WO2019134625A1 - 移动设备的防护电路、移动设备 - Google Patents

移动设备的防护电路、移动设备 Download PDF

Info

Publication number
WO2019134625A1
WO2019134625A1 PCT/CN2018/125519 CN2018125519W WO2019134625A1 WO 2019134625 A1 WO2019134625 A1 WO 2019134625A1 CN 2018125519 W CN2018125519 W CN 2018125519W WO 2019134625 A1 WO2019134625 A1 WO 2019134625A1
Authority
WO
WIPO (PCT)
Prior art keywords
circuit
mobile device
input
present disclosure
oxide semiconductor
Prior art date
Application number
PCT/CN2018/125519
Other languages
English (en)
French (fr)
Inventor
林雪
刘立婷
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2019134625A1 publication Critical patent/WO2019134625A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H3/00Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection
    • H02H3/20Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection responsive to excess voltage
    • H02H3/22Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection responsive to excess voltage of short duration, e.g. lightning
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H9/00Emergency protective circuit arrangements for limiting excess current or voltage without disconnection
    • H02H9/04Emergency protective circuit arrangements for limiting excess current or voltage without disconnection responsive to excess voltage
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H9/00Emergency protective circuit arrangements for limiting excess current or voltage without disconnection
    • H02H9/04Emergency protective circuit arrangements for limiting excess current or voltage without disconnection responsive to excess voltage
    • H02H9/045Emergency protective circuit arrangements for limiting excess current or voltage without disconnection responsive to excess voltage adapted to a particular application and not provided for elsewhere
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0029Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits

Definitions

  • the present disclosure relates to, but is not limited to, the field of circuits.
  • the charging port protection of the portable rechargeable terminal product usually adopts a varistor, a general transient suppression diode (TVS) or a transient protection diode, a TVS capable of supporting transient protection, and the like.
  • TVS general transient suppression diode
  • a transient protection diode TVS capable of supporting transient protection, and the like.
  • the power chip and the charging chip are damaged.
  • the protocol standard There is no clear requirement for the protection of the transient shock of each charger.
  • the situation of mixing the charger is very common. From the actual situation of the failure analysis, there is an over-energy damage of the charging port. This damage can be overpressure or overcurrent. It may be a DC overvoltage or a transient overvoltage.
  • Due to different power grid conditions, the charging port protocol is not uniform. The requirements for overvoltage protection of various types of chargers on the market are not uniform. The user has mixed chargers. The protection of charging ports of portable devices has not been effectively solved.
  • Embodiments of the present disclosure provide a protection circuit and a mobile device of a mobile device to at least solve the technical problem of low DC withstand voltage of a power port in the related art.
  • a protection circuit for a mobile device comprising: a financial oxide semiconductor transistor including a source connected to an input terminal, a drain connected to the output terminal, and a ground resistance connected a gate electrode; and a parasitic capacitance connected between the gate and the source of the financial oxide semiconductor transistor and configured to turn off the financial oxide semiconductor transistor when the input terminal receives the shock signal.
  • a mobile device including a guard circuit in accordance with the present disclosure.
  • FIG. 1 is a structural diagram of a guard circuit of a mobile device in accordance with an embodiment of the present disclosure
  • FIG. 2 is a circuit configuration diagram in accordance with an embodiment of the present disclosure
  • FIG. 3 is a connection diagram of a power input terminal placed at a charging port in accordance with an embodiment of the present disclosure
  • FIG. 4 is a layout view of a power input terminal placed at a charging port in accordance with an embodiment of the present disclosure
  • FIG. 5 is a connection diagram of an input port placed in a battery according to an embodiment of the present disclosure
  • FIG. 6 is a layout view of an input port placed in a battery in accordance with an embodiment of the present disclosure.
  • the method used in the related art is to increase the transient protection circuit.
  • Such circuits typically include TVS devices, Fast Voltage Protection (OVP) devices, and the like.
  • TVS devices use a diode process to meet high transient protection requirements.
  • the transient starting voltage is as small as possible.
  • a small transient starting voltage means a lower operating voltage, but the operating voltage cannot be too small, and it must be sufficient between the input power source and the charger. The margin may otherwise cause TVS device breakdown. It can be seen that the TVS device has a higher transient protection capability, but the DC withstand voltage level is lower.
  • the duration of transient shock is on the microsecond level. If there is a fast enough overvoltage protection device that can achieve millisecond response speed, the transient shock signal will be blocked by the OVP device and will not be transmitted to the back segment. The circuit, in turn, protects. This is also the basic principle of OVP device operation. OVP devices are typically fabricated using a financial oxide semiconductor (MOS) transistor (hereinafter referred to as a MOS transistor) with a high DC withstand voltage level. However, with the MOS tube process for direct transient protection, the occupied chip area will be larger. Therefore, the advantage of the OVP protection circuit is that the DC resistance is higher, and the disadvantage is that the transient protection capability is low.
  • MOS financial oxide semiconductor
  • the related technology adopts one big and one small TVS and then OVP to achieve, but the layout area is large and the cost is high.
  • FIG. 1 is a structural diagram of a protection circuit of a mobile device according to an embodiment of the present disclosure.
  • a protection circuit of a mobile device according to an embodiment of the present disclosure includes a financial oxide semiconductor transistor (MOS transistor) including a source connected to the input terminal, a drain connected to the output terminal, and a gate connected to the ground resistance; and a parasitic capacitance connected to the gate of the MOS transistor Between the pole and the source, and configured to disconnect the MOS transistor when the shock signal is received at the input.
  • MOS transistor financial oxide semiconductor transistor
  • a slow start circuit is formed by using a parasitic capacitance connected between the gate and the source of the MOS transistor.
  • the source of the MOS transistor has a transient shock signal, due to the parasitic capacitance and the presence of the gate-to-ground pull-down resistor of the MOS transistor, the MOS transistor is turned off in a short time, so that the source is The transient impact is isolated by the MOS tube and is not transmitted to the subsequent stage circuit connected to the output terminal, thereby solving the technical problem of low DC withstand voltage of the power port in the related art, and the circuit layout area is small and the cost is low.
  • the breakdown voltage of the MOS transistor determines the DC withstand voltage level of the protection circuit
  • the combination of the parasitic capacitance and the gate pull-down resistor determines the response time of the transient protection.
  • the withstand voltage level of the MOS tube can reach 20 to 30V or even higher, which is much higher than the DC withstand voltage level of the TVS device in the related art, and is comparable to the withstand voltage level of the OVP device.
  • the parasitic capacitance is usually pf level, and the MOS tube's gate-to-ground pull-down ohm-ohm resistor can achieve a response speed of milliseconds, which can initiate isolation of transient signals.
  • the input may be a voltage input terminal VBUS of a universal serial bus (USB).
  • USB universal serial bus
  • the parasitic capacitance may also be configured to turn on the MOS transistor when the impact signal falls back.
  • the output may be coupled to a power circuit of the mobile device.
  • a guard circuit according to an embodiment of the present disclosure may be applied to protection of a charging port.
  • the input is connected to the power input of the charging interface of the mobile device.
  • the power supply circuit may include at least one of a power management chip and a charging chip.
  • a guard circuit according to an embodiment of the present disclosure may be applied to protection of a battery port.
  • the input is connected to the input port of the battery of the mobile device.
  • the power circuit can include a power management chip.
  • the input port of the input end and the battery of the mobile device can be connected through a filter circuit.
  • the embodiment also provides a mobile device provided with a protection circuit according to various embodiments of the present disclosure.
  • the protection circuit according to an embodiment of the present disclosure can implement transient protection using a device of a high DC withstand voltage process.
  • the device of the high DC withstand voltage process can be a MOS transistor or the like.
  • a slow start circuit is formed by the parasitic capacitance connected between the gate and the source of the MOS transistor.
  • the MOS transistor When the source of the MOS transistor (which can be connected to, for example, the VBUS terminal) has a transient shock signal, the MOS transistor is in a short time due to the parasitic capacitance and the presence of the gate-to-ground pull-down resistor of the MOS transistor. The disconnected state, so that the transient shock of the source will be isolated by the MOS tube and will not be transmitted to the subsequent circuit.
  • the breakdown voltage of the MOS transistor determines the DC withstand voltage level of the circuit, and the combination of the parasitic capacitance and the gate pull-down resistance of the MOS transistor determines the response time of the transient protection.
  • the withstand voltage level of the MOS tube can reach 20 to 30V or even higher, which is much higher than the DC withstand voltage level of the TVS device, and is comparable to the withstand voltage level of the OVP device.
  • the parasitic capacitance is usually pf level, and the MOS tube's gate-to-ground pull-down ohm-ohm resistor can achieve a response speed of milliseconds, which can initiate isolation of transient signals.
  • the circuit shown in FIG. 2 includes a circuit composed of a MOS (eg, PMOS) transistor D1 and a resistor R1.
  • the gate G of the MOS transistor is connected to ground through a resistor R1, and the source is S is connected to the power supply VBUS of the charging port, and the drain D is connected to the subsequent stage circuit.
  • the capacitor C1 shown in FIG. 2 can be the parasitic capacitance of the MOS transistor.
  • the power supply VBUS has a stable voltage
  • the gate G passes through the pull-down resistor, so that the MOS transistor is in an on state
  • the output terminal VOUT supplies the voltage of the VBUS-I*Rds to the subsequent stage circuit, where I is a current.
  • the current through the MOS transistor, Rds is the resistance between the drain D and the source S.
  • the loop through the parasitic capacitor C1 and the resistor R1 causes the voltage of the gate G to be instantaneously raised, exceeding the threshold of the breakdown voltage, and the MOS transistor is in an open state, so that the voltage VBUS is The transient shock is not transmitted to the output VOUT and the subsequent stage circuit.
  • the voltage of the gate G gradually falls back with the discharge loop formed by the resistor R1 and the parasitic capacitor C1.
  • the MOS transistor is turned on, and the output terminal VOUT returns to the normal voltage and outputs. Give the latter circuit.
  • the protection circuit according to the embodiment of the present disclosure can also buffer the overshoot voltage of the charging device during the insertion, and the mechanism of action and the mechanism of the transient impact protection are the same.
  • D1 in the protection circuit shown in FIG. 2 may be a MOS transistor or a switching circuit having a function similar to that of the MOS transistor.
  • a guard circuit in accordance with an embodiment of the present disclosure may be placed at the power input of the charging port and may be applied to the protection of the charging port.
  • 3 is a connection diagram of a power input terminal placed at a charging port in accordance with an embodiment of the present disclosure
  • FIG. 4 is a layout view of a power input terminal placed at a charging port in accordance with an embodiment of the present disclosure.
  • the latter circuit can be a power management chip, or a charging chip or other power supply circuit (only the power management chip is illustrated in the figure).
  • Other filtering and other circuit forms may also exist between the guard circuit (ie, the transient protection circuit) and the charging port in accordance with an embodiment of the present disclosure.
  • the guard circuit according to an embodiment of the present disclosure may also be placed at the input port of the battery and may be applied to the protection of the battery port.
  • 5 is a connection diagram of an input port placed in a battery according to an embodiment of the present disclosure
  • FIG. 6 is a layout view of an input port placed in a battery according to an embodiment of the present disclosure.
  • the latter circuit can be a power management chip or other power supply circuit.
  • Other filtering and other circuit forms may also exist between the guard circuit (ie, the transient protection circuit) and the battery positive port in accordance with embodiments of the present disclosure.
  • a DC withstand voltage and a high transient protection index of the power port can be achieved, the reliability of the product can be improved, and the layout area and cost can be reduced.
  • the related art requires two TVS devices with larger packages, and the protection circuit according to an embodiment of the present disclosure requires only one MOS transistor and one resistor.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Semiconductor Integrated Circuits (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
  • Emergency Protection Circuit Devices (AREA)

Abstract

本公开提供了一种移动设备的防护电路和移动设备,其中,移动设备的防护电路包括:金融氧化物半导体晶体管,其包括与输入端连接的源极、与输出端连接的漏极、以及与接地电阻连接的栅极;以及寄生电容,其连接在所述金融氧化物半导体晶体管的栅极和源极之间,并且构造为在所述输入端接收到冲击信号时,断开所述金融氧化物半导体晶体管。

Description

移动设备的防护电路、移动设备 技术领域
本公开涉及(但不限于)电路领域。
背景技术
相关技术中,便携可充电终端产品的充电端口防护,通常采用压敏电阻、普通瞬态抑制二极管(TVS)或瞬态防护二极管、可支持瞬态防护的TVS等。在实际情况中,经常会出现电源芯片和充电芯片相关引脚损坏的故障。目前充电端口的物理形态以及协议标准没有统一的标准,各家的充电器对瞬态冲击的防护能力也没有明确要求,混用充电器的情况非常普遍。从失效分析的实际情况来看,存在充电端口的过能量损坏。这种损坏可能是过压,也可能是过流。可能是直流过压,也可能是瞬态过压。由于各地电网情况不同,充电端口协议不统一,市场上各类充电器对过压防护的要求不统一,用户存在混用充电器的情况等,便携设备充电端口的防护一直没有有效解决方案。
发明内容
本公开实施例提供了一种移动设备的防护电路和移动设备,以至少解决相关技术中电源端口直流耐压低的技术问题。
根据本公开的一个实施例,提供了一种移动设备的防护电路,包括:金融氧化物半导体晶体管,其包括与输入端连接的源极、与输出端连接的漏极、以及与接地电阻连接的栅极;以及寄生电容,其连接在所述金融氧化物半导体晶体管的栅极和源极之间,并且构造为在所述输入端接收到冲击信号时,断开所述金融氧化物半导体晶体管。
根据本公开的另一个实施例,提供了一种移动设备,包括根据本公开的防护电路。
附图说明
此处所说明的附图用来提供对本公开的进一步理解,构成本公 开的一部分,本公开的示意性实施例及其说明用于解释本公开,并不构成对本公开的不当限定。在附图中:
图1是根据本公开实施例的移动设备的防护电路的结构图;
图2是根据本公开实施例的电路结构图;
图3是根据本公开实施例的置于充电口的电源输入端的连接图;
图4是根据本公开实施例的置于充电口的电源输入端的布局图;
图5是根据本公开实施例的置于电池的输入端口的连接图;以及
图6是根据本公开实施例的置于电池的输入端口的布局图。
具体实施方式
下文中将参考附图并结合实施例来详细说明本公开。需要说明的是,在不冲突的情况下,本公开中的实施例及实施例中的特征可以相互组合。
需要说明的是,本公开的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。
针对充电端口导致的电源芯片损坏,相关技术中采用的方法是增加瞬态防护电路。这类电路通常包括TVS器件,快速过电压保护(Over Voltage Protection,OVP)器件等。
TVS器件采用二极管工艺,可以满足较高的瞬态防护要求。但由于工艺限制,TVS器件的工作电压和瞬态启动电压之间有一个压差。从瞬态防护的角度,希望瞬态启动电压越小越好,较小的瞬态启动电压意味着较低的工作电压,但是工作电压不能过小,要和充电器输入电源之间要保证足够的余量,否则可能会导致TVS器件击穿。可以看出,TVS器件有较高的瞬态防护能力,但是直流耐压水平偏低。
瞬态冲击的维持时间是在微秒级别的,如果有一种足够快速的过压保护的器件,能够达到毫秒级别的响应速度,那么瞬态冲击信号会被OVP器件阻隔,不会传递到后段电路,进而起到保护作用。这也是OVP器件工作的基本原理。OVP器件通常采用金融氧化物半导体 (MOS)晶体管(下文中简称为MOS管)工艺,直流耐压水平较高。但是用MOS管工艺来做直接的瞬态防护,占用的芯片面积会较大。所以OVP防护电路的优点是直流耐水平压较高,缺点是瞬态防护能力较低。
如果要同时满足直流耐压和瞬态防护都较高的需求,相关技术采用一大一小两颗TVS再配合OVP来实现,但是布局面积较大且成本较高。
在本实施例中提供了一种移动设备的防护电路,图1是根据本公开实施例的移动设备的防护电路的结构图,如图1所示,根据本公开实施例的移动设备的防护电路包括:金融氧化物半导体晶体管(MOS管),其包括与输入端连接的源极、与输出端连接的漏极、以及与接地电阻连接的栅极;以及寄生电容,其连接在MOS管的栅极和源极之间,并且构造为在输入端接收到冲击信号时,断开MOS管。
本实施例的方案,利用连接在MOS管的栅极和源极间的寄生电容,组成了一个缓启动电路。当MOS管的源极有瞬态的冲击信号时,由于寄生电容和MOS管的栅极对地下拉电阻的存在,会使得MOS管在短时间内处于断开(open)状态,这样源极的瞬态冲击就会被MOS管隔离,不会传递到输出端所连接的后级电路,从而解决了相关技术中电源端口直流耐压低的技术问题,并且电路布局面积小,成本低。
在本实施例中,MOS管的击穿电压决定了防护电路的直流耐压水平,寄生电容和栅极下拉电阻的组合,决定了瞬态防护的响应时间。MOS管的耐压水平可以达到20至30V,甚至更高,远远高于相关技术中TVS器件的直流耐压水平,并且与OVP器件的耐压水平相当。寄生电容通常是pf级别的,和MOS管的栅极对地下拉的千欧级电阻配合,可以达到毫秒级别的响应速度,能够对瞬态信号启动隔离作用。
根据本公开实施例,输入端可以为通用串行总线(USB)的电压输入端VBUS。
根据本公开实施例,寄生电容还可以构造为,在冲击信号回落时,导通MOS管。
根据本公开实施例,输出端可以与移动设备的电源电路连接。
根据本公开实施例的防护电路可以应用在充电端口的防护。在此情况下,输入端与移动设备的充电接口的电源输入端连接。电源电路可以包括电源管理芯片和充电芯片中的至少之一。
根据本公开实施例的防护电路可以应用在电池端口的防护。在此情况下,输入端与移动设备的电池的输入端口连接。电源电路可以包括电源管理芯片。输入端与移动设备的电池的输入端口可以通过滤波电路连接。
本实施例还提供了一种移动设备,该移动设备设置有根据本公开各实施例的防护电路。
下面,用于结合具体场景对本公开进行详细说明。
根据本公开实施例的防护电路可以用高直流耐压工艺的器件来实现瞬态防护。高直流耐压工艺的器件可以是MOS管或其他类似器件。利用连接在MOS管的栅极和源极间的寄生电容,组成了一个缓启动电路。当MOS管的源极(其可以连接到,例如,VBUS端)有瞬态的冲击信号时,由于寄生电容和MOS管的栅极对地下拉电阻的存在,会使得MOS管在短时间内处于断开状态,这样源极的瞬态冲击就会被MOS管隔离,不会传递到后级电路。MOS管的击穿电压电压决定了电路的直流耐压水平,寄生电容和MOS管的栅极下拉电阻的组合,决定了瞬态防护的响应时间。MOS管的耐压水平可以达到20至30V,甚至更高,远远高于TVS器件的直流耐压水平,并且与OVP器件的耐压水平相当。寄生电容通常是pf级别的,和MOS管的栅极对地下拉的千欧级电阻配合,可以达到毫秒级别的响应速度,能够对瞬态信号启动隔离作用。
图2是根据本公开实施例的电路结构图,如图2所示的电路包括MOS(如PMOS)管D1和电阻R1构成的电路,MOS管的栅极G通过电阻R1连接到地,源极S连接到充电口的电源VBUS,漏极D连接到后级电路。图2中所示的电容C1可以为MOS管的寄生电容。
正常工作情况下,电源VBUS有稳定的电压,栅极G通过下拉的电阻,使得MOS管处于导通状态,输出端VOUT将VBUS-I*Rds的电压提供给后级电路,其中,I为流过MOS管的电流,Rds为漏极D与源极S之间的电阻。
当电源VBUS上有瞬态冲击的时候,通过寄生电容C1和电阻R1的回路会使得栅极G的电压被瞬间抬升,超出击穿电压的门限,MOS管处于断开的状态,这样电压VBUS上的瞬态冲击不会传递到输出端VOUT及后级电路。栅极G的电压会随着电阻R1和寄生电容C1构成的放电回路逐渐回落,当回落电压达到并低于击穿电压电压的时候,MOS管导通,输出端VOUT会恢复到正常电压并输出给后级电路。
根据本公开实施例的防护电路还可以对充电设备插入瞬间的过冲电压起到缓冲作用,其作用机理和瞬态冲击防护机理相同。
图2所示的防护电路中的D1可以是MOS管,也可以是和MOS管具体相似功能的开关电路。
根据本公开实施例的防护电路可以置于充电口的电源输入端,并且可以应用在充电端口的防护。图3是根据本公开实施例的置于充电口的电源输入端的连接图,并且图4是根据本公开实施例的置于充电口的电源输入端的布局图。后级电路可以是电源管理芯片,也可以是充电芯片或其他电源电路(图中仅示意了电源管理芯片)。在根据本公开实施例的防护电路(即,瞬态防护电路)和充电端口之间,也可以存在其他的滤波等电路形式。
根据本公开实施例的防护电路也可以置于电池的输入端口,并且可以应用在电池端口的防护。图5是根据本公开实施例的置于电池的输入端口的连接图,并且图6是根据本公开实施例的置于电池的输入端口的布局图。后级电路可以是电源管理芯片,也可以是其他的电源电路。在根据本公开实施例的防护电路(即,瞬态防护电路)和电池正极端口之间,也可以存在其他的滤波等电路形式。
根据本公开实施例的防护电路,可以实现电源端口较高的直流耐压和较高的瞬态防护指标,提升产品的可靠性,并且可以减小布局面积和成本。相关技术需要两颗封装较大的TVS器件,而根据本公开实施例的防护电路只需要一颗MOS管和一颗电阻。
以上仅为本公开的实施例,并不用于限制本公开,对于本领域的技术人员来说,本公开可以有各种更改和变化。对于本公开所作的任何修改、等同替换、改进等,均应包含在本公开的保护范围之内。

Claims (10)

  1. 一种移动设备的防护电路,包括:
    金融氧化物半导体晶体管,其包括与输入端连接的源极、与输出端连接的漏极、以及与接地电阻连接的栅极;以及
    寄生电容,其连接在所述金融氧化物半导体晶体管的栅极和源极之间,并且构造为在所述输入端接收到冲击信号时,断开所述金融氧化物半导体晶体管。
  2. 根据权利要求1所述的防护电路,其中,所述输入端为通用串行总线的电压输入端。
  3. 根据权利要求1所述的防护电路,其中,所述寄生电容还构造为,在所述冲击信号回落时,导通所述金融氧化物半导体晶体管。
  4. 根据权利要求1所述的防护电路,其中,所述输出端与所述移动设备的电源电路连接。
  5. 根据权利要求4所述的防护电路,其中,所述输入端与所述移动设备的充电接口的电源输入端连接。
  6. 根据权利要求5所述的防护电路,其中,所述电源电路包括以下至少之一:电源管理芯片,充电芯片。
  7. 根据权利要求4所述的防护电路,其中,所述输入端与所述移动设备的电池的输入端口连接。
  8. 根据权利要求7所述的防护电路,其中,所述电源电路包括电源管理芯片。
  9. 根据权利要求7所述的防护电路,其中,所述输入端与所述移动设备的电池的输入端口通过滤波电路连接。
  10. 一种移动设备,包括根据权利要求1至9中任一项所述的防护电路。
PCT/CN2018/125519 2018-01-03 2018-12-29 移动设备的防护电路、移动设备 WO2019134625A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810005704.6A CN109995007A (zh) 2018-01-03 2018-01-03 移动设备的防护电路、移动设备
CN201810005704.6 2018-01-03

Publications (1)

Publication Number Publication Date
WO2019134625A1 true WO2019134625A1 (zh) 2019-07-11

Family

ID=67128441

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/125519 WO2019134625A1 (zh) 2018-01-03 2018-12-29 移动设备的防护电路、移动设备

Country Status (2)

Country Link
CN (1) CN109995007A (zh)
WO (1) WO2019134625A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115799001A (zh) * 2022-11-09 2023-03-14 东方博沃(北京)科技有限公司 一种继电器驱动装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070285854A1 (en) * 2006-06-08 2007-12-13 Cypress Semiconductor Corp. Programmable Electrostatic Discharge (ESD) Protection Device
CN201260063Y (zh) * 2008-08-01 2009-06-17 青岛海信宽带多媒体技术股份有限公司 基于单供电电压的过压保护电路及具有该电路的电器设备
CN202309051U (zh) * 2011-05-30 2012-07-04 深圳市格莱德科技有限公司 一种耗尽型pHEMT芯片的ESD保护电路
CN205039517U (zh) * 2015-08-27 2016-02-17 南京亚士德科技有限公司 过压保护电路

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN203243032U (zh) * 2013-03-29 2013-10-16 青岛海信移动通信技术股份有限公司 一种供电防过冲保护电路及移动终端

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070285854A1 (en) * 2006-06-08 2007-12-13 Cypress Semiconductor Corp. Programmable Electrostatic Discharge (ESD) Protection Device
CN201260063Y (zh) * 2008-08-01 2009-06-17 青岛海信宽带多媒体技术股份有限公司 基于单供电电压的过压保护电路及具有该电路的电器设备
CN202309051U (zh) * 2011-05-30 2012-07-04 深圳市格莱德科技有限公司 一种耗尽型pHEMT芯片的ESD保护电路
CN205039517U (zh) * 2015-08-27 2016-02-17 南京亚士德科技有限公司 过压保护电路

Also Published As

Publication number Publication date
CN109995007A (zh) 2019-07-09

Similar Documents

Publication Publication Date Title
US10333321B2 (en) Overvoltage and overcurrent protection circuit and mobile terminal
US10148084B2 (en) Overvoltage protection circuit for USB interface
CN102202117B (zh) 一种具有usb接口的电子设备及其usb通信启动方法
US11404867B2 (en) Overvoltage protection apparatus and method
KR20200143458A (ko) Vbus 대 cc 단락 보호가 통합된 usb 타입-c/pd 컨트롤러
US20190138071A1 (en) Hot plug module power supply device, method and system
US9088158B2 (en) Reverse voltage condition protection in a power supply system
CN103545803B (zh) 设备电源接口电路保护装置
US20210359532A1 (en) Charging circuit and electronic device
US6573768B2 (en) Power-on circuit of a peripheral component
US11368013B2 (en) Overcurrent protection circuit and method thereof for USB with a power delivery function
WO2017114134A1 (zh) 电机保护电路和控制电机保护电路的方法
EP3484002A1 (en) Electrostatic protection circuit
WO2019019505A1 (zh) 一种抑制浪涌电流的电路结构
CN106532867A (zh) 一种充电电路及移动终端
WO2020119531A1 (zh) 电源接口的浪涌保护电路、终端和浪涌电压泄放方法
WO2019134625A1 (zh) 移动设备的防护电路、移动设备
CN110445216B (zh) 一种充电芯片
CN110417087B (zh) 一种充电芯片
CN208971379U (zh) 一种防过冲保护电路
CN204681073U (zh) 数据及充电传输接口保护电路
CN210431388U (zh) 一种USB Type-C的CC引脚电路
TWI505602B (zh) 用來對電池進行充放電的晶片及用來保護電池免於過度充放電傷害的保護電路
CN203707847U (zh) 一种电池放电管理系统
CN104184104B (zh) 一种过流保护自动恢复电路

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18897881

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 16/11/2020)

122 Ep: pct application non-entry in european phase

Ref document number: 18897881

Country of ref document: EP

Kind code of ref document: A1