的激活时间。
就图6来说,本领域的技术人员可以理解,当电容C1两端的电压达到充电开关管Q1的开启电压Vgs时,电池保护线路进入激活状态,充电开关管Q1开始导通,充电电流波形上显示充电的第一个瞬态脉冲电流W1。其中,由于直流稳压电源的限流作用,瞬态电流被抑制,瞬态脉冲电流W1的脉冲宽度与脉冲高度,由直流稳压电源限流响应速度决定,如果用充电器充电,这个瞬态电流取决于充电器的瞬态电流抑制性能。
当串联的第一电池BAT1、第二电池BAT2的端电压达到电池管理芯片U1的最低工作电压,电池保护线路激活结束,电池管理芯片U1的充电控制端C0的输出电压突然升高,充电开关管Q1的导通电阻突然降低,充电电流波形上显示第二个瞬态脉冲电流W2。脉冲电流W1的幅度与脉冲宽度由电池管理芯片U1的过流保护性能和过流保护门限设置以及充电开关管Q1的导通电阻突变量决定。
本领域的技术人员可以理解,上述的测试实验仅仅以图2所示的电路为测试对象进行说明,若对图3、图4所示的电路进行测试,也会有类似的测试结果,为简单起见,在此就不再详述。
图7是本发明实施例的电池保护线路的模块示意图。如图7所示,电池保护线路50包括激活电路51,其中,激活电路51为前面所述的激活电路13、激活电路24、激活电路34或激活电路44。
图8是本发明实施例的电池的模块示意图。如图8所示,电池5包括前面所述的电池保护线路50。
图9是本发明实施例的应用于电池保护线路的激活方法的流程图,该方法基于图2、图3和图4所示的应用于电池保护线路的激活电路。如图9所示,该激活方法包括步骤:
步骤S101:在充电开关管的栅极和充电开关管的源极之间设置电容,并且设置电容充电线路用于对电容充电。
步骤S102:当电芯过放电使得电池管理芯片供电不足以无法控制充电开关管对电芯进行充电时通过电容充电线路给电容进行充电,从而给充电开关管提供正向偏置电压以开通充电开关管。在步骤S102中,通过电容充电线路给电容充电,当充电后的电容的电压值达到充电开关管的开启电压时,充电开关管导通。
步骤S103:由外接电源通过充电接口和充电开关管直接对电芯充电。
在步骤S103中,当充电开关管导通后,外接电源可以通过充电接口和充电开关管直接对电芯充电。
步骤S104:当充电后电芯的电压值达到电池管理芯片的最小工作电压后,停止对电容进行充电,由电池管理芯片控制充电开关管以对电芯进行充电操作。
在步骤S104中,电池保护线路的激活时间与外接电源提供的充电电流成反比,其中,激活时间为电池充电开始到电容两端的电压达到电池管理芯片开始工作的时间差。
本发明的有益效果是:本发明的应用于电池保护线路的激活电路及激活方法通过当电芯过放电使得电池管理芯片无法控制充电开关管对电芯进行充电时给电容充电,从而给充电开关管提供正向偏置电压以开通充电开关管,使外接电源能通过充电接口和充电开关管直接对电芯充电以激活电池管理芯片。通过上述方式,本发明能够以相对简单的方式实现电池保护线路的激活,激活时间短且激活成本低。
以上所述仅为本发明的实施例,并非因此限制本发明的专利范围,凡是利用本发明说明书及附图内容所作的等效结构或等效流程变换,例如各实施例之间技术特征的相互结合,或直接或间接运用在其他相关的技术领域,均同理包括在本发明的专利保护范围内。

Claims (9)

  1. 一种应用于电池保护线路的激活电路,所述电池保护线路包括电池管理芯片及充电开关管,所述电池管理芯片与所述充电开关管连接并且用于控制所述充电开关管对电芯进行充电操作,所述电池管理芯片的工作电压由其所保护的电芯提供,其特征在于,所述激活电路包括:
    电容,所述电容的一端与所述充电开关管的栅极连接、所述电容的另一端与所述充电开关管的源极连接;
    与所述电容相连接的电容充电线路,所述电容充电线路用于当所述电芯过放电使得所述电池管理芯片无法控制所述充电开关管对电芯进行充电时给所述电容充电,从而给所述充电开关管提供正向偏置电压以开通所述充电开关管,使外接电源能通过充电接口和所述充电开关管直接对所述电芯充电以激活所述电池管理芯片。
  2. 根据权利要求1所述的激活电路,其特征在于,所述电池管理芯片有充电控制端;
    所述充电开关管的栅极与所述充电控制端连接,所述充电接口依次通过所述充电开关管的源极、漏极与所述电芯连接。
  3. 根据权利要求1所述的激活电路,其特征在于,所述电容充电线路包括二极管和电阻,所述充电接口包括充电输入正端和充电输入负端;
    所述二极管的负极与所述充电开关管的栅极连接,所述二极管的正极通过所述电阻与所述电芯的负极连接,所述电芯的负极接地;
    所述充电输入正端与所述电芯的正极连接;
    所述充电输入负端与所述充电开关管的源极连接,所述充电开关管的漏极连接电芯负极,所述充电开关管的栅极与所述电源管理芯片的充电控制端连接。
  4. 根据权利要求1所述的激活电路,其特征在于,所述充电线路包括辅助电容、第三开关管和电阻,所述充电接口包括充电输入正端和充电输入负端;
    所述辅助电容的一端分别与所述充电输入负端和所述充电开关管的源极连接,所述充电开关管的漏极连接电芯负极,所述辅助电容的另一端分别与所述电阻的一端、所述第三开关管的栅极连接;
    所述第三开关管的漏极与所述充电开关管的栅极连接,所述第三开关管的源极与所述电阻的另一端连接后与所述电芯的正极连接,所述电芯的负极接地;
    所述充电输入正端与所述电芯的正极连接。
  5. 根据权利要求1所述的激活电路,其特征在于,所述电容充电线路包括二极管和电阻,所述充电接口包括充电输入正端和充电输入负端;
    所述二极管的正极与所述充电开关管的栅极连接,所述二极管的负极通过所述电阻与所述电源管理芯片连接;
    所述充电输入正端与所述充电开关管的源极连接,所述充电开关管的漏极与所述电芯的正极连接;
    所述充电输入负端与所述电芯的负极连接,所述电芯的负极接地。
  6. 根据权利要求1所述的激活电路,所述电池保护线路的激活时间与对所述电容提供的充电电流成反比,其中,所述激活时间为所述电容两端的电压达到所述充电开关管的开启电压到所述电池管理芯片开始工作的时间差。
  7. 一种电池保护线路,所述电池保护线路具有如权利要求1-6所述的激活电路。
  8. 一种电池,其具有权利要求7所述的电池保护线路。
  9. 一种应用于电池保护线路的激活方法,所述电池保护线路包括电池管理芯片及充电开关管,所述电池管理芯片与所述充电开关管连接并且用于控制所述充电开关管对电芯进行充电操作,所述电池管理芯片的工作电压由其所保护的电芯提供,其特征在于,所述激活方法包括:
    在所述充电开关管的栅极和所述充电开关管的源极之间设置电容,并且设置电容充电线路用于对所述电容充电;
    当电芯过放电使得所述电池管理芯片供电不足以无法控制所述充电开关管 对电芯进行充电时通过所述电容充电线路给所述电容进行充电,从而给所述充电开关管提供正向偏置电压以开通所述充电开关管;
    由外接电源通过充电接口和所述充电开关管直接对所述电芯充电;
    当充电后的电芯的电压值达到所述电池管理芯片的最小工作电压电压后,停止对电容进行充电,由所述电池管理芯片控制所述充电开关管以对所述电芯进行充电操作。
PCT/CN2018/071909 2018-01-09 2018-01-09 激活电路及其激活方法、电池保护线路、电池 WO2019136592A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/071909 WO2019136592A1 (zh) 2018-01-09 2018-01-09 激活电路及其激活方法、电池保护线路、电池

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/071909 WO2019136592A1 (zh) 2018-01-09 2018-01-09 激活电路及其激活方法、电池保护线路、电池

Publications (1)

Publication Number Publication Date
WO2019136592A1 true WO2019136592A1 (zh) 2019-07-18

Family

ID=67218815

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/071909 WO2019136592A1 (zh) 2018-01-09 2018-01-09 激活电路及其激活方法、电池保护线路、电池

Country Status (1)

Country Link
WO (1) WO2019136592A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0588613A2 (en) * 1992-09-17 1994-03-23 Sony Corporation Battery protection circuits
CN202550600U (zh) * 2012-03-13 2012-11-21 惠州Tcl移动通信有限公司 一种移动终端电池的激活充电装置
CN202918001U (zh) * 2012-09-28 2013-05-01 邢博 低电压启动装置
CN205231780U (zh) * 2015-11-26 2016-05-11 比亚迪股份有限公司 电池管理系统及其激活装置及电动汽车

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0588613A2 (en) * 1992-09-17 1994-03-23 Sony Corporation Battery protection circuits
CN202550600U (zh) * 2012-03-13 2012-11-21 惠州Tcl移动通信有限公司 一种移动终端电池的激活充电装置
CN202918001U (zh) * 2012-09-28 2013-05-01 邢博 低电压启动装置
CN205231780U (zh) * 2015-11-26 2016-05-11 比亚迪股份有限公司 电池管理系统及其激活装置及电动汽车

Similar Documents

Publication Publication Date Title
US20140062417A1 (en) Intelligent charge-discharge controller for battery and electronic device having same
EP3082209A1 (en) Overcurrent protection circuit and method for battery discharge
CN107422257B (zh) 继电器检测电路和单元
CN105826963B (zh) 一种检测电池电压的方法、充电电路及终端
CN203205845U (zh) 具有放电过流保护后自恢复功能的电池保护电路
CN103647313A (zh) 充电控制电路
GB2543949A (en) Charge/discharge switch control circuits for batteries
CN108365276B (zh) 激活电路及其激活方法、电池保护线路、电池
CN213402499U (zh) 一种电池保护电路
CN103384076A (zh) 一种用于锂电池保护的零伏充电电路及其工作方法
CN102983556A (zh) 具有放电过流保护后自恢复功能的电池保护电路
CN202550600U (zh) 一种移动终端电池的激活充电装置
CN102624371A (zh) 输出电路、温度开关ic以及电池组
CN214013898U (zh) 一种充电预充保护控制电路及充电装置
CN103956721A (zh) 电池防爆电路以及电池充电电路
WO2019136592A1 (zh) 激活电路及其激活方法、电池保护线路、电池
CN113472045B (zh) 锂电池充放电保护电路和锂电池保护系统
CN211046468U (zh) 一种锂电池短路保护电路
KR20160012330A (ko) 단위 전지의 보호 회로
CN114006426A (zh) 一种大容性负载预充电路及其工作方法
CN206922463U (zh) 蓄电池充电保护电路
CN104749425A (zh) 过流快速检测电路
CN207602978U (zh) 半导体集成电路
CN214626405U (zh) 一种过压快速关断的电池保护电路
CN203707847U (zh) 一种电池放电管理系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18899167

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18899167

Country of ref document: EP

Kind code of ref document: A1