WO2019134302A1 - 基于数字双啁啾脉冲调制的分布式光纤声传感装置及方法 - Google Patents

基于数字双啁啾脉冲调制的分布式光纤声传感装置及方法 Download PDF

Info

Publication number
WO2019134302A1
WO2019134302A1 PCT/CN2018/084084 CN2018084084W WO2019134302A1 WO 2019134302 A1 WO2019134302 A1 WO 2019134302A1 CN 2018084084 W CN2018084084 W CN 2018084084W WO 2019134302 A1 WO2019134302 A1 WO 2019134302A1
Authority
WO
WIPO (PCT)
Prior art keywords
fiber
polarization
signal
optical
polarization direction
Prior art date
Application number
PCT/CN2018/084084
Other languages
English (en)
French (fr)
Inventor
江俊峰
刘铁根
马喆
王双
刘琨
陈文杰
张学智
Original Assignee
天津大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 天津大学 filed Critical 天津大学
Publication of WO2019134302A1 publication Critical patent/WO2019134302A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/26Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light
    • G01D5/32Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light
    • G01D5/34Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells
    • G01D5/353Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre
    • G01D5/35306Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre using an interferometer arrangement
    • G01D5/35329Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre using an interferometer arrangement using interferometer with two arms in transmission, e.g. Mach-Zender interferometer

Definitions

  • the invention belongs to the field of distributed optical fiber sound sensing detection, and particularly relates to a distributed acoustic sensing device and method based on digital double chirp pulse modulation, which can be used for detection in the fields of ocean, aviation, petroleum, geotechnical and the like.
  • Acoustic wave detection technology has a wide range of applications and needs in the fields of petroleum/mineral exploration based on seismic waves, anti-submarine warfare based on underwater acoustic detection, airborne based flight monitoring, vibration-based perimeter safety monitoring and battlefield reconnaissance.
  • the traditional acoustic wave detection technology mainly uses the microphone array constructed based on the electrical microphone to collect and receive the sound field signal. Its main features are the discrete structure and strict synchronous acquisition requirements, which results in a large size of the microphone array and is subject to electromagnetic interference. The impact of harsh working conditions such as high temperature and high humidity.
  • the object of the present invention is to provide a distributed optical fiber acoustic sensing device and method based on digital double chirp pulse modulation, which combines the sensing and transmission functions of optical fibers into one, except that it is free from electromagnetic interference and electrical passive.
  • the scale of the sensing monitoring points is greatly expanded by implementing distributed measurements.
  • a distributed optical fiber acoustic sensing device based on digital double chirped pulse modulation for long-distance distributed acoustic wave detection, the device comprises a light source 1, a polarization-maintaining fiber isolator 2, and a dual-polarization four-parallel Mach-Zehnder electro-optic modulation 3, X-polarization direction drive arbitrary waveform generator 4, Y polarization direction drive arbitrary waveform generator 5, electro-optic modulator bias control panel 6, 1*2 polarization-maintaining fiber coupler 7, first fiber polarization splitting 8, erbium-doped fiber amplifier 9, fiber filter 10, fiber circulator 11, sensing fiber 12, 2*2 fiber coupler 13, second fiber polarization beam splitter 14, third fiber polarization beam splitter 15, X polarization direction balance photodetector 16, Y polarization direction balance photodetector 17, data acquisition card 18 and processing unit 19; wherein:
  • the continuous laser output end of the light source 1 is connected to the input end of the polarization-maintaining fiber isolator 2; the output end of the fiber isolator 2 is connected to the input of the dual-polarization four-parallel Mach-Zehnder electro-optic modulator 3,
  • the output of the Mach-Zehnder electro-optic modulator 3 is connected to a 1*2 polarization-maintaining fiber coupler 7; one output of the 1*2 polarization-maintaining fiber coupler 7 is connected to a photodetector on the electro-optic modulator bias control board 6
  • the other end is connected to the input end of the first fiber polarization beam splitter 8; the output end of the first fiber polarization beam splitter 8 is sequentially connected to the erbium doped fiber amplifier 9, the fiber filter 10 and the fiber
  • the circulator 11 has one output end of the fiber circulator 11 injected into the sensing fiber 12, and the other output end connected to the 2*2 fiber
  • the polarization-maintaining fiber isolator 2 is configured to isolate the laser reflected back from the optical fiber to avoid interference and damage caused by entering the laser;
  • the dual-polarized four-parallel Mach-Zehnder electro-optic modulator 3 performs I/Q modulation on the laser in the X and Y polarization directions, respectively;
  • the X-polarization direction driving arbitrary waveform generator 4 is used for generating a chirped pulse waveform, the sweeping signal range is 0.1-20 GHz, and the output I and Q signals respectively drive the dual-polarized four-parallel Mach-Zehnder electro-optic modulator X polarization direction;
  • the Y-polarization direction driving arbitrary waveform generator 5 is used for generating a chirped pulse waveform, the sweeping signal range is 0.1-20 GHz, and the output I and Q signals respectively drive the dual-polarized four-parallel Mach-Zehnder electro-optic modulator Y polarization direction;
  • the electro-optic modulator bias control board 6 automatically adjusts the polarization control point according to the feedback light intensity to stabilize the set operation mode
  • the 1*2 polarization-maintaining fiber coupler 7 is configured to connect a photodetector on the bias control panel of the electro-optic modulator to perform decimation feedback on the modulated chirped pulse optical signal;
  • the first fiber polarization beam splitter 8 is configured to divide the optical signal into light of two polarization directions of X and Y;
  • the erbium-doped fiber amplifier 9 is used for amplifying the signal light generated by modulation, and has a gain of 10 to 30 dB, which satisfies the requirements of long-distance detection.
  • the optical fiber filter 10 is configured to perform band-pass filtering on the optical signal amplified by the erbium-doped fiber amplifier to eliminate ASE noise.
  • the fiber circulator 11 inputs the detecting scattered chirped pulse light into the sensing fiber and inputs the backscattering chirped pulse light into the demodulating optical path;
  • the sensing fiber 12 is configured to transmit a detection scatter pulse light signal and a back scatter pulse light signal to sense the measurement;
  • a 2*2 fiber coupler 13 for combining the reference chirped pulse light and the backscattering chirped pulse light in the sensing fiber to generate interference
  • the second fiber polarization beam splitter 14 is configured to divide an interference optical signal output by the 2*2 fiber coupler into two polarization directions of X and Y;
  • the third fiber polarization beam splitter 15 is configured to divide another interference light signal output by the 2*2 fiber coupler into light of two polarization directions of X and Y;
  • the X polarization direction balancing photodetector 16 is configured to convert an X component portion of the optical interference signal generated by the reference chirped pulse light and the backscattering chirped pulse light in the sensing fiber into an electrical signal;
  • the Y polarization direction balancing photodetector 17 is configured to convert a portion of the Y component of the optical interference signal generated by the reference chirped pulse light and the backscattering chirped pulse light in the sensing fiber into an electrical signal;
  • the data acquisition card 18 is configured to collect and receive a voltage analog signal converted by the balanced photodetector
  • the processing unit 19 is configured to control signal generation and signal reception, and receive and demodulate signals of the photodetector to obtain phase, amplitude and frequency information of the position of the sensing fiber by the acoustic wave, and the implementation form includes a computer and an embedded Computing system.
  • the invention discloses a distributed optical fiber acoustic sensing method based on digital double chirp pulse modulation, which is used for long-distance distributed acoustic wave detection.
  • the specific process of the method is as follows:
  • the light source emits a continuous laser with an optical frequency of ⁇ 0 , and enters a dual-polarization four-parallel Mach-Zehnder electro-optic modulator through a polarization-maintaining fiber isolator; driven by two arbitrary waveform generators, namely, X-polarization direction and Y-polarization direction.
  • the chirped pulse digital signals having the same linear chirp range and the same sweep rate are respectively generated by the arbitrary waveform generator, and respectively loaded into the two polarization directions of X and Y of the dual polarization four parallel Mach-Zehnder electro-optic modulator; wherein The chirped pulsed light signal in the X polarization direction is used as the reference light for detecting the light pulse, and the pulsed light signal of the continuous sweep frequency range of the Y polarization direction is used as the reference light;
  • the chirped pulsed light signal modulated by the dual-polarization four-parallel Mach-Zehnder electro-optic modulator is divided into two by a 1*2 polarization-maintaining fiber coupler, wherein one of the output fibers is connected to the electro-optic modulator bias control board.
  • the photodetector is used for extracting feedback of the modulated chirped pulsed light signal to maintain a stable working state for a long time; the other is splitting the chirped pulsed optical signal into X by the first fiber polarization beam splitter.
  • the polarization and Y polarization directions are sequentially amplified by the erbium-doped fiber amplifier, the fiber filter and the fiber circulator are injected into the sensing fiber, and the chirped pulse signal is Backward Rayleigh scattering occurs in the passing fiber, and backscattered chirped pulse light returns to the demodulating optical path along the optical fiber; and contains linearity for demodulating phase information ⁇ (t) and for demodulating optical frequency information I( ⁇ )
  • the backscattered chirped pulsed light of the swept light is mixed with the chirped pulsed light signal of the continuous sweeping range of the Y polarization direction;
  • the third step the backscattering chirped pulsed light signal and the local reference chirped pulsed light signal are interfered in the 2*2 fiber coupler, and one of the interfering optical signals is divided into X and Y by the second fiber polarization beam splitter.
  • the other interference light signal is divided into two polarization directions of X and Y by the third fiber polarization beam splitter; the X component part and the Y component part of the interference signal respectively pass the X polarization direction and the Y polarization direction
  • the balanced photodetector is converted into an electrical signal, and the FFT (X) and FFT (Y) signals are obtained by performing fast Fourier transform on the two signals respectively, and each position in the sensing fiber is sequentially selected by using a moving window;
  • the distance domain information FFT(X i ) and FFT(Y i ) of the i-th segment of the sensing fiber selected by the moving window are inverse Fourier transformed to obtain the corresponding X i and Y i in the optical frequency domain, and the two are obtained.
  • the fourth step the spatial resolution of the computing system
  • is the ⁇ pulse width and ⁇ is the ⁇ pulse scanning speed
  • the phase extraction algorithm is used to detect the vibration frequency, amplitude and phase information of the sound source
  • the spatial resolution is determined by the ⁇ pulse sweep range, and the sweep The frequency range is inversely proportional.
  • the present invention has the following effects:
  • the invention utilizes the function of combining optical fiber sensing and transmission into one, and has the advantages of being free from electromagnetic interference, electrical passive, small volume, high temperature and high humidity, and the like, and also realizes distributed measurement.
  • the scale of the monitoring points has been greatly expanded.
  • the probe optical signal and the local reference optical signal of the present invention are respectively modulated into independent linear frequency chirped light, and the position of the reflection point on the optical fiber is determined according to the driving signal delay of generating two pulses; the delay is independent of The signal waveform is modulated so that the position of the coherent detection is independent of the modulation signal.
  • the present invention does not require high-speed data acquisition equipment and complicated data processing, and the overall data processing is relatively simple.
  • the optical delay line is not needed, and the measurement distance is not affected by the distance between the coherent peaks in the conventional coherent domain reflection system, which solves the problem that the long-distance and high-resolution optical fiber distributed acoustic signal sensing is difficult to reconcile. .
  • FIG. 1 is a schematic diagram of a distributed optical fiber acoustic sensing device based on digital double chirped pulse modulation according to the present invention
  • FIG. 2 is a schematic diagram showing modulation results of detecting a chirped pulse optical signal and a local reference chirped pulse optical signal in the present invention
  • FIG. 3 is a schematic diagram showing the coherence of a backscatter chirped pulsed light signal and a local reference chirped pulsed optical signal at different reflection points on the optical fiber in the present invention.
  • Embodiment 1 Distributed optical fiber acoustic sensing device based on digital double chirped pulse modulation:
  • the distributed optical fiber acoustic sensing device based on digital double chirped pulse modulation of the present invention comprises 19 parts, namely a light source 1, a polarization maintaining fiber isolators 2, and a dual polarization four parallel Mach Zander optical.
  • Modulator 3 X-polarization direction drive arbitrary waveform generator 4, Y polarization direction drive arbitrary waveform generator 5, electro-optic modulator bias control panel 6, 1*2 polarization-maintaining fiber coupler 7, first fiber polarization Beamer 8, erbium doped fiber amplifier 9, fiber filter 10, fiber circulator 11, sensing fiber 12, 2*2 fiber coupler 13, second fiber polarization beam splitter 14, third fiber polarization beam splitter 15 , X polarization direction balance photodetector 16, Y polarization direction balance photodetector 17, data acquisition card 18 and processing unit 19;
  • the light source 1 emits a continuous laser having an optical frequency of ⁇ 0 through the polarization-maintaining fiber isolator 2 and enters the dual-polarization four-parallel Mach-Zehnder electro-optic modulator 3.
  • Two arbitrary waveform generators (an arbitrary waveform generator for the X polarization direction drive 4 and an arbitrary waveform generator 5 for the Y polarization direction drive) respectively generate chirped pulse digital signals having the same linear chirp range and the same sweep rate, Loaded into the polarization directions of X and Y of a dual-polarized four-parallel Mach-Zehnder electro-optic modulator, respectively.
  • the chirped pulsed light signal in the X polarization direction is used as the reference light
  • the chirped pulsed light signal of the continuous sweeping range such as the Y polarization direction is used as the reference light.
  • the chirped pulsed light signal modulated by the dual-polarization four-parallel Mach-Zehnder electro-optic modulator is divided into two by the 1*2 polarization-maintaining fiber coupler 7, wherein one of the output fibers is connected to the photoelectricity of the electro-optical modulator bias control board 6.
  • the detector is used for extracting feedback of the modulated chirped pulsed light signal to maintain a stable working state for a long time.
  • the first optical fiber polarization beam splitter 8 splits the chirped pulse optical signal into X polarization and Y polarization directions, and the chirped pulse optical signal as the X polarization direction of the probe optical pulse signal is sequentially amplified by the erbium doped fiber amplifier 9.
  • the optical fiber filter 10 and the optical fiber circulator 11 are then injected into the sensing fiber 12, and the chirped pulsed light signal is subjected to backward Rayleigh scattering in the passing optical fiber, and the backscattered chirped pulse light is returned to the demodulating optical path along the optical fiber.
  • a chirp pulse containing a continuous sweep frequency range for demodulating the phase information ⁇ (t) and the linearly swept light for demodulating the optical frequency information I( ⁇ ) and the Y polarization direction The optical signal is outputted after interference in the 2*2 fiber coupler 13, and one of the interfering optical signals is split into two polarization directions of X and Y by the second fiber polarization beam splitter 14, and the other interference optical signal is polarized by the third fiber.
  • the beam splitter 15 is divided into light of two polarization directions of X and Y.
  • the X component portion and the Y component portion of the interference signal are converted into electrical signals by the X polarization direction and Y polarization direction balanced photodetectors 16, 17 respectively, and then transmitted to the processing unit 19 for processing by the data acquisition card 18.
  • the light source 1 adopts a narrow line width continuous laser having a line width of 0.1 to 100 kHz, and the output power is 1 to 50 mW. a laser output for providing the long coherence length required by the system;
  • the polarization-maintaining fiber isolator 2 is used for isolating the reflected laser light in the optical fiber to avoid interference and damage caused by entering the laser;
  • the dual-polarization four-parallel Mach-Zehnder electro-optic modulator 3 performs I/Q modulation on the laser in the X and Y polarization directions, and generates a chirped pulse in the X-polarization direction with a pulse width of 1 to 100 ns and a pulse period of 1 to 20 kHz.
  • the modulation frequency range is from 0.1 to 20 GHz.
  • a continuous chirping pulse is generated in the Y polarization direction, the pulse width is also 1 to 100 ns, and the modulation frequency ranges from 0.1 to 20 GHz;
  • the X-polarization direction drive arbitrary waveform generator 4 is used to generate a chirped pulse waveform, the sweep frequency signal ranges from 0.1 to 20 GHz, and the output I and Q signals respectively drive the X of the dual-polarization four-parallel Mach-Zehnder electro-optic modulator.
  • Polarization direction is used to generate a chirped pulse waveform, the sweep frequency signal ranges from 0.1 to 20 GHz, and the output I and Q signals respectively drive the X of the dual-polarization four-parallel Mach-Zehnder electro-optic modulator.
  • the Y-polarization direction drive arbitrary waveform generator 5 is used to generate a chirped pulse waveform, the sweep frequency signal ranges from 0.1 to 20 GHz, and the output I and Q signals respectively drive the Y of the dual-polarization four-parallel Mach-Zehnder electro-optic modulator.
  • Polarization direction
  • the electro-optic modulator bias control board 6 can automatically adjust the polarization control point according to the feedback light intensity to stabilize the set working mode
  • a first fiber polarization beam splitter 8 for dividing the optical signal into light of two polarization directions of X and Y;
  • the erbium-doped fiber amplifier 9 is used for amplifying the signal light generated by the modulation, and the gain is 10 to 30 dB, which satisfies the requirements of long-distance detection.
  • the optical fiber filter 10 is configured to perform band-pass filtering on the optical signal amplified by the erbium-doped fiber amplifier to eliminate ASE noise.
  • the optical fiber circulator 11 inputs the detecting scattered chirped pulse light into the sensing fiber and inputs the backscattering chirped pulse light into the demodulating optical path;
  • the sensing fiber 12 is configured to transmit a detection scatter pulse light signal and a back scatter pulse light signal to sense the measurement;
  • a 2*2 fiber coupler 13 for combining the reference chirped pulse light and the backscattering chirped pulse light in the sensing fiber to generate interference
  • a second fiber polarization beam splitter 14 for dividing an interference optical signal output by the 2*2 fiber coupler into two polarization directions of X and Y;
  • a third fiber polarization beam splitter 15 for dividing another interference light signal output by the 2*2 fiber coupler into two polarization directions of X and Y;
  • the X polarization direction balance photodetector 16 is configured to convert the X component portion of the optical interference signal generated by the reference chirped pulse light and the backscattering chirped pulse light in the sensing fiber into an electrical signal;
  • a Y polarization direction balancing photodetector 17 for converting a Y component portion of the optical interference signal generated by the reference chirped pulse light and the backscattering chirped pulse light in the sensing fiber into an electrical signal
  • the data acquisition card 18 is configured to collect and receive a voltage analog signal converted by the balanced photodetector
  • the processing unit 19 is configured to control signal generation and signal reception, and receive and demodulate signals of the photodetector, and the implementation forms include a computer and an embedded computing system.
  • Embodiment 2 Distributed optical fiber acoustic sensing method based on digital double chirped pulse modulation:
  • the light source in Fig. 1 emits a continuous laser with an optical frequency of ⁇ 0 through a polarization-maintaining fiber isolator and enters a dual-polarized four-parallel Mach-Zehnder electro-optic modulator.
  • Two arbitrary waveform generators (arbitrary waveform generator for X-polarization direction drive and arbitrary waveform generator for Y-polarization direction drive) respectively generate chirped pulse digital signals with the same linear chirp range and the same sweep rate, respectively loaded To the dual polarization four-parallel Mach-Zehnder electro-optic modulator in both the X and Y polarization directions.
  • the chirped pulsed light signal in the X polarization direction is used as the reference light
  • the chirped pulsed light signal of the continuous sweeping range such as the Y polarization direction is used as the reference light.
  • the chirped pulsed light signal modulated by the dual-polarization four-parallel Mach-Zehnder electro-optic modulator is divided into two by a 1*2 polarization-maintaining fiber coupler, wherein one of the output fibers is connected to the photodetector on the bias control panel of the electro-optic modulator It is used to extract and feedback the modulated chirped pulsed light signal to maintain a stable working state for a long time.
  • the other way is to split the chirped pulsed light signal into X-polarization and Y-polarization directions by the first fiber polarization beam splitter, and the X-polarized pulsed light signal as the probe optical pulse signal is sequentially amplified by the erbium-doped fiber amplifier, and the optical fiber is amplified.
  • the filter and the fiber circulator are injected into the sensing fiber, and the chirped pulsed light signal is scattered by the backward Rayleigh in the passing optical fiber, and the backscattered ⁇ pulsed light is returned to the demodulating optical path along the optical fiber.
  • the optical signal is outputted after interference in the 2*2 fiber coupler.
  • One of the interfering optical signals is divided into two polarization directions of X and Y by the second fiber polarization beam splitter, and the other interference optical signal is split by the third fiber polarization.
  • the device is divided into two polarization directions of X and Y.
  • the X component part and the Y component part of the interference signal are converted into electric signals by the X polarization direction and the Y polarization direction balance photodetector respectively, and the fast Fourier transform is performed on the two signals respectively to obtain FFT (X) and FFT (Y)
  • the signals are sequentially selected by sensing the various locations in the sensing fiber. Then, using the distance domain information FFT(Xi) and FFT(Yi) of the i-th segment of the sensing fiber selected by the moving window, inverse Fourier transform is performed to obtain the X i and Y i in the optical frequency domain, and the two are summed.
  • S(t 2 ) Xi+Yi
  • cross-correlation is performed on S(t 1 ) and S(t 2 ) to obtain the correlation level and the noise level of the correlation graph.
  • the cross-correlation peak coefficient and the noise level of the correlation graph It is possible to obtain whether the sensing fiber has acoustic wave action and sound wave intensity at this position.
  • the spatial resolution of this scheme is determined by the chirped sweep frequency range and inversely proportional to the sweep frequency range. Spatial resolution of the system Where ⁇ is the ⁇ pulse width and ⁇ is the ⁇ pulse scanning speed.
  • the phase extraction algorithm is used to detect the vibration frequency, amplitude and phase information of the sound source.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)
  • Optical Communication System (AREA)

Abstract

一种基于数字双啁啾脉冲调制的分布式光纤声传感装置,用于长距离分布式声波探测,利用双偏振四平行马赫曾德尔电光调制器(3)在X和Y两个偏振方向分别进行啁啾脉冲调制,X偏振方向的啁啾脉冲光信号作为探测光脉冲,经掺铒光纤放大器(9)放大后注入传感光纤(12),Y偏振方向的连续等扫频范围的啁啾脉冲光信号作为参考光,与携带传感光纤(12)各位置处的光相位和频率信息的后向散射啁啾脉冲光信号通过光耦合器(13)混合,干涉后的光信号用两个光纤偏振分束器(14,15)分开到两个偏振方向探测接收,通过数据处理获得传感光纤(12)受声波作用位置的相位、振幅和频率。还提供一种基于数字双啁啾脉冲调制的分布式光纤声传感方法。将光纤传感和传输合二为一,解决光纤分布式声信号传感的长距离和高分辨率难以调和的难题。

Description

基于数字双啁啾脉冲调制的分布式光纤声传感装置及方法 技术领域
本发明属于分布式光纤声音传感探测领域,具体涉及一种基于数字双啁啾脉冲调制的分布式声传感装置及方法,可以用于海洋、航空、石油、岩土等领域的检测。
背景技术
声波探测技术在基于探测地震波的石油/矿藏勘探、基于水声探测的反潜作战、基于空气声的飞行物监测、基于振动的周界安全监测和战场侦察等领域都有着广泛的应用和需求。传统的声波探测技术主要采用基于电学麦克风构建的传声器阵列对声场信号进行采集接收,其主要特点为分立式结构和严格的同步采集要求,从而导致传声器阵列规模大为受限,且受电磁干扰、高温高湿等恶劣工作环境带来的影响。近年来,分布式光纤传感技术得到关注,但对于合成相干函数光相干域反射技术中,受光源频率调制速率影响,其测量范围有限,一般为几千米;对于传统的相位光时域反射技术,光脉冲宽度和脉冲能量需要折中考虑,限制空间分辨率、信噪比和动态范围的同步提升,难以满足真正声波分布传感要求。为了克服这一问题,我们提出一种数字双啁啾脉冲调制的分布式光纤声传感装置及方法,该技术将为油气勘探、生产监测、国防安全领域提供了一种高效低成本技术方案,有很好的应用前景。
发明内容
本发明目的是提供一种基于数字双啁啾脉冲调制的分布式光纤声传感装置及方法,它将光纤的传感和传输功能合二为一,除具有不受电磁干扰、电无源、体积小等优点外,还通过实现分布式测量使传感监测点规模得到很大的扩展。
一种基于数字双啁啾脉冲调制的分布式光纤声传感装置,用于长距离分布式声波探测,,该装置包括光源1、保偏光纤隔离器2、双偏振四平行马赫曾德尔电光调制器3、X偏振方向驱动用任意波形发生器4、Y偏振方向驱动用任意波形发生器5、电光调制器偏压控制板6、1*2保偏光纤耦合器7、第一光纤偏振分束器8、掺铒光纤放大器9、光纤滤波器10、光纤环行器11、传感光纤12、2*2光纤耦合器13、第二光纤偏振分束器14、第三光纤偏振分束器15、X偏振方向平衡光电探测器16、Y偏振方向平衡光电探测器17、数据采集卡18和处理单元19;其中:
光源1的连续激光输出端连接保偏光纤隔离器2的输入端;所述光纤隔离器2的输出端连接双偏振四平行马赫曾德尔电光调制器3的输入端,经所述双偏振四平行马赫曾德尔电光调制器3的输出端连接1*2保偏光纤耦合器7;所述1*2保偏光纤耦合器7的一个输出端连接电光调制器偏压控制板6上的光电探测器的输入端,另一个输出端连接第一光纤偏振分束器8的输入端;所述第一光纤偏振分束器8的输出端依序先后连接掺铒光纤放大器9、光纤滤波器10和光纤环行器11,所述光纤环行器11的一个输出端注入传感光纤12,另一个输出端连接2*2光纤耦合器13;所述2*2光纤耦合器13的一个输出端连接至第二光纤偏振分束器14,所述二光纤偏振分束器14的输出端连接X偏振方向平衡光电探测器16的输入端,而所述2*2光纤耦合器13的另一个输出端连接至第三光纤偏振分束器15的输入端,所述第三光纤偏振分束器15的输出端连接Y偏振方向平衡光电探测器17;所述X偏振方向平衡光电探测器16的输出端、所述Y偏振方向平衡光电探测器17的输出端分别作为数据采集卡8电连接的输入端,所述数据采集卡18传送数据至处理单元19进行处理;所述X偏振方向驱动用任意波形发生器4和Y偏振方向驱动用任意波形发生器5产生的具有相同线性啁啾范围和相同扫频速率的啁啾脉冲数字信号,分别加载到双偏振四平行马赫曾德尔电光调制器3的X和Y两个偏振方向上;其中,X偏振方向的啁啾脉冲光信号作为探测光脉冲,Y偏振方向的连续等扫频范围的啁啾脉冲光信号作为参考光;
所述保偏光纤隔离器2,用于隔离光纤中反射回来的激光,避免进入激光器造成干扰和损坏;
所述双偏振四平行马赫曾德尔电光调制器3,分别在X和Y偏振方向对激光进行I/Q调制;
所述X偏振方向驱动用任意波形发生器4,用于产生啁啾脉冲波形,扫频信号范围为0.1~20GHz,输出的I和Q两路信号分别驱动双偏振四平行马赫曾德尔电光调制器的X偏振方向;
所述Y偏振方向驱动用任意波形发生器5,用于产生啁啾脉冲波形,扫频信号范围为0.1~20GHz,输出的I和Q两路信号分别驱动双偏振四平行马赫曾德尔电光调制器的Y偏振方向;
所述电光调制器偏压控制板6,根据反馈光强,自动调节偏振控制点,使其稳定在设置的工作模式;
所述1*2保偏光纤耦合器7,其中一路输出光纤连接电光调制器偏压控制板上的光电探测器,用于实现对调制后的啁啾脉冲光信号进行抽取反馈;
所述第一光纤偏振分束器8,用于将光信号分为X和Y两个偏振方向的光;
所述掺铒光纤放大器9,用于放大经过调制产生的信号光,增益10~30dB,满足长距离探测的要求。
所述光纤滤波器10,用于对经掺铒光纤放大器放大后的光信号进行带通滤波,消除ASE噪声。
所述光纤环行器11,将探测散射啁啾脉冲光输入传感光纤并将后向散射啁啾脉冲光输入到解调光路中;
所述传感光纤12,用于传输探测散射啁啾脉冲光信号和后向散射啁啾脉冲光信号,感受待测量;
2*2光纤耦合器13,用于将参考啁啾脉冲光和传感光纤中的后向散射啁啾脉冲光进行合束产生干涉;
所述第二光纤偏振分束器14,用于将2*2光纤耦合器输出的一路干涉光信号分为X和Y两个偏振方向的光;
所述第三光纤偏振分束器15,用于将2*2光纤耦合器输出的另一路干涉光信号分 为X和Y两个偏振方向的光;
所述X偏振方向平衡光电探测器16,用于将参考啁啾脉冲光和传感光纤中的后向散射啁啾脉冲光产生的光干涉信号的X分量部分转化为电信号;
所述Y偏振方向平衡光电探测器17,用于将参考啁啾脉冲光和传感光纤中的后向散射啁啾脉冲光产生的光干涉信号的Y分量部分转化为电信号;
所述数据采集卡18,用于采集接收经平衡光电探测器转化后的电压模拟信号;
所述处理单元19,用于控制信号发生和信号接收,以及对光电探测器的信号进行接收和解调,获得传感光纤受声波作用位置的相位、振幅和频率信息,实现形式包括计算机和嵌入式计算系统。
本发明的一种基于数字双啁啾脉冲调制的分布式光纤声传感方法,用于长距离分布式声波探测,该方法的具体过程如下:
第一步、光源发出光频为ω 0的连续激光,经过保偏光纤隔离器后进入双偏振四平行马赫曾德尔电光调制器;由两个任意波形发生器即X偏振方向和Y偏振方向驱动用任意波形发生器分别产生具有相同线性啁啾范围和相同扫频速率的啁啾脉冲数字信号,分别加载到双偏振四平行马赫曾德尔电光调制器的X和Y两个偏振方向上;其中,X偏振方向的啁啾脉冲光信号作为探测光脉冲,Y偏振方向的连续等扫频范围的啁啾脉冲光信号作为参考光;
第二步、经双偏振四平行马赫曾德尔电光调制器调制后的啁啾脉冲光信号通过1*2保偏光纤耦合器一分为二,其中一路输出光纤连接电光调制器偏压控制板上的光电探测器,用于实现对调制后的啁啾脉冲光信号进行抽取反馈,使其长时间保持稳定工作状态;另外一路通过第一光纤偏振分束器将啁啾脉冲光信号分束成X偏振和Y偏振方向,作为探测光脉冲信号的X偏振方向的啁啾脉冲光信号先后经过掺铒光纤放大器放大、光纤滤波器和光纤环行器后被注入传感光纤中,啁啾脉冲光信号在途经的光纤中发生后向瑞利散射,后向散射啁啾脉冲光沿光纤返回解调光路;含有用于解调相位信息φ(t)和用于解调光频信息I(ω)的线性扫频光的后向散射啁啾脉冲光与Y偏振方向的连续等扫频 范围的啁啾脉冲光信号进行混合干涉;
第三步、后向散射啁啾脉冲光信号与本地参考啁啾脉冲光信号在2*2光纤耦合器中干涉后输出,一路干涉光信号被第二光纤偏振分束器分为X和Y两个偏振方向的光,另一路干涉光信号被第三光纤偏振分束器分为X和Y两个偏振方向的光;干涉信号的X分量部分和Y分量部分分别经过X偏振方向和Y偏振方向平衡光电探测器转化为电信号,对这两路信号分别进行快速傅里叶变换得到FFT(X)和FFT(Y)信号,通过使用移动窗依次选取传感光纤中的各个位置;再将利用移动窗选取的传感光纤第i段部分的距离域信息FFT(X i)和FFT(Y i)进行逆傅里叶变换到光频域获得对应的X i和Y i,并将二者求和得到在t 1时刻下的瑞利散射光谱信息S(t 1)=X i+Y i,去掉直流项;在下一时刻t 2,按照前两步计算并得到在传感光纤相同位置的瑞利散射光谱信息S(t 2)=X i+Y i,对S(t 1)和S(t 2)进行互相关运算,得到互相关系数和相关图的噪声水平,根据互相关峰值系数和相关图的噪声水平就可以得到传感光纤在此位置上是否存在声波作用以及声波强度。
第四步、计算系统的空间分辨率
Figure PCTCN2018084084-appb-000001
其中τ为啁啾脉冲宽度,γ为啁啾脉冲扫描速度;通过相位提取算法,实现对声源振动频率、幅度以及相位信息的探测;空间分辨率由啁啾脉冲扫频范围决定,且和扫频范围成反比关系。
与现有技术相比,本发明具有以下效果:
1.本发明利用光纤传感和传输合二为一的功能,除具有不受电磁干扰、电无源、体积小以及耐高温高湿等恶劣工作环境的优点,还通过实现分布式测量使传感监测点规模得到很大的扩展。
2.本发明的探测光信号和本地参考光信号分别被调制成独立的线性频率啁啾脉冲光,根据产生两路脉冲的驱动信号时延来确定光纤上反射点的位置;其时延独立于调制信号波形,因此相干探测的位置与调制信号无关。
3.本发明无需高速数据采集设备以及复杂的数据处理过程,整体数据处理相对简 单。此技术方案中,无需使用光延迟线,且测量距离不受传统相干域反射系统中的相干峰之间的距离影响,解决了光纤分布式声信号传感的长距离和高分辨率难以调和的难题。
附图说明
图1是本发明的基于数字双啁啾脉冲调制的分布式光纤声传感装置示意图;
图2是本发明中探测啁啾脉冲光信号和本地参考啁啾脉冲光信号调制结果示意图;
图3是本发明中光纤上不同反射点处的后向散射啁啾脉冲光信号和本地参考啁啾脉冲光信号进行相干示意图。
附图标记:1、光源,2、保偏光纤隔离器,3、双偏振四平行马赫曾德尔电光调制器,4、X偏振方向驱动用任意波形发生器,5、Y偏振方向驱动用任意波形发生器,6、电光调制器偏压控制板,7、1*2保偏光纤耦合器,8、第一光纤偏振分束器,9、掺铒光纤放大器,10、光纤滤波器,11、光纤环行器,12、传感光纤,13、2*2光纤耦合器,14、第二光纤偏振分束器,15、第三光纤偏振分束器,16、X偏振方向平衡光电探测器,17、Y偏振方向平衡光电探测器,18、数据采集卡,19、处理单元。
具体实施方式
下面将结合附图对本发明的实施方式作进一步的详细描述。
实施例1:基于数字双啁啾脉冲调制的分布式光纤声传感装置:
如图1所示,本发明的基于数字双啁啾脉冲调制的分布式光纤声传感装置,该装置包括19个部分即光源1、保偏光纤隔离器2、双偏振四平行马赫曾德尔电光调制器3、X偏振方向驱动用任意波形发生器4、Y偏振方向驱动用任意波形发生器5、电光调制器偏压控制板6、1*2保偏光纤耦合器7、第一光纤偏振分束器8、掺铒光纤放大器9、光纤滤波器10、光纤环行器11、传感光纤12、2*2光纤耦合器13、第二光纤偏振分束器14、第三光纤偏振分束器15、X偏振方向平衡光电探测器16、Y偏振方向平衡光电 探测器17、数据采集卡18和处理单元19;
光源1发出光频为ω 0的连续激光经过保偏光纤隔离器2后进入双偏振四平行马赫曾德尔电光调制器3。由两个任意波形发生器(X偏振方向驱动用任意波形发生器4和Y偏振方向驱动用任意波形发生器5)分别产生具有相同线性啁啾范围和相同扫频速率的啁啾脉冲数字信号,分别加载到双偏振四平行马赫曾德尔电光调制器的X和Y两个偏振方向上。其中,X偏振方向的啁啾脉冲光信号作为探测光脉冲,Y偏振方向的连续等扫频范围的啁啾脉冲光信号作为参考光。经双偏振四平行马赫曾德尔电光调制器调制后的啁啾脉冲光信号通过1*2保偏光纤耦合器7一分为二,其中一路输出光纤连接电光调制器偏压控制板6上的光电探测器,用于实现对调制后的啁啾脉冲光信号进行抽取反馈,使其长时间保持稳定工作状态。另外一路通过第一光纤偏振分束器8将啁啾脉冲光信号分束成X偏振和Y偏振方向,作为探测光脉冲信号的X偏振方向的啁啾脉冲光信号先后经过掺铒光纤放大器9放大、光纤滤波器10和光纤环行器11后被注入传感光纤12中,啁啾脉冲光信号在途经的光纤中发生后向瑞利散射,后向散射啁啾脉冲光沿光纤返回解调光路。含有用于解调相位信息φ(t)和用于解调光频信息I(ω)的线性扫频光的后向散射啁啾脉冲光与Y偏振方向的连续等扫频范围的啁啾脉冲光信号在2*2光纤耦合器13中干涉后输出,一路干涉光信号被第二光纤偏振分束器14分为X和Y两个偏振方向的光,另一路干涉光信号被第三光纤偏振分束器15分为X和Y两个偏振方向的光。干涉信号的X分量部分和Y分量部分分别经过X偏振方向和Y偏振方向平衡光电探测器16、17转化为电信号,然后通过数据采集卡18传送数据至处理单元19进行处理。
其中:
光源1,采用线宽为0.1~100kHz的窄线宽连续激光器,输出功率为1~50mW。用于提供系统所需长相干长度的激光输出;
保偏光纤隔离器2,用于隔离光纤中反射回来的激光,避免进入激光器造成干扰和损坏;
双偏振四平行马赫曾德尔电光调制器3,分别在X和Y偏振方向对激光进行I/Q调制,在X偏振方向产生啁啾脉冲,脉宽为1~100ns,脉冲周期为1~20kHz,调制频率范围是0.1~20GHz。在Y偏振方向产生连续啁啾脉冲,脉宽同样为1~100ns,调制频率范围是0.1~20GHz;
X偏振方向驱动用任意波形发生器4,用于产生啁啾脉冲波形,扫频信号范围为0.1~20GHz,输出的I和Q两路信号分别驱动双偏振四平行马赫曾德尔电光调制器的X偏振方向;
Y偏振方向驱动用任意波形发生器5,用于产生啁啾脉冲波形,扫频信号范围为0.1~20GHz,输出的I和Q两路信号分别驱动双偏振四平行马赫曾德尔电光调制器的Y偏振方向;
电光调制器偏压控制板6,根据反馈光强,可自动调节偏振控制点,使其稳定在设置的工作模式;
1*2保偏光纤耦合器7,其中一路输出光纤连接电光调制器偏压控制板上的光电探测器,用于实现对调制后的啁啾脉冲光信号进行抽取反馈;
第一光纤偏振分束器8,用于将光信号分为X和Y两个偏振方向的光;
掺铒光纤放大器9,用于放大经过调制产生的信号光,增益10~30dB,满足长距离探测的要求。
光纤滤波器10,用于对经掺铒光纤放大器放大后的光信号进行带通滤波,消除ASE噪声。
光纤环行器11,将探测散射啁啾脉冲光输入传感光纤并将后向散射啁啾脉冲光输入到解调光路中;
传感光纤12,用于传输探测散射啁啾脉冲光信号和后向散射啁啾脉冲光信号,感受待测量;
2*2光纤耦合器13,用于将参考啁啾脉冲光和传感光纤中的后向散射啁啾脉冲光进行合束产生干涉;
第二光纤偏振分束器14,用于将2*2光纤耦合器输出的一路干涉光信号分为X和 Y两个偏振方向的光;
第三光纤偏振分束器15,用于将2*2光纤耦合器输出的另一路干涉光信号分为X和Y两个偏振方向的光;
X偏振方向平衡光电探测器16,用于将参考啁啾脉冲光和传感光纤中的后向散射啁啾脉冲光产生的光干涉信号的X分量部分转化为电信号;
Y偏振方向平衡光电探测器17,用于将参考啁啾脉冲光和传感光纤中的后向散射啁啾脉冲光产生的光干涉信号的Y分量部分转化为电信号;
数据采集卡18,用于采集接收经平衡光电探测器转化后的电压模拟信号;
处理单元19,用于控制信号发生和信号接收,以及对光电探测器的信号进行接收和解调,实现形式包括计算机和嵌入式计算系统。
实施例2:基于数字双啁啾脉冲调制的分布式光纤声传感方法:
上述基于数字双啁啾脉冲调制的分布式光纤声传感装置的具体方法如下:
图1中的光源发出光频为ω 0的连续激光经过保偏光纤隔离器后进入双偏振四平行马赫曾德尔电光调制器。由两个任意波形发生器(X偏振方向驱动用任意波形发生器和Y偏振方向驱动用任意波形发生器)分别产生具有相同线性啁啾范围和相同扫频速率的啁啾脉冲数字信号,分别加载到双偏振四平行马赫曾德尔电光调制器的X和Y两个偏振方向上。其中,X偏振方向的啁啾脉冲光信号作为探测光脉冲,Y偏振方向的连续等扫频范围的啁啾脉冲光信号作为参考光。经双偏振四平行马赫曾德尔电光调制器调制后的啁啾脉冲光信号通过1*2保偏光纤耦合器一分为二,其中一路输出光纤连接电光调制器偏压控制板上的光电探测器,用于实现对调制后的啁啾脉冲光信号进行抽取反馈,使其长时间保持稳定工作状态。另外一路通过第一光纤偏振分束器将啁啾脉冲光信号分束成X偏振和Y偏振方向,作为探测光脉冲信号的X偏振方向的啁啾脉冲光信号先后经过掺铒光纤放大器放大、光纤滤波器和光纤环行器后被注入传感光纤中,啁啾脉冲光信号在途经的光纤中发生后向瑞利散射,后向散射啁啾脉冲光沿光纤返回解调光路。含有 用于解调相位信息φ(t)和用于解调光频信息I(ω)的线性扫频光的后向散射啁啾脉冲光与Y偏振方向的连续等扫频范围的啁啾脉冲光信号在2*2光纤耦合器中干涉后输出,一路干涉光信号被第二光纤偏振分束器分为X和Y两个偏振方向的光,另一路干涉光信号被第三光纤偏振分束器分为X和Y两个偏振方向的光。干涉信号的X分量部分和Y分量部分分别经过X偏振方向和Y偏振方向平衡光电探测器转化为电信号,对这两路信号分别进行快速傅里叶变换得到FFT(X)和FFT(Y)信号,通过使用移动窗依次选取传感光纤中的各个位置。再将利用移动窗选取的传感光纤第i段部分的距离域信息FFT(Xi)和FFT(Yi)进行逆傅里叶变换到光频域获得X i和Y i,并将二者求和得到在t1时刻下的的瑞利散射光谱信息S(t1)=Xi+Yi,去掉直流项;在下一时刻t 2,按照前两步计算并得到在传感光纤相同位置的瑞利散射光谱信息S(t 2)=Xi+Yi,对S(t 1)和S(t 2)进行互相关运算,得到互相关系数和相关图的噪声水平,根据互相关峰值系数和相关图的噪声水平就可以得到传感光纤在此位置上是否存在声波作用以及声波强度。该方案的空间分辨率由啁啾脉冲扫频范围决定,且和扫频范围成反比关系。系统的空间分辨率
Figure PCTCN2018084084-appb-000002
其中τ为啁啾脉冲宽度,γ为啁啾脉冲扫描速度。通过相位提取算法,实现对声源振动频率、幅度以及相位信息的探测。

Claims (2)

  1. 一种基于数字双啁啾脉冲调制的分布式光纤声传感装置,用于长距离分布式声波探测,其特征在于,该装置包括光源(1)、保偏光纤隔离器(2)、双偏振四平行马赫曾德尔电光调制器(3)、X偏振方向驱动用任意波形发生器(4)、Y偏振方向驱动用任意波形发生器(5)、电光调制器偏压控制板(6)、1*2保偏光纤耦合器(7)、第一光纤偏振分束器(8)、掺铒光纤放大器(9)、光纤滤波器(10)、光纤环行器(11)、传感光纤(12)、2*2光纤耦合器(13)、第二光纤偏振分束器(14)、第三光纤偏振分束器(15)、X偏振方向平衡光电探测器(16)、Y偏振方向平衡光电探测器(17)、数据采集卡(18)和处理单元(19);其中:
    光源(1)的连续激光输出端连接保偏光纤隔离器(2)的输入端;所述光纤隔离器(2)的输出端连接双偏振四平行马赫曾德尔电光调制器(3)的输入端,经所述双偏振四平行马赫曾德尔电光调制器(3)的输出端连接1*2保偏光纤耦合器(7);所述1*2保偏光纤耦合器(7)的一个输出端连接电光调制器偏压控制板(6)上的光电探测器的输入端,另一个输出端连接第一光纤偏振分束器(8)的输入端;所述第一光纤偏振分束器(8)的输出端依序先后连接掺铒光纤放大器(9)、光纤滤波器(10)和光纤环行器(11),所述光纤环行器(11)的一个输出端注入传感光纤(12),另一个输出端连接2*2光纤耦合器(13);所述2*2光纤耦合器(13)的一个输出端连接至第二光纤偏振分束器(14),所述二光纤偏振分束器(14)的输出端连接X偏振方向平衡光电探测器(16)的输入端,而所述2*2光纤耦合器(13)的另一个输出端连接至第三光纤偏振分束器(15)的输入端,所述第三光纤偏振分束器(15)的输出端连接Y偏振方向平衡光电探测器(17);所述X偏振方向平衡光电探测器(16)的输出端、所述Y偏振方向平衡光电探测器(17)的输出端分别作为数据数据采集卡(18)电连接的输入端,所述数据采集卡(18)传送数据至处理单元(19)进行处理;所述X偏振方向驱动用任意波形发生器(4)和Y偏振方向驱动用任意波形发生器(5)产生的具有相同线性啁啾范围和相同扫频速率的啁啾脉冲数字信号,分别加载到双偏振四平行马赫曾德尔电光调制器(3)的X和Y两个偏振方向上;其中,X偏振方向的啁啾脉冲光信号作为探测光脉冲,Y偏振方向的连续等扫频范围的啁啾脉冲光信号作为参考光;
    所述保偏光纤隔离器(2),用于隔离光纤中反射回来的激光,避免进入激光器造成 干扰和损坏;
    所述双偏振四平行马赫曾德尔电光调制器(3),分别在X和Y偏振方向对激光进行I/Q调制;
    所述X偏振方向驱动用任意波形发生器(4),用于产生啁啾脉冲波形,扫频信号范围为0.1~20GHz,输出的I和Q两路信号分别驱动双偏振四平行马赫曾德尔电光调制器的X偏振方向;
    所述Y偏振方向驱动用任意波形发生器(5),用于产生啁啾脉冲波形,扫频信号范围为0.1~20GHz,输出的I和Q两路信号分别驱动双偏振四平行马赫曾德尔电光调制器的Y偏振方向;
    所述电光调制器偏压控制板(6),根据反馈光强,自动调节偏振控制点,使其稳定在设置的工作模式;
    所述1*2保偏光纤耦合器(7),其中一路输出光纤连接电光调制器偏压控制板上的光电探测器,用于实现对调制后的啁啾脉冲光信号进行抽取反馈;
    所述第一光纤偏振分束器(8),用于将光信号分为X和Y两个偏振方向的光;
    所述掺铒光纤放大器(9),用于放大经过调制产生的信号光,满足长距离探测的要求;
    所述光纤滤波器(10),用于对经掺铒光纤放大器放大后的光信号进行带通滤波,消除ASE噪声。
    所述光纤环行器(11),将探测散射啁啾脉冲光输入传感光纤并将后向散射啁啾脉冲光输入到解调光路中;
    所述传感光纤(12),用于传输探测散射啁啾脉冲光信号和后向散射啁啾脉冲光信号,感受待测量;
    所述2*2光纤耦合器(13),用于将参考啁啾脉冲光和传感光纤中的后向散射啁啾脉冲光进行合束产生干涉;
    所述第二光纤偏振分束器(14),用于将2*2光纤耦合器输出的一路干涉光信号分为X和Y两个偏振方向的光;
    所述第三光纤偏振分束器(15),用于将2*2光纤耦合器输出的另一路干涉光信号分为X和Y两个偏振方向的光;
    所述X偏振方向平衡光电探测器(16),用于将参考啁啾脉冲光和传感光纤中的后 向散射啁啾脉冲光产生的光干涉信号的X分量部分转化为电信号;
    所述Y偏振方向平衡光电探测器(17),用于将参考啁啾脉冲光和传感光纤中的后向散射啁啾脉冲光产生的光干涉信号的Y分量部分转化为电信号;
    所述数据采集卡(18),用于采集接收经平衡光电探测器转化后的电压模拟信号;
    所述处理单元(19),用于控制信号发生和信号接收,以及对光电探测器的信号进行接收和解调,获得传感光纤受声波作用位置的相位、振幅和频率信息,实现形式包括计算机和嵌入式计算系统。
  2. 利用权利要求1所述的一种基于数字双啁啾脉冲调制的分布式光纤声传感装置实现的一种基于数字双啁啾脉冲调制的分布式光纤声传感方法,用于长距离分布式声波探测,其特征在于,该方法的具体过程如下:
    第一步、光源发出光频为ω 0的连续激光,经过保偏光纤隔离器后进入双偏振四平行马赫曾德尔电光调制器;由两个任意波形发生器即X偏振方向和Y偏振方向驱动用任意波形发生器分别产生具有相同线性啁啾范围和相同扫频速率的啁啾脉冲数字信号,分别加载到双偏振四平行马赫曾德尔电光调制器的X和Y两个偏振方向上;其中,X偏振方向的啁啾脉冲光信号作为探测光脉冲,Y偏振方向的连续等扫频范围的啁啾脉冲光信号作为参考光;
    第二步、经双偏振四平行马赫曾德尔电光调制器调制后的啁啾脉冲光信号通过1*2保偏光纤耦合器一分为二,其中一路输出光纤连接电光调制器偏压控制板上的光电探测器,用于实现对调制后的啁啾脉冲光信号进行抽取反馈,使其长时间保持稳定工作状态;另外一路通过第一光纤偏振分束器将啁啾脉冲光信号分束成X偏振和Y偏振方向,作为探测光脉冲信号的X偏振方向的啁啾脉冲光信号先后经过掺铒光纤放大器放大、光纤滤波器和光纤环行器后被注入传感光纤中,啁啾脉冲光信号在途经的光纤中发生后向瑞利散射,后向散射啁啾脉冲光沿光纤返回解调光路;含有用于解调相位信息φ(t)和用于解调光频信息I(ω)的线性扫频光的后向散射啁啾脉冲光与Y偏振方向的连续等扫频范围的啁啾脉冲光信号进行混合干涉;
    第三步、后向散射啁啾脉冲光信号与本地参考啁啾脉冲光信号在2*2光纤耦合器中干涉后输出,一路干涉光信号被第二光纤偏振分束器分为X和Y两个偏振方向的光,另一路干涉光信号被第三光纤偏振分束器分为X和Y两个偏振方向的光;干涉信号的X分 量部分和Y分量部分分别经过X偏振方向和Y偏振方向平衡光电探测器转化为电信号,对这两路信号分别进行快速傅里叶变换得到FFT(X)和FFT(Y)信号,通过使用移动窗依次选取传感光纤中的各个位置;再将利用移动窗选取的传感光纤第i段部分的距离域信息FFT(X i)和FFT(Y i)进行逆傅里叶变换到光频域获得对应的X i和Y i,并将二者求和得到在t 1时刻下的瑞利散射光谱信息S(t 1)=X i+Y i,去掉直流项;在下一时刻t 2,按照前两步计算并得到在传感光纤相同位置的瑞利散射光谱信息S(t 2)=X i+Y i,对S(t 1)和S(t 2)进行互相关运算,得到互相关系数和相关图的噪声水平,根据互相关峰值系数和相关图的噪声水平就可以得到传感光纤在此位置上是否存在声波作用以及声波强度。
    第四步、计算系统的空间分辨率
    Figure PCTCN2018084084-appb-100001
    其中τ为啁啾脉冲宽度,γ为啁啾脉冲扫描速度;通过相位提取算法,实现对声源振动频率、幅度以及相位信息的探测;空间分辨率由啁啾脉冲扫频范围决定,且和扫频范围成反比关系。
PCT/CN2018/084084 2018-01-06 2018-04-23 基于数字双啁啾脉冲调制的分布式光纤声传感装置及方法 WO2019134302A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810012818.3 2018-01-06
CN201810012818.3A CN108286992B (zh) 2018-01-06 2018-01-06 基于数字双啁啾脉冲调制的分布式光纤声传感装置及方法

Publications (1)

Publication Number Publication Date
WO2019134302A1 true WO2019134302A1 (zh) 2019-07-11

Family

ID=62834944

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/084084 WO2019134302A1 (zh) 2018-01-06 2018-04-23 基于数字双啁啾脉冲调制的分布式光纤声传感装置及方法

Country Status (2)

Country Link
CN (1) CN108286992B (zh)
WO (1) WO2019134302A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112985639A (zh) * 2021-02-06 2021-06-18 电子科技大学 基于去啁啾和时域子啁啾脉冲提取的分布式光纤传感方法
WO2023159164A1 (en) * 2022-02-18 2023-08-24 Nec Laboratories America, Inc. Data transmission-tolerant distributed acoustic sensing using chirped-pulses with time-domain roll off
CN116907627A (zh) * 2023-09-13 2023-10-20 之江实验室 基于光程差辅助的大动态范围分布式相位传感方法和装置

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109088670B (zh) * 2018-08-10 2019-12-24 华中科技大学 一种确定声波信号的方法及系统
CN109217919A (zh) * 2018-11-01 2019-01-15 哈尔滨工业大学 基于时域-空域匹配的相敏型光时域反射计与测量方法
CN110108346B (zh) * 2019-04-22 2021-05-04 中国科学院上海光学精密机械研究所 基于延迟调相啁啾脉冲对的光纤振动传感器
CN110220540A (zh) * 2019-05-10 2019-09-10 中国船舶重工集团公司第七一五研究所 一种应用于分布式光纤应变解调的探测光产生系统
CN110864797B (zh) * 2019-11-13 2023-10-31 天津大学 异构双边带啁啾脉冲的差分cotdr分布式声传感装置及方法
CN113218494A (zh) * 2020-01-21 2021-08-06 中国科学院上海光学精密机械研究所 一种分布式光纤声传感系统及信号处理方法
CN111609919B (zh) * 2020-06-09 2021-06-01 重庆大学 光纤分布式振动和损耗同时检测系统
CN111609875B (zh) * 2020-06-10 2021-12-28 电子科技大学 基于啁啾连续光的数字域可调分布式光纤传感系统及方法
CN112713929B (zh) * 2020-12-02 2022-02-18 广东工业大学 一种基于啁啾脉冲的光时域反射计
CN112532337B (zh) * 2020-12-07 2022-10-18 无锡科晟光子科技有限公司 分布式高精度光纤振动入侵与在线监测探测器
CN112636837B (zh) * 2020-12-21 2022-10-18 中国科学院半导体研究所 双波段双啁啾微波信号产生及传输装置及方法
CN112880711B (zh) * 2021-01-18 2023-07-04 合肥工业大学 一种基于双脉冲调制的分布式光纤传感方法及系统
CN113206705B (zh) * 2021-03-25 2022-06-21 中国人民解放军空军工程大学 基于光纤色散效应和数字算法的自干扰消除方法
CN113447110B (zh) * 2021-06-10 2022-08-30 天津大学 一种分布式光纤振动传感系统及其相位载波解调方法
CN113541787B (zh) * 2021-06-23 2022-06-17 中国人民解放军空军工程大学 一种功能柔性的光子学辅助频率测量方法和装置
CN113810098B (zh) * 2021-07-20 2022-09-16 广东工业大学 一种基于双边带啁啾脉冲调制的光时域反射计
CN113810099B (zh) * 2021-08-20 2022-10-14 广东工业大学 一种基于非对称双边带啁啾脉冲调制的光时域反射计
CN114279569B (zh) * 2021-11-17 2023-10-03 中山大学 多载波跟踪探测光干涉型传感器光谱的反馈控制方法
CN114878141B (zh) * 2022-04-22 2023-08-04 成都飞机工业(集团)有限责任公司 一种机载光缆连接故障定位方法及系统
CN115549790B (zh) * 2022-11-29 2023-03-24 湖北经济学院 一种光信号调制系统及其产生的调制光信号的传输系统
CN115790814B (zh) * 2023-01-05 2023-05-23 之江实验室 光纤振动检测系统及其方法
CN117109646B (zh) * 2023-10-25 2024-02-23 杭州奕力科技有限公司 一种线性啁啾光纤光栅的传感解调方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011038839A (ja) * 2009-08-07 2011-02-24 Nippon Telegr & Teleph Corp <Ntt> 光周波数領域反射測定方法及び光周波数領域反射測定装置
CN102636196A (zh) * 2012-04-09 2012-08-15 天津大学 一种基于瑞利散射光谱相关系数的分布式扰动传感装置和解调方法
CN103595482A (zh) * 2013-11-08 2014-02-19 武汉邮电科学研究院 适用于双偏振iq调制器的偏压控制装置及方法
CN104596632A (zh) * 2013-10-31 2015-05-06 上海华魏光纤传感技术有限公司 一种可增强长距离探测的分布式光纤振动传感器及方法
CN105092014A (zh) * 2015-05-12 2015-11-25 天津大学 基于波束形成的分布式光纤声波探测装置及探测方法
CN107014409A (zh) * 2017-03-26 2017-08-04 天津大学 一种长距离光频域反射光纤分布式多点扰动传感方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020044712A1 (en) * 2000-10-16 2002-04-18 Henry Hung Apparatus for adding wavelength components in wavelength division multiplexed optical signals using mach-zehnder interferometer
US7499176B2 (en) * 2007-02-13 2009-03-03 Future Fibre Technologies Pty Ltd Apparatus and method for using a counter-propagating signal method for locating events
CN102759371B (zh) * 2012-07-19 2014-10-15 南京大学 融合cotdr的长距离相干检测布里渊光时域分析仪
CN105628063B (zh) * 2015-12-31 2018-02-02 中国人民解放军国防科学技术大学 基于双波长偏振正交光的布里渊光时域分析装置及方法
CN107289978B (zh) * 2017-06-09 2019-05-07 南京大学 一种基于potdr的测扰动的系统及方法
CN107402029B (zh) * 2017-08-08 2019-08-20 电子科技大学 利用正交信号提高分布式光纤传感测量速度的方法及系统

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011038839A (ja) * 2009-08-07 2011-02-24 Nippon Telegr & Teleph Corp <Ntt> 光周波数領域反射測定方法及び光周波数領域反射測定装置
CN102636196A (zh) * 2012-04-09 2012-08-15 天津大学 一种基于瑞利散射光谱相关系数的分布式扰动传感装置和解调方法
CN104596632A (zh) * 2013-10-31 2015-05-06 上海华魏光纤传感技术有限公司 一种可增强长距离探测的分布式光纤振动传感器及方法
CN103595482A (zh) * 2013-11-08 2014-02-19 武汉邮电科学研究院 适用于双偏振iq调制器的偏压控制装置及方法
CN105092014A (zh) * 2015-05-12 2015-11-25 天津大学 基于波束形成的分布式光纤声波探测装置及探测方法
CN107014409A (zh) * 2017-03-26 2017-08-04 天津大学 一种长距离光频域反射光纤分布式多点扰动传感方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112985639A (zh) * 2021-02-06 2021-06-18 电子科技大学 基于去啁啾和时域子啁啾脉冲提取的分布式光纤传感方法
WO2023159164A1 (en) * 2022-02-18 2023-08-24 Nec Laboratories America, Inc. Data transmission-tolerant distributed acoustic sensing using chirped-pulses with time-domain roll off
CN116907627A (zh) * 2023-09-13 2023-10-20 之江实验室 基于光程差辅助的大动态范围分布式相位传感方法和装置
CN116907627B (zh) * 2023-09-13 2023-12-19 之江实验室 基于光程差辅助的大动态范围分布式相位传感方法和装置

Also Published As

Publication number Publication date
CN108286992B (zh) 2020-04-17
CN108286992A (zh) 2018-07-17

Similar Documents

Publication Publication Date Title
WO2019134302A1 (zh) 基于数字双啁啾脉冲调制的分布式光纤声传感装置及方法
Muanenda Recent advances in distributed acoustic sensing based on phase-sensitive optical time domain reflectometry
CN108507663B (zh) 基于双偏振双边带调制的分布式光纤声传感装置及方法
WO2021093181A1 (zh) 异构双边带啁啾脉冲的差分cotdr分布式声传感装置及方法
JP5105302B2 (ja) 光ファイバ特性測定装置及び光ファイバ特性測定方法
CN108507662B (zh) 基于多波长双光脉冲的光纤分布式传感方法与装置
WO2017054564A1 (zh) 一种激光器相位噪声消除装置、系统及方法
CN110470376B (zh) 一种干涉分布式光纤声传感装置及其传感方法
CN101634571B (zh) 光纤脉栅分布传感装置
CN111157101A (zh) 一种弱光栅阵列分布式振动传感系统及方法
CN110501062B (zh) 一种分布式光纤声音传感及定位系统
CN104180833A (zh) 温度和应变同时传感的光时域反射计
CN101893475B (zh) 一种基于光纤延时线的分布式光纤振动传感系统
CN102571200A (zh) 多频探测光相干光时域反射仪方法和装置
CN105634588A (zh) 基于相位共轭双子波的相干光时域反射仪
CN103837165A (zh) 基于布里渊激光器和自外差检测的布里渊时域分析系统
Uyar et al. A direct detection fiber optic distributed acoustic sensor with a mean SNR of 7.3 dB at 102.7 km
Li et al. Time-slot multiplexing based bandwidth enhancement for fiber distributed acoustic sensing
Zhang et al. Dual pulse heterodyne distributed acoustic sensor system employing SOA-based fiber ring laser
CN111928938A (zh) 长距离分布式光纤振动检测系统
CN113686424A (zh) 基于波长分集技术的高信噪比声传感系统及多波长合并方法
Zhao et al. Interferometric fiber-optic hydrophone system based on linear frequency modulation
Bian et al. Vibration measurement technique for repeated fiber-optic hydrophone transmission cable system
CN115235367B (zh) 一种大应变测量范围的高精度双频光频域反射仪
Ibrahim et al. The application of PCA on Փ-OTDR sensing system for vibration detection

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18898577

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 12/11/2020)

122 Ep: pct application non-entry in european phase

Ref document number: 18898577

Country of ref document: EP

Kind code of ref document: A1