WO2019134088A1 - 一种全双工传输方法以及相关设备 - Google Patents

一种全双工传输方法以及相关设备 Download PDF

Info

Publication number
WO2019134088A1
WO2019134088A1 PCT/CN2018/071319 CN2018071319W WO2019134088A1 WO 2019134088 A1 WO2019134088 A1 WO 2019134088A1 CN 2018071319 W CN2018071319 W CN 2018071319W WO 2019134088 A1 WO2019134088 A1 WO 2019134088A1
Authority
WO
WIPO (PCT)
Prior art keywords
node
access
target
queue
full duplex
Prior art date
Application number
PCT/CN2018/071319
Other languages
English (en)
French (fr)
Inventor
董晨
姜彤
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2018/071319 priority Critical patent/WO2019134088A1/zh
Priority to CN201880081911.8A priority patent/CN111527728B/zh
Publication of WO2019134088A1 publication Critical patent/WO2019134088A1/zh
Priority to US16/918,486 priority patent/US11337248B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0808Non-scheduled access, e.g. ALOHA using carrier sensing, e.g. carrier sense multiple access [CSMA]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0833Random access procedures, e.g. with 4-step access
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • H04L5/0055Physical resource allocation for ACK/NACK
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/14Two-way operation using the same type of signal, i.e. duplex

Definitions

  • the present application relates to the field of communications technologies, and in particular, to a full duplex transmission method and related devices.
  • full-duplex transmission means that a node can receive data while transmitting data.
  • Figure 1 is a schematic diagram of the topology of a full duplex transmission. As shown in FIG. 1, if node A receives data transmitted by node C while transmitting data to node B, node A implements full-duplex transmission.
  • the establishment of full-duplex transmission includes the establishment of the first transmission and the establishment of the second transmission.
  • the specific process is to determine two (or three) nodes constituting the full-duplex transmission and allocate transmission resources for full-duplex transmission.
  • One idea for establishing full-duplex transmission is that two nodes first start transmitting after they obtain the required transmission resources, that is, the first transmission, as to which two nodes the second transmission consists and when the second transmission At the beginning, it needs to be determined according to certain methods and rules.
  • the downlink transmission between the second node and the third node is a first transmission, and is a contention-free transmission
  • the uplink transmission between the first node and the second node is The second transmission is a contention based transmission.
  • the uplink channel between the first node and the second node has a transmission window corresponding to the time interval, and each transmission window includes an access channel.
  • a transport channel, wherein the access channel further includes a plurality of equal length access slots.
  • the first node randomly selects any one of the access slots to send the access request information to the second node, and the first node sends the uplink physical frame to the second node without contention on the transport channel. Only when the access request information sent by the first node in the access slot is successfully received by the second node, the first node can enter the data transmission queue to wait for the opportunity to send the uplink physical frame to the second node without contention on the transmission channel. .
  • the second node fails to receive the access request information due to the conflict, and all the accesses are The first node transmitting the access request information in the time slot must enter the collision resolution queue to wait for the opportunity to retransmit the access request information.
  • the second node After the second node receives the ACK frame sent by the third node, the second node broadcasts an ACK frame to the first node, and the ACK frame sent by the second node carries the ACK frame sent by the second node.
  • Full duplex feedback information full duplex feedback information indicating the status of each access slot on the access channel.
  • the status of the access slot includes three types: a success state, a collision state, and an idle state.
  • the first node needs to determine that it should enter the conflict resolution queue according to the status of each access slot indicated in the full duplex feedback information (the state of the access slot in which the access request information message is sent is the collision state. ) Still enter the data transmission queue to queue (the state of the access slot for sending the access request information message itself is a successful state).
  • the premise that the above-mentioned full-duplex transmission method can operate reliably is that the second node and the first node have the same view on the state of the access slot, that is, when the second node indicates that the access slot state is in a successful state, the first node also considers The state of the access slot should indeed be a successful state.
  • the second node and the first node may be connected to the same access.
  • the state of the gap has a different view.
  • the first node When the second node and the first node have different views on the state of the same access slot, or when the first node does not receive the full duplex feedback information sent by the second node, the first node enters an uncertainty.
  • the state that is, whether you should enter the conflict resolution queue or queue up in the data transmission queue, or do not know where you should be in the queue. When this happens, the above-mentioned full-duplex transmission method will not operate correctly.
  • the embodiment of the invention provides a full-duplex transmission method and related equipment capable of ensuring correct operation of a node and reducing a time-delayed access delay of a node.
  • the method shown in this aspect includes step A, step B, step C and step D;
  • Step A The first node sends the access request information to the second node in the first access slot.
  • the first access slot is any one of the selected access slots selected by the first node in the transmission window TW, and the access request information is the first
  • the node sends a request sent before the second physical frame to the second node.
  • the first node may include multiple nodes, and each of the first nodes randomly selects one of the access slots to send the access request information to the second node. Therefore, there may be more than one first access slot.
  • Step B The first node receives full duplex feedback information sent by the second node.
  • the full duplex feedback information indicates a status of each access slot in the transmission window TW.
  • the possible states of the respective access slots include: a success state, that is, the second node successfully receives the access request information sent by the first node in the access slot; the conflict state, that is, the second node A valid physical frame preamble is detected in the access slot, but the correct physical frame header is not parsed; in the idle state, the second node does not receive any of the first node sent in the access slot.
  • the access request information includes: a success state, that is, the second node successfully receives the access request information sent by the first node in the access slot; the conflict state, that is, the second node A valid physical frame preamble is detected in the access slot, but the correct physical frame header is not parsed; in the idle state, the second node does not receive any of the first node sent in the access slot.
  • Step C The first node further receives a target identifier sent by the second node, where the full duplex feedback information indicates that the first access slot is in a successful state;
  • the first node when the full duplex feedback information indicates that the first access slot is in another state (such as a conflict state or an idle state), the first node does not need to receive the target identifier sent by the second node.
  • the first node may include multiple, there may be multiple first access slots. Therefore, if the full duplex feedback information indicates that multiple first access slots are indicated as being successful, the second node A plurality of target identifiers need to be sent, and a plurality of first nodes need to receive the target identifier.
  • Each of the target identifiers respectively indicates a first access slot, and each of the first access slots has at least one first node that sends access request information to the second node, and at least one of the access requests The information is successfully received by the second node, and the target identifier corresponding to the first access slot indicates the node ID of the sender of the access request information successfully received by the second node in the first access slot.
  • Step D In a case where the first node determines that the target identifier is inconsistent with the identifier of the first node, or in the full duplex feedback information, the first access slot is in an idle state. In case, the first node determines a target queuing location of the first node in the conflict resolution queue.
  • the first node determines that the target identifier is inconsistent with the identifier of the first node, it indicates that the first access slot has been indicated as a successful state by full duplex feedback information, and The first node has received the target identifier sent by the second node through step C. After comparing the received target identifier with the target identifier of the first node itself, the first node determines that the access request information successfully received by the second node in the first access slot is not the one sent by itself. The information is requested, but other first nodes, so the first node determines that it should enter the CRQ queue, and thus needs to determine its specific queuing location in the CRQ according to the method of the embodiment of the present invention.
  • the first node In the case that the full duplex feedback information indicates that the first access slot is in an idle state, the first node is configured to send access request information in the first access slot, but the second node is In the full duplex feedback information, indicating that the first access slot is idle, indicating that the second node does not detect the access request information sent by the first node, so the first node needs to enter the CRQ queue, and the The method of the embodiment of the invention determines its own specific queuing location in the CRQ.
  • the first node shown in this aspect determines that the target queuing location has two situations.
  • the full duplex feedback information indicates that the first access slot is in a successful state, and If the target identifier and the identifier of the first node are inconsistent, the first node may determine that the second node in the first access slot does successfully receive the access request information, but the access request The information is not sent by itself, but by other first nodes.
  • the reason for this phenomenon is that the first node and the first node indicated by the target identifier both send request information to the second node in the first access slot, because the physical signals of the two access request information are The overlap occurs at the receiver of the second node, and the received signal and noise of the physical signal of the access request information sent by the first node is relatively low, and the access request information sent by the first node indicated by the target identifier is The received signal to noise ratio of the physical signal is high, so the second node can successfully receive the access request information sent by the first node indicated by the target identifier, and the access request information sent by the first node is used by the second node. The noise is processed.
  • the second node indicates that the state of the first access slot is a successful state in the full duplex feedback information.
  • the second node indicates, in the full duplex feedback information, that the state of the first access slot is an idle state.
  • the first node may determine that the access request information sent by the first access slot is not successfully received by the second node, and the reason may be between the first node and the second node.
  • the communication link is occluded or there is interference on the link, so that the received signal-to-noise ratio of the access request information sent by the second node is very low, so the second node cannot detect any signal, thereby determining the The state of the first access slot is an idle state.
  • the first node can determine that it should enter the conflict resolution queue CRQ queue to resend the access request to the second node.
  • the first node that sent the access request in the access slot will enter the DTQ queue by default, and will not enter the CRQ queue, so
  • the second node does not take into account the first node that sent the access request information in the first access slot when indicating the CRQ length in the full duplex feedback information, because it appears to the second node
  • the first node that has sent the access request information in the first access slot has entered the DTQ queuing, and does not need to retransmit the access request information, so there is no need to occupy the queuing external in the CRQ.
  • the second node considers that there is no first node in the access slot to send access request information, so the second node is in full duplex.
  • the first node that transmitted the access request information in the first access slot is not taken into consideration.
  • the first node and the second node have different views on the CRQ queuing situation, that is, the second node considers that the CRQ length is less than the CRQ length considered by the first node, and the specific number is less.
  • An advantageous effect of the embodiment of the present invention is that, on the one hand, the second node sends the target identifier, so that the first node can determine that the first access slot has an error by comparing the target identifier with its own identifier, and avoid the first A node mistakenly thought that it had entered the DTQ queue and wasted the queue time.
  • the embodiment of the present invention clarifies the specific queuing location of the first node in the CRQ, so that the first node can still be in the CRQ after judging that the foregoing two situations occur.
  • the queuing in the queue avoids the phenomenon that the processing action of the first node due to the uncertainty of the queuing position in the CRQ is uncertain, which effectively guarantees the normal operation of the full-duplex transmission.
  • the step D specifically includes: if the full duplex feedback information indicates that there is only one second access The slot is in a conflict state, and the first node determines that the target queuing location is a queuing location of the second access slot in the conflict resolution queue.
  • the step D specifically includes: if the full duplex feedback information indicates that the second access is multiple The time slot is in a conflict state, and the first node determines that the target queuing location is the second access slot in the plurality of the second access slots that is closest to the first access slot. The queued position in the conflict resolution queue.
  • the step D specifically includes: if the full duplex feedback information indicates that there are multiple The second access slot is in a conflicting state, and two of the plurality of second access slots are closest to the first access slot, and the Determining, by a node, that the target queuing location is the two second access slots that are closest to the first access slot, and the second ranked first access slot is in the conflict resolution queue. The queue location.
  • the step D specifically includes: the full duplex feedback information indicating an access slot included in the TW The time slot of the conflict state is not included, that is, the full duplex feedback information indicates that all access slots are in a successful state or an idle state, and in a case where the conflict resolution queue is not empty, the first node Determining that the target queuing location is a tail position of the conflict resolution queue.
  • the step D specifically includes:
  • Step D11 The first node sends a NACK signal in a negative acknowledgement NACK time slot, and the negative acknowledgement NACK time slot occurs after the first node receives the full duplex feedback information.
  • Step D12 The first node receives the queue adjustment indication information sent by the second node, where the queue adjustment indication information is used to indicate the target queuing location, where the target queuing location is any one of the conflict resolution queues. a location or a location of the conflict resolution queue tail position;
  • a second node shown in this embodiment detects a NACK signal on the NACK slot. If the second node detects the NACK signal, the second node adjusts the queue indication information. And sending, to the first node, the second node, the queue adjustment indication information, in the first physical frame of the next transmission window sent by the second node, where the queue adjustment indication
  • the information is used to indicate the target queuing location, and the target queuing location is any one of the CRQs.
  • the specific queuing location of the target queuing location is not limited, for example, the target.
  • the queue position can be the tail position of the CRQ.
  • the first physical frame of the next transmission window is referenced by the first physical frame in the current transmission window, and the current transmission window is the transmission window of the first access time slot in which the first node sends the access request information. .
  • the second node shown in this embodiment may carry the queue adjustment indication information in a first physical frame sent by the second node to each transmission window of the first node, where In this case, the queue adjustment indication information needs to indicate whether the CRQ length is adjusted. Only when the second node detects the NACK signal, the queue adjustment indication information sent by the second node is used. The CRQ length may be indicated to be adjusted, and the target queuing location is indicated in the queue adjustment indication information.
  • Step D13 The first node determines the target queuing location according to the queue adjustment indication information.
  • the step D specifically includes: if the full duplex feedback information indicates that there are multiple The slot is in a conflict state, and the first node determines that the target queuing location is a queuing position of any one of the plurality of the second access slots in the conflict resolution queue.
  • the step D includes: if the full duplex feedback information indicates that all access slots are successful or idle. In the case that the conflict resolution queue is not empty, the first node determines that the target queue position is any position in the conflict resolution queue.
  • the full duplex feedback information indicates that the first access time slot is successful.
  • the receiving, by the first node, the target identifier sent by the second node specifically includes:
  • the physical frame refers to the first physical frame sent by the second node to the third node, and the first physical frame is sent to the second node in the next transmission window.
  • Three-node The third node of the destination receiving node of the payload carried in the first physical frame, the first node of the destination receiving node of the full duplex indication information carried in the first physical frame header, and the destination identifier is also carried in the first physical frame In the frame header.
  • the third node receives and parses out the load information required by the node, and the first node can parse the full duplex indication information and the destination identifier.
  • the next transmission window is referenced to the current transmission window, and the current transmission window refers to the transmission window in which the first access slot in which the first node sends the access request information to the second node, and the next transmission window is followed.
  • the transmission window that appears after the current transmission window is followed.
  • the first node further receives the The target identifier sent by the second node specifically includes: the first node receiving the full duplex feedback information, where the target identifier is carried in the full duplex feedback information.
  • the first node in step B receives the full duplex feedback information and the first node in step C receives the full duplex feedback information as the same action.
  • the node does not need to receive the full-duplex feedback information again for receiving the target identifier, but after the step B is performed, the first node may directly obtain the target identifier from the received full-duplex feedback information, because The target identifier is carried in the full-duplex feedback information, or the target identifier and the full-duplex feedback information are included in the same physical frame (fourth physical frame).
  • the method further includes:
  • Step E If the first node determines that the target identifier is consistent with the identifier of the first node, the first node enters a data transmission queue to queue.
  • a second aspect of the embodiments of the present invention provides a full duplex transmission method, including:
  • Step A The second node receives the access request information sent by the first node in the first access slot.
  • Step B The second node sends full duplex feedback information to the first node.
  • Step C When the full duplex feedback information indicates that the first access slot is in a successful state, the second node sends a target identifier to the first node.
  • the second node when the full duplex feedback information indicates that the first access slot is in a successful state, the second node needs to send a target identifier to the first node,
  • the target identifier is an identifier of the first node that has sent the access request information in the first access slot and the access request information is successfully received by the second node.
  • the first node finds that the first access time slot in which the access request information is sent is indicated as being successful, the first node needs to further acquire the second target identifier. If the first node determines that the target identifier and the identifier of the first node are inconsistent, the first node may determine, in time, that the second node is not successful in the first access slot.
  • the second node can determine, by sending the full duplex feedback information and the target identifier, that the first node can timely determine that the second node is not in the first access slot.
  • Successfully receiving the access request information sent by the first node so the first node does not enter the DTQ queue and wastes time, reduces the access delay of the first node, and clarifies that the DQ algorithm is in error.
  • the processing action of the first node ensures the correct operation of the DQ algorithm after the error occurs to ensure the normal operation of the full duplex transmission.
  • the sending, by the second node, the target identifier to the first node in the step C includes: the second The node sends a physical frame to the first node, where the target identifier is carried in the physical frame, and the physical frame is sent by the second node after sending complete duplex feedback information.
  • the physical frame refers to the first physical frame sent by the second node to the third node, and the first physical frame is sent to the second node in the next transmission window.
  • Three-node For a detailed description of the physical frame, refer to the foregoing first aspect.
  • the destination receiving node of the payload information carried in the first physical frame is the third node, but the destination receiving node of the target identifier information carried in the header of the first physical frame is the first node. Since the first physical frame needs to be received by the third node, and needs to be received by the first node, and both the first node and the third node are within the transmission coverage of the second node, the first physical frame is Preferably, the sending is performed by means of broadcast or multicast, so that the node within the coverage of the signal sent by the second node can receive the first physical frame, so that the first node can parse the first physical frame. Get the target ID.
  • the sending, by the second node, the target identifier to the first node in the step C includes: the second The node sends the full duplex feedback information carrying the target identifier to the first node.
  • the second node sends, to the first node, the full duplex feedback information that carries the target identifier, and the step B in the second aspect.
  • the second node sends the full-duplex feedback information to the first node to the same action, and the second node does not need to separately send the full-duplex feedback information to send the target identifier, but the first step after the step B is executed.
  • the node can directly obtain the target identifier from the received full-duplex feedback information, because the target identifier is carried in the full-duplex feedback information, or the target identifier and the full-duplex feedback information are included in the same
  • the physical frame (fourth physical frame) is sent together.
  • a third aspect of the embodiments of the present invention provides a full duplex transmission method, including:
  • Step A The second node receives the access request information sent by the first node in the first access slot.
  • Step B The second node sends full duplex feedback information to the first node.
  • Step C When the full duplex feedback information indicates that the first access slot is in a successful state, the second node sends a target identifier to the first node.
  • Step D The second node receives a NACK signal sent by the first node in a negative acknowledgement NACK time slot, and the negative acknowledgement NACK time slot occurs after the first node receives the full duplex feedback information;
  • Step E If the second node detects a NACK signal in the NACK slot, the second node sends queue adjustment indication information to the first node, where the queue adjustment indication information is used to indicate the target queuing location.
  • the target queuing location is any location in the conflict resolution queue or a subsequent location of the conflict resolution queue tail position.
  • the second node if the second node indicates that the state of the first access slot is a successful state in the full duplex feedback information, the second node needs to send a target identifier.
  • the target identifier is an identifier of the first node that has sent the access request information in the first access slot and the access request information is successfully received by the second node.
  • the first node further needs to obtain the second target identifier when it is found that the first access time slot in which the access request information is sent is indicated as being successful.
  • the first node may determine the location.
  • the access request information sent by the first node in the first access slot is not successfully received by the second node, so the first node sends a NACK signal on the NACK slot to the second node.
  • the situation is indicated, and the second node also needs to determine whether the foregoing situation has actually occurred by detecting that there is no NACK signal in the NACK slot.
  • the second node indicates that the state of the first access slot is an idle state in the full duplex feedback information, the reason for the occurrence may be that the link is blocked or interferes.
  • the access request information that is sent by the first node in the first access slot is not successfully received by the second node, so that the second node determines that the state of the first access slot is Idle state.
  • the second node also needs to determine whether or not such a situation occurs by detecting the presence or absence of a NACK signal in the NACK slot. It should be noted that, if the full duplex feedback information indicates that one of the second access slots (assumed to be slot 1) is in a successful state, indicating another second access slot (assumed to be slot 2) It is idle. And assume that a first node (assumed to be node A) sends access request information to the second node in time slot 1, and another first node (assumed to be node B) sends access to the second node in time slot 2. Request information.
  • the first node judges that the target identifier indicated by the second node is inconsistent with the identifier of the node A, and it is obvious that both of the foregoing cases occur. Therefore, both node A and node B will send an access NACK signal to the second node in the NACK slot. Since there is only one NACK slot, the NACK signals sent by the node A and the node B overlap, and the second node can only detect that the first node in the NACK slot sends the NACK signal, but cannot distinguish between the node A and the node A. The NACK signal is also the NACK signal sent by the Node B.
  • the second node does not need to distinguish whether the node A or the node B sends the NACK signal, and the second node only needs to detect the presence or absence of the NACK signal. If the second node detects a NACK signal in the NACK slot, the second node may determine that at least two of the second access slots indicated as successful in the full duplex feedback information A node sends access request information to itself, but at least one access request information of the first node is not successfully received by itself. The second node may further determine that at least one of the second access slots indicated as being in the idle state in the full duplex feedback information sends access request information to itself, but is not successfully received by itself.
  • the second node may send queue adjustment indication information to the first node to indicate the target queuing location, and the first node that sends the NACK signal is queued at the target queuing location.
  • the first node can timely determine that the access request information sent by the first node is not successfully received by the second node, and notify the second node in time to determine the situation, so that The second node can know in time that the access request information sent by the first node is not successfully received by the second node, so that the second node can adjust the CRQ queue length, where the first node is in the A queue position is added at the end of the CRQ, thus avoiding the first node error and thinking that it is wasting time to enter the DTQ queue, reducing the access delay of the first node, and clarifying the first node of the DQ algorithm after an error occurs.
  • the processing action ensures the correct operation of the DQ algorithm after the error occurs.
  • each NACK slot corresponds to one An access slot
  • the first node sends the access access request information in the corresponding first access slot
  • the full duplex feedback information indicates that the first access slot state is a successful state, but
  • the target identifier indicated by the second node is inconsistent with the identifier of the first node, or the first node is in the idle state, and the first node is in the first access slot.
  • the NACK time slot transmits a NACK signal to the second node.
  • the number of specific NACK slots is not limited in the present invention.
  • a fourth aspect of the embodiments of the present invention provides a first node, including:
  • a sending module configured to send access request information to the second node in the first access slot
  • a receiving module configured to receive full duplex feedback information sent by the second node
  • the receiving module is further configured to: when the full duplex feedback information indicates that the first access slot is in a successful state, receive a target identifier sent by the second node;
  • a processing module configured to: when the first node determines that the target identifier is inconsistent with the identifier of the first node, or in the full duplex feedback information, indicating that the first access slot is idle In the case of the state, the target queuing location of the first node in the conflict resolution queue is determined.
  • the first node may determine the second node in time. If the access request information sent by the first node is not successfully received in the first access time slot, the first node may determine in time that it should enter the CRQ queue instead of entering the DTQ queue. Thereby reducing the access delay of the first node.
  • the embodiment of the present invention clarifies the processing action of the first node after the error occurs in the DQ algorithm, that is, the first node directly determines the self according to the full duplex feedback information after determining that the second node receives the access request information error.
  • the specific location of the queue in the CRQ thus ensuring the normal operation of full-duplex transmission after the error occurs.
  • the processing module is further configured to: if the full duplex feedback information indicates that there is only one second The access slot is in a conflict state, and the target queuing location is determined to be a queuing location of the second access slot in the conflict resolution queue.
  • the processing module is further configured to: if the full duplex feedback information indicates that the second access is multiple If the time slot is in a conflict state, determining that the target queuing location is a second access slot in the plurality of the second access slots that is closest to the first access slot in the conflict resolution queue. Queued location.
  • the processing module is further configured to: if the full duplex feedback information indicates that there are multiple Determining that the second access slot is in a conflicting state, and two of the plurality of second access slots are closest to the first access slot.
  • the target queuing location is a queuing position of the first ranked second access slot in the conflict resolution queue among the two second access slots that are closest to the first access slot.
  • the processing module further uses In the case that the conflict resolution queue is not empty, it is determined that the target queue position is the tail position of the conflict resolution queue.
  • the processing module includes:
  • a sending unit configured to send a NACK signal in a negative acknowledgement NACK time slot, where the negative acknowledgement NACK time slot occurs after the first node receives the full duplex feedback information
  • a receiving unit configured to receive queue adjustment indication information sent by the second node, where the queue adjustment indication information is used to indicate the target queuing location, where the target queuing location is any one of the conflict resolution queues or The conflict resolves the last position of the tail position of the queue;
  • a processing unit configured to determine the target queuing location according to the queue adjustment indication information.
  • the processing module is further configured to: if the full duplex feedback information indicates that the second access is multiple The time slot is in a conflict state, and the target queuing location is determined to be a queuing position of any one of the plurality of the second access slots in the conflict resolution queue.
  • the processing module if the full duplex feedback information indicates that all access slots are in a successful state or an idle state, the processing module is used.
  • the method is further configured to: if the conflict resolution queue is not empty, determine that the target queuing location is any position in the conflict resolution queue.
  • the receiving module is further used in the fourth implementation manner of the fourth aspect of the present invention. Receiving a physical frame sent by the second node, where the target identifier is carried in the physical frame, and the physical frame is sent by the second node after sending the full duplex feedback information, Or the receiving module is further configured to receive the full duplex feedback information, where the target identifier is carried in the full duplex feedback information.
  • the receiving module receives the full duplex feedback information, where the target identifier is carried in the full duplex feedback information, and the fourth sending The receiving module is configured to receive the full duplex feedback information sent by the second node, where the two actions are the same action, that is, the receiving module does not need to receive the full duplex feedback separately for receiving the target identifier.
  • Information but after receiving the full-duplex feedback information after execution, the target identifier is directly obtained from the target identifier, because the target identifier is carried in the full-duplex feedback information, or the target identifier and the full-duplex feedback information are included in Sent together in the same physical frame (fourth physical frame).
  • the physical frame refers to a first physical frame that is sent by the second node to the third node, and the first physical frame is still in the next transmission window.
  • the two nodes are sent to the third node.
  • the first node determines that the first access time slot indicated by the full duplex feedback information is in a successful state, and the first node acquires If the target identifier and the identifier of the first node are inconsistent, the first node may determine, in time, that the second node does not successfully receive the first node in the first access slot. In the case of the access request information sent, the first node does not enter the DTQ queue and wastes time, reduces the access delay of the first node, and clarifies the processing of the first node after the error occurs in the DQ algorithm. The action ensures the correct operation of the DQ algorithm after the error occurs to ensure the normal operation of the full duplex transmission.
  • the processing module is further used in the ninth implementation manner of the fourth aspect of the embodiment of the present invention. If it is determined that the target identifier is consistent with the identifier of the first node, the first node enters a data transmission queue for queuing.
  • the first node only determines that the first access time slot indicated by the full duplex feedback information is in a successful state, and the target identifier and the The identifiers of the first node are consistent, and the first node may determine that the access request information sent by the first node in the first access slot is successfully received by the second node, so the first node determines You should enter the DTQ queue, which effectively guarantees the normal operation of full-duplex transmission.
  • a fifth aspect of the embodiment of the present invention provides a second node, including:
  • a receiving module configured to receive, in the first access time slot, access request information sent by the first node
  • a sending module configured to send full duplex feedback information to the first node
  • the sending module is further configured to send the target identifier to the first node, where the full duplex feedback information indicates that the first access slot is in a successful state.
  • the second node in a case where the full duplex feedback information indicates that the first access slot is in a successful state, the second node sends a target identifier to the first node. If the first node determines that the target identifier and the identifier of the first node are inconsistent, the first node may timely determine that the second node is not successfully received in the first access slot. The case of the access request information sent by the first node. It can be seen that the second node can use the full duplex feedback information and the target identifier to enable the first node to timely determine that the second node is not successfully received in the first access slot.
  • the first node In the case that the first node sends the access request information, the first node does not enter the DTQ queue and wastes time, which reduces the access delay of the first node, and clarifies that the DQ algorithm is in error.
  • the processing action of the first node ensures the correct operation of the DQ algorithm after the error occurs to ensure the normal operation of the full duplex transmission.
  • the sending module is further configured to: send a physical frame to the first node, where the target identifier is carried in the The physical frame is sent by the second node after transmitting the complete duplex feedback information.
  • the physical frame refers to the first physical frame sent by the second node to the third node, and the first physical frame is sent to the second node in the next transmission window.
  • Three-node For a detailed description of the physical frame, refer to the foregoing first aspect.
  • the sending module is configured to send, to the first node, the full duplex that carries the target identifier. Feedback.
  • the sending module is configured to send the full duplex feedback information carrying the target identifier to the first node
  • the sending the fifth aspect The module is configured to send the full-duplex feedback information to the first node as the same action, and the sending module does not need to separately send the full-duplex feedback information to send the target identifier, because the target identifier is carried in the full-duplex feedback information.
  • the target identifier and the full duplex feedback information are included in the same physical frame (fourth physical frame).
  • a sixth aspect of the embodiment of the present invention provides a second node, including:
  • a first receiving module configured to receive, in the first access time slot, access request information sent by the first node
  • a first sending module configured to send full duplex feedback information to the first node
  • the first sending module is further configured to: when the full duplex feedback information indicates that the first access time slot is in a successful state, send a target identifier to the first node;
  • a second receiving module configured to receive a NACK signal sent by the first node in a negative acknowledgement NACK time slot, where the negative acknowledgement NACK time slot occurs after the first node receives the full duplex feedback information
  • a second sending module configured to send a queue adjustment indication information to the first node if the NACK signal is detected in the NACK time slot, where the queue adjustment indication information is used to indicate a target queuing location, where the target queuing location is Any position in the conflict resolution queue or the next position of the conflict resolution queue tail position.
  • the second node if the second node indicates that the state of the first access slot is a successful state in the full duplex feedback information, the second node needs to send a target identifier. If the access request information is sent in the first access slot but the target identifier indicated by the second node does not match the identifier of the first node, the first node may determine the location.
  • the first node may send a NACK signal on the NACK slot, If the second node detects the NACK signal in the NACK time slot, the second node may determine that the second node does not successfully receive the access request information sent by the first node, and the second node The node may send queue adjustment indication information to the first node to indicate the target queuing location, and the first node that sends the NACK signal is queued at the target queuing location.
  • the first node can determine in a timely manner that the access request information sent by the first node is not successfully received by the second node, and the first node may further notify the second node, so that The second node can determine, in time, that the access request information sent by the first node is not successfully received by the second node, so that the second node can adjust the CRQ queue length to be the first node.
  • Add a queue position at the end of the CRQ thus avoiding the first node error and thinking that it is wasting time to enter the DTQ queue, reducing the access delay of the first node, and clarifying the first node of the DQ algorithm after an error occurs.
  • the processing action ensures the correct operation of the DQ algorithm after the error occurs.
  • a seventh aspect of the embodiments of the present invention provides a node, including a processor and a memory, wherein the memory stores a computer readable program, and the processor runs the program in the memory to complete the present The method of any of the first aspect to the second aspect of the invention.
  • An eighth aspect of the embodiments of the present invention provides a computer readable storage medium, including instructions, when the instructions are executed on a node, causing the node to perform any one of the first aspect to the second aspect of the embodiment of the present invention. Said method.
  • a ninth aspect of the embodiments of the present invention provides a computer program product comprising instructions, when the computer program product is run on a node, causing the node to perform any one of the first aspect to the second aspect of the embodiment of the present invention Said method.
  • the present invention provides a full duplex transmission method and related apparatus, the method comprising: a first node transmitting access request information to a second node in a first access slot; the first node receiving a full duplex sent by the second node Feedback information: when the full duplex feedback information indicates that the first access slot is in a successful state, and the first node determines that the target identifier sent by the second node is inconsistent with the identifier of the first node, the first node determines The first node is in the target queuing position in the conflict resolution queue; or, in the case that the full duplex feedback information indicates that the first access slot is in the idle state, the first node determines the target queuing of the first node in the conflict resolution queue position.
  • the method of the present invention causes the first node to timely determine that the second node does not successfully receive the access request information sent by the first node in the first access time slot, and then the first node enters the conflict resolution queue and queues in time.
  • the access delay of the first node is reduced, and the correct operation of the full duplex transmission is guaranteed.
  • FIG. 1 is a schematic diagram of a topology structure of a full duplex transmission provided by the prior art
  • FIG. 3 is a schematic diagram of transmission of visible light communication provided by the prior art
  • FIG. 4 is a flow chart of steps of an embodiment of a full duplex transmission method according to the present invention.
  • FIG. 5 is a schematic diagram of states of each access slot of an access channel according to the present invention.
  • FIG. 6 is a schematic diagram of a conflict resolution queue queue provided by the present invention.
  • FIG. 7 is a schematic diagram of states of each access slot of another access channel according to the present invention.
  • FIG. 8 is a schematic diagram of another conflict resolution queue queue provided by the present invention.
  • FIG. 9 is a schematic diagram of states of each access slot of another access channel according to the present invention.
  • FIG. 10 is a schematic diagram of states of each access slot of another access channel according to the present invention.
  • FIG. 11 is a schematic diagram of another conflict resolution queue queue provided by the present invention.
  • FIG. 12 is a schematic diagram of states of each access slot of another access channel according to the present invention.
  • FIG. 13 is a schematic diagram of another conflict resolution queue queue provided by the present invention.
  • 16 is a schematic diagram of an embodiment of full duplex transmission provided by the present invention.
  • 17 is a flow chart of steps of an embodiment of a full duplex transmission method according to the present invention.
  • FIG. 18 is a schematic structural diagram of an embodiment of a first node according to the present invention.
  • FIG. 19 is a schematic structural diagram of an embodiment of a second node according to the present invention.
  • FIG. 20 is a schematic structural diagram of another embodiment of a second node according to the present invention.
  • Visible light communication is a communication method that uses electromagnetic waves in the visible light range as a communication transmission medium.
  • the VLC transmitting end sends the signal m(t) sent by the transmission signal Input after being modulated and encoded by the encoding module 101 to the driving circuit 102 of the light emitting diode (LED), and the electrical signal is converted by electro-optical conversion. Converted to an optical signal x(t) and sent out. Since the LED drive current is modulated by the transmitted signal, and the change of the drive current in the drive circuit 102 causes a change in the intensity of the light emitted by the LED lamp, in essence, the VLC communication realizes the transmission of the signal by changing the intensity of the LED light source. .
  • a photodetector (PD) 103 or an optical lens (Camera) is used to detect the received LED light, and the received modulated optical signal is converted into an electrical signal and then input to the receiver 104. It is demodulated and decoded in the receiver and restored to the transmitted data stream Output.
  • a VLC network usually includes a central control node and a plurality of terminal devices.
  • the central control node may also be referred to as a coordinator, an access point (AP), a domain master (DM), etc.; It is called station (STA), (endpoint, EP), user equipment (UE), and so on.
  • the VLC network may also be referred to as a visible-light communication personal area network (VPAN), a domain, a local area network (LAN), or the like.
  • the central control node is the master node of the VLC network, which provides visible light network access for the EP and manages and maintains the operation of the domain.
  • the EP connects to the VLC network by accessing the first node.
  • the central control node is usually an LED light on the ceiling
  • the terminal device is an electronic product integrated with a VLC transceiver, such as a smart phone, a tablet computer, a personal computer. (personal computer, PC) and so on.
  • Full-duplex communication means that the same device can receive data sent by other devices at the same time, and can send data to other devices.
  • Full-duplex transmission includes symmetric full-duplex transmission and asymmetric full-duplex transmission.
  • Symmetric full-duplex transmission refers to full-duplex transmission between two devices. When device A sends data to device B, it receives data sent by device B to itself.
  • Asymmetric full-duplex transmission refers to full-duplex transmission between three devices. When device A sends data to device B, it receives data sent by device C to itself.
  • Device B and device C are two different devices.
  • Symmetric full-duplex transmission is a special case of asymmetric full-duplex transmission. If device B and device C are the same device, asymmetric full-duplex transmission becomes symmetric full-duplex transmission.
  • Full-duplex transmission includes transmission in two directions, where the first established transmission is called the first transmission and the later established transmission is the second transmission.
  • FIG. 1 is a topology structure of asymmetric full-duplex transmission.
  • node A When node A sends data to node B, it receives data from node C.
  • a contention-free first transmission is established between the node A and the node B
  • a contention-based second transmission is established between the node C and the node A.
  • the transmitting node of the second transmission ie, node C
  • the receiving node of the second transmission that is, the transmitting node of the first transmission (ie, node A) is referred to as a second node
  • the receiving node of the transmission ie Node B
  • the third node the third node.
  • the second transmission is a contention-based transmission
  • all nodes having the requirement of transmitting data to the second node can participate in the competition of the second transmission, that is, there may be a plurality of first nodes (multiple nodes C) needing to go to the second
  • the node sends data, then how to determine which first node establishes the second transmission with the second node is a problem that needs to be solved for full-duplex transmission.
  • the first node and the third node shown in the embodiment of the present invention are the user equipment shown above, and the second node is the above-mentioned
  • the coordinator the following describes how to determine which first node establishes a second transmission with the second node in a competitive manner in the prior art:
  • the second node in the first transmission, sends a first physical frame to the third node, and a transmission window (TW) corresponds to the uplink channel in the direction from the first node to the second node.
  • TW transmission window
  • the first node sends the access request information or the second physical frame to the second node in the transmission window.
  • the link in the direction of the second node to the first node or the third node may be considered as a downlink, and the channel between them is a downlink channel.
  • the link in the direction of the first node or the third node to the second node is an uplink, and the channel between them is an uplink channel.
  • the first physical frame is a physical frame that is sent by the second node to the third node
  • the second physical frame is a physical frame that is sent by the first node to the second node.
  • the physical frames described herein include a preamble, a frame header, and a payload.
  • the preamble is used for synchronization, channel estimation, etc.
  • the frame header includes control information
  • the payload is used to carry service data.
  • There are many different types of physical frames such as MSG frames, ACK frames, etc. Some types of physical frames may not include payloads, such as ACK frames.
  • the start time of the transmission window TW is different from the first physical frame transmission start time sent by the second node to the third node, where T0 is the time required for the first node to detect and parse the first physical frame header.
  • a TW includes one (or zero) access channels and one transport channel, wherein the access channel further includes a plurality of (three in FIG. 2 for example) access slots of equal length.
  • the access slot on the access channel is used by the first node to send access request information to the second node, where the transport channel is used by the first node to send the second physical frame to the second node without contention.
  • a first node can only send a second physical frame to the second node without contention after successfully transmitting the access request information to the second node.
  • the transmission window TW may have two different configurations. In the first configuration, the transmission window TW includes only one transmission channel, and does not include an access channel. In the second configuration, the transmission window TW includes an access channel and a transmission channel. Whether there is an access channel in the transmission window TW, the second node will indicate in the full duplex indication information. If the access channel is included in the TW, the transport channel begins after the access channel ends. If the access channel is not included in the TW, the transport channel begins after the downlink transmission starts T0.
  • the end time of the TW is indicated by the "transmission end time” in the full duplex indication information, and the end time of the TW cannot be later than the "transmission end time” indicated in the full duplex indication information.
  • 2 is only an exemplary illustration, in which the transmission window TW includes an access channel and a transmission channel, and the access channel includes three equal-length access slots, and the end time of the TW is equal to the second node.
  • the first node needs to determine the start of the TW by detecting the first physical frame header sent by the second node, and perform the access request information and the second physical frame according to the full duplex indication information carried in the first physical frame header.
  • the full duplex indication information specifically includes the following fields:
  • a "transmission end time” field is used to indicate that the first node sends the latest end time of the first physical frame to the second node, that is, the end of the TW time.
  • the end time of the TW cannot be later than the "transmission end time”;
  • the "Upstream Channel Configuration” field is used to indicate whether the uplink channel includes the access channel. If an access channel is included, the TW consists of one access channel and one transport channel. If the access channel is not included, the TW is composed of a transmission channel;
  • the first node sends the access request information to the second node on the access channel.
  • the specific method for sending an access request is: the first node randomly selects one access slot in three access slots, and sends access request information to the second node on the selected access slot.
  • CRQ collision resolution queue
  • CRQ collision resolution queue
  • the first node Since the first node sends the access request information to randomly select the access slot, it is possible that multiple first nodes select the same access slot to send the access request information to the second node, thus causing the conflict to be generated.
  • the second node fails to receive the access request information. If the first node sends access request information and a collision occurs at the second node, the first node needs to retransmit the access request information.
  • the state of each access slot may be one of the following three states: success, collision, idle.
  • the success state means that the access request information sent in the access slot is successfully received by the second node
  • the conflict state means that the second node determines that at least two first nodes send the access in the access slot.
  • Request information, idle state means that the second node does not detect any signal in the access slot.
  • the second node Since each of the first nodes needs to know the state of the access slot in which it selects to send the access request information, the second node needs to detect the signal on each access slot and inform the status of each access slot. If the second node detects the valid physical frame preamble and the frame header, the second node determines that the access slot is a successful state; if the second node detects a valid physical frame leading preamble, but fails to detect the valid The physical frame header, the second node determines that the access slot is in a conflict state; if the second node does not detect a valid physical frame preamble, the second node determines that the access slot is in an idle state.
  • the second node should also indicate the status of each access slot detected by the second node in the full duplex feedback information.
  • the first node needs to enter a collision resolution queue (CRQ) to queue and wait for retransmission access request information.
  • CRQ collision resolution queue
  • the second node and each of the first nodes participating in the competition each need to maintain two different queues, namely a conflict resolution queue CRQ and a data transmission queue (DTQ).
  • the CRQ is used to manage and maintain the conflict generated in the process of sending the access request information
  • the DTQ is used to manage the process in which the first node does not contend to send the second physical frame after the successful sending of the access request information.
  • Both CRQ and DTQ require the second node and each of the first nodes participating in the competition to be maintained and managed with two counters, namely:
  • One counter that needs to be maintained by the CRQ queue is a collision resolution queue length counter
  • the CRQ length counter is used to indicate the queue length of the CRQ
  • another counter required to be maintained by the CRQ queue is a CRQ position counter
  • the CRQ position counter is used to indicate that the first node is in the CRQ.
  • the queue location in .
  • the transmission queue length counter is used to indicate the length of the DTQ
  • the DTQ position counter is used to indicate that the first node is in the DTQ. Queued location.
  • a "Transmission Device Identity” field is used to indicate that the identity of the first node of the second physical frame is sent to the second node on the transport channel.
  • the first node indicated by the "Transmission Device Identification” field (that is, a certain first node queued in the DTQ) transmits a second physical frame to the second node on the transmission channel, the second physical The transmission end time of the frame should not be later than the time indicated by the "Transmission End Time” field.
  • the third node sends a third physical frame (ACK frame) to the second node in the first transmission, and the second node transmits the first node to the first node.
  • the fourth physical frame includes full duplex feedback information, and the full duplex feedback information indicates the status of each access slot on the access channel in the TW, and the first node determines the connection sent by itself according to the full duplex feedback information. Whether the incoming request information and the second physical frame are successfully received by the second node and determines whether they should enter the CRQ queue or the DTQ queue and the specific queue location in the queue.
  • the first node determines its own specific queuing position in the CRQ or DTQ is the process of updating its maintained CRQ length counter, DTQ length counter, CRQ position counter and DTQ position counter, and the first node updates each counter according to the full duplex feedback information.
  • the specific method is as follows:
  • the first node may determine whether to enter the CRQ queue or enter the DTQ queue according to the status of the access slot indicated in the full duplex feedback information.
  • the state of one access slot in the full duplex feedback information indicates a collision state
  • all the first nodes that have sent the access request information in the access slot enter the same location of the CRQ for queuing.
  • the location of the first node that has collided in the same access slot is the same in the CRQ. If the status of the multiple access slots in the full duplex feedback information is in a conflict state, the first node that sends the access request information in different access slots according to the sequence of the selected access slots Queued in the CRQ.
  • the first node that sent the access request information in the access slot enters the DTQ to queue. If the status of the multiple access slots in the full duplex feedback information is successful, the first node that sends the access request information in different access slots is in the order of the selected access slots. Queued in DTQ.
  • the first node determines whether it is entering CRQ or entering DTQ, it needs to determine its specific queuing position in CRQ or DTQ, that is, determine its own CRQ position counter or DTQ position counter.
  • the full-duplex feedback information also indicates "CRQ length” and "DTQ length", where “CRQ length” indicates the total queue length in the CRQ after the current transmission window elapses, "DTQ length” Indicates the total length of the queue in the DTQ after the current transmission window has passed.
  • Each first node sets a respective CRQ length counter or DTQ length counter to the value indicated by the "CRQ length” and "DTQ length” fields in the full duplex feedback information, and each first node determines its own CRQ position counter.
  • the DTQ position counter is as follows:
  • the state of M (0 ⁇ M ⁇ 3) access slots is indicated as a success state in the full duplex feedback information
  • the state of N (0 ⁇ N ⁇ 3) access slots is a collision state, and there is a K
  • the first node that has transmitted the access request information on the access slot of the current transmission window updates its respective CRQ location counter or DTQ location counter according to the following rules:
  • the DTQ location counter of the first node is updated to: DTQ length - M+ i;
  • the CRQ location counter of the first node is updated to: CRQ length - N+ j;
  • the full-duplex indication information in the first physical frame header indicates that the CRQ is not empty
  • a node can randomly select an access slot and send access request information.
  • the first node queued at other CRQ locations decrements its CRQ location counter by one in each transmission window.
  • the new first node ie, the first node that newly generated the need to send the second physical frame to the second node
  • each transmission window only the first node located at the head position of the DTQ can send a second physical frame to the second node on the transmission channel, and queue at other positions of the DTQ, that is, at the non-team head position of the DTQ.
  • Each transmission window of the first node decrements its own DTQ position counter by one.
  • the TW will continue to appear in the second transmission, and the process of sending the access request, the second physical frame, and maintaining and updating each counter will also be performed. Ongoing.
  • each of the first nodes can be queued at the correct position in the CRQ and the DTQ is that the first node and the second node have the same view of the state of the access slot.
  • the second node and the first node may have the same access time.
  • the state of the gap has a different view.
  • the first node enters an uncertainty.
  • the state that is, whether you should enter the conflict resolution queue or queue up in the data transmission queue, or do not know where you should be in the queue. When this happens, the above-described prior art full-duplex transmission method cannot operate correctly.
  • FIG. 4 is a flow chart of steps of an embodiment of the full-duplex transmission method provided by the present invention. .
  • Step 401 The second node sends a first physical frame to the third node.
  • the second node shown in this embodiment sends a first physical frame to the third node.
  • Step 402 The first node sends the access request information to the second node in the first access slot.
  • step 401 performs step 402 shown in this embodiment.
  • the execution step 401 and the execution step 402 overlap in time.
  • the transmission window and the second node transmit the first physical frame are overlapped in time, and the performing step 402 is performed on the access channel row in the transmission window shown in FIG. 2, Execution step 401 and execution step 402 also overlap in time.
  • the method for transmitting the access request information is the same as the prior art. This part of the content has been described in the foregoing description of the prior art, and will not be further described herein.
  • the embodiment is exemplified by the TW including an access channel and a transport channel, and the access channel includes three access slots of equal length.
  • the first node shown in this embodiment randomly selects a first access time slot for sending access request information in the three access slots, that is, the first access shown in this embodiment.
  • the time slot is any one of the three access slots, which is not limited in this embodiment.
  • first node that sends the access request information to the second node may be multiple, or may be one. Therefore, there may be multiple first access slots in this embodiment.
  • the plurality of first nodes may be classified into two classes according to whether the first node has transmitted the access request information to the second node.
  • the first type of first node is a first node that has not sent access request information to the second node, and they need to wait for the full duplex indication information to indicate that the CRQ is empty, and then randomly select an access slot, and select The access request information is sent to the second node on the access slot.
  • the first type of the first node is the first node that has sent the access request information to the second node, but the access request information is not successfully received by the second node, and the first node has entered the CRQ to queue, waiting When the queue head of the CRQ is queued, the access request information is resent to the second node.
  • the first type of the first node is the first node that has sent the access request information to the second node and is successfully received by the second node.
  • the first node enters the DTQ to queue, waiting to queue to the DTQ team leader. Sending a second physical frame to the second node.
  • the first node that sends the access request information to the second node in step 402 can only belong to one of the two categories.
  • the first node that sends the access request information to the second node in step 402 is the first node of the first type.
  • the full-duplex indication information indicates that the CRQ is not empty
  • the first node that sends the access request information to the second node in step 402 is the second type first node. Since the CRQ is either empty or not empty, there is no first node of the first class and the first node of the second class simultaneously sends access request information to the second node.
  • Step 403 The second node receives the access request information sent by the first node in the first access slot.
  • the second node in this embodiment also needs to determine the state of each first access slot, and the method for detecting and determining the state of each access slot by the second node is the same as the prior art.
  • the detailed description has been made in the introduction of the prior art, and details are not described herein again.
  • Step 404 The second node sends the full duplex feedback information to the first node.
  • the full duplex feedback information described in this embodiment is also carried in the fourth physical frame, and the full duplex feedback information also indicates the status of each access slot in the access channel and the first The state of the first physical frame transmitted by the node on the transport channel.
  • the link between the second node and the first node is blocked or interfered.
  • the first node does not receive the full duplex feedback information sent by the second node, and thus the first node is determined to be unsure that the first request of the access request information is sent by itself. What is the state of the access slot, such that the first node does not determine what the next processing action is, so that the first node cannot continue the full-duplex transmission, and the second embodiment shown in this embodiment
  • the node may also carry the full duplex feedback information in the first physical frame of the next transmission window, so that the first node may have the opportunity to receive the full duplex feedback information again.
  • the frame header of the first physical frame in the next transmission window shown in this embodiment carries the full duplex feedback information, so that the second node may perform the same in the next transmission window.
  • the full duplex feedback information is sent to the first node.
  • Step 405 If the first node determines that the state of the first access slot is a success state, step 406 is performed.
  • the first node determines, according to the received full duplex feedback information, a status of the first access slot in which the first node sends the access request information. .
  • the method shown in this embodiment is exemplified by the first node determining that the first access slot is a success state, and if the state of the first access slot is an idle state, Referring to the embodiment shown in FIG. 14, no description is made herein. If the first node determines that the first access slot is in a conflict state, the first node enters a conflict resolution queue CRQ for queuing. .
  • conflict resolution queue CRQ For details of the conflict resolution queue CRQ, refer to the description of the conflict resolution queue shown in the foregoing prior art, and details are not described herein.
  • Step 406 The first node acquires a target identifier.
  • the target identifier in this embodiment is the identity identifier information of the first node, and the first node that has the target identifier sends the access request information in the first access slot, and the access request information succeeds in the second The node receives.
  • the specific manner in which the first node obtains the target identifier is exemplified in the following. It should be clarified that the specific process for the first node to obtain the target identifier is not limited in this embodiment.
  • One way for the first node to obtain the target identifier is:
  • the second node shown in this embodiment carries the target identifier in the fourth physical frame.
  • the first node may parse the fourth physical frame. And acquiring the target identifier carried by the fourth physical frame.
  • the fourth physical frame is a third node that sends a third physical frame to the first node, and the second node sends an ACK frame to the first node, and the full duplex feedback information is carried in the fourth physical frame.
  • the full duplex feedback information and the target identifier are both carried in the fourth physical frame and sent to the first node together, or the target identifier is also carried as a part of the full duplex feedback information.
  • the physical frame is sent to the first node.
  • Another way for the first node to obtain the target identifier is:
  • the second node shown in this embodiment carries the target identifier in a first physical frame sent by a next transmission window, and sends a first physical frame of a next transmission window to the first node in the second node.
  • the first node may parse the first physical frame to obtain the target identifier carried by the first physical frame.
  • the first physical frame refers to the first physical frame sent by the second node to the third node, and the first physical frame is sent to the third node in the next transmission window.
  • the third node of the destination receiving node of the payload carried in the first physical frame, the first node of the destination receiving node of the full duplex indication information carried in the first physical frame header, and the destination identifier is also carried in the first physical frame In the frame header.
  • the third node receives and parses out the load information required by the node, and the first node can parse the full duplex indication information and the destination identifier.
  • the next transmission window is referenced to the current transmission window, and the current transmission window refers to the transmission window in which the first access slot in which the first node sends the access request information to the second node, and the next transmission window is followed.
  • the transmission window that appears after the current transmission window is followed.
  • Step 407 The first node determines whether the target identifier is consistent with the identifier of the first node. If yes, step 408 is performed. If not, step 409 is performed.
  • the first embodiment sends a first plurality of first physical frames to the second node.
  • the first node is the first target first node, and the second target first node and the third target first node are in the first access slot to the first node.
  • the two nodes send the access request information, but the physical signals of the access request information sent by the first node in the first access slot may overlap completely in time.
  • the two nodes may successfully receive the access request information with the highest signal to noise ratio, that is, the signal to noise ratio of the access request information sent by the third target first node is the highest, and the first target first node and The signal-to-noise ratio of the access request information sent by the second target first node is lower than the signal-to-noise ratio of the access request information sent by the third target first node, and the second node will use the first target The first node and the second target sent by the first node
  • the incoming request information is processed as noise, so that the second node indicates that the state of the first access slot is a successful state in the full duplex feedback information, and therefore, each of the first connections
  • the first node that sent the access request information in the time slot considers that it has entered the DTQ for queuing, that is, the first target first node, the second target first node, and the third target first node all consider that they have entered the DTQ. Queue.
  • the second node only successfully receives the access request information sent by the third target first node, and the second node only considers that the third target first node enters the DTQ.
  • the second node only indicates the third target first node in the "transmission device identification" field in the full duplex indication information
  • the first target first node and the second target first node receive the identifier of the third target first node carried by the full duplex indication information, because the first target first node And the second target first node determines that the identifier that it has and the target identifier carried by the full duplex indication information are inconsistent, and the first target first node and the second target first node are It is determined that the first target first node and the second target first node do not enter the DTQ for queuing, but need to enter the CRQ for queuing.
  • the second node since the second node does not know that the first target first node and the second target first node send the access request information in the first access slot, In the CRQ length indicated by the "CRQ Length" field of the full duplex feedback information, the second node does not reserve a queue in the CRQ for the first target first node and the second target first node. position. Therefore, the first target first node and the second target first node want to enter the CRQ queue retransmission access request information, but there is no queuing location in the CRQ, so that the first target first node and The second target first node cannot be queued in the CRQ.
  • the first node before the first node determines the queuing location, the first node not only succeeds according to the first access slot indicated by the full duplex feedback information, The first node further determines whether the target identifier and the identifier of the first node are consistent. If the target identifier and the identifier of the first node are inconsistent, the first node may determine the The access request information message sent by the first node in the first access slot is not successfully received by the second node. If the target identifier is consistent with the identifier of the first node, the first node may determine that the access request information message sent by the first node in the first access slot is The second node is successfully received.
  • Step 408 The first node enters the DTQ for queuing.
  • the first node may send a second physical frame to the second node on the transport channel.
  • the first node only determines that the first access time slot indicated by the full duplex feedback information is in a successful state, and the target identifier and the location The identifiers of the first nodes are consistent, and the first node will enter the DTQ for queuing.
  • Step 409 The first node determines a target queuing location of the first node in the CRQ.
  • the first node may determine, according to the first preset rule or the second preset rule, that the first node is in the CRQ. A target queuing location, where the first node is queued in the CRQ.
  • the first preset rule when the status of each access slot indicated by the full duplex feedback information is different, the first preset rule may be different, and the full duplex feedback pheromone is combined below. Describe the first preset rule by indicating the status of each access slot:
  • the first state of each access slot indicated by the full duplex feedback information is:
  • FIG. 5 is a schematic diagram of states of each access slot in the access channel, where the full duplex feedback information indicates that the TW has a second access slot that is in a collision state. Specifically, the second access slot 503, the first access slot 501, and the third access slot 502 are sequentially included in order from the front to the back of the access slot.
  • the full duplex feedback information shown in this embodiment indicates that the second access slot 503 is in a conflict state, the first access slot 501 is in a successful state, and the third access slot is in a success state. 502 is in an idle state.
  • the first node in the embodiment sends the access request information to the second node in the first access slot 501.
  • the two nodes indicate that the state of the first access slot 501 is a success state in the full duplex feedback information, and the identifier of the target node sent by the second node is inconsistent with the identifier of the first node. If the first node determines that the access request information sent by the first node is not successfully received by the second node, the first node determines that the first node needs to enter the CRQ queue, and the first node The location of the node in the CRQ is the target queuing location.
  • the target queuing location is described below:
  • the first node determines, according to the full duplex feedback information, that only one of the second access slots is in a conflict state, the first node determines that the target queuing location is the a queuing location of the second access slot in the conflict resolution queue;
  • the first node determines, according to the full duplex feedback information, that the existing queuing positions in the CRQ are the first queuing location 601, the second queuing location 602, and the The third queue position 603, and the queued position of the first node that sent the access request information in the second access slot 503 in the CRQ is the new fourth queue position 604 in the CRQ, then the first node The target queuing location is determined to be the fourth queuing location 604.
  • the second state of each access slot indicated by the full duplex feedback information is:
  • FIG. 7 is a schematic structural diagram of an access channel of the TW. As shown in FIG. 7, this embodiment uses an example in which the access channel of the TW includes three access slots as an example:
  • the second access slot 703, the first access slot 701, and the second access slot 702 are sequentially included in the order of the access slots.
  • the full-duplex feedback information indicates that the second access slot 703 and the second access slot 702 are in a collision state, and the first access slot 701 is in a successful state.
  • the target queuing location is described below:
  • the first node After the first node determines, according to the full duplex feedback information, that multiple of the second access slots are in a conflict state, the first node determines that the target queuing location is multiple of the second a queuing location of the second access slot in the access slot that is closest to the first access slot in the collision resolution queue.
  • the existing queuing positions in the CRQ are, for example, a first queuing position 801, a second queuing position 802, and a third queuing position 803.
  • the first node is based on the full duplex. Determining, by the feedback information, the target queuing location, where the second queuing time slot of the two second access slots that is closest to the first access slot 701 is the target second And an access slot, where the target queuing location is a location of the first node that has sent the access request information in the target second access slot in the CRQ.
  • the first access slot 701 is located between the second access slot 703 and the second access slot 702, and the first access slot 701 and the The distance between the second access slot 703 is equal to the distance between the first access slot 701 and the second access slot 702, and the target second access slot may be The second access slot 703, or the target second access slot may also be the second access slot 702.
  • the first node may determine that the second access slot in the second access slot 702 and the second access slot 703 is earlier in the target second. Accessing the time slot, as shown in FIG. 7, the target second access slot is the second access slot 703, and the target queuing location 804 shown in this embodiment is already in the The second access slot 703 sends the location of the first node of the access request information in the CRQ, and the fourth queuing location 805 shown in FIG. 8 is sent in the second access slot 702. The location of the first node of the access request information in the CRQ.
  • the third state of each access slot indicated by the full duplex feedback information is:
  • the full duplex feedback information indicates that the TW has two second access slots, and each of the second access slots is in a conflict state.
  • this embodiment uses an example in which the access channel of the TW includes three access slots as an example:
  • the first access slot 903, the second access slot 901, and the second access slot 902 are sequentially included in the order of the access slots, as shown in this embodiment.
  • the full-duplex feedback information indicates that the second access slot 901 and the second access slot 902 are in a collision state, and the first access slot 903 is in a successful state.
  • the target queuing location is described below:
  • the existing queuing positions in the CRQ are, for example, a first queuing position 801, a second queuing position 802, and a third queuing position 803.
  • the first node is based on the full duplex feedback information. Determining the target queuing location, where the target queuing location is that the second access slot closest to the first access slot 903 of the two second access slots is the target second access a time slot, the target queuing location being a location of the first node that has sent the access request information in the target second access slot in the CRQ.
  • the distance between the second access slot 901 and the first access slot 903 is relative to the second access slot 902 and the first access slot.
  • the distance between the 903s is closer, and the target second access slot is the second access slot 901, and the target queuing location 804 shown in this embodiment is already in the second access.
  • the time slot 901 sends the location of the user equipment of the access request information in the CRQ, and the fourth queuing location 805 shown in FIG. 8 is that the connection is sent in the second access slot 902.
  • the fourth state of each access slot indicated by the full duplex feedback information is:
  • FIG. 10 is a schematic structural diagram of an access channel of the TW. As shown in FIG. 10, this embodiment uses an example in which the access channel of the TW includes three access slots as an example:
  • the second access slot 1003, the second access slot 1001, and the first access slot 1002 are sequentially included in the order of the access slots.
  • the full duplex feedback information indicates that the second access slot 1003 and the second access slot 1001 are in a collision state, and the first access slot 1002 is in a successful state.
  • the target queuing location is described below:
  • the existing queuing positions in the CRQ are, for example, a first queuing position 1101, a second queuing position 1102, and a third queuing position 1103.
  • the first node is based on the full duplex feedback information. Determining the target queuing location, where the target queuing location is the second access slot that is closest to the first access slot 1002 in the two second access slots is the target second access a time slot, the target queuing location being a location of the first node that has sent the access request information in the target second access slot in the CRQ.
  • the distance between the second access slot 1001 and the first access slot 1002 is relative to the second access slot 1003 and the first access slot.
  • the distance between 1002 is closer, as shown in FIG. 10, the target second access slot is the second access slot 1001, and the target queuing location 1105 shown in this embodiment is already.
  • the location of the user equipment that sends the access request information in the CRQ in the second access slot 1001, the fourth queuing location 1104 shown in FIG. 11 is already in the second access slot. 1003.
  • the fifth state of each access slot indicated by the full duplex feedback information is:
  • FIG. 12 is a schematic structural diagram of an access channel of the TW. As shown in FIG. 12, this embodiment uses an example in which the access channel of the TW includes three access slots as an example:
  • the first access slot 1203, the fourth access slot 1201, and the first access slot 1202 are sequentially included in the order of the access slots in the order of the access slots.
  • the full-duplex feedback information indicates that the third access slot 1203 and the fourth access slot 1201 are in a non-conflicting state, that is, the third access slot 1203 may be in a successful state or an idle state.
  • the fourth access slot 1201 may be in a successful state or an idle state, and the first access slot 1202 is in a successful state.
  • the target queuing location is described below:
  • the existing queuing positions in the CRQ are the first queuing position 1301, the second queuing position 1302, and the third queuing position 1303 as an example. Determining, by the first node, the target queuing location according to the full duplex feedback information, where the target queuing location is a tail position of the conflict resolution queue, that is, the target queuing location is the third end located at the tail of the queue Queued position 1303.
  • the first node does not enter the CRQ queue, and the second TW randomly selects the access slot to send. Access request information, the second TW being the next TW of the TW.
  • the second preset rule when the status of each access slot indicated by the full duplex feedback information is different, the second preset rule may be different, and the full duplex feedback pheromone is combined below.
  • the status of each access slot indicated indicates the second preset rule:
  • the first state of each access slot indicated by the full duplex feedback information is:
  • the first node determines a target second access slot, and the target is second.
  • the access slot is any second access slot of the at least one second access slot, and the first node determines that the target queuing location has been sent in the target second access slot The location of the first node of the access request information in the CRQ.
  • the second preset rule does not explicitly indicate the specific queuing location of the first node in the CRQ, but is sent by the first node in any any second access slot.
  • the first node of the access request information selects one of the plurality of locations in the CRQ as the target queuing location.
  • the second state of each access slot indicated by the full duplex feedback information is:
  • the first node arbitrarily selects one of the queue positions existing in the CRQ as the position where the first node is queued in the CRQ.
  • the third state of each access slot indicated by the full duplex feedback information is:
  • the full-duplex feedback information indicates that the TW does not include a conflicting access slot, that is, any access slot included in the TW is in a successful state or an idle state, and is in the In the case where the CRQ is empty, the first node randomly selects one access slot from the second TW to send the access request information.
  • the benefit of the embodiment is that if the second node indicates that the state of the first access slot is a successful state in the full duplex feedback information, the second node needs to send a target identifier to indicate And sending, by the first node, the identifier of the first node that is successful in the access request information, if the first node determines that the target identifier is inconsistent with the identifier of the first node, the first node may determine the second The node does not successfully receive the access request information sent by the first node in the first access slot, and the first node may be based on the first preset rule or the second preset The rule determines the target queuing location of the first node in the CRQ, and effectively avoids the problem of how to perform full duplex transmission after the first node fails to send the access request information.
  • the first node may determine, in a timely manner, that the second node does not successfully receive the access request information sent by the first node in the first access slot. Then, the first node does not enter the DTQ queue and wastes time, reduces the access delay of the first node, and clarifies the processing action of the first node after the error occurs in the DQ algorithm, and ensures that the DQ algorithm is after the error occurs. Proper operation to ensure the normal operation of full-duplex transmission.
  • the embodiment shown in FIG. 14 differs from the embodiment shown in FIG. 4 in that the state of the first access slot indicated by the full duplex feedback information is different, as shown in FIG.
  • the state of the first access slot is a success state
  • the state of the first access slot is an idle state.
  • Step 1401 The second node sends a first physical frame to the third node.
  • Step 1402 The first node sends the access request information to the second node in the first access slot.
  • Step 1403 The second node receives the access request information sent by the first node in the first access slot.
  • Step 1404 The second node sends full duplex feedback information to the first node.
  • step 1401 to the step 1404 shown in this embodiment is shown in the steps 401 to 404 shown in the embodiment shown in FIG. 4, and is not described in detail in this embodiment.
  • Step 1405 The first node determines a state of the first access slot. If the state of the first access slot is an idle state, step 1406 is performed.
  • the first node may send the access request information in the first access time slot
  • the other first node may also send the access request information in the first access slot, for example, multiple first nodes that have sent the access request information through the first access slot.
  • a first target first node, a second target first node, and a third target first node that is, the first target first node, the second target first node, and the third target first node pass the first connection
  • the incoming time slot sends access request information to the second node.
  • the second The node does not detect the access request information sent by the first target first node, the second target first node, and the third target first node in the first access slot, And the second node indicates, in the full duplex feedback information, that the state of the first access slot is an idle state.
  • the first target first node should enter the CRQ queue, but because the second node considers that the first access slot has no user equipment to send access request information, the second node is in the In the CRQ length indicated by the CRQ length field of the full duplex feedback information, the second node is also not the first target first node, the second target first node, and the third target first node. Reserve the location that is queued in the CRQ. In this way, after the first target first node enters an indeterminate state, the first target first node is not sure what the next processing action is, and thus affects the correct operation of the full duplex transmission method.
  • Step 1406 The first node determines a target queuing location of the first node in the CRQ.
  • step 1406 shown in this embodiment is shown in the step 409 shown in FIG. 4, and the specific implementation process is not described in this embodiment.
  • the method shown in this embodiment has the beneficial effect that, if the second node indicates that the state of the first access slot is an idle state in the full duplex feedback information, If the link between the node and the second node is occluded or interferes, the first node cannot successfully send the access request information to the second node, and the first node When it is determined that the first access slot is in an idle state, the first node directly determines, according to the full duplex feedback information, a specific location where the first node is queued in the CRQ, which effectively protects Normal transmission of full duplex transmission.
  • the embodiment shown in FIG. 4 and the embodiment shown in FIG. 14 are all that the first node determines the target queuing location by the information sent by the second node, which is described below in conjunction with FIG. How the second node indicates and cooperates with the first node to participate in the process of determining the target queuing location;
  • Step 1501 The second node sends a first physical frame to the third node.
  • Step 1502 The first node sends the access request information to the second node in the first access slot.
  • Step 1503 The second node receives the access request information sent by the first node in the first access slot.
  • Step 1504 The second node sends full duplex feedback information to the first node.
  • Step 1505 The first node determines a state of the first access slot. If the state of the first access slot is a success state, step 1506 is performed.
  • Step 1506 The first node acquires a target identifier.
  • Step 1507 The first node determines whether the target identifier is consistent with the identifier of the first node. If yes, step 1508 is performed. If not, step 1509 is performed.
  • Step 1508 the first node enters the DTQ for queuing.
  • Step 1509 The first node sends a NACK signal in a negative acknowledgement NACK slot.
  • the negative acknowledgement NACK slot shown in this embodiment is located after the second node sends the full duplex feedback information, and the second node sends the
  • the full-duplex feedback information please refer to the embodiment shown in FIG. 9 , which is not limited.
  • Step 1510 The second node sends the queue adjustment indication information to the first node.
  • a second node shown in this embodiment detects a NACK signal on the NACK slot. If the second node detects the NACK signal, the second node adjusts the queue indication information. Sending to the first node, specifically, the second node carries the queue adjustment indication information in a first physical frame sent by the second node in a next transmission window, where the queue adjustment indication The information is used to indicate the target queuing location, and the target queuing location is any one of the CRQs. In this embodiment, the specific queuing location of the target queuing location is not limited, for example, the target.
  • the queue position can be the tail position of the CRQ.
  • the second node shown in this embodiment may carry the queue adjustment indication information in each first physical frame sent by the second node to the first node, in this case
  • the queue adjustment indication information needs to indicate whether the CRQ length is adjusted. Only when the second node detects the NACK signal, the queue adjustment indication information sent by the second node may indicate CRQ. The length is adjusted, and the target queuing position is indicated in the queue adjustment indication information.
  • the queue adjustment indication information may also be used to indicate that the CRQ length is increased by 1, and a queued position is added to the target queue position.
  • the queue adjustment indication information is used to indicate that the CRQ length is increased by 1, and a queued position is added to the target queuing location, the first node can be prevented from queuing at the queue position of the CRQ, thereby reducing the existing queue.
  • the number of user equipments queued at the queue location avoids increasing the conflict resolution time at the existing queue location.
  • Step 1511 The first node receives the queue adjustment indication information sent by the second node.
  • Step 1512 The first node determines, according to the queue adjustment indication information, that the first node is in the queued position of the CRQ as the target queuing location.
  • the method shown in this embodiment has the beneficial effect that if the second node indicates that the state of the first access slot is a successful state in the full duplex feedback information, the second node needs to be Sending a target identifier, if the access request information is sent in the first access slot but the target identifier indicated by the second node does not match the identifier of the first node, the first node may Determining that the access request information sent by the first node in the first access slot is not successfully received by the second node, the first node may send a NACK signal on the NACK slot.
  • the second node may determine that the second node does not successfully receive the access request information sent by the first node, where The second node may send queue adjustment indication information to the first node to indicate the target queuing location, and the first node that sends the NACK signal is queued at the target queuing location.
  • the first node shown in this embodiment can determine in a timely manner that the access request information sent by the first node is not successfully received by the second node, and the first node may further notify the a second node, so that the second node can determine in a timely manner that the access request information sent by the first node is not successfully received by the second node, so that the second node can adjust the CRQ queue length.
  • the embodiment shown in FIG. 17 differs from the embodiment shown in FIG. 15 in that the state of the first access slot indicated by the full duplex feedback information is different, as shown in FIG.
  • the state of the first access slot is a success state
  • the state of the first access slot is an idle state.
  • Step 1701 The second node sends a first physical frame to the third node.
  • Step 1702 The first node sends the access request information to the second node in the first access slot.
  • Step 1703 The second node receives the access request information sent by the first node in the first access slot.
  • Step 1704 The second node sends full duplex feedback information to the first node.
  • Step 1705 The first node determines a state of the first access slot. If the state of the first access slot is an idle state, step 1706 is performed.
  • Step 1706 The first node sends a NACK signal in a negative acknowledgement NACK slot.
  • Step 1707 The second node sends the queue adjustment indication information to the first node.
  • Step 1708 The first node receives the queue adjustment indication information sent by the second node.
  • Step 1709 The first node determines, according to the queue adjustment indication information, that the first node is in the queued position of the CRQ as the target queuing location.
  • the method shown in this embodiment has the beneficial effect that, if the second node indicates that the state of the first access slot is an idle state in the full duplex feedback information, If the link between the node and the second node is occluded or interferes, the first node cannot successfully send the access request information to the second node, and the first node
  • the NACK signal may be sent on the NACK slot, and the second node may detect the NACK signal in the NACK slot, then the second node may Determining that the second node does not successfully receive the access request information sent by the first node, the second node may send queue adjustment indication information to the first node to indicate the target The queued location, and the first node that sent the NACK signal is queued at the target queuing location.
  • the first node shown in this embodiment can determine in a timely manner that the access request information sent by the first node is not successfully received by the second node, and the first node may further notify the a second node, so that the second node can determine in a timely manner that the access request information sent by the first node is not successfully received by the second node, thereby avoiding the first node error and thinking that it is entering DTQ queuing wastes time, reduces the access delay of the first node, and clarifies the processing action of the first node after the error occurs in the DQ algorithm, ensuring the correct operation of the DQ algorithm after the error occurs.
  • the specific structure of the first node provided by the embodiment of the present invention is exemplified from the perspective of a functional module.
  • the first node includes:
  • the sending module 1801 is configured to send the access request information to the second node in the first access slot.
  • the receiving module 1802 is configured to receive full duplex feedback information sent by the second node.
  • the receiving module 1802 is further configured to: when the full duplex feedback information indicates that the first access slot is in a successful state, receive a target identifier sent by the second node;
  • the processing module 1803 is configured to: when the first node determines that the target identifier is inconsistent with the identifier of the first node, or in the full duplex feedback information, the first access slot is In the case of the idle state, the target queuing location of the first node in the conflict resolution queue is determined.
  • the processing module 1803 is further configured to: if the full duplex feedback information indicates that only one of the second access slots is in a conflict state, determining that the target queuing location is the The queuing location of the two access slots in the collision resolution queue.
  • the processing module 1803 is further configured to: if the full duplex feedback information indicates that multiple of the second access slots are in a conflict state, determine that the target queuing location is multiple a queuing location of the second access slot in the second access slot that is closest to the first access slot in the collision resolution queue.
  • the processing module 1803 is further configured to: if the full duplex feedback information indicates that multiple of the second access slots are in a conflict state, and the plurality of the second access slots are Determining, by the two second access slots, the first access slot is the second access slot that is closest to the first access slot. The first queuing location of the second access slot in the conflict resolution queue.
  • the processing module 1803 is further configured to: if the full duplex feedback information indicates that all the access slots are in a successful state Or an idle state, and if the conflict resolution queue is not empty, determining that the target queuing location is a tail position of the conflict resolution queue.
  • processing module 1803 includes:
  • a sending unit 18031 configured to send a NACK signal in a negative acknowledgement NACK time slot, where the negative acknowledgement NACK time slot occurs after the first node receives the full duplex feedback information
  • the receiving unit 18032 is configured to receive queue adjustment indication information sent by the second node, where the queue adjustment indication information is used to indicate the target queuing location, where the target queuing location is any one of the conflict resolution queues. Or the conflict resolves the last position of the tail position of the queue;
  • the processing unit 18033 is configured to determine the target queuing location according to the queue adjustment indication information.
  • the processing module 1803 is further configured to: if the full duplex feedback information indicates that multiple of the second access slots are in a conflict state, determine that the target queuing location is multiple a queuing location of any of the second access slots in the second access slot in the collision resolution queue.
  • the processing module 1803 is further configured to: when the conflict resolution queue is not empty, determine The target queuing location is any location in the conflict resolution queue.
  • the processing module 1803 is further configured to: acquire a physical frame sent by the second node, where the target identifier is carried in the physical frame, and the physical frame is sent by the second node. After the full-duplex feedback information is sent, the processing module 1803 is further configured to obtain the target identifier carried by the received full-duplex feedback information.
  • the processing module 1803 is further configured to: if it is determined that the target identifier is consistent with the identifier of the first node, the first node enters a data transmission queue to be queued.
  • the first node shown in this embodiment is used to perform the method performed in FIG. 4 and FIG. 14 of the present embodiment.
  • the specific implementation process is shown in FIG. 4 and FIG. 14 , and details are not described herein.
  • the specific structure of the second node provided by the embodiment of the present invention is exemplarily illustrated from the perspective of the functional module.
  • the receiving module 1901 is configured to receive, in the first access time slot, access request information sent by the first node;
  • the sending module 1902 is configured to send the full duplex feedback information to the first node.
  • the sending module 1902 is further configured to send the target identifier to the first node, where the full duplex feedback information indicates that the first access slot is in a successful state.
  • the sending module 1902 is configured to send a physical frame to the first node, where the target identifier is carried in the physical frame, and the physical frame is that the second node sends a complete duplex Sent after the feedback.
  • the sending module 1902 is configured to send, to the first node, the full duplex feedback information that carries the target identifier.
  • the first node shown in this embodiment is used to perform the method performed in FIG. 4 of the embodiment.
  • the specific implementation process is shown in FIG. 4 , and details are not described herein.
  • the specific structure of the second node provided by the embodiment of the present invention is exemplarily illustrated from the perspective of a functional module.
  • the first receiving module 2001 is configured to receive, in the first access time slot, access request information sent by the first node;
  • the first sending module 2002 is configured to send full duplex feedback information to the first node
  • the second receiving module 2003 is configured to: when the full duplex feedback information indicates that the first access slot is in a successful state, and determine, at the first node, a target identifier sent by the second node When the identifier of the first node is inconsistent, or when the full duplex feedback information indicates that the first access slot is in an idle state, receiving the first in a negative acknowledgement NACK slot a NACK signal sent by the node, the negative acknowledgement NACK time slot occurs after the first node receives the full duplex feedback information;
  • the second sending module 2004 is configured to: if a NACK signal is detected in the NACK time slot, send queue adjustment indication information to the first node, where the queue adjustment indication information is used to indicate a target queuing location, where the target queuing location is Any location in the conflict resolution queue or a subsequent location of the conflict resolution queue tail position.
  • the second node shown in this embodiment is used to perform the method performed in Figure 15 of the present embodiment.
  • the specific implementation process is shown in Figure 15, and details are not described herein.
  • the chip comprises: a processing unit and a communication unit
  • the processing unit may be, for example, a processor
  • the communication unit may be, for example, an input/output interface, Pin or circuit, etc.
  • the processing unit may execute computer execution instructions stored by the storage unit to cause the chip within the terminal to perform the wireless communication method of any of the above aspects.
  • the storage unit is a storage unit in the chip, such as a register, a cache, etc., and the storage unit may also be a storage unit located outside the chip in the terminal, such as a read-only memory (read) -only memory, ROM) or other types of static storage devices, random access memory (RAM), etc. that can store static information and instructions.
  • the processor mentioned in any of the above may be a general-purpose central processing unit (CPU), a microprocessor, an application-specific integrated circuit (ASIC), or one or more for controlling the above.
  • CPU central processing unit
  • ASIC application-specific integrated circuit
  • the integrated circuit of the program execution of the first aspect wireless communication method may be a general-purpose central processing unit (CPU), a microprocessor, an application-specific integrated circuit (ASIC), or one or more for controlling the above.
  • CPU central processing unit
  • ASIC application-specific integrated circuit
  • the disclosed system, apparatus, and method may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the division of the unit is only a logical function division.
  • there may be another division manner for example, multiple units or components may be combined or Can be integrated into another system, or some features can be ignored or not executed.
  • the coupling or direct coupling or communication connection shown or discussed herein may be an indirect coupling or communication connection through some interface, device or unit, and may be electrical, mechanical or otherwise.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
  • each functional unit in each embodiment of the present invention may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the above integrated unit can be implemented in the form of hardware or in the form of a software functional unit.
  • the integrated unit if implemented in the form of a software functional unit and sold or used as a standalone product, may be stored in a computer readable storage medium.
  • the technical solution of the present invention which is essential or contributes to the prior art, or all or part of the technical solution, may be embodied in the form of a software product stored in a storage medium.
  • a number of instructions are included to cause a computer device (which may be a personal computer, server, or network device, etc.) to perform all or part of the steps of the methods described in various embodiments of the present invention.
  • the foregoing storage medium includes: a U disk, a mobile hard disk, a read-only memory (ROM), a random access memory (RAM), a magnetic disk, or an optical disk, and the like. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明提供了一种全双工传输方法以及相关设备,方法包括:第一节点在第一接入时隙向第二节点发送接入请求信息;第一节点接收第二节点发送的全双工反馈信息;在全双工反馈信息指示第一接入时隙为成功态的情况下,且在第一节点确定出第二节点发送的目标标识与第一节点的标识不一致时,第一节点确定第一节点在冲突分解队列中的目标排队位置;或,在全双工反馈信息指示第一接入时隙为空闲态的情况下,第一节点确定第一节点在冲突分解队列中的目标排队位置。可见,本发明方法使得第一节点及时判断出第二节点在第一接入时隙中没有成功接收到第一节点发送的接入请求信息的情况,则第一节点及时进入冲突分解队列排队,降低了第一节点的接入时延,保障了全双工传输的正确运行。

Description

一种全双工传输方法以及相关设备 技术领域
本申请涉及通信技术领域,尤其涉及的是一种全双工传输方法以及相关设备。
背景技术
在通信系统中,全双工传输是指节点在发送数据的同时也能接收数据。图1为全双工传输的拓扑结构示意图。如图1所示,如果节点A在向节点B发送数据的同时,也接收节点C发送的数据,则节点A就实现了全双工传输。
全双工传输的建立包括第一传输的建立和第二传输的建立,具体过程就是确定组成全双工传输的两个(或三个)节点并为其分配传输资源以进行全双工传输。一种建立全双工传输的思路是,两个节点先获得它们所需的传输资源后先开始进行传输,也即第一传输,至于第二传输由哪两个节点组成以及第二传输什么时候开始,则需要按照一定的方法和规则来确定。
在一种现有技术中,如图2所示,第二节点和第三节点之间的下行传输为第一传输,且为无竞争传输,第一节点和第二节点之间的上行传输为第二传输,且为基于竞争的传输。第二节点每向第三节点发送一个下行物理帧的同时,第一节点和第二节点之间的上行信道在此时间段内就对应存在一个传输窗,每个传输窗中包括一个接入信道和一个传输信道,其中接入信道又进一步包括了若干个长度相等的接入时隙。第一节点随机选择其中任意一个接入时隙向第二节点发送接入请求信息,第一节点在传输信道上无竞争向第二节点发送上行物理帧。只有当第一节点在接入时隙发送的接入请求信息成功被第二节点接收后,第一节点才能进入数据传输队列排队以等待时机在传输信道上向第二节点无竞争发送上行物理帧。如果第一节点所选择的接入时隙里有多个其他第一节点也向第二节点发送了接入请求信息,则由于冲突导致第二节点接收接入请求信息失败,所有在该接入时隙发送接入请求信息的第一节点都必须进入冲突分解队列以等待机会重传接入请求信息。当第二节点发送的下行物理帧传输结束后,第二节点接收第三节点发送的ACK帧的同时,第二节点向第一节点广播发送一个ACK帧,第二节点发送的ACK帧中携带有全双工反馈信息,全双工反馈信息指示了接入信道上的各个接入时隙的状态。接入时隙的状态包括3种:成功态、冲突态和空闲态。第一节点需要根据全双工反馈信息中所指示的各个接入时隙的状态,确定出自己应该是进入冲突分解队列排队(自己发送接入请求信息消息的接入时隙的状态为冲突态)还是进入数据传输队列排队(自己发送接入请求信息消息的接入时隙的状态为成功态)。
上述全双工传输方法能够可靠运行的前提是第二节点和第一节点对接入时隙的状态的看法保持一致,即第二节点指示接入时隙状态为成功态时第一节点也认为该接入时隙的状态确实应该为成功态。但是在实际情况下,由于不同的第一节点与第二节点之间的信道条件的差异或者信道上出现了干扰等因素的影响,可能会出现第二节点和第一节点对同一个接入时隙的状态有不同的看法。当第二节点和第一节点对同一接入时隙的状态的看法不一致时,或者当第一节点未接收到第二节点发送的全双工反馈信息时,会导致第一节点进入 一个不确定的状态,即不确定自己是应该进入冲突分解队列排队还是应该进入数据传输队列排队,或者不知道自己应该排在队列中的什么位置的情况。当出现这种情况后,上述全双工传输方法就无法正确运行。
发明内容
本发明实施例提供了一种能够保障节点正确运行、降低节点竞争接入时延的全双工传输方法以及相关设备。
本发明实施例第一方面提供了一种全双工传输方法:
本方面所示的方法包括步骤A、步骤B、步骤C和步骤D;
具体执行步骤参见如下所示:
步骤A、第一节点在第一接入时隙向第二节点发送接入请求信息;
所述第一接入时隙为所述第一节点在传输窗TW所包括的多个接入时隙中所选定的任一接入时隙,所述接入请求信息为所述第一节点向所述第二节点发送第二物理帧之前发送的请求。
需要说明的是,在本发明实施例中,第一节点可能包括多个节点,每个第一节点随机选择接入时隙中的一个向第二节点发送接入请求信息。因此,第一接入时隙也可能有多个。
步骤B、所述第一节点接收所述第二节点发送的全双工反馈信息;
其中,所述全双工反馈信息指示传输窗TW内各个接入时隙的状态。各个接入时隙可能的状态包括:成功态,即所述第二节点在接入时隙中成功接收到了第一节点所发送的所述接入请求信息;冲突态,即所述第二节点在接入时隙中检测到了有效的物理帧前导,但未能解析出正确的物理帧头;空闲态,所述第二节点在接入时隙中没有接收到任何所述第一节点所发送的所述接入请求信息。
步骤C、在所述全双工反馈信息指示所述第一接入时隙为成功态的情况下,所述第一节点还接收所述第二节点发送的目标标识;
需要说明的是,在全双工反馈信息指示所述第一接入时隙为其他状态(如冲突态或空闲态)时,所述第一节点无需接收第二节点发送的目标标识。
由于第一节点可能包括多个,第一接入时隙也可能有多个,因此若所述全双工反馈信息指示有多个第一接入时隙被指示为成功态,则第二节点需要发送多个目标标识,且有多个第一节点需要接收所述目标标识。其中每一个目标标识各对应指示一个第一接入时隙,每一个第一接入时隙中都有至少一个第一节点向第二节点发送接入请求信息、且其中至少有一个接入请求信息被第二节点成功接收,与该第一接入时隙对应的目标标识就指示在该第一接入时隙中被第二节点成功接收到的那个接入请求信息的发送者的节点ID。
步骤D、在所述第一节点确定所述目标标识与所述第一节点的标识不一致的情况下,或,在所述全双工反馈信息指示所述第一接入时隙为空闲态的情况下,所述第一节点确定所述第一节点在冲突分解队列中的目标排队位置。
需要说明的是,在所述第一节点确定所述目标标识与所述第一节点的标识不一致的情况下,说明该第一接入时隙已经被全双工反馈信息指示为成功态,并且第一节点已经通过步骤C接收到了第二节点发送的目标标识。在比较了接收到的目标标识与第一节点自身的 目标标识后,所述第一节点判断第二节点在第一接入时隙成功接收到的接入请求信息不是自己所发送的那个接入请求信息,而是其他的第一节点,因此第一节点确定自己应该进入CRQ排队,从而需要根据本发明实施例所述方法确定自己在CRQ中的具体排队位置。
在所述全双工反馈信息指示所述第一接入时隙为空闲态的情况下,说明所述第一节点在第一接入时隙中发送了接入请求信息,但是第二节点却在全双工反馈信息中指示第一接入时隙为空闲太,说明第二节点没有检测出所述第一节点发送的接入请求信息,因此第一节点需要进入CRQ排队,也需要根据本发明实施例所述方法确定自己在CRQ中的具体排队位置。
可见,本方面所示的所述第一节点确定所述目标排队位置有两种情况,一种情况是,在所述全双工反馈信息指示所述第一接入时隙呈成功态,且所述目标标识和所述第一节点的标识不一致的情况下,则所述第一节点可以确定在第一接入时隙第二节点确实成功地接收到了接入请求信息,但是该接入请求信息不是自己所发送的,而是其他的第一节点发送的。出现这种现象的原因是,第一节点和被目标标识所指示的那个第一节点均在第一接入时隙向第二节点发送了请求信息,由于两个接入请求信息的物理信号在第二节点的接收机处发生了重叠,并且第一节点发送的接入请求信息的物理信号的接收信噪比较低,而被目标标识所指示的那个第一节点所发送的接入请求信息的物理信号的接收信噪比高,所以第二节点能够成功接收被目标标识所指示的那个第一节点所发送的接入请求信息,而第一节点发送的接入请求信息被第二节点当做了噪声进行处理。所以第二节点在全双工反馈信息中指示第一接入时隙的状态为成功态。另一种情况是,第二节点在所述全双工反馈信息中指示所述第一接入时隙的状态为空闲态。此时,所述第一节点可以确定自己在所述第一接入时隙发送的接入请求信息未能被所述第二节点成功接收,其原因可能是第一节点与第二节点之间的通信链路被遮挡或者链路上出现了干扰等,导致自己所发送的接入请求信息在第二节点处的接收信噪比很低,因此第二节点无法检测到任何信号,从而确定该第一接入时隙的状态为空闲态。
无论上述两种情况的哪一种出现了,所述第一节点都可以判断出自己应该进入冲突分解队列CRQ排队,以重新向所述第二节点发送接入请求。根据现有技术,接入时隙一旦被指示为成功态的情况下,则在该接入时隙中发送了接入请求的第一节点默认会进入DTQ排队,而不会进入CRQ排队,所以第二节点在全双工反馈信息中指示CRQ长度的时候不会把在该第一接入时隙中发送了接入请求信息的第一节点考虑在内,因为在第二节点看来在该第一接入时隙中发送了接入请求信息的第一节点已经进入了DTQ排队,无需重传接入请求信息,因此也就无需占用CRQ中的排队外置。同样的道理,根据现有技术一个接入时隙一旦被指示为空闲态,则第二节点就认为该接入时隙中无第一节点发送接入请求信息,因此第二节点在全双工反馈信息中指示CRQ长度的时候也不会把在该第一接入时隙中发送了接入请求信息的第一节点考虑在内。在这两种情况下,也就出现了第一节点和第二节点对CRQ排队情况看法不一致的情况,即第二节点认为的CRQ长度比第一节点认为的CRQ长度要少,具体少多少就取决于这样的第一接入时隙有多少个,并且第二节点也未在CRQ中给第一节点留出具体的排队位置。本发明实施例的有益效果在于,一方面第二节点发送了目标标识, 使得第一节点能够通过比较所述目标标识与自身的标识判断出第一接入时隙发生了这样的错误,避免第一节点误以为自己已经进入DTQ排队而白白浪费排队时间。另一方面,在第一节点确定出自己应该进入CRQ排队之后,本发明实施例明确了第一节点在CRQ中的具体排队位置,使得第一节点在判断前述两种情况发生后还能在CRQ中排队,避免引起第一节点因在CRQ中排队位置不确定而出现的处理动作不确定的现象,有效的保障了全双工传输的正常进行。
基于本发明实施例第一方面,本发明实施例第一方面的第一种实现方式中,所述步骤D具体包括:若所述全双工反馈信息指示有且仅有一个第二接入时隙为冲突态,则所述第一节点确定所述目标排队位置为所述第二接入时隙在所述冲突分解队列中的排队位置。
基于本发明实施例第一方面,本发明实施例第一方面的第二种实现方式中,则所述步骤D具体包括:若所述全双工反馈信息指示有多个所述第二接入时隙为冲突态,则所述第一节点确定所述目标排队位置为多个所述第二接入时隙中距离所述第一接入时隙最近的第二接入时隙在所述冲突分解队列中的排队位置。
基于本发明实施例第一方面的第二种实现方式,本发明实施例第一方面的第三种实现方式中,则所述步骤D具体包括:若所述全双工反馈信息指示有多个所述第二接入时隙为冲突态,且多个所述第二接入时隙中有两个所述第二接入时隙距离所述第一接入时隙最近,则所述第一节点确定所述目标排队位置为距离所述第一接入时隙最近的两个所述第二接入时隙中,排序最前的所述第二接入时隙在所述冲突分解队列中的排队位置。
基于本发明实施例第一方面,本发明实施例第一方面的第四种实现方式中,则所述步骤D具体包括:所述全双工反馈信息指示所述TW所包括的接入时隙中不包括冲突态的时隙,即所述全双工反馈信息指示所有接入时隙为成功态或空闲态,且在所述冲突分解队列不为空的情况下,则所述第一节点确定所述目标排队位置为所述冲突分解队列的队尾位置。
基于本发明实施例第一方面,本发明实施例第一方面的第五种实现方式中,所述步骤D具体包括:
步骤D11、所述第一节点在否定应答NACK时隙中发送NACK信号,所述否定应答NACK时隙出现在所述第一节点接收所述全双工反馈信息之后;
步骤D12、所述第一节点接收所述第二节点发送的队列调整指示信息,所述队列调整指示信息用于指示所述目标排队位置,所述目标排队位置为所述冲突分解队列中的任一位置或者所述冲突分解队列队尾位置的后一个位置;
其中,所述第二节点将所述队列调整指示信息发送给所述第一节点的方式有两种:
一种,本实施例所示的第二节点在所述NACK时隙上检测NACK信号,若所述第二节点检测到所述NACK信号的情况下,则所述第二节点将队列调整指示信息发送给所述第一节点,具体的,所述第二节点将所述队列调整指示信息携带在所述第二节点发送的下一个传输窗的第一物理帧中,其中,所述队列调整指示信息用于指示所述目标排队位置,所述目标排队位置为所述CRQ中的任一位置,本实施例对所述目标排队位置在所述CRQ的具体位置不做限定,例如,所述目标排队位置可为所述CRQ的队尾位置。所述下一个传输窗的第 一物理帧是以当前传输窗中的第一物理帧为参考的,当前传输窗是指第一节点发送接入请求信息的第一接入时隙所在的传输窗。
另一种,本实施例所示的所述第二节点可将所述队列调整指示信息携带在所述第二节点发送给所述第一节点的每一个传输窗的第一物理帧中,此种情况下,所述队列调整指示信息需要指示CRQ长度是否发生调整,只有在所述第二节点检测到所述NACK信号的情况下,则所述第二节点所发送的所述队列调整指示信息可指示CRQ长度发生了调整,且队列调整指示信息中指示所述目标排队位置。
步骤D13、所述第一节点根据所述队列调整指示信息确定所述目标排队位置。
基于本发明实施例第一方面,本发明实施例第一方面的第六种实现方式中,所述步骤D具体包括:若所述全双工反馈信息指示有多个所述第二接入时隙为冲突态,则所述第一节点确定所述目标排队位置为多个所述第二接入时隙中任一所述第二接入时隙在所述冲突分解队列中的排队位置。
基于本发明实施例第一方面,本发明实施例第一方面的第七种实现方式中,所述步骤D具体包括:若所述全双工反馈信息指示所有接入时隙为成功态或空闲态,则在所述冲突分解队列不为空的情况下,所述第一节点确定所述目标排队位置为所述冲突分解队列中的任一位置。
基于本发明实施例第一方面,本发明实施例第一方面的第八种实现方式中,所述步骤C中所述在所述全双工反馈信息指示所述第一接入时隙为成功态的情况下,所述第一节点还接收所述第二节点发送的目标标识具体包括:
所述第一节点接收所述第二节点发送的物理帧,所述目标标识携带在所述物理帧中,且所述物理帧为所述第二节点在发送完所述全双工反馈信息后所发送的;
需要说明的是,在此种实施例中,所述物理帧是指第二节点发送给第三节点的第一物理帧,并且该第一物理帧还是在下一个传输窗中第二节点发送给第三节点的。第一物理帧中携带的载荷的目的接收节点第三节点,第一物理帧帧头中携带的全双工指示信息的目的接收节点第一节点,并且所述目的标识也携带在第一物理帧帧头中。虽然第一物理帧的载荷和帧头这两部分信息分别是需要第三节点和第一节点来接收,但是由于第三节点和第一节点都在第二节点的覆盖范围内,因此当第二节点发送第一物理帧后,第三节点接收并从中解析出自己所需要的载荷信息,第一节点可从中解析出全双工指示信息和目的标识。
下一个传输窗是以当前传输窗为参考的,当前传输窗是指第一节点向第二节点发送接入请求信息的第一接入时隙所在的那个传输窗,下一个传输窗是紧随当前传输窗其后出现的传输窗。
或者,在另外一种实施例中,所述步骤C中所述在所述全双工反馈信息指示所述第一接入时隙为成功态的情况下,所述第一节点还接收所述第二节点发送的目标标识具体包括:所述第一节点接收所述全双工反馈信息,所述目标标识携带在所述全双工反馈信息中。
需要说明的是,在此种实施例中,步骤B中所述的第一节点接收全双工反馈信息和步骤C中所述的第一节点接收全双工反馈信息为同一个动作,第一节点无需为接收所述目标 标识再接收一次所述全双工反馈信息,而是在步骤B执行后第一节点就可以直接从接收到的全双工反馈信息中获取到所述目标标识,因为目标标识就携带在全双工反馈信息中,或者说,目标标识和全双工反馈信息是包含在同一个物理帧(第四物理帧)中一起发送的。
基于本发明实施例第一方面至本发明实施例第一方面的第八种实现方式任一项所示,本发明实施例第一方面的第九种实现方式中,所述方法还包括:
步骤E、若所述第一节点确定出所述目标标识与所述第一节点的标识一致时,则所述第一节点进入数据传输队列进行排队。
本发明实施例第二方面提供了一种全双工传输方法,包括:
步骤A、第二节点在第一接入时隙中接收第一节点发送的接入请求信息;
步骤B、所述第二节点向所述第一节点发送全双工反馈信息;
步骤C、在所述全双工反馈信息指示所述第一接入时隙为成功态的情况下,所述第二节点向所述第一节点发送目标标识。
可见,采用本方面所示的方法,在所述全双工反馈信息指示所述第一接入时隙为成功态的情况下,所述第二节点需要向所述第一节点发送目标标识,所述目标标识为在所述第一接入时隙发送了接入请求信息、且该接入请求信息成功被所述第二节点接收的第一节点的标识。所述第一节点在发现自己发送加了接入请求信息的第一接入时隙被指示为成功态的情况下,还需要进一步获取第二目标标识。若所述第一节点在确定出所述目标标识和所述第一节点的标识不一致,则所述第一节点可及时判断出所述第二节点在所述第一接入时隙中没有成功接收到所述第一节点发送的所述接入请求信息的情况。由此可见,所述第二节点可通过发送所述全双工反馈信息和所述目标标识使得所述第一节点可及时判断出所述第二节点在所述第一接入时隙中没有成功接收到所述第一节点发送的所述接入请求信息,因此所述第一节点不会进入DTQ排队而浪费时间,降低了第一节点的接入时延,明确了DQ算法在出现错误后第一节点的处理动作,保证了DQ算法在错误出现后的正确运行,以保障全双工传输的正常运行。
基于本发明实施例第二方面,本发明实施例第二方面的第一种实现方式中,所述步骤C中所述第二节点向所述第一节点发送目标标识具体包括:所述第二节点向所述第一节点发送物理帧,所述目标标识携带在所述物理帧中,且所述物理帧为所述第二节点在发送完全双工反馈信息后所发送的。
需要说明的是,在此种实施例中,所述物理帧是指第二节点发送给第三节点的第一物理帧,并且该第一物理帧还是在下一个传输窗中第二节点发送给第三节点的。具体对所述物理帧的详细说明参见前述第一方面。
需要说明的是,所述第一物理帧里携带的载荷信息的目的接收节点为第三节点,但第一物理帧帧头里携带的所述目标标识信息的目的接收节点为第一节点。由于第一物理帧既需要被第三节点接收到,也需要让第一节点接收到,并且第一节点和第三节点均都在第二节点的传输覆盖范围之内,因此第一物理帧的发送最好采用广播或多播发送的方式,这样在第二节点所发送的信号的覆盖范围内的节点都能接收到所述第一物理帧,从而可以让第一节点通过解析第一物理帧获取到所述目标标识。
基于本发明实施例第二方面,本发明实施例第二方面的第二种实现方式中,所述步骤C中所述第二节点向所述第一节点发送目标标识具体包括:所述第二节点向所述第一节点发送携带有所述目标标识的所述全双工反馈信息。
需要说明的是,在第二方面的第二种实现方式中,所述的第二节点向第一节点发送携带有所述目标标识的全双工反馈信息和第二方面的步骤B中所述的第二节点向第一节点发送全双工反馈信息为同一个动作,第二节点无需为发送所述目标标识再单独发送一次所述全双工反馈信息,而是在步骤B执行后第一节点就可以直接从接收到的全双工反馈信息中获取到所述目标标识,因为目标标识就携带在全双工反馈信息中,或者说,目标标识和全双工反馈信息是包含在同一个物理帧(第四物理帧)中一起发送的。
本发明实施例第三方面提供了一种全双工传输方法,包括:
步骤A、第二节点在第一接入时隙中接收第一节点发送的接入请求信息;
步骤B、所述第二节点向所述第一节点发送全双工反馈信息;
步骤C、在所述全双工反馈信息指示所述第一接入时隙为成功态的情况下,所述第二节点向所述第一节点发送目标标识;
步骤D、所述第二节点在否定应答NACK时隙中接收所述第一节点发送的NACK信号,所述否定应答NACK时隙出现在所述第一节点接收所述全双工反馈信息之后;
步骤E、若所述第二节点在NACK时隙检测到了NACK信号,则所述第二节点向所述第一节点发送队列调整指示信息,所述队列调整指示信息用于指示所述目标排队位置,所述目标排队位置为所述冲突分解队列中的任一位置或者所述冲突分解队列队尾位置的后一个位置。
采用本方面所示的方法,如果所述第二节点在所述全双工反馈信息中指示所述第一接入时隙的状态为成功态,则所述第二节点需发送目标标识,所述目标标识为在所述第一接入时隙发送了接入请求信息、且该接入请求信息成功被所述第二节点接收的第一节点的标识。所述第一节点在发现自己发送了接入请求信息的第一接入时隙被指示为成功态的情况下,还需要进一步获取第二目标标识。在所述第一接入时隙发送了所述接入请求信息但所述第二节点指示的目标标识与所述第一节点的标识不匹配时,则所述第一节点即可判断出所述第一节点在所述第一接入时隙中所发送的接入请求信息没有被所述第二节点成功接收,因此所述第一节点在NACK时隙上发送NACK信号以便向第二节点指示所述情况,而所述第二节点也需要通过在NACK时隙检测是无NACK信号来判断前述情况是否真的发生了。或者,如果所述第二节点在所述全双工反馈信息中指示所述第一接入时隙的状态为空闲态,出现这种情况的原因可能是由于链路被遮挡或者出现干扰等,导致所述第一节点在所述第一接入时隙发送的接入请求信息未被所述第二节点成功接收到,从而使得所述第二节点判断此第一接入时隙的状态为空闲态。此时,所述第二节点也需要通过在NACK时隙检测有无NACK信号来判断是否有这种情况发生。需要说明的是,如果所述全双工反馈信息中指示其中一个第二接入时隙(假设为时隙1)为成功态,指示另一个第二接入时隙(假设为时隙2)为空闲态。并且假设一个第一节点(假设为节点A)在时隙1向第二节点发送了接入请求 信息,另一个第一节点(假设为节点B)在时隙2向第二节点发送了接入请求信息。此外还假设所述第一节点(假设为节点A)判断第二节点指示的目标标识与节点A的标识不一致,则显然前述两种的情况均发生了。因此节点A和节点B均会在NACK时隙向第二节点发送接入NACK信号。由于NACK时隙只有一个,因此节点A和节点B发送的NACK信号会发生重叠,第二节点仅能检测出NACK时隙中有第一节点发送了NACK信号,但无法区分到底是节点A发送的NACK信号还是节点B发送的NACK信号。但是本发明实施例中,第二节点无需区分到底是节点A还是节点B发送了NACK信号,第二节点仅需检测NACK信号的有无即可。如果所述第二节点在NACK时隙检测到了NACK信号,则所述第二节点即可确定出所述全双工反馈信息中指示为成功态的第二接入时隙中有至少两个第一节点向自己发送了接入请求信息,但至少有一个第一节点的接入请求信息未被自己成功接收到。第二节点还可以确定出所述全双工反馈信息中指示为空闲态的第二接入时隙中至少有一个第一节点向自己发送了接入请求信息,但未被自己成功接收到。基于此判断,所述第二节点即可向所述第一节点发送队列调整指示信息,以指示所述目标排队位置,且发送了NACK信号的第一节点均在所述目标排队位置处排队。如此,所述第一节点能够及时的确定出第一节点所发送的接入请求信息没有被所述第二节点成功接收的情况,并将所判断的情况及时通知所述第二节点,以使所述第二节点能够及时知悉所述第一节点所发送的接入请求信息没有被所述第二节点成功接收的情况,从而使得第二节点能够调整CRQ队列长度,为所述第一节点在CRQ的队尾新增一个排队位置,从而避免了第一节点错误以为自己以进入DTQ排队而浪费时间,降低了第一节点的接入时延,明确了DQ算法在出现错误后第一节点的处理动作,保证了DQ算法在错误出现后的正确运行。
需要说明的是,在另外一种可能的实施方式中,在所述第二节点发送所述全双工反馈信息之后,存在多个NACK时隙,比如3个,每一个NACK时隙对应一个第一接入时隙,如果第一节点在对应的第一接入时隙中发送了接入接入请求信息,并且全双工反馈信息中指示该第一接入时隙状态为成功态,但是第二节点指示的目标标识却与第一节点标识不一致,或者,全双工反馈信息中指示该第一接入时隙状态为空闲态,则第一节点就在该第一接入时隙对应的NACK时隙中向所述第二节点发送NACK信号。
具体NACK时隙的个数,本发明不作限制。
本发明实施例第四方面提供了一种第一节点,包括:
发送模块,用于在第一接入时隙向第二节点发送接入请求信息;
接收模块,用于接收所述第二节点发送的全双工反馈信息;
所述接收模块还用于,在所述全双工反馈信息指示所述第一接入时隙为成功态的情况下,接收所述第二节点发送的目标标识;
处理模块,用于在所述第一节点确定所述目标标识与所述第一节点的标识不一致的情况下,或,在所述全双工反馈信息指示所述第一接入时隙为空闲态的情况下,确定所述第一节点在所述冲突分解队列中的目标排队位置。
采用本方面所示的第一节点,在确定出所述全双工反馈信息所指示的所述第一接入时隙的状态为成功态、且所述目标标识和所述第一节点的标识不一致时;或者,在所述第二 节点在所述全双工反馈信息中指示所述第一接入时隙的状态为空闲态时,所述第一节点可及时判断出所述第二节点在所述第一接入时隙中没有成功接收到所述第一节点发送的所述接入请求信息的情况,因此所述第一节点可以及时判断自己应该进入CRQ排队而不是进入DTQ排队,从而降低了第一节点的接入时延。并且本发明实施例明确了DQ算法在出现错误后第一节点的处理动作,即所述第一节点在判断第二节点接收接入请求信息出错后直接根据所述全双工反馈信息确定出自己在CRQ中排队的具体位置,从而保证了在错误出现后全双工传输的正常运行。
基于本发明实施例第四方面,本发明实施例第四方面的第一种实现方式中,所述处理模块还用于,若所述全双工反馈信息指示有且仅有一个所述第二接入时隙为冲突态,则确定所述目标排队位置为所述第二接入时隙在所述冲突分解队列中的排队位置。
基于本发明实施例第四方面,本发明实施例第四方面的第二种实现方式中,所述处理模块还用于,若所述全双工反馈信息指示有多个所述第二接入时隙为冲突态,则确定所述目标排队位置为多个所述第二接入时隙中距离所述第一接入时隙最近的第二接入时隙在所述冲突分解队列中的排队位置。
基于本发明实施例第四方面的第二种实现方式,本发明实施例第四方面的第三种实现方式中,所述处理模块还用于,若所述全双工反馈信息指示有多个所述第二接入时隙为冲突态,且多个所述第二接入时隙中有两个所述第二接入时隙距离所述第一接入时隙最近,则确定所述目标排队位置为距离所述第一接入时隙最近的两个所述第二接入时隙中,排序最前的所述第二接入时隙在所述冲突分解队列中的排队位置。
基于本发明实施例第四方面,本发明实施例第四方面的第四种实现方式中,若所述全双工反馈信息指示所有接入时隙为成功态或空闲态,则处理模块还用于,在所述冲突分解队列不为空的情况下,则确定所述目标排队位置为所述冲突分解队列的队尾位置。
基于本发明实施例第四方面,本发明实施例第四方面的第五种实现方式中,所述处理模块包括:
发送单元,用于用于在否定应答NACK时隙中发送NACK信号,所述否定应答NACK时隙出现在所述第一节点接收所述全双工反馈信息之后;
接收单元,用于接收所述第二节点发送的队列调整指示信息,所述队列调整指示信息用于指示所述目标排队位置,所述目标排队位置为所述冲突分解队列中的任一位置或者所述冲突分解队列队尾位置的后一个位置;
处理单元,用于根据所述队列调整指示信息确定所述目标排队位置。
基于本发明实施例第四方面,本发明实施例第四方面的第六种实现方式中,所述处理模块还用于,若所述全双工反馈信息指示有多个所述第二接入时隙为冲突态,则确定所述目标排队位置为多个所述第二接入时隙中任一所述第二接入时隙在所述冲突分解队列中的排队位置。
基于本发明实施例第四方面,本发明实施例第四方面的第七种实现方式中,若所述全双工反馈信息指示所有接入时隙为成功态或空闲态,则所述处理模块还用于,在所述冲突分解队列不为空的情况下,则确定所述目标排队位置为所述冲突分解队列中的任一位置。
基于本发明实施例第四方面至本发明实施例第四方面的第七种实现方式任一项所示,本发明实施例第四方面的第八种实现方式中,所述接收模块还用于,接收所述第二节点发送的物理帧,所述目标标识携带在所述物理帧中,且所述物理帧为所述第二节点在发送完所述全双工反馈信息后所发送的,或者,所述接收模块还用于,接收所述全双工反馈信息,所述目标标识携带在所述全双工反馈信息中。
需要说明的是,在第四方面的第七种实现方式中,所述的接收模块接收所述全双工反馈信息,所述目标标识携带在所述全双工反馈信息中,和第四发面所述的接收模块,用于接收所述第二节点发送的全双工反馈信息,二者为同一个动作,即接收模块无需为接收所述目标标识再单独接收一次所述全双工反馈信息,而是在执行后接收全双工反馈信息后直接从中获取到所述目标标识,因为目标标识就携带在全双工反馈信息中,或者说,目标标识和全双工反馈信息是包含在同一个物理帧(第四物理帧)中一起发送的。
需要说明的是,在第四方面的第七种实现方式中,所述物理帧是指第二节点发送给第三节点的第一物理帧,并且该第一物理帧还是在下一个传输窗中第二节点发送给第三节点的。具体对所述物理帧的详细说明参见前述第一方面。
采用本方面所示的第一节点,所述第一节点在确定出所述全双工反馈信息所指示的所述第一接入时隙呈成功态的情况,且所述第一节点所获取到的所述目标标识和所述第一节点的标识不一致,则所述第一节点可及时判断出所述第二节点在所述第一接入时隙中没有成功接收到所述第一节点发送的所述接入请求信息的情况,则所述第一节点不会进入DTQ排队而浪费时间,降低了第一节点的接入时延,明确了DQ算法在出现错误后第一节点的处理动作,保证了DQ算法在错误出现后的正确运行,以保障全双工传输的正常运行。
基于本发明实施例第四方面至本发明实施例第四方面的第八种实现方式任一项所示,本发明实施例第四方面的第九种实现方式中,所述处理模块还用于,若确定出所述目标标识与所述第一节点的标识一致时,则所述第一节点进入数据传输队列进行排队。
采用本方面所示的第一节点,所述第一节点只有确定出所述全双工反馈信息所指示的所述第一接入时隙呈成功态的情况,且所述目标标识和所述第一节点的标识一致,所述第一节点可以确定所述第一节点在所述第一接入时隙发送的接入请求信息被所述第二节点成功接收,因此所述第一节点判断自己应该进入DTQ排队,有效的保障了全双工传输的正常运行。
本发明实施例第五方面提供了一种第二节点,包括:
接收模块,用于在第一接入时隙中接收第一节点发送的接入请求信息;
发送模块,用于向所述第一节点发送全双工反馈信息;
在所述全双工反馈信息指示所述第一接入时隙为成功态的情况下,所述发送模块还用于,向所述第一节点发送目标标识。
采用本方面所示的第二节点,在所述全双工反馈信息指示所述第一接入时隙为成功态的情况下,所述第二节点向所述第一节点发送目标标识。若所述第一节点确定所述目标标识和所述第一节点的标识不一致,则所述第一节点可及时判断出所述第二节点在所述第一接入时隙中没有成功接收到所述第一节点发送的所述接入请求信息的情况。可见,所述第 二节点可通过所述全双工反馈信息和所述目标标识使得所述第一节点可及时判断出所述第二节点在所述第一接入时隙中没有成功接收到所述第一节点发送的所述接入请求信息的情况下,所述第一节点不会进入DTQ排队而浪费时间,降低了第一节点的接入时延,明确了DQ算法在出现错误后第一节点的处理动作,保证了DQ算法在错误出现后的正确运行,以保障全双工传输的正常运行。
基于本发明实施例第五方面,本发明实施例第五方面的第一种实现方式中,所述发送模块还用于,向所述第一节点发送物理帧,所述目标标识携带在所述物理帧中,且所述物理帧为所述第二节点在发送完全双工反馈信息后所发送的。
需要说明的是,在此种实施例中,所述物理帧是指第二节点发送给第三节点的第一物理帧,并且该第一物理帧还是在下一个传输窗中第二节点发送给第三节点的。具体对所述物理帧的详细说明参见前述第一方面。
基于本发明实施例第五方面,本发明实施例第五方面的第二种实现方式中,所述发送模块用于,向所述第一节点发送携带有所述目标标识的所述全双工反馈信息。
需要说明的是,在第五方面的第二种实现方式中,所述的发送模块用于向向第一节点发送携带有所述目标标识的全双工反馈信息和第五方面的所述发送模块用于向第一节点发送全双工反馈信息为同一个动作,发送模块无需为发送所述目标标识再单独发送一次所述全双工反馈信息,因为目标标识就携带在全双工反馈信息中,或者说,目标标识和全双工反馈信息是包含在同一个物理帧(第四物理帧)中一起发送的。
本发明实施例第六方面提供了一种第二节点,包括:
第一接收模块,用于在第一接入时隙中接收第一节点发送的接入请求信息;
第一发送模块,用于向所述第一节点发送全双工反馈信息;
所述第一发送模块还用于,在所述全双工反馈信息指示所述第一接入时隙为成功态的情况下,向所述第一节点发送目标标识;
第二接收模块,用于在否定应答NACK时隙中接收所述第一节点发送的NACK信号,所述否定应答NACK时隙出现在所述第一节点接收所述全双工反馈信息之后;
第二发送模块,用于若在NACK时隙检测到了NACK信号,则向所述第一节点发送队列调整指示信息,所述队列调整指示信息用于指示目标排队位置,所述目标排队位置为所述冲突分解队列中的任一位置或者所述冲突分解队列队尾位置的后一个位置。
采用本方面所示的第二节点,如果所述第二节点在所述全双工反馈信息中指示所述第一接入时隙的状态为成功态,则所述第二节点需发送目标标识,在所述第一接入时隙发送了所述接入请求信息但所述第二节点指示的目标标识与所述第一节点的标识不匹配,则所述第一节点即可判断出所述第一节点在所述第一接入时隙中所发送的接入请求信息没有被所述第二节点成功接收,则所述第一节点即可在NACK时隙上发送NACK信号,所述第二节点在NACK时隙检测到NACK信号,则所述第二节点即可确定出所述第二节点没有成功接收到所述第一节点发送的所述接入请求信息,则所述第二节点即可向所述第一节点发送队列调整指示信息,以指示所述目标排队位置,且发送了NACK信号的第一节点均在所述目标排队位置处排队。如此,所述第一节点能够及时的确定出第一节点所发送的接入请求信息 没有被所述第二节点成功接收的情况,所述第一节点还可以通知所述第二节点,以使所述第二节点能够及时确定出所述第一节点所发送的接入请求信息没有被所述第二节点成功接收的情况,从而使得第二节点能够调整CRQ队列长度,为所述第一节点在CRQ的队尾新增一个排队位置,从而避免了第一节点错误以为自己以进入DTQ排队而浪费时间,降低了第一节点的接入时延,明确了DQ算法在出现错误后第一节点的处理动作,保证了DQ算法在错误出现后的正确运行。
本发明实施例第七方面提供了一种节点,包括处理器和存储器,其中,所述存储器中存有计算机可读程序,所述处理器通过运行所述存储器中的程序,以用于完成本发明实施例第一方面至第二方面任一项所述的方法。
本发明实施例第八方面提供了一种计算机可读存储介质,包括指令,当所述指令在节点上运行时,使得所述节点执行如本发明实施例第一方面至第二方面任一项所述的方法。
本发明实施例第九方面提供了一种包含指令的计算机程序产品,当所述计算机程序产品在节点上运行时,使得所述节点执行如本发明实施例第一方面至第二方面任一项所述的方法。
本发明提供了一种全双工传输方法以及相关设备,方法包括:第一节点在第一接入时隙向第二节点发送接入请求信息;第一节点接收第二节点发送的全双工反馈信息;在全双工反馈信息指示第一接入时隙为成功态的情况下,且在第一节点确定出第二节点发送的目标标识与第一节点的标识不一致时,第一节点确定第一节点在冲突分解队列中的目标排队位置;或,在全双工反馈信息指示第一接入时隙为空闲态的情况下,第一节点确定第一节点在冲突分解队列中的目标排队位置。可见,本本发明方法使得第一节点及时判断出第二节点在第一接入时隙中没有成功接收到第一节点发送的接入请求信息的情况,则第一节点及时进入冲突分解队列排队,降低了第一节点的接入时延,保障了全双工传输的正确运行。
附图说明
图1为现有技术所提供的全双工传输的拓扑结构示意图;
图2为现有技术所提供的全双工传输的一种示意图;
图3为现有技术所提供的可见光通信的传输示意图;
图4为本发明所提供的全双工传输方法的一种实施例步骤流程图;
图5为本发明所提供的一种接入信道的各个接入时隙的状态示意图;
图6为本发明所提供的一种冲突分解队列排队示意图;
图7为本发明所提供的另一种接入信道的各个接入时隙的状态示意图;
图8为本发明所提供的另一种冲突分解队列排队示意图;
图9为本发明所提供的另一种接入信道的各个接入时隙的状态示意图;
图10为本发明所提供的另一种接入信道的各个接入时隙的状态示意图;
图11为本发明所提供的另一种冲突分解队列排队示意图;
图12为本发明所提供的另一种接入信道的各个接入时隙的状态示意图;
图13为本发明所提供的另一种冲突分解队列排队示意图;
图14为本发明所提供的全双工传输方法的一种实施例步骤流程图;
图15为本发明所提供的全双工传输方法的一种实施例步骤流程图;
图16为本发明所提供的全双工传输的一种实施例示意图;
图17为本发明所提供的全双工传输方法的一种实施例步骤流程图;
图18为本发明所提供的第一节点的一种实施例结构示意图;
图19为本发明所提供的第二节点的一种实施例结构示意图;
图20为本发明所提供的第二节点的另一种实施例结构示意图。
具体实施方式
为更好的理解本发明实施例所示的全双工传输方法,以下首先对本实施例所示的所述全双工传输方法所应用的可见光通信进行说明:
可见光通信(visible light communication,VLC)是利用可见光频段范围内的电磁波作为通信传输媒介的一种通信方式。如图3所示,VLC发送端将发送信号Input经编码模块101调制编码之后所发出的信号m(t)送入发光二极管(light emitting diode,LED)的驱动电路102,经电光转换将电信号转化为光信号x(t)发送出去。由于LED驱动电流是经发送信号调制了的,而驱动电路102中驱动电流的改变会引起LED灯发出的光强的改变,所以本质上VLC通信是通过改变LED光源的强度来实现信号的传输的。由于光强度变化的频率很高,人眼不会察觉到光源的变化,因而可以在实现照明的基本功能的同时,完成高速率的信号传输。在VLC接收端,使用光电探测器(Photodetector,PD)103或者光学镜头(Camera)来检测接收到的LED光,将接收到的调制后的光信号转为电信号,然后输入到接收器104。在接收器中经过解调解码,恢复为传输的数据流Output。
VLC网络通常包括一个中心控制节点和多个终端设备,其中中心控制节点还可以称为协调器、接入点(access point,AP)、域主节点(domain master,DM)等;终端设备还可以称为站点(station,STA)、(endpoint,EP)、用户设备(user equipment,UE)等。VLC网络还可以称为(visible-light communication personal area network,VPAN)、域、局域网(local area network,LAN)等。中心控制节点是VLC网络的主节点,为EP提供可见光网络接入,并对域的运行进行管理和维护。EP通过接入第一节点来连接至VLC网络。VLC通信应用于可见光域时,对于一个VLC网络而言,中心控制节点通常为位于天花板上的LED灯,而终端设备则是集成了VLC收发器的电子产品,如智能手机、平板电脑、个人电脑(personal computer,PC)等。
全双工通信是指同一个设备在同一时刻既可以接收其他设备发送的数据,又可以向其他设备发送数据。全双工传输包括对称全双工传输和非对称全双工传输。对称全双工传输是指两个设备间进行的全双工传输,设备A向设备B发送数据的同时,接收设备B发送给自己的数据。非对称全双工传输是指三个设备之间的全双工传输,设备A向设备B发送数据的同时,接收设备C发送给自己的数据,设备B和设备C为两个不同的设备。对称全双工传输为非对称全双工传输的特例,即若设备B和设备C为同一个设备,非对称全双工传输则变成对称全双工传输。全双工传输中包括两个方向的传输,其中先建立的传输称为第 一传输,后建立的传输为第二传输。
参见图1所示,图1为非对称全双工传输的拓扑结构,节点A向节点B发送数据的同时,接收来自节点C的数据。在一种现有技术中,节点A和节点B之间先建立基于无竞争的第一传输,节点C和节点A之间再建立基于竞争的第二传输。在本发明中,将第二传输的发送节点(即节点C)称为第一节点,第二传输的接收节点也即第一传输的发送节点(即节点A)称为第二节点,第一传输的接收节点(即节点B)称为第三节点。由于第二传输为基于竞争的传输,因此所有有向第二节点发送数据的需求的节点都可以参与第二传输的竞争,即可能存在多个第一节点(多个节点C)需要向第二节点发送数据,那么如何确定由哪个第一节点与第二节点建立第二传输是全双工传输需要解决的一个问题。
为更好的理解本发明实施例所示的方法,本发明实施例所示的所述第一节点以及第三节点为上述所示的用户设备,而所述第二节点为上述所示的所述协调器,以下介绍现有技术中如何通过竞争的方式确定哪个第一节点与第二节点建立第二传输:
如图2所示,第一传输中第二节点每向第三节点发送一个第一物理帧,第一节点到第二节点方向的上行信道中就对应存在一个传输窗(transmission window,TW),第一节点在传输窗中向第二节点发送接入请求信息或第二物理帧。
需要说明的是,可以认为第二节点到第一节点或第三节点的方向的链路为下行链路,它们之间的信道为下行信道。第一节点或第三节点到第二节点的方向的链路为上行链路,它们之间的信道为上行信道。
需要说明的是,第一物理帧是第二节点发送给第三节点的物理帧,第二物理帧是第一节点发送给第二节点的物理帧。这里所述的物理帧包括前导、帧头以及载荷。其中,前导用于同步、信道估计等,帧头包括控制信息,载荷用于携带业务数据。物理帧有许多不同的类型,比如MSG帧、ACK帧等,一些类型的物理帧可能不包括载荷,比如ACK帧。
传输窗TW的起始时间与第二节点发送给第三节点的第一物理帧传输起始时间相差T0,其中T0为第一节点检测并解析第一物理帧帧头所需的时间。一个TW中包括了一个(或零个)接入信道和一个传输信道,其中接入信道又进一步包括若干个(图2中以3个为例)等长的接入时隙。其中,接入信道上的接入时隙用于第一节点向第二节点发送接入请求信息,传输信道用于第一节点向第二节点无竞争发送第二物理帧。一个第一节点只有在成功地向第二节点发送了接入请求信息后才能向第二节点无竞争发送第二物理帧。
传输窗TW可能有两种不同的配置方式。第一种配置方式中,传输窗TW只包括有一个传输信道,不包括接入信道。第二种配置中,所述传输窗TW包括有一个接入信道和一个传输信道。传输窗TW中到底有没有接入信道,第二节点会在全双工指示信息中进行指示。如果TW内包括所述接入信道,则传输信道在接入信道结束后开始。如果TW内不包括所述接入信道,则所述传输信道在下行传输开始T0之后开始。
TW的结束时间由全双工指示信息中的“传输结束时间”来指示,TW的结束时间不能晚于全双工指示信息中所指示的“传输结束时间”。图2中所示仅为示例性说明,图中传输窗TW包括有一个接入信道和一个传输信道,且接入信道包括3个等长的接入时隙,TW的结束时间等于第二节点发送给第三节点的第一物理帧传输结束时间。
在第二节点向第三节点发送第一物理帧的同时,第一节点在接入时隙上向第二节点发送接入请求信息,在传输信道上向第二节点发送第二物理帧。需要说明的是,向第二节点发送接入请求信息的第一节点可能为多个节点。
第一节点需要通过检测第二节点发送的第一物理帧帧头来判断TW的开始,并根据第一物理帧帧头中携带的全双工指示信息来进行接入请求信息和第二物理帧的发送。具体的,全双工指示信息具体包括如下字段:
(1)“传输结束时间”字段,所述“传输结束时间”字段用于指示所述第一节点向所述第二节点发送第一物理帧的最晚结束时间,也即所述TW的结束时间。所述TW的结束时间不能晚于所述“传输结束时间”;
(2)“上行信道配置”字段,所述“上行信道配置”字段用于指示上行信道是否包括所述接入信道。如果包括接入信道,则TW由一个接入信道和一个传输信道组成。如果不包括接入信道,则TW由传输信道组成;
若“上行信道配置”字段指示TW内包含有接入信道,则第一节点在接入信道上向第二节点发送接入请求信息。发送接入请求的具体方法是:第一节点在3个接入时隙中随机选择一个接入时隙,并在所选择的接入时隙上向第二节点发送接入请求信息。
(3)“CRQ为空指示符”字段,所述“CRQ为空指示符”字段用于指示冲突分解队列(collision resolution queue,CRQ)是否为空,若CRQ为空,则说明没有第一节点在CRQ中排队,若CRQ不为空,则说明有第一节点在CRQ中排队。CRQ的作用及说明参见后续步骤,在此不再赘述;
由于第一节点发送接入请求信息是随机选择接入时隙的,因此有可能多个第一节点选择了同一个接入时隙向第二节点发送接入请求信息,因此会导致冲突的产生,第二节点接收接入请求信息失败。如果第一节点发送接入请求信息在第二节点处发生了冲突,则第一节点需要重传接入请求信息。
根据各个接入时隙中发送的接入请求信息是否被第二节点成功接收,每一个接入时隙的状态可能是如下3种状态中的一种:成功、冲突、空闲。其中,成功态是指在该接入时隙发送的接入请求信息成功被第二节点接收,冲突态是指第二节点判断有至少2个第一节点在此接入时隙发送了接入请求信息,空闲态是指第二节点在该接入时隙没有检测到任何信号。
由于每一个第一节点需要知悉自己选择发送接入请求信息的接入时隙的状态,因此第二节点需要在每一个接入时隙上去检测信号并告知各个接入时隙的状态。如果第二节点检测到了有效的物理帧前导preamble和帧头,则第二节点判断该接入时隙为成功态;如果第二节点检测到了有效的物理帧前导preamble,但却未能检测到有效的物理帧头,则第二节点判断该接入时隙为冲突态;如果第二节点没有检测到有效的物理帧前导preamble,则第二节点判断该接入时隙为空闲态。
检测结束后,第二节点还应在全双工反馈信息中指示其检测到的各个接入时隙的状态。
如果第一节点发送了接入请求信息的接入时隙被第二节点指示为冲突态,则第一节点 需要进入冲突分解队列(collision resolution queue,CRQ)进行排队并等待重传接入请求信息。第二节点和每一个参与竞争的第一节点均需各自维护两个不同的队列,分别是冲突分解队列CRQ和数据传输队列DTQ(data transmission queue,DTQ)。其中,CRQ用于管理和维护发送接入请求信息过程中产生的冲突,DTQ用于管理发送接入请求信息成功后的第一节点无竞争发送第二物理帧的过程。CRQ和DTQ均需要第二节点和每一个参与竞争的第一节点用两个计数器来维护和管理,分别是:
CRQ队列需要维护的一个计数器为冲突分解队列长度计数器,CRQ长度计数器用于指示CRQ的队列长度,CRQ队列所需维护的另一个计数器为CRQ位置计数器,CRQ位置计数器用于指示第一节点在CRQ中的排队位置。
DTQ队列需要维护的一个计数器为传输队列长度计数器,DTQ长度计数器用于指示DTQ的长度,DTQ队列需要维护的的另一个计数器为DTQ位置计数器,DTQ位置计数器用于指示第一节点在DTQ中的排队位置。
(4)“传输设备标识”字段,所述“传输设备标识”字段用于指示在所述传输信道上向所述第二节点发送第二物理帧的第一节点的标识。
当传输信道开始后,由“传输设备标识”字段所指示的第一节点(也即在DTQ中排队的某一个第一节点)在传输信道上向第二节点发送第二物理帧,第二物理帧的传输结束时间不应晚于“传输结束时间”字段所指示的时间。
如图2所示,当传输信道结束后,在第一传输中第三节点向第二节点回复一个第三物理帧(ACK帧)的同时,第二传输上第二节点向第一节点发送第四物理帧。第四物理帧中包含全双工反馈信息,全双工反馈信息指示了在TW中的接入信道上的各个接入时隙的状态,第一节点根据全双工反馈信息确定自己发送的接入请求信息和第二物理帧是否被第二节点成功接收,并决定自己是应该进入CRQ排队还是DTQ排队以及在队列中的具体排队位置。
第一节点确定自己在CRQ或DTQ中的具体排队位置便是更新自己所维护CRQ长度计数器、DTQ长度计数器、CRQ位置计数器和DTQ位置计数器的过程,第一节点根据全双工反馈信息更新各个计数器的具体方法如下:
首先,第一节点可以根据全双工反馈信息中所指示的接入时隙的状态确定自己是进入CRQ排队还是进入DTQ排队。
若全双工反馈信息中指示一个接入时隙的状态为冲突态,则在该接入时隙发送了接入请求信息的所有第一节点均进入CRQ的同一个位置进行排队。在同一个接入时隙中发生了冲突的第一节点在CRQ中的排队的位置是一样的。若全双工反馈信息中指示有多个接入时隙的状态均为冲突态,则在不同接入时隙发送了接入请求信息的第一节点按照所选择的接入时隙的先后顺序在所述CRQ中排队。
若全双工反馈信息中指示一个接入时隙的状态为成功态,则在该接入时隙发送了接入请求信息的第一节点进入所述DTQ中排队。若全双工反馈信息中指示有多个接入时隙的状态均为成功态,则在不同接入时隙发送接入请求信息的第一节点按照所选择的接入时隙的先后顺序在DTQ中排队。
其次,第一节点确定自己是进入CRQ还是进入DTQ了之后,便需要确定自己在CRQ或DTQ中的具体排队位置,即确定自己的CRQ位置计数器或DTQ位置计数器。
全双工反馈信息中除了指示各个接入时隙的状态,还会指示“CRQ长度”和“DTQ长度”,其中“CRQ长度”指示当前传输窗过后CRQ中的排队总长度,“DTQ长度”指示当前传输窗过后DTQ中的排队总长度。各个第一节点将各自的CRQ长度计数器或DTQ长度计数器设置为全双工反馈信息中的“CRQ长度”和“DTQ长度”字段所指示的取值,各个第一节点确定出自己的CRQ位置计数器或DTQ位置计数器的方法如下:
若全双工反馈信息中指示有M(0≤M≤3)个接入时隙的状态为成功态,有N(0≤N≤3)个接入时隙的状态为冲突态,有K(0≤K≤3)个接入时隙的状态为空闲态,其中,M+N+K=3。则在当前传输窗的接入时隙上发送过接入请求信息的第一节点按如下规则更新各自的CRQ位置计数器或DTQ位置计数器:
如果第一节点发送接入请求信息的接入时隙为M个状态为成功态的接入时隙中的第i个,则该第一节点的DTQ位置计数器被更新为:DTQ长度-M+i;
如果第一节点发送接入请求信息的接入时隙为N个状态为冲突态的接入时隙中的第j个,则该第一节点的CRQ位置计数器被更新为:CRQ长度-N+j;
除根据全双工反馈信息更新位置各个计数器外,在每个传输窗中,如果第一物理帧帧头中的全双工指示信息指示CRQ不为空,则仅在CRQ队首位置排队的第一节点能随机选择接入时隙并发送接入请求信息,在CRQ其他位置处排队的第一节点在每个传输窗中将自己的CRQ位置计数器减1。新的第一节点(即新产生了向第二节点发送第二物理帧的需求的第一节点)不能随机选择接入时隙并向第二节点发送接入请求信息。只有当CRQ为空时,新的第一节点才能随机选择接入时隙并向第二节点发送接入请求信息。在每个传输窗中也只有位于DTQ队首位置的第一节点才能在传输信道上向第二节点发送第二物理帧,在DTQ其他位置,即在所述DTQ的非队首位置处排队的第一节点每个传输窗将自己的DTQ位置计数器减1。
上述过程只要第一传输中第二节点持续向第三节点发送第一物理帧,第二传输中TW就会持续出现,上述发送接入请求、第二物理帧以及维护更新各个计数器的过程也会持续进行。
现有技术中,每一个第一节点都能在CRQ和DTQ中的正确位置排队的前提是第一节点和第二节点对接入时隙的状态看法一致。但在实际情况下,由于不同的第二节点和第一节点之间的信道条件的差异或者信道上出现了干扰等因素的影响,可能会出现第二节点和第一节点对同一个接入时隙的状态有不同的看法。当第二节点和第一节点对同一接入时隙的状态的看法不一致时,或者当第一节点未接收到第二节点发送的全双工反馈信息时,会导致第一节点进入一个不确定的状态,即不确定自己是应该进入冲突分解队列排队还是应该进入数据传输队列排队,或者不知道自己应该排在队列中的什么位置的情况。当出现这种情况后,上述现有技术中的全双工传输方法就无法正确运行。
以下结合图4所示对本发明所示的全双工传输方法的一种实施例的具体执行过程进行详细说明,图4为本发明所提供的全双工传输方法的一种实施例步骤流程图。
步骤401、所述第二节点向所述第三节点发送第一物理帧。
本实施例所示的所述第二节点向所述第三节点发送第一物理帧。
步骤402、所述第一节点在第一接入时隙向第二节点发送接入请求信息。
需要说明的是,本实施例在执行步骤401的过程中,执行本实施例所示的步骤402。或者说,执行步骤401和执行步骤402在时间上有重叠。参见图2所示,由于传输窗和第二节点发送第一物理帧在时间上是重叠在一起的,而执行步骤402是在图2所示的传输窗中的接入信道行进行的,因此执行步骤401和执行步骤402在时间上也是重叠的。
需要说明的是,本实施例所述的发送接入请求信息的方法、传输窗的结构、所述传输窗与第一物理帧的传输在时间上的位置关系等,与现有技术是一样的,此部分内容在前述介绍现有技术时已进行描述,在此不再赘述。具体的,如图2所示,本实施例以所述TW包括有一个接入信道和一个传输信道进行示例性说明,且所述接入信道包括3个等长的接入时隙。
本实施例所示的所述第一节点在3个接入时隙中随机选定一个发送接入请求信息的第一接入时隙,即,本实施例所示的所述第一接入时隙为3个所述接入时隙中的任一接入时隙,具体在本实施例中不做限定。
需要说明的是,向第二节点发送接入请求信息的第一节点可能是多个,也可能是1个,因此本实施例所述的第一接入时隙也可能有多个。根据第一节点是否已向第二节点发送过接入请求信息可将多个第一节点划分为2类。
1、第一类第一节点是尚未向第二节点发送过接入请求信息的第一节点,它们需要等待全双工指示信息指示CRQ为空时才能随机选择接入时隙,并在所选接入时隙上向第二节点发送接入请求信息。
2、第二类第一节点是已经向第二节点发送过接入请求信息、但是接入请求信息未被第二节点成功接收的第一节点,这类第一节点已经进入CRQ中排队,等待排到CRQ的队首时重新向第二节点发送接入请求信息。
3、第三类第一节点是已经向第二节点发送过接入请求信息、且被第二节点成功接收的第一节点,这类第一节点进入DTQ中排队,等待排队至DTQ队首时向第二节点发送第二物理帧。
步骤402中向第二节点发是接入请求信息的第一节点只能属于这二类中的一类。当全双工指示信息中指示CRQ为空时,则步骤402中向第二节点发送接入请求信息的第一节点为第一类第一节点。当全双工指示信息中指示CRQ不为空时,则步骤402中向第二节点发送接入请求信息的第一节点为第二类第一节点。由于CRQ要么为空要么不为空,因此不存在第一类第一节点和第二类第一节点同时向第二节点发送接入请求信息。
步骤403、所述第二节点接收所述第一节点在所述第一接入时隙发送的接入请求信息。
需要说明的是,本实施例所述的第二节点也需要确定各个第一接入时隙的状态,第二节点检测和确定各个接入时隙的状态的方法同现有技术一样,此部分在介绍现有技术时已经进行详细描述,在此不再赘述。
步骤404、所述第二节点向所述第一节点发送所述全双工反馈信息。
同现有技术一样,本实施例中所述的全双工反馈信息也携带在第四物理帧中,并且全双工反馈信息也指示了接入信道中各个接入时隙的状态以及第一节点在传输信道上发送的第一物理帧的状态。
和现有技术不同的是,为了避免所述第二节点在发送所述全双工反馈信息时,由于所述第二节点和所述第一节点之间的链路被遮挡或者出现干扰等原因,所述第一节点并未接收到所述第二节点所发送的所述全双工反馈信息,因此会造成所述第一节点不确定自己发送了所述接入请求信息的所述第一接入时隙的状态如何,使得所述第一节点不确定接下来的处理动作是什么,从而使得第一节点不能继续进行全双工传输的情况,则本实施例所示的所述第二节点还可在下一个传输窗的第一物理帧中携带所述全双工反馈信息,使得第一节点可以再次有机会接收到所述全双工反馈信息。
具体的,本实施例所示的下一个传输窗中的第一物理帧的帧头中携带有所述全双工反馈信息,以使所述第二节点可在下一个传输窗中再次将所述全双工反馈信息发送给所述第一节点。
步骤405、若所述第一节点确定所述第一接入时隙的状态为成功态,则执行步骤406。
具体的,本实施例所示的所述第一节点根据已接收到的所述全双工反馈信息确定出所述第一节点发送了所述接入请求信息的第一接入时隙的状态。
本实施例所示的方法,以所述第一节点确定出所述第一接入时隙为成功态为例进行示例性说明,若所述第一接入时隙的状态为空闲态,则可参见图14所示的实施例,在此处不做赘述,若所述第一节点确定出所述第一接入时隙为冲突态,则所述第一节点进入冲突分解队列CRQ进行排队。
所述冲突分解队列CRQ的具体说明,请参见前述现有技术所示的冲突分解队列介绍即可,具体不做赘述。
步骤406、所述第一节点获取目标标识。
本实施例所述的目标标识为第一节点的身份标识信息,具有所述目标标识的第一节点在第一接入时隙发送了接入请求信息,并且该接入请求信息成功被第二节点接收。
以下对所述第一节点获取所述目标标识的具体方式进行示例性说明,需明确的是,本实施例对所述第一节点获取所述目标标识的具体过程不做限定。
所述第一节点获取所述目标标识的一种方式为:
本实施例所示的所述第二节点在所述第四物理帧中携带有所述目标标识。
本实施例中,在执行步骤404后,即在所述第二节点将所述第四物理帧发送给所述第一节点后,所述第一节点即可对所述第四物理帧进行解析以获取到所第四物理帧所携带的所述目标标识。
参见图2所示,第四物理帧为第三节点向第一节点发送第三物理帧的同时,第二节点发送给第一节点的ACK帧,全双工反馈信息就携带在第四物理帧中。因此,在本实施中,全双工反馈信息和目标标识均携带在第四物理帧中一起发送给第一节点,或者说,目标标识也作为全双工反馈信息中的一部分,携带在第四物理帧中发送给第一节点。
所述第一节点获取所述目标标识的另一种方式为:
本实施例所示的所述第二节点在下一个传输窗发送的第一物理帧中携带所述目标标识,在所述第二节点将下一个传输窗的第一物理帧发送给所述第一节点后,所述第一节点即可对该第一物理帧进行解析以获取到第一物理帧所携带的所述目标标识。
需要说明的是,此处所述第一物理帧是指第二节点发送给第三节点的第一物理帧,并且该第一物理帧还是在下一个传输窗中第二节点发送给第三节点的。第一物理帧中携带的载荷的目的接收节点第三节点,第一物理帧帧头中携带的全双工指示信息的目的接收节点第一节点,并且所述目的标识也携带在第一物理帧帧头中。虽然第一物理帧的载荷和帧头这两部分信息分别是需要第三节点和第一节点来接收,但是由于第三节点和第一节点都在第二节点的覆盖范围内,因此当第二节点发送第一物理帧后,第三节点接收并从中解析出自己所需要的载荷信息,第一节点可从中解析出全双工指示信息和目的标识。
下一个传输窗是以当前传输窗为参考的,当前传输窗是指第一节点向第二节点发送接入请求信息的第一接入时隙所在的那个传输窗,下一个传输窗是紧随当前传输窗其后出现的传输窗。
步骤407、所述第一节点判断所述目标标识与所述第一节点的标识是否一致,若一致,则执行步骤408,若不一致,则执行步骤409。
为更好的理解本实施例所示的全双工传输方法的有益效果,则首先对现有技术的相关方案进行示例性说明:
若有多个第一节点在第一接入时隙中向所述第二节点发送了接入请求信息,本实施例以有需求向所述第二节点发送第一物理帧的多个第一节点为例,本实施例以多个所述第一节点为第一目标第一节点,第二目标第一节点以及第三目标第一节点在所述第一接入时隙中向所述第二节点发送了接入请求信息,但是由于多个所述第一节点在所述第一接入时隙中所发送的接入请求信息的物理信号在时间上可能会完全重叠,则所述第二节点有可能会成功接收到信噪比最高的那个接入请求信息,即以所述第三目标第一节点所发送的接入请求信息的信噪比最高,而第一目标第一节点以及第二目标第一节点所发送的接入请求信息的信噪比低于所述第三目标第一节点所发送的接入请求信息的信噪比,则所述第二节点会将第一目标第一节点以及第二目标第一节点所发送的接入请求信息当做噪声进行处理,这样,所述第二节点会在所述全双工反馈信息中指示所述第一接入时隙的状态为成功态,因此,每个在所述第一接入时隙中发送了接入请求信息的第一节点均认为自己进入到了DTQ进行排队,即第一目标第一节点,第二目标第一节点以及第三目标第一节点均认为自己进入到了DTQ进行排队。
但实际上,第二节点只成功接收到了所述第三目标第一节点所发送的接入请求信息,则所述第二节点只认为所述第三目标第一节点进入到所述DTQ中进行排队,在所述第三目标第一节点排队至DTQ的队首位置时,所述第二节点只会在所述全双工指示信息中的“传输设备标识”字段指示第三目标第一节点的标识,在第一目标第一节点以及第二目标第一节点接收到所述全双工指示信息所携带的第三目标第一节点的标识的情况下,因所述第一目标第一节点和所述第二目标第一节点均确定出其具有的标识和所述全双工指示信息所携带的目标标识不一致,则所述第一目标第一节点以及所述第二目标第一节点才确定出所述 第一目标第一节点以及所述第二目标第一节点并没有进入到所述DTQ中进行排队,而是需要进入CRQ中进行排队。但是由于所述第二节点并不知道有所述第一目标第一节点以及所述第二目标第一节点在所述第一接入时隙中发送了所述接入请求信息,则在所述全双工反馈信息的“CRQ长度”字段指示的CRQ长度中,所述第二节点没有为所述第一目标第一节点以及所述第二目标第一节点预留出在CRQ中排队的位置。因此,所述第一目标第一节点以及所述第二目标第一节点想进入CRQ排队重传接入请求信息,但是在CRQ中并没有排队位置,则使得所述第一目标第一节点以及所述第二目标第一节点无法在CRQ中进行排队。
而本实施例中,在所述第一节点确定排队位置之前,所述第一节点不仅仅会根据所述全双工反馈信息所指示的所述第一接入时隙呈成功态的情况,所述第一节点还要判断所述目标标识和所述第一节点的标识是否一致,若所述目标标识和所述第一节点的标识不一致,则所述第一节点即可确定出所述第一节点在所述第一接入时隙中所发送的接入请求信息消息没有被所述第二节点成功接收。若所述目标标识和所述第一节点的标识一致,则所述第一节点即可确定出所述第一节点在所述第一接入时隙中所发送的接入请求信息消息被所述第二节点成功接收。
步骤408、所述第一节点进入DTQ中进行排队。
在DTQ中,若所述第一节点的排队位置位于所述DTQ的队首位置时,所述第一节点即可在所述传输信道上向所述第二节点发送第二物理帧。
可见,采用本实施例所示的方法,所述第一节点只有确定出所述全双工反馈信息所指示的所述第一接入时隙呈成功态的情况,且所述目标标识和所述第一节点的标识一致,所述第一节点才会进入至DTQ中进行排队。
步骤409、所述第一节点确定所述第一节点在CRQ中的目标排队位置。
本实施例中,在所述目标标识和所述第一节点的标识不一致时,则所述第一节点可基于第一预设规则或第二预设规则确定所述第一节点在CRQ中的目标排队位置,所述目标排队位置为所述第一节点在CRQ中排队的位置。
以下对本实施例所示的所述第一预设规则进行详细说明:
本实施例中,在所述全双工反馈信息所指示的各接入时隙的状态不同的情况下,所述第一预设规则会有所不同,以下结合所述全双工反馈信息素指示的各接入时隙的状态对所述第一预设规则进行说明:
所述全双工反馈信息所指示的各接入时隙的第一种状态为:
如图5所示为所述接入信道内的各个接入时隙的状态示意图,所述全双工反馈信息指示所述TW有一个为冲突态的第二接入时隙。具体的,按接入时隙的时间由前到后的顺序,依次包括有第二接入时隙503、所述第一接入时隙501以及第三接入时隙502。其中,本实施例所示的所述全双工反馈信息指示所述第二接入时隙503为冲突态,所述第一接入时隙501为成功态,所述第三接入时隙502为空闲态。
由上述所示可知,本实施例所示的所述第一节点在所述第一接入时隙501中向所述第二节点发送了接入请求信息,由上述所示可知,所述第二节点在所述全双工反馈信息中指示所述第一接入时隙501的状态为成功态,且在所述第二节点发送的所述目标标识和所述 第一节点的标识不一致,则所述第一节点判断所述第一节点所发送的接入请求信息没有被所述第二节点成功接收,则所述第一节点确定出第一节点需要进入CRQ排队,且所述第一节点在所述CRQ中的位置为目标排队位置。
以下对所述目标排队位置进行说明:
在所述第一节点根据所述全双工反馈信息确定出有且仅有一个所述第二接入时隙为冲突态时,则所述第一节点确定所述目标排队位置为所述第二接入时隙在所述冲突分解队列中的排队位置;
以图6所示为例,所述第一节点根据所述全双工反馈信息确定所述CRQ中已有的排队位置由前到后依次为第一排队位置601、第二排队位置602以及第三排队位置603,而在所述第二接入时隙503发送了接入请求信息的第一节点在CRQ中的排队位置为CRQ中新增的第四排队位置604,则所述第一节点确定目标排队位置为第四排队位置604。
所述全双工反馈信息所指示的各接入时隙的第二种状态为:
所述全双工反馈信息指示所述TW有两个第二接入时隙,各所述第二接入时隙为冲突态。具体的,参见图7所示,其中,图7为所述TW的接入信道的结构示意图。如图7所示,本实施例以所述TW的接入信道包括有3个接入时隙为例进行示例性说明:
按接入时隙的时间由前到后的顺序,依次包括有第二接入时隙703、所述第一接入时隙701以及所述第二接入时隙702,本实施例所示的所述全双工反馈信息指示所述第二接入时隙703以及所述第二接入时隙702均为冲突态,而所述第一接入时隙701为成功态。
以下对所述目标排队位置进行说明:
在所述第一节点根据所述全双工反馈信息确定出有多个所述第二接入时隙为冲突态,则所述第一节点确定所述目标排队位置为多个所述第二接入时隙中距离所述第一接入时隙最近的第二接入时隙在所述冲突分解队列中的排队位置。
以图8所示为例,所述CRQ中已有的排队位置依次为第一排队位置801、第二排队位置802以及第三排队位置803为例,所述第一节点根据所述全双工反馈信息确定所述目标排队位置,所述目标排队位置为两个所述第二接入时隙中距离所述第一接入时隙701最近的第二接入时隙为所述目标第二接入时隙,所述目标排队位置为已在所述目标第二接入时隙中发送所述接入请求信息的第一节点在所述CRQ中的位置。
因本种方式中,所述第一接入时隙701位于所述第二接入时隙703和所述第二接入时隙702之间,且所述第一接入时隙701和所述第二接入时隙703之间的距离,等于所述第一接入时隙701和所述第二接入时隙702之间的距离,则所述目标第二接入时隙可为所述第二接入时隙703,或所述目标第二接入时隙还可为第二接入时隙702。
可选的,所述第一节点可确定出所述第二接入时隙702和所述第二接入时隙703中时间上较早的的第二接入时隙为所述目标第二接入时隙,可见,如图7所示,所述目标第二接入时隙为第二接入时隙703,则本实施例所示的所述目标排队位置804为已在所述第二接入时隙703发送所述接入请求信息的第一节点在所述CRQ中的位置,如图8所示的第四排队位置805为在所述第二接入时隙702中发送所述接入请求信息的第一节点在所述CRQ中的位置。
所述全双工反馈信息所指示的各接入时隙的第三种状态为:
所述全双工反馈信息指示所述TW有两个第二接入时隙,各所述第二接入时隙为冲突态。如图9所示,本实施例以所述TW的接入信道包括有3个接入时隙为例进行示例性说明:
按接入时隙的时间由前到后的顺序,依次包括有第一接入时隙903、所述第二接入时隙901以及所述第二接入时隙902,本实施例所示的所述全双工反馈信息指示所述第二接入时隙901以及所述第二接入时隙902均为冲突态,而所述第一接入时隙903为成功态。
以下对所述目标排队位置进行说明:
如图8所示,所述CRQ中已有的排队位置依次为第一排队位置801、第二排队位置802以及第三排队位置803为例,所述第一节点根据所述全双工反馈信息确定所述目标排队位置,所述目标排队位置为两个所述第二接入时隙中距离所述第一接入时隙903最近的第二接入时隙为所述目标第二接入时隙,所述目标排队位置为已在所述目标第二接入时隙中发送所述接入请求信息的第一节点在所述CRQ中的位置。
因本种方式中,所述第二接入时隙901和所述第一接入时隙903之间的距离,相对于所述第二接入时隙902和所述第一接入时隙903之间的距离更近,所述目标第二接入时隙为所述第二接入时隙901,则本实施例所示的所述目标排队位置804为已在所述第二接入时隙901发送所述接入请求信息的用户设备在所述CRQ中的位置,,如图8所示的第四排队位置805为已在所述第二接入时隙902中发送所述接入请求信息的第一节点在所述CRQ中的位置。
所述全双工反馈信息所指示的各接入时隙的第四种状态为:
所述全双工反馈信息指示所述TW有两个第二接入时隙,各所述第二接入时隙为冲突态。具体的,参见图10所示,其中,图10为所述TW的接入信道的结构示意图。如图10所示,本实施例以所述TW的接入信道包括有3个接入时隙为例进行示例性说明:
按接入时隙的时间由前到后的顺序,依次包括有第二接入时隙1003、所述第二接入时隙1001以及所述第一接入时隙1002,本实施例所示的所述全双工反馈信息指示所述第二接入时隙1003以及所述第二接入时隙1001均为冲突态,而所述第一接入时隙1002为成功态。
以下对所述目标排队位置进行说明:
如图11所示,所述CRQ中已有的排队位置依次为第一排队位置1101、第二排队位置1102以及第三排队位置1103为例,所述第一节点根据所述全双工反馈信息确定所述目标排队位置,所述目标排队位置为两个所述第二接入时隙中距离所述第一接入时隙1002最近的第二接入时隙为所述目标第二接入时隙,所述目标排队位置为已在所述目标第二接入时隙中发送所述接入请求信息的第一节点在所述CRQ中的位置。
因本种方式中,所述第二接入时隙1001和所述第一接入时隙1002之间的距离,相对于所述第二接入时隙1003和所述第一接入时隙1002之间的距离更近,则如图10所示,所述目标第二接入时隙为所述第二接入时隙1001,则本实施例所示的所述目标排队位置1105为已在所述第二接入时隙1001发送所述接入请求信息的用户设备在所述CRQ中的位置,如图11所示的第四排队位置1104为已在所述第二接入时隙1003发送所述接入请求信息的用 户设备在所述CRQ中的位置。
所述全双工反馈信息所指示的各接入时隙的第五种状态为:
所述全双工反馈信息指示所述TW所包括的接入时隙中不包括冲突态的时隙。具体的,参见图12所示,其中,图12为所述TW的接入信道的结构示意图。如图12所示,本实施例以所述TW的接入信道包括有3个接入时隙为例进行示例性说明:
按接入时隙的时间由前到后的顺序,依次包括有第三接入时隙1203、第四接入时隙1201以及所述第一接入时隙1202,本实施例所示的所述全双工反馈信息指示所述第三接入时隙1203以及所述第四接入时隙1201均为非冲突态,即所述第三接入时隙1203可为成功态或空闲态,所述第四接入时隙1201可为成功态或空闲态,而所述第一接入时隙1202为成功态。
以下对所述目标排队位置进行说明:
如图13所示,在所述CRQ不为空的情况下,即所述CRQ中已有的排队位置依次为第一排队位置1301、第二排队位置1302以及第三排队位置1303为例,所述第一节点根据所述全双工反馈信息确定所述目标排队位置,所述目标排队位置为所述冲突分解队列的队尾位置,即所述目标排队位置为位于队尾的所述第三排队位置1303。
本实施例中,若所述TW中无接入时隙的状态为冲突态,且CRQ队列为空,则所述第一节点不进入CRQ排队,在第二TW中随机选择接入时隙发送接入请求信息,所述第二TW为所述TW的下一个TW。
以下对本实施例所示的所述第二预设规则进行详细说明:
本实施例中,在所述全双工反馈信息所指示的各接入时隙的状态不同的情况下,所述第二预设规则会有所不同,以下结合所述全双工反馈信息素指示的各接入时隙的状态对所述第二预设规则进行说明:
所述全双工反馈信息所指示的各接入时隙的第一种状态为:
若所述全双工反馈信息所指示所述TW中包括有至少一个第二接入时隙的状态为冲突态,则所述第一节点确定目标第二接入时隙,所述目标第二接入时隙为所述至少一个第二接入时隙中的任一第二接入时隙,则所述第一节点确定所述目标排队位置已在所述目标第二接入时隙发送所述接入请求信息的第一节点在所述CRQ中的位置。
可见,所述第二预设规则没有明确的指出所述第一节点在所述CRQ中的具体排队位置,而是由所述第一节点在所述任一第二接入时隙发送所述接入请求信息的第一节点在所述CRQ中的多个位置中,选定一个位置作为所述目标排队位置。
所述全双工反馈信息所指示的各接入时隙的第二种状态为:
若所述全双工反馈信息所指示所述TW中不包括有冲突态的接入时隙,即所述TW中所包括的任一接入时隙均为成功态或空闲态,且在所述CRQ不为空的情况,则所述第一节点从所述CRQ中已有的排队位置任意选择一个作为所述第一节点在CRQ中排队的位置。
所述全双工反馈信息所指示的各接入时隙的第三种状态为:
若所述全双工反馈信息所指示所述TW中不包括有冲突态的接入时隙,即所述TW中所包括的任一接入时隙均为成功态或空闲态,且在所述CRQ为空的情况,则所述第一节点从 所述第二TW中随机选择一个接入时隙发送所述接入请求信息。
本实施例所示的有益效果在于,若所述第二节点在所述全双工反馈信息中指示第一接入时隙的状态为成功态,则所述第二节点需发送目标标识以指示发送所述接入请求信息成功的第一节点的标识,若所述第一节点确定出所述目标标识与所述第一节点的标识不一致,则所述第一节点可确定出所述第二节点没有成功接收到所述第一节点在所述第一接入时隙中发送的所述接入请求信息,所述第一节点可基于所述第一预设规则或所述第二预设规则确定出所述第一节点在CRQ中目标排队位置,有效的避免了在所述第一节点发送所述接入请求信息失败后如何进行全双工传输的动作不明确的问题。因此,本实施例可以及时让所述第一节点判断出所述第二节点在所述第一接入时隙中没有成功接收到所述第一节点发送的所述接入请求信息的情况,则所述第一节点不会进入DTQ排队而浪费时间,降低了第一节点的接入时延,明确了DQ算法在出现错误后第一节点的处理动作,保证了DQ算法在错误出现后的正确运行,以保障全双工传输的正常运行。
以下结合图14所示对本发明所提供的全双工传输方法的另一种实施例进行详细说明:
图14所示的实施例,相对于图4所示的实施例区别在于:所述全双工反馈信息所指示的所述第一接入时隙的状态是不同的,在图4所示的实施例中,所述第一接入时隙的状态为成功态,而图14所示的实施例中,所述第一接入时隙的状态为空闲态。
步骤1401、所述第二节点向所述第三节点发送第一物理帧。
步骤1402、所述第一节点在第一接入时隙向第二节点发送接入请求信息。
步骤1403、所述第二节点接收所述第一节点在所述第一接入时隙发送的接入请求信息。
步骤1404、所述第二节点将全双工反馈信息发送给所述第一节点。
本实施例所示的步骤1401至步骤1404的具体执行过程,请详见图4所示的实施例所示的步骤401至步骤404所示,具体在本实施例中不做赘述。
步骤1405、所述第一节点确定所述第一接入时隙的状态,若所述第一接入时隙的状态为空闲态,则执行步骤1406。
为更好的理解本发明实施例所示的方法,则首先对现有技术的弊端进行示例性说明:
在可见光通信网络,若所述第一节点在所述TW中选定了第一接入时隙,所述第一节点可在所述第一接入时隙中发送所述接入请求信息,而其他第一节点也可在所述第一接入时隙中发送所述接入请求信息,例如,均通过所述第一接入时隙发送了接入请求信息的多个第一节点具体为第一目标第一节点,第二目标第一节点以及第三目标第一节点,即第一目标第一节点,第二目标第一节点以及第三目标第一节点均通过所述第一接入时隙向所述第二节点发送接入请求信息。
若所述第一目标第一节点、所述第二目标第一节点、所述第三目标第一节点和所述第二节点之间的链路被遮挡或者出现干扰等原因,所述第二节点并未检测到所述第一目标第一节点、所述第二目标第一节点、所述第三目标第一节点在所述第一接入时隙中发送的所述接入请求信息,则所述第二节点在所述全双工反馈信息中指示所述第一接入时隙的状态为空闲态。此时,所述第一目标第一节点本应该进入CRQ排队,但是由于所述第二节点认为所述第一接入时隙无用户设备发送接入请求信息,则所述第二节点在所述全双工反馈信 息的CRQ长度字段指示的CRQ长度中,所述第二节点也没有为所述第一目标第一节点、所述第二目标第一节点以及所述第三目标第一节点预留出在CRQ中排队的位置。这样也会造成所述第一目标第一节点进入不确定的状态后,所述第一目标第一节点就不确定接下来的处理动作是什么,因而会影响全双工传输方法的正确运行。
步骤1406、所述第一节点确定所述第一节点在CRQ中的目标排队位置。
本实施例所示的步骤1406的具体执行过程,请详见图4所示的步骤409所示,具体执行过程,在本实施例中不做赘述。
采用本实施例所示的方法的有益效果在于,如果所述第二节点在所述全双工反馈信息中指示所述第一接入时隙的状态为空闲态,则为了避免因所述第一节点和所述第二节点之间的链路被遮挡或者出现干扰等原因,导致所述第一节点不能将所述接入请求信息成功发送至所述第二节点,则所述第一节点在确定出所述第一接入时隙为空闲态时,则所述第一节点直接根据所述全双工反馈信息确定出所述第一节点在CRQ中排队的具体位置,有效的保障了全双工传输的正常传输。
图4所示的实施例以及图14所示的实施例,都是所述第一节点通过所述第二节点发送的信息确定所述目标排队位置,以下结合图15所示说明了在所述第二节点如何指示和配合第一节点参与确定所述目标排队位置的过程的;
步骤1501、所述第二节点向所述第三节点发送第一物理帧。
步骤1502、所述第一节点在第一接入时隙向第二节点发送接入请求信息。
步骤1503、所述第二节点接收所述第一节点在所述第一接入时隙发送的接入请求信息。
步骤1504、所述第二节点将全双工反馈信息发送给所述第一节点。
步骤1505、所述第一节点确定所述第一接入时隙的状态,若所述第一接入时隙的状态为成功态,则执行步骤1506。
步骤1506、所述第一节点获取目标标识。
步骤1507、所述第一节点判断所述目标标识与所述第一节点的标识是否一致,若一致,则执行步骤1508,若不一致,则执行步骤1509。
步骤1508、所述第一节点进入DTQ中进行排队。
本实施例所示的步骤1501至步骤1508的具体执行过程,请详见图4所示的步骤401至步骤408所示,具体不做赘述。
步骤1509、所述第一节点在否定应答NACK时隙中发送NACK信号。
如图16所示,本实施例所示的所述否定应答NACK时隙位于所述第二节点发送完所述全双工反馈信息之后,所述第二节点向所述第一节点发送所述全双工反馈信息的具体说明,请详见图9所示的实施例,具体不做限定。
步骤1510、所述第二节点将队列调整指示信息发送给所述第一节点。
其中,所述第二节点将所述队列调整指示信息发送给所述第一节点的方式有两种:
一种,本实施例所示的第二节点在所述NACK时隙上检测NACK信号,若所述第二节点检测到所述NACK信号的情况下,则所述第二节点将队列调整指示信息发送给所述第一节点,具体的,所述第二节点将所述队列调整指示信息携带在所述第二节点在下一个传输窗 中发送的第一物理帧中,其中,所述队列调整指示信息用于指示所述目标排队位置,所述目标排队位置为所述CRQ中的任一位置,本实施例对所述目标排队位置在所述CRQ的具体位置不做限定,例如,所述目标排队位置可为所述CRQ的队尾位置。
另一种,本实施例所示的所述第二节点可将所述队列调整指示信息携带在所述第二节点发送给所述第一节点的每一个第一物理帧中,此种情况下,所述队列调整指示信息需要指示CRQ长度是否发生调整,只有在所述第二节点检测到所述NACK信号的情况下,则所述第二节点所发送的所述队列调整指示信息可指示CRQ长度发生了调整,且队列调整指示信息中指示所述目标排队位置。
可选的,所述队列调整指示信息还可用于指示CRQ长度加1,队尾新增一个排队位置为所述目标排队位置。
若所述队列调整指示信息用于指示CRQ长度加1,队尾新增一个排队位置为所述目标排队位置,则可以避免所述第一节点去CRQ已有排队位置处排队,减少了已有排队位置处排队的用户设备的个数,避免增加已有排队位置处冲突分解时间。
步骤1511、所述第一节点接收所述第二节点发送的所述队列调整指示信息。
步骤1512、所述第一节点根据所述队列调整指示信息确定所述第一节点在所述CRQ的排队位置为所述目标排队位置。
采用本实施例所示的方法的有益效果在于,如果所述第二节点在所述全双工反馈信息中指示所述第一接入时隙的状态为成功态,则所述第二节点需发送目标标识,在所述第一接入时隙发送了所述接入请求信息但所述第二节点指示的目标标识与所述第一节点的标识不匹配,则所述第一节点即可判断出所述第一节点在所述第一接入时隙中所发送的接入请求信息没有被所述第二节点成功接收,则所述第一节点即可在NACK时隙上发送NACK信号,所述第二节点在NACK时隙检测到NACK信号,则所述第二节点即可确定出所述第二节点没有成功接收到所述第一节点发送的所述接入请求信息,则所述第二节点即可向所述第一节点发送队列调整指示信息,以指示所述目标排队位置,且发送了NACK信号的第一节点均在所述目标排队位置处排队。如此,本实施例所示的所述第一节点能够及时的确定出第一节点所发送的接入请求信息没有被所述第二节点成功接收的情况,所述第一节点还可以通知所述第二节点,以使所述第二节点能够及时确定出所述第一节点所发送的接入请求信息没有被所述第二节点成功接收的情况,从而使得第二节点能够调整CRQ队列长度,为所述第一节点在CRQ的队尾新增一个排队位置,从而避免了第一节点错误以为自己以进入DTQ排队而浪费时间,降低了第一节点的接入时延,明确了DQ算法在出现错误后第一节点的处理动作,保证了DQ算法在错误出现后的正确运行。
以下结合图17所示对本发明所提供的全双工传输方法的另一种实施例进行详细说明:
图17所示的实施例,相对于图15所示的实施例区别在于:所述全双工反馈信息所指示的所述第一接入时隙的状态是不同的,在图15所示的实施例中,所述第一接入时隙的状态为成功态,而图17所示的实施例中,所述第一接入时隙的状态为空闲态。
步骤1701、所述第二节点向所述第三节点发送第一物理帧。
步骤1702、所述第一节点在第一接入时隙向第二节点发送接入请求信息。
步骤1703、所述第二节点接收所述第一节点在所述第一接入时隙发送的接入请求信息。
步骤1704、所述第二节点将全双工反馈信息发送给所述第一节点。
步骤1705、所述第一节点确定所述第一接入时隙的状态,若所述第一接入时隙的状态为空闲态,则执行步骤1706。
步骤1706、所述第一节点在否定应答NACK时隙中发送NACK信号。
步骤1707、所述第二节点将队列调整指示信息发送给所述第一节点。
步骤1708、所述第一节点接收所述第二节点发送的所述队列调整指示信息。
步骤1709、所述第一节点根据所述队列调整指示信息确定所述第一节点在所述CRQ的排队位置为所述目标排队位置。
本实施例所示的步骤1706至步骤1709之间的具体执行过程,请详见图15所示的步骤1509至步骤1512之间的具体执行过程,具体不做赘述。
采用本实施例所示的方法的有益效果在于,如果所述第二节点在所述全双工反馈信息中指示所述第一接入时隙的状态为空闲态,则为了避免因所述第一节点和所述第二节点之间的链路被遮挡或者出现干扰等原因,导致所述第一节点不能将所述接入请求信息成功发送至所述第二节点,则所述第一节点在确定出所述第一接入时隙为空闲态时,则即可在NACK时隙上发送NACK信号,所述第二节点在NACK时隙检测到NACK信号,则所述第二节点即可确定出所述第二节点没有成功接收到所述第一节点发送的所述接入请求信息,则所述第二节点即可向所述第一节点发送队列调整指示信息,以指示所述目标排队位置,且发送了NACK信号的第一节点均在所述目标排队位置处排队。如此,本实施例所示的所述第一节点能够及时的确定出第一节点所发送的接入请求信息没有被所述第二节点成功接收的情况,所述第一节点还可以通知所述第二节点,以使所述第二节点能够及时确定出所述第一节点所发送的接入请求信息没有被所述第二节点成功接收的情况,从而避免了第一节点错误以为自己以进入DTQ排队而浪费时间,降低了第一节点的接入时延,明确了DQ算法在出现错误后第一节点的处理动作,保证了DQ算法在错误出现后的正确运行。
以下结合图18所示,从功能模块的角度对本发明实施例所提供第一节点的具体结构进行示例性说明:
所述第一节点包括:
发送模块1801,用于在第一接入时隙向第二节点发送接入请求信息;
接收模块1802,用于接收所述第二节点发送的全双工反馈信息;
所述接收模块1802还用于,在所述全双工反馈信息指示所述第一接入时隙为成功态的情况下,接收所述第二节点发送的目标标识;
处理模块1803,用于在所述第一节点确定所述目标标识与所述第一节点的标识不一致的情况下,或,在所述全双工反馈信息指示所述第一接入时隙为空闲态的情况下,确定所述第一节点在所述冲突分解队列中的目标排队位置。
可选的,所述处理模块1803还用于,若所述全双工反馈信息指示有且仅有一个所述第二接入时隙为冲突态,则确定所述目标排队位置为所述第二接入时隙在所述冲突分解队列中的排队位置。
可选的,所述处理模块1803还用于,若所述全双工反馈信息指示有多个所述第二接入时隙为冲突态,则确定所述目标排队位置为多个所述第二接入时隙中距离所述第一接入时隙最近的第二接入时隙在所述冲突分解队列中的排队位置。
可选的,所述处理模块1803还用于,若所述全双工反馈信息指示有多个所述第二接入时隙为冲突态,且多个所述第二接入时隙中有两个所述第二接入时隙距离所述第一接入时隙最近,则确定所述目标排队位置为距离所述第一接入时隙最近的两个所述第二接入时隙中,排序最前的所述第二接入时隙在所述冲突分解队列中的排队位置。
可选的,若所述全双工反馈信息指示所有接入时隙为成功态或空闲态,则处理模块1803还用于,若所述全双工反馈信息指示所有接入时隙为成功态或空闲态,且在所述冲突分解队列不为空的情况下,则确定所述目标排队位置为所述冲突分解队列的队尾位置。
可选的,所述处理模块1803包括:
发送单元18031,用于在否定应答NACK时隙中发送NACK信号,所述否定应答NACK时隙出现在所述第一节点接收所述全双工反馈信息之后;
接收单元18032,用于接收所述第二节点发送的队列调整指示信息,所述队列调整指示信息用于指示所述目标排队位置,所述目标排队位置为所述冲突分解队列中的任一位置或者所述冲突分解队列队尾位置的后一个位置;
处理单元18033,用于根据所述队列调整指示信息确定所述目标排队位置。
可选的,所述处理模块1803还用于,若所述全双工反馈信息指示有多个所述第二接入时隙为冲突态,则确定所述目标排队位置为多个所述第二接入时隙中任一所述第二接入时隙在所述冲突分解队列中的排队位置。
可选的,若所述全双工反馈信息指示所有接入时隙为成功态或空闲态,则所述处理模块1803还用于,在所述冲突分解队列不为空的情况下,则确定所述目标排队位置为所述冲突分解队列中的任一位置。
可选的,所述处理模块1803还用于,获取所述第二节点发送的物理帧,所述目标标识携带在所述物理帧中,且所述物理帧为所述第二节点在发送完所述全双工反馈信息后所发送的,或者,所述处理模块1803还用于,获取已接收到的所述全双工反馈信息携带的所述目标标识。
可选的,所述处理模块1803还用于,若确定出所述目标标识与所述第一节点的标识一致时,则所述第一节点进入数据传输队列进行排队。
本实施例所示的第一节点用于执行本实施例图4以及图14所执行的方法,具体执行过程,请详见图4以及图14所示,具体不做赘述。
以下结合图19所示,从功能模块的角度对本发明实施例所提供第二节点的具体结构进行示例性说明:
接收模块1901,用于在第一接入时隙中接收第一节点发送的接入请求信息;
发送模块1902,用于向所述第一节点发送全双工反馈信息。
在所述全双工反馈信息指示所述第一接入时隙为成功态的情况下,所述发送模块1902还用于,向所述第一节点发送目标标识。
可选的,所述发送模块1902用于,向所述第一节点发送物理帧,所述目标标识携带在所述物理帧中,且所述物理帧为所述第二节点在发送完全双工反馈信息后所发送的。
可选的,所述发送模块1902用于,向所述第一节点发送携带有所述目标标识的所述全双工反馈信息。
本实施例所示的第一节点用于执行本实施例图4所执行的方法,具体执行过程,请详见图4所示,具体不做赘述。
以下结合图20所示,从功能模块的角度对本发明实施例所提供第二节点的具体结构进行示例性说明:
第一接收模块2001,用于在第一接入时隙中接收第一节点发送的接入请求信息;
第一发送模块2002,用于向所述第一节点发送全双工反馈信息;
第二接收模块2003,用于在所述全双工反馈信息指示所述第一接入时隙为成功态的情况下,且在所述第一节点确定出所述第二节点发送的目标标识与所述第一节点的标识不一致时,或,在所述全双工反馈信息指示所述第一接入时隙为空闲态的情况下,则在否定应答NACK时隙中接收所述第一节点发送的NACK信号,所述否定应答NACK时隙出现在所述第一节点接收所述全双工反馈信息之后;
第二发送模块2004,用于若在NACK时隙检测到了NACK信号,则向所述第一节点发送队列调整指示信息,所述队列调整指示信息用于指示目标排队位置,所述目标排队位置为所述冲突分解队列中的任一位置或者所述冲突分解队列队尾位置的后一个位置。
本实施例所示的第二节点用于执行本实施例图15所执行的方法,具体执行过程,请详见图15所示,具体不做赘述。
在另一种可能的设计中,当该装置为终端内的芯片时,芯片包括:处理单元和通信单元,所述处理单元例如可以是处理器,所述通信单元例如可以是输入/输出接口、管脚或电路等。该处理单元可执行存储单元存储的计算机执行指令,以使该终端内的芯片执行上述第一方面任意一项的无线通信方法。可选地,所述存储单元为所述芯片内的存储单元,如寄存器、缓存等,所述存储单元还可以是所述终端内的位于所述芯片外部的存储单元,如只读存储器(read-only memory,ROM)或可存储静态信息和指令的其他类型的静态存储设备,随机存取存储器(random access memory,RAM)等。
其中,上述任一处提到的处理器,可以是一个通用中央处理器(CPU),微处理器,特定应用集成电路(application-specific integrated circuit,ASIC),或一个或多个用于控制上述第一方面无线通信方法的程序执行的集成电路。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统,装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统,装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间 接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本发明各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本发明的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本发明各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,以上实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的精神和范围。

Claims (28)

  1. 一种全双工传输方法,其特征在于,包括:
    第一节点在第一接入时隙向第二节点发送接入请求信息;
    所述第一节点接收所述第二节点发送的全双工反馈信息;
    在所述全双工反馈信息指示所述第一接入时隙为成功态的情况下,所述第一节点还接收所述第二节点发送的目标标识;
    在所述第一节点确定所述目标标识与所述第一节点的标识不一致的情况下,
    或,在所述全双工反馈信息指示所述第一接入时隙为空闲态的情况下,
    所述第一节点确定所述第一节点在冲突分解队列中的目标排队位置。
  2. 根据权利要求1所述的方法,其特征在于,所述第一节点确定所述第一节点在冲突分解队列中的目标排队位置包括:
    若所述全双工反馈信息指示有且仅有一个所述第二接入时隙为冲突态,则所述第一节点确定所述目标排队位置为所述第二接入时隙在所述冲突分解队列中的排队位置。
  3. 根据权利要求1所述的方法,其特征在于,所述第一节点确定所述第一节点在冲突分解队列中的目标排队位置包括:
    若所述全双工反馈信息指示有多个所述第二接入时隙为冲突态,则所述第一节点确定所述目标排队位置为多个所述第二接入时隙中距离所述第一接入时隙最近的第二接入时隙在所述冲突分解队列中的排队位置。
  4. 根据权利要求1所述的方法,其特征在于,所述第一节点确定所述第一节点在冲突分解队列中的目标排队位置包括:
    若所述全双工反馈信息指示有多个所述第二接入时隙为冲突态,且多个所述第二接入时隙中有两个所述第二接入时隙距离所述第一接入时隙最近,则所述第一节点确定所述目标排队位置为距离所述第一接入时隙最近的两个所述第二接入时隙中,排序最前的所述第二接入时隙在所述冲突分解队列中的排队位置。
  5. 根据权利要求1所述的方法,其特征在于,若所述全双工反馈信息指示所有接入时隙为成功态或空闲态,则所述第一节点确定所述第一节点在冲突分解队列中的目标排队位置包括:
    在所述冲突分解队列不为空的情况下,则所述第一节点确定所述目标排队位置为所述冲突分解队列的队尾位置。
  6. 根据权利要求1所述的方法,其特征在于,所述第一节点确定所述第一节点在冲突分解队列中的目标排队位置包括:
    所述第一节点在否定应答NACK时隙中发送NACK信号,所述否定应答NACK时隙出现在所述第一节点接收所述全双工反馈信息之后;
    所述第一节点接收所述第二节点发送的队列调整指示信息,所述队列调整指示信息用于指示所述目标排队位置,所述目标排队位置为所述冲突分解队列中的任一位置或者所述冲突分解队列队尾位置的后一个位置;
    所述第一节点根据所述队列调整指示信息确定所述目标排队位置。
  7. 根据权利要求1所述的方法,其特征在于,所述第一节点确定所述第一节点在冲突分解队列中的目标排队位置包括:
    若所述全双工反馈信息指示有多个所述第二接入时隙为冲突态,则所述第一节点确定所述目标排队位置为多个所述第二接入时隙中任一所述第二接入时隙在所述冲突分解队列中的排队位置。
  8. 根据权利要求1所述的方法,其特征在于,若所述全双工反馈信息指示所有接入时隙为成功态或空闲态,则所述第一节点确定所述第一节点在冲突分解队列中的目标排队位置包括:
    在所述冲突分解队列不为空的情况下,则所述第一节点确定所述目标排队位置为所述冲突分解队列中的任一位置。
  9. 根据权利要求1所述的方法,其特征在于,所述第一节点还接收所述第二节点发送的目标标识包括:
    所述第一节点接收所述第二节点发送的物理帧,所述目标标识携带在所述物理帧中,且所述物理帧为所述第二节点在发送完所述全双工反馈信息后所发送的;
    或者,
    所述第一节点从已接收到的所述全双工反馈信息中获取所述目标标识。
  10. 根据权利要求1至9任一项所述的方法,其特征在于,所述方法还包括:
    若所述第一节点确定出所述目标标识与所述第一节点的标识一致时,则所述第一节点进入数据传输队列进行排队。
  11. 一种全双工传输方法,其特征在于,包括:
    第二节点在第一接入时隙中接收第一节点发送的接入请求信息;
    所述第二节点向所述第一节点发送全双工反馈信息;
    在所述全双工反馈信息指示所述第一接入时隙为成功态的情况下,所述第二节点向所述第一节点发送目标标识。
  12. 根据权利要求11所述的方法,其特征在于,所述第二节点向所述第一节点发送目标标识包括:
    所述第二节点向所述第一节点发送物理帧,所述目标标识携带在所述物理帧中,且所述物理帧为所述第二节点在发送完全双工反馈信息后所发送的。
  13. 根据权利要求11所述的方法,其特征在于,所述第二节点向所述第一节点发送目标标识包括:
    所述第二节点向所述第一节点发送携带有所述目标标识的所述全双工反馈信息。
  14. 一种全双工传输方法,其特征在于,包括:
    第二节点在第一接入时隙中接收第一节点发送的接入请求信息;
    所述第二节点向所述第一节点发送全双工反馈信息;
    在所述全双工反馈信息指示所述第一接入时隙为成功态的情况下,所述第二节点向所述第一节点发送目标标识;
    所述第二节点在否定应答NACK时隙中接收所述第一节点发送的NACK信号,所述否定 应答NACK时隙出现在所述第一节点接收所述全双工反馈信息之后;
    若所述第二节点在NACK时隙检测到了NACK信号,则所述第二节点向所述第一节点发送队列调整指示信息,所述队列调整指示信息用于指示所述目标排队位置,所述目标排队位置为所述冲突分解队列中的任一位置或者所述冲突分解队列队尾位置的后一个位置。
  15. 一种第一节点,其特征在于,包括:
    发送模块,用于在第一接入时隙向第二节点发送接入请求信息;
    接收模块,用于接收所述第二节点发送的全双工反馈信息;
    所述接收模块还用于,在所述全双工反馈信息指示所述第一接入时隙为成功态的情况下,接收所述第二节点发送的目标标识;
    处理模块,用于在所述第一节点确定所述目标标识与所述第一节点的标识不一致的情况下,或,在所述全双工反馈信息指示所述第一接入时隙为空闲态的情况下,确定所述第一节点在所述冲突分解队列中的目标排队位置。
  16. 根据权利要求15所述的第一节点,其特征在于,所述处理模块还用于,若所述全双工反馈信息指示有且仅有一个第二接入时隙为冲突态,则确定所述目标排队位置为所述第二接入时隙在所述冲突分解队列中的排队位置。
  17. 根据权利要求15所述的第一节点,其特征在于,所述处理模块还用于,若所述全双工反馈信息指示有多个所述第二接入时隙为冲突态,则确定所述目标排队位置为多个所述第二接入时隙中距离所述第一接入时隙最近的第二接入时隙在所述冲突分解队列中的排队位置。
  18. 根据权利要求15所述的第一节点,其特征在于,所述处理模块还用于,若所述全双工反馈信息指示有多个所述第二接入时隙为冲突态,且多个所述第二接入时隙中有两个所述第二接入时隙距离所述第一接入时隙最近,则确定所述目标排队位置为距离所述第一接入时隙最近的两个所述第二接入时隙中,排序最前的所述第二接入时隙在所述冲突分解队列中的排队位置。
  19. 根据权利要求15所述的第一节点,其特征在于,所述处理模块还用于,若所述全双工反馈信息指示所有接入时隙为成功态或空闲态,且在所述冲突分解队列不为空的情况下,则确定所述目标排队位置为所述冲突分解队列的队尾位置。
  20. 根据权利要求15所述的第一节点,其特征在于,所述处理模块包括:
    发送单元,用于在否定应答NACK时隙中发送NACK信号,所述否定应答NACK时隙出现在所述第一节点接收所述全双工反馈信息之后;
    接收单元,用于接收所述第二节点发送的队列调整指示信息,所述队列调整指示信息用于指示所述目标排队位置,所述目标排队位置为所述冲突分解队列中的任一位置或者所述冲突分解队列队尾位置的后一个位置;
    处理单元,用于根据所述队列调整指示信息确定所述目标排队位置。
  21. 根据权利要求15所述的第一节点,其特征在于,所述处理模块还用于,若所述全双工反馈信息指示有多个所述第二接入时隙为冲突态,则确定所述目标排队位置为多个所述第二接入时隙中任一所述第二接入时隙在所述冲突分解队列中的排队位置。
  22. 根据权利要求15所述的第一节点,其特征在于,所述处理模块还用于,若所述全双工反馈信息指示所有接入时隙为成功态或空闲态,在所述冲突分解队列不为空的情况下,则确定所述目标排队位置为所述冲突分解队列中的任一位置。
  23. 根据权利要求15所述的第一节点,其特征在于,所述接收模块还用于,接收所述第二节点发送的物理帧,所述目标标识携带在所述物理帧中,且所述物理帧为所述第二节点在发送完所述全双工反馈信息后所发送的,或者,接收所述第二节点发送的全双工反馈信息,所述目标标识携带在所述全双工反馈信息中。
  24. 根据权利要求15至23任一项所述的第一节点,其特征在于,所述处理模块还用于,若确定出所述目标标识与所述第一节点的标识一致时,则确定所述第一节点进入数据传输队列进行排队。
  25. 一种第二节点,其特征在于,包括:
    接收模块,用于在第一接入时隙中接收第一节点发送的接入请求信息;
    发送模块,用于向所述第一节点发送全双工反馈信息;
    在所述全双工反馈信息指示所述第一接入时隙为成功态的情况下,所述发送模块还用于,向所述第一节点发送目标标识。
  26. 根据权利要求25所述的第二节点,其特征在于,所述发送模块还用于,向所述第一节点发送物理帧,所述目标标识携带在所述物理帧中,且所述物理帧为所述第二节点在发送完全双工反馈信息后所发送的。
  27. 根据权利要求25所述的第二节点,其特征在于,所述发送模块用于,向所述第一节点发送携带有所述目标标识的所述全双工反馈信息。
  28. 一种第二节点,其特征在于,包括:
    第一接收模块,用于在第一接入时隙中接收第一节点发送的接入请求信息;
    第一发送模块,用于向所述第一节点发送全双工反馈信息;
    所述第一发送模块还用于,在所述全双工反馈信息指示所述第一接入时隙为成功态的情况下,向所述第一节点发送目标标识;
    第二接收模块,用于在否定应答NACK时隙中接收所述第一节点发送的NACK信号,所述否定应答NACK时隙出现在所述第一节点接收所述全双工反馈信息之后;
    第二发送模块,用于若所述第二接收模块在NACK时隙检测到了NACK信号,则向所述第一节点发送队列调整指示信息,所述队列调整指示信息用于指示目标排队位置,所述目标排队位置为所述冲突分解队列中的任一位置或者所述冲突分解队列队尾位置的后一个位置。
PCT/CN2018/071319 2018-01-04 2018-01-04 一种全双工传输方法以及相关设备 WO2019134088A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/CN2018/071319 WO2019134088A1 (zh) 2018-01-04 2018-01-04 一种全双工传输方法以及相关设备
CN201880081911.8A CN111527728B (zh) 2018-01-04 2018-01-04 一种全双工传输方法以及相关设备
US16/918,486 US11337248B2 (en) 2018-01-04 2020-07-01 Full-duplex transmission method and related device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/071319 WO2019134088A1 (zh) 2018-01-04 2018-01-04 一种全双工传输方法以及相关设备

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/918,486 Continuation US11337248B2 (en) 2018-01-04 2020-07-01 Full-duplex transmission method and related device

Publications (1)

Publication Number Publication Date
WO2019134088A1 true WO2019134088A1 (zh) 2019-07-11

Family

ID=67144056

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/071319 WO2019134088A1 (zh) 2018-01-04 2018-01-04 一种全双工传输方法以及相关设备

Country Status (3)

Country Link
US (1) US11337248B2 (zh)
CN (1) CN111527728B (zh)
WO (1) WO2019134088A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11653375B2 (en) * 2021-01-22 2023-05-16 Qualcomm Incorporated Transmit power adjustment for full duplex feedback

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103200132A (zh) * 2013-04-22 2013-07-10 东南大学 一种实时任务调度的医疗体域网mac接入方法
WO2014191052A1 (en) * 2013-05-31 2014-12-04 Fundació Per A La Universitat Oberta De Catalunya Method and apparatus for sending and receiving data in a machine to machine wireless network

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6408009B1 (en) * 1993-06-04 2002-06-18 Illinois Institute Of Technology Method and apparatus for detecting collisions on and controlling access to a communications channel
US5390181A (en) * 1993-06-04 1995-02-14 Illinois Institute Of Technology Method for detecting collisions on and controlling access to a transmission channel
KR101194829B1 (ko) * 2005-12-09 2012-10-25 한국전자통신연구원 임의 접속 제어 방법
CN101399833B (zh) * 2008-12-09 2011-06-01 中国人民解放军理工大学 基于协同冲突分解的混合型媒体接入控制方法
EP3125632B1 (en) * 2014-03-26 2021-03-24 LG Electronics Inc. Method and apparatus for allocating resources in wireless access system supporting fdr transmission
US10567202B2 (en) * 2015-03-20 2020-02-18 Ntt Docomo, Inc. User equipment and base station
KR102287526B1 (ko) * 2015-05-14 2021-08-06 에스케이텔레콤 주식회사 기지국장치, 전이중전송 제어 방법 및 시스템
US20160344535A1 (en) * 2015-05-22 2016-11-24 Qualcomm Technologies International, Ltd. Method for Improving Efficiency of a WLAN Network
US20180084506A1 (en) * 2016-09-22 2018-03-22 Intel Corporation Methods of multi-user transmit power control and mcs selection for full duplex ofdma 802.11
US20180192431A1 (en) * 2016-12-29 2018-07-05 Ping Wang Techniques for full duplex wireless communications
CN106937399B (zh) * 2017-03-15 2020-11-06 上海交通大学 全双工缓存中继系统多用户调度方法及系统
JP2020080442A (ja) * 2017-03-22 2020-05-28 シャープ株式会社 端末装置、基地局装置、通信方法、および、集積回路
CN108631949A (zh) * 2017-03-23 2018-10-09 株式会社Ntt都科摩 数据发送方法、数据接收方法、用户设备和基站
WO2018176431A1 (zh) 2017-03-31 2018-10-04 华为技术有限公司 全双工传输方法及装置
CN110740353B (zh) * 2018-07-20 2021-07-09 阿里巴巴(中国)有限公司 请求识别方法及装置
US11405171B2 (en) * 2019-02-22 2022-08-02 Nxp B.V. System and method for controlling full duplex communications at an access point
US11329790B2 (en) * 2019-06-24 2022-05-10 Qualcomm Incorporated Bandwidth part full-duplex communication techniques

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103200132A (zh) * 2013-04-22 2013-07-10 东南大学 一种实时任务调度的医疗体域网mac接入方法
WO2014191052A1 (en) * 2013-05-31 2014-12-04 Fundació Per A La Universitat Oberta De Catalunya Method and apparatus for sending and receiving data in a machine to machine wireless network

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
LAYA, A. ET AL.: "Goodbye, ALOHA!- SPECIAL SECTION ON THE PLETHORA OF RESEARCH IN INTERNET OF THINGS (IOT)", IEEE ACCESS, vol. 4, 21 April 2016 (2016-04-21), pages 2029 - 2044, XP011612029 *

Also Published As

Publication number Publication date
CN111527728A (zh) 2020-08-11
US20200337085A1 (en) 2020-10-22
US11337248B2 (en) 2022-05-17
CN111527728B (zh) 2023-01-06

Similar Documents

Publication Publication Date Title
US11658843B2 (en) System and method for full-duplex media access control using request-to-send signaling
US7746879B2 (en) Mesh deterministic access
US8050249B1 (en) Methods for reducing contention and/or handling channel access in a network
JP5665694B2 (ja) 無線通信装置
WO2020063742A1 (zh) 终端直通通信的资源分配方法和装置
KR20080016943A (ko) 무선 근거리 통신망들에서 노출된 노드 문제들 회피
EP3379887B1 (en) Use of delayed clear-to-send and denial-to-send in directional wireless networks
US11316646B2 (en) Method and system for autonomous transmission in a wireless network
JP2014003673A (ja) マルチチャネルにおける動作用の向上したキャリア検知
US7693175B1 (en) Prioritized access in a multi-channel MAC protocol
US20190363865A1 (en) Full duplex transmission method and apparatus
WO2023011430A1 (zh) 数据传输方法、装置及发送端设备
US8755402B2 (en) Medium reservation protocol for directional wireless networks
WO2019134088A1 (zh) 一种全双工传输方法以及相关设备
Garcia-Luna-Aceves CTMA: A More Efficient Channel Access Method for Networks with Hidden Terminals
Garcia-Luna-Aceves KALOHA: ike i ke ALOHA
KR101169993B1 (ko) Csma/ca 경쟁기반 매체접근 제어 장치 및 방법
JP2016029839A (ja) 無線通信装置
US11770462B2 (en) Techniques for virtual time slotting of communications packets
US20240187334A1 (en) Data Sending Method and Communication Apparatus
CN109495235B (zh) 一种传输方法及传输节点
WO2024067655A1 (en) Wireless communication method and user equipment
KR20100093216A (ko) 무선 센서 네트워크의 센서노드 및 백 오프 레인지 조절 방법
JP5840756B2 (ja) 無線通信装置
EP2911465A1 (en) Channel access with carrier sensing mechanisms

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18898543

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18898543

Country of ref document: EP

Kind code of ref document: A1