WO2019134451A1 - 显示面板及其驱动方法 - Google Patents

显示面板及其驱动方法 Download PDF

Info

Publication number
WO2019134451A1
WO2019134451A1 PCT/CN2018/115742 CN2018115742W WO2019134451A1 WO 2019134451 A1 WO2019134451 A1 WO 2019134451A1 CN 2018115742 W CN2018115742 W CN 2018115742W WO 2019134451 A1 WO2019134451 A1 WO 2019134451A1
Authority
WO
WIPO (PCT)
Prior art keywords
transparent
display
electric field
display panel
substrate
Prior art date
Application number
PCT/CN2018/115742
Other languages
English (en)
French (fr)
Inventor
孙海雁
苗浩
李锐
张鹏举
朱红
刘明星
Original Assignee
京东方科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司 filed Critical 京东方科技集团股份有限公司
Publication of WO2019134451A1 publication Critical patent/WO2019134451A1/zh
Priority to US16/580,446 priority Critical patent/US11079622B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/50OLEDs integrated with light modulating elements, e.g. with electrochromic elements, photochromic elements or liquid crystal elements
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/0102Constructional details, not otherwise provided for in this subclass
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/0121Operation of devices; Circuit arrangements, not otherwise provided for in this subclass
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/19Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on variable-reflection or variable-refraction elements not provided for in groups G02F1/015 - G02F1/169
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/805Electrodes
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/133342Constructional arrangements; Manufacturing methods for double-sided displays
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2201/00Constructional arrangements not provided for in groups G02F1/00 - G02F7/00
    • G02F2201/44Arrangements combining different electro-active layers, e.g. electrochromic, liquid crystal or electroluminescent layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/10Transparent electrodes, e.g. using graphene
    • H10K2102/101Transparent electrodes, e.g. using graphene comprising transparent conductive oxides [TCO]
    • H10K2102/103Transparent electrodes, e.g. using graphene comprising transparent conductive oxides [TCO] comprising indium oxides, e.g. ITO
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/805Electrodes

Definitions

  • the present disclosure relates to the field of display technologies, and in particular, to a display panel and a driving method thereof.
  • both the front and the back can display the image content, and the user can see the scene behind the device through the screen, which can enhance the sense of reality, and thus has received extensive attention.
  • some embodiments of the present disclosure provide a display panel, including: a transparent display substrate; a pair of box substrates disposed opposite the transparent display substrate; and a transparent display substrate and the pair of cassette substrates An interfacial layer, the dimming layer configured to at least partially transmit light or at least partially reflect light under the action of an electric field.
  • the dimming layer comprises: a transparent filler and a reflector dispersed in the transparent filler; the reflectors are configured to be aligned in a direction parallel to the electric field under an electric field.
  • the reflector is a sheet-like reflector, and a plane direction of the sheet-like reflector is parallel to the direction of the electric field under an electric field.
  • the display panel further includes: a first driving electrode and a second driving electrode disposed on a side of the pair of card substrates facing the transparent display substrate; the first driving electrode and the second The drive electrodes are each formed of a transparent conductive material; the first drive electrode and the second drive electrode form an electric field.
  • the first driving electrode and the second driving electrode are configured to form a first electric field, and a direction of the first electric field is parallel to a surface direction of the transparent display substrate to control the reflector
  • the transparent fillers are arranged in a direction parallel to a plane of the transparent display substrate.
  • the first driving electrode is disposed in the same layer as the second driving electrode.
  • the transparent display substrate comprises: a plurality of display units arranged in an array; the pair of cassette substrates are divided into a plurality of sub-regions corresponding to the display unit, and each of the sub-regions is provided with one The first driving electrode and one of the second driving electrodes.
  • the transparent display substrate further includes: a transparent cover; the display unit is disposed on a side of the transparent cover plate facing the pair of the substrate; each of the display units comprises: sequentially away from the transparent a first transparent electrode of the cover plate, a light emitting functional layer and a second transparent electrode; the pair of the substrate is a transparent array substrate; each of the subregions is provided with a driving unit, and the driving unit is configured to control the The display unit emits light.
  • the transparent display substrate further includes: a transparent cover plate, a first transparent electrode, a light emitting function layer, and a second transparent electrode, which are sequentially disposed on a side of the transparent cover plate facing the pair of the card substrate; a transparent electrode is disposed in a crossover manner with the second transparent electrode, and the light emitting function layer is located in an intersection of the first transparent electrode and the second transparent electrode; the light emitting function layer and the first transparent electrode Forming the display unit with the second transparent electrode; the pair of cassette substrates are transparent substrates.
  • At least one of the first driving electrode and the second driving electrode is configured to form a second electric field with the second transparent electrode; a direction of the second electric field is perpendicular to the transparent display a surface direction of the substrate to control the reflection of the reflectors in the transparent filler in a direction perpendicular to a plane perpendicular to the transparent display substrate.
  • the reflector is a graphene oxide sheet.
  • the thickness of the light adjustment layer is 2 ⁇ m to 5 ⁇ m.
  • the display panel further includes: a support located between the transparent display substrate and the pair of cassette substrates.
  • the display panel further includes: a sealant between the transparent display substrate and the pair of cassette substrates, the sealant is configured to seal the light adjustment layer.
  • some embodiments of the present disclosure further provide a driving method of the foregoing display panel, the driving method comprising: controlling, by an electric field, the dimming layer to at least partially transmit light or reflect light to implement the display panel.
  • the driving method comprising: controlling, by an electric field, the dimming layer to at least partially transmit light or reflect light to implement the display panel.
  • controlling the light control layer to at least partially transmit light or reflect light by an electric field to realize single-sided display or transparent display of the display panel including: at the first driving electrode Forming a first electric field with the second driving electrode, the direction of the first electric field being parallel to a plane direction of the transparent display substrate to control the reflector to be parallel to the transparent in the transparent filler
  • the display substrate is arranged in the surface direction, and the light emitted from the transparent display substrate is emitted from one surface close to the counter substrate, and then reflected by the reflective object to realize single-sided display of the display panel.
  • the controlling the light control layer to at least partially transmit light or reflect light by an electric field to achieve single-sided display or transparent display of the display panel, including: in the first driving Forming a second electric field between at least one of the electrode and the second driving electrode and the second transparent electrode in the transparent display substrate, the direction of the second electric field being perpendicular to a surface of the transparent display substrate a direction for controlling the reflectors to be arranged in the transparent filler in a direction perpendicular to a surface of the transparent display substrate, such that light emitted by the transparent display substrate is emitted from a side close to the pair of the substrate
  • the dimming layer realizes transparent display of the display panel.
  • FIG. 1( a ) is a schematic structural diagram of a display panel according to some embodiments of the present disclosure, in which a transparent display mode is illustrated;
  • FIG. 1(b) is a schematic structural diagram of a display panel according to some embodiments of the present disclosure, showing a private display mode
  • FIG. 1(c) is a schematic structural diagram of a display panel according to some embodiments of the present disclosure, showing a partially transparent display and a partially private display mode;
  • FIG. 2 is a schematic view showing the arrangement of graphene oxide sheets in the direction of an electric field
  • FIG. 3 is a schematic structural diagram of a display unit of a display panel according to some embodiments of the present disclosure.
  • FIG. 4 is a schematic diagram of a display mode when a display panel is not working according to some embodiments of the present disclosure
  • FIG. 5 is a schematic diagram showing a private display mode of the display panel shown in FIG. 4;
  • FIG. 6 is a schematic view showing a transparent display mode of the display panel shown in FIG. 4.
  • the transparent display device When the transparent display device is displayed as, for example, a window on a building or a vehicle (for example, a billboard), the transparent display device is displayed on both sides due to its high transparency, resulting in a function of preventing the anti-spy display. During the user's use, the transparent display device cannot realize free switching in different demand modes of private display and transparent display.
  • a display panel as a transparent display device provided by some embodiments of the present disclosure is described in detail below.
  • all terms (including technical and scientific terms) used in some embodiments of the present disclosure have the same meaning as commonly understood by one of ordinary skill in the art to which this disclosure belongs. It should also be understood that terms such as those defined in the ordinary dictionary should be interpreted as having meanings consistent with their meaning in the context of the related art, and not interpreted in an idealized or extremely formalized meaning unless explicitly stated herein. This is defined as such.
  • the terms “first,” “second,” and similar terms are used to refer to any order, quantity, or importance, and are merely used to distinguish different components.
  • the word “comprising” or “comprises” or the like means that the element or item preceding the word is intended to be in the
  • the terms “upper/upper”, “lower/lower”, “row/row direction”, and “column/column direction” indicate the orientation or positional relationship based on the orientation or positional relationship shown in the drawings, only for convenience. The simplification of the description of the embodiments of the present disclosure is not to be construed as limiting or limiting the scope of the present disclosure.
  • some embodiments of the present disclosure provide a display panel including: a transparent display substrate 10 and a counter substrate 20 disposed opposite to each other, and a transparent display substrate
  • the dimming layer 30 between the substrate 10 and the counter substrate 20; the dimming layer 30 is configured to at least partially transmit light or at least partially reflect light under the action of an electric field.
  • Light emitted from a light-emitting region of the transparent display substrate 10 may be emitted from both sides close to the light-adjusting layer 30 and away from the light-adjusting layer 30, respectively.
  • the light modulating layer 30 when the light modulating layer 30 is permeable to light by an electric field, light emitted from the transparent display substrate 10 can be transmitted from the light modulating layer 30 and passed through the counter substrate 20, so that The user can simultaneously view the screen displayed on the transparent display substrate 10 on both sides of the transparent display substrate 10 and the counter substrate 20 (for example, a mirrored screen, one side displays a normal screen, and the other side displays a mirror image)
  • external light can also pass through the transparent display substrate 10, the light control layer 30 and the counter substrate 20, so that the user can see the scene behind the display panel, thereby achieving an open transparent display effect.
  • the light control layer 30 when the light control layer 30 can reflect light under the action of an electric field, a part of the light emitted from the transparent display substrate 10 is directly emitted from the side of the transparent display substrate remote from the light control layer 30, and the other portion is The light-adjusting layer 30 reflects and is again emitted from the side of the transparent display substrate remote from the light-adjusting layer 30.
  • the person located on the side closer to the counter substrate 20 cannot see the screen displayed on the transparent display substrate 10, and the user on the side of the transparent display panel 10 can perform operations such as inputting a password on the transparent display substrate 10 at this time, thereby The personal information can be prevented from leaking.
  • the external light cannot pass through the dimming layer 30, the user does not see the scene behind the display panel while viewing the transparent display substrate 10, thereby achieving a privacy-proof display. effect.
  • the ambient light intensity of the display panel is relatively high.
  • the effect of the reflective display can be achieved, that is, the display brightness when the transparent display substrate 10 side is used as the one-sided screen is effectively improved, thereby improving the quality of the display screen.
  • the dimming layer 30 partially transmits light and partially reflects light under the action of an electric field, and the dimming layer 30 integrally transmits light and integrally reflects light, respectively.
  • FIG. 1(a) and FIG. 1(b) are described, and details are not described herein again.
  • the display panel provided by some embodiments of the present disclosure can control the dimming layer 30 to transmit light or reflect light by adjusting the electric field, thereby enabling free switching in different user demand modes of private display and transparent display, or both private display and transparent display.
  • the display panel In order to make the display panel have a function of anti-spy display and a variety of display modes, thereby improving the user experience.
  • the dimming layer 30 includes: a transparent filler and a reflector dispersed in the transparent filler; wherein the reflectors are configured to be aligned in a direction parallel to the electric field under the action of an electric field.
  • the transparent filler may be a transparent liquid injected into the opposing space between the transparent display substrate 10 and the counter substrate 20 so that the reflector is free to deflect in the transparent liquid under the action of the electric field force.
  • the reflector may be a two-dimensional conductive material, such as a graphene oxide sheet, the microstructure of which is shown in Fig. 2, which is in the form of a sheet-like two-dimensional structure, which is neglected because of its extremely small thickness.
  • the long axis X of the graphene oxide sheet is deflected in the direction of the electric field (as indicated by the arrow in Fig. 2), and in the microscopic state, the plane direction of the graphene oxide sheet is parallel to the direction of the electric field.
  • the plane direction of the graphene oxide sheet refers to the plane of the graphene oxide sheet, that is, the plane of the graphene oxide sheet itself is parallel to the direction of the electric field. At this time, the graphene oxide sheet is in an equilibrium state in the electric field.
  • the direction of the sheet-like graphene oxide sheet can be controlled by changing the direction of the applied electric field, thereby controlling the light transmission property, so that the dimming layer 30 exhibits different effects of transmitting light or reflecting light.
  • the Brodie method, the Staudenmaier method, and the Hummers method may be employed, wherein the Hummers method further includes a modified Hummers method, a super-assisted Hummers method, and the like to prepare a suspension of a single-layer graphene oxide sheet.
  • graphene oxide Compared to graphene, graphene oxide has an oxygen functional group added to the structure.
  • the oxygen functional group can form an sp 3 electron orbit, which affects the sp 2 electron orbital formed between the carbon atoms in the graphene main structure, and the oxygen functional group added between the carbon atom and the carbon atom is divided into carbons of different sizes.
  • the clusters of macromolecules have a major impact on the interaction between carbon atoms and electron transport properties.
  • the graphene oxide sheet has a certain carboxyl group and a hydroxyl group in the plane. After the carboxyl group and the hydroxyl group are hydrolyzed, the surface of the molecule has a certain negative charge, and the electrostatic repulsion between the molecules can cause the nematic phase to appear in the liquid.
  • the graphene oxide sheet has the above characteristics: when an applied electric field is applied to the graphene oxide sheet, the surface thereof generates a surface current along the long axis X direction, which is deflected by the electric field force and finally stabilizes.
  • the direction of the major axis is parallel to the direction of the electric field, that is, the graphene oxide sheets are arranged in such a manner that their plane directions are parallel to the direction of the electric field.
  • the two-dimensional conductive material can be presented in different arrangements to achieve different effects of light transmission (ie, passing) or reflection (ie, blocking).
  • the graphene oxide sheet is deflected to the direction of the surface in the transparent filler. Display the substrate perpendicular to the transparent. Since the dimension in the thickness direction of the graphene oxide sheet is small compared to the dimension in the sheet surface direction, light can be emitted from between the graphene oxide sheets in the vertical direction of the arrangement of the graphene oxide sheets, thereby allowing the dimming layer 30 to pass through. The effect of light.
  • the graphene oxide sheet When the direction of the electric field is parallel to the plane direction of the display panel, that is, the horizontal electric field, the graphene oxide sheet is deflected in the transparent filler to the direction of the self plane parallel to the transparent display substrate. Since the graphene oxide sheet itself is opaque, the light is reflected when it is irradiated into the sheet-like surface of the graphene oxide sheet, thereby achieving the effect of causing the light-adjusting layer 30 to reflect light.
  • the thickness of the light control layer 30 is, for example, 2 ⁇ m to 5 ⁇ m.
  • the reflective objects for example, graphene oxide sheets
  • the thickness is thin, so that the dimming layer 30 can exhibit a certain transparency. Since the material of each layer in the transparent display substrate 10 and the counter substrate 20 is composed of a transparent or translucent film, the display panel as a whole exhibits high transparency, and is applied as a window to display scenes such as indoors and windows.
  • the display panel of some embodiments of the present disclosure further includes: a support 40 located between the transparent display substrate 10 and the counter substrate 20, and
  • the sealant 50 is configured to seal the dimming layer 30. Since the transparent filler in the dimming layer 30 can be a transparent liquid and the dimming layer 30 is entirely liquid, the support for the transparent display substrate 10 and the counter substrate 20 on both sides of the liquid dimming layer 30 is provided.
  • a support 40 and a sealant 50 are provided.
  • the support 40 is uniformly dispersed in the opposing space between the transparent display substrate 10 and the counter substrate 20, and the sealant 50 is disposed around the entire dimming layer 30.
  • the transparent display substrate 10 is a self-luminous OLED (Organic Light-Emitting Display) display substrate on which an electrode structure such as an anode or a cathode is disposed.
  • an electrode structure such as an anode or a cathode is disposed.
  • the electrode structure for forming the control electric field is disposed on the counter substrate 20.
  • the display panel further includes first and second driving electrodes 21 and 22 spaced apart from each other on a side surface of the substrate substrate 20 adjacent to the transparent display substrate 10.
  • the first driving electrode 21 and the second driving electrode 22 are each formed of a transparent conductive material (for example, ITO or the like), and the first driving electrode 21 and the second driving electrode 22 form an electric field.
  • the first driving electrode 21 and the second driving electrode 22 in some embodiments of the present disclosure extend along the length direction of the display panel.
  • first driving electrode 21 and the second driving electrode 22 are disposed on the same layer on the counter substrate 20, thereby forming a horizontal electric field parallel to the plane direction of the display panel between the two electrodes.
  • the first driving electrode 21 and the second driving electrode 22 may be flat plate electrodes, both of which are smaller in size with respect to the spacing therebetween, so that the electric field formed between the first driving electrode and the second driving electrode is negligible.
  • a non-uniform electric field is formed to control the parallel arrangement of the reflectors.
  • the graphene oxide sheet is in a non-uniform electric field formed by the first driving electrode 21 and the second driving electrode 22, and each point on the plane of the graphene oxide sheet is deflected by different electric field forces due to different electric field strengths.
  • the final graphene oxide sheet is in an equilibrium state, that is, a state in which the potentials at respective points on the plane are the same or a plane thereof is parallel to the plane of the transparent display substrate 10.
  • the first driving electrode 21 and the second driving electrode 22 may also be arranged in different layers to form an ADS (Advanced Super Dimensional Switching).
  • a field field of a liquid crystal display panel of the field conversion technique to control at least a portion of the reflectors to be arranged in parallel.
  • the first driving electrode 21 and the second driving electrode 22 are disposed in the same layer; the first driving electrode 21 and the second driving electrode 22 are configured to be configured A first electric field is formed, the direction of the first electric field being parallel to the plane direction of the transparent display substrate 10, that is, the horizontal horizontal electric field, to control the reflection of the reflectors in the transparent filler in a direction parallel to the plane of the transparent display substrate.
  • the plane direction of the transparent display substrate 10 refers to the plane of the transparent display substrate 10.
  • the manner of the same layer arrangement includes, but is not limited to, the outermost surface of the counter substrate 20 adjacent to the light adjustment layer 30 shown in FIG. 3, which can satisfy that both the first driving electrode 21 and the second driving electrode 22 are on the same layer. It is sufficient to form a horizontal horizontal electric field with each other.
  • the transparent display substrate 10 includes: a plurality of display units arranged in an array; and the opposite substrate substrate 20 opposite to the transparent display substrate 10 is divided into a plurality of sub-regions corresponding to the respective display units, each sub-region A first driving electrode 21 and a second driving electrode 22 are disposed therein, that is, a pair of electrodes are disposed in each sub-area.
  • the first driving electrode 21 and the second driving electrode 22 can be evenly distributed on the entire counter substrate 20 to provide a more uniform horizontal electric field for the dimming layer 30;
  • the specific requirement is that a voltage is applied to the first driving electrode 21 and the second driving electrode 22 in a certain preset area, that is, a horizontal electric field is formed only in the preset area, so that the dimming layer 30 only corresponds to the preset area. The light is reflected and the rest of the area is still permeable to light.
  • the preset area may be, for example, an area for inputting a password set on the transparent display substrate 10 to prevent the user from leaking information when the password is input, without affecting the normal transparent display of the remaining areas on the transparent display substrate 10. Therefore, the users on both sides of the display panel can obtain the corresponding viewing experience, and further expand the application scenario of the transparent display panel.
  • the display panel is an active drive type transparent display panel.
  • the transparent display substrate 10 further includes: a transparent cover 11; the display unit is disposed on a side of the transparent cover 11 adjacent to the counter substrate 20; each display unit includes: firstly away from the transparent cover 11 in sequence The transparent electrode 12, the illuminating functional layer and the second transparent electrode 13; correspondingly, the counter substrate 20 is a transparent array substrate; each sub-area is provided with a driving unit, and the driving unit is configured to control the display unit to emit light.
  • the structure of the transparent array substrate can follow the related art, and the driving unit is a transparent or translucent TFT (Thin Film Transistor) that controls the display unit to emit light.
  • TFT Thin Film Transistor
  • the first transparent electrode 12 and the second transparent electrode 13 are mutually cathode and anode in the OLED device.
  • the anode needs to be electrically connected to the drain in the driving unit to receive a corresponding display signal, so in order to facilitate signal transmission, in some embodiments of the present disclosure, close to the side of the counter substrate 20
  • the second transparent electrode 13 is an anode
  • the opposite first transparent electrode 12 is a cathode.
  • the second transparent electrode 13 ie, the anode
  • the driving unit in the counter substrate 20 can be electrically connected to the driving unit in the counter substrate 20 through a metal connection structure such as a peripheral trace.
  • the light-emitting function layer may include, but is not limited to, the following structure: an electron injection layer/electron transmission sequentially away from the transparent cover 11 Layer 14, light-emitting layer, and hole transport layer/hole injection layer 15.
  • the first transparent electrode 12 may be a transparent and translucent electrode such as a thin Mg-Ag (magnesium-silver) alloy; the second transparent electrode 13 may be a transparent electrode such as ITO (Indium Tin Oxide);
  • the layer/electron transport layer 14 may employ an organic compound having a higher excited state level and a derivative material thereof; the hole transport layer/hole injection layer 15 may employ an organic compound having a higher hole mobility and a lower free potential. And its derivatives, such as aromatic amines, carbazole and other materials.
  • each of the display units includes three sub-pixels of R/G/B, and R, G, and B are respectively labeled as emitting layers of red, green, and blue light.
  • the R/G/B light-emitting layer material may be selected from organic small molecules or polymer materials.
  • the display panel may also be a transparent drive type transparent display panel having a relatively simple structure.
  • the transparent display substrate 10 further includes: a transparent cover plate, a first transparent electrode sequentially disposed on a side of the transparent cover plate adjacent to the counter substrate, a light emitting function layer, and a second transparent electrode; the first transparent electrode and the second transparent electrode The light emitting function layer is located in an intersection of the first transparent electrode and the second transparent electrode; the light emitting function layer, the first transparent electrode and the second transparent electrode constitute a display unit.
  • the counter substrate 20 opposed to the transparent display substrate 10 is a transparent substrate, and it is not necessary to provide a driving unit.
  • the dimming layer 30 when the dimming layer 30 is required to transmit light, that is, to achieve normal transparent display, at least one of the first driving electrode 21 and the second driving electrode 22 on the counter substrate 20 can be configured to be transparent.
  • the second transparent electrode 13 on the display substrate 10 forms a second electric field; the direction of the second electric field is perpendicular to the plane direction of the transparent display substrate, that is, a vertical electric field is formed to control the reflection of the reflector in the transparent filler along the plane perpendicular to the transparent display substrate Arrange in the direction of the face.
  • a complete transparent state of the display panel shown in part (a) of FIG. 1 is achieved by forming a vertical electric field passing through the dimming layer 30 between the electrodes on both sides of the dimming layer 30.
  • the reflector is a graphene oxide sheet and the transparent display substrate 10 is an OLED device is described in detail below for describing in detail the manner in which the display panel is freely switched under different user requirements.
  • the display panel when the display panel is not working, since the thickness of the light adjustment layer is thin, only 2 ⁇ m to 5 ⁇ m, the graphene oxide sheets 31 are arranged in a scattered manner, and light can be transmitted from the light control layer, so that dimming is performed.
  • the layer exhibits a certain degree of transparency. Since each layer of the transparent display substrate 10 and the counter substrate 20 is composed of a transparent or translucent film, the display panel can be made to have a high transparency, and can be applied as a window to display scenes such as indoors and windows.
  • an electric field is formed between the first transparent electrode 12 and the second transparent electrode 13 for controlling the R/G/B light-emitting layer to emit light to achieve a display effect.
  • different voltages are applied to the first driving electrode 21 and the second driving electrode 22 to form a horizontal electric field therebetween, so that the surface of the graphene oxide sheet generates a surface current along the long axis direction, thereby causing deflection thereof.
  • the graphene oxide sheets are thus stabilized in the direction of the parallel electric field, that is, the planes thereof in FIG. 5 are arranged in parallel to the plane direction of the transparent display substrate 10.
  • the side (ie, the front surface) of the display panel on the transparent display substrate 10 is the visible side
  • the side (ie, the back surface) on the counter substrate 20 is the invisible side.
  • the brightness of the screen can be effectively improved, and the visual effect can be improved.
  • the back view is viewed, the back surface is displayed in a bright state due to the reflection of the dimming layer, so that the screen content displayed on the transparent display substrate 10 cannot be viewed, thereby achieving the anti-peep display. Effect.
  • the formed horizontal electric field and vertical electric field can be used as the back display switch of the transparent display substrate 10, thereby adjusting the back display switch according to the specific needs of the user, and achieving free switching of different modes of transparent display and private display.
  • Some embodiments of the present disclosure further provide a driving method of the above display panel, the driving method comprising: controlling, by an electric field, the dimming layer 30 to at least partially transmit light or at least partially reflect light to realize single-sided display or transparency of the display panel. Display (displayed on both sides).
  • a first electric field (ie, a horizontal electric field) may be formed between the first driving electrode 21 and the second driving electrode 22, and a direction of the first electric field is parallel to a surface direction of the transparent display substrate 10 to control the reflective object to be transparent.
  • the fillers are arranged in a direction parallel to the surface of the transparent display substrate 10, and the light emitted from the transparent display substrate 10 is emitted from the surface close to the counter substrate 20, and is reflected by the reflector to realize single-sided display of the display panel.
  • a second electric field ie, a vertical electric field
  • the reflectors are arranged in the transparent filler in a direction perpendicular to the surface of the transparent display substrate, so that the light emitted from the transparent display substrate 10 is emitted from the side close to the counter substrate 20
  • the light layer 30 realizes transparent display of the display panel.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Optics & Photonics (AREA)
  • General Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Electrochromic Elements, Electrophoresis, Or Variable Reflection Or Absorption Elements (AREA)

Abstract

一种显示面板及其驱动方法。该显示面板包括:相对设置的透明显示基板与对盒基板,以及设置于所述透明显示基板与所述对盒基板之间的调光层;所述调光层被配置为在电场作用下至少部分透过光线或至少部分反射光线。

Description

显示面板及其驱动方法
本公开要求于2018年1月2日提交中国专利局、申请号为201810001704.9、申请名称为“一种显示面板及其驱动方法”的中国专利申请的优先权,其全部内容通过引用并入本公开中。
技术领域
本公开涉及显示技术领域,尤其涉及一种显示面板及其驱动方法。
背景技术
透明显示器件在显示画面时,正面与背面均能够显示图像内容,并使得用户能够透过屏幕看到器件背后的场景,可使现实感增强,因而受到广泛关注。
发明内容
一方面、本公开一些实施例提供了一种显示面板,包括:透明显示基板;与所述透明显示基板相对设置的对盒基板;以及,设置于所述透明显示基板与所述对盒基板之间的调光层,所述调光层被配置为在电场作用下至少部分透过光线或至少部分反射光线。
可选的,所述调光层包括:透明填充物和分散在所述透明填充物中的反射物;所述反射物被配置为在电场作用下沿平行于电场方向排列。
可选的,所述反射物为片状反射物,在电场作用下所述片状反射物的面方向平行于所述电场方向。
可选的,所述显示面板还包括:设置在所述对盒基板朝向所述透明显示基板一侧间隔开的第一驱动电极与第二驱动电极;所述第一驱动电极与所述第二驱动电极均由透明导电材料构成;所述第一驱动电极与所述第二驱动电极形成电场。
可选的,所述第一驱动电极与所述第二驱动电极被配置成形成第一电场,所述第一电场的方向平行于所述透明显示基板的面方向,以控制所述反射物在所述透明填充物中沿平行于所述透明显示基板的 面方向排列。
可选的,所述第一驱动电极与所述第二驱动电极同层设置。
可选的,所述透明显示基板包括:呈阵列排布的多个显示单元;所述对盒基板划分有与所述显示单元对应的多个子区域,每个所述子区域内均设置有一个所述第一驱动电极与一个所述第二驱动电极。
可选的,所述透明显示基板还包括:透明盖板;所述显示单元设置在所述透明盖板朝向所述对盒基板的一侧;每个所述显示单元包括:依次远离所述透明盖板的第一透明电极、发光功能层和第二透明电极;所述对盒基板为透明阵列基板;每个所述子区域内均设置有驱动单元,所述驱动单元被配置成控制所述显示单元发光。
可选的,所述透明显示基板还包括:透明盖板、依次设置在所述透明盖板朝向所述对盒基板一侧的第一透明电极、发光功能层和第二透明电极;所述第一透明电极与所述第二透明电极呈交叉设置,所述发光功能层位于所述第一透明电极与所述第二透明电极的交叉区域内;所述发光功能层、所述第一透明电极与所述第二透明电极构成所述显示单元;所述对盒基板为透明衬底。
可选的,所述第一驱动电极与所述第二驱动电极中的至少一者被配置成与所述第二透明电极形成第二电场;所述第二电场的方向垂直于所述透明显示基板的面方向,以控制所述反射物在所述透明填充物中沿垂直于所述透明显示基板的面方向排列。
可选的,所述反射物为氧化石墨烯片。
可选的,所述调光层的厚度为2μm~5μm。
可选的,所述显示面板还包括:位于所述透明显示基板与所述对盒基板之间的支撑物。
可选的,所述显示面板还包括:位于所述透明显示基板与所述对盒基板之间的封框胶,所述封框胶被配置成密封所述调光层。
另一方面、本公开一些实施例还提供了一种上述显示面板的驱动方法,所述驱动方法包括:通过电场控制所述调光层至少部分透过光线或反射光线,以实现所述显示面板的单面显示或透明显示。
作为一种可选的方式,所述通过电场控制所述调光层至少部分透过光线或反射光线,以实现所述显示面板的单面显示或透明显示,包括:在所述第一驱动电极与所述第二驱动电极之间形成第一电场,所述第一电场的方向平行于所述透明显示基板的面方向,以控制所述反射物在所述透明填充物中平行于所述透明显示基板的面方向排列,使所述透明显示基板发出的光从靠近所述对盒基板的一面射出后被所述反射物反射,实现所述显示面板的单面显示。
作为另一种可选的方式,所述通过电场控制所述调光层至少部分透过光线或反射光线,以实现所述显示面板的单面显示或透明显示,包括:在所述第一驱动电极与所述第二驱动电极中的至少一者与所述透明显示基板中的所述第二透明电极之间形成第二电场,所述第二电场的方向垂直于所述透明显示基板的面方向,以控制所述反射物在所述透明填充物中沿垂直于所述透明显示基板的面方向排列,使所述透明显示基板发出的光从靠近所述对盒基板的一面射出后穿过所述调光层,实现所述显示面板的透明显示。
附图说明
为了更清楚地说明本公开一些实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本公开一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1(a)为本公开一些实施例提供的一种显示面板的结构示意图,其中示出了透明显示模式;
图1(b)为本公开一些实施例提供的一种显示面板的结构示意图,其中示出了私密显示模式;
图1(c)为本公开一些实施例提供的一种显示面板的结构示意图,其中示出了部分地透明显示和部分地私密显示模式;
图2为氧化石墨烯片沿电场方向排列的示意图;
图3为本公开一些实施例提供的一种显示面板的一个显示单元的结构示意图;
图4为本公开一些实施例提供的一种显示面板不工作时的显示模式示意图;
图5为图4所示显示面板的私密显示模式示意图;
图6为图4所示显示面板的透明显示模式示意图。
具体实施方式
下面将结合本公开一些实施例中的附图,对本公开一些实施例中的技术方案进行清楚、完整地描述,显然,所描述的一些实施例仅仅是本公开一部分实施例,而不是全部的实施例。基于本公开中的一些实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本公开保护的范围。
透明显示器件作为例如建筑物、车辆上的窗口(例如,广告牌)来显示时,透明显示器件因其高透明度而双面显示,导致无法具备防窥显示的功能。在用户使用过程中,该透明显示器件不能实现私密显示与透明显示的不同需求模式下的自由切换。
下面详细地描述本公开一些实施例提供的作为透明显示器件的显示面板。在本公开一些实施例中,除非另有定义,本公开一些实施例中所使用的所有术语(包括技术和科学术语)具有与本公开所属领域的普通技术人员共同理解的相同含义。还应当理解,诸如在通常字典里定义的那些术语应当被解释为具有与它们在相关技术的上下文中的含义相一致的含义,而不应用理想化或极度形式化的意义来解释,除非这里明确地这样定义。
例如,本公开一些实施例中,使用的术语“第一”、“第二”以及类似的词语并不表示任何顺序、数量或者重要性,仅是用来区分不同的组成部分。“包括”或者“包含”等类似的词语意指出现该词前面的元件或者物件涵盖出现在该词后面列举的元件或者物件及其等同,而不排除其他元件或者物件。“上/上方”、“下/下方”、“行/行方向”以及“列/列方向”等指示的方位或位置关系的术语为基于附图所示的方位或位置关系,仅是为了便于说明本公开一些实施例的技术方案的简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本公开的 限制。
如图1(a)至图1(c)所示,本公开一些实施例提供一种显示面板,该显示面板包括:相对设置的透明显示基板10与对盒基板20,以及设置于透明显示基板10与对盒基板20之间的调光层30;该调光层30被配置为在电场作用下至少部分地透过光线或至少部分地反射光线。
从该透明显示基板10的发光区域(例如,下面描述的发光功能层)发出的光可从靠近调光层30与远离调光层30这两侧分别射出。
参考图1(a)所示,当调光层30在电场作用下可透过光线时,从透明显示基板10发出的光可以从调光层30透过,并穿过对盒基板20,使得用户在分别靠近透明显示基板10与对盒基板20的两侧均能够同时看到透明显示基板10上显示的画面(例如,镜像显示的画面,一侧显示正常画面,另一侧显示镜像画面);同时,外界光也可透过透明显示基板10、调光层30及对盒基板20,使得用户可以看到显示面板背后的场景,从而达到开放的透明显示效果。
此处及下文中出现的“背后”一词,仅用于描述上述显示面板整体远离用户的一侧,如无具体说明,不限定为透明显示基板10或对盒基板20。
参考图1(b)所示,当调光层30在电场作用下可反射光线时,从透明显示基板10发出的光一部分从透明显示基板的远离调光层30一侧直接射出,另一部分被调光层30反射,再次从透明显示基板的远离调光层30一侧射出。如此使得位于靠近对盒基板20一侧的人无法看到透明显示基板10上显示的画面,位于透明显示面板10一侧的用户此时可在透明显示基板10上进行例如输入密码等操作,从而可避免个人信息外泄;同时,由于外界光无法透过调光层30,用户在观看透明显示基板10上显示画面的同时也不会看到显示面板背后的场景,从而达到私密的防窥显示效果。
并且,由于从透明显示基板10发出的光一部分是经调光层30的反射作用后再次从透明显示基板10的远离调光层30一侧射出的,因此当上述显示面板的外界环境光强度较强时,还可实现反射显示的效果,即,有效提升透明显示基板10一侧作为单侧屏幕时的显示亮 度,从而提高显示画面的品质。
参考图1(c)所示,调光层30在电场的作用下可以部分地透过光线以及部分地反射光线,而调光层30整体地透过光线和整体地反射光线的工作方式分别如图1(a)和图1(b)所描述,在此不再赘述。通过调节电场控制调光层30部分地透过光线和部分地反射光线,可以实现显示面板的局部私密显示与局部透明显示。
本公开一些实施例提供的显示面板,通过调节电场控制调光层30透过光线或反射光线,能够实现私密显示与透明显示的不同用户需求模式下的自由切换,或私密显示与透明显示同时存在,以使显示面板具有防窥显示的功能和多样化的显示模式,从而提高了用户体验。
在本公开一些实施例中,调光层30包括:透明填充物和分散在透明填充物中的反射物;其中,反射物被配置为在电场作用下沿平行于电场方向排列。
可选的,透明填充物可为注入在透明显示基板10与对盒基板20之间的相对的空间内的透明液体,以便于反射物在电场力作用下在透明液体中自由地发生偏转。
反射物可以为二维导电材料,例如氧化石墨烯片,其微观结构如图2所示,呈片状二维结构,因其厚度极小而忽略。氧化石墨烯片的长轴X随电场方向(如图2中箭头所示)发生偏转,且在微观状态下,氧化石墨烯片的面方向平行于电场方向。氧化石墨烯片的面方向指的是氧化石墨烯片的平面,即氧化石墨烯片自身的平面平行于电场方向。此时,氧化石墨烯片在电场中处于平衡状态。
从而可以通过改变外加电场的方向控制片状的氧化石墨烯片的方向,进而控制其透光属性,使调光层30呈现透过光线或反射光线的不同效果。
可以采用例如Brodie法、Staudenmaier法、Hummers法,其中Hummers法又包括改进的Hummers法、超生辅助Hummers法等,以制备出单层氧化石墨烯片的悬浮液。
氧化石墨烯相比于石墨烯,结构中加入了氧官能团。氧官能团可形成sp 3电子轨道,对石墨烯主体结构中的碳原子之间所形成的sp 2 电子轨道会产生影响,碳原子与碳原子之间被加入的氧官能团分割成大小不等的碳原子团簇大分子,使得碳原子之间的相互作用及电子输运性能产生了重大影响。
而且,氧化石墨烯片的平面上还具有一定的羧基和羟基,羧基和羟基水解后,分子表面带有一定负电荷,分子间的静电排斥力可使其在液体中呈现向列相。
氧化石墨烯片因具有上述的特点而体现为:当有外加电场施加在氧化石墨烯片上时,其表面会沿长轴X方向产生表面电流,使其受到电场力作用发生偏转,并最终稳定在其长轴方向平行于电场的方向,即,氧化石墨烯片以其面方向平行于电场方向的形式排列。
如此,通过改变电场方向可以使得二维导电材料呈现不同的排列方式,实现光的透过(即通过)或反射(即阻挡)的不同效果。
示例地,当电场方向垂直于显示面板的面方向(显示面板的面方向指的是显示面板的平面),即为垂直电场时,氧化石墨烯片在上述透明填充物中会偏转至自身面方向垂直于透明显示基板。由于氧化石墨烯片厚度方向的尺寸相比于片状面方向尺寸很小,光线能够沿着氧化石墨烯片排列的垂直方向从氧化石墨烯片之间射出,从而达到使调光层30透过光线的效果。
当电场方向平行于显示面板的面方向,即为水平电场时,氧化石墨烯片在透明填充物中会偏转至自身面方向平行于透明显示基板。由于氧化石墨烯片本身不透光,光线在照射到氧化石墨烯片的片状面内时会被反射,从而达到使调光层30反射光线的效果。
调光层30的厚度例如为2μm~5μm。在显示面板不工作时,分散在透明填充物中的反射物(例如氧化石墨烯片)由于未受到电场作用而呈散乱排列,引起光线能够从部分反射物之间透过,而且调光层30的厚度较薄,因此能够使得调光层30呈现出一定的透明度。由于透明显示基板10与对盒基板20中的各层材料均由透明或半透明薄膜组成,从而使得上述显示面板整体呈现较高的透明度,以作为窗口应用于室内、车窗等显示场景。
参考图1(a)至图1(c)中任一附图所示,本公开一些实施例的显示面板还包括:位于透明显示基板10与对盒基板20之间的支撑物40, 以及被配置成密封调光层30的封框胶50。由于调光层30中的透明填充物可以为透明液体而使得调光层30整体呈液体状,因此为了向液体状的调光层30两侧的透明显示基板10和对盒基板20提供支撑,提供了支撑物40和封框胶50。示例地,支撑物40均匀地分散在透明显示基板10与对盒基板20之间的相对空间内,而且封框胶50设置在整个调光层30的四周。
示例地,透明显示基板10为自发光的OLED(Organic Light-Emitting Display,有机电致发光)显示基板,其上设置有阳极、阴极等电极结构。为避免控制调光层30透光属性的电场与驱动OLED显示的阳极、阴极之间的电场产生相互干扰,本公开一些实施例中,将用于形成控制电场的电极结构设置在对盒基板20上,如图3所示。
继续参考图3所示,显示面板还包括:在对盒基板20靠近透明显示基板10的一侧表面上间隔开设置的第一驱动电极21与第二驱动电极22。第一驱动电极21与第二驱动电极22均由透明导电材料(例如可以为ITO等)构成,且第一驱动电极21与第二驱动电极22形成电场。本公开一些实施例中的第一驱动电极21和第二驱动电极22沿着显示面板的长度方向延伸。
而且,第一驱动电极21与第二驱动电极22在对盒基板20上同一层设置,从而在两个电极之间形成平行于显示面板的面方向的水平电场。第一驱动电极21与第二驱动电极22可为平板电极,两者的尺寸均相对于其之间的间距小很多,因此第一驱动电极和第二驱动电极相对之间形成的电场可忽略,而形成了非匀强电场,以控制反射物平行排列。例如,氧化石墨烯片处于第一驱动电极21与第二驱动电极22形成的非匀强电场中,氧化石墨烯片的平面上的各点因电场强度不同而受到不同的电场力来发生偏转,最终氧化石墨烯片处于平衡状态,即其平面上的各点处的电势相同的状态或其平面平行于透明显示基板10的平面。
当对盒基板20中还包括有阵列结构层等其他层时,第一驱动电极21与第二驱动电极22还可以采用不同层设置的方式,形成类似于ADS(Advanced Super Dimensional Switching,高级超维场转换技术)型的液晶显示面板的边缘场,以控制至少部分反射物平行排列。
因此,为了使得调光层30能够实现完全反射的效果,参考图3所示,第一驱动电极21与第二驱动电极22同层设置;第一驱动电极21与第二驱动电极22被配置成形成第一电场,第一电场的方向平行于透明显示基板10的面方向,即横向的水平电场,以控制反射物在透明填充物中沿平行于透明显示基板的面方向排列。透明显示基板10的面方向指的是透明显示基板10的平面。
同层设置的方式包括但不限于图3中所示出的位于对盒基板20的靠近调光层30的最外侧表面,能够满足第一驱动电极21和第二驱动电极22两者位于同一层,彼此间形成横向的水平电场即可。
本公开的一些实施例中,透明显示基板10包括:呈阵列排布的多个显示单元;与透明显示基板10相对的对盒基板20划分有与各显示单元对应的多个子区域,每个子区域内均设置有一个第一驱动电极21与一个第二驱动电极22,即每个子区域内均设置有一对电极。
如此,一方面,可以使得第一驱动电极21与第二驱动电极22均匀分布在整个对盒基板20上,从而为调光层30提供分布更为均匀的水平电场;另一方面,可以根据用户的具体需求,向某一预设区域内的第一驱动电极21与第二驱动电极22施加电压,即仅在预设区域内形成水平电场,使得调光层30仅对应于预设区域内实现反射光线,其余区域仍可透过光线。
示例的,预设区域例如可以为透明显示基板10上设定的输入密码的区域,以避免用户在输入密码时信息外泄,同时不会影响透明显示基板10上其余区域的正常透明显示。从而使得位于显示面板两侧的用户均能获得相应的观看体验,进一步扩大了透明显示面板的应用场景。
本公开的一些实施例中,显示面板为有源驱动型的透明显示面板。参考图3所示,透明显示基板10还包括:透明盖板11;显示单元设置在透明盖板11靠近对盒基板20的一侧;每个显示单元包括:依次远离透明盖板11的第一透明电极12、发光功能层和第二透明电极13;相应的,对盒基板20为透明阵列基板;每个子区域内均设置有驱动单元,驱动单元被配置成控制显示单元发光。
例如,透明阵列基板的结构可沿用相关技术,且驱动单元即为控 制显示单元发光的透明或半透明的TFT(Thin Film Transistor,薄膜晶体管)。
示例的,第一透明电极12与第二透明电极13互为OLED器件中的阴极与阳极。考虑到在有源驱动型OLED器件中,阳极需要与驱动单元中的漏极电性连接以接收相应的显示信号,因此为便于信号传输,本公开一些实施例中,靠近对盒基板20一侧的第二透明电极13为阳极,而相对的第一透明电极12为阴极。
由于透明显示基板10与对盒基板20之间被调光层30隔离开,第二透明电极13(即阳极)可通过周边走线等金属连接结构与对盒基板20中的驱动单元电性连接,以接收相应的显示信号。
继续参考图3所示,以第一透明电极12为阴极、第二透明电极13为阳极为例,发光功能层可包括但不限于以下结构:依次远离透明盖板11的电子注入层/电子传输层14、发光层及空穴传输层/空穴注入层15。
第一透明电极12可采用厚度较薄的Mg-Ag(镁-银)合金等透明及半透明电极;第二透明电极13可采用ITO(Indium Tin Oxide,氧化铟锡)等透明电极;电子注入层/电子传输层14可采用具有较高激发态能级的有机化合物及其衍生物材料;空穴传输层/空穴注入层15可采用具有较高空穴迁移率和较低游离电势的有机化合物及其衍生物,例如芳香胺、咔唑等材料。
继续参考图3所示,以每个显示单元包括R/G/B三个子像素为例,以R、G、B分别标记为发出红色、绿色、蓝色光的发光层。R/G/B发光层材料可以选择有机小分子或高分子材料等。
在本公开的一些实施例中,显示面板也可为结构较为简单的无源驱动型的透明显示面板。示例地,透明显示基板10还包括:透明盖板、依次设置在透明盖板靠近对盒基板一侧的第一透明电极、发光功能层和第二透明电极;第一透明电极与第二透明电极呈交叉设置,发光功能层位于第一透明电极与第二透明电极的交叉区域内;发光功能层、第一透明电极与第二透明电极构成显示单元。与透明显示基板10相对的对盒基板20为透明衬底,不需要设置驱动单元。
示例的,当需要调光层30透过光线,即实现正常的透明显示时, 可以使对盒基板20上的第一驱动电极21与第二驱动电极22中的至少一者被配置成与透明显示基板10上的第二透明电极13形成第二电场;第二电场的方向垂直于透明显示基板的面方向,即形成垂直电场,以控制反射物在透明填充物中沿垂直于透明显示基板的面方向排列。通过调光层30两侧的电极之间形成穿过调光层30的垂直电场,从而实现参考图1中(a)部分所示的显示面板的完全透明态。
下面详细描述以反射物为氧化石墨烯片为例且以透明显示基板10为OLED器件为例的示例,用于详细描述显示面板在不同用户需求下的自由切换方式。
如图4所示,当显示面板不工作时,由于调光层的厚度较薄,仅为2μm~5μm,氧化石墨烯片31呈散乱排列,光线能够从调光层中透过,使得调光层呈现出一定的透明度。由于透明显示基板10与对盒基板20中的各层材料均由透明或半透明薄膜组成,进而可使得显示面板呈现较高的透明度,可作为窗口应用于室内、车窗等显示场景。
如图5所示,当显示面板工作时,在第一透明电极12与第二透明电极13之间形成电场,用于控制R/G/B发光层进行发光,实现显示效果。同时,对第一驱动电极21与第二驱动电极22施加不同电压,使二者之间形成水平电场,使得氧化石墨烯片表面会沿长轴方向产生表面电流,从而使其发生偏转。如此使氧化石墨烯片稳定于平行电场方向上,即在图5中的其平面平行于透明显示基板10的平面方向排列。
由于调光层30反射光线,因此显示面板的位于透明显示基板10的一侧(即正面)为可视侧、位于对盒基板20的一侧(即背面)为不可视侧。正面观看时,可有效提高屏幕亮度,提高可视效果;背面观看时,由于调光层的反射,使得背面呈现亮态,因此无法观看到透明显示基板10显示的画面内容,从而达到防窥显示的效果。
如图6所示,当显示面板工作时,在第一透明电极12与第二透明电极13之间形成电场,用于控制R/G/B发光层进行发光,实现显示效果。同时,对第一驱动电极21与第二驱动电极22施加相同的电压,并与透明显示基板10上靠近的第二透明电极13之间形成垂直电场时,使得氧化石墨烯片31随电场垂直排列,即,氧化石墨烯片31 沿垂直于透明显示基板10的平面排列。外界光可以通过氧化石墨烯片31,使得调光层呈现完全透明态。此时,显示面板的两侧均为可视侧。
因此,形成的水平电场和垂直电场可作为透明显示基板10的背面显示开关,从而根据用户的具体需要调节背面显示开关,实现透明显示和私密显示的不同模式的自由切换。
本公开一些实施例还提供了一种上述显示面板的驱动方法,该驱动方法包括:通过电场控制调光层30至少部分透过光线或至少部分反射光线,以实现显示面板的单面显示或透明显示(两面显示)。
可选的,可以在第一驱动电极21与第二驱动电极22之间形成第一电场(即水平电场),第一电场的方向平行于透明显示基板10的面方向,以控制反射物在透明填充物中沿平行于透明显示基板10的面方向排列,使透明显示基板10发出的光从靠近对盒基板20的一面射出后被反射物反射,实现显示面板的单面显示。
或者,可以在第一驱动电极21与第二驱动电极22中的至少一者与透明显示基板10中的第二透明电极13之间形成第二电场(即垂直电场),第二电场的方向垂直于透明显示基板10的面方向,以控制反射物在透明填充物中沿垂直于透明显示基板的面方向排列,使透明显示基板10发出的光从靠近对盒基板20的一面射出后穿过调光层30,实现显示面板的透明显示。
以上所述,仅为本公开一些实施例的实施方式,但本公开的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本公开揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本公开的保护范围之内。因此,本公开的保护范围应以所述权利要求的保护范围为准。

Claims (17)

  1. 一种显示面板,包括:
    透明显示基板;
    对盒基板,与所述透明显示基板相对设置;以及,
    调光层,设置于所述透明显示基板与所述对盒基板之间,所述调光层被配置为在电场作用下至少部分透过光线或至少部分反射光线。
  2. 根据权利要求1所述的显示面板,其中,所述调光层包括:透明填充物和分散在所述透明填充物中的反射物;所述反射物被配置为在电场作用下沿平行于电场方向排列。
  3. 根据权利要求2所述的显示面板,其中,所述反射物为片状反射物,在电场作用下所述片状反射物的面方向平行于所述电场方向。
  4. 根据权利要求2所述的显示面板,还包括:设置在所述对盒基板朝向所述透明显示基板一侧间隔开的第一驱动电极与第二驱动电极;
    所述第一驱动电极与所述第二驱动电极均由透明导电材料构成;
    所述第一驱动电极与所述第二驱动电极形成电场。
  5. 根据权利要求4所述的显示面板,其中,所述第一驱动电极与所述第二驱动电极被配置成形成第一电场,所述第一电场的方向平行于所述透明显示基板的面方向,以控制所述反射物在所述透明填充物中沿平行于所述透明显示基板的面方向排列。
  6. 根据权利要求5所述的显示面板,其中,所述第一驱动电极与所述第二驱动电极同层设置。
  7. 根据权利要求4所述的显示面板,其中,所述透明显示基板包括:呈阵列排布的多个显示单元;
    所述对盒基板划分有与所述显示单元对应的多个子区域,每个所述子区域内均设置有一个所述第一驱动电极与一个所述第二驱动电极。
  8. 根据权利要求7所述的显示面板,其中,所述透明显示基板还包括:透明盖板;
    所述显示单元设置在所述透明盖板朝向所述对盒基板的一侧;
    每个所述显示单元包括:依次远离所述透明盖板的第一透明电极、发光功能层和第二透明电极;
    所述对盒基板为透明阵列基板;每个所述子区域内均设置有驱动单元,所述驱动单元被配置成控制所述显示单元发光。
  9. 根据权利要求7所述的显示面板,其中,所述透明显示基板还包括:透明盖板、依次设置在所述透明盖板朝向所述对盒基板一侧的第一透明电极、发光功能层和第二透明电极;
    所述第一透明电极与所述第二透明电极呈交叉设置,所述发光功能层位于所述第一透明电极与所述第二透明电极的交叉区域内;
    所述发光功能层、所述第一透明电极与所述第二透明电极构成所述显示单元;
    所述对盒基板为透明衬底。
  10. 根据权利要求8或9所述的显示面板,其中,所述第一驱动电极与所述第二驱动电极中的至少一者被配置成与所述第二透明电极形成第二电场;
    所述第二电场的方向垂直于所述透明显示基板的面方向,以控制所述反射物在所述透明填充物中沿垂直于所述透明显示基板的面方向排列。
  11. 根据权利要求2所述的显示面板,其中,所述反射物为氧化石墨烯片。
  12. 根据权利要求2所述的显示面板,其中,所述调光层的厚度为2μm~5μm。
  13. 根据权利要求1所述的显示面板,所述显示面板还包括:位于所述透明显示基板与所述对盒基板之间的支撑物。
  14. 根据权利要求1所述的显示面板,所述显示面板还包括:位于所述透明显示基板与所述对盒基板之间的封框胶,所述封框胶被配置成密封所述调光层。
  15. 一种如权利要求1至14任一项所述的显示面板的驱动方法,包括:通过电场控制所述调光层至少部分透过光线或反射光线,以实现所述显示面板的单面显示或透明显示。
  16. 根据权利要求15所述的驱动方法,其中,所述通过电场控制所述调光层至少部分透过光线或反射光线,以实现所述显示面板的单面显示或透明显示,包括:
    在所述第一驱动电极与所述第二驱动电极之间形成第一电场,所述第一电场的方向平行于所述透明显示基板的面方向,以控制所述反射物在所述透明填充物中平行于所述透明显示基板的面方向排列,使所述透明显示基板发出的光从靠近所述对盒基板的一面射出后被所 述反射物反射,实现所述显示面板的单面显示。
  17. 根据权利要求15所述的驱动方法,其中,所述通过电场控制所述调光层至少部分透过光线或反射光线,以实现所述显示面板的单面显示或透明显示,包括:
    在所述第一驱动电极与所述第二驱动电极中的至少一者与所述透明显示基板中的所述第二透明电极之间形成第二电场,所述第二电场的方向垂直于所述透明显示基板的面方向,以控制所述反射物在所述透明填充物中沿垂直于所述透明显示基板的面方向排列,使所述透明显示基板发出的光从靠近所述对盒基板的一面射出后穿过所述调光层,实现所述显示面板的透明显示。
PCT/CN2018/115742 2018-01-02 2018-11-15 显示面板及其驱动方法 WO2019134451A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/580,446 US11079622B2 (en) 2018-01-02 2019-09-24 Display panel having reflectors in light adjusting layer and drive method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810001704.9A CN108231844B (zh) 2018-01-02 2018-01-02 一种显示面板及其驱动方法
CN201810001704.9 2018-01-02

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US16/580,446 Continuation US11079622B2 (en) 2018-01-02 2019-09-24 Display panel having reflectors in light adjusting layer and drive method thereof
US16/580,446 Continuation-In-Part US11079622B2 (en) 2018-01-02 2019-09-24 Display panel having reflectors in light adjusting layer and drive method thereof

Publications (1)

Publication Number Publication Date
WO2019134451A1 true WO2019134451A1 (zh) 2019-07-11

Family

ID=62645062

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/115742 WO2019134451A1 (zh) 2018-01-02 2018-11-15 显示面板及其驱动方法

Country Status (3)

Country Link
US (1) US11079622B2 (zh)
CN (1) CN108231844B (zh)
WO (1) WO2019134451A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108231844B (zh) * 2018-01-02 2020-04-21 京东方科技集团股份有限公司 一种显示面板及其驱动方法
CN109085947B (zh) * 2018-07-10 2021-08-03 京东方科技集团股份有限公司 一种电子答题卡、电子阅卷装置及电子阅卷系统
CN113066378B (zh) * 2021-03-25 2022-09-13 昆山国显光电有限公司 显示面板
CN114361369B (zh) * 2022-01-05 2023-09-22 京东方科技集团股份有限公司 透明显示基板、显示装置及车辆

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102751307A (zh) * 2012-06-29 2012-10-24 昆山工研院新型平板显示技术中心有限公司 一种可进行透明不透明转换的显示器
CN105206644A (zh) * 2015-08-28 2015-12-30 京东方科技集团股份有限公司 透明显示组件和显示装置
CN105576006A (zh) * 2016-03-18 2016-05-11 京东方科技集团股份有限公司 彩膜基板、显示面板和显示装置
US9482885B2 (en) * 2014-12-09 2016-11-01 Samsung Display Co., Ltd. Display device and method of manufacturing the same
CN205992531U (zh) * 2016-05-27 2017-03-01 友达光电股份有限公司 透明显示器
CN108231844A (zh) * 2018-01-02 2018-06-29 京东方科技集团股份有限公司 一种显示面板及其驱动方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5645758A (en) * 1994-04-14 1997-07-08 Kabushiki Kaisha Toyota Chuo Kenkyusho Liquid crystal composition, liquid crystal device using the same, light controlling element, recording medium, and light shutter
KR101944035B1 (ko) * 2013-04-25 2019-01-30 엘지디스플레이 주식회사 투명표시장치
US10197856B2 (en) * 2015-04-03 2019-02-05 Sharp Kabushiki Kaisha Optical modulator and display device
CN105589265A (zh) * 2016-03-17 2016-05-18 深圳市华星光电技术有限公司 液晶显示器
TWI722048B (zh) * 2016-06-10 2021-03-21 日商半導體能源研究所股份有限公司 顯示裝置及電子裝置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102751307A (zh) * 2012-06-29 2012-10-24 昆山工研院新型平板显示技术中心有限公司 一种可进行透明不透明转换的显示器
US9482885B2 (en) * 2014-12-09 2016-11-01 Samsung Display Co., Ltd. Display device and method of manufacturing the same
CN105206644A (zh) * 2015-08-28 2015-12-30 京东方科技集团股份有限公司 透明显示组件和显示装置
CN105576006A (zh) * 2016-03-18 2016-05-11 京东方科技集团股份有限公司 彩膜基板、显示面板和显示装置
CN205992531U (zh) * 2016-05-27 2017-03-01 友达光电股份有限公司 透明显示器
CN108231844A (zh) * 2018-01-02 2018-06-29 京东方科技集团股份有限公司 一种显示面板及其驱动方法

Also Published As

Publication number Publication date
US20200019002A1 (en) 2020-01-16
US11079622B2 (en) 2021-08-03
CN108231844A (zh) 2018-06-29
CN108231844B (zh) 2020-04-21

Similar Documents

Publication Publication Date Title
US10823990B2 (en) Bistable switchable liquid crystal private device
WO2019134451A1 (zh) 显示面板及其驱动方法
US9934755B2 (en) Display device to respond to a command to display a still image or video image and method for controlling the same
CN103531100B (zh) 显示装置及其操作方法
US20190346708A1 (en) Viewing angle switching device and display apparatus
US9074749B2 (en) Display apparatus
US20110018860A1 (en) Display
JP6855197B2 (ja) 表示装置
CN106782132A (zh) 拼接式显示屏
WO2017117852A1 (zh) 透明显示器
CN111505850B (zh) 双面显示面板及控制方法
US11194198B2 (en) Display device including a first display panel and a second display panel
CN105938280A (zh) 一种双面显示器及显示装置
US8310605B2 (en) Liquid-crystal display apparatus
JP2008064790A (ja) ディスプレイおよびそれに用いられる視野角制御装置
KR20060115427A (ko) 액정 표시 장치
CN210467843U (zh) 宽窄视角可控的oled显示装置
JP3753634B2 (ja) 自発光型画像表示装置
US20230176418A1 (en) Display panel and display device
CN216792627U (zh) 显示面板和显示装置
JP2007114394A (ja) 表示装置
WO2006123776A1 (ja) 発光装置及び液晶表示装置
CN114167641A (zh) 显示面板和显示装置
JPH07318885A (ja) 光アドレス型液晶デバイス
CN116953964A (zh) 视角切换模块及显示装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18898610

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 16.11.2020)

122 Ep: pct application non-entry in european phase

Ref document number: 18898610

Country of ref document: EP

Kind code of ref document: A1