WO2019134668A1 - 信号接收方法、发送方法、用户设备和网络设备 - Google Patents

信号接收方法、发送方法、用户设备和网络设备 Download PDF

Info

Publication number
WO2019134668A1
WO2019134668A1 PCT/CN2019/070366 CN2019070366W WO2019134668A1 WO 2019134668 A1 WO2019134668 A1 WO 2019134668A1 CN 2019070366 W CN2019070366 W CN 2019070366W WO 2019134668 A1 WO2019134668 A1 WO 2019134668A1
Authority
WO
WIPO (PCT)
Prior art keywords
location
frequency domain
domain location
signal
airspace
Prior art date
Application number
PCT/CN2019/070366
Other languages
English (en)
French (fr)
Inventor
陈力
Original Assignee
维沃移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 维沃移动通信有限公司 filed Critical 维沃移动通信有限公司
Priority to EP19736140.5A priority Critical patent/EP3737140A4/en
Priority to US16/960,191 priority patent/US11546898B2/en
Publication of WO2019134668A1 publication Critical patent/WO2019134668A1/zh
Priority to US18/072,583 priority patent/US20230091129A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/046Wireless resource allocation based on the type of the allocated resource the resource being in the space domain, e.g. beams
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/068Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission using space frequency diversity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/08Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/08Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station
    • H04B7/0891Space-time diversity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/02Arrangements for optimising operational condition
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA

Definitions

  • the present disclosure relates to the field of communications/terminals, and in particular, to a signal receiving method, a transmitting method, a user equipment, and a network device.
  • 5G (5Generation, fifth generation) mobile communication system is on the horizon.
  • the 5G system supports partitioning in the frequency domain and spatially, enabling user equipment to receive signals at different frequency domain locations and/or airspace locations.
  • a 5G system supports a maximum system bandwidth of 400 MHz, which is much larger than the system bandwidth of Long Term Evolution LTE up to 20 MHz, thus supporting greater system and user throughput.
  • the 5G system also supports dynamic and flexible bandwidth allocation.
  • the system bandwidth can be divided into multiple parts (bandwidth part, BWP for short) to support narrow-band end users, or end users in energy-saving mode, so that only part of them need to be in it.
  • BWP bandwidth part
  • the 5G system also supports operating bands above 6 GHz, which can provide greater throughput for data transmission. Since the wavelength of the high-frequency signal is short, more antenna elements can be arranged on the same size panel than the low-band signal, and the beamforming technique is used to form a plurality of more directivity and narrower lobes. Beam (Beam).
  • Beam Beam
  • the 5G system can transmit broadcast signals or system information to end users in the cell through beam scanning technology.
  • Some embodiments of the present disclosure provide a signal receiving method, a signal transmitting method, a user equipment, and a network device, such that when there are multiple frequency domain locations and/or multiple airspace locations, the network device can transmit a signal to the user equipment,
  • the user equipment is capable of receiving signals from the network device.
  • a signal receiving method which is performed by a user equipment, the method comprising:
  • a frequency domain location and/or a spatial domain location for receiving a signal; the frequency domain location being one or more of a plurality of frequency domain locations, the airspace location being one or more of a plurality of airspace locations;
  • the signal is one or more of an advance indication signal, information carried in a physical downlink control channel PDCCH, and a paging message.
  • a signal sending method which is performed by a network device, and the method includes:
  • a frequency domain location and/or a spatial domain location for transmitting a signal; the frequency domain location being one or more of a plurality of frequency domain locations, the airspace location being one or more of a plurality of airspace locations;
  • the signal is one or more of an advance indication signal, information carried in a physical downlink control channel PDCCH, and a paging message.
  • a user equipment comprising:
  • a first location determining module configured to determine a frequency domain location and/or a spatial domain location for receiving a signal; the frequency domain location is one or more of a plurality of frequency domain locations, where the airspace location is a plurality of airspace locations One or more of them;
  • a signal receiving module configured to receive the signal at a determined frequency domain location and/or a spatial domain location
  • the signal is one or more of an advance indication signal, information carried in a physical downlink control channel PDCCH, and a paging message.
  • a network device where the network device includes:
  • a second location determining module configured to determine a frequency domain location and/or a spatial domain location for transmitting a signal; the frequency domain location is one or more of a plurality of frequency domain locations, where the airspace location is a plurality of airspace locations One or more of them;
  • a signal sending module configured to send the signal at the determined frequency domain location and/or airspace location
  • the signal is one or more of an advance indication signal, information carried in a physical downlink control channel PDCCH, and a paging message.
  • a user equipment comprising a processor, a memory, and a computer program stored on the memory and executable on the processor, the computer program being executed by the processor
  • the processor implements the steps of the method as described in the first aspect.
  • a computer readable storage medium stores a computer program, and when the computer program is executed by a processor, the processor implements the method of the first aspect A step of.
  • a network device comprising: a memory, a processor, and a computer program stored on the memory and executable on the processor, the computer program being executed by the processor
  • the processor implements the steps of the method as described in the second aspect.
  • a computer readable storage medium stores a computer program, and when the computer program is executed by a processor, the processor implements the method of the second aspect A step of.
  • the user equipment determines a frequency domain location and/or a spatial domain location for receiving the signal before receiving the signal; correspondingly, the network device determines the signal before transmitting the signal to the user equipment.
  • a frequency domain location and/or a spatial domain location for transmitting signals and thus, when there are multiple frequency domain locations and/or multiple airspace locations, some embodiments of the present disclosure provide a method for enabling a network device to transmit signals to user equipment The user equipment receives a signal from the network device.
  • FIG. 1 is a flow diagram of a signal receiving method performed by a user equipment according to some embodiments of the present disclosure
  • FIG. 2 is another flow diagram of a signal receiving method performed by a user equipment of some embodiments of the present disclosure
  • FIG. 3 is still another flow diagram of a signal receiving method performed by a user equipment according to some embodiments of the present disclosure
  • FIG. 4 is a flow chart showing still another method of signaling performed by a network device according to some embodiments of the present disclosure
  • FIG. 5 is a schematic structural diagram of a user equipment according to some embodiments of the present disclosure.
  • FIG. 6 is a schematic structural diagram of a network device according to some embodiments of the present disclosure.
  • FIG. 7 is another schematic structural diagram of a user equipment of some embodiments of the present disclosure.
  • FIG. 8 is another schematic structural diagram of a network device of some embodiments of the present disclosure.
  • the technical solution of the present disclosure can be applied to a plurality of communication systems having similar multiple frequency domain locations or airspace locations, such as a 5G (5-Generation, fifth generation) mobile communication system, and LTE eLTE connected to the 5G core network 5GC ( E-UTRA connect to 5GC) and so on.
  • 5G 5-Generation, fifth generation
  • LTE eLTE connected to the 5G core network 5GC ( E-UTRA connect to 5GC) and so on.
  • a user equipment which may also be called a mobile terminal, a mobile user equipment, or the like, may communicate with one or more core networks via a radio access network (eg, RAN, Radio Access Network).
  • the user equipment may be a mobile terminal, such as a mobile phone (or "cellular" phone) and a computer with a mobile terminal, for example, a portable, pocket, handheld, computer built-in or in-vehicle mobile device,
  • the wireless access network exchanges languages and/or data.
  • the base station may be a base station (BTS, Base Transceiver Station) in GSM or CDMA, or may be a base station (NodeB) in WCDMA, or may be an evolved base station (eNB or e-NodeB, evolutional Node B) in LTE and
  • BTS Base Transceiver Station
  • NodeB base station
  • eNB evolved base station
  • gNB 5G base station
  • the present disclosure is not limited, but for convenience of description, the following embodiments are described by taking gNB as an example.
  • some embodiments of the present disclosure provide a signal receiving method, which is performed by a user equipment, and may include the following steps:
  • Step 101 Determine a frequency domain location and/or a spatial domain location for receiving a signal; the frequency domain location is one or more of a plurality of frequency domain locations, and the airspace location is one or more of a plurality of airspace locations;
  • Step 103 Receive a signal at the determined frequency domain location and/or airspace location.
  • the frequency domain and/or the air domain can be divided.
  • the user equipment performing step 101 may be from multiple frequency domain locations.
  • the frequency domain location used to receive the signal is determined.
  • a beamforming technique is used to form a communication system with more directivity and a plurality of beams having narrower lobes, and the user equipment performing step 101 can determine from a plurality of airspace locations.
  • the spatial location used to receive the signal is determined.
  • the manner of dividing the frequency domain is not limited to the manner of dividing the system bandwidth into the bandwidth part BWP in the above example, and may also divide the frequency band, carrier or component carrier of the system to form multiple frequency domains. position.
  • the manner of dividing the airspace is not limited to the manner in which multiple beams are formed in the above example, and the carrier, the transmission point, or the quasi-co-location may be divided to form a plurality of airspace locations. Some embodiments of the present disclosure are not limited thereto.
  • the communication system may only divide the frequency domain to form multiple frequency domain locations; or may only divide the airspace to form multiple airspace locations; and may also divide the frequency domain and divide the airspace.
  • a plurality of frequency domain locations are formed in the frequency domain, and a plurality of airspace locations are formed on the airspace.
  • the determined frequency domain location and/or airspace location are also different, and the frequency domain location on which the received signal is based is / or the airspace location will also be different. specifically:
  • step 101 may be performed to determine a frequency domain location for receiving signals (it may be understood that the determined frequency domain locations may be one or more).
  • the user equipment performs step 103, the signal is received at the determined frequency domain location. At this point, it can also be understood that the user equipment will receive the signal on the full airspace.
  • step 101 may be performed to determine the spatial location for receiving the signal (it may be understood that the determined spatial location may be one or more).
  • the user equipment performs step 103, it will receive a signal at the determined airspace location. At this point, it can also be understood that the user equipment will receive the signal in the full frequency domain.
  • step 101 may be performed to determine both the frequency domain location for receiving the signal and the spatial domain location for receiving the signal. Further, when the user equipment performs step 103, a signal is received at the determined frequency domain location and airspace location.
  • the determination of the frequency domain location and the spatial domain location is completely independent and not related to each other.
  • the manners of determining the frequency domain location and the spatial domain location, the timing of determining, the information to be relied upon, and the order of determination are relatively independent, and may be the same or different.
  • the frequency domain location and the spatial domain location are relatively independent concepts, calculations in frequency domain locations, information related to frequency domain locations, and determined frequency domain locations.
  • the parameters and so on, are independent of the airspace location.
  • the "frequency domain location and/or airspace location" in step 101 and the "frequency domain location and/or airspace location" in step 103 should be understood as if step 101 is only determined from a plurality of frequency domain locations for use in step 101.
  • the frequency domain position of the signal is received, when the step 103 is performed, the signal is received at the determined frequency domain position; it can be understood that the user equipment can receive the signal in the full airspace at this time.
  • step 101 determines the airspace location for receiving the signal from the plurality of airspace locations
  • step 103 determines the signal is received at the determined airspace location; it can be understood that the user equipment can be at full frequency at this time.
  • the same expressions appearing in other steps of some embodiments of the present disclosure can be referred to this understanding, and will not be described again.
  • the user equipment determines a frequency domain location and/or a spatial domain location for receiving the signal before receiving the signal; correspondingly, the network device determines the signal before transmitting the signal to the user equipment.
  • the frequency domain location and/or airspace location used to transmit the signal. Therefore, when there are multiple frequency domain locations and/or multiple airspace locations, some embodiments of the present disclosure provide a method for a network device to transmit a signal to a user equipment, the user equipment receiving a signal sent by the network device.
  • the power consumption of the user equipment may be large. Affects the duration of the user's device.
  • signal reception is performed only in the determined frequency domain location and/or airspace location, which can effectively reduce the power consumption of the user equipment, and is beneficial to satisfy the user's use requirements.
  • the frequency domain location corresponds to the bandwidth portion BWP identifier
  • the airspace location corresponds to the beam identifier.
  • the correspondence relationship here can be understood as that the bandwidth part BWP identifier can be located to the determined frequency domain location, and the beam identification can be used to locate the determined airspace location.
  • the manner of positioning to the frequency domain location is not limited to the BWP identifier, and the manner of positioning to the airspace location is not limited to the beam identification.
  • the frequency domain location for receiving a signal determined by some embodiments of the present disclosure may be a bandwidth part BWP including a cell definition synchronization information block, a BWP for initial cell access, or any BWP including system information.
  • the spatial location determined for receiving signals using some embodiments of the present disclosure may be a beam of a cell-defined synchronization information block, a beam for initial cell access, or a beam receiving system information.
  • step 101 When performing step 101 to determine the frequency domain location and/or the airspace location for receiving signals, there may be multiple methods, which will be exemplified one by one in the four main ways.
  • the frequency domain position and/or the airspace location for receiving the signal may be determined according to the initialization information agreed upon in the protocol.
  • an initialization message (Initial) can be written to the user equipment to inform the user equipment of the frequency domain location and/or the airspace location for receiving the signal.
  • the network device is also configured with a frequency domain location and/or a spatial domain location for transmitting signals to the user equipment, so that signaling of the network device to the user equipment can be implemented.
  • the frequency domain location and/or the airspace location for receiving the signal may be determined according to the received preset default information.
  • the preset default information (Default) received by the user equipment is usually sent by the network device, and is used by the network device to perform parameter configuration on the user equipment. It should be noted that the default configuration of the network device to the user equipment cannot be changed; only after the network device reconfigures the user equipment, the network device can be changed. It should also be noted that the preset default information configured by the network device to the user equipment herein often not only constrains the frequency domain location and/or the airspace location used for receiving the signal, but also frequently sends and receives signals to the user equipment. Give the default parameters.
  • the signal receiving configuration information can be received, and the frequency domain location and/or the airspace location for receiving the signal is determined based on the signal receiving configuration information.
  • the signal receiving configuration information herein is configured for the user equipment to determine a frequency domain location and/or a spatial domain location for receiving signals.
  • the signal received by the user equipment receives configuration information, which may be one or more of the following:
  • Dedicated radio resource control RRC (dedicated RRC) message, RRC connection recovery (RRC resume) message, RRC connection release (RRC release) message, RRC connection reconfiguration (RRC reconfiguration) message, RRC connection configuration (RRC configuration) message, main system
  • RRC Dedicated radio resource control
  • RRC resume RRC connection recovery
  • RRC release RRC connection release
  • RRC connection reconfiguration RRC reconfiguration
  • RRC configuration RRC configuration
  • any one of the above-described signal reception configuration information may be employed. It should be noted that, for a certain frequency domain location and/or airspace location determined for receiving signals, only one of the above-mentioned signal receiving configuration information is used; and each time determining the frequency domain location for receiving the signal And/or the airspace location, different signal receiving configuration information may be used, depending on the signal that the user equipment can use to receive the configuration information.
  • step 101 when determining a frequency domain location and/or a spatial domain location for receiving a signal according to the identifier of the user equipment, step 101 may include:
  • Step 1011 Perform calculation according to the identifier of the user equipment, and determine identification information of the frequency domain location and/or the airspace location according to the calculation result;
  • Step 1013 Determine a frequency domain location for receiving a signal according to the identifier information of the frequency domain location; and/or determine a spatial domain location for receiving the signal according to the identifier information of the airspace location.
  • the identifier of the user equipment used may correspond to a unique user equipment, or may correspond to more Different user devices.
  • the identifier of the used user equipment UE ID may be either a complete user equipment identifier UE_ID or a truncated portion of the user equipment identifier.
  • the identifier of the user equipment may be determined according to the complete user equipment identifier UE_ID.
  • the user equipment identifier UE_ID may be taken as an International Mobile Subscriber Identification Number (IMSI), a System Architecture Evolution-Temporary Mobile Subscriber Identity S-TMSI, and a temporary Mobile subscriber identity TMSI, packet temporary mobile subscriber identity code Packet-TMSI P-TMSI, configured identity Configured ID (eg by release for idle), recovery identity Resume ID, cell radio network temporary identity Cell Radio Network Temporary Identifier C-RNTI Any of the others.
  • IMSI International Mobile Subscriber Identification Number
  • S-TMSI System Architecture Evolution-Temporary Mobile Subscriber Identity
  • TMSI temporary Mobile subscriber identity
  • Packet-TMSI P-TMSI packet temporary mobile subscriber identity code
  • configured identity Configured ID eg by release for idle
  • recovery identity Resume ID cell radio network temporary identity Cell Radio Network Temporary Identifier C-RNTI Any of the others.
  • step 1011 The specific process of determining the frequency domain location and/or the location information of the airspace location according to the calculation result is exemplified in step 1011.
  • step 1011 is performed according to the identifier of the user equipment, and the identifier information of the frequency domain location and/or the airspace location is determined according to the calculation result, including:
  • the total number of frequency domain positions that can be sent signals is subjected to modulo operation to obtain identification information of the frequency domain location; and/or, after the first ratio is rounded down, the pair can be sent.
  • the total number of spatial positions of the signal is subjected to a modulo operation to obtain identification information of the spatial location.
  • the identification information of the frequency domain location (indicated as the bandwidth part BWP identifier, which can be represented by the location number X of the BWP and the same as the bandwidth part BWP identifier) is taken as an example, and can be calculated by using the following formula:
  • BWP location number X floor(UE_ID/(N*Ns)) mod Nn
  • Nn the total number of bandwidth portions BWP that the cell can transmit signals
  • N represents the smaller of T and nB, expressed as min(T, nB);
  • Ns represents the larger of 1 and nB/T, expressed as max(1, nB/T);
  • T represents a period during which the user equipment receives a signal
  • nB indicates the density of the signal received by the user equipment, and may be 4T, 2T, T, T/2, T/4, T/8, T/16, T/32, T/64, T/128. This value is configured by the network device for the user equipment or by agreement.
  • N*Ns is the above first quantity, and is used to reflect the total number of time domain resource positions available for transmitting signals in one cycle.
  • the calculation result of UE_ID/(N*Ns) is the above first ratio.
  • step 1011 is performed according to the identifier of the user equipment, and the identifier information of the frequency domain location and/or the airspace location is determined according to the calculation result, including:
  • the total number of frequency domain positions that can be sent signals is subjected to a modulo operation to obtain identification information of the frequency domain location; and/or, after the second ratio is rounded down, the pair can be sent.
  • the total number of spatial positions of the signal is subjected to a modulo operation to obtain identification information of the spatial location.
  • the identification information of the frequency domain location (indicated as the bandwidth part BWP identifier, which can be represented by the location number X of the BWP and the same as the bandwidth part BWP identifier) is taken as an example, and can be calculated by using the following formula:
  • BWP location number X floor(UE_ID/N)mod Nn
  • N has the same meaning as in the first method, or may be taken as 1;
  • Nn represents the total number of bandwidth portions BWP indicating that the cell can transmit signals.
  • N is the above second quantity, indicating the period of the received signal.
  • UE_ID/N is the above second ratio.
  • the first method is similar to the second method.
  • the denominator when the UE ID is associated is different, which affects the numerical range of the calculation result.
  • the number of resource bits and the numerical range of the UE ID can be considered, and a specific calculation method can be selected by the protocol. As long as the network device and the user equipment adopt the same calculation method, the same result can be calculated, so that the network device and the user equipment can determine the same frequency domain location and/or airspace location.
  • the step 1011 is performed according to the identifier of the user equipment, and the identifier information of the frequency domain location and/or the airspace location is determined according to the calculation result, which may include:
  • the modulo operation is performed on the sum of the weights of the frequency domain positions at which the signal can be sent, and the identification information of the frequency domain position is determined according to the value of x satisfying the first preset condition; and Or, after the first ratio is rounded down, performing a modulo operation on the sum of the weights of the spatial domain positions that can send the signal, and determining the identification information of the airspace location according to the value of x satisfying the second preset condition;
  • the first preset condition is that the result of the modulo operation is less than the sum of the weights of the frequency domain positions of the x signals; and/or the second preset condition is that the result of the modulo operation is less than the weight of the airspace position of the x signals. And.
  • the identification information of the frequency domain location (indicated as the bandwidth part BWP identifier, which can be represented by the position number x of the BWP and the same as the bandwidth part BWP identifier) is taken as an example, and can be calculated by using the following formula:
  • UE_ID represents the above user equipment identifier UE_ID
  • W(i) represents the weight of the bandwidth part BWP identified as BWP_i, and the weight of each bandwidth part BWP is configured or agreed by the network device side;
  • Nn the total number of BWPs that the cell can transmit signals.
  • N represents the smaller of T and nB, expressed as min(T, nB);
  • Ns represents the larger of 1 and nB/T, expressed as max(1, nB/T);
  • T represents a period during which the user equipment receives a signal
  • nB indicates the density of the signal received by the user equipment, and may be 4T, 2T, T, T/2, T/4, T/8, T/16, T/32, T/64, T/128. This value is configured by the network device for the user equipment or by agreement.
  • (Floor (UE_ID/(N*Ns)) mode W) is a calculation result obtained by performing a modulo operation on the sum of the weights of the frequency domain positions at which the signal can be transmitted after the first ratio is rounded down.
  • the identification information of the frequency domain position is determined according to the value of x satisfying the first preset condition; wherein the first preset condition is that the result of the modulo operation is less than the weight of the frequency domain position of the x signals And.
  • One embodiment is that the smallest one of the values of x satisfying the first preset condition (0 ⁇ x ⁇ (Nn-1)) can be determined as the identification information of the frequency domain position.
  • the number of the bandwidth portion BWP starts from 0.
  • the number of the bandwidth part BWP can also start from 1, then the above formula can be expressed as:
  • the determination of the weight of the bandwidth portion BWP is configured by the network side or by a protocol. When determining, there are many factors that can be considered. For example, the more the number of user equipments that the bandwidth part BWP corresponds to access, the lower the weight of the bandwidth part BWP can be set; and, for example, the bandwidth of the bandwidth part BWP is larger, the weight of the bandwidth part BWP can be set. The higher; for example, the higher the frequency of the bandwidth portion BWP, the lower the weight of the bandwidth portion BWP can be set. vice versa.
  • the information of the frequency domain location and/or the airspace location of the transmittable signal may be received first.
  • information about the weight of each frequency domain position and/or the spatial domain position of the signal can be used. Therefore, before the calculation is performed by using the third method described above, it is necessary to receive the information first.
  • the above examples illustrate various ways to determine the frequency domain location and/or airspace location for receiving signals. It should be noted that, regardless of which of the above methods provided in some embodiments of the present disclosure is used to determine the frequency domain location and/or the airspace location for receiving signals, the assistance information may be used in conjunction with the determination. It can be understood that the method of some embodiments of the present disclosure further includes the following step 105, before determining the frequency domain location and/or the spatial domain location by means of the auxiliary information, before determining the frequency domain location and/or the spatial domain location for receiving the signal, Figure 3 shows:
  • Step 105 Receive auxiliary information related to the frequency domain location required to determine the frequency domain location (if the frequency domain location is determined by using the auxiliary information); and/or receive auxiliary information related to the airspace location required to determine the airspace location (If you need to use auxiliary information to determine the airspace location).
  • auxiliary information related to the frequency domain location may also be combined and/or The airspace location related auxiliary information determines a frequency domain location and/or a spatial domain location for receiving the signal.
  • the auxiliary information related to the frequency domain location may include one or more of the following: a bandwidth part BWP identifier, a frequency point value and/or a frequency point identifier, a bandwidth value and/or a bandwidth identifier, and a subcarrier spacing SCS identifier.
  • the auxiliary information related to the spatial location may include one or more of the following: a beam identifier, a beam alignment co-located QCL identifier, a transmission point TRP identifier, a synchronization signal block identifier, and a channel state information reference signal CSI-RS identifier. And demodulation reference signal DMRS identification.
  • the specific process for determining the frequency domain location and/or the airspace location of the received signal may also be different according to the auxiliary information, which is not limited by the disclosure according to specific needs.
  • some embodiments of the present disclosure provide a solution for receiving an advance indication signal.
  • the advance indication signal referred to herein may be a wake-up signal (WUS) in the relevant communication protocol or being discussed by the standardization organization, or may be a Go-to-sleep signal in the relevant communication protocol. It may also be referred to as a Pre-Indication Signal (PIS), a Paging Indication Signal, or the like.
  • WUS wake-up signal
  • PIS Pre-Indication Signal
  • Paging Indication Signal Paging Indication Signal
  • the user equipment UE is blindly detecting the paging signal in each discontinuous reception DRX period of the idle idle state or the RRC connected state (RRC connected state).
  • the network device specifically, the base station
  • the network device Before the Paging signal or the physical downlink control channel PDCCH, the network device (specifically, the base station) first transmits a wake-up signal to the UE, and the UE wakes up to detect the wake-up signal at the corresponding moment. If the UE detects the wake-up signal, the UE blindly detects the Paging signal or the PDCCH; otherwise, the UE does not blindly detect the Paging signal or the PDCCH (continues to sleep).
  • the detection of the wake-up signal is less complicated and more power-efficient than the blind detection of the Paging signal or the PDCCH. Therefore, detecting the wake-up signal first can reduce the power consumption of the user equipment.
  • the frequency domain position corresponding to the received signal may be directly determined by using the foregoing manner provided in some embodiments of the present disclosure. Or airspace location.
  • the method specifically includes:
  • the method may specifically include:
  • the user equipment When the signal to be received is the information carried in the PDCCH of the physical downlink control channel, an optional manner is that the user equipment first receives the advance indication signal (for example, the wake-up signal WUS); after receiving the advance indication signal, the PDCCH is monitored again. Receiving information carried in the PDCCH of the physical downlink control channel.
  • the advance indication signal for example, the wake-up signal WUS
  • the frequency domain location and/or the airspace location for monitoring the PDCCH is first determined.
  • the frequency domain location and/or the spatial domain location of the PDCCH may be re-determined by using the foregoing multiple manners. (It can be understood that the frequency domain location and/or the spatial domain location and the frequency domain location when receiving the advance indication signal are re-determined.
  • the spatial domain location and/or the airspace location for monitoring the PDCCH may also be determined according to the information carried in the received advance indication signal.
  • the information carried in the received advance indication signal may explicitly indicate the frequency domain location and/or the spatial domain location for monitoring the PDCCH, or may be explicitly provided for determining the frequency domain location and/or
  • the information of the spatial location may also implicitly give information for determining the location of the frequency domain and/or the location of the airspace.
  • the advance indication signal when the information carried in the received advance indication signal includes information for indicating the frequency domain location identifier and/or the airspace location identifier of the PDCCH, the advance indication signal is dominant indicating the frequency used for monitoring the PDCCH. And determining the frequency domain location and/or the airspace location for monitoring the PDCCH according to the information carried in the received indication signal, which may include:
  • the spatial domain location corresponding to the indicated spatial domain location identifier of the monitored PDCCH is determined as the spatial domain location for monitoring the PDCCH.
  • the advance indication signal explicitly provides information for determining the location of the frequency domain and/or the location of the airspace, and determining the frequency domain location and/or the airspace for monitoring the PDCCH according to the information carried in the received advance indication signal.
  • Location which can include:
  • the calculation is performed according to the auxiliary information related to the spatial location, and the spatial location identifier is determined according to the calculation result, and the spatial location corresponding to the spatial location identifier is determined as the spatial location for monitoring the PDCCH.
  • the auxiliary information related to the frequency domain location and the auxiliary information related to the spatial location may be the auxiliary information received by the user equipment in the foregoing step 105.
  • the advance indication signal implicitly gives information for determining the location of the frequency domain and/or the location of the airspace, and the specific information.
  • the advance indication signal implicitly gives information for determining the location of the frequency domain and/or the location of the airspace, and the specific information.
  • a sequence group of received advance indication signals a sequence of received advance indication signals, a sequence of received advance indication signals, a time position of the received advance indication signal transmission, a frequency domain position of the received advance indication signal, and an airspace position of the received advance indication signal , the received transmission pattern of the advance indication signal.
  • determining the frequency domain location and/or the airspace location for monitoring the PDCCH according to the information carried in the received advance indication signal may specifically include:
  • the user equipment may further need to receive the paging message.
  • the signal is embodied as a paging message, it is apparent that the user equipment can employ any of the above-described methods presented in some embodiments of the present disclosure.
  • the frequency domain location and/or the airspace location of the paging message may be directly adopted, and the frequency domain location and/or the airspace location consistent with monitoring the PDCCH and receiving the information carried in the PDCCH may be directly adopted.
  • the frequency domain location and/or the spatial domain location of the paging message received may also be determined according to the information carried in the received PDCCH.
  • the information carried in the received PDCCH may explicitly indicate a frequency domain location and/or a spatial domain location for receiving the paging message, or may be explicitly provided for determining the frequency domain location and/or
  • the information of the spatial location may also implicitly give information for determining the location of the frequency domain and/or the location of the airspace.
  • the information carried in the received PDCCH includes information indicating a frequency domain location identifier and/or a spatial domain location identifier of the received paging message
  • the information carried in the PDCCH is explicitly indicated for receiving the paging.
  • determining, according to the information carried in the received PDCCH, the frequency domain location and/or the airspace location for receiving the paging message which may specifically include:
  • the airspace location corresponding to the indicated airspace location identifier of the received paging message is determined as the airspace location for receiving the paging message.
  • the information carried in the received PDCCH includes auxiliary information related to a frequency domain location for calculating a frequency domain location identifier and/or auxiliary information related to a spatial domain location for calculating a spatial domain location identifier
  • the carried information dominantly provides information for determining the location of the frequency domain and/or the location of the airspace. And determining, according to the information carried in the received PDCCH, a frequency domain location and/or an airspace location for receiving the paging message, including:
  • the calculation is performed according to the auxiliary information related to the spatial location, and the spatial location identifier is determined according to the calculation result, and the spatial location corresponding to the spatial location identifier is determined as the spatial location for receiving the paging.
  • the auxiliary information related to the frequency domain location and the auxiliary information related to the spatial location may be the auxiliary information received by the user equipment in the foregoing step 105.
  • the information carried in the received PDCCH implicitly gives information for determining a frequency domain location and/or a spatial domain location
  • the specific information may be The sequence of the received PDCCH, the sequence of the received PDCCH, the time position of the received PDCCH, the frequency domain position of the received PDCCH, the spatial location of the received PDCCH, and the received PDCCH transmission pattern.
  • determining the frequency domain location and/or the airspace location for receiving the paging message according to the information carried in the received PDCCH including:
  • the user equipment determines a frequency domain location and/or a spatial domain location for receiving the signal before receiving the signal; correspondingly, the network device determines the signal before transmitting the signal to the user equipment.
  • a frequency domain location and/or a spatial domain location for transmitting signals and thus, when there are multiple frequency domain locations and/or multiple airspace locations, some embodiments of the present disclosure provide a method for enabling a network device to transmit signals to user equipment The user equipment receives a signal from the network device.
  • some embodiments of the present disclosure also provide a signaling method performed by a network device.
  • the method specifically includes:
  • Step 201 Determine a frequency domain location and/or a spatial domain location for transmitting a signal; the frequency domain location is one or more of a plurality of frequency domain locations, the airspace location being one or more of a plurality of airspace locations
  • Step 203 Send the signal in the determined frequency domain location and/or airspace location
  • the signal is one or more of an advance indication signal, information carried in a physical downlink control channel PDCCH, and a paging message.
  • the frequency domain location used for transmitting the signal is: a bandwidth part BWP including a cell definition synchronization information block, a BWP for initial cell access, or a BWP including system information.
  • the airspace location corresponds to a beam identifier.
  • the spatial location for transmitting the signal is: a beam of the cell defining the synchronization information block, a beam for initial cell access, or a beam for transmitting system information.
  • determining a frequency domain location and/or a spatial domain location for transmitting a signal includes:
  • the method before determining a frequency domain location and/or a spatial domain location for transmitting a signal, the method further includes:
  • determining the frequency domain location and/or the airspace location for transmitting the signal including:
  • the frequency domain location and/or the airspace location for transmitting the signal is also determined based on the assistance information associated with the frequency domain location and/or the assistance information associated with the airspace location.
  • determining a frequency domain location and/or an airspace location for transmitting a signal according to the identifier of the user equipment including:
  • determining a frequency domain location and/or an airspace location for transmitting a signal according to the identifier of the user equipment including:
  • determining a frequency domain location and/or an airspace location for transmitting a signal according to the identifier of the user equipment including:
  • the modulo operation is performed on the sum of the weights of the frequency domain positions at which the signal can be sent, and the frequency domain location is determined according to the value of x satisfying the first preset condition. And/or, after rounding down the first ratio, performing a modulo operation on a sum of weights of spatial locations at which the signal can be sent, according to values of x satisfying a second preset condition Determining, to obtain the identification information of the location of the airspace; wherein the first preset condition is that a result of the modulo operation is less than a sum of weights of frequency domain locations of the x signals, and/or the second pre- The condition is that the result of the modulo operation is less than the sum of the weights of the spatial locations of the x signals;
  • determining a frequency domain location and/or a spatial domain location for transmitting the signal including:
  • Transmitting the signal at the determined frequency domain location and/or airspace location including:
  • determining, by the user equipment, the frequency domain location and/or the airspace location of the PDCCH includes:
  • the information carried in the advance indication signal sent to the user equipment includes information for indicating a frequency domain location identifier and/or an airspace location identifier of the PDCCH.
  • the information carried in the advance indication signal sent to the user equipment includes auxiliary information related to the frequency domain location used to calculate the frequency domain location identifier, and/or used to calculate the airspace.
  • the information carried in the advance indication signal sent to the user equipment includes one or more of the following:
  • determining a frequency domain location and/or a spatial domain location for transmitting the signal including:
  • Determining a frequency domain location and/or an airspace location for transmitting the paging message according to information carried in a PDCCH sent to the user equipment.
  • the information carried in the PDCCH that is sent to the user equipment includes information indicating a frequency domain location identifier and/or an airspace location identifier of the paging message.
  • Determining, according to the information carried in the PDCCH that is sent, the frequency domain location and/or the airspace location for sending the paging message including:
  • the information carried in the PDCCH that is sent to the user equipment includes auxiliary information related to a frequency domain location used to calculate a frequency domain location identifier, and/or used to calculate an airspace.
  • Determining, according to information carried in the PDCCH that is sent to the user equipment, a frequency domain location and/or an airspace location for sending the paging message including:
  • the information carried in the PDCCH that is sent to the user equipment includes one or more of the following:
  • Determining, according to the information carried in the PDCCH that is sent to the user equipment, the frequency domain location and/or the airspace location for sending the paging message including:
  • the auxiliary information related to the frequency domain location includes one or more of the following:
  • Bandwidth part BWP identification frequency point value and/or frequency point identification, bandwidth value and/or bandwidth identification, subcarrier spacing SCS identification, parameter configuration numerology identification, physical resource block PRB identification, frequency domain location for transmitting signals An offset and/or offset between the reference frequency point and the PRB offset and/or PRB offset between the frequency domain location for transmitting the signal and the cell reference PRB.
  • the auxiliary information related to the airspace location includes one or more of the following:
  • the signal sending method performed by the network device side provided above corresponds to the signal receiving method performed by the user equipment side provided in the foregoing embodiment, and the manner of determining the frequency domain location and/or the spatial domain location and the adopted information are Consistent, so that the network device side can perform signal transmission and reception on the same frequency domain location and/or airspace location.
  • the user equipment determines a frequency domain location and/or a spatial domain location for receiving the signal before receiving the signal; correspondingly, the network device determines the signal before transmitting the signal to the user equipment.
  • a frequency domain location and/or a spatial domain location for transmitting signals and thus, when there are multiple frequency domain locations and/or multiple airspace locations, some embodiments of the present disclosure provide a method for enabling a network device to transmit signals to user equipment The user equipment receives a signal from the network device.
  • the user equipment includes:
  • a first location determining module 301 configured to determine a frequency domain location and/or a spatial domain location for receiving a signal; the frequency domain location is one or more of multiple frequency domain locations, where the airspace location is multiple airspaces One or more of the locations;
  • the signal receiving module 303 is configured to receive the signal at the determined frequency domain location and/or airspace location;
  • the signal is one or more of an advance indication signal, information carried in a physical downlink control channel PDCCH, and a paging message.
  • the frequency domain location for receiving the signal is: a bandwidth part BWP including a cell definition synchronization information block, a BWP for initial cell access, or a BWP including system information.
  • the airspace location corresponds to a beam identifier.
  • the airspace location for receiving the signal is:
  • the cell defines a beam of the synchronization information block, a beam for initial access of the cell, or a beam that receives system information.
  • the first location determining module specifically includes:
  • a first location determining unit configured to determine a frequency domain location and/or a spatial domain location for receiving the signal according to the initialization information agreed by the protocol
  • a second location determining unit configured to determine a frequency domain location and/or a spatial domain location for receiving the signal according to the received preset default information
  • a third location determining unit configured to receive signal receiving configuration information, and determine a frequency domain location and/or a spatial domain location for receiving the signal according to the signal receiving configuration information;
  • a fourth location determining unit configured to determine a frequency domain location and/or a spatial domain location for receiving the signal according to the identifier of the user equipment.
  • the device further includes:
  • An auxiliary information receiving module configured to receive auxiliary information related to a frequency domain location required to determine the frequency domain location; and/or receive auxiliary information related to the airspace location required to determine the airspace location;
  • the first location determining module is specifically configured to:
  • a frequency domain location and/or a spatial domain location for receiving the signal is also determined based on the auxiliary information associated with the frequency domain location and/or the assistance information associated with the spatial location.
  • the fourth location determining unit is specifically configured to:
  • the fourth location determining unit is specifically configured to:
  • the fourth location determining unit is specifically configured to:
  • the modulo operation is performed on the sum of the weights of the frequency domain positions at which the signal can be sent, and the frequency domain location is determined according to the value of x satisfying the first preset condition. And/or, after rounding down the first ratio, performing a modulo operation on a sum of weights of spatial locations at which the signal can be sent, according to values of x satisfying a second preset condition Determining, to obtain the identification information of the location of the airspace; wherein the first preset condition is that a result of the modulo operation is less than a sum of weights of frequency domain locations of the x signals, and/or the second pre- The condition is that the result of the modulo operation is less than the sum of the weights of the spatial locations of the x signals;
  • the first location determining module is specifically configured to:
  • a monitoring location determining unit configured to determine a frequency domain location and/or a spatial domain location for listening to the PDCCH
  • the signal receiving module is specifically configured to:
  • the interception location determining unit is specifically configured to:
  • the information carried in the received advance indication signal includes information used to indicate a frequency domain location identifier and/or an airspace location identifier of the PDCCH.
  • the monitoring position determining unit is specifically configured to:
  • the information carried in the received advance indication signal includes auxiliary information related to a frequency domain location used to calculate a frequency domain location identifier, and/or used to calculate an airspace location. Identification of auxiliary information related to the location of the airspace;
  • the monitoring position determining unit is specifically configured to:
  • the information carried in the received advance indication signal includes one or more of the following:
  • the listening position determining unit is specifically configured to:
  • the first location determining module is specifically configured to:
  • the information carried in the received PDCCH includes information indicating a frequency domain location identifier and/or an airspace location identifier of the paging message.
  • the first location determining module is specifically configured to:
  • the information carried in the received PDCCH includes auxiliary information related to a frequency domain location for calculating a frequency domain location identifier, and/or used to calculate an airspace location identifier.
  • auxiliary information related to the location of the airspace includes auxiliary information related to the location of the airspace;
  • the first location determining module is specifically configured to:
  • the information carried in the received PDCCH includes one or more of the following:
  • Determining, according to the information carried in the received PDCCH, a frequency domain location and/or an airspace location for receiving the paging message including:
  • the auxiliary information related to the frequency domain location includes one or more of the following:
  • Bandwidth part BWP identifier frequency point value and/or frequency point identifier, bandwidth value and/or bandwidth identifier, subcarrier spacing SCS identifier, parameter configuration numerology identifier, physical resource block PRB identifier, frequency domain location for receiving signal An offset and/or offset between the reference frequency point and the PRB offset and/or PRB offset between the frequency domain location of the received signal and the cell reference PRB.
  • the auxiliary information related to the airspace location includes one or more of the following:
  • the user equipment provided by some embodiments of the present disclosure can implement various processes implemented by the user equipment in the method embodiment shown in FIG. 1.
  • the related descriptions in the signal receiving method in the embodiment shown in FIG. 1 are applicable to the foregoing user. device. To avoid repetition, we will not repeat them here.
  • the network device includes:
  • a second location determining module 401 configured to determine a frequency domain location and/or a spatial domain location for transmitting a signal; the frequency domain location is one or more of multiple frequency domain locations, where the airspace location is multiple airspaces One or more of the locations;
  • a signal sending module 403 configured to send the signal at the determined frequency domain location and/or airspace location;
  • the signal is one or more of an advance indication signal, information carried in a physical downlink control channel PDCCH, and a paging message.
  • the frequency domain location for transmitting the signal is: a bandwidth part BWP including a cell definition synchronization information block, a BWP for initial cell access, or a BWP including system information.
  • the airspace location corresponds to a beam identifier.
  • the spatial location for transmitting the signal is: a beam defining a synchronization information block of the cell, a beam for initial cell access, or a beam for transmitting system information.
  • the second location determining module is specifically configured to:
  • a first location determining unit configured to determine a frequency domain location and/or a spatial domain location for transmitting the signal according to the initialization information agreed by the protocol;
  • a second location determining unit configured to determine a frequency domain location and/or a spatial domain location for transmitting the signal according to the preset default information
  • a third location determining unit configured to send signal transmission configuration information, and determine a frequency domain location and/or a spatial domain location for transmitting the signal according to the signal transmission configuration information;
  • the fourth location determining unit is configured to determine a frequency domain location and/or a spatial domain location for transmitting the signal according to the identifier of the user equipment.
  • the device further includes:
  • An auxiliary information sending module configured to send auxiliary information related to a frequency domain location required to determine the frequency domain location; and/or to send auxiliary information related to the airspace location required to determine the airspace location;
  • the second location determining module is specifically configured to:
  • the frequency domain location and/or the airspace location for transmitting the signal is also determined based on the assistance information associated with the frequency domain location and/or the assistance information associated with the airspace location.
  • the fourth location determining unit is specifically configured to:
  • the fourth location determining unit is specifically configured to:
  • the fourth location determining unit is specifically configured to:
  • the modulo operation is performed on the sum of the weights of the frequency domain positions at which the signal can be sent, and the frequency domain location is determined according to the value of x satisfying the first preset condition. And/or, after rounding down the first ratio, performing a modulo operation on a sum of weights of spatial locations at which the signal can be sent, according to values of x satisfying a second preset condition Determining, to obtain the identification information of the location of the airspace; wherein the first preset condition is that a result of the modulo operation is less than a sum of weights of frequency domain locations of the x signals, and/or the second pre- The condition is that the result of the modulo operation is less than the sum of the weights of the spatial locations of the x signals;
  • the second location determining module includes:
  • a monitoring location determining unit configured to determine a frequency domain location and/or a spatial domain location used by the user equipment to monitor the PDCCH;
  • the signal sending module is specifically configured to:
  • the interception location determining unit is specifically configured to:
  • the information carried in the advance indication signal sent to the user equipment includes information for indicating a frequency domain location identifier and/or a spatial domain location identifier of the PDCCH. ;
  • the monitoring position determining unit is specifically configured to:
  • the information carried in the advance indication signal sent to the user equipment includes auxiliary information related to a frequency domain location for calculating a frequency domain location identifier, and/or used for calculation.
  • the monitoring position determining unit is specifically configured to:
  • the information carried in the advance indication signal sent to the user equipment includes one or more of the following:
  • the second location determining module is specifically configured to:
  • Determining a frequency domain location and/or an airspace location for transmitting the paging message according to information carried in a PDCCH sent to the user equipment.
  • the information carried in the PDCCH sent to the user equipment includes information indicating a frequency domain location identifier and/or an airspace location identifier for sending the paging message.
  • the second location determining module is specifically configured to:
  • the information carried in the PDCCH that is sent to the user equipment includes auxiliary information related to a frequency domain location used to calculate a frequency domain location identifier, and/or used for calculation.
  • the second location determining module is specifically configured to:
  • the information carried in the PDCCH that is sent to the user equipment includes one or more of the following:
  • Determining, according to the information carried in the PDCCH that is sent to the user equipment, the frequency domain location and/or the airspace location for sending the paging message including:
  • the auxiliary information related to the frequency domain location includes one or more of the following:
  • Bandwidth part BWP identification frequency point value and/or frequency point identification, bandwidth value and/or bandwidth identification, subcarrier spacing SCS identification, parameter configuration numerology identification, physical resource block PRB identification, frequency domain location for transmitting signals An offset and/or offset between the reference frequency point and the PRB offset and/or PRB offset between the frequency domain location for transmitting the signal and the cell reference PRB.
  • the auxiliary information related to the airspace location includes one or more of the following:
  • the network device provided by some embodiments of the present disclosure can implement various processes implemented by the network device in the method embodiment shown in FIG. 4, and the corresponding descriptions about the signal sending method and the signal receiving method in the foregoing embodiments are Applicable to the above network devices. To avoid repetition, we will not repeat them here.
  • FIG. 7 is a block diagram of a user equipment of another embodiment of the present disclosure.
  • the user equipment 700 shown in FIG. 7 includes at least one processor 701, a memory 702, at least one network interface 704, and a user interface 703.
  • the various components in user device 700 are coupled together by a bus system 705. It will be appreciated that the bus system 705 is used to implement connection communication between these components.
  • the bus system 705 includes a power bus, a control bus, and a status signal bus in addition to the data bus. However, for clarity of description, various buses are labeled as bus system 705 in FIG.
  • the user interface 703 may include a display, a keyboard, or a pointing device (eg, a mouse, a trackball, a touchpad, or a touch screen, etc.).
  • a pointing device eg, a mouse, a trackball, a touchpad, or a touch screen, etc.
  • memory 702 in some embodiments of the present disclosure can be either volatile memory or nonvolatile memory, or can include both volatile and nonvolatile memory.
  • the non-volatile memory may be a read-only memory (ROM), a programmable read only memory (PROM), an erasable programmable read only memory (Erasable PROM, EPROM), or an electric Erase programmable read only memory (EEPROM) or flash memory.
  • the volatile memory can be a Random Access Memory (RAM) that acts as an external cache.
  • RAM Random Access Memory
  • many forms of RAM are available, such as static random access memory (SRAM), dynamic random access memory (DRAM), synchronous dynamic random access memory (Synchronous DRAM).
  • the memory 702 of the systems and methods described in some embodiments of the present disclosure is intended to comprise, without being limited to, these and any other suitable types of memory.
  • memory 702 stores elements, executable modules or data structures, or a subset thereof, or their extended set: operating system 7021 and application 7022.
  • the operating system 7021 includes various system programs, such as a framework layer, a core library layer, a driver layer, and the like, for implementing various basic services and processing hardware-based tasks.
  • the application 7022 includes various applications, such as a media player (Media Player), a browser, and the like, for implementing various application services. Programs that implement some of the embodiment methods of the present disclosure may be included in the application 7022.
  • the user equipment further includes: a computer program stored on the memory and executable on the processor, the computer program being executed by the processor to implement the following steps:
  • a frequency domain location and/or a spatial domain location for receiving a signal; the frequency domain location being one or more of a plurality of frequency domain locations, the airspace location being one or more of a plurality of airspace locations;
  • the signal is one or more of an advance indication signal, information carried in a physical downlink control channel PDCCH, and a paging message.
  • Processor 701 may be an integrated circuit chip with signal processing capabilities. In the implementation process, each step of the foregoing method may be completed by an integrated logic circuit of hardware in the processor 701 or an instruction in a form of software.
  • the processor 701 may be a general-purpose processor, a digital signal processor (DSP), an application specific integrated circuit (ASIC), a field programmable gate array (FPGA), or the like. Programmable logic devices, discrete gates or transistor logic devices, discrete hardware components.
  • the methods, steps, and logical block diagrams disclosed in some embodiments of the present disclosure may be implemented or performed.
  • the general purpose processor may be a microprocessor or the processor or any conventional processor or the like.
  • the steps of the method disclosed in connection with some embodiments of the present disclosure may be directly embodied by the hardware decoding processor, or by a combination of hardware and software modules in the decoding processor.
  • the software modules can be located in a conventional computer readable storage medium of the art, such as random access memory, flash memory, read only memory, programmable read only memory or electrically erasable programmable memory, registers, and the like.
  • the computer readable storage medium is located in a memory, and the processor reads the information in the memory and combines the hardware to perform the steps of the above method.
  • the computer readable storage medium stores a computer program that, when executed by the processor, implements the steps of the embodiment of the signal receiving method described above.
  • the processing unit can be implemented in one or more Application Specific Integrated Circuits (ASICs), Digital Signal Processing (DSP), Digital Signal Processing Equipment (DSP Device, DSPD), programmable Programmable Logic Device (PLD), Field-Programmable Gate Array (FPGA), general purpose processor, controller, microcontroller, microprocessor, other for performing the functions described in this disclosure In an electronic unit or a combination thereof.
  • ASICs Application Specific Integrated Circuits
  • DSP Digital Signal Processing
  • DSP Device Digital Signal Processing Equipment
  • PLD programmable Programmable Logic Device
  • FPGA Field-Programmable Gate Array
  • the techniques described in some embodiments of the present disclosure may be implemented by modules (e.g., procedures, functions, etc.) that perform the functions described in some embodiments of the present disclosure.
  • the software code can be stored in memory and executed by the processor.
  • the memory can be implemented in the processor or external to the processor.
  • the processor may further implement the following steps when the computer program is executed by the processor:
  • a frequency domain location and/or a spatial domain location for receiving a signal; the frequency domain location being one or more of a plurality of frequency domain locations, the airspace location being one or more of a plurality of airspace locations;
  • the signal is one or more of an advance indication signal, information carried in a physical downlink control channel PDCCH, and a paging message.
  • the user equipment 700 can implement various processes implemented by the user equipment in the foregoing embodiments. To avoid repetition, details are not described herein again.
  • the user equipment determines a frequency domain location and/or a spatial domain location for receiving the signal before receiving the signal; correspondingly, the network device determines the signal before transmitting the signal to the user equipment.
  • a frequency domain location and/or a spatial domain location for transmitting signals and thus, when there are multiple frequency domain locations and/or multiple airspace locations, some embodiments of the present disclosure provide a method for enabling a network device to transmit signals to user equipment The user equipment receives a signal from the network device.
  • FIG. 8 is a structural diagram of a network device to which some embodiments of the present disclosure are applied, which can implement the details of the signal sending method in the foregoing embodiment, and achieve the same effect.
  • the network device 2600 includes a processor 2601, a transceiver 2602, a memory 2603, a user interface 2604, and a bus interface, where:
  • the network device 2600 further includes: a computer program stored on the memory 2603 and executable on the processor 2601.
  • the processor 2601 implements the following steps:
  • a frequency domain location and/or a spatial domain location for transmitting a signal; the frequency domain location being one or more of a plurality of frequency domain locations, the airspace location being one or more of a plurality of airspace locations;
  • the signal is one or more of an advance indication signal, information carried in a physical downlink control channel PDCCH, and a paging message.
  • the bus architecture may include any number of interconnected buses and bridges, specifically linked by one or more processors represented by processor 2601 and various circuits of memory represented by memory 2603.
  • the bus architecture can also link various other circuits such as peripherals, voltage regulators, and power management circuits, which are well known in the art and, therefore, will not be further described herein.
  • the bus interface provides an interface.
  • Transceiver 2602 can be a plurality of components, including a transmitter and a receiver, providing means for communicating with various other devices on a transmission medium.
  • the user interface 2604 may also be an interface capable of externally connecting the required devices, including but not limited to a keypad, a display, a speaker, a microphone, a joystick, and the like.
  • the processor 2601 is responsible for managing the bus architecture and the usual processing, and the memory 2603 can store data used by the processor 2601 when performing operations.
  • some embodiments of the present disclosure further provide a user equipment, including a processor, a memory, a computer program stored on the memory and executable on the processor, the computer program being implemented by the processor to implement the foregoing
  • a user equipment including a processor, a memory, a computer program stored on the memory and executable on the processor, the computer program being implemented by the processor to implement the foregoing
  • Some embodiments of the present disclosure also provide a computer readable storage medium having a computer program stored thereon, the computer program being executed by a processor to implement various processes of the foregoing signal receiving method embodiments, and capable of achieving the same The technical effect, in order to avoid duplication, will not be repeated here.
  • the computer readable storage medium may be a volatile memory or a nonvolatile memory, or may include both volatile and nonvolatile memory, such as read-only memory (ROM). ), Random Access Memory (RAM), disk or CD.
  • some embodiments of the present disclosure further provide a network device, including a processor, a memory, a computer program stored on the memory and executable on the processor, and the processor is executed by the processor.
  • Some embodiments of the present disclosure further provide a computer readable storage medium having a computer program stored thereon, the computer program being executed by a processor to implement various processes of the foregoing signal transmitting method embodiment, and achieving the same The technical effect, in order to avoid duplication, will not be repeated here.
  • the computer readable storage medium may be a volatile memory or a nonvolatile memory, or may include both volatile and nonvolatile memory, such as read-only memory (ROM). ), Random Access Memory (RAM), disk or CD.
  • the foregoing embodiment method can be implemented by means of software plus a necessary general hardware platform, and of course, can also be through hardware, but in many cases, the former is better.
  • Implementation Based on such understanding, the technical solution of the present disclosure, which is essential or contributes to the related art, may be embodied in the form of a software product stored in a storage medium (such as ROM/RAM, disk, CD-ROM).
  • the instructions include a number of instructions for causing a terminal (which may be a cell phone, computer, server, air conditioner, or network device, etc.) to perform the methods described in various embodiments of the present disclosure.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本公开公开了一种信号接收方法、信号发送方法、用户设备和网络设备。信号接收方法包括:确定用于接收信号的频域位置和/或空域位置,频域位置为多个频域位置中的一个或多个,空域位置为多个空域位置中的一个或多个;在确定出的频域位置和/或空域位置上接收信号;其中,信号为提前指示信号、物理下行控制通道PDCCH中携带的信息和寻呼消息中的一种或多种。

Description

信号接收方法、发送方法、用户设备和网络设备
相关申请的交叉引用
本申请主张在2018年1月5日在中国提交的中国专利申请号No.201810012440.7的优先权,其全部内容通过引用包含于此。
技术领域
本公开涉及通信领域/终端领域,尤其涉及一种信号接收方法、发送方法、用户设备和网络设备。
背景技术
随着移动通信技术的发展,5G(5Generation,第五代)移动通信系统呼之欲出。为支持更大的系统与用户吞吐量,5G系统支持在频域上和空间上进行划分,使得用户设备能够在不同的频域位置和/或空域位置上接收信号。
例如,5G系统支持最大400MHz系统带宽,远大于长期演进LTE最大20MHz的系统带宽,因而支持更大的系统与用户吞吐量。同时,5G系统也支持动态灵活的带宽分配,可以将系统带宽划分成多个部分(bandwidth part,简称BWP),以支持窄带终端用户,或节能模式下的终端用户,使其只需在其中部分系统带宽上工作。
又例如,5G系统还支持6GHz以上的工作频段,可以为数据传输提供更大的吞吐量。由于高频信号的波长短,因此,相比于低频段信号,能够在同样大小的面板上布置更多的天线阵元,利用波束赋形技术形成指向性更强、波瓣更窄的多个波束(Beam)。5G系统能够通过波束扫描技术,为小区内的终端用户发送广播信号或系统信息。
相关技术中并未给出在多个频域位置(例如,存在多个带宽部分BWP)和/或多个空域位置(例如,存在多波束)下如何发送和接收信号。因此,当存在多个频域位置和/或多个空域位置时,网络设备如何向用户设备发送信号,用户设备如何接收网络设备发出的信号,成为了亟待解决的问题。
发明内容
本公开的一些实施例提供一种信号接收方法、信号发送方法、用户设备和网络设备,以使得当存在多个频域位置和/或多个空域位置时,网络设备能够向用户设备发送信号,用户设备能够接收网络设备发出的信号。
第一方面,提供了一种信号接收方法,由用户设备执行,该方法包括:
确定用于接收信号的频域位置和/或空域位置;所述频域位置为多个频域位置中的一个或多个,所述空域位置为多个空域位置中的一个或多个;
在确定出的频域位置和/或空域位置上接收所述信号;
其中,所述信号为提前指示信号、物理下行控制通道PDCCH中携带的信息和寻呼消息中的一种或多种。
第二方面,提供了一种信号发送方法,由网络设备执行,该方法包括:
确定用于发送信号的频域位置和/或空域位置;所述频域位置为多个频域位置中的一个或多个,所述空域位置为多个空域位置中的一个或多个;
在确定出的频域位置和/或空域位置上发送所述信号;
其中,所述信号为提前指示信号、物理下行控制通道PDCCH中携带的信息和寻呼消息中的一种或多种。
第三方面,提供了一种用户设备,该用户设备包括:
第一位置确定模块,用于确定用于接收信号的频域位置和/或空域位置;所述频域位置为多个频域位置中的一个或多个,所述空域位置为多个空域位置中的一个或多个;
信号接收模块,用于在确定出的频域位置和/或空域位置上接收所述信号;
其中,所述信号为提前指示信号、物理下行控制通道PDCCH中携带的信息和寻呼消息中的一种或多种。
第四方面,提供了一种网络设备,该网络设备包括:
第二位置确定模块,用于确定用于发送信号的频域位置和/或空域位置;所述频域位置为多个频域位置中的一个或多个,所述空域位置为多个空域位置中的一个或多个;
信号发送模块,用于在确定出的频域位置和/或空域位置上发送所述信号;
其中,所述信号为提前指示信号、物理下行控制通道PDCCH中携带的 信息和寻呼消息中的一种或多种。
第五方面,提供了一种用户设备,该用户设备包括处理器、存储器及存储在所述存储器上并可在所述处理器上运行的计算机程序,所述计算机程序被所述处理器执行时所述处理器实现如第一方面所述的方法的步骤。
第六方面,提供了一种计算机可读存储介质,其中,所述计算机可读存储介质上存储计算机程序,所述计算机程序被处理器执行时所述处理器实现如第一方面所述的方法的步骤。
第七方面,提供了一种网络设备,包括:存储器、处理器及存储在所述存储器上并可在所述处理器上运行的计算机程序,所述计算机程序被所述处理器执行时所述处理器实现如第二方面所述的方法的步骤。
第八方面,提供了一种计算机可读存储介质,其中,所述计算机可读存储介质上存储计算机程序,所述计算机程序被处理器执行时所述处理器实现如第二方面所述的方法的步骤。
在本公开的一些实施例中,用户设备通过在接收信号之前,先确定用于接收信号的频域位置和/或空域位置;相对应地,网络设备在向用户设备发送信号之前,也先确定用于发送信号的频域位置和/或空域位置,因此,当存在多个频域位置和/或多个空域位置时,本公开的一些实施例提供的方法能够实现网络设备向用户设备发送信号,用户设备接收网络设备发出的信号。
附图说明
此处所说明的附图用来提供对本公开的进一步理解,构成本公开的一部分,本公开的示意性实施例及其说明用于解释本公开,并不构成对本公开的不当限定。在附图中:
图1是本公开的一些实施例的由用户设备执行的信号接收方法的流程示意图;
图2是本公开的一些实施例的由用户设备执行的信号接收方法的另一流程示意图;
图3是本公开的一些实施例的由用户设备执行的信号接收方法的又一流程示意图;
图4是本公开的一些实施例的由网络设备执行的信号发送方法的再一流程示意图;
图5是本公开的一些实施例的用户设备的结构示意图;
图6是本公开的一些实施例的网络设备的结构示意图;
图7是本公开的一些实施例的用户设备的另一结构示意图;以及
图8是本公开的一些实施例的网络设备的又一结构示意图。
具体实施方式
下面将结合本公开的一些实施例中的附图,对本公开的一些实施例中的技术方案进行清楚、完整地描述。显然,所描述的实施例是本公开一部分实施例,而不是全部的实施例。基于本公开中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本公开保护的范围。
本公开的技术方案,可以应用于多种有类似多个频域位置或者空域位置的通信系统,例如5G(5-Generation,第五代)移动通信系统,连接到5G核心网5GC的LTE eLTE(E-UTRA connect to 5GC)等。
用户端(UE,User Equipment),也可称之为移动终端(Mobile Terminal)、移动用户设备等,可以经无线接入网(例如,RAN,Radio Access Network)与一个或多个核心网进行通信,用户设备可以是移动终端,如移动电话(或称为“蜂窝”电话)和具有移动终端的计算机,例如,可以是便携式、袖珍式、手持式、计算机内置的或者车载的移动装置,它们与无线接入网交换语言和/或数据。
基站,可以是GSM或CDMA中的基站(BTS,Base Transceiver Station),也可以是WCDMA中的基站(NodeB),还可以是LTE中的演进型基站(eNB或e-NodeB,evolutional Node B)及5G基站(gNB),本公开并不限定,但为描述方便,下述实施例以gNB为例进行说明。
以下结合附图,详细说明本公开各实施例提供的技术方案。
参见图1所示,本公开的一些实施例提供了一种信号接收方法,该方法由用户设备执行,可包括以下步骤:
步骤101:确定用于接收信号的频域位置和/或空域位置;频域位置为多个频域位置中的一个或多个,空域位置为多个空域位置中的一个或多个;
步骤103:在确定出的频域位置和/或空域位置上接收信号。
为了更加灵活的进行信号的接收和发送,在5G系统中,可以对频域和/或空域进行划分。对于存在多个频域位置的通信系统,例如,将系统带宽划分为多个部分,形成多个带宽部分BWP(Band Width Part)的通信系统,用户设备执行步骤101可以从多个频域位置中确定出用于接收信号的频域位置。对于存在多个空域位置的通信系统,例如,利用波束赋形技术形成了指向性更强、波瓣更窄的多个波束的通信系统,用户设备执行步骤101可以从多个空域位置中确定出用于接收信号的空域位置。
能够理解,对频域进行划分的方式,不限于上述示例中将系统带宽划分为带宽部分BWP的方式,还可以对系统的频带、载波或成分载波(component carrier)进行划分,形成多个频域位置。对空域进行划分的方式,也不限于上述示例中形成多个波束的方式,还可以对载波、传输点或者准共址进行划分,形成多个空域位置。本公开的一些实施例对此并不限定。
还可以理解到,通信系统可以仅对频域进行划分,形成多个频域位置;也可以仅对空域进行划分,形成多个空域位置;还可以既对频域进行划分,也对空域进行划分,从而在频域上形成多个频域位置,同时在空域上形成多个空域位置。相对应地,在执行步骤101时,根据通信系统对频域和/或空域的划分方式的不同,确定出的频域位置和/或空域位置也有所不同,接收信号所基于的频域位置和/或空域位置也将不同。具体地:
(1)若仅存在多个频域位置,则执行步骤101可以确定出用于接收信号的频域位置(可以理解到,确定出的频域位置可能是一个,也可能是多个)。进而用户设备执行步骤103时,将在确定出的频域位置上接收信号。此时,还可以理解到,用户设备将在全空域上进行信号的接收。
(2)若仅存在多个空域位置,则执行步骤101可以确定出用于接收信号的空域位置(可以理解到,确定出的空域位置可能是一个,也可能是多个)。进而用户设备执行步骤103时,将在确定出的空域位置上接收信号。此时,还可以理解到,用户设备将在全频域上进行信号的接收。
(3)若同时存在多个频域位置和空域位置,则执行步骤101既可以确定出用于接收信号的频域位置,也可以确定出用于接收信号的空域位置。进而,用户设备执行步骤103时,将在确定出的频域位置和空域位置上接收信号。
需要说明的是,采用本公开的一些实施例提供的方案,对频域位置和空域位置的确定是完全独立的,彼此并无关联。对频域位置和空域位置的确定方式、确定时机、所依据的信息、确定的顺序等各方面均相对独立,可以相同,也可以不同。
因此,可以理解到,在本公开的一些实施例中,频域位置和空域位置是相对独立的概念,在频域位置上的计算、与频域位置相关的信息、确定出的频域位置上的参数等等,均与空域位置无关。步骤101中的“频域位置和/或空域位置”与步骤103中的“频域位置和/或空域位置”,应当理解为,若执行步骤101仅从多个频域位置中确定出用于接收信号的频域位置,则执行步骤103时,在确定出的该频域位置上接收信号;可以理解到,此时用户设备可在全空域上接收信号。若执行步骤101仅从多个空域位置中确定出用于接收信号的空域位置,则执行步骤103时,在确定出的该空域位置上接收信号;可以理解到,此时用户设备可在全频域上接收信号。若执行步骤101,既从多个频域位置中确定出用于接收信号的频域位置,又从多个空域位置中确定出用于接收信号的空域位置,则执行步骤103时,既在确定出的频域位置上接收信号,也在确定出的空域位置上接收信号。对本公开的一些实施例的其他步骤中出现的相同表述,均可参照此理解,后续不再赘述。
在本公开的一些实施例中,用户设备通过在接收信号之前,先确定用于接收信号的频域位置和/或空域位置;相对应地,网络设备在向用户设备发送信号之前,也先确定用于发送信号的频域位置和/或空域位置。因此,当存在多个频域位置和/或多个空域位置时,本公开的一些实施例提供的方法能够实现网络设备向用户设备发送信号,用户设备接收网络设备发出的信号。
并且,在存在多个频域位置和/或空域位置的通信系统中,若用户设备在接收信号时需要在全频域和/或全空域中进行盲检,用户设备的功耗会较大,影响用户设备的持续工作时长。而采用本公开的一些实施例提供的方案,仅在确定的频域位置和/或空域位置上进行信号接收,能够有效降低用户设备的 功耗,有利于满足用户的使用需求。
以下以划分有多个带宽部分BWP形成多个频域位置,和/或对空域进行划分形成多个波束的情况为例,详细说明本公开的一些实施例的具体实施。
可以理解到,在此情况下,频域位置与带宽部分BWP标识相对应,空域位置与波束标识相对应。这里的对应关系可以理解为,通过带宽部分BWP标识可以定位到确定的频域位置,通过波束标识可以定位到确定的空域位置。可以理解到,定位到频域位置的方式不仅限于BWP标识,定位到空域位置的方式也不仅限于波束标识。
采用本公开的一些实施例确定出的用于接收信号的频域位置,可能是包含小区定义同步信息块的带宽部分BWP,用于小区初始接入的BWP,或者包含系统信息的BWP中的任一个。采用本公开的一些实施例确定出的用于接收信号的空域位置,可能是小区定义同步信息块的波束,用于小区初始接入的波束,或者接收系统信息的波束中的任一个。
在执行步骤101确定用于接收信号的频域位置和/或空域位置时,可以有多种方法,以下将就四种主要方式逐一举例说明。
(1)可以根据协议约定的初始化信息,确定用于接收信号的频域位置和/或空域位置。
采用这种方式,根据协议约定,可以向用户设备中写入初始化信息(Initial),告知用户设备用于接收信号的频域位置和/或空域位置。相对应地,网络设备中也配置有向该用户设备发送信号的频域位置和/或空域位置,从而能够实现网络设备向用户设备的信号发送。
(2)可以根据接收到的预设默认信息,确定用于接收信号的频域位置和/或空域位置。
采用这种方式,用户设备接收到的预设默认信息(Default),通常由网络设备发送,用于供网络设备给用户设备进行参数配置。需要说明的是,网络设备对用户设备的默认配置,通常无法改变;只有当网络设备对用户设备进行重新配置后,才能改变。还需要说明的是,此处由网络设备向用户设备配置的预设默认信息,往往不仅仅约束用于接收信号的频域位置和/或空域位置,而往往对用户设备在收发信号等多方面给出默认参数。
(3)可以接收信号接收配置信息,并根据信号接收配置信息确定用于接收信号的频域位置和/或空域位置。
需要说明的是,此处的信号接收配置信息,是为用户设备确定用于接收信号的频域位置和/或空域位置而配置的。采用这种方式,用户设备接收的信号接收配置信息,可以是以下一种或多种:
专用无线资源控制RRC(dedicated RRC)消息,RRC连接恢复(RRC resume)消息,RRC连接释放(RRC release)消息,RRC连接重配置(RRC reconfiguration)消息,RRC连接配置(RRC configuration)消息,主系统信息块MIB消息,系统信息块SIB消息,控制信道资源CORESET中携带的消息,物理下行控制通道PDCCH对应的下行控制指示DCI中携带的消息。
而在根据信号接收配置信息确定用于接收信号的频域位置和/或空域位置时,可以采用上述信号接收配置信息中的任一项。需要说明的是,对于某次确定用于接收信号的频域位置和/或空域位置而言,仅采用上述信号接收配置信息中的任一项;而每次确定用于接收信号的频域位置和/或空域位置时,可以采用不同的信号接收配置信息,根据用户设备所能采用的信号接收配置信息而定。
(4)根据用户设备的标识,确定用于接收信号的频域位置和/或空域位置。
具体地,参见图2所示,在根据用户设备的标识,确定用于接收信号的频域位置和/或空域位置时,步骤101可以包括:
步骤1011:根据用户设备的标识进行计算,根据计算结果确定频域位置和/或空域位置的标识信息;
步骤1013:根据频域位置的标识信息,确定用于接收信号的频域位置;和/或,根据空域位置的标识信息,确定用于接收信号的空域位置。
需要说明的是,在根据用户设备的标识,确定用于接收信号的频域位置和/或空域位置时,所采用的用户设备的标识UE ID可以对应到唯一的用户设备,也可以对应到多个不同的用户设备。另外,所采用的用户设备的标识UE ID既可以是完整的用户设备标识符UE_ID,也可以采用对用户设备标识符截短后的部分。在具体实施时,可以根据完整的用户设备标识符UE_ID确定上 述用户设备的标识。更具体地,用户设备标识符UE_ID可以取为国际移动用户识别码IMSI(International Mobile Subscriber Identification Number)、系统架构演进临时移动用户识别码SAE(System Architecture Evolution-Temporary Mobile Subscriber Identity S-TMSI)、临时移动用户识别码TMSI、分组临时移动用户识别码Packet-TMSI P-TMSI、配置的标识Configured ID(比如通过release for idle)、恢复标识Resume ID、小区无线网络临时标识Cell Radio Network Temporary Identifier C-RNTI等中的任一种。
以下将举例说明步骤1011根据用户设备的标识进行计算,根据计算结果确定频域位置和/或空域位置的标识信息的具体过程。
第一种方式,执行步骤1011根据用户设备的标识进行计算,根据计算结果确定频域位置和/或空域位置的标识信息,包括:
计算用户设备的标识与第一数量的第一比值,第一数量为一个周期内可用于发送信号的时域资源位置的总数;
对第一比值向下取整后,对可以发送信号的频域位置的总数进行取模运算,得到频域位置的标识信息;和/或,对第一比值向下取整后,对可以发送信号的空域位置的总数进行取模运算,得到空域位置的标识信息。
具体地,以确定频域位置的标识信息(具体化为带宽部分BWP标识,可以用BWP的位置编号X表示,与带宽部分BWP标识的作用相同)为例,可以采用以下公式进行计算:
BWP的位置编号X=floor(UE_ID/(N*Ns))mod Nn
其中:
Nn表示该小区可发送信号的带宽部分BWP的总数;
N表示T和nB中的较小者,表示为min(T,nB);
Ns表示1和nB/T中的较大者,表示为max(1,nB/T);
T表示该用户设备接收信号的周期;
nB表示该用户设备接收信号的密度,可取值为4T,2T,T,T/2,T/4,T/8,T/16,T/32,T/64,T/128。该数值由网络设备对用户设备进行配置或由协议约定。
可以理解到,N*Ns的计算结果即为上述第一数量,用于反映一个周期内可用于发送信号的时域资源位置的总数。UE_ID/(N*Ns)的计算结果即为上述 第一比值。
第二种方式,执行步骤1011根据用户设备的标识进行计算,根据计算结果确定频域位置和/或空域位置的标识信息,包括:
计算用户设备的标识与第二数量的第二比值,第二数量为接收信号的周期;
对第二比值向下取整后,对可以发送信号的频域位置的总数进行取模运算,得到频域位置的标识信息;和/或,对第二比值向下取整后,对可以发送信号的空域位置的总数进行取模运算,得到空域位置的标识信息。
具体地,以确定频域位置的标识信息(具体化为带宽部分BWP标识,可以用BWP的位置编号X表示,与带宽部分BWP标识的作用相同)为例,可以采用以下公式进行计算:
BWP的位置编号X=floor(UE_ID/N)mod Nn
其中:
N的含义与第一种方式中一样,或者可取为1;
Nn表示表示该小区可发送信号的带宽部分BWP的总数。
可以理解到,N即为上述第二数量,表示接收信号的周期。UE_ID/N即为上述第二比值。
需要说明的是,第一种方式和第二种方式的确定原理相似,区别在于对UE ID进行关联时的分母不同,从而会影响到计算结果的数值范围。在确定具体采用哪种方式进行计算时,可以考虑资源位的数量以及UE ID的数值范围,由协议选定具体的计算方式即可。只要网络设备和用户设备采用同样的计算方式,能计算出相同的结果,使得网络设备和用户设备可以确定出相同的频域位置和/或空域位置即可。
第三种方式,执行步骤1011根据用户设备的标识进行计算,根据计算结果确定频域位置和/或空域位置的标识信息,可以包括:
计算用户设备的标识与第一数量的第一比值,第一数量为一个周期内可用于发送信号的资源位置的总数;
对第一比值向下取整后,对可以发送信号的频域位置的权重之和进行取模运算,根据满足第一预设条件的x的取值,确定频域位置的标识信息;和/ 或,对第一比值向下取整后,对可以发送信号的空域位置的权重之和进行取模运算,根据满足第二预设条件的x的取值,确定得到空域位置的标识信息;
其中,第一预设条件为取模运算的结果小于x个信号的频域位置的权重的和;和/或,第二预设条件为取模运算的结果小于x个信号的空域位置的权重的和。
具体地,以确定频域位置的标识信息(具体化为带宽部分BWP标识,可以用BWP的位置编号x表示,与带宽部分BWP标识的作用相同)为例,可以采用以下公式进行计算:
(Floor(UE_ID/(N*Ns))mode W)<∑W(i)(i=0~x)
其中:
UE_ID表示上述用户设备标识符UE_ID;
W(i)表示标识为BWP_i的带宽部分BWP的权重,每一带宽部分BWP的权重由网络设备侧配置或协议约定;
W表示该小区所有发送信号的BWP的总权重,即W=W(0)+W(1)+…+W(Nn-1)。
Nn表示该小区可发送信号的BWP的总数。
N表示T和nB中的较小者,表示为min(T,nB);
Ns表示1和nB/T中的较大者,表示为max(1,nB/T);
T表示该用户设备接收信号的周期;
nB表示该用户设备接收信号的密度,可取值为4T,2T,T,T/2,T/4,T/8,T/16,T/32,T/64,T/128。该数值由网络设备对用户设备进行配置或由协议约定。
可以理解到,(Floor(UE_ID/(N*Ns))mode W)即为对第一比值向下取整后,对可以发送信号的频域位置的权重之和进行取模运算得到的计算结果。根据这一计算结果,根据满足第一预设条件的x的取值,确定频域位置的标识信息;其中,第一预设条件为取模运算的结果小于x个信号的频域位置的权重的和。
一种实施例在于,可以将满足第一预设条件的x的取值中的最小者x(0≤x≤(Nn-1)),确定为频域位置的标识信息。
需要说明的是,上述示例中,带宽部分BWP的编号从0开始。在具体实 施时,带宽部分BWP的编号也可以从1开始,则上述公式可表示为:
(Floor(UE_ID/(N*Ns))mode W)<W(1)+W(2)+…W(x)
还需要说明的是,对带宽部分BWP的权重的确定,由网络侧配置或者由协议约定。在确定时,可以考虑多方面因素。例如,带宽部分BWP对应接入的的用户设备数量越多,则该带宽部分BWP的权重可以设置得越低;又例如,带宽部分BWP的带宽越大,则该带宽部分BWP的权重可以设置得越高;再例如,带宽部分BWP的频点越高,则该带宽部分BWP的权重可以设置得越低。反之亦然。
可以理解到,上述举例的三种计算方式均用于确定频域位置。用户设备需要确定接收信号的空域位置,只需将上述公式中与频域有关的参数替换为与空域有关的对应参数即可。此处不再赘述。
在上述举例的三种计算方式中,均需要采用可以发送信号的频域位置和/或空域位置的信息。因此,在根据用户设备的标识进行计算之前,可以先接收可以发送信号的频域位置和/或空域位置的信息。在上述举例的第三种计算方式中,还需要用到可以发送信号的各频域位置和/或空域位置的权重这一信息,因此,在采用上述第三种方式进行计算之前,需要先接收可以发送信号的频域位置和/或空域位置的信息,以及可以发送信号的各频域位置和/或空域位置的权重。
以上举例说明了多种确定用于接收信号的频域位置和/或空域位置的方式。需要说明的是,无论采用本公开的一些实施例中提供的上述哪种方式确定用于接收信号的频域位置和/或空域位置,在确定时,都可以配合采用辅助信息。能够理解,若借助辅助信息确定频域位置和/或空域位置,则在确定用于接收信号的频域位置和/或空域位置之前,本公开的一些实施例的方法还包括以下步骤105,参见图3所示:
步骤105:接收确定频域位置所需的与频域位置相关的辅助信息(若需借助辅助信息确定频域位置时);和/或,接收确定空域位置所需的与空域位置相关的辅助信息(若需借助辅助信息确定空域位置时)。
在这种情况下,采用上述四种方式中的任一种或者其他方式确定用于接收信号的频域位置和/或空域位置时,还可以结合与频域位置相关的辅助信息 和/或与空域位置相关的辅助信息,确定用于接收信号的频域位置和/或空域位置。
具体地,与频域位置相关的辅助信息,可以包括以下一项或多项:带宽部分BWP标识,频点值和/或频点标识,带宽值和/或带宽标识,子载波间隔SCS标识,参数配置numerology标识,物理资源块PRB标识,用于接收信号的频域位置与参考频点之间的偏移量和/或偏移量标识,用于接收信号的频域位置与小区参考PRB之间的PRB偏移量和/或PRB偏移量标识。
具体地,与空域位置相关的辅助信息,可以包括以下一项或多项:波束标识,波束对准共址QCL标识,传输点TRP标识,同步信号块标识,信道状态信息参考信号CSI-RS标识,以及解调参考信号DMRS标识。
在具体实施时,根据辅助信息的不同,确定用于接收信号的频域位置和/或空域位置的具体过程也可能有所不同,根据具体需要而定,本公开对此不做限定。
在一种场景下,本公开的一些实施例提供的方案可以用于接收提前指示信号。这里所称的提前指示信号,可以是相关通信协议中或者标准化组织正在讨论的唤醒信号(Wake-up signal,WUS),也可以是相关通信协议中的睡眠信号(Go-to-sleep signal),还可以称之为预指示信号(Pre-Indication signal,PIS),寻呼指示信号(Paging Indication signal)等。
可以理解到,以提前指示信号唤醒信号WUS为例,用户设备UE在空闲idle状态或者RRC连接状态(RRC connected状态)的每一个非连续接收DRX周期中,用户设备UE在盲检测寻呼信号(Paging信号)或物理下行控制通道PDCCH之前,网络设备(具体化为基站)首先传输一个唤醒信号给UE,UE在相应时刻醒过来检测该唤醒信号。若UE检测到该唤醒信号,则UE盲检测Paging信号或PDCCH;否则,该UE不盲检测Paging信号或PDCCH(继续休眠)。其中,检测唤醒信号相比盲检测Paging信号或PDCCH复杂度更低且更为省电,因此,先检测唤醒信号能够降低用户设备的功耗。
能够理解,对于物理下行控制通道PDCCH中携带的信息和寻呼消息这两类信号而言,也可以直接采用本公开的一些实施例中提供的上述方式确定接收信号所对应的频域位置和/或空域位置。
当信号为物理下行控制通道PDCCH中携带的信息,执行步骤101确定用于接收信号的频域位置和/或空域位置时,具体包括:
确定用于监听PDCCH的频域位置和/或空域位置;
则执行步骤103在确定出的频域位置和/或空域位置上接收信号时,可具体包括:
在确定出的频域位置和/或空域位置上监听PDCCH;
接收PDCCH中携带的信息。
当需要接收的信号为物理下行控制通道PDCCH中携带的信息时,一种可选方式在于,用户设备先接收提前指示信号(例如唤醒信号WUS);在接收到提前指示信号后,再监听PDCCH以接收物理下行控制通道PDCCH中携带的信息。
在监听PDCCH之前,可选地,先确定用于监听PDCCH的频域位置和/或空域位置。此时,既可以采用上述多种方式重新确定监听PDCCH的频域位置和/或空域位置(能够理解,重新确定出的频域位置和/或空域位置与接收提前指示信号时的频域位置和/或空域位置,可能相同,也可能不同),也可以根据接收到的提前指示信号中携带的信息,确定用于监听PDCCH的频域位置和/或空域位置。
需要说明的是,接收到的提前指示信号中携带的信息,可以显性的指示用于监听PDCCH的频域位置和/或空域位置,或者显性的提供用于确定上述频域位置和/或空域位置的信息,也可以隐性的给出用于确定上述频域位置和/或空域位置的信息。
具体地,当接收到的提前指示信号中携带的信息中包括用于指示监听PDCCH的频域位置标识和/或空域位置标识的信息时,提前指示信号显性的指示了用于监听PDCCH的频域位置和/或空域位置,则根据接收到的提前指示信号中携带的信息,确定用于监听PDCCH的频域位置和/或空域位置,可以具体包括:
将所指示的监听PDCCH的频域位置标识所对应的频域位置,确定为用于监听PDCCH的频域位置;和/或,
将所指示的监听PDCCH的空域位置标识所对应的空域位置,确定为用 于监听PDCCH的空域位置。
具体地,当接收到的提前指示信号中携带的信息中包括用于计算频域位置标识的与频域位置相关的辅助信息和/或用于计算空域位置标识的与空域位置相关的辅助信息时,提前指示信号显性的提供了用于确定上述频域位置和/或空域位置的信息,则根据接收到的提前指示信号中携带的信息,确定用于监听PDCCH的频域位置和/或空域位置,可具体包括:
根据与频域位置相关的辅助信息进行计算,根据计算结果确定频域位置标识,将频域位置标识所对应的频域位置确定为用于监听PDCCH的频域位置;和/或
根据与空域位置相关的辅助信息进行计算,根据计算结果确定空域位置标识,将空域位置标识所对应的空域位置确定为用于监听PDCCH的空域位置。
可以理解到,具体的计算过程可以采用本公开的一些实施例前述的示例中给出的方法。与频域位置相关的辅助信息和与空域位置相关的辅助信息,可以采用前述步骤105中用户设备接收到的辅助信息。
具体地,当接收到的提前指示信号中携带的信息中包括以下一项或多项时,提前指示信号隐性的给出了用于确定上述频域位置和/或空域位置的信息,具体信息可以是:
接收到的提前指示信号的序列分组,接收到的提前指示信号的序列,接收到的提前指示信号发送的时间位置,接收到的提前指示信号的频域位置,接收到的提前指示信号的空域位置,接收到的提前指示信号的发送图样。
这种情况下,根据接收到的提前指示信号中携带的信息,确定用于监听PDCCH的频域位置和/或空域位置,可具体包括:
根据接收到的提前指示信号中携带的信息与频域位置标识的对应关系,确定用于监听PDCCH的频域位置;和/或,
根据接收到的提前指示信号中携带的信息与空域位置标识的对应关系,确定用于监听PDCCH的空域位置。
在监听PDCCH并接收到PDCCH中携带的信息后,用户设备可能还需进一步接收寻呼消息。当信号具体化为寻呼消息时,显然,用户设备可以采用 本公开的一些实施例中给出的上述方法中的任一种。可选地,接收寻呼消息(paging)的频域位置和/或空域位置,可以直接采用与监听PDCCH并接收PDCCH中携带的信息一致的频域位置和/或空域位置。在另一种实施方式中,接收寻呼消息(paging)的频域位置和/或空域位置,也可以根据接收到的PDCCH中携带的信息确定。
需要说明的是,接收到的PDCCH中携带的信息,可以显性的指示用于接收寻呼消息的频域位置和/或空域位置,或者显性的提供用于确定上述频域位置和/或空域位置的信息,也可以隐性的给出用于确定上述频域位置和/或空域位置的信息。
具体地,当接收到的PDCCH中携带的信息包括用于指示接收寻呼消息的频域位置标识和/或空域位置标识的信息时,PDCCH中携带的信息显性的指示了用于接收寻呼消息的频域位置和/或空域位置。则根据接收到的PDCCH中携带的信息,确定用于接收寻呼消息的频域位置和/或空域位置,可以具体包括:
将所指示的接收寻呼消息的频域位置标识所对应的频域位置,确定为用于接收寻呼消息的频域位置;和/或,
将所指示的接收寻呼消息的空域位置标识所对应的空域位置,确定为用于接收寻呼消息的空域位置。
具体地,当接收到的PDCCH中携带的信息包括用于计算频域位置标识的与频域位置相关的辅助信息和/或用于计算空域位置标识的与空域位置相关的辅助信息时,PDCCH中携带的信息显性的提供了用于确定频域位置和/或空域位置的信息。则根据接收到的PDCCH中携带的信息,确定用于接收寻呼消息的频域位置和/或空域位置,包括:
根据与频域位置相关的辅助信息进行计算,根据计算结果确定频域位置标识,将频域位置标识所对应的频域位置确定为用于接收寻呼消息的频域位置;和/或
根据与空域位置相关的辅助信息进行计算,根据计算结果确定空域位置标识,将空域位置标识所对应的空域位置确定为用于接收寻呼的空域位置。
可以理解到,具体的计算过程可以采用本公开的一些实施例前述的示例 中给出的方法。与频域位置相关的辅助信息和与空域位置相关的辅助信息,可以采用前述步骤105中用户设备接收到的辅助信息。
具体地,当接收到的PDCCH中携带的信息中包括以下一项或多项时,PDCCH中携带的信息隐性的给出了用于确定频域位置和/或空域位置的信息,具体信息可以是:接收到的PDCCH的序列分组,接收到的PDCCH的序列,接收到的PDCCH发送的时间位置,接收到的PDCCH的频域位置,接收到的PDCCH的空域位置,接收到的PDCCH的发送图样。
这种情况下,根据接收到的PDCCH中携带的信息,确定用于接收寻呼消息的频域位置和/或空域位置,包括:
根据接收到的PDCCH中携带的信息与频域位置标识的对应关系,确定用于接收寻呼消息的频域位置;和/或,
根据接收到的PDCCH中携带的信息与空域位置标识的对应关系,确定用于接收寻呼消息的空域位置。
在本公开的一些实施例中,用户设备通过在接收信号之前,先确定用于接收信号的频域位置和/或空域位置;相对应地,网络设备在向用户设备发送信号之前,也先确定用于发送信号的频域位置和/或空域位置,因此,当存在多个频域位置和/或多个空域位置时,本公开的一些实施例提供的方法能够实现网络设备向用户设备发送信号,用户设备接收网络设备发出的信号。
参见图4所示,本公开的一些实施例还提供了一种信号发送方法,由网络设备执行。该方法具体包括:
步骤201:确定用于发送信号的频域位置和/或空域位置;所述频域位置为多个频域位置中的一个或多个,所述空域位置为多个空域位置中的一个或多个;
步骤203:在确定出的频域位置和/或空域位置上发送所述信号;
其中,所述信号为提前指示信号、物理下行控制通道PDCCH中携带的信息和寻呼消息中的一种或多种。
可选地,图4所示方法中,用于发送信号的频域位置为:包含小区定义同步信息块的带宽部分BWP,用于小区初始接入的BWP,或者包含系统信息的BWP。
可选地,图4所示方法中,所述空域位置与波束标识相对应。
可选地,图4所示方法中,用于发送信号的空域位置为:小区定义同步信息块的波束,用于小区初始接入的波束,或者发送系统信息的波束。
可选地,图4所示方法中,确定用于发送信号的频域位置和/或空域位置,包括:
根据协议约定的初始化信息,确定用于发送信号的频域位置和/或空域位置;
根据预设默认信息,确定用于发送信号的频域位置和/或空域位置;
发送信号发送配置信息,并根据所述信号发送配置信息确定用于发送信号的频域位置和/或空域位置;或者,
根据所述用户设备的标识,确定用于发送信号的频域位置和/或空域位置。
可选地,图4所示方法中,在确定用于发送信号的频域位置和/或空域位置之前,所述方法还包括:
发送确定所述频域位置所需的与频域位置相关的辅助信息;和/或,
发送确定所述空域位置所需的与空域位置相关的辅助信息;
则确定用于发送信号的频域位置和/或空域位置,包括:
还根据所述与频域位置相关的辅助信息和/或与空域位置相关的辅助信息,确定用于发送信号的频域位置和/或空域位置。
可选地,图4所示方法中,根据所述用户设备的标识,确定用于发送信号的频域位置和/或空域位置,包括:
计算所述用户设备的标识与第一数量的第一比值,所述第一数量为一个周期内可用于发送信号的时域资源位置的总数;
对所述第一比值向下取整后,对可以发送所述信号的频域位置的总数进行取模运算,得到所述频域位置的标识信息;和/或,对所述第一比值向下取整后,对可以发送所述信号的空域位置的总数进行取模运算,得到所述空域位置的标识信息;
根据所述频域位置的标识信息,确定用于发送信号的频域位置;和/或根据所述空域位置的标识信息,确定用于发送信号的空域位置。
可选地,图4所示方法中,根据所述用户设备的标识,确定用于发送信 号的频域位置和/或空域位置,包括:
计算所述用户设备的标识与第二数量的第二比值,所述第二数量为发送所述信号的周期;
对所述第二比值向下取整后,对可以发送所述信号的频域位置的总数进行取模运算,得到所述频域位置的标识信息;和/或,对所述第二比值向下取整后,对可以发送所述信号的空域位置的总数进行取模运算,得到所述空域位置的标识信息;
根据所述频域位置的标识信息,确定用于发送信号的频域位置;和/或根据所述空域位置的标识信息,确定用于发送信号的空域位置。
可选地,图4所示方法中,根据所述用户设备的标识,确定用于发送信号的频域位置和/或空域位置,包括:
计算所述用户设备的标识与第一数量的第一比值,所述第一数量为一个周期内可用于发送信号的资源位置的总数;
对所述第一比值向下取整后,对可以发送所述信号的频域位置的权重之和进行取模运算,根据满足第一预设条件的x的取值,确定所述频域位置的标识信息;和/或,对所述第一比值向下取整后,对可以发送所述信号的空域位置的权重之和进行取模运算,根据满足第二预设条件的x的取值,确定得到所述空域位置的标识信息;其中,所述第一预设条件为取模运算的结果小于x个所述信号的频域位置的权重的和,和/或,所述第二预设条件为取模运算的结果小于x个所述信号的空域位置的权重的和;
根据所述频域位置的标识信息,确定用于发送信号的频域位置;和/或根据所述空域位置的标识信息,确定用于发送信号的空域位置。
可选地,图4所示方法中,当所述信号为物理下行控制通道PDCCH中携带的信息时,确定用于发送信号的频域位置和/或空域位置,包括:
确定用户设备用于监听所述PDCCH的频域位置和/或空域位置;
则在确定出的频域位置和/或空域位置上发送所述信号,包括:
在确定出的频域位置和/或空域位置上发送所述PDCCH中携带的信息。
可选地,图4所示方法中,确定用户设备用于监听所述PDCCH的频域位置和/或空域位置,包括:
根据发送到所述用户设备的提前指示信号中携带的信息,确定所述用户设备用于监听所述PDCCH的频域位置和/或空域位置。
可选地,图4所示方法中,所述发送到所述用户设备的提前指示信号中携带的信息,包括用于指示监听所述PDCCH的频域位置标识和/或空域位置标识的信息;
根据发送到所述用户设备的提前指示信号中携带的信息,确定所述用户设备用于监听所述PDCCH的频域位置和/或空域位置,包括:
将所指示的监听所述PDCCH的频域位置标识所对应的频域位置,确定为所述用户设备用于监听所述PDCCH的频域位置;和/或,
将所指示的监听所述PDCCH的空域位置标识所对应的空域位置,确定为所述用户设备用于监听所述PDCCH的空域位置。
可选地,图4所示方法中,所述发送到用户设备的提前指示信号中携带的信息,包括用于计算频域位置标识的与频域位置相关的辅助信息和/或用于计算空域位置标识的与空域位置相关的辅助信息;
根据发送到所述用户设备的提前指示信号中携带的信息,确定所述用户设备用于监听所述PDCCH的频域位置和/或空域位置,包括:
根据所述与频域位置相关的辅助信息进行计算,根据计算结果确定所述频域位置标识,将所述频域位置标识所对应的频域位置确定为所述用户设备用于监听所述PDCCH的频域位置;和/或
根据所述与空域位置相关的辅助信息进行计算,根据计算结果确定所述空域位置标识,将所述空域位置标识所对应的空域位置确定为所述用户设备用于监听所述PDCCH的空域位置。
可选地,图4所示方法中,所述发送到所述用户设备的提前指示信号中携带的信息,包括以下一项或多项:
所述发送到所述用户设备的提前指示信号的序列分组;
所述发送到所述用户设备的提前指示信号的序列;
所述发送到所述用户设备的提前指示信号发送的时间位置;
所述发送到所述用户设备的提前指示信号的频域位置;
所述发送到所述用户设备的提前指示信号的空域位置;
所述发送到所述用户设备的提前指示信号的发送图样;
根据发送到所述用户设备的提前指示信号中携带的信息,确定所述用户设备用于监听所述PDCCH的频域位置和/或空域位置,包括:
根据所述发送到所述用户设备的提前指示信号中携带的信息与频域位置标识的对应关系,确定所述用户设备用于监听所述PDCCH的频域位置;和/或,
根据所述发送到所述用户设备的提前指示信号中携带的信息与空域位置标识的对应关系,确定所述用户设备用于监听所述PDCCH的空域位置。
可选地,图4所示方法中,当所述信号为寻呼消息时,确定用于发送信号的频域位置和/或空域位置,包括:
根据发送到所述用户设备的PDCCH中携带的信息,确定用于发送所述寻呼消息的频域位置和/或空域位置。
可选地,图4所示方法中,所述发送到所述用户设备的PDCCH中携带的信息,包括用于指示发送所述寻呼消息的频域位置标识和/或空域位置标识的信息;
根据发送到的PDCCH中携带的信息,确定用于发送所述寻呼消息的频域位置和/或空域位置,包括:
将所指示的发送所述寻呼消息的频域位置标识所对应的频域位置,确定为用于发送所述寻呼消息的频域位置;和/或,
将所指示的发送所述寻呼消息的空域位置标识所对应的空域位置,确定为用于发送所述寻呼消息的空域位置。
可选地,图4所示方法中,所述发送到所述用户设备的PDCCH中携带的信息,包括用于计算频域位置标识的与频域位置相关的辅助信息和/或用于计算空域位置标识的与空域位置相关的辅助信息;
根据发送到所述用户设备的PDCCH中携带的信息,确定用于发送所述寻呼消息的频域位置和/或空域位置,包括:
根据所述与频域位置相关的辅助信息进行计算,根据计算结果确定所述频域位置标识,将所述频域位置标识所对应的频域位置确定为用于发送所述寻呼消息的频域位置;和/或
根据所述与空域位置相关的辅助信息进行计算,根据计算结果确定所述空域位置标识,将所述空域位置标识所对应的空域位置确定为用于发送所述寻呼的空域位置。
可选地,图4所示方法中,所述发送到所述用户设备的PDCCH中携带的信息,包括以下一项或多项:
所述发送到所述用户设备的PDCCH的序列分组;
所述发送到所述用户设备的PDCCH的序列;
所述发送到所述用户设备的PDCCH发送的时间位置;
所述发送到所述用户设备的PDCCH的频域位置;
所述发送到所述用户设备的PDCCH的空域位置;
所述发送到所述用户设备的PDCCH的发送图样;
则根据发送到所述用户设备的PDCCH中携带的信息,确定用于发送所述寻呼消息的频域位置和/或空域位置,包括:
根据所述发送到所述用户设备的PDCCH中携带的信息与频域位置标识的对应关系,确定用于发送所述寻呼消息的频域位置;和/或,
根据所述发送到所述用户设备的PDCCH中携带的信息与空域位置标识的对应关系,确定用于发送所述寻呼消息的空域位置。
可选地,图4所示方法中,所述与频域位置相关的辅助信息,包括以下一项或多项:
带宽部分BWP标识,频点值和/或频点标识,带宽值和/或带宽标识,子载波间隔SCS标识,参数配置numerology标识,物理资源块PRB标识,所述用于发送信号的频域位置与参考频点之间的偏移量和/或偏移量标识,所述用于发送信号的频域位置与小区参考PRB之间的PRB偏移量和/或PRB偏移量标识。
可选地,图4所示方法中,所述与空域位置相关的辅助信息,包括以下一项或多项:
波束标识,波束对准共址QCL标识,传输点TRP标识,同步信号块标识,信道状态信息参考信号CSI-RS标识,以及解调参考信号DMRS标识。
可以理解到,以上提供的网络设备侧执行的信号发送方法与前述实施例 中提供的用户设备侧执行的信号接收方法相对应,频域位置和/或空域位置的确定方式、所采用的信息均一致,从而使得网络设备侧能够在相同的频域位置和/或空域位置上进行信号的收发。
在本公开的一些实施例中,用户设备通过在接收信号之前,先确定用于接收信号的频域位置和/或空域位置;相对应地,网络设备在向用户设备发送信号之前,也先确定用于发送信号的频域位置和/或空域位置,因此,当存在多个频域位置和/或多个空域位置时,本公开的一些实施例提供的方法能够实现网络设备向用户设备发送信号,用户设备接收网络设备发出的信号。
本公开的一些实施例还提供了一种用户设备,参见图5所示,所述用户设备包括:
第一位置确定模块301,用于确定用于接收信号的频域位置和/或空域位置;所述频域位置为多个频域位置中的一个或多个,所述空域位置为多个空域位置中的一个或多个;
信号接收模块303,用于在确定出的频域位置和/或空域位置上接收所述信号;
其中,所述信号为提前指示信号、物理下行控制通道PDCCH中携带的信息和寻呼消息中的一种或多种。
可选地,图5所示用户设备中,用于接收信号的频域位置为:包含小区定义同步信息块的带宽部分BWP,用于小区初始接入的BWP,或者包含系统信息的BWP。
可选地,图5所示用户设备中,所述空域位置与波束标识相对应。
可选地,图5所示用户设备中,用于接收信号的空域位置为:
小区定义同步信息块的波束,用于小区初始接入的波束,或者接收系统信息的波束。
可选地,图5所示用户设备中,所述第一位置确定模块,具体包括:
第一位置确定单元,用于根据协议约定的初始化信息,确定用于接收信号的频域位置和/或空域位置;
第二位置确定单元,用于根据接收到的预设默认信息,确定用于接收信号的频域位置和/或空域位置;
第三位置确定单元,用于接收信号接收配置信息,并根据所述信号接收配置信息确定用于接收信号的频域位置和/或空域位置;或者,
第四位置确定单元,用于根据所述用户设备的标识,确定用于接收信号的频域位置和/或空域位置。
可选地,图5所示用户设备中,所述设备还包括:
辅助信息接收模块,用于接收确定所述频域位置所需的与频域位置相关的辅助信息;和/或,接收确定所述空域位置所需的与空域位置相关的辅助信息;
所述第一位置确定模块,具体用于:
还根据所述与频域位置相关的辅助信息和/或与空域位置相关的辅助信息,确定用于接收信号的频域位置和/或空域位置。
可选地,图5所示用户设备中,所述第四位置确定单元,具体用于:
计算所述用户设备的标识与第一数量的第一比值,所述第一数量为一个周期内可用于发送信号的时域资源位置的总数;
对所述第一比值向下取整后,对可以发送所述信号的频域位置的总数进行取模运算,得到所述频域位置的标识信息;和/或,对所述第一比值向下取整后,对可以发送所述信号的空域位置的总数进行取模运算,得到所述空域位置的标识信息;
根据所述频域位置的标识信息,确定用于接收信号的频域位置;和/或根据所述空域位置的标识信息,确定用于接收信号的空域位置。
可选地,图5所示用户设备中,所述第四位置确定单元,具体用于:
计算所述用户设备的标识与第二数量的第二比值,所述第二数量为接收所述信号的周期;
对所述第二比值向下取整后,对可以发送所述信号的频域位置的总数进行取模运算,得到所述频域位置的标识信息;和/或,对所述第二比值向下取整后,对可以发送所述信号的空域位置的总数进行取模运算,得到所述空域位置的标识信息;
根据所述频域位置的标识信息,确定用于接收信号的频域位置;和/或根据所述空域位置的标识信息,确定用于接收信号的空域位置。
可选地,图5所示用户设备中,所述第四位置确定单元,具体用于:
计算所述用户设备的标识与第一数量的第一比值,所述第一数量为一个周期内可用于发送信号的资源位置的总数;
对所述第一比值向下取整后,对可以发送所述信号的频域位置的权重之和进行取模运算,根据满足第一预设条件的x的取值,确定所述频域位置的标识信息;和/或,对所述第一比值向下取整后,对可以发送所述信号的空域位置的权重之和进行取模运算,根据满足第二预设条件的x的取值,确定得到所述空域位置的标识信息;其中,所述第一预设条件为取模运算的结果小于x个所述信号的频域位置的权重的和,和/或,所述第二预设条件为取模运算的结果小于x个所述信号的空域位置的权重的和;
根据所述频域位置的标识信息,确定用于接收信号的频域位置;和/或根据所述空域位置的标识信息,确定用于接收信号的空域位置。
可选地,图5所示用户设备中,当所述信号为物理下行控制通道PDCCH中携带的信息时,所述第一位置确定模块具体用于:
监听位置确定单元,用于确定用于监听所述PDCCH的频域位置和/或空域位置;
则所述信号接收模块具体用于:
在确定出的频域位置和/或空域位置上监听所述PDCCH;
接收所述PDCCH中携带的信息。
可选地,图5所示用户设备中,所述监听位置确定单元,具体用于:
根据接收到的提前指示信号中携带的信息,确定用于监听所述PDCCH的频域位置和/或空域位置。
可选地,图5所示用户设备中,所述接收到的提前指示信号中携带的信息,包括用于指示监听所述PDCCH的频域位置标识和/或空域位置标识的信息;
所述监听位置确定单元,具体用于:
将所指示的监听所述PDCCH的频域位置标识所对应的频域位置,确定为用于监听所述PDCCH的频域位置;和/或,
将所指示的监听所述PDCCH的空域位置标识所对应的空域位置,确定 为用于监听所述PDCCH的空域位置。
可选地,图5所示用户设备中,所述接收到的提前指示信号中携带的信息,包括用于计算频域位置标识的与频域位置相关的辅助信息和/或用于计算空域位置标识的与空域位置相关的辅助信息;
所述监听位置确定单元,具体用于:
根据所述与频域位置相关的辅助信息进行计算,根据计算结果确定所述频域位置标识,将所述频域位置标识所对应的频域位置确定为用于监听所述PDCCH的频域位置;和/或
根据所述与空域位置相关的辅助信息进行计算,根据计算结果确定所述空域位置标识,将所述空域位置标识所对应的空域位置确定为用于监听所述PDCCH的空域位置。
可选地,图5所示用户设备中,所述接收到的提前指示信号中携带的信息,包括以下一项或多项:
所述接收到的提前指示信号的序列分组;
所述接收到的提前指示信号的序列;
所述接收到的提前指示信号发送的时间位置;
所述接收到的提前指示信号的频域位置;
所述接收到的提前指示信号的空域位置;
所述接收到的提前指示信号的发送图样;
则所述监听位置确定单元,具体用于:
根据所述接收到的提前指示信号中携带的信息与频域位置标识的对应关系,确定用于监听所述PDCCH的频域位置;和/或,
根据所述接收到的提前指示信号中携带的信息与空域位置标识的对应关系,确定用于监听所述PDCCH的空域位置。
可选地,图5所示用户设备中,当所述信号为寻呼消息时,所述第一位置确定模块,具体用于:
根据接收到的PDCCH中携带的信息,确定用于接收所述寻呼消息的频域位置和/或空域位置。
可选地,图5所示用户设备中,所述接收到的PDCCH中携带的信息, 包括用于指示接收所述寻呼消息的频域位置标识和/或空域位置标识的信息;
所述第一位置确定模块,具体用于:
将所指示的接收所述寻呼消息的频域位置标识所对应的频域位置,确定为用于接收所述寻呼消息的频域位置;和/或,
将所指示的接收所述寻呼消息的空域位置标识所对应的空域位置,确定为用于接收所述寻呼消息的空域位置。
可选地,图5所示用户设备中,所述接收到的PDCCH中携带的信息,包括用于计算频域位置标识的与频域位置相关的辅助信息和/或用于计算空域位置标识的与空域位置相关的辅助信息;
所述第一位置确定模块,具体用于:
根据所述与频域位置相关的辅助信息进行计算,根据计算结果确定所述频域位置标识,将所述频域位置标识所对应的频域位置确定为用于接收所述寻呼消息的频域位置;和/或
根据所述与空域位置相关的辅助信息进行计算,根据计算结果确定所述空域位置标识,将所述空域位置标识所对应的空域位置确定为用于接收所述寻呼的空域位置。
可选地,图5所示用户设备中,所述接收到的PDCCH中携带的信息,包括以下一项或多项:
所述接收到的PDCCH的序列分组;
所述接收到的PDCCH的序列;
所述接收到的PDCCH发送的时间位置;
所述接收到的PDCCH的频域位置;
所述接收到的PDCCH的空域位置;
所述接收到的PDCCH的发送图样;
根据接收到的PDCCH中携带的信息,确定用于接收所述寻呼消息的频域位置和/或空域位置,包括:
根据所述接收到的PDCCH中携带的信息与频域位置标识的对应关系,确定用于接收所述寻呼消息的频域位置;和/或,
根据所述接收到的PDCCH中携带的信息与空域位置标识的对应关系, 确定用于接收所述寻呼消息的空域位置。
可选地,图5所示用户设备中,所述与频域位置相关的辅助信息,包括以下一项或多项:
带宽部分BWP标识,频点值和/或频点标识,带宽值和/或带宽标识,子载波间隔SCS标识,参数配置numerology标识,物理资源块PRB标识,所述用于接收信号的频域位置与参考频点之间的偏移量和/或偏移量标识,所述用于接收信号的频域位置与小区参考PRB之间的PRB偏移量和/或PRB偏移量标识。
可选地,图5所示用户设备中,所述与空域位置相关的辅助信息,包括以下一项或多项:
波束标识,波束对准共址QCL标识,传输点TRP标识,同步信号块标识,信道状态信息参考信号CSI-RS标识,以及解调参考信号DMRS标识。
可以理解到,本公开的一些实施例提供的用户设备能够实现图1所示方法实施例中用户设备实现的各个过程,关于图1所示实施例信号接收方法中的相关描述均适用于上述用户设备。为避免重复,这里不再赘述。
本公开的一些实施例还提供一种网络设备,参见图6所示,所述网络设备包括:
第二位置确定模块401,用于确定用于发送信号的频域位置和/或空域位置;所述频域位置为多个频域位置中的一个或多个,所述空域位置为多个空域位置中的一个或多个;
信号发送模块403,用于在确定出的频域位置和/或空域位置上发送所述信号;
其中,所述信号为提前指示信号、物理下行控制通道PDCCH中携带的信息和寻呼消息中的一种或多种。
可选地,图6所示网络设备中,用于发送信号的频域位置为:包含小区定义同步信息块的带宽部分BWP,用于小区初始接入的BWP,或者包含系统信息的BWP。
可选地,图6所示网络设备中,所述空域位置与波束标识相对应。
可选地,图6所示网络设备中,用于发送信号的空域位置为:小区定义 同步信息块的波束,用于小区初始接入的波束,或者发送系统信息的波束。
可选地,图6所示网络设备中,所述第二位置确定模块,具体用于:
第一位置确定单元,用于根据协议约定的初始化信息,确定用于发送信号的频域位置和/或空域位置;
第二位置确定单元,用于根据预设默认信息,确定用于发送信号的频域位置和/或空域位置;
第三位置确定单元,用于发送信号发送配置信息,并根据所述信号发送配置信息确定用于发送信号的频域位置和/或空域位置;或者,
第四位置确定单元,用于根据所述用户设备的标识,确定用于发送信号的频域位置和/或空域位置。
可选地,图6所示网络设备中,所述设备还包括:
辅助信息发送模块,用于发送确定所述频域位置所需的与频域位置相关的辅助信息;和/或,发送确定所述空域位置所需的与空域位置相关的辅助信息;
所述第二位置确定模块,具体用于:
还根据所述与频域位置相关的辅助信息和/或与空域位置相关的辅助信息,确定用于发送信号的频域位置和/或空域位置。
可选地,图6所示网络设备中,所述第四位置确定单元,具体用于:
计算所述用户设备的标识与第一数量的第一比值,所述第一数量为一个周期内可用于发送信号的时域资源位置的总数;
对所述第一比值向下取整后,对可以发送所述信号的频域位置的总数进行取模运算,得到所述频域位置的标识信息;和/或,对所述第一比值向下取整后,对可以发送所述信号的空域位置的总数进行取模运算,得到所述空域位置的标识信息;
根据所述频域位置的标识信息,确定用于发送信号的频域位置;和/或根据所述空域位置的标识信息,确定用于发送信号的空域位置。
可选地,图6所示网络设备中,所述第四位置确定单元,具体用于:
计算所述用户设备的标识与第二数量的第二比值,所述第二数量为发送所述信号的周期;
对所述第二比值向下取整后,对可以发送所述信号的频域位置的总数进行取模运算,得到所述频域位置的标识信息;和/或,对所述第二比值向下取整后,对可以发送所述信号的空域位置的总数进行取模运算,得到所述空域位置的标识信息;
根据所述频域位置的标识信息,确定用于发送信号的频域位置;和/或根据所述空域位置的标识信息,确定用于发送信号的空域位置。
可选地,图6所示网络设备中,所述第四位置确定单元,具体用于:
计算所述用户设备的标识与第一数量的第一比值,所述第一数量为一个周期内可用于发送信号的资源位置的总数;
对所述第一比值向下取整后,对可以发送所述信号的频域位置的权重之和进行取模运算,根据满足第一预设条件的x的取值,确定所述频域位置的标识信息;和/或,对所述第一比值向下取整后,对可以发送所述信号的空域位置的权重之和进行取模运算,根据满足第二预设条件的x的取值,确定得到所述空域位置的标识信息;其中,所述第一预设条件为取模运算的结果小于x个所述信号的频域位置的权重的和,和/或,所述第二预设条件为取模运算的结果小于x个所述信号的空域位置的权重的和;
根据所述频域位置的标识信息,确定用于发送信号的频域位置;和/或根据所述空域位置的标识信息,确定用于发送信号的空域位置。
可选地,图6所示网络设备中,当所述信号为物理下行控制通道PDCCH中携带的信息时,所述第二位置确定模块,包括:
监听位置确定单元,用于确定用户设备用于监听所述PDCCH的频域位置和/或空域位置;
所述信号发送模块具体用于:
在确定出的频域位置和/或空域位置上发送所述PDCCH中携带的信息。
可选地,图6所示网络设备中,所述监听位置确定单元,具体用于:
根据发送到所述用户设备的提前指示信号中携带的信息,确定所述用户设备用于监听所述PDCCH的频域位置和/或空域位置。
可选地,图6所示网络设备中,所述发送到所述用户设备的提前指示信号中携带的信息,包括用于指示监听所述PDCCH的频域位置标识和/或空域 位置标识的信息;
所述监听位置确定单元,具体用于:
将所指示的监听所述PDCCH的频域位置标识所对应的频域位置,确定为所述用户设备用于监听所述PDCCH的频域位置;和/或,
将所指示的监听所述PDCCH的空域位置标识所对应的空域位置,确定为所述用户设备用于监听所述PDCCH的空域位置。
可选地,图6所示网络设备中,所述发送到用户设备的提前指示信号中携带的信息,包括用于计算频域位置标识的与频域位置相关的辅助信息和/或用于计算空域位置标识的与空域位置相关的辅助信息;
所述监听位置确定单元,具体用于:
根据所述与频域位置相关的辅助信息进行计算,根据计算结果确定所述频域位置标识,将所述频域位置标识所对应的频域位置确定为所述用户设备用于监听所述PDCCH的频域位置;和/或
根据所述与空域位置相关的辅助信息进行计算,根据计算结果确定所述空域位置标识,将所述空域位置标识所对应的空域位置确定为所述用户设备用于监听所述PDCCH的空域位置。
可选地,图6所示网络设备中,所述发送到所述用户设备的提前指示信号中携带的信息,包括以下一项或多项:
所述发送到所述用户设备的提前指示信号的序列分组;
所述发送到所述用户设备的提前指示信号的序列;
所述发送到所述用户设备的提前指示信号发送的时间位置;
所述发送到所述用户设备的提前指示信号的频域位置;
所述发送到所述用户设备的提前指示信号的空域位置;
所述发送到所述用户设备的提前指示信号的发送图样;
则根据发送到所述用户设备的提前指示信号中携带的信息,确定所述用户设备用于监听所述PDCCH的频域位置和/或空域位置,包括:
根据所述发送到所述用户设备的提前指示信号中携带的信息与频域位置标识的对应关系,确定所述用户设备用于监听所述PDCCH的频域位置;和/或,
根据所述发送到所述用户设备的提前指示信号中携带的信息与空域位置标识的对应关系,确定所述用户设备用于监听所述PDCCH的空域位置。
可选地,图6所示网络设备中,当所述信号为寻呼消息时,所述第二位置确定模块,具体用于:
根据发送到所述用户设备的PDCCH中携带的信息,确定用于发送所述寻呼消息的频域位置和/或空域位置。
可选地,图6所示网络设备中,所述发送到所述用户设备的PDCCH中携带的信息,包括用于指示发送所述寻呼消息的频域位置标识和/或空域位置标识的信息;
所述第二位置确定模块,具体用于:
将所指示的发送所述寻呼消息的频域位置标识所对应的频域位置,确定为用于发送所述寻呼消息的频域位置;和/或,
将所指示的发送所述寻呼消息的空域位置标识所对应的空域位置,确定为用于发送所述寻呼消息的空域位置。
可选地,图6所示网络设备中,所述发送到所述用户设备的PDCCH中携带的信息,包括用于计算频域位置标识的与频域位置相关的辅助信息和/或用于计算空域位置标识的与空域位置相关的辅助信息;
所述第二位置确定模块,具体用于:
根据所述与频域位置相关的辅助信息进行计算,根据计算结果确定所述频域位置标识,将所述频域位置标识所对应的频域位置确定为用于发送所述寻呼消息的频域位置;和/或
根据所述与空域位置相关的辅助信息进行计算,根据计算结果确定所述空域位置标识,将所述空域位置标识所对应的空域位置确定为用于发送所述寻呼的空域位置。
可选地,图6所示网络设备中,所述发送到所述用户设备的PDCCH中携带的信息,包括以下一项或多项:
所述发送到所述用户设备的PDCCH的序列分组;
所述发送到所述用户设备的PDCCH的序列;
所述发送到所述用户设备的PDCCH发送的时间位置;
所述发送到所述用户设备的PDCCH的频域位置;
所述发送到所述用户设备的PDCCH的空域位置;
所述发送到所述用户设备的PDCCH的发送图样;
则根据发送到所述用户设备的PDCCH中携带的信息,确定用于发送所述寻呼消息的频域位置和/或空域位置,包括:
根据所述发送到所述用户设备的PDCCH中携带的信息与频域位置标识的对应关系,确定用于发送所述寻呼消息的频域位置;和/或,
根据所述发送到所述用户设备的PDCCH中携带的信息与空域位置标识的对应关系,确定用于发送所述寻呼消息的空域位置。
可选地,图6所示网络设备中,所述与频域位置相关的辅助信息,包括以下一项或多项:
带宽部分BWP标识,频点值和/或频点标识,带宽值和/或带宽标识,子载波间隔SCS标识,参数配置numerology标识,物理资源块PRB标识,所述用于发送信号的频域位置与参考频点之间的偏移量和/或偏移量标识,所述用于发送信号的频域位置与小区参考PRB之间的PRB偏移量和/或PRB偏移量标识。
可选地,图6所示网络设备中,所述与空域位置相关的辅助信息,包括以下一项或多项:
波束标识,波束对准共址QCL标识,传输点TRP标识,同步信号块标识,信道状态信息参考信号CSI-RS标识,以及解调参考信号DMRS标识。
可以理解到,本公开的一些实施例提供的网络设备能够实现图4所示方法实施例中网络设备实现的各个过程,关于前述实施例中关于信号发送方法以及信号接收方法中相对应的描述均适用于上述网络设备。为避免重复,这里不再赘述。
图7是本公开另一个实施例的用户设备的框图。图7所示的用户设备700包括:至少一个处理器701、存储器702、至少一个网络接口704和用户接口703。用户设备700中的各个组件通过总线系统705耦合在一起。可理解,总线系统705用于实现这些组件之间的连接通信。总线系统705除包括数据总线之外,还包括电源总线、控制总线和状态信号总线。但是为了清楚说明起 见,在图7中将各种总线都标为总线系统705。
其中,用户接口703可以包括显示器、键盘或者点击设备(例如,鼠标,轨迹球(trackball)、触感板或者触摸屏等。
可以理解,本公开的一些实施例中的存储器702可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(Random Access Memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(Static RAM,SRAM)、动态随机存取存储器(Dynamic RAM,DRAM)、同步动态随机存取存储器(Synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(Double Data Rate SDRAM,DDRSDRAM)、增强型同步动态随机存取存储器(Enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(Synch link DRAM,SLDRAM)和直接内存总线随机存取存储器(Direct Ram bus RAM,DRRAM)。本公开的一些实施例描述的系统和方法的存储器702旨在包括但不限于这些和任意其它适合类型的存储器。
在一些实施方式中,存储器702存储了如下的元素,可执行模块或者数据结构,或者他们的子集,或者他们的扩展集:操作系统7021和应用程序7022。
其中,操作系统7021,包含各种系统程序,例如框架层、核心库层、驱动层等,用于实现各种基础业务以及处理基于硬件的任务。应用程序7022,包含各种应用程序,例如媒体播放器(Media Player)、浏览器(Browser)等,用于实现各种应用业务。实现本公开的一些实施例方法的程序可以包含在应用程序7022中。
在本公开的一些实施例中,用户设备还包括:存储在存储器上并可在处理器上运行的计算机程序,计算机程序被处理器执行时实现如下步骤:
确定用于接收信号的频域位置和/或空域位置;所述频域位置为多个频域位置中的一个或多个,所述空域位置为多个空域位置中的一个或多个;
在确定出的频域位置和/或空域位置上接收所述信号;
其中,所述信号为提前指示信号、物理下行控制通道PDCCH中携带的信息和寻呼消息中的一种或多种。
上述本公开的一些实施例揭示的方法可以应用于处理器701中,或者由处理器701实现。处理器701可能是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法的各步骤可以通过处理器701中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器701可以是通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现场可编程门阵列(Field Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本公开的一些实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本公开的一些实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的计算机可读存储介质中。该计算机可读存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。具体地,该计算机可读存储介质上存储有计算机程序,计算机程序被处理器执行时实现如上述信号接收方法实施例的各步骤。
可以理解的是,本公开的一些实施例描述的这些实施例可以用硬件、软件、固件、中间件、微码或其组合来实现。对于硬件实现,处理单元可以实现在一个或多个专用集成电路(Application Specific Integrated Circuits,ASIC)、数字信号处理器(Digital Signal Processing,DSP)、数字信号处理设备(DSP Device,DSPD)、可编程逻辑设备(Programmable Logic Device,PLD)、现场可编程门阵列(Field-Programmable Gate Array,FPGA)、通用处理器、控制器、微控制器、微处理器、用于执行本公开所述功能的其它电子单元或其组合中。
对于软件实现,可通过执行本公开的一些实施例所述功能的模块(例如过程、函数等)来实现本公开的一些实施例所述的技术。软件代码可存储在存 储器中并通过处理器执行。存储器可以在处理器中或在处理器外部实现。
可选的,计算机程序被处理器执行时处理器还可实现如下步骤:
确定用于接收信号的频域位置和/或空域位置;所述频域位置为多个频域位置中的一个或多个,所述空域位置为多个空域位置中的一个或多个;
在确定出的频域位置和/或空域位置上接收所述信号;
其中,所述信号为提前指示信号、物理下行控制通道PDCCH中携带的信息和寻呼消息中的一种或多种。
用户设备700能够实现前述实施例中用户设备实现的各个过程,为避免重复,这里不再赘述。
在本公开的一些实施例中,用户设备通过在接收信号之前,先确定用于接收信号的频域位置和/或空域位置;相对应地,网络设备在向用户设备发送信号之前,也先确定用于发送信号的频域位置和/或空域位置,因此,当存在多个频域位置和/或多个空域位置时,本公开的一些实施例提供的方法能够实现网络设备向用户设备发送信号,用户设备接收网络设备发出的信号。
请参阅图8,图8是本公开的一些实施例应用的网络设备的结构图,能够实现前述实施例中信号发送方法的细节,并达到相同的效果。如图8所示,网络设备2600包括:处理器2601、收发机2602、存储器2603、用户接口2604和总线接口,其中:
在本公开的一些实施例中,网络设备2600还包括:存储在存储器上2603并可在处理器2601上运行的计算机程序,计算机程序被处理器2601执行时处理器2601实现如下步骤:
确定用于发送信号的频域位置和/或空域位置;所述频域位置为多个频域位置中的一个或多个,所述空域位置为多个空域位置中的一个或多个;
在确定出的频域位置和/或空域位置上发送所述信号;
其中,所述信号为提前指示信号、物理下行控制通道PDCCH中携带的信息和寻呼消息中的一种或多种。
在图8中,总线架构可以包括任意数量的互联的总线和桥,具体由处理器2601代表的一个或多个处理器和存储器2603代表的存储器的各种电路链接在一起。总线架构还可以将诸如外围设备、稳压器和功率管理电路等之类 的各种其他电路链接在一起,这些都是本领域所公知的,因此,本文不再对其进行进一步描述。总线接口提供接口。收发机2602可以是多个元件,即包括发送机和接收机,提供用于在传输介质上与各种其他装置通信的单元。针对不同的用户设备,用户接口2604还可以是能够外接内接需要设备的接口,连接的设备包括但不限于小键盘、显示器、扬声器、麦克风、操纵杆等。
处理器2601负责管理总线架构和通常的处理,存储器2603可以存储处理器2601在执行操作时所使用的数据。
可选的,本公开的一些实施例还提供一种用户设备,包括处理器,存储器,存储在存储器上并可在所述处理器上运行的计算机程序,该计算机程序被处理器执行时实现上述信号接收方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
本公开的一些实施例还提供一种计算机可读存储介质,计算机可读存储介质上存储有计算机程序,该计算机程序被处理器执行时实现上述信号接收方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。其中,所述的计算机可读存储介质可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者,如只读存储器(Read-Only Memory,简称ROM)、随机存取存储器(Random Access Memory,简称RAM)、磁碟或者光盘等。
可选的,本公开的一些实施例还提供一种网络设备,包括处理器,存储器,存储在存储器上并可在所述处理器上运行的计算机程序,该计算机程序被处理器执行时处理器实现上述信号发送方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
本公开的一些实施例还提供一种计算机可读存储介质,计算机可读存储介质上存储有计算机程序,该计算机程序被处理器执行时实现上述信号发送方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。其中,所述的计算机可读存储介质可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者,如只读存储器(Read-Only Memory,简称ROM)、随机存取存储器(Random Access Memory,简称RAM)、磁碟或者光盘等。
需要说明的是,在本文中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者装置不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者装置所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括该要素的过程、方法、物品或者装置中还存在另外的相同要素。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到上述实施例方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本公开的技术方案本质上或者说对相关技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台终端(可以是手机,计算机,服务器,空调器,或者网络设备等)执行本公开各个实施例所述的方法。
上面结合附图对本公开的实施例进行了描述,但是本公开并不局限于上述的具体实施方式,上述的具体实施方式仅仅是示意性的,而不是限制性的,本领域的普通技术人员在本公开的启示下,在不脱离本公开宗旨和权利要求所保护的范围情况下,还可做出很多形式,均属于本公开的保护之内。

Claims (45)

  1. 一种信号接收方法,由用户设备执行,所述方法包括:
    确定用于接收信号的频域位置和/或空域位置;所述频域位置为多个频域位置中的一个或多个,所述空域位置为多个空域位置中的一个或多个;
    在确定出的频域位置和/或空域位置上接收所述信号;
    其中,所述信号为提前指示信号、物理下行控制通道PDCCH中携带的信息和寻呼消息中的一种或多种。
  2. 根据权利要求1所述方法,其中,所述频域位置与带宽部分BWP标识相对应。
  3. 根据权利要求1所述方法,其中,用于接收信号的频域位置为:包含小区定义同步信息块的带宽部分BWP,用于小区初始接入的BWP,或者包含系统信息的BWP。
  4. 根据权利要求1所述方法,其中,所述空域位置与波束标识相对应。
  5. 根据权利要求4所述方法,其中,用于接收信号的空域位置为:
    小区定义同步信息块的波束,用于小区初始接入的波束,或者接收系统信息的波束。
  6. 根据权利要求1~5中任一个所述的方法,其中,确定用于接收信号的频域位置和/或空域位置,包括:
    根据协议约定的初始化信息,确定用于接收信号的频域位置和/或空域位置;
    根据接收到的预设默认信息,确定用于接收信号的频域位置和/或空域位置;
    接收信号接收配置信息,并根据所述信号接收配置信息确定用于接收信号的频域位置和/或空域位置;或者,
    根据所述用户设备的标识,确定用于接收信号的频域位置和/或空域位置。
  7. 根据权利要求1~6中任一个所述方法,其中,在确定用于接收信号的频域位置和/或空域位置之前,所述方法还包括:
    接收确定所述频域位置所需的与频域位置相关的辅助信息;和/或,
    接收确定所述空域位置所需的与空域位置相关的辅助信息;
    则确定用于接收信号的频域位置和/或空域位置,包括:
    还根据所述与频域位置相关的辅助信息和/或与空域位置相关的辅助信息,确定用于接收信号的频域位置和/或空域位置。
  8. 根据权利要求6所述方法,其中,根据所述用户设备的标识,确定用于接收信号的频域位置和/或空域位置,包括:
    计算所述用户设备的标识与第一数量的第一比值,所述第一数量为一个周期内可用于发送信号的时域资源位置的总数;
    对所述第一比值向下取整后,对可以发送所述信号的频域位置的总数进行取模运算,得到所述频域位置的标识信息;和/或,对所述第一比值向下取整后,对可以发送所述信号的空域位置的总数进行取模运算,得到所述空域位置的标识信息;
    根据所述频域位置的标识信息,确定用于接收信号的频域位置;和/或根据所述空域位置的标识信息,确定用于接收信号的空域位置。
  9. 根据权利要求6所述方法,其中,根据所述用户设备的标识,确定用于接收信号的频域位置和/或空域位置,包括:
    计算所述用户设备的标识与第二数量的第二比值,所述第二数量为接收所述信号的周期;
    对所述第二比值向下取整后,对可以发送所述信号的频域位置的总数进行取模运算,得到所述频域位置的标识信息;和/或,对所述第二比值向下取整后,对可以发送所述信号的空域位置的总数进行取模运算,得到所述空域位置的标识信息;
    根据所述频域位置的标识信息,确定用于接收信号的频域位置;和/或根据所述空域位置的标识信息,确定用于接收信号的空域位置。
  10. 根据权利要求6所述方法,其中,根据所述用户设备的标识,确定用于接收信号的频域位置和/或空域位置,包括:
    计算所述用户设备的标识与第一数量的第一比值,所述第一数量为一个周期内可用于发送信号的资源位置的总数;
    对所述第一比值向下取整后,对可以发送所述信号的频域位置的权重之 和进行取模运算,根据满足第一预设条件的x的取值,确定所述频域位置的标识信息;和/或,对所述第一比值向下取整后,对可以发送所述信号的空域位置的权重之和进行取模运算,根据满足第二预设条件的x的取值,确定得到所述空域位置的标识信息;其中,所述第一预设条件为取模运算的结果小于x个所述信号的频域位置的权重的和,和/或,所述第二预设条件为取模运算的结果小于x个所述信号的空域位置的权重的和;
    根据所述频域位置的标识信息,确定用于接收信号的频域位置;和/或根据所述空域位置的标识信息,确定用于接收信号的空域位置。
  11. 根据权利要求1~10中任一个所述方法,其中,当所述信号为物理下行控制通道PDCCH中携带的信息时,确定用于接收信号的频域位置和/或空域位置,包括:
    确定用于监听所述PDCCH的频域位置和/或空域位置;
    则在确定出的频域位置和/或空域位置上接收所述信号,包括:
    在确定出的频域位置和/或空域位置上监听所述PDCCH;
    接收所述PDCCH中携带的信息。
  12. 根据权利要求11所述方法,其中,确定用于监听所述PDCCH的频域位置和/或空域位置,包括:
    根据接收到的提前指示信号中携带的信息,确定用于监听所述PDCCH的频域位置和/或空域位置。
  13. 根据权利要求12所述方法,其中,所述接收到的提前指示信号中携带的信息,包括用于指示监听所述PDCCH的频域位置标识和/或空域位置标识的信息;
    则根据接收到的提前指示信号中携带的信息,确定用于监听所述PDCCH的频域位置和/或空域位置,包括:
    将所指示的监听所述PDCCH的频域位置标识所对应的频域位置,确定为用于监听所述PDCCH的频域位置;和/或,
    将所指示的监听所述PDCCH的空域位置标识所对应的空域位置,确定为用于监听所述PDCCH的空域位置。
  14. 根据权利要求12所述方法,其中,所述接收到的提前指示信号中携 带的信息,包括用于计算频域位置标识的与频域位置相关的辅助信息和/或用于计算空域位置标识的与空域位置相关的辅助信息;
    则根据接收到的提前指示信号中携带的信息,确定用于监听所述PDCCH的频域位置和/或空域位置,包括:
    根据所述与频域位置相关的辅助信息进行计算,根据计算结果确定所述频域位置标识,将所述频域位置标识所对应的频域位置确定为用于监听所述PDCCH的频域位置;和/或
    根据所述与空域位置相关的辅助信息进行计算,根据计算结果确定所述空域位置标识,将所述空域位置标识所对应的空域位置确定为用于监听所述PDCCH的空域位置。
  15. 根据权利要求12所述方法,其中,所述接收到的提前指示信号中携带的信息,包括以下一项或多项:
    所述接收到的提前指示信号的序列分组;
    所述接收到的提前指示信号的序列;
    所述接收到的提前指示信号发送的时间位置;
    所述接收到的提前指示信号的频域位置;
    所述接收到的提前指示信号的空域位置;
    所述接收到的提前指示信号的发送图样;
    则根据接收到的提前指示信号中携带的信息,确定用于监听所述PDCCH的频域位置和/或空域位置,包括:
    根据所述接收到的提前指示信号中携带的信息与频域位置标识的对应关系,确定用于监听所述PDCCH的频域位置;和/或,
    根据所述接收到的提前指示信号中携带的信息与空域位置标识的对应关系,确定用于监听所述PDCCH的空域位置。
  16. 根据权利要求1~10中任一个所述方法,其中,当所述信号为寻呼消息时,确定用于接收信号的频域位置和/或空域位置,包括:
    根据接收到的PDCCH中携带的信息,确定用于接收所述寻呼消息的频域位置和/或空域位置。
  17. 根据权利要求16所述方法,其中,所述接收到的PDCCH中携带的 信息,包括用于指示接收所述寻呼消息的频域位置标识和/或空域位置标识的信息;
    则根据接收到的PDCCH中携带的信息,确定用于接收所述寻呼消息的频域位置和/或空域位置,包括:
    将所指示的接收所述寻呼消息的频域位置标识所对应的频域位置,确定为用于接收所述寻呼消息的频域位置;和/或,
    将所指示的接收所述寻呼消息的空域位置标识所对应的空域位置,确定为用于接收所述寻呼消息的空域位置。
  18. 根据权利要求16所述方法,其中,所述接收到的PDCCH中携带的信息,包括用于计算频域位置标识的与频域位置相关的辅助信息和/或用于计算空域位置标识的与空域位置相关的辅助信息;
    则根据接收到的PDCCH中携带的信息,确定用于接收所述寻呼消息的频域位置和/或空域位置,包括:
    根据所述与频域位置相关的辅助信息进行计算,根据计算结果确定所述频域位置标识,将所述频域位置标识所对应的频域位置确定为用于接收所述寻呼消息的频域位置;和/或
    根据所述与空域位置相关的辅助信息进行计算,根据计算结果确定所述空域位置标识,将所述空域位置标识所对应的空域位置确定为用于接收所述寻呼的空域位置。
  19. 根据权利要求16所述方法,其中,所述接收到的PDCCH中携带的信息,包括以下一项或多项:
    所述接收到的PDCCH的序列分组;
    所述接收到的PDCCH的序列;
    所述接收到的PDCCH发送的时间位置;
    所述接收到的PDCCH的频域位置;
    所述接收到的PDCCH的空域位置;
    所述接收到的PDCCH的发送图样;
    则根据接收到的PDCCH中携带的信息,确定用于接收所述寻呼消息的频域位置和/或空域位置,包括:
    根据所述接收到的PDCCH中携带的信息与频域位置标识的对应关系,确定用于接收所述寻呼消息的频域位置;和/或,
    根据所述接收到的PDCCH中携带的信息与空域位置标识的对应关系,确定用于接收所述寻呼消息的空域位置。
  20. 根据权利要求7、14或18所述方法,其中,所述与频域位置相关的辅助信息,包括以下一项或多项:
    带宽部分BWP标识,频点值和/或频点标识,带宽值和/或带宽标识,子载波间隔SCS标识,参数配置numerology标识,物理资源块PRB标识,所述用于接收信号的频域位置与参考频点之间的偏移量和/或偏移量标识,所述用于接收信号的频域位置与小区参考PRB之间的PRB偏移量和/或PRB偏移量标识。
  21. 根据权利要求7、14或18所述方法,其中,所述与空域位置相关的辅助信息,包括以下一项或多项:
    波束标识,波束对准共址QCL标识,传输点TRP标识,同步信号块标识,信道状态信息参考信号CSI-RS标识,以及解调参考信号DMRS标识。
  22. 一种信号发送方法,由网络设备执行,所述方法包括:
    确定用于发送信号的频域位置和/或空域位置;所述频域位置为多个频域位置中的一个或多个,所述空域位置为多个空域位置中的一个或多个;
    在确定出的频域位置和/或空域位置上发送所述信号;
    其中,所述信号为提前指示信号、物理下行控制通道PDCCH中携带的信息和寻呼消息中的一种或多种。
  23. 根据权利要求22所述方法,其中,所述频域位置与带宽部分BWP标识相对应。
  24. 根据权利要求22所述方法,其中,所述空域位置与波束标识相对应。
  25. 根据权利要求22~24中任一个所述方法,其中,确定用于发送信号的频域位置和/或空域位置,包括:
    根据协议约定的初始化信息,确定用于发送信号的频域位置和/或空域位置;
    根据预设默认信息,确定用于发送信号的频域位置和/或空域位置;
    发送信号发送配置信息,并根据所述信号发送配置信息确定用于发送信号的频域位置和/或空域位置;或者,
    根据所述用户设备的标识,确定用于发送信号的频域位置和/或空域位置。
  26. 根据权利要求22~24中任一个所述方法,其中,在确定用于发送信号的频域位置和/或空域位置之前,所述方法还包括:
    发送确定所述频域位置所需的与频域位置相关的辅助信息;和/或,
    发送确定所述空域位置所需的与空域位置相关的辅助信息;
    则确定用于发送信号的频域位置和/或空域位置,包括:
    还根据所述与频域位置相关的辅助信息和/或与空域位置相关的辅助信息,确定用于发送信号的频域位置和/或空域位置。
  27. 根据权利要求26所述方法,其中,所述与频域位置相关的辅助信息,包括以下一项或多项:
    带宽部分BWP标识,频点值和/或频点标识,带宽值和/或带宽标识,子载波间隔SCS标识,参数配置numerology标识,物理资源块PRB标识,所述用于发送信号的频域位置与参考频点之间的偏移量和/或偏移量标识,所述用于发送信号的频域位置与小区参考PRB之间的PRB偏移量和/或PRB偏移量标识。
  28. 根据权利要求26所述方法,其中,所述与空域位置相关的辅助信息,包括以下一项或多项:
    波束标识,波束对准共址QCL标识,传输点TRP标识,同步信号块标识,信道状态信息参考信号CSI-RS标识,以及解调参考信号DMRS标识。
  29. 根据权利要求21~24中任一个所述方法,其中,当所述信号为物理下行控制通道PDCCH中携带的信息时,确定用于发送信号的频域位置和/或空域位置,包括:
    确定用户设备用于监听所述PDCCH的频域位置和/或空域位置;
    则在确定出的频域位置和/或空域位置上发送所述信号,包括:
    在确定出的频域位置和/或空域位置上发送所述PDCCH中携带的信息。
  30. 根据权利要求29所述方法,其中,确定用户设备用于监听所述PDCCH的频域位置和/或空域位置,包括:
    根据发送到所述用户设备的提前指示信号中携带的信息,确定所述用户设备用于监听所述PDCCH的频域位置和/或空域位置。
  31. 根据权利要求21~24中任一个所述方法,其中,当所述信号为寻呼消息时,确定用于发送信号的频域位置和/或空域位置,包括:
    根据发送到所述用户设备的PDCCH中携带的信息,确定用于发送所述寻呼消息的频域位置和/或空域位置。
  32. 一种用户设备,包括:
    第一位置确定模块,用于确定用于接收信号的频域位置和/或空域位置;所述频域位置为多个频域位置中的一个或多个,所述空域位置为多个空域位置中的一个或多个;
    信号接收模块,用于在确定出的频域位置和/或空域位置上接收所述信号;
    其中,所述信号为提前指示信号、物理下行控制通道PDCCH中携带的信息和寻呼消息中的一种或多种。
  33. 根据权利要求32所述的设备,其中,所述频域位置与带宽部分BWP标识相对应。
  34. 根据权利要求32所述设备,其中,所述空域位置与波束标识相对应。
  35. 根据权利要求32~34中任一个所述的设备,其中,所述第一位置确定模块,具体包括:
    第一位置确定单元,用于根据协议约定的初始化信息,确定用于接收信号的频域位置和/或空域位置;
    第二位置确定单元,用于根据接收到的预设默认信息,确定用于接收信号的频域位置和/或空域位置;
    第三位置确定单元,用于接收信号接收配置信息,并根据所述信号接收配置信息确定用于接收信号的频域位置和/或空域位置;或者,
    第四位置确定单元,用于根据所述用户设备的标识,确定用于接收信号的频域位置和/或空域位置。
  36. 根据权利要求32~35中任一个所述的设备,还包括:
    辅助信息接收模块,用于接收确定所述频域位置所需的与频域位置相关的辅助信息;和/或,接收确定所述空域位置所需的与空域位置相关的辅助信 息;
    则所述第一位置确定模块,具体用于:
    还根据所述与频域位置相关的辅助信息和/或与空域位置相关的辅助信息,确定用于接收信号的频域位置和/或空域位置。
  37. 一种网络设备,包括:
    第二位置确定模块,用于确定用于发送信号的频域位置和/或空域位置;所述频域位置为多个频域位置中的一个或多个,所述空域位置为多个空域位置中的一个或多个;
    信号发送模块,用于在确定出的频域位置和/或空域位置上发送所述信号;
    其中,所述信号为提前指示信号、物理下行控制通道PDCCH中携带的信息和寻呼消息中的一种或多种。
  38. 根据权利要求37所述的设备,其中,所述频域位置与带宽部分BWP标识相对应。
  39. 根据权利要求37所述的设备,其中,所述空域位置与波束标识相对应。
  40. 根据权利要求37~39中任一个所述的设备,其中,所述第二位置确定模块,具体用于:
    第一位置确定单元,用于根据协议约定的初始化信息,确定用于发送信号的频域位置和/或空域位置;
    第二位置确定单元,用于根据预设默认信息,确定用于发送信号的频域位置和/或空域位置;
    第三位置确定单元,用于发送信号发送配置信息,并根据所述信号发送配置信息确定用于发送信号的频域位置和/或空域位置;或者,
    第四位置确定单元,用于根据所述用户设备的标识,确定用于发送信号的频域位置和/或空域位置。
  41. 根据权利要求37~39中任一个所述的设备,还包括:
    辅助信息发送模块,用于发送确定所述频域位置所需的与频域位置相关的辅助信息;和/或,发送确定所述空域位置所需的与空域位置相关的辅助信息;
    则所述第二位置确定模块,具体用于:
    还根据所述与频域位置相关的辅助信息和/或与空域位置相关的辅助信息,确定用于发送信号的频域位置和/或空域位置。
  42. 一种用户设备,包括:
    存储器、处理器及存储在所述存储器上并可在所述处理器上运行的计算机程序,所述计算机程序被所述处理器执行时所述处理器实现如权利要求1至21中任一项所述的方法的步骤。
  43. 一种计算机可读存储介质,包括:
    在所述计算机可读存储介质上存储的计算机程序,所述计算机程序被处理器执行时所述处理器实现如权利要求1至21中任一项所述的方法的步骤。
  44. 一种网络设备,包括:
    存储器、处理器及存储在所述存储器上并可在所述处理器上运行的计算机程序,所述计算机程序被所述处理器执行时所述处理器实现如权利要求22至31中任一项所述的方法的步骤。
  45. 一种计算机可读存储介质,包括:
    在所述计算机可读存储介质上存储的计算机程序,所述计算机程序被处理器执行时所述处理器实现如权利要求22至31中任一项所述的方法的步骤。
PCT/CN2019/070366 2018-01-05 2019-01-04 信号接收方法、发送方法、用户设备和网络设备 WO2019134668A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP19736140.5A EP3737140A4 (en) 2018-01-05 2019-01-04 SIGNAL RECEPTION PROCESS, SENDING PROCEDURE, USER EQUIPMENT AND NETWORK EQUIPMENT
US16/960,191 US11546898B2 (en) 2018-01-05 2019-01-04 Signal receiving method, signal transmission method, user equipment, and network device
US18/072,583 US20230091129A1 (en) 2018-01-05 2022-11-30 Signal receiving method, signal transmission method, user equipment, and network device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810012440.7 2018-01-05
CN201810012440.7A CN110011714B (zh) 2018-01-05 2018-01-05 信号接收方法、发送方法、用户设备和网络设备

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US16/960,191 A-371-Of-International US11546898B2 (en) 2018-01-05 2019-01-04 Signal receiving method, signal transmission method, user equipment, and network device
US18/072,583 Continuation US20230091129A1 (en) 2018-01-05 2022-11-30 Signal receiving method, signal transmission method, user equipment, and network device

Publications (1)

Publication Number Publication Date
WO2019134668A1 true WO2019134668A1 (zh) 2019-07-11

Family

ID=67144106

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/070366 WO2019134668A1 (zh) 2018-01-05 2019-01-04 信号接收方法、发送方法、用户设备和网络设备

Country Status (4)

Country Link
US (2) US11546898B2 (zh)
EP (1) EP3737140A4 (zh)
CN (1) CN110011714B (zh)
WO (1) WO2019134668A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BR112020013938A2 (pt) * 2018-01-09 2020-12-01 Guangdong Oppo Mobile Telecommunications Corp., Ltd. método para a configuração de salto de frequência de parte de largura de banda (bwp), dispositivo de rede e terminal
WO2020164142A1 (zh) * 2019-02-15 2020-08-20 Oppo广东移动通信有限公司 同步信号块信息处理方法、装置及通信装置
CN112242889B (zh) * 2019-07-18 2022-07-01 大唐移动通信设备有限公司 下行控制信道的检测方法、传输方法及设备
CN110521275B (zh) * 2019-07-19 2023-08-29 北京小米移动软件有限公司 监听处理、策略下发方法及装置、通信设备及存储
CN113497690A (zh) * 2020-04-03 2021-10-12 展讯通信(上海)有限公司 参考信号确定方法、装置、电子设备及存储介质
WO2024092747A1 (en) * 2022-11-04 2024-05-10 Qualcomm Incorporated Number of spatial domain bases reporting for multiple transmission reception points

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010105461A1 (zh) * 2009-03-16 2010-09-23 中兴通讯股份有限公司 资源指示方法和终端
CN103716895A (zh) * 2012-09-29 2014-04-09 中兴通讯股份有限公司 物理随机接入信道的资源确定方法及装置
CN106454901A (zh) * 2016-11-04 2017-02-22 维沃移动通信有限公司 下行控制信道的检测方法、指示方法、终端及网络侧设备
CN107371242A (zh) * 2016-05-12 2017-11-21 华为技术有限公司 一种数据传输方法、网络设备及用户设备

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130286960A1 (en) * 2012-04-30 2013-10-31 Samsung Electronics Co., Ltd Apparatus and method for control channel beam management in a wireless system with a large number of antennas
CN103582140B (zh) 2012-07-27 2018-10-23 中兴通讯股份有限公司 物理混合重传请求校验指示信道的发送方法、装置及系统
CN103686689B (zh) * 2012-09-12 2017-11-07 华为技术有限公司 一种设备到设备通信中通信终端的发现方法及通信终端
US9903937B2 (en) * 2014-08-18 2018-02-27 Qualcomm Incorporated Using known geographical information in directional wireless communication systems
EP3197209B1 (en) 2014-09-21 2019-08-14 LG Electronics Inc. Method and device for performing fast fallback in order to avoid link disconnection in wireless access system supporting millimeter wave (mmwave)
US10644780B2 (en) 2015-04-20 2020-05-05 Telefonaktiebolaget Lm Ericsson (Publ) Methods and devices for broadcast transmission and reception
EP3354081B1 (en) * 2015-09-25 2019-11-06 Sony Corporation Wireless telecommunications system
AU2017310429A1 (en) * 2016-08-10 2019-02-28 Idac Holdings, Inc. Methods for flexible resource usage
US11184877B2 (en) * 2017-03-22 2021-11-23 Idac Holdings, Inc. Beamformed paging transmission
CN114362908B (zh) * 2017-08-06 2023-06-20 Lg电子株式会社 在无线通信系统中用于接收或发送信号的方法和设备

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010105461A1 (zh) * 2009-03-16 2010-09-23 中兴通讯股份有限公司 资源指示方法和终端
CN103716895A (zh) * 2012-09-29 2014-04-09 中兴通讯股份有限公司 物理随机接入信道的资源确定方法及装置
CN107371242A (zh) * 2016-05-12 2017-11-21 华为技术有限公司 一种数据传输方法、网络设备及用户设备
CN106454901A (zh) * 2016-11-04 2017-02-22 维沃移动通信有限公司 下行控制信道的检测方法、指示方法、终端及网络侧设备

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3737140A4 *

Also Published As

Publication number Publication date
US20210068085A1 (en) 2021-03-04
EP3737140A4 (en) 2021-01-27
EP3737140A1 (en) 2020-11-11
US20230091129A1 (en) 2023-03-23
US11546898B2 (en) 2023-01-03
CN110011714B (zh) 2021-06-15
CN110011714A (zh) 2019-07-12

Similar Documents

Publication Publication Date Title
WO2019134668A1 (zh) 信号接收方法、发送方法、用户设备和网络设备
WO2020156318A1 (zh) 节能模式的切换方法、节能模式的配置方法及通信设备
WO2018171449A1 (zh) 一种寻呼方法及装置
US11503543B2 (en) Signal transmission method and device
US11950245B2 (en) Method and device for cross carrier scheduling physical downlink shared channel
WO2019137427A1 (zh) 上报用户设备能力和资源调度方法、用户设备和网络设备
CN110167035B (zh) 波束管理方法、终端、网络设备以及存储介质
US11483045B2 (en) Method and device of transmitting and receiving reference signal
WO2021155742A1 (zh) 信号传输方法及装置
KR20150128346A (ko) 무선 통신 전자장치에서 자동 링크 변경 방법 및 장치
WO2020063768A1 (zh) 唤醒信号发送、接收方法、装置、基站、终端和存储介质
WO2019134615A1 (zh) 寻呼位置或驻留位置的确定方法和设备
US10999796B2 (en) System information sending method, system information update method, and device
CN110121203B (zh) 通信方法和通信装置
TW202002695A (zh) 一種下行控制通道的檢測方法及裝置、終端設備
TWI784996B (zh) 用於傳輸信息的方法、終端設備和網絡設備
WO2020221130A1 (zh) 节能参数的发送方法、接收方法及设备
US10999887B2 (en) Data sending method, data receiving method, and device
CN110446252B (zh) 用于定向lbt的能量阈值确定方法、定向lbt方法及装置、存储介质、终端、基站
WO2019184696A1 (zh) 配置物理下行控制信道的方法、用户设备和网络侧设备
WO2021088022A1 (zh) 一种信号监听方法、发送方法、终端设备、网络设备
WO2020034969A1 (zh) 信号传输方法、波束确定方法及其装置
WO2022206740A1 (zh) 波束切换方法、装置及存储介质
WO2019034101A1 (zh) 网络配置参数的有效取值确定方法、用户终端、基站以及网络配置参数的有效取值确定系统
WO2017132957A1 (zh) 传输上行信息的方法、用户设备、基站和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19736140

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019736140

Country of ref document: EP

Effective date: 20200805